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Abstract
Reading an EEG by neurologists, to diagnose epilepsy or to evaluate pathological
events that contribute to the diagnosis, is very time consuming. A pathological
event of the EEG that is indicative of epilepsy is the spike and wave. The objective
of the study is the creation of an epileptic spike and waves detector based on a set
of matched filters to support the diagnosis of epilepsy through a tool capable of
detecting spike and waves in the EEG signal.
The first chapter provides anatomical, biological and physiological information nec-
essary to understand the problem. A brief description of epilepsy and its classifica-
tions is also described, with the related pathological waveforms that can be found
in the EEG. The second chapter illustrates some mathematical concepts useful for
better understanding the work. The third chapter describes the dataset used con-
sisting of 10 EEG signals and the method for identifying the spike and waves from
the signals. The results achieved are described in chapter four. In particular, the
average true positive rate (TPR) obtained considering all patients is 85%, with an
average precision (PPV) of 67%. Then the algorithm was tested to a dataset of
healthy patients to understand if it was able to distinguish between healthy and
sick patients. It has also been noted that even in patients with attention deficit
hyperactivity disorder (ADHD) there is the presence of spike and waves. It has
been observed also that the number and frequency of spikes change according to
the period considered, showing an increase in the pre-ictal period compared to the
inter-ictal period, with a considerable increase during the seizure. Finally, the last
chapter describes some improvements that could be made and future research that
could be carried out.
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Chapter 1

Introduction

1.1 Nervous System and EEG

The human brain is a complex organ which belongs to the nervous system, the most
complicated human system. To understand and to explain the countless signals
originated from the brain is used the electroencephalograph, which is a non-invasive
instrument now used daily and capable of providing important information on the
pathological state of the brain.

1.1.1 Nervous System Anatomy

The nervous system is a complex of organs responsible for receiving external and
internal stimuli to the body and for processing coordinated voluntary and involun-
tary effector responses. It is also associated with multiplex psychic function, such as
emotions, learning and memory. All organs that compose the system are made up
of nervous tissue, whose fundamental unit is the neuron. It is classified anatomically
in a peripheral part, which plays the role of transmitting signals to and from ex-
tra nervous organs (peripheral nervous system or PNS), and a central part (central
nervous system or CNS), which is able to process the information that comes from
PNS, providing responses that will be redistributed throughout the body [1].
The CNS consists of the encephalon, which is enclosed by the skull, and the spinal
cord, which is instead located in the spinal canal. The encephalon in turn includes
the brain, cerebellum and medulla oblongata. These three structures are covered by
some membranes called meninges, which are divided into three layers:

• Pia mater - delicate and closest to the brain

• Arachnoid mater - middle of the meninges

• Dura mater- thick and near to the skull and vertebrae

There is also another protective barrier called blood-brain barrier (BBB) which is
able to limit the solutes exchange between blood and brain. The BBB prevents the
passage of many substances that circulate in the blood, such as toxic substances or
metabolites, which could act as neurotransmitters and interfere with brain synaptic
communication.
What allows the brain to function are neurons. There are approximately one thou-
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Figure 1.1: Central and Peripheral Nervous System

sand billion neurons in the brain, which are divided in a complex network. Neurons
allow the propagation of the nerve impulse so that the brain is able to perform all its
necessary for a good human body’s health. Besides neurons, in even grater numbers,
there are cell known as glia that have a supporting function into the brain [2].

1.1.2 Neurons

Neurons are the nervous system fundamental processing cells. They are hardwired
for the electric signal generation and propagation along their membranes to other
neurons or efferent cells. The main responsible for electromagnetic impulse propa-
gation are the pyramidal neurons which are made up three parts (shown in figure
1.2 ): soma, axon and dendrites.

Figure 1.2: Structure of a neuron

In the soma, which is the central part of the neuron, the nucleus and other organelles
responsible for the main cellular functions reside. Dendrites are the neuron’s part
that receives and transmits information to other neurons through junctions called
synapses, which are small areas that allow chemical and electrical communication.
The axon, on the other hand, has the task of transmitting the electrical signal to
other nerve cells. The axon terminal part consists of a series of synaptic buttons
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that allow communication between neurons and between the neuron and another
cell. The soma has a simple plasma membrane, while the axon membrane can be
coated with up to two layers of myelin, which is an insulating substance, consisting
mainly of lipids and proteins. The myelin presence or absence makes axon myeli-
nated or unmyelinated respectively. The myelin layers assemble oligodendrocytes
and Shwann cells belong to the central nervous system and to the peripheral ner-
vous system respectively and they are known as the myelin sheath.
The myelin sheath is not continuous, but every 1-3 mm has some interruptions called
nodes of Ranvier. The myelin sheath alternation is necessary for impulses conduc-
tion (saltatory conduction); for this reason, action potentials can only be triggered
in Ranvier nodes and they propagated jumping from one node to another. First
of all, this type of conduction guarantees a speed conduction increase in the nerve
impulses and secondly it allows energy saving because the depolarization occurs only
in Ranvier̀ıs nodes.
According to the morphological point of view (depending on the neuritis structure),
neurons are divided into:

• Unipolar neurons: they have only a neuritis that could work as axon or
dendrite.

• Bipolar neurons: they have an axon and a dendrite that originated from
two opposite cell body poles.

• Multipolar neurons: they have an axon and several dendrites that origi-
nated from different cell body points.

• Pseudounipolar neurons: they have a neuritis that originates in the soma
end it splits into a T (one branch directed toward the periphery and one
towards the CNS.

1.1.3 Nervous System Physiology

Neurons exploits complex signal propagation mechanisms. Even in rest condition,
their membrane is endowed with a polarization known as membrane potential. The
membrane potential is due to the ionic exchanges that occur between the mem-
brane two sides (inside and outside the membrane) through the ion channels in the
phospholipid bilayer. These channels do not allow passage to any ionic species, but
are highly specific towards some ions such as sodium and potassium. This leads a
charges of opposite sign difference on the two membrane sides. Moreover, channels
can always be open and in this case they are responsible for the resting membrane
potential (passive channels); on the contrary, there are channels whose opening is
due to electrical, chemical and mechanical stimuli (active channels). Ions that gen-
erate charges difference are mainly Na+ (sodium ion), K+ (potassium ion) and Cl−

(chlorine ion).

During the resting condition, there is a high potassium concentration inside the cell,
while outside there is a high sodium and chlorine concentration. Due to the different
ion species concentration between inside and outside the cell, sodium tends to enter
(because of concentration gradient), while potassium tends to exit, generating a
electrical charges displacement and ,therefore, generating current. However, since
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the membrane has a different permeability based on the ionic species (it is more
permeable to potassium), potassium is able to exit the membrane more easily than
sodium enters. This causes a charge imbalance which leads to a negative internal
potential (-65 mV/-70 mV). To maintain the equilibrium concentration that leads to
a negative potentials inside the cell, sodium-potassium pumps are necessary. They
generate opposite species flows respect to the concentration gradient: potassium,
therefore, will be pushed inside, while sodium will be pushed out. In this way, the
total flux in the membrane will be equal to 0. However, in response to electrical
stimulus, voltage-dependent channels come into operation: they are selective for
sodium ions which are now able to enter inside the cell, depolarizing the membrane,
i.e. increasing the membrane potential. For this reason, it is said that the neuron is
an excitable cell: when it is crossed by a nerve stimulus, it modifies its ions balance
so that the inside becomes positive and the outside becomes negative.

The action potential is initially triggered by a depolarization that have to exceed
a threshold level, defined as the activation threshold, in order to allow the sodium
voltage-channels opening, creating a net sodium ions flow into such to overcome the
passive potassium migration toward the outside.
The action potential generation can be summarized in four steps [3]:

Figure 1.3: Action potential

1. Depolarization: from the rest state, once the threshold value is exceeded
(about 55 mV), the potential increases until it approaches the sodium ion
equilibrium potential value (+58 mV).

2. Repolarization: the membrane return to its initial condition after a short pe-
riod because the sodium channels opening in temporary, indeed the membrane
is again permeable predominantly to potassium.

3. Hyperpolarisation: the membrane permeability to potassium, during the
repolarization phase, is higher so that a potential lower (more negative) than
the rest condition potential is reached. The period in which the membrane
potential is lower than the resting potential is called relative refractory period.
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During this period, even if a new stimuli arrive that would cause the sodium
channels reopening, the action potential does no trigger.

4. Back to the resting state: the membrane potential returns to its initial
value because the potassium permeability value has re-established.

1.1.4 EEG Signal Characteristics

To investigate the cortical functions, the electroencephalographic signal (EEG) is
studied. The EEG signal is the result of pyramidal neurons electrical activity, which
are closest to the brain cortex. The neurons operation is poorly synchronized, except
in particular pathological cases or induced cases. For this reason, the EEG signal will
have a noisy appearance and therefore it is difficult to recognize typical waveforms;
accordingly, the EEG is a random process that can only be describe in statistical
terms. Until the 1970s it was the only way to investigate inside the skull. From to
those years onwards, the development of CT scans and NMR has allowed us to have
very precise anatomical brain images, leading to disuse of the EEG. A lot of diseases
are due to anatomical brain alterations and these new medical instruments made it
possible to identify abnormalities with a spatial resolution of 1 mm, while a source
localization through the EEG signal could not have been so precise. However, CT
scan and NMR have a poor temporal resolution while the EEG signal, from the
point of view of localization over time, is unsurpassed. If an electrical change occurs
in the scalp, this can be clearly read instantly in the EEG. In the 90s an attempt
was made to combine the two information, that is a higher temporal resolution of
the EEG with a better spatial resolution of the NMR and CT, however, leading to
poor research results. Today, however, there are instruments on the market that
perform both functions, but there are also analysis techniques such as functional
magnetic resonance, which at the same time allow events to be located in a fairly
precise way over time by combining an excellent spatial localization.

The two clinical applications in which the signal is irreplaceable are:

1. study of epilepsies

2. brain-death observation

In addition to these applications, electroencephalography has currently developed a
high resolution acquisition system consisting of 512 electrodes that allows for better
spatial localization. The EEG is also used for the evoked potentials studies, which
are responses of the brain following external stimuli and they are used to diagnose
diseases such as multiple sclerosis; it can be used also for sleep analysis because
it is able to change its characteristics according to the level of sleep. The EEG
signal can be affected by many artifacts and it is therefore important to be able to
distinguish whether a variation in the graph may be due to the activity of neurons
or to an artifact. For example, motion artifacts are visible in the graph, but to
better understand where they are in the signal, videoelttroencephalography was
introduced, which precisely captures the subject while an EEG is taken.

The EEG amplitude varies from a few µV to a few hundreds of µV, divided into
three bands: low (< 30µV), medium (30-70µV) and high (> 70µV). Regarding
morphology, it can be polymorphic or monomorphic. Polymorphic when it has
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potentials belonging to the same frequency band but with different amplitude and
irregular periodicity. Monomorph instead when it has a succession of potentials,
as well as of the same frequency band, also of the same amplitude. If the signal
is present in both hemispheres (right and left), it is said to be symmetrical (there
are events that occur only in one hemisphere: asymmetric events). If events occur
simultaneously in the two hemispheres, they are said to be synchronous, otherwise
asynchronous.

Although the signal is difficult to analyze from a morphological point of view, a
frequency band can be identified that contains most of the information. Regarding
basal EEG, i.e. taken on the scalp surface, the frequency band is between 0.1 and
80 Hz. Actually, up to 20 years ago the band was up to 40 Hz, but then we saw
that there is information also on higher frequencies, even if from a clinical point of
view it is not known what they represent.
The signal band is then divided into sub-bands:

• Beta activity - β waves occupy the frequency band between 12 to 30Hz and
they are divided into β1 (12-20Hz) β2 (20-30Hz). They are predominant in a
subject with open eyes engaged in any brain activity, but also in sleep during
REM or during some drugs intake.

• Alpha activity - α waves occupy the frequency band between 8 to 12Hz.
They occur mainly in an awake subject with closed eyes. They are present in
both hemispheres and the absence in one of two indicates a pathological state.

• Theta activity - θ waves have frequency in the range 4-8Hz. They are domi-
nant in newborn, while the in the adult the may indicate brain diseases. They
also occur in states of emotional tension, hypnosis and in a state of semi-sleep
within minutes of falling asleep.

• Delta activity - δ waves have frequency less than 4Hz. They are the charac-
teristic waves of sleep; they are not present in the adult waking state although
they are predominant in childhood.

Typical rhythm patterns are shown in figure 1.4

Figure 1.4: Brain wave patterns
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1.1.5 The International 10-20 System

Since different brain areas are specialized in different functions it is important to
take the EEG signal from the whole scalp. It is also necessary that the picking up is
always the same by whoever makes it and in any place. For this reason, a series of
rules for electrode placement has been devised. The 10-20 standard is the standard
for electrode placement in EEG, shared throughout the world. Four reference points
are taken for the skull. The nasion is the fossa above the root’s nose.The inion is
the landmark located posteriorly along the mid line of the skull where there is a
slight protuberance of the bone. Finally, there are two preauricular points which
are located below and in front of the auricle on either side of the head. Electrodes
names correspond to the brain areas in which they are places. In particular:

• Fp: frontopolar

• F: frontal

• C: central

• T: temporal

• P: parietal

• O: occipital

• Z: medial line

You have to think about drawing an imaginary line. First, the length of the curve
that passes over the scalp and medially connects the nasion and inion is measured
with a tape. 10% of this distance is calculated and starting from the nasion and
moving each time by 10%, we arrive at a point where we can mark a parallel to the
skull. Along this parallel there are the electrodes FP1 and FP2, which lie above the
orbits. The electrodes found in the left hemisphere have odd subscripts, those found
in the right hemisphere have even subscripts.

Figure 1.5: International 10-20 system

To know how far the frontopolar is from the nasion, on the parallel the nasion-inion
distance is measured laterally passing over the preauricular point and 10% is calcu-
lated. If you move medially from the nasion by 10%-20% (along the skull mid line),
there is an electrode FPz (it has a subscript z because it is neither on the right nor
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on the left, but in the center of the skull). If from FPz we move toward the left on
a line that goes from FP1 to O1 medially we find F3; if you go down to the line that
connects FP1 and O1, laterally we find F7. On the other side there are F4 and F8.
O1 and O2 are the rear points to FP1 and FP2. In the skull center, Cz is located. Ex-
tending to the left there are C3 (between FP1 and medial O1) and T3 (between FP1

and lateral O1); the same applies to the right. The rear electrodes are Pz, P3 and P4.

In total there are 19 electrodes. The 10-20 standard does not prescribe a number
of electrodes, but prescribe their positions. The full 10-20 standard is when you
move in 10% steps: in this case new electrode lines appear and you get up to 73
electrodes. The electrodes just described are all expolarants electrodes. To pick up
a signal, a reference is required. The most used references are placed on the earlobe
and are indicated with the positions A1 and A2. The left electrodes can refer to A1

and the right ones to A2, or they can all refer to one of the two or to their average.
In addition to the lobes, other references such as an electrode placed on the mastoid
bone or on the chin can be used. In some cases it is preferred to use a non-cephalic
reference, such as the mean of the potentials.

1.2 Epilepsy

Epilepsy is a CNS system pathology caused by cerebral cortex neurons malfunction.
It is a clinical condition due to a sudden onset of neurons hyper-synchronize. De-
pending on the area of the cerebral cortex that is affected, the symptoms can vary;
they are alteration in the state of consciousness, behavioral alterations and motor
and sensory function alterations, but the most common symptoms are seizures. The
physiological mechanism that leads to the epileptic crisis is an imbalance between
inhibitory and excitatory action, which leads to a transmembrane ionic exchanges
alteration, resulting in a neurons hyper-excitability. About 1% of the world’s popula-
tion suffers from epilepsy and nearly 80% of cases are found in developing countries.
In 2013, epilepsy caused 116.000 deaths, up from 111.000 in 1990.

Epilepsy becomes more common in elderly people, even if it has a high prevalence
even in the first year of life, so the diagnosis immediately after birth is important.
The mortality rate in epilepsy patients is 2-3 times higher to that of the general
population and it’s higher in males. Death can only be related to epilepsy ( suicides,
tumors, ischemic heart disease) or it can happen accidentally during a crisis.

Epileptic seizures can be divided into four phases. The phase preceding the epileptic
seizure is called pre-ictal. During this phase, there are sensory alteration in the pa-
tient. Then follows the ictal phase which is the phase of the actual seizure in which
neurological symptoms such as spasms and loss of consciousness occur. Afterward,
post-ictal phase leads the subject to a restoration of the normal condition. Finally,
between two seizures, there is the inter-ictal phase.
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1.2.1 Classification

There are several classifications of epilepsy, but despite this, all the classifications are
distinguished in focal (or partial) seizures and generalized seizures. The first type of
seizure concerns neurons (which participate in the discharge) which are present only
in one region of the cerebral cortex; the second concerns neurons present throughout
the cortex.
According to ILAE (International League Against Epilepsy) [4], in 1989 epilepsy
was classified according to its cause (etiological approach). In particular, it is dis-
tinguished in idiopathic epilepsies, to which it does not recognize precise and iden-
tifiable causes but is thought to be of genetic origin; symptomatic epilepsies, which
depend on the nervous system structure alterations (such as brain tumor) and fi-
nally cryptogenic epilepsies, the origin of which is unknown. In 1981, ILAE classified
epilepsy based on clinical and EEG features [5]. They are divided into:

• Simple partial seizures: in this type of seizure the patient does not lose
consciousness and is able to tell what happened. Since only some of the brain
areas are affected, depending on the area, spasms may occur only in some
fingers, in one arm or in the whole body. There may also be sensory sensory
phenomena such as heat or cold sensations, loss of taste, loss of vision, dizziness
or sensation of free-falling. Psychic symptoms such as memory loss, loss of
reality and hallucinatory fits, emotional crises and difficulty speaking may
also occur.

• Complex partial seizures: the patient loses consciousness. The loss of con-
sciousness may not be complete, in the sense that the patient can understand
what is happening nearby. There is an aura. It is characterized by the pa-
tient activity arrest, who often has a fixed gaze and manifests oral, gestural,
mimic and ambulatory automatism. After the seizure, a period of confusion
is followed by a slow recovery of normal activity.

• Generalized seizures: discharges begin simultaneously from both brain
hemispheres. They are characterized by loss of consciousness and the absence
of aura and they can come unexpectedly without any particular antecedent
symptoms. Generalized seizures are divided into:

– Primary generalized tonic-clonic seizure (GTCS): it is the most
common generalized epilepsy. It begins with a tonic phase in which the
body stiffens, the patient loses consciousness and falls. Then follow a
clonic phase which can last several minutes and which involves violent
agitation of the whole body.

– Absence seizures: They last a few seconds and they are more common
in children. Absence seizures are characterized by the state of conscious-
ness suspension in which the subject remains with his gaze lost in the
void. At the end of the seizure, the patient does not remember anything.
This type of epilepsy is characterized by abnormalities in the EEG trace
in which spike and waves can be detected.

– Myoclonic seizures: they consist of short and sudden muscle contrac-
tions in different parts of the body.
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– Clonic seizures: they are repeated in the same muscle groups regularly
and they consist of a bilateral tremors series that occur to the trunk and
limbs.

– Tonic seizures: they present only the tonic phase of muscle stiffening
followed by a sudden loss of consciousness.

– Atonic seizures (astatic seizures): these kind of seizures cause a
total suspension of the localized or generalized muscle tone that leads
the patient to fall on the ground.

1.2.2 EEG Waveform Abnormalities

First of all, it should be noted that not all those who report an EEG use the same
terms or give them a similar meaning. The glossary of the IFCN (International Fed-
eration of Clinical Neurophysiology), which often derives from compromise choices
between the various positions, is the one that is universally accepted; it also focuses
attention on the morphological characteristics of the graph elements and does not
become unbalanced in terms of clinical interpretation.

A distinction must be made between paroxysm and seizure pattern or discharge
[6]. The first is a single graph element, which begins and ends abruptly, which is
clearly distinguished from the background activity. The second means a phenomenon
lasting a few seconds or more, consisting of repeated epileptic graph elements, with
a fairly well recognizable beginning and end.
Epileptiform graph elements are described below.

Figure 1.6: EEG waveform abnormalities
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• (A) Spike: transient graph element, clearly distinct from the background ac-
tivity, with a negative main component, mono-bi-triphasic, variable amplitude
(50− 100µV) and very short duration (20− 70ms).

• (B) Polyspike complex: sequence of two or more spikes.

• (C) Sharp wave: transient graph element, clearly distinct from the back-
ground activity, bi-triphasic, variable amplitude (100−200µV) and a duration
of 70− 200ms.

• (D) Spike and slow wave complex: paroxysm characterized by a spike
followed by a slow wave: it can have a frequency of 3 Hz (typical) or less
(atypical).

• (E) Polyspikes and slow wave complex: polyspikes followed by a slow
wave.

• (F) Sharp and slow wave complex: sharp wave followed by a slow wave.
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1.2.3 Spike and Wave

Particular attention deserves the spike and the wave. It is a visible pattern in
different types of epilepsy, but it is most noticeable during absence seizures. It is
caused by a bilateral synchronous firing of neurons that go from the neocortex to
the thalamus. The reason for the genre of spike and wave is still being studied. One
hypothesis is that the spike is generated by the neuronal membrane potential, also
called Paroxysmal depolarizing shift which was thought that it was generated by a
large EPSP (post synaptic excitatory potential) due to a lack of synaptic inhibition,
which allowed the triggering of voltage gated sodium channels which in turn generate
a current that gives rise to the action potential. Calcium channels are also activated
but have a less marked effect than sodium channels. The calcium channels, however,
leading to an increase in the concentration of intracellular calcium, in turn lead
to the activation of the potassium channels which, instead, lead the membrane to
repolarization with consequent hyperpolarization. The long phase of depolarization,
which causes an action potential train, constitutes the spike, while the subsequent
phases of repolarization and hyperpolarization determine the wave [7].

However, other studies [8] have shown that synaptic inhibitory activity remains
present during paroxysmal depolarizing shifts for which the hypothesis that the
spike and wave is caused by a large excitatory postsynaptic potential and by the al-
most absence of inhibitory postsynaptic potentials (IPSPs) is not accepted. Indeed,
due to the activation of the postsynaptic GABA receptor, there is an increase in the
concentration of intracellular chloride which leads to a post-synaptic inhibitory po-
tential. Especially during seizures, when depolarization occurs, there is a significant
activation of the GABA receptors which leads to a large concentration of intracel-
lular chloride as long as the inhibitory current due to GABA exceeds the reversal
potential and the chlorine ions leave the cell, leading to a reduced or inverted am-
plitude of IPSPs. Other receptors that have been shown to play an important role
in the generation of spike and waves are the metabotropic glutamate receptors, in
particular mGlu4. Some studies [9] have shown how the elimination of mGlu4 recep-
tors from mice allowed them to resist induced absence epileptic seizures, precisely
because the missing receptors did not allow the release of glutamate and GABA
into the thalamocortical network. Therefore, an increase in mGlu4 activity is as-
sociated with spike and wave discharges during absence seizures, so much so that
currently drugs capable of blocking these receptors are also used to treat absence
epilepsy.

1.2.4 Diagnosis and Therapy

The diagnosis of epilepsy is made first of all through a clinical investigation that
allows to have a clear description of the episodes that the doctor will evaluate if
they are attributable to the disease [10]. In this case, instrumental examinations
are performed. The first is the electroencephalogram which is able to identify any
anomalies of epileptic origin that could confirm the diagnosis, but a possible absence
could not exclude it. Imaging techniques such as magnetic resonance and computed
tomography allow us to study any structural alteration (such as any brain tumors)
that may be the cause of epilepsy. Also radio tracer tests such as PET and SPECT
can highlight the presence of areas functionally hyperactive or hypoactive. Blood
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tests can be used to identify metabolic alterations or genetic diseases that may
be associated with seizures. Instead, neuropsychological tests allow you to assess
patients’ thinking, memory and language skills, helping to identify the affected brain
areas.

Epilepsy is mainly treated with antiepileptic drugs which are usually prescribed after
the second seizures. The drug choice is based on the type of epilepsy that the subject
presents and generally, at least initially, includes only one drug. The effectiveness of
the therapies is evaluated over weeks or months and in any case taking into account
the frequency of epileptic seizures. In cases where patients suffer from drug-resistant
epilepsies and in which it is possible to trace a stable and unique origin and whose
removal does not cause further neurological problems, it is possible to use surgical
therapy. Surgical therapy can be of the resective type, i.e. the epileptogenic area is
completely eliminated; or it can be palliative, meaning that it is used to reduce the
seizures frequency and severity.
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Chapter 2

Mathematical Concepts

To understand the following discussion, it is advisable to introduce some mathemat-
ical concepts. In particular, methods for eliminating EOG and EMG artifacts and
main technique that exploits the algorithm to search for spike and wave in the eeg
signal will be described.

2.1 Blind Source Separation (BSS)

The blind source separation algorithms have made it possible to overcome the limits
of classical methodologies and obtain more effective denoising. The BBS algorithms
principle is to succeed in separating a signal that is composed of other signals. The
problem can be thought of as if it were composed of three elements: the sources,
which generate the signal, the communication channels which weigh the source sig-
nals and the sensors. A simple example would be when you search for oil under-
ground by detonating explosive charges. In this case the communication channel is
the soil and what is measured are the return echoes. A mixture is measured which
is the sum of all the echoes arrived and the algorithm wants to separate the mixture
into the single echoes. Another example is the cocktail party problem where many
speakers talking at the same time in the same room and some microphones pick
up the sound, on which the BBS algorithm can be applied to separate the sources.
There are several mathematical models that are able to describe the method, but
the simplest is the instantaneous linear model [11][12].

It is supposed to have n different sources picked up by m sensors, with m ≥ n.
The mathematical model can be described by the following equation:

x(t) =

x1(t)...
xm(t)

 =

a11 . . . a1n
...

. . .
...

am1 . . . amn


s1(t)...
sn(t)

 = As(t) (2.1)

where t are the time samples of the m signals, x(t) is a matrix of size equal to m x t,
s(t) is a matrix of size equal to n x t which contains samples of the n sources signals;
finally A is a matrix (m x n) called mixing matrix. Assuming that the observed
signals have zero mean, each row of x(t) contains the m-th signal recorded by the
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sensor, as well as each row of s(t) contains the n-th source signal. To reconstruct
the s(t) matrix containing the sources signals, three steps are necessary:

1. Estimate the mixting matrix A, whose product for s(t) gives x(t)

2. Invert the mixting matrix A

3. Apply the inverse A−1 to the observed signals, in order to obtain the sources:

s(t) = A−1x(t) (2.2)

In this case the simple inverse matrix A−1 is used due to, as for EEG, the number
of sources is equal to the number of available channels. On the other, if the number
of channels had been greater than the number of sources, the pseudoinverse matrix
should have been calculated, as explained in [12].
To solve the problem, it is necessary to impose conditions on the mixting matrix A
or in the sources s(t). Generally, BSS algorithms impose conventions on the latter
and they take a different name according to the conditions given.

2.1.1 Second Order Blind Source Separation

To estimate the mixting matrix, there are methods that exploit second order statis-
tical moments. In particular, these methods pose the condition of non-correlation
of the sources. One of the algorithms, used in this study to remove EOG artifacts,
is the SOBI algorithm, which assumes the temporal non-correlation of the sources
[13]. The algorithm can be briefly described in two steps [11]: data whitening and
rotation matrix creation. In the first step, a whitening matrix W is used, such that,
applied to 2.1, it is obtained:

WAATW T = I (2.3)

where I is an identity matrix. By multiplying the observed signals x(t) by the matrix
W , their whitening is obtained, indicated by:

z(t) = Wx(t) = Us(t) (2.4)

where U = WA. We can write the covariance matrix of x(t) as:

R̂xx =
1

T

T∑
t=1

x(t)x(t)T (2.5)

which can be factored as:

R̂xx ≈ AR̂ssA
T (2.6)

where R̂ss is the covariance matrix of s(t). R̂ss is a diagonal matrix with the variance
values of the sources on the diagonal. Given the equations 2.4 and 2.6, we note that
the matrix W is the matrix that diagonalizes R̂xx and is therefore determinable
through the eigenvalues and eigenvectors of the matrix R̂xx.
The second step consists in the evaluation of a rotation matrix U such that: U =
WA. The mixtin matrix A can be obtained by:

A = W#U (2.7)
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The U matrix is a unity matrix which can be considered a rotation matrix calculable
through a common diagonalization between correlation matrices of the whitening
observations z(t) at different delay values τ:

R̂zz =
1

T

T∑
t=1

z(t)z(t+ τ)T (2.8)

which can be factored as:
R̂zz(τ) ≈ UR̂ss(τ)UT (2.9)

Having found U and W , we can calculate A as in 2.7, so it is now simple to estimate
the sources as 2.2.

2.1.2 Canonical Correlation Analysis

The canonical correlation analysis (CCA) as BSS technique, is used for muscle ar-
tifact removal. Considering 2.1 and assuming that the mixting matrix is linear, the
goal is to estimate W = A−1, forcing the sources to be mutually uncorrelated and
maximally autocorrelated and s(t) a square matrix [14]. Since W = A−1, the equa-
tion 2.2 becomes s(t) = Wx(t). A signal y(t) is created, which corresponds to the
original signal x(t) delayed in time, with a delay equal to 1:

y(t) = x(t− 1) (2.10)

BSS-CCA algorithm, by removing the mean of each x(t) and y(t) row, is able to
obtain two basis vectors, so that correlation between their projections is mutually
maximized. Considering a linear combination of the x(t) and y(t) components:

u = wTxx = wx1x1 + wx2x2 + · · ·+ wxmxm (2.11)

v = wTy y = wy1y1 + wy2y2 + · · ·+ wymym (2.12)

where m are the observations and wx and wy are the weight vector which maximize
the correlation ρ between u and v:

maxwx,w yρ(u,v) =
E[uv]√
E[u2]E[v2]

=
E[(wTxx)(wTy y)]√

E[(wTxx)(wTxx)]E[(wTy y)(wTy y)]

=
wTxCxywy√

(wTxCxxwx)(wTyCyywy)

(2.13)

Cxx and Cyy are the autocovariance matrices of x(t) and y(t), while Cxy is their
crosscovariance matrix.
To find the maximum correlation, it is necessary to carry out the first derivative
with respect to weights wx and wy, in order to obtain:{

C−1
xx
CxyC

−1
yy
Cyxŵx = ρ2ŵx

C−1
yy
CyxC

−1
xx
Cxyŵy = ρ2ŵy

(2.14)
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The problem is reduced to a eigenvalues and eigenvectors problem, where the cor-
relation coefficient ρ is the square root of the eigenvalue, while the weights wx and
wy are the eigenvectors.
Since y(t) is x(t) lagged by 1, they represent same data, so wx and wy also be almost
similar and the equation 2.14 can be solved only for ŵx or ŵy. Trough this method,
for each element of x(t), we obtain the time course of the first pair of vectors u1 and
v1, where u1 is the maximized autocorrelation:

v1(t) = wTy y(t) = wTxx(t− 1) = u1(t− 1) (2.15)

Considering new pairs of weights vectors wx and wy, new vectors ui are evaluated,
using 2.14 and imposing the condition that new ui are uncorrelated from the previous
calculated. Therefore all the vectors ui will be generated by linear combination of
x(t) which guarantee the maximum autocorrelation and at the same time their
uncorrelation.
BSS-CCA algorithm is used for the separation of brain and muscle activity because
of the relatively low autocorrelation value of artifactual components compared to
neural ones, since the algorithm finds sources that are mutually uncorrelated and
maximally autocorrelated sorted in descending order with respect to ρ.

2.2 Matched Filtering

For detecting the presence of a known signal within an unknown signal, it is possible
to use the matched filtering technique [15]. In particular, matched filter identifies a
piece of signal that, although it may be covered with noise, is similar to the proto-
type signal to be identified. This occurs by correlating the known signal with the
unknown signal, that is making the convolution between the unknown signal and
the time reversed prototype signal. The technique goal is to maximize the signal
to noise ratio when the signal is corrupted by stochastic noise. A typical example
is the radar technology, where you want to evaluate the distance to an object by
transmitting a signal on it and measuring how long it takes to return to the source.
Therefore, to understand if the return signal is the one transmitted, it is necessary
to correlate the received signal with a matched filter.
For example, if you send a sinusoid with a certain frequency, you can assume that the
return signal is also a sinusoid that can be attenuated and delayed and mixed with
noise. By applying the match filter to the return signal, if a performance thresh-
old is exceeded, it can be said that the received signal is actually the transmitted one.

Considering 2.1, the signal is s(t), the white noise that is added to it is n(t), the
filter which is the time reversed of the input signal and which maximize the signal
to noise ratio (SNR) is h(t), finally the output signal is y(t). The match filter goal
is to maximize the signal to noise ratio; it is a quasi-optimum linear filter. The
peculiarity, is that despite it is a filter, it does not act on specific frequency bands,
but it recognizes particular waveforms over time, which can be covered by noise; in
fact the filter is able to increase the signal to noise ratio by reducing the noise band
to that of the prototype [16] [17].
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Figure 2.1: Basic filter structure

SNR is given by:

SNR(T ) =

∣∣∣∫ T0 h(τ)y(T − τ)dτ
∣∣∣2

σ2
∫ T
0
|h(τ)|2 dτ

(2.16)

where σ2 is the noise variance. To obtain the matched filter signal yMF (t) is neces-
sary to filter (i.e. convolve) the output signal y(t) with the time reversed filter h(−t):

yMF (t) = y(t) ∗ h(−t) =

∫ ∞
−∞

y(t)h(t− T )dt (2.17)

This method is equivalent to a normalized cross-correlation between the observed
signal and the prototype. Assuming a white noise, the optimal filter that maximize
2.16 is y(−t) (time reversed output signal). The optimal filter assumption is valid
only for a white noise, so it is an ideality. In reality, the filter is only quasi-optimal
because of the noise is not white.

2.2.1 Wavelet Example

An example is a wavelet included in a noisy signal [15]. In this case the signal to
noise ratio is given by the ratio between the wavelet peak amplitude and the noise
standard deviation.Taking into consideration the wavelet in the figure: 2.2

Figure 2.2: First 100 ms of wavelet

Wavelets were added to ten signals in 2.3 in order to obtain signals that vary their
SNR from 0.2 to 2 from bottom to top.
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Figure 2.3: Noisy signals and wavelets

Making the crosscorrelation between the wavelet in 2.2 and the ten signals in 2.3, the
matched filters in 2.4 are obtained. There is an improvement of the signal to noise
ratio in each of the ten trace. You notice that the wavelet energy is maintained and
its shape has been changed to zero phase because of in wavelet the crosscorrelation
becomes auto correlation.

Figure 2.4: Matched filters results
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Chapter 3

Materials and Methods

3.1 Dataset

A dataset made up of ten patients from the Cuneo hospital was used in this study.
In particular the dataset is composed by epileptic patients in observation for some
tens of minutes, in which seizures were introduced by light stimulation or hyperven-
tilation. In 3.1, the electrodes used are highlighted, while patient information are
listed in table 3.1.

Figure 3.1: EEG channels distribution

The patients are all affected by generalized epilepsy, that means, as we learn in 1.2.1,
they have seizures in both hemispheres. The montage used is a bipolar montage in
which each electrode represents the difference between two adjacent electrodes, in
particular channels used in the acquisition are the following: ’Fp2-F4’, ’F4-C4’,
’C4-P4’, ’P4-O2’, ’Fp1-F3’, ’F3-C3’, ’C3-P3’, ’P3-O1’, ’Fp2-F8’, ’F8-T4’, ’T4-T6’,
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Patient Sex Montage Seizures Origin EEG Duration (min)
1 female bipolar 8 generalized 13.76
2 female bipolar 4 generalized 18.18
3 female bipolar 1 generalized 21.35
4 female bipolar 4 generalized 20.15
5 female bipolar 1 generalized 20.08
6 female bipolar 2 generalized 26.33
7 female bipolar 11 generalized 36.86
8 male bipolar 5 generalized 27.35
9 female bipolar 3 generalized 21.13
10 male bipolar 0 generalized 20.15

Table 3.1: Patients information

’T6-O2’, ’Fp1-F7’, ’F7-T3’, ’T3-T5’, ’Fz-Cz’, ’Cz-Pz’.

3.2 Preprocessing

All signals were sampled with a sampling frequency of 128 Hz. A band pass filter,
obtained as a cascade of a high pass filter with a low pass filter, was then applied.
In particular, two IIR Chebyshev Type II filters were used, of order 5 and 6 respec-
tively. The high pass filter has a cut-off frequency of 1 Hz, with attenuation of 20
dB in the stopband at 0.75 Hz. Instead, the low passfilter has a cut-off frequency of
40 Hz, with attenuation of 20 dB in the stopband at 44 Hz.

Figure 3.2: Bode diagram Chebyshev type II highpass filter, order 5
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Figure 3.3: Bode diagram Chebyshev type II lowpass filter, order 6

3.2.1 EOG Removal

An automatic tool by German Gomez-Herrero et al. [18] [19] was used to remove the
EOG artifacts. In particular, Gomez uses the SOBI algorithm described in 2.1.1.
The mixting matrix A is estimated considering the uncorrelated sources as explained
in 2.1.1 and going to evaluate the matrix that better diagonalize a set of observation
covariance matrices at different delay values.

To identify the sources that give rise to the artifact, a measure of the complexity of
the signal based on the fractal dimension was used. The frequency spectrum of the
ocular activity sources is concentrated more on low frequencies, while the spectrum
of the EEG signal is more distributed. For this reason, the fractal dimension of
the EEG spectrum turns out to be greater than that of the ocular activity, so it
is easy to recognize them. Finally, having the mixting matrix A and the artifact
sources, the EEG signal (clean) x̂(t) can be reconstructed by multiplying the signal
itself with the mixting submatrix AEEG which contains only the neural sources (no
artifacts) and its pseudoinverse matrix A#

EEG [19]:

x̂(t) = AEEGA
#
EEGx(t) (3.1)

The algorithm was applied on signal epochs of 200 s. For artifacts such as EOG,
which has regular rhythms, it is advisable to use long windows, but it is important
not to exceed as too long a length could cause the removal of non-artifactual neural
sources. Below, two images relating to the same signal epoch before and after EOG
removal are shown.
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Figure 3.4: 10 seconds of EEG signal after bandpass filter and before EOG removal

Figure 3.5: 10 seconds of EEG signal after EOG removal
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3.2.2 EMG Removal

The method of German Gomez-Herrero et al. [18], which uses the BSS-CCA algo-
rithm in 2.1.2 was also used to remove the EMG artifact. The mixting matrix A is
estimated assuming the sources are mutually uncorrelated but maximally autocorre-
lated. Indeed, according to [14], the autocorrelation value of the EMG components
is much lower than the neural components and therefore it is easy to separate them.
The criterion used in [18] for the identification of the artifactual components is based
on the fact that most of the electrical activity of the EMG signal is higher than 30
Hz, while in the EEG the band is contained at frequencies lower than 30 Hz. By
indicating with ft the frequency that separates the EEG band from the EMG band,
fs the sampling frequency and p1 and p2 the powers relative to the bands [0 ft] and
[0 fs/2], we can evaluate the ratio r = p1/p2 . Based on the value of the latter, com-
ponents that are less than a certain value will be considered components of muscular
electrical activity.

Such as the EOG artifact, the EEG signal x̂(t) can be reconstructed by multiplying
the signal itself with the mixting submatrix AEMG which contains only the neural
sources (no artifacts) and its pseudoinverse matrix A#

EMG [19]:

x̂(t) = AEMGA
#
EMGx(t) (3.2)

According to [18], for impulsive artifacts such as EMG, it is preferable to use epochs
of short duration. In this regard, epochs of 3 seconds were used, while the ft
frequency and the ratio r were set at 15 Hz and 10 respectively. EMG removal was
applied to the same 10 second signal segment used previously. The result is shown
in figure 3.2.
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Figure 3.6: 10 seconds of EEG signal after EMG removal

3.3 Algorithm

After having cleaned the signals from the artifacts that could compromise the good-
ness of the work, it is possible to apply the algorithm that can be summarized in
three steps:

1. Construction of prototype waves that best represent a mathematical model
suitable for representing pathological waveforms.

2. Calculation of matched filters through a normalized cross-correlation, between
each channel and each waveform.

3. Of the waves found in the previous step, only those with an amplitude greater
than a noise threshold were kept.

The algorithm was implemented in MATLAB.

3.3.1 Prototype Waveforms Construction

For each EEG signal described in 3.1, the spike and waves identified by a neurol-
ogist were provided. These spike and waves were then fitted in order to identify a
mathematical model able to best describe them.
As a result of the fitting, the sinc function was chosen to model the spike and a
gaussian function to model the wave after the spike. Subsequently, both the func-
tions created were windowed through a rectangular window; in the case of the sinc
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the window is centered in correspondence with the spike, in the case of the wave the
window is shifted to the right to maintain the gaussian peak and its final part. In
particular the two functions are:

sinc(t) =

{
sin(πt)
πt

t 6= 0

1 t = 0
(3.3)

which can also be written in the analytic form:

sinc(t) =
1

2π

∫ π

−π
ejωdω (3.4)

The latter corresponds to o the continuous inverse Fourier transform of a rectangular
pulse.
As for the gaussian instead it was used in the form:

g(t) = ae
−(t−b)2

c2 (3.5)

which can be rewritten in the form:

g(t) =
1

σ
√

2π
e

−(t−µ)2

2σ2 (3.6)

with µ is the mean and σ is the standard deviation of the distribution. By varying
these parameters it was possible to change the wave, which compared to the spike,
is the one that most highlighted changes in the fitted data.

For the spike, duration values between 30 and 100 ms were chosen, while for the
wave the times were varied from 100 to 300 ms. An example of the prototype ob-
tained is shown in the figure 3.7. Moreover, another feature chosen to obtain spike

Figure 3.7: Prototype waveform

and waves patterns was the amplitude ratio between spike and wave ASPIKE
AWAVE

, In fact,
the spike does not always have a greater amplitude than the wave.
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For this reason, by varying ASPIKE
AWAVE

, a total of 17 prototypes waveforms shown in the
figure 3.8 were obtained. Note that the first five prototypes are actually more like

Figure 3.8: Set of prototypes

spikes and sharp waves than spike and waves. It is necessary because these types of
waveforms are also characteristic of epilepsy and as such have been highlighted by
the neurologist.

3.3.2 Calculation of the Normalized Cross-Correlation

After finding mathematical models that could best approximate the spike and waves
identified by the neurologist, a set of match filters between each prototype and EEG
channel was applied. In particular, the normalized cross-correlation was computed
[20]:

C(t) =

∫
x(τ)w(t+ τ)dτ

‖ x ‖2‖ w ‖2
(3.7)

x(t) and w(t) are the EEG channel and the prototype waveform respectively, while
‖ . ‖2 indicates the root mean square (RMS) of the argument. Therefore, in this
case, the cross-correlation (which is constituted by the numerator of equation 3.7)
is divided by the energy (RMS) of the signal and of the prototype (normalization is
performed). In particular, the energy of the signal that is used is only the portion
of the signal that overlaps the prototype when the cross-correlation is performed.
In detail in MATLAB, this is achieved by means of a convolution (which is imple-
mented in MATLAB by the Fast Fourier Transform algorithm) between the squared
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signal and a rectangular window equal to the length of the prototype (this allows
to zero all the signal except the piece that is compared with the prototype). In
fact, the convolution already performs a sum, so that the energy of the signal is
obtained in the portion in which it is superimposed on the prototype. The energy
of the prototype, on the other hand, is always constant. The numerator instead is
obtained simply through the convolution between the EEG channel and the trans-
lated prototype.

Due to the normalization of the cross-correlation with the energies of the proto-
type and of the signal, cross-correlation values obtained vary between -1 and 1. A
value equal to -1 is obtained when the signal portion coincides perfectly with the
reversed prototype −w(t). On the other hand, a value equal to 1 is obtained when
the signal portion coincides perfectly with the prototype w(t). Clearly, since the
prototypes are mathematical models reconstructed by fitting real spike and waves,
cross-correlation values equal to 1 or -1 will never be obtained.

Furthermore, even if there is a signal waveform identical to the prototype, the max-
imum cross-correlation will not be obtained due to possible artifacts, electrodes
interference, electronic noise, etc. Thus, a normalize cross-correlation threshold at
85% was chosen, which was compared to its absolute value. A value higher than
the threshold indicates a match with between the prototype and the analyzed signal
portion, so it will be taken into consideration for subsequent processing. A value
lower than the threshold, on the other hand, indicates a match that is not sufficiently
high, so that the portion of the signal identified will be discarded. An example of
cross-correlation between a channel and a prototype is shown in the figure 3.9. In
this window there are two matches, i.e. two values above the threshold which in-
dicate a high cross-correlation between signal and prototype in that instant of time.

The choice to normalize the cross-correlation allows to take into account only the
ratios between the amplitude of the spike and the wave and not the absolute ampli-
tudes. This way any waveform that resembles the prototype with a cross-correlation
value beyond the threshold is considered. Therefore, even spike and waves of much
smaller amplitude than those of the prototypes were selected as potential spike and
wave. For this reason, after carrying out the normalized cross-correlation between
each prototype and each EEG channel, each waveform identified was subjected to
another threshold [21]. Assuming σn the standard deviation of the noise:

σn = median

{
|x|

0.6745

}
(3.8)

where x is the clan channel considered. The amplitude threshold for the previously
identified waveforms was set at 5 times the value of 3.8:

Th = 5σn (3.9)

Thus, all waveforms with amplitude less than the threshold were excluded. The
use of the threshold 3.9 allows to consider the fact that according to the considered
channel the level of background activity can change. Indeed, given that the spike
and wave are waveforms that are clearly distinguished from the background activity
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Figure 3.9: Absolute value of normalized cross-correlation

as explained in 1.2.2, the threshold allows to distinguish what is background from
what is not.

So, in summery, after detecting the most prototypes-like waveforms from each EEG
channel, each of them was subjected to amplitude control based on the background
activity threshold of the EEG channel in which the waveform is located. Given the
great variability of spike and wave shape, it is possible, even if rarely, that the same
waveform of the signal can be selected from more than one prototype. For this rea-
son, a control has been inserted that if identical waveforms are detected, only one
is kept and the others are eliminated.

Finally, a check was made on the instants of time and on the channels in which
the waveforms were identified. In fact, since the source of the seizure cannot be
found only in one of the channels, all the waveforms visible in a single channel have
been discarded, as sporadic and non-epileptic index. The location of the waveform
is very important. For example, if the waveform was found in a frontal electrode,
then it is very likely that it is also detected in the adjacent electrodes, rather than
for example in occipital electrodes. For this reason, more weight has been given to
the waveforms present in adjacent electrodes, compared to electrodes far from each
other.

Examples of waveforms identified by the algorithm is shown below. Waveforms
that have a high normalized cross-correlation with the signal are shown in green.
Specifically in the figure 3.10 a 20 seconds epoch of an EEG signal is represented
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including all the channels in which the waveforms identified are noted, while in 3.11
a spike and wave complex is represented, that is a consecutive series of spike and
waves typically present during the seizure.

Figure 3.10: Waveforms identified in 20 seconds of original EEG epoch

Figure 3.11: Spike and wave complex identified by the algorithm
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Chapter 4

Results

4.1 Evaluation of Algorithm Results

To evaluate the algorithm’s ability to correctly recognize the waveforms identified
by the neurologist, as a first step, the following are defined:

• true positive (TP) - the spikes / spikes and waves that are present in the
signal and that are also detected by the algorithm;

• true negative (TN) - the spikes / spikes and waves that are not present in
the signal and that the algorithm does not detect, in this case it is not possible
to define a value of TN;

• false positive (FP) - waveforms that have been detected as spikes / spike
ad waves by the algorithm but are not really spikes / spike and waves;

• false negative (FN) - real spikes / spike and waves that are not identified
by the algorithm while they have been identified by the neurologist.

In this validation it was not possible to calculate specificity and accuracy, as it was
not possible define the true negatives. The measures used to evaluate performance
are:

• sensitivity or true positive rate (TPR)

TPR =
TP

TP + FN
(4.1)

which is a measure of the algorithm’s ability to correctly identify the waveforms
identified also by the neurologist and is given by the ratio between the true
positives and the totality of waveforms identified by the neurologist;

• precision or positive predictive value (PPV)

PPV =
TP

TP + FP
(4.2)

which defines the probability that a waveform identified by the algorithm is
actually a pathological waveform;
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• miss rate or false negative rate (FNR)

FNR =
FN

FN + TP
(4.3)

which is the ratio between true waveforms not detected by the algorithm and
the total of true waveforms;

• false discovery rate (FDR)

FDR =
FP

FP + TP
(4.4)

which indicates how much the algorithm detects false positives out of the total
of positives.

These measurements were made in the first 444 seconds of each dataset signal 3.1.
The values are reported in the table 4.1.

Patient TPR PPV FNR FDR
1 0.93 0.81 0.07 0.19
2 0.92 0.92 0.08 0.08
3 1 0.68 0 0.32
4 0.89 0.84 0.11 0.16
5 0.55 0.63 0.45 0.37
6 0.85 0.51 0.15 0.49
7 0.98 0.81 0.02 0.19
8 1 0.2 0 0.8
9 0.87 0.79 0.13 0.21
10 0.45 0.42 0.55 0.58

Mean 0.85 0.67 0.15 0.33
Std 0.19 0.22 0.19 0.22

Table 4.1: Evaluation of algorithm results

The table shows a consistently high sensitivity with the exception of two patients
(5 and 10). In fact, by eliminating these two patients a sensitivity is achieved on
average equal to 93%. By eliminating the same patients, the PPV rises to 70%. This
means that the algorithm is good at identifying true positives even though there are
often false positives in a considerable number.
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4.2 Clinical Applications

After testing the algorithm, it is preceded to use it in some clinical applications
which will be discussed below.

4.2.1 Comparison With Healthy Patients

To understand if the algorithm was able to distinguish a healthy patient from an
epileptic patient, it was tested on 10 healthy patients, for a total EEG trace of about
5 hours and 23 minutes. These were compared with epileptic patients whose dataset
was described in 3.1. In particular, the number of spikes and waves per second that
were found by the algorithm in signals belonging to healthy patients and in signals
belonging to epileptic patients was calculated. The comparison between the two
averages is shown in the figure 4.1.

Figure 4.1: Difference between number of waves per second identified by algorithm

The number of waves per second of healthy patients is equal to 0.017±0.025, while for
epileptic patients is equal to 0.705±0.537. To understand if the number of waves per
second had a statistical difference, the Wilcoxon signed-rank test (a non-parametric
test that does not require the hypothesis of Gaussianity of the distributions) was
applied on the two distributions of healthy patients and epileptic patients. As was
to be expected, the two distribution of waves per second of the two categories of
patients have an highly significant differences (p = 4.1135e−5).

The few waveforms found in healthy patients are therefore waveforms that closely
resemble the prototypes shown in figure 3.8 but their frequency is significantly lower
than the frequency at which they are identified in epileptic patients. Furthermore, as
can be seen from the distribution of the amplitudes of the two patient categories in
the figure 4.2 It is noted that the amplitudes of the waveforms identified in healthy
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Figure 4.2: Difference between amplitude distributions

patients are lower than in epileptic patients. This may justify that the waveforms
found are only similar in shape to the prototypes but the amplitudes are lower. This
is due to the fact that in 3.3.2 the cross-correlation as well as being divided by the
energy of the prototype, is also divided by the portion of the signal that overlaps
the prototype and also the amplitude threshold (3.9) is not an absolute threshold
but depends on the channel considered.
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4.2.2 Comparison With ADHD Patients

Another comparison was made with respect to ADHD patients (attention deficit
hyperactivity disorder). ADHD is a prevalent disorder in young children. It includes
difficulties in attention and concentration, impulse control and level of activity.
These problems essentially derive from the child’s inability to regulate their behavior
according to the passage of time, the objectives to be achieved and the demands of
the environment [22]. Some studies [23] [24] have shown that typical abnormalities of
the eeg signals of epiletic patients can be found in the eeg signals of ADHD patients,
so much so that they are often control to understand if epilepsy as commorbidity
may occur. At the same time, epileptic patients can also develop ADHD. These
results show that ADHD is a condition in which abnormalities in the EEG signal
can be seen which, at times, are similar to epileptic activity; for this reason the
algorithm was also tested on a sample of 8 patients diagnosed with ADHD. An
example of waveforms identified by the algorithm in a signal from an ADHD patient
is shown in the figure 4.3. Note that the detected waveforms are actually more like

Figure 4.3: Waveforms identified in ADHD patient

spikes or sharp waves than spikes and waves.

For each ADHD patient, the number of waveforms per second identified was calcu-
lated and compared to healthy and epileptic patients. In the figure 4.4 you can see
that there is always a notable difference between epileptics and the other two cate-
gories. However, comparing the number of waveforms per second of ADHD patients
(0.069±0.035) with that of healthy patients (0.017±0.025), it is noted that there is
a difference between the two categories, confirming that even in ADHD patients it
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Figure 4.4: Difference between number of identified waves per second

is possible to find waveforms similar to those that can be found in epileptic patients.
The Wilcoxon signed-rank test was applied on the two distributions of healthy pa-
tients and ADHD patients, obtaining a p-value equal to 0.0055 (highly significant
differences).

Observing the distributions of the amplitudes in the figure 4.5, it can be seen that
the values of the amplitudes of ADHD are similar to those of epileptic patients,
while it was not so for healthy patients. This confirms that the waveforms are
indeed similar between the two categories of patients.

Figure 4.5: Difference between amplitude distributions
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4.2.3 Temporal and Spatial Distribution

We wanted to investigate if the waveforms identified by the algorithm had any influ-
ence on the epileptic seizure and also if they had a relationship with the positioning
of the epileptic focus. To carry out these analysis, the dataset 3.1 could not be used,
because first of all they are patients with induced epilepsy, therefore the number and
frequency of spikes can be influenced; secondly, because it is generalized epilepsy,
for which there is no indication of the epileptic focus and for which it is not possible
to carry out this analysis.

For these reasons, from the website [25], five recordings were used at different times
of a patient with (non-induced) right temporal lobe epilepsy. Each recording was
then divided into four different periods: inter-ictal, pre-ictal, ictal and post-ictal as
described in 1.2; in particular for the pre and post seizure a period of 5 minutes was
considered. An example of time of appearance relating to recording 4 of each period
is shown in the figure 4.6.

(a) inter-ictal (b) pre-ictal

(c) ictal (d) post-ictal

Figure 4.6: Times of appearance

We note how the waveforms identified are clearly superior, both in number and in
frequency, during the epileptic seizure (ictal period). During the inter-ictal period,
on the other hand, there is a lower number of spikes, which then grows in the pre-ictal
period. After the ictal period (post-ictal) , on the other hand, there is a decrease in
the number of firings compared to the ictal period. The variation in the number of
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waves per second identified by the algorithm in each period is shown in the figure
4.7.

Figure 4.7: Number of identified waves per second in each period

(a) inter-ictal (b) pre-ictal

(c) ictal (d) post-ictal

Figure 4.8: Distribution in each period

As for the number of waveforms identified in each EEG channel in each period, it is
noted that the number is greater during the seizure. Furthermore, the channels in
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which the greatest number of waves are found are those relating to the right tempo-
ral lobe or in proximity to it. However, this can only be said for what concerns the
distribution during the seizure (ictal period), while for the other periods there is no
clear concentration of the waveforms in the channels relative to the right temporal
lobe, so it is not possible to say that the positioning of the spikes (with the exception
of the seizure period) is in correlation with the epileptic focus.

As can be seen better in the figure 4.9, which shows the distribution over the scalp
computed by interpolation, the highest number of waves per second coincides with
the localization of the epileptic focus only during the seizure. Note how the order of
magnitude is also profoundly different between one period and another because there
are more pathological waveforms during the seizure respect to other periods.

(a) inter-ictal (b) pre-ictal

(c) ictal (d) post-ictal

Figure 4.9: Distribution over the scalp in each period

The non-correlation, with the exception of the ictal period, between the number of
waves per second and epileptic focus, may be due to the fact that if the focus is
located in a deep area of the brain, it is not always possible to associate the epilep-
togenic activity also in the surface (where the signal is picked up).

This applies to all five patient records. As can be seen from the boxplot in the figure
4.10, which represents the number of waveforms per second identified in each period
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for the total number of registrations (all five are taken into account), it is clear that
the number of waves per second is higher during the seizure (ictal) than in the other
periods. Furthermore, before and after (precisely 5 minutes before and 5 minutes

Figure 4.10: Number of identified waves per second in each period (Boxplot)

after) the seizure, the number of waveforms per second is higher than in the period
away from the seizure (inter-ictal). However, having only a number as an index to
identify a period, it is not possible to understand if there is a significant statistical
difference between each period.

For this reason, all the delays between two consecutive spikes were calculated to
have a distribution of delays pertaining to the inter-ictal period, one for the pre-
ictal period, one for the ictal and finally one for the post-ictal. In this way it is also
possible to understand if there is a correlation between the increase in the frequency
of firings and the onset of the epileptic seizure. As can be seen from the figure 4.11,
which represents the trend of delays between two consecutive spikes for each period
and for each recording, it is noted how, for all the recordings, there is a substantial
decrease in the delays (i.e. an increase in the frequency of firings) between inter-ictal
and pre-ictal , then, during the seizure, the delays decrease and then increase again
during the post-ictal period. The difference between inter-ictal and pre-ictal is very
important since a considerable variation in frequency could be used as a method for
predicting the seizure. Considering the figure on the right of 4.11, which represents
the average delay of each period, taking into consideration the totality of the delays,
we have that for the inter-ictal period the average delay is equal to 244.71 s, with a
standard deviation of 56.63 s. In the pre-ictal period the average delay is equal to
30.02 s, while the standard deviation is 39.65 s. During the ictal period, however,
the average delay is greatly reduced to 1.4 s, with a standard deviation of 1.87
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s. Finally, in the post-ictal period the delay increases again to 25.65 s, while the
standard deviation is 37.74 s.

Figure 4.11: Mean time interval variation in each trace (left) and in total (right)

Time intervals obtained in each period are compared in the boxplots in 4.12. It’s
possible to observe the difference between the median of each period. In the inter-
ictal period there are high values, which decrease in the pre-ictal period. In the
ictal period these values decrease further and then grow back to a value comparable
to the pre-ictal period during the post-ictal period. Using a boxplot of type notch

Figure 4.12: Delays in each period (Boxplot)

it is possible to say that there is a significant statistical difference because the test
confidence intervals are not overlapping, especially between inter-ictal and pre-ictal
period. Furthermore, it is noted that before and after the seizure, the intervals are
more variable than the inter-ictal or ictal period.
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The Wilcoxon signed-rank test was applied to test the significant differences between
the delays distributions of each period. In all cases (5 records) there is a p−value of
less than 0.05, which demonstrates a high statistical difference between each period.
What is most interesting is the difference between inter-ictal period and pre-ictal
period in order to predict the seizure.
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Chapter 5

Conclusions and Future Work

The detection of spike and waves in patients suffering from epilepsy is a useful tool
for diagnosis and therapy, in particular the automatic identification can be a helpful
support for the neurologist to reduce the analysis time of the EEG traces. In fact,
especially for long duration signals such as EEG holter, the time needed to analyze
the whole signal is a lot, so an instrument that allows, in a few seconds, to analyze
an entire trace could be very useful.

In this study a fast method has been introduced, capable of being used also in
real-time, which is able to identify spike and waves through the normalized cross-
correlation between the signal and a set of accurately constructed mathematical
models. The sensitivity achieved is 85% but, by eliminating two patients, the sensi-
tivity reaches 93%, although still lower than other automatic identification methods
such as [26] and [27]. In these patients, there are few wave spikes in the seconds
analyzed, and they also appear to be morphologically slightly different. The main
problem of the method adopted is in fact that it strictly depends on the shape of
the waveforms to be analyzed. A slight variation in the shape could lead to incor-
rect identification of the waveform. For this reason, it is necessary to introduce new
prototypes obtained with more accurate mathematical models to be used in crosscor-
relation. It is also important to keep in mind the type of montage considered: these
prototypes were created considering a bipolar assembly and were tested on bipolar
signals. The shape in monopolar signals in common reference does not change the
shapes of waveforms much while monopolar signals with average reference could be
a problem because the shape of the spikes is different. Another problem related to
the algorithm and which could be improved is the fact that sometimes it is able to
identify the spike but not the wave or vice versa. Again, a better construction of the
prototypes could lead to a resolution of the problem. Improvements could also be
made regarding the threshold used: there are rarely spikes that get confused with
the background activity. Given the threshold that allows you to take waveforms that
are distinguished from the background activity, the previous waves are lost.

Despite this, however, the results are encouraging. As for the clinical applications
discussed, it has been shown that the algorithm is able to distinguish between a
healthy patient and a sick one and is also specific for spike and waves as they
are also found in EEGs where they are present (ADHD patients) but in smaller
numbers. compared to EEG of epileptic patients. Encouraging results were obtained
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by analyzing the temporal distribution of the spikes. To do this [25] has been used,
the data consisting of five recordings in different periods of the same patient suffering
from epilepsy. In all cases it was noted that in correspondence with the seizure there
is an increase in the number of spikes and an increase in their frequency. It was
more interesting to note that the increase in number and frequency also changes
between the inter-ictal and pre-ictal periods, in fact in correspondence with the
pre-ictal there is an increase in both. As for the spatial distribution, no correlation
was noted between the positioning of the tips and epileptic focus except for the
period during the attack. This can be explained by the fact that the epileptic focus
is often found in depth so that, since the electrodes are placed on the surface in the
scalp, it is difficult to precisely collect the signal. It is important to underline that
this study was carried out on one patient (albeit on several recordings) and for this
reason a larger dataset would be needed. Furthermore, the presence of spikes is also
related to the type of epilepsy, so having patients with different epilepsy would be
useful.

Future studies could be conducted to understand if, based on the number and fre-
quency of spikes, there is a threshold that alarms the doctor and for which it is
decided to act pharmacologically in order to prevent the crisis as in [28]. Or even
based on the number and frequency, being able to figure out what is the right dose
of the drug. It would be interesting, given the evidence found in ADHD patients,
to understand when they may be considered at risk of epilepsy simply based on the
incidence of spikes in the EEG, looking for a parameter that allows to discriminate
those who are at risk and which are not. All of these are interesting studies that are
projected to improve people’s health.
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