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ABSTRACT 

Modelling and simulation of a glass production system  

with Machine Learning algorithms 

The present study aims to model and simulate the behaviour of a flat glass 
annealing lehr, by means of data analysis algorithms.  
In the framework of “Industry 4.0”, the availability of more production data 
and the need to find correlations between process variables, enhances the use 
of Machine Learning to generate models that are able to predict a process or 
equipment outputs, given certain inputs.  
The target of this work is to create a regression model that predicts the 
permanent stress of a glass sheet (output) generated in the annealing phase of 
a controlled cooling. The inputs considered are process variables, such as the 
machine’s setting and other working variables as production parameters, initial 
and boundary conditions. The pipeline of this analysis includes a first 
preprocessing phase: the data are evaluated and treated in terms of features 
engineering, distribution, outliers and scaling. Once the dataset is prepared, it 
can be used for the model’s training: in this phase, the Support Vector Machine 
(SVM) algorithm operates on a subset of samples to generate the regression 
model, then it is tested on another subset to validate the results. In order to 
improve the model accuracy, a tuning of the parameters and its Cross-
validation are performed.  
The purpose of the model in real production is oriented to the process control 
and consists of the simulation of the system’s output to manage its variation 
and detect an eventual deviation in the quality output before the quality check 
is effectively done; furthermore, it can be used to simulate different equipment 
settings and preliminary give a higher level of confidence to the tests performed 
on-line. 
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INTRODUCTION 

The present work is developed within a business context and aims to find an 
engineering and practical solution for issues concerning the production of flat 
glass. Within the framework of the “Industry 4.0”, the availability of data and 
the non-linearity of the phenomena that characterize these processes, lead the 
companies operating in this field to look for systems that make easier to find 
correlations between process variables, in a perspective of “black box” 
analysis. For engineering and deeper analysis of this kind of information, it is 
necessary to create prediction models able to foresee the output of a certain 
system, under several conditions and process settings. In this study, to get this 
objective a Machine Learning method is used to generate a regression model 
and tested in real production conditions. 

Case study 

With the company AGC Glass Europe, operating in the field of flat glass for 
building applications, has been studied the possibility to apply the above-
mentioned method in a Float glass production line.  

This production process is composed of several phases,  the main ones are 
melting, forming and annealing; in this phase the glass is slowly cooled down for 
afterwards manipulations. The purpose of this thermal treatment is to relieve 
the stresses applied during manufacturing and bring them to acceptable 
values. During this stage the glass, that flows uninterruptedly in a continuous 
ribbon along the line, changes its properties and characteristics from visco-
elastic to a solid-state. 

 

Figure 0.1: Layout of a Float glass production line. The main steps 
of the process are: melting(1), forming(3) and annealing(4); 
colours represent the physical state of the glass: liquid phase 
(orange) and solid phase (light blue). 

Here the thermal treatment provides to the glass the strains that, after the 

annealing is completed, will become permanent stress; the distribution of 
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these tensions is crucial for quality acceptability, and they are continuously 

measured to ensure they stay within certain thresholds. 

Working at high temperatures, the heat transfer is mainly exchanged with the 

glass by radiation. The heating and cooling thermal power needed to perform 

the desired spatial and time gradients of temperature is provided by two main 

devices: electrical resistances and air heat exchangers; their regulation allows 

to have a desired distribution of temperature and cooling rate across the glass 

ribbon. 

 

Figure 0.2: Quality acceptance levels and example of permanent 
stress measurement across the sheet width. 

Development’s framework and target 

From an engineering point of view, what explained in the previous paragraph 

can be described globally as a system where all the phenomena and equipment 

are connected each other and the output of one block represents the input of 

the block afterwards. Very simplistically, the system considered can be 

represented in the following way: the system receives as input the initial 

condition of the glass from the forming process, the settings of the annealing 

lehr and other external conditions; the actuation of these input parameters 

and the behaviour of the glass, produce as output the permanent stress 

measured on the glass sheet.  



 

10 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

 

 

Figure 0.3: Functional block diagram of the system analyzed. 

Part of the input variables depends on the operators, that continuously 

modify the settings to get a constant and acceptable permanent stress, other 

variables depend from the behaviour of the equipment and external 

conditions. Since this kind of system is quite difficult to be simulated 

analytically, due to non-linear phenomena and the complexity of its parts, it 

can be explained as a black box, where a variation of some specific parameters, 

generate a variation of the output. 

As mentioned before, this is one of the best practice to analyze and simulate 

this kind of system, in order to find the correlation between input and output 

variables, that will be furtherly use for a deeper knowledge of the process and 

to improve the quality output. The methods used in this thesis to point out 

these correlations are based upon regression algorithms; given historical 

production data, the regression model can highlight the dependency of the 

output from each input. Thereby the Machine Learning model is provided by 

historical data where it can be trained and generate the regression, then is 

tested on new data to check and validate the accuracy of the model. 

The target of this model is dual: in a real production condition, it can 

continuously simulate the output of the process, to spot eventual deviation in 

the permanent stress that would mean out-of-spec product; this action is done 

 

SYSTEM 

PROCESS SETTINGS 

INITIAL CONDITIONS 

EXTERNAL CONDITIONS 

PERMANENT 
STRESS 

INPUT OUTPUT 
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by the quality check but the higher frequency of the simulation can give 

almost “live” results and reduce the quantity of product out of acceptance 

interval. Considering the production continuity and the impact that a test 

failure can produce, the second purpose of this model is to study the effect 

of new settings and conditions without testing on the production line. 

 

Figure 0.4: Time progression of the measured output. On the x-
axis is represented the position of the output across the glass sheet, 
on the y-axis the sampling of the output (it can be figured on a 
time axis) and on the z-axis the value of the measurement. 

The innovative contribution that the present work provides to this 

production line, fit into a policy of data analysis for improvement goals and 

paves the way to other studies based on similar tools; furthermore, it offers 

indication for the installation of more sensor for the data collection and 

modification of some devices, in order to enhance the model accuracy and 

completeness. 

Research methodology 

As mentioned above the solution to this problem requires tools of data 

analysis able to handle a large number of data samples, mathematically 



 

12 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

manipulate them, and manage complex regression tasks to create correlations 

between variables. The approach used regards the family of Supervised 

Machine Learning algorithms for regression task. These algorithms map 

patterns and relationships by inferring a function from a 

labelled training dataset – that consists of an input object and the measured 

output values. Since machine learning algorithm is provided with the correct 

“answers” during training, the algorithm is able to “learn” how the rest of the 

features relate to the target, enabling to make predictions about future 

outcomes based on historical data, in an optimal scenario the algorithm 

correctly determines the output values for unseen instances. This requires the 

learning algorithm to generalize from the training data to unseen situations in 

the most accurate way. 

Organization of the dissertation 

This report aims to explain the steps that have characterized the study of this 

system and the application of Machine Learning algorithms for data analysis 

purpose. 

The following chapters will show a first part of theoretical research on the 

Machine Learning algorithms, about the theory of glass annealing and the 

technology that enact the production process. The second part will focus on 

the experimental analysis and the model building, through the guidelines of 

data analysis, with a focus on the functions used for the data pre-processing, 

the model selection and the parameter’s tuning. 

  

 

 
 
  

https://www.datarobot.com/wiki/training-validation-holdout/
https://www.datarobot.com/wiki/machine-learning/
https://www.datarobot.com/wiki/prediction/
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THEORY OF MACHINE LEARNING 

1.1. Introduction 

In 1959, IBM published a paper in the IBM Journal of Research and 

Development authored by IBM’s Arthur Samuel; the paper involved the use of 

machine learning in the game of checkers “to verify the fact that a computer 

can be programmed so that it will learn to play a better game of checkers than 

can be played by the person who wrote the program”. Even if it was not the 

first publication to use the term “machine learning”, Arthur Samuel is widely 

considered as the first person to use and define machine learning in the form 

we now know today. In this paper, he introduces machine learning as a sub-

field of computer science that gives computers the ability to learn without being 

explicitly programmed. Almost sixty later, this definition remains widely 

accepted. Even if not directly mentioned in this definition, a key feature of 

machine learning is the concept of self-learning. This refers to the application 

of statistical modelling to detect patterns and improve performances based on 

experimental data and empirical information; all without direct programming 

commands. This is what A.S. described as the ability to learn without being 

explicitly programmed even if he doesn’t say that machines formulate decisions 

with no previous programming. On the contrary, Machine Learning is based 

on computer programming. Instead, A.S. observed that Machine Learning 

performs a task when provided by data rather than direct commands. A simple 

example of an input command is typing “2+2” into a programming language 

and hitting “Enter.”. This represents a direct command with a direct output. 

Input data, however, is different: data is given to the machine, an algorithm is 

selected, hyperparameters (settings) are configured and tuned, and the machine 

is learned to conduct its analysis. The machine proceeds to detect patterns 

found in the data through the process of trial and error. The mathematical 

model, formed from analyzing data patterns, can then be used to predict future 

values. This is because the machine is formulating decisions based on 

experience and emulating the process of human-based decision-making. “A 
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simple example is creating a model that detects undesired email messages. The 

model is trained to block emails with suspicious subject lines and body text 

containing three or more flagged keywords. At this stage, though, it is not yet 

performing machine learning. If we recall the visual representation of input 

command vs input data, we can see that this process consists of only two steps: 

Command > Action. Machine learning entails a three-step process: Data > 

Model > Action. Thus, to incorporate machine learning into our spam 

detection system, we need to switch out “command” for “data” and add 

“model” to produce an action (output). In this example, the data comprises 

sample emails and the model consists of statistical-based rules. The parameters 

of the model include the same keywords from our original negative list. The 

model is then trained and tested against the data. Once the data is fed into the 

model, there is a strong chance that assumptions contained in the model will 

lead to some inaccurate predictions. Traditional programming is highly 

susceptible to such cases because there is no built-in mechanism to test 

assumptions and modify the rules of the model. Machine learning, on the other 

hand, can adapt and modify assumptions through its three-step process and by 

reacting to errors.”1 

1.2. Machine Learning categories 

Machine learning incorporates several statistical-based algorithms and choosing 

the right algorithm or combination of algorithms for the task is a challenge. 

Before going deeper into the model selection, it is important to understand the 

three general categories of machine learning. These three categories are 

supervised, unsupervised, and reinforcement. 

  

 

 
1 (Theobald, 2017) 
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1.2.1. Supervised Learning  

As the first branch of machine learning, Supervised learning focuses on detect 

patterns by creating the relationships between variables and known outcomes 

and working with labelled datasets. Supervised learning works by providing the 

machine sample data with features (represented as “x”) and the correct output 

value (represented as “y”). The fact that the output and feature values are 

known qualifies the dataset as “labelled.” The algorithm then detects patterns 

that exist in the data and creates a model that can reproduce the same rules with 

new data.  

After the machine deciphers the rules and patterns of the data, it generates a 

model: a function for producing an outcome with new data based on the rules 

derived from the training data. Once the model is built, it can simulate new 

outcomes and tested for accuracy. After the model has completed both the 

training and test data stages, it is ready to be applied and used in the real 

conditions. Examples of supervised learning algorithms include regression 

analysis, decision trees, k-nearest neighbours, neural networks, and support 

vector machines.   

1.2.2. Unsupervised Learning  

In the case of unsupervised learning, variables and data patterns are not 

classified. Instead, the machine must detect hidden patterns and create labels 

through the use of unsupervised learning algorithms. The k-means clustering 

algorithm is a typical example of unsupervised learning. This simple algorithm 

groups data points that are found to have similar features. 

The advantage of unsupervised learning is it permits to discover patterns in the 

data that you were unaware existed. Clustering methods such as k-means 

clustering can also lead to further analysis after discrete groups have been 

discovered.  
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1.2.3. Reinforcement Learning  

Reinforcement learning is the third and most advanced algorithm category in 

machine learning. Unlike supervised and unsupervised learning, reinforcement 

learning continuously improves its model by using the feedback from previous 

iterations. This is different from supervised and unsupervised learning, which 

both reach an indefinite endpoint after a model is formulated from the training 

and test data phases. Reinforcement learning can be complex and is typically 

explained through an analogy to a video game. As a player progresses through 

the virtual space of a game, he learns the value of various actions under 

different conditions and become more familiar with the play. Those learned 

values then inform and influence a player’s subsequent behaviour and their 

performance immediately improves based on its learning and experience. 

Reinforcement learning is similar, where algorithms are set to train the model 

with continuous learning. In the case of self-driving vehicles, avoiding a crash 

will assign a positive score and in the case of chess, avoiding defeat will likewise 

receive a positive score.  

1.3. Regression 

 Regression analysis is a simple supervised learning technique used to find the 

best trendline to describe a dataset. The goal of a regression task is to predict 

the value of continuous target variables t given the value of a multi-dimensional 

vector x of input variables. The polynomial is one example of a large class of 

functions called linear regression models, which have the property of being 

linear functions of the adjustable parameters. The simplest form of linear 

regression models is also linear functions of the input variables. However, it 

can be obtained a much more useful class of functions by taking linear 

combinations of a fixed set of nonlinear functions of the input variables, known 

as basis functions. These models are linear functions of the parameters, which 

gives them simple analytical properties and yet can be non-linear regarding the 

input variables. Given a training dataset comprising N observations {xn}, 

where n =1,...,N, together with corresponding target values {tn}, the goal is to 
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predict the value of t for a new value of x. In the simplest approach, this can 

be done by directly constructing an appropriate function y(x) whose values for 

new inputs x constitute the predictions for the corresponding values of t. More 

generally, from a probabilistic perspective, we aim to model the predictive 

distribution p(t|x) because this expresses our uncertainty about the value of t 

for each value of x. From this conditional distribution, we can make predictions 

of t, for any new value of x, in such a way as to minimize the expected value of 

a suitably chosen loss function. Although linear models have significant 

limitations as practical techniques for pattern recognition, particularly for 

problems involving input spaces of high dimensionality, they have nice 

analytical properties and form the foundation for more sophisticated. 

1.3.1. Linear basis function model2 

The simplest linear model for regression is one that involves a linear 

combination of the input variables 

 

Where x =(x1,...,xD)T. This is often simply known as linear regression. The 

key property of this model is that it is a linear function of the parameters 

w0,..., wD. It is also, however, a linear function of the input variables xi, and 

this imposes significant limitations on the model. We, therefore, extend the 

class of models by considering linear combinations of fixed nonlinear 

functions of the input variables, of the form 

 

 
2 (Bishop, 2006) 
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where φj(x) are known as basis functions. By denoting the maximum value of 

the index j by M −1, the total number of parameters in this model will be M. 

The parameter w0 allows for any fixed offset in the data and is sometimes 

called a bias parameter (not to be confused with ‘bias’ in a statistical sense). It 

is often convenient to define an additional dummy ‘basis function’ φ0(x)=1 

so that 

 

where w=( w0,...,wM−1)
T and φ =( φ0,...,φM−1)

T. In many practical applications 

of pattern recognition, we will apply some form of fixed pre-processing, or 

feature extraction, to the original data variables. If the original variables 

comprise the vector x, then the features can be expressed in terms of the basis 

functions {φj(x)}. By using nonlinear basis functions, we allow the function 

y(x,w) to be a nonlinear function of the input vector x. Functions of the 

previous form are called linear models, however, because this function is 

linear in w. It is this linearity in the parameters that will greatly simplify the 

analysis of this class of models. However, it also leads to some significant 

limitations. The example of polynomial regression […] is a particular example 

of this model in which there is a single input variable x, and the basis functions 

take the form of powers of x so that φj(x)=xj. One limitation of polynomial 

basis functions is that they are global functions of the input variable so that 

changes in one region of input space affect all other regions. This can be 

resolved by dividing the input space up into regions and fit a different 

polynomial in each region, leading to spline functions (Hastie et al., 2001). 

There are many other possible choices for the basis functions, for example 
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where the µj govern the locations of the basis functions in input space, and 

the parameter s governs their spatial scale. These are usually referred to as 

‘Gaussian’ basis functions, although it should be noted that they are not 

required to have a probabilistic interpretation, and in particular the 

normalization coefficient is unimportant because these basis functions will be 

multiplied by adaptive parameters wj. Another possibility is the sigmoidal 

basis function of the form 

 

where σ(a) is the logistic sigmoid function defined by 

 

Equivalently, we can use the ‘tanh’ function because this is related to the 

logistic sigmoid by tanh(a)=2 σ(a)−1, and so a general linear combination of 

logistic sigmoid functions is equivalent to a general linear combination of 

‘tanh’ functions. These various choices of basis function are illustrated in 

Figure 1.1. Yet another possible choice of basis function is the Fourier basis, 

which leads to an expansion in sinusoidal functions. Each basis function 

represents a specific frequency and has an infinite spatial extent. By contrast, 

basis functions that are localized to finite regions of input space necessarily 

comprise a spectrum of different spatial frequencies. In many signal 

processing applications, it is of interest to consider basis functions that are 

localized in both space and frequency, leading to a class of functions known 

as wavelets. These are also defined to be mutually orthogonal, to simplify their 

application. Wavelets are most applicable when the input values live on a 

regular lattice, such as the successive time points in a temporal sequence, or 

the pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat 

(1999), and Vidakovic (1999). Most of the discussion in this chapter, however, 

is independent of the particular choice of basis function set, and so for most 



 

21 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

of our discussion, we shall not specify the particular form of the basis 

functions, except for numerical illustration. Indeed, much of our discussion 

will be equally applicable to the situation in which the vector φ(x) of basis 

functions is simply the identity φ(x)=x. Furthermore, to keep the notation 

simple, we shall focus on the case of a single target variable t.  

 

Figure 1.1: Examples of basis functions, showing polynomials on 
the left, Gaussians in the centre, and sigmoidal on the right. 

1.3.2. Maximum likelihood and least squares  

[…] consider the least-squares approach, and its relation to maximum 

likelihood, in more detail. As before, we assume that the target variable t is 

given by a deterministic function y(x,w) with additive Gaussian noise so that 

 

where ε is a zero-mean Gaussian random variable with precision (inverse 

variance) β. Thus we can write 

 

Recall that, if we assume a squared loss function, then the optimal prediction, 

for a new value of x, will be given by the conditional mean of the target 

variable. In the case of a Gaussian conditional distribution, the conditional 

mean will be simply 
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Note that the Gaussian noise assumption implies that the conditional 

distribution of t given x is unimodal, which may be inappropriate for some 

applications. Now consider a data set of inputs X ={x1,...,xN} with 

corresponding target values t1,...,tN. We group the target variables {tn} into a 

column vector that we denote by t where the typeface is chosen to distinguish 

it from a single observation of a multivariate target, which would be denoted 

t. We obtain the following expression for the likelihood function, which is a 

function of the adjustable parameters w and β, in the form 

 

Note that in supervised learning problems such as regression (and 

classification), we are not seeking to model the distribution of the input 

variables. Thus x will always appear in the set of conditioning variables, and 

so from now on, we will drop the explicit x from expressions such as 

p(t|x,w,β) to keep the notation uncluttered. Taking the logarithm of the 

likelihood function, and making use of the standard form for the univariate 

Gaussian, we have 

 

where the sum-of-squares error function is defined by 
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Having written down the likelihood function, we can use maximum likelihood 

to determine w and β. Consider first the maximization with respect to w. As 

observed, we see that maximization of the likelihood function under a 

conditional Gaussian noise distribution for a linear model is equivalent to 

minimizing a sum-of-squares error function given by ED(w). The gradient 

of the log-likelihood function takes the form 

 

Setting this gradient to zero gives 

 

Solving for w we obtain 

 

Which are known as the normal equations for the least-squares problem. Here 

Φ is an N×M matrix, called the design matrix, whose elements are given by 

Φnj = φj(xn), so that 
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The quantity 

 

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and 

Mitra, 1971; Golub and Van Loan, 1996). It can be regarded as a 

generalization of the notion of matrix inverse to nonsquare matrices. Indeed, 

if Φ is square and invertible, then using the property (AB)−1 = B−1A−1 we see 

that Φ† ≡Φ−1. At this point, we can gain some insight into the role of the bias 

parameter w0. If we make the bias parameter explicit, then the error function 

becomes 

 

Setting the derivative with respect to w0 equal to zero, and solving for w0, we 

obtain 

 

where we have defined 

 

Thus the bias w0 compensates for the difference between the averages (over 

the training set) of the target values and the weighted sum of the averages of 

the basis function values. We can also maximize the log-likelihood  function 

concerning the noise precision parameter β, giving 
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and so we see that the inverse of the noise precision is given by the residual 

variance of the target values around the regression function. 

 

Figure 1.2: Geometrical interpretation of the least-squares 
solution, in an N-dimensional space whose axes are the values of 

t1,...,tN. The least-squares regression function is obtained by 
finding the orthogonal projection of the data vector t onto the 

subspace spanned by the basis functions φj(x) in which each basis 

function is viewed as a vector ϕj of length N with elements 
φj(xn). 

1.4. Classification3 

In the previous chapter, we explored a class of regression models having 

particularly simple analytical and computational properties. We now discuss 

an analogous class of models for solving classification problems. The goal in 

classification is to take an input vector x and to assign it to one of K discrete 

classes Ck where k =1,..., K. In the most common scenario, the classes are 

taken to be disjoint so that each input is assigned to one and only one class. 

The input space is thereby divided into decision regions whose boundaries 

are called decision boundaries or decision surfaces. In this chapter, we 

consider linear models for classification, by which we mean that the decision 

surfaces are linear functions of the input vector x and hence are defined by 

(D −1)-dimensional hyperplanes within the D-dimensional input space. Data 

 
3 (Bishop, 2006) 
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sets whose classes can be separated exactly by linear decision surfaces are said 

to be linearly separable. For regression problems, the target variable t was 

simply the vector of real numbers whose values we wish to predict. In the 

case of classification, there are various ways of using target values to represent 

class labels. For probabilistic models, the most convenient, in the case of two-

class problems, is the binary representation in which there is a single target 

variable t ∈{0,1}such that t =1 represents class C1 and t =0 represents class 

C2. We can interpret the value of t as the probability that the class is C1, with 

the values of probability taking only the extreme values of 0 and 1. For K>2 

classes, it is convenient to use a 1-of-K coding scheme in which t is a vector 

of length K such that if the class is Cj, then all elements tk of t are zero except 

element tj, which takes the value 1. For instance, if we have K =5 classes, then 

a pattern from class 2 would be given the target vector 

 

Again, we can interpret the value of tk as the probability that the class is Ck. 

For non-probabilistic models, alternative choices of target variable 

representation will sometimes prove convenient.  

It can be identified three distinct approaches to the classification problem. 

The simplest involves constructing a discriminant function that directly 

assigns each vector x to a specific class. A more powerful approach, however, 

models the conditional probability distribution p(Ck|x) in an inference stage, 

and then subsequently uses this distribution to make optimal decisions. By 

separating inference and decision, we gain numerous benefits. There are two 

different approaches to determining the conditional probabilities p(Ck|x). 

One technique is to model them directly, for example by representing them 

as parametric models and then optimizing the parameters using a training set. 

Alternatively, we can adopt a generative approach in which we model the 

class-conditional densities given by p(x|Ck), together with the prior 
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probabilities p(Ck)for the classes, and then we compute the required posterior 

probabilities using Bayes’ theorem. 

In the linear regression models, the model prediction y(x,w) is given by a 

linear function of the parameters w. In the simplest case, the model is also 

linear in the input variables and therefore takes the form y(x)= wTx+w0, so 

that y is a real number. For classification problems, however, we wish to 

predict discrete class labels or more generally posterior probabilities that lie 

in the range(0,1). To achieve this, we consider a generalization of this model 

in which we transform the linear function of w using a nonlinear function f(·) 

so that 

 

In the machine learning literature f(·) is known as an activation function, 

whereas its inverse is called a link function in the statistics literature. The 

decision surfaces correspond to y(x) = constant, so that wTx+ w0 = constant 

and hence the decision surfaces are linear functions of x, even if the function 

f(·) is nonlinear. For this reason, the class of models described are called 

generalized linear models.  Note, however, that in contrast to the models used 

for regression, they are no longer linear in the parameters due to the presence 

of the nonlinear function f(·). This will lead to more complex analytical and 

computational properties than for linear regression models. Nevertheless, 

these models are still relatively simple compared to the more general 

nonlinear.  

1.5. Bias and variance: model optimization 

Algorithm selection is an important step in building an accurate prediction 

model, deploying an algorithm with a high rate of accuracy can be a complex 

balancing act. The fact that each algorithm can produce different models based 

on the hyperparameters provided can lead to different results.  
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A constant challenge in machine learning is balancing underfitting and 

overfitting, which describe how closely the model follows the actual datapoints 

of the dataset. To understand underfitting and overfitting, it must be first 

understood bias and variance. Bias refers to the gap between the predicted 

value and the actual value. In the case of high bias, predictions are likely to be 

skewed in a certain direction away from the actual values. Variance describes 

how scattered the predicted values are. Bias and variance can be best 

understood by analyzing the following visual representation. 

 

Figure 1.3: Visual representation of Bias and Variance effect on 
the prediction results 

The Shooting targets in Figure 1.3 help to explain bias and variance. In this 

representation, the centre of the target perfectly predicts the correct value of 

your model; the dots marked on the target represent an individual simulation 

based on the training data. If the dots are densely positioned close to the bulls-

eye, the predictions made by the model are close to the actual data. In other 

cases, the training data will be scattered across the target. The more the dots 

deviate from the bulls-eye, the higher the bias and the less accurate the model 

will be in its overall predictive task. In the first target, it can be seen as an 

example of low bias and low variance. Bias is low because the hits are close to 

the centre and there is low variance because the hits are densely positioned in 

one location. The second target (located on the right of the first row) shows a 
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case of low bias and high variance. Although the hits are not as close to the 

bulls-eye as the previous example, they are still near to the centre and bias is 

therefore relatively low. However, there is high variance this time because the 

hits are spread out from each other. The third target (located on the left of the 

second row) represents high bias and low variance and the fourth target 

(located on the right of the second row) shows high bias and high variance. 

Ideally, is desired a situation where there are low variance and low bias. In 

reality, though, there is more often a trade-off between optimal bias and 

variance. Bias and variance both contribute to error, but the goal is to minimize 

the prediction error, not bias or variance specifically. 

 

Figure 1.4: Variation of the error of the training and test set 
respect to the complexity of the model. 

 In Figure 1.4, it can be seen two curves moving from left to right. The line 

above represents the test data and the line below represents the training data. 

From the left, both curves start at a point of high prediction error due to low 

variance and high bias. As they move from left to right they change to the 

opposite: high variance and low bias. This leads to low prediction error in the 

case of the training data and high prediction error for the test data. In the 

middle of the chart is an optimal balance of prediction error between the 
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training and test data. This is commonly known as a case of bias-variance trade-

off. 

Mismanaging the bias-variance trade-off can lead to poor results. As seen in 

Figure 1.4, this can result in the model becoming overly simple and inflexible 

(underfitting) or overly complex and flexible (overfitting). Underfitting (low 

variance, high bias) on the left and overfitting (high variance, low bias) on the 

right are both to be avoided to get a good accuracy of the model. Adding 

complexity to the model (as shown on the right) to improve accuracy, could 

turn into overfitting. An overfitted model will yield accurate predictions from 

the training data but prove less accurate at formulating predictions from the 

test data. Overfitting can also occur if the training and test data aren’t 

randomized before they are split and patterns in the data aren’t distributed 

across the two segments of data. Underfitting is when the model is overly 

simple, and again, has not deeply learned the patterns in the dataset. 

Underfitting can lead to inaccurate predictions for both the training data and 

test data. Common causes of underfitting include insufficient training data to 

adequately cover all possible combinations and situations where the training 

and test data were not properly randomized. To eradicate both underfitting and 

overfitting is necessary to modify the model’s hyperparameters to ensure that 

they fit patterns in both the training and test data and not just in part of the 

data. A suitable fit should acknowledge major trends in the data and play down 

or even omit minor variations. This may also mean re-randomizing the training 

and test data or adding new data points to better detect underlying patterns.  

1.6. Steps in the development of a Machine Learning 
analysis 

In order to set up a data analysis problem, some steps have to be taken into 

account. The following procedure will be explained more in details in Chapter 

3, but by a general point of view the following steps can bring the problem 

from the raw data to the complete prediction algorithm: 
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• Problem definition: understand and clearly define the problem as it 

will be solved. It is firstly necessary to describe the problem and make 

assumptions, know the constraints imposed by the data and define the 

attribute of the problem by establishing all the variables that take part 

in the system studied. The motivation of the job should be determined 

to have a clear vision of the final purpose of the model and the 

expectations to its results. 

• Data collection: all the task is based upon data; this phase foresees the 

extraction of the samples from a source as a database or collection 

system. It should be paid attention to issues as sampling frequencies, 

different type of data (e.g.: manually taken, automatic sampling etc..). 

In some cases, this requires the installation of field sensors to monitor 

certain conditions. It is necessary to structurize data to be treated later 

on, and have a correct correspondence between features and targets of 

the model. To reinforce the understanding of the problem, a first 

description of the data is useful, especially in terms of distribution and 

correlations. 

• Data preparation: raw data coming from the field and the collection 

systems must be treated and “cleaned” to be processed by the 

regression algorithms. It is crucial to select all the input variables 

collected and even create new ones with analytical methods. The data 

Pre-processing is important to build a dataset that contains all the 

variables that will be subsequently correlated to each other. 

• Data analysis and algorithm training: This is where Machine 

Learning takes place. Once the dataset is prepared and ready, the 

regression method has to be chosen according to the characteristic of 

the data. Many of them are suitable for this task but they are all 

evaluated in term of prediction accuracy and scoring of the model. 
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Afterwards, the regression function is built and the model evaluated by 

selected scoring. 

• Algorithm testing: the information learned in the previous step is put 

to use. When evaluating an algorithm, it will be tested to see how well 

it performs. In the case of supervised learning, there are some known 

values that can be used to evaluate the algorithm. Here is fundamental 

to find out some scores that will be used later to monitor the 

performance improvement. 

• Model’s improvement: when using complex regression algorithms, 

they need to be tuned with specific parameters able to increase the 

accuracy of the model; they are called Hyperparameters and are 

characteristic of each method. From a statistical point of view, the 

correlation between input and output variable and between input 

variables themselves should be considered to simplify the problem and 

enhance the regression task. 
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PRODUCTION PROCESS AND 
EQUIPMENT: A FOCUS ON THE 

GLASS ANNEALING 

2.1. Glass production process 

According to the American Society of Testing and Materials, the glass is “an 

inorganic product of fusion that has cooled to a rigid condition without 

crystallizing”4. In particular, the Float Glass is the product of a multi-step 

continuous process, that bring sands and other material to be melted  from a 

raw form to a definite shape. The manufacturing process of the Float glass 

includes the following stages: 

2.1.1. Melting and Refining 

Selected materials are mixed to make a batch, which flows into a furnace 

heated up to 1500°C. The ingredients of the batch are commonly: 

- Silica sand: the main component of the glass 

- Limestone: contributes strength properties to glass 

- Soda ash: helps the melting interval and act as a flux 

- Dolomite: enhance glass resistance to melting 

- Glass cullet: known as “broken glass” 

Before this stage these components are weighted and mixed and ready to be 

sent to the melting; this phase takes place in a furnace tank heated up to 

1500°C by the combustion of natural gas. Melting and refining take place 

simultaneously in a whole tank of about 2’000 tonnes of molten glass. They 

 
4 Formulation according to ASTM-C162 
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occur in separate zones in a complex glass flow controlled in temperature. It 

adds up to a continuous melting process, lasting as long as 50 hours, that 

delivers glass at 1100°C continuously to the float bath. The melting process 

is key to glass quality and compositions can be modified to change the 

properties of the finished product. 

2.1.2. Forming (Float bath) 

The glass flows from the refining tank through a refractory spout on to the 

mirror-like surface of molten tin, starting at 1100°C and leaving the float bath 

as a solid ribbon at 600°C. The properties of the tin make it suitable for the 

forming process: its density, melting temperature range and superficial 

characteristics make the melted glass floating on it. To prevent tin oxidation 

the tin bath is filled with a protective atmosphere of nitrogen and hydrogen. 

The glass flows onto the tin surface forming a floating ribbon with perfectly 

smooth surfaces and uniform thickness. As the glass flows along, the 

temperature gradually decreases from 1100 °C until 600 °C; the control of the 

flow speed and the settings of top rollers enables the ribbon to vary both in 

thickness and wideness. Afterwards, the ribbon can be lifted from the tin onto 

the next section’s rollers at a controlled speed.  

2.1.3. Annealing 

During the cooling of the glass, considerable stresses are impressed in the 

ribbon. A too high level of stress will break the glass during the other steps 

of cooling and cutting. To relieve these stresses the ribbon receives a thermal 

treatment in an annealing lehr where temperatures are controlled both along 

and across the ribbon. During this stage the glass pass through an interval of 

temperature where its viscosity changes radically; it therefore goes from a 

visco-elastic state to a solid-state and the strains acquired here do not have 

the time to completely relax, producing on the glass the permanent stress 

above mentioned. 
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2.1.4. Quality inspection 

To ensure the highest quality of the glass sheets, measurement are performed 

with automatic vision and detection systems to check the quality parameters 

such as the absence of melting defect and bubbles, optical properties, 

thickness and stress state. This phase reveals process evolution upstream that 

can be corrected to stay at an acceptable level of these parameters.  

2.1.5. Cutting 

High hardness wheels trim off the sheet’s edges and cut the ribbon to 

standard formats. The glass will be subsequently picked up on stillages and 

transferred. 

 

Figure 2.1: Steps of Float glass manufacturing process. 

2.2. Glass properties 

Glasses do not exhibit the ordered crystalline structure of most other 

ceramics but instead have a highly disordered amorphous structure; the atoms 

are not organized according to a definite structure as in a crystalline matter. 

When cooling, the atoms do not have enough time to arrange in fixed 

locations, but they take a disordered position very different from the close-

packed structure typical of the crystalline materials. 
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      a)       b)  

Figure 2.2: Crystalline structure (a) and amorphous structure (b) 

typical of the silica glass. 

2.2.1. Viscosity 

Due to its amorphous structure, a glass at room temperature is essentially a 

very viscous liquid; it was called in the past “frozen undercooled liquid”. The 

viscosity of glass changes with temperature; four standard temperature points 

are used in glass working to define the viscosity. These points are strain, 

annealing, softening, and working point.  

The strain point is the highest temperature at which a glass can be used for 

structural purpose without creeping. Below this temperature it is not possible 

to relieve the internal stresses, e.g at the strain point the stress relieve may last 

about 15 hours. Between the annealing and the strain point, glass products 

should be cooled down gradually to avoid the formation of internal stresses 

due to temperature gradients.  

The annealing point is the temperature to which glass may be heated after 

working to relieve any internal stresses that arose as a result of the forming 

process; at this temperature, the internal thermal stresses are relieved 

completely by viscous relaxation within about 15 minutes. The glass 

undergoes a thermal contraction when it is cooled and at high temperatures 

the glass decrease rapidly in specific volume. At a certain point, the glass 

transforms to a hard brittle texture and the glass decrease in specific volume 

at a slower rate. The temperature at which this transformation happens is 
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known as Transition Temperature (Tg). The transformation temperature g is 

the temperature, where the transition takes place from the solid-state into the 

liquid phase. The value of g is dependent on the rate of cooling as shown in 

Figure 2.2. 

At the softening point, the glass will yield with a small amount of force while 

at the working point the glass has the viscosity comparable to the honey. The 

majority of the forming operations take place between the softening point 

and the working point. Actually there is a working range because the glass 

cools down during forming. Whether the forming process takes place at a 

higher or a lower viscosity is determined also by the safe deformation forces 

(without the formation of cracks or disrupture) and cooling rate of the glass 

product.  

Glass does not have a melting point because of the gradual transition from 

the solid into the liquid state. However, the melting temperature is defined as 

the temperature at which the glass melt has become a viscosity low enough 

to allow for well mixing. This low viscosity is required to achieve a proper 

melting process. Here, the melting process comprises both the homogenizing 

(mixing) and the fining (removing gas bubbles) of the melt. So here it has a 

completely different meaning than the melting point of crystalline matter 

(transition solid phase into liquid phase). 
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Figure 2.3: Viscosity curves for different commercial glasses. 

2.2.2. Specific volume 

This is shown also in Figure 2.4, in which the specific volume is plotted 

against temperature. The instantaneous transition from a melt phase into a 

solid crystal phase at point l and the corresponding change of volume does 

not occur in the glass when cooled fast enough. The “liquid” behaviour will 

still continue during further cooling until g, the transformation temperature 

is reached. Below g glass behaves itself like solid matter. The slope of the 

curve in Figure 2.4, below Tg is almost parallel to the one for the solid 

crystalline phase. The level of the curve below g depends on the rate of 

cooling and consequently on its previous history.  
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Figure 2.4: Behavior during cooling of a melt for crystalline 
matter and glass. For glass, the condition below about g depends 
on the rate of cooling. The transformation temperature g itself, 
the temperature where the slope changes, also depend on the 
cooling. 

2.2.3. Density 

The density of liquid glass is important for melting technology. The 

temperature differences present in the melt causes local density changes, 

which lead to free convection flows. These flows stimulate the (convective) 

heat transfer in the melt and improve the homogenization process by the 

mixing of the glass. In the temperature range of 1000 - 1500 °C the 

temperature dependence of the density may be described with a volumetric 

expansion coefficient. Mostly the expansion coefficient is assumed to have a 

constant value at this temperature range. Because of the difficulty and 

complexity of the experimental procedure, the density and the expansion 

coefficient are not measured frequently in the temperature range above g. For 
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temperatures above g, no models are available to describe the density and the 

expansion coefficient based on the composition.  

2.2.4. Coefficient of thermal expansion 

This coefficient has a strong dependency against the temperature; the usual 

range within it is specified is from room temperature to the glass transition 

range, where volume changes become greater. The expansion of the glass as 

the temperature is increased is an important measure of its resistance to thermal 

shock. Nonuniform volume changes, resulting from temperature gradients in 

heating or cooling, cause stresses that are larger the greater the volume changes; 

also for many applications, it is essential to know the expansion characteristics 

accurately, in view of construction requirements. The expansion coefficient 

increases slightly with increasing temperature up to Tg. Around Tg the glass 

structure changes which results in a much stronger dependency on 

temperature. Because the expansion coefficient depends on the glass structure, 

it also depends slightly on the history of the glass. The cooling rate after 

forming co-determines the immobilized structure and therefore also the value 

of the expansion coefficient.  

To provide an example about the effect of this coefficient, a vitreous silica 

beaker heated to 1000°C can be dashed into the water without breaking it 

because it has a low expansion coefficient of about 5 × 10-7 °C-1; on the other 

hand, a plate of 6mm of thickness, with a coefficient of 90×10-7 °C-1, can be 

cracked with a difference of temperature between the two surfaces of about 

50°C. 



 

42 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

 

Figure 2.5: Thermal expansion as a function of temperature. 

2.2.5. Birefringence 

Isotropic solids do not exhibit birefringence, however, when are applied 

mechanical stress the birefringence results. The glass becomes anisotropic 

through mechanical and thermal-induced stress and therefore also the 

refractive index inside the glass changes locally and becomes anisotropic. 

Plane polarized waves will be travelling at different velocities through the 

stressed parts of the glass depending on their polarization direction. For small 

mechanical stresses, the refractive index changes are proportional to the 

mechanical stress itself. The permanent stresses resulting from the annealing 

process and the inhomogeneities of the refractive index are generally very 

small. The stress birefringence can be expressed as the difference in optical 

path length between two incident plane waves (oscillation planes oriented 

parallel and perpendicular to the main axis of stress) transmitting the sample 

of a certain length at the measurement position. The stress birefringence is 

proportional to the effective principal stress difference.  

As shown in Figure 2.6, the way the stresses can be measured on the glass 

sheet is based on this principle; a beam of polarized light propagates through 
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the glass sample and the light vector splits into two polarized beams 

oscillating in the planes x and y, that correspond to the principal direction of 

strains. Considering the speed of light constant, and two different levels of 

strains on the two principal directions, the time necessary to cross the plate 

for each of them will be different; it is so possible to measure relative 

retardation between the two polarized light beams. This relative retardation, 

considered as a space difference between the two beams, is detected by an 

analyzer positioned on the other side of the sample. 

The measuring method of the stresses will be deeper treated in the next 

paragraphs.  

 

 

Figure 2.6: Measurement principle of a polariscope, based on the 

birefringence property of the glass. 
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2.3. Glass annealing5 

Annealing is one of the major processes in the manufacture of glass. It is a 

controlled slow-cool heat treatment of glass. In the float glass manufacturing 

process, annealing immediately follows forming. Glass is annealed for a 

variety of reasons:  

• The most common one is the reduction of residual stresses in 

glassware. Poorly annealed glass with large residual stresses break 

easily during handling or sometimes even spontaneously.  

• Some glass products are annealed to obtain a uniform residual stress 

distribution. This ensures that no part of the glass is under tension 

and a small residual compressive stress is obtained at the glass surface. 

Such a stress distribution makes glass resistant to thermal shocks. 

Television and radio tubes exposed to cyclic heating and cooling and 

bottles used in food processing are examples of glassware that must 

resist thermal shock in service.  

• In the float glass process, optimum residual stress facilitates orderly 

cutting of glass ribbon into rectangular brackets. High residual 

stresses make it difficult to cut glass ribbon into desired shapes and 

low stresses often cause loss of control of the cutting sequence, i.e., 

cracks propagate in "incorrect" directions.  

2.3.1. Physical mechanisms governing the process 

In this section, it will be examined three physical mechanisms that are 

important in annealing: structural relaxation, stress relaxation and heat 

transfer. Only the last two will be explained in the next sections. 

 
5 (Narayanaswamy) 
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2.3.2. Stress relaxation 

Stress relaxation in hot glass has been studied extensively by glass scientists 

and technologists. Even though a systematic study of this subject began a 

century ago (Schott, 1875), only much more recently a clear, simple, and 

accurate formulation was made. Of the earlier studies, the classical work of 

Adams and Williamson (1920) is the most widely known. Their formulation 

of stress relaxation in the glass is still widely quoted in the technical literature. 

For this reason, their work will be reviewed critically before taking up modern 

theories of stress relaxation. Adams and Williamson attempted to use 

Maxwell's relaxation model as the framework to fit their data on the glass. 

Figure 2.7 shows a representation of Maxwell body consisting of a spring and 

dashpot in series. If this system is subject to a step increase in strain ε, its 

instantaneous response would be elastic. As viscous flow proceeds, this stress 

gradually relaxes to zero. 

 

Figure 2.7: Spring- dashpot mechanism proposed by Maxwell in 
its stress relaxation model. 

Thus, in a Maxwell body stress decay follows a simple exponential law. Adams 

and Williamson found that their data did not agree with their equation, where 

the rate of stress relaxation is proportional to the square of the stress. After 

many years of studies and experimental validations, it has been established 

that stress relaxation of glass is not a simple exponential decay but contains a 

spectrum of relaxation mechanisms. 
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Figure 2.8 shows normalized relaxation curves for a typical soda-lime glass 

stabilized at different temperatures.  

 

Figure 2.8: Normalized stress relaxation curves for stabilized 
soda-lime glass. 

2.3.3. Heat transfer 

Considering the temperature of the glass, three mechanisms can take part in 

the heat transfer phenomena: conduction, convection and radiation.  
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Conduction 

Heat transfer by conduction is caused by the thermal vibration energy of the 

ions being transferred to their neighbour ions. This mechanism is also called 

phonon conduction. The amount of heat transferred depends on the thermal 

conductivity and the temperature gradient according to Fourier’s law. At 

room temperature the thermal conductivity of a soda-lime glass amounts to 

1.0 W/(m K), near Tg it is near 1.5 W/(m K) and around 1200 °C one can 

take a value for of about 2.0 W/(m K). 

Radiation6 

At temperatures above 300 °C heat transfer by radiation becomes more 

important and above 500 to 800 °C it is eventually predominant and becomes 

more and more important as temperatures increase further. The mechanism 

of radiation exchange is based on the emission of radiant heat, which is partly 

absorbed again by glass zones nearby. Heat radiation is composed of light 

quanta or photons. The transfer of radiation is also called photon conduction 

because the photons are the heat carriers. The photon conduction increases 

with the transparency of the glass for the photons. With increasing 

temperature, the heat spectrum of a body moves from infra-red (IR) via the 

near infra-red into the range of visible light wavelengths. It moves to 

wavelengths, for which the glass becomes more transparent for this radiation, 

resulting in strongly increased radiation transfer (photon conduction). See the 

curves in Figure 2.9. 

 
6 (NCNG, 1997) 
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Figure 2.9: Spectrum of heat radiation of a black body at 3 
temperatures and spectral absorption of float-glass. 

In Figure 2.9, the spectral distribution of the heat radiation intensity of a black 

body is shown for three temperatures together with the absorptive spectrum of 

a float-glass. From Figure 2.9 it is evident, that above λ = 2.5 m, the 

transparency of float-glass is becoming very poor and there is no transparency 

at all above λ = 5 m. Also, we see that a (black) body at 600 °C practically 

radiates only in a range of λ > 2.5 mm. Therefore the glass will not transmit 

this radiation below about 600 °C and the heat can only be transferred through 

conduction. The glass is already very rigid at T < 600 °C and under normal 

conditions, no convection can take place within the glass. From the spectral 

curve of a body at 1000 °C it is apparent, that now a substantial part of the 

energy is radiated at wavelengths below 2.5 m, where this glass is reasonably 

transparent. Therefore this radiation will be well transmitted. Although it is 

difficult to see in Figure 2.9, there is still some absorption at λ < 2.5 m; the 

absorption coefficient being in the order of  0.1 - 1 cm-1. Without any 

absorption, the radiation would be able to reach directly and undisturbed the 

opposite wall and heat it without heating the glass. This is called passive (no 

direct heating of the glass) radiative heat conduction. However, in this case, at 

a value for the normal absorption coefficient of 0.1-1 cm-1, the glass will partly 
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pick up the heat through absorption. Each heated volume element will start 

radiating itself (having a certain emissivity depending on the wave-length) and 

by doing so also be transferring heat. Such a material which absorbs radiation, 

but where the free path for radiation is of the same order as the dimension of 

the object (in this case the depth of the furnace) is called diathermic. Radiation 

can be absorbed by a volume element of the glass heating the material and 

radiation is re-emitted by this volume-element depending on the composition 

and local temperature. So, the glass (melt) conducts radiation but also absorbs 

and re-emits radiation, being heated and being a conductor for radiation. In this 

process, the presence of various metal ions in the glass plays an important role, 

because these ions might determine the absorption to a large extent.  

Convection 

The convection takes part majorly from a temperature above 800°C of the 

glass; it is caused by the flowing of the glass as in the melting tank and during 

forming at viscosity’s low enough to allow the flowing of the melt. In this 

study will not be taken into account the convection between air and glass 

during the annealing due to the low contribution it gives to the heat balance. 

2.3.4. Theories of annealing7 

Classical views on annealing glass were divided between two schools of 

thought. One, originated by Adams and Williamson (1920), was a 

thermomechanical view that explained annealing purely in terms of stress 

relaxation. The other, advanced by Lebedev (1921), was a structural view, 

which emphasized structural changes in glass, sometimes to the exclusion of 

mechanical considerations. While structuralists argued, justifiably, that 

structural changes must affect annealing stresses, they had no quantitative 

model to evaluate its importance. On the other hand, Adams and Williamson 

presented a quantitative model that was apparently successful in predicting 

 
7 (Narayanaswamy) 
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residual stresses in annealed glass. Thus, the mechanical view of annealing 

gained wide acceptance among those whose interest in annealing was control 

of residual stresses in the glass. Annealing of optical glass, of course, required 

knowledge of structural relaxation and its effect on the refractive index of 

glass. The interaction of the two physical phenomena was not fully explored. 

In the last couple of decades, considerable progress has been made in 

developing quantitative thermomechanical models of stress relaxation in ideal 

viscoelastic materials. A landmark paper of this era was published by Lee et 

al. (1965) who presented a sound mathematical framework for viscoelastic 

stress analysis in the glass. Narayanaswamy (1971) applied the mathematical 

formalisms of viscoelasticity to develop a quantitative model of structural 

relaxation in the glass. This model was first applied by Gardon and 

Narayanaswamy (1970) to present what might be called the modern theory of 

annealing, which is a unified view of stress and structural relaxation in the 

glass. We shall first review classical theories and their shortcomings before 

discussing the modern theory of annealing.  

2.3.5. The modern theory of annealing 

In 1965 Lee et al. published a paper on stress generation in glass in which 

they presented for the first time a solid mathematical framework to describe 

stress generation in a glass slab. This paper was the basis for much further 

theoretical work on both tempering and annealing and the development of 

"structural models" of both these processes, even though they made no 

reference to structural relaxation. Narayanaswamy (1971) adapted their 

mathematical tools to develop a comprehensive model of structural relaxation 

that predicted with sufficient accuracy the structural response of glass to an 

arbitrary temperature history. Gardon and Narayanaswamy (1970) applied 

this new model to analyze the annealing of soda-lime glass. Since their analysis 

of annealing contained all current concepts of stress and structural relaxation, 

their work may conveniently be referred to as the modern theory of annealing. 

Let us now briefly review the salient features of this theory. Any 
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comprehensive analysis of annealing must necessarily begin with the 

calculation of the thermal history of glass. Let us simplify this task by 

considering a glass slab cooled at a constant rate. After the decay of initial 

transients, a parabolic temperature gradient develops across the thickness of 

the slab. As long as the cooling rate is kept constant there will be no change 

in thermal gradient. Thus we obtain the simple expression for thermal history 

in the slab given by the equation: 

𝑇(𝑥, 𝑡) = 𝑇𝑜 − 𝑅(𝑡) + 𝐾𝐿2𝑅 (
1

4
−

𝑥2

𝐿2
) 

If the initial temperature T0 is chosen to be sufficiently greater than the upper 

limit of the glass transition range, the initial thermal transients neither 

introduce stresses in glass nor cause any deviation of glass structure from its 

equilibrium state. Thus, in subsequent analysis, these transients will be 

ignored and the above equation will be taken as valid from time zero. The 

next step in the analysis is the calculation of fictive temperature history. […] 

the thermal history of material at a given point Ρ determines a unique Active 

temperature for that point. For the sake of simplicity, we are using only one 

fictive temperature. Thermal strains introduced in different layers of the glass 

slab are then given by: 

εth (x , t) = βg [ T(x,t) - Tf(x,t)] +  βl [ Tf (x, t) - T0] 

We must observe here that theories of annealing that ignored structural 

relaxation in glass apparently succeeded in "predicting" anneal stresses 

because they used an effective coefficient of thermal expansion. Thus, their 

expression for strain would be 

εth (x, t) = βeff [ T (x, t) - T0] 

We see now that such a success was merely a matter of selecting a value for 

βeff to produce agreement between calculated and measured anneal stresses. 
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Effective expansivity is not a physical property and may have different values 

for different processes (Narayanaswamy, 1978). On the other hand, βg and βl, 

are physical properties and hence are independent of process conditions. 

Haggerty and Cooper (1965) measured thermal expansivity in the liquid and 

glassy regions and found that in soda-lime glass structural expansivity βs is 

twice the thermal expansivity βg. 

The third and final stage of the analysis is the calculation of stresses induced 

by the strain history. This part of the analysis is purely classical thermo-

viscoelasticity except for the calculation of reduced time. Unlike structural 

relaxation, stress relaxations in different material points interact. This is so 

because stress distribution across the thickness of the slab must satisfy the 

following equilibrium condition at all times: 

∫ 𝜎 (𝑥, 𝑡)𝑑𝑥 = 0
𝐿/2

0

 

Stresses and strains in different layers are related by the familiar Boltzmann's 

integral 

 

where R(ξ) is the normalized auxiliary relaxation modulus, σg is the 

generated stress, ε(t) is the total strain, which equals the viscoelastic strain 

plus the thermal strain, and σ(x,0) = 0 is the assumed initial condition.  
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Figure 2.10: Development of actual and fictive temperatures (a) 
and temperature gradients (b) in glass (0,57 cm) cooled at constant 
rate of 1,12 °C/sec. 

We have the two previous equations to solve for two unknowns σ(x,t) and 

ε(t). Details of deriving and solving these equations can be found in the 

works of Lee et al. (1965) and Narayanaswamy and Gardon (1969). Figure 

2.10a shows how actual and fictive temperatures change with time in a glass 

slab 0.57 cm thick cooled at l.l°C/sec. Solid lines represent temperatures of 

the surface and midplane. They are shown by dotted lines in Figure 2.10a. 

Note that since both surface and midplane cool through the transition range 

at the same cooling rate, they experience thermal histories that are identical 

but shifted in time. The same is true for fictive temperatures of the surface 

and midplane. Fictive temperatures for other layers of the slab are obtained 

by a simple shift in the time scale. Figure 2.10b compares gradients ΔT and 

ΔTf of actual and fictive temperatures. They are equal in magnitude but 
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decay to zero at different times. The fictive gradient decays first when the 

transition range is crossed, and ΔT decays later when the cooling is stopped. 

Since βs is twice βg, the former event generates stresses in the slab that are 

twice as large as those generated by the latter event. However, since the 

decay of fictive gradients occurs in hot glass, only a small fraction of stresses 

generated by this decay survive stress relaxation. On the other hand, 

gradients of actual temperatures decay in cold glass, so that all of the 

stresses generated by this remain as residual stresses. Figure 2.11 compares 

the numerical solution (circles) with measured stress generation (solid line) 

in the midplane of a glass slab cooled at l.l°C/sec. The evolution of stress is 

characterized by two plateaus, the first one induced by the decay of 

structural heterogeneity and the second by the decay of thermal gradient. 

Figure 2.11 answers clearly the long-debated question, "What fraction of the 

total anneal stress is attributable to structural relaxation in the glass?" We 

see that it is 40% of the total, that is, 31 nm/cm of the total, 76 nm/cm. 

The remaining 60% is attributed to thermo-mechanical changes, i.e., to the 

relaxation of thermal gradient in the glass. In some glass literature, stress 

and structural relaxations are treated separately. Stresses induced by residual 

structural heterogeneity in cold glass are added to the classical residual 

stress. This procedure is erroneous because stress and structural relaxations 

are simultaneous and coupled phenomena. The constant rate cooling 

schedule reviewed here is an excellent counterexample. It produces no 

permanent (residual) heterogeneity in structure. But, transient heterogeneity 

in structure does occur (ΔΤf in Figure 2.10b) and that is responsible for 40% 

of the total anneal stress. Before ending this section, contributions to 

annealing by Tackels and Crochet (1973) and Crochet et al. (1974) should be 

mentioned. Like Gardon and Narayanaswamy, they also take a unified view 

of stress and structural relaxation in annealing. However, their model of 

structural relaxation still retains the classical one-parameter approach of 

Tool. They model structural relaxation by the differential equation 
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As we stated before, this formulation neglects the "memory effect," which 

may become important in thermal processes in which temperature variation 

is nonmonotonic. The author recommends the integral formulation or its 

equivalent (Markovsky and Soules, 1984), which permits multiple relaxation 

mechanisms and thus allows for observed memory effects in glass. 

Numerical solution of the more general formulation is quite straightforward 

and is a simple task for modern digital computers. 

 

Figure 2.11: Temperature and stress as a function of time during 
the annealing of sheet glass. Solid curves are experimental 
recordings; circles represent calculated stresses. Glass 
thickness=0,57 cm; cooling rate= 1,12°C/sec. 
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2.4. Permanent stress on flat glass 

During the annealing, the glass ribbon is provided with a certain distribution 

of spatial and time temperature gradients. The thermal effect applied to the 

glass ribbon generates a three dimensional status of strain that causes 

mechanical stresses. The stresses generated can be divided into 2 categories: 

the temporary stresses, that are due to the elastic properties of the glass and 

are majorly considered below the transition temperature of the glass, and they 

are present only if the thermal gradient is maintained. The second typology is 

the permanent stresses, that are characteristic of the visco-elasticity of the 

glass and are generated over the Tg=480°C, and are completely developed 

when the temperature in each point of the sheet is homogeneous. To sum up, 

a glass ribbon that is cooled from a T>Tg, where its internal structure can 

reorganize, to a T<Tg where it is “frozen”, acquires distribution of permanent 

stress caused by the different specific volume across the ribbon width. These 

stresses will be considered for the creation of the model and are the output 

of the system to be modelled and simulated. When the glass is cooled, the top 

and bottom surfaces of the plate are cooler than the centre; this distribution 

causes the so-called laminar stresses, that are equal if measured along and across 

the glass sheet; it is so possible to understand that it is due to time gradients 

of the temperature – so the cooling rate of the glass ribbon. Due to a natural 

effect and the technology constraints, the edges of the glass ribbon are cooler 

than its centre; when a temperature distribution is given across the width of 

the ribbon, this will generate a distribution of transversal stress with the direction 

along the glass ribbon. Effectively these are the stresses that want to be 

simulated by the present work. 

To better explain the effect that distribution of temperature along the ribbon 

width and the temperature’s transition from a temperature higher than Tg, to 

a lower temperature, consider the glass ribbon as divided into longitudinal 

slices. If the centre of the ribbon is warmer than the edges, each slice across 

the width has a different specific volume but above 480°C its viscosity is 
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enough low to let the glass release the stresses progressively by a 

reorganization of the internal structure; when the ribbon is cooled below 

480°C, its viscosity is too low to let the structure adapt and it is fixed; if the 

slices were ideally able to move independently, at ambient and homogeneous 

temperature the would move and not generate any permanent stress. In real 

condition below 480°C, the structure of the glass is fixed and the slices cannot 

move, so it results a condition of permanent transversal stress that is 

proportional to the temperature difference between each point of the glass 

sheet. 

2.4.1. Thickness Stresses8 

Residual stresses in a glass sheet occur due to the temperature gradient during 

cooling across the transformation range. It is customary to consider that these 

stresses are the result of the superposition of two kinds of stresses: thickness 

stresses and membrane stresses. The former is generated by the temperature 

gradient which is perpendicular to the surfaces and the latter is generated by 

the gradient parallel to the surfaces. When a glass sheet gets cold during 

tempering or annealing, the heat transfer occurs principally through its 

surfaces. Consequently, the highest temperature gradient is directed across 

the sheet thickness and the main residual stresses are the thickness stresses. 

They are planar stresses.  

More often than not, one may consider the cooling conditions to be the same 

on both surfaces of the glass sheet. The median plane is thus a plane of 

symmetry for residual stresses. When the sheet is cooled asymmetrically and 

it is prevented from bending, the residual stress distribution remains parabolic 

but the top of the parabola is shifted nearer to the surface which is cooled 

more slowly. Such ease can arise when, in a glass sheet, adjacent areas have 

been subjected to different asymmetric cooling. If these areas of glass were 

 
8 (Aben & Guillemet, 1993) 
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separate entities they would have different curvatures at room temperature. 

However, since they are attached to each other, they have to take a mean 

curvature. The result of this is a bending of each part and thus an asymmetry 

of their thickness stress profiles. In practice, this ease occurs after annealing 

of the glass ribbon when, for example, the central zone tends to get a concave 

bow shape and the two lateral zones a convex bow shape. If a glass sheet has 

been subjected to asymmetric cooling throughout the transformation range 

and if it is free to bend, it obtains a curvature whose concavity is directed 

towards the surface with the slowest cooling. This is due to the fact that the 

residual stress distribution has to satisfy the bending moment is equal to zero. 

The result of this is a perfectly symmetric residual stress profile. However, if 

bending is restricted then bending stresses appear, and the resultant stress 

distribution is asymmetric. This situation appears in the ease of horizontal 

tempering. When the glass sheet to be tempered rests on a horizontal frame 

or on horizontal rolls, the blast of air is a little more intense on the upper 

surface than on the lower one; this is necessary for the glass to remain in 

contact with its support. As a consequence of this, tempering induces a slight 

curvature whose concavity turns towards the lower surface. Asymmetric 

cooling also occurs at the end of the bending process of the two glass plates 

which compose a windscreen. These two sheets stacked together are put on 

a frame, heated up to 600°C to bend them under the action of gravity and 

then cooled slowly. If this cooling is carried out too quickly, the two sheets 

will not get the same curvature at room temperature; the lower one will be 

more bent than the upper one. The laminating with the polyvinyl butyral film, 

to be carried out later, will induce a bending moment of opposite sign in each 

sheet and these stresses will be superposed to the stresses due to annealing. 

Let us mention that the residual stress profile is no longer parabolic if cooling 

of the glass sheet through the transformation range has not been 

monotonous.  



 

59 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

2.4.2. Transversal stresses 9 

The thickness of a glass sheet is very small in comparison with its other 

dimensions. Thus, generally, the temperature gradient parallel to the surface, 

which is a function of time and of the point of the sheet considered, can be 

assumed to be constant through the thickness in each point. This temperature 

gradient induces membrane residual stresses in the glass sheet. These stresses 

are constant through the thickness and are superposed to the thickness 

stresses. One can measure these membrane stresses regardless of thickness 

stresses by adapting the classical methods of two-dimensional photoelasticity.  

From a practical point of view, the most important are the residual stresses 

which arise due to the special cooling conditions which generally prevail on 

the edges. As most of the time, the edges are cooled more quickly than the 

centre of the sheet, the edge stresses are generally compressive. Edge stresses 

affect the stress intensity factor of the flaws which occur during cutting or 

grinding. These defects are generally the ones which weaken the strength of 

the sheet most. Due to this, the edge stresses have a strong effect on the 

resistance of the sheet during bending or twisting. In laminated windscreens, 

it is the edge stresses which determine the probability of fracture during 

assembly to the car body. They are systematically measured during 

production. Since these edge stresses are unidirectional, they are easy to 

measure with photoelastic methods; the stress is proportional to the measured 

path difference δ. 

In long glass ribbons, the longitudinal temperature gradient during the 

cooling is usually very slight, therefore the membrane stresses are affected 

only by the temperature gradient in the direction perpendicular to the ribbon 

axis. Thus, only the stresses parallel to the axis of the ribbon are not equal to 

zero. These stresses are to be controlled on-line to avoid the breaking of the 

 
9 (Aben & Guillemet, 1993) 
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ribbon and to enable easy cutting of it at the lehr exit. Formerly the stresses 

were measured with visual photoelastic devices supplied with a compensator.  

The stress level is proportional to the expansion coefficient. The region which 

has become rigid first during cooling, come under compressive stress. The 

inner part of the product or the surfaces that have been cooled more slowly, 

come under tensile stress. Usually one attempts to avoid this to happen 

because it will weaken the product and it makes further treatment, like cutting 

and sawing, impossible. Therefore cooling as much as possible without 

creating stresses is essential. 

2.5. Annealing lehr technology 

The equipment that makes implementable the annealing process described in 

the previous parts, is the annealing lehr. A glass annealing lehr oven is a long, 

temperature-controlled, kiln. Lehrs are typically 6m wide and 120m long, with 

an adjustable temperature gradient through which the glass passes. In the case 

of the flat glass, the product is transported on a roller conveyor. Adjustable 

electric heating elements and air heat exchangers are located in the lehr to 

maintain a consistent temperature profile across the width of the glass ribbon 

and the desired cooling rate along the glass flow direction. If the glass ribbon 

were to cool in ambient temperature air, the surfaces would cool much more 

rapidly than the internal body of the glass. This temperature gradient would 

cause the surface to be in severe compression, which will cause the glass to 

break spontaneously as the stresses exceed the strength of the glass. 

From a layout point of view, the lehr is composed of different section, and 

each of them has different purposes for the thermal treatment of the glass. 

The first part is thermally insulated because the temperatures are high and the 

control of the temperature distribution is crucial; this part is made by the 

zones A, B and C. These three zones have similar geometries and devices and 

control:  
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• Electrical resistances that provide heating power, transferred to the 

glass by radiation. The electrical power regulation is done by SCR 

(Silicon Controlled Rectifier) and the setpoint is provided by 

production operators. In each zone electrical resistances have a 

dedicated control on the top and bottom surfaces and in five sections 

across the ribbon width (the central one is twice wide than the others); 

along the glass ribbon the regulation is constant. 

• Air heat exchanger that provides cooling power, not transferred by 

forced convection but by radiation. The airflow regulation is provided 

through electro-mechanical regulation of valves, there is a unique fan 

for each zone (top-bottom) that generates the airflow. The particular 

design of the heat exchanger increases the efficiency thanks to a 

sequence of rectangular tubes in close position, this geometry creates 

a kind of radiation trap that increase the exchange surface and 

consequently the thermal power absorbed. As the electrical 

resistances, heat exchanger have a dedicated control on the top and 

bottom surfaces and in five sections across the ribbon width (the 

central one is twice wide than the others). The tubes are developed 

along the ribbon and this shape causes a different level of thermal 

power that the glass exchange with the heat exchanger along this 

direction because at the inlet the air temperature will be lower than 

the outlet; it also depends by the direction of the airflow and so by 

the position of the fan as shown in the figure below. The opening of 

the valves is regulated in a close loop with a PID control upon the 

temperature level. 
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Figure 2.12: longitudinal section of the lehr. It is shown that the 
tubes of the heat exchanger are developed along the glass ribbon, 
this generates a different value of thermal power exchanged 
depending on the position of the fan.10 

• Burners provide supplemental thermal power exchanged both by 

radiation and forced convection because the flame hit directly the 

glass surface. The two burners are in the edge position of the ribbon 

and at only in zone A; their regulation is made manually and the 

transversal position can be changed. 

• Thermocouples: measure the temperature of the air close to the 

glass surface and act as feedback for the control 

 
10 (Squilbin, J. M.; Moulart, M.; CNUD, 1995) 
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Figure 2.13: Transversal section of the annealing lehr. Electrical 
resistance (red), air heat exchanger (green), thermocouple position 
(orange), burners (brown), glass (light blue). The square pattern 
indicates the insulated structure of the lehr.11 

The non-insulated part is a closed chamber divided into zones where the glass 

ribbon is cooled down with a controlled temperature and there is only air heat 

exchanger; in this part the glass is solid and the stress applied is temporary. 

After the complete cooling of the glass ribbon and the cutting phase, that 

transform the glass ribbon into single sheets, the permanent stress 

measurement are performed. The instrumentation used for this operation is a 

circular polariscope moved in a specific position of the sheet width.  

12A polariscope is an instrument that enables one to analyze the character of 

birefringence in photoelastic specimens. The simplest arrangement consists of 

a model placed between two linear polarizers, called the polarizer and analyzer, 

respectively, with their axes crossed as shown in Figure 2.14. This is the 

arrangement for a plane, dark-field polariscope. 

 
11 (Squilbin, J. M.; Moulart, M.; CNUD, 1995) 

12 (Aben & Guillemet, 1993) 
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Figure 2.14: Photoelastic model in a plane polariscope.13 

There are two separate conditions under which the extinction of the light will 

be obtained. One condition is that ψ = 0 or 90°. This is satisfied by all points 

on the plate where the directions of the principal stresses are parallel to the axes 

of the polaroids and such points appear to be dark. In general, these points lie 

on continuous curves forming a system of dark bands named isoclines. For any 

given setting of the crossed polaroids, a corresponding isoclinic pattern can be 

observed. The isoclinic pattern is independent of the wavelength and the phase 

difference and hence of the magnitude of the stresses. The second condition 

which extinction is obtained is that the phase is equal to 2πn radians where n is 

zero or any integer. This is equivalent to relative retardation of n wavelengths. 

Thus, all points on the plate at which the difference σ 1 - σ2 in the principal 

stresses is such that the relative retardation produced is equal to a whole 

number of wavelengths, will appear dark. In general, the difference in the 

principal stresses varies continuously within the plate so that the loci of such 

points are smooth curves. These are known as isochromatics. Since the phase 

difference depends on the wavelength, it follows that the points of extinction 

for the light of different colours lie on different curves. Thus, when white light 

 
13 (Aben & Guillemet, 1993) 
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is used, all wavelengths of which the relative retardation at a given point is an 

integral number will be extinguished.  

 

Figure 2.15: Dark-field images of a disk under diametral 
compression with different angles ψ between polarizer axis and 

direction of loading: (a) ψ = 0°; (b) ψ = _20°; (c) ψ = +20°.14 

From the above analysis we see that when a stressed plate is placed in the field 

of a plane polariscope, two different systems of fringes appear simultaneously, 

namely, the isoclines and the isochromatics. If white light is used, these can 

easily be distinguished from one another since the isoclines are black while the 

isochromatics, except for fringes of zero-order, are coloured. However, with 

monochromatic light, both sets of fringes are black and somehow disturb each 

other. Besides, all the required information can frequently be obtained from the 

isochromatic pattern alone. The isoclines are then undesirable since they tend 

to obscure the stress pattern. In such cases, the isoclines can be eliminated by 

using circularly polarized light. The directional characteristic of the light 

incident on the model on which the formation of isoclines depends is thus 

removed. Figure 2.16 shows the arrangement of a dark-field circular 

polariscope with two quarter-wave plates placed between the polarizer and 

analyzer. when the circular polariscope is set to give a dark background, the 

intensity transmitted is zero when the phase is equal to 2π, corresponding to 

relative retardation equal to a whole number of wavelengths. This is the same 

 
14 (Aben & Guillemet, 1993) 
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as the second of the conditions for extinction obtained in the plane polariscope 

so that the isochromatic pattern is the same in each. This, however, is the only 

condition for extinction in the circular. 

 

Figure 2.16: Photoelastic model in a dark-field circular 

polariscope.15 

With the light-field circular polariscope, extinction occurs when the phase is 

equal to (2n+1) π where n is zero or integer. This corresponds to relative 

retardation equal to an odd number of half wavelengths. Thus, in a circular 

polariscope, the number of points at which the relative retardation can be 

determined directly from the iso-chromatics is doubled by viewing the model 

with the analyzer set to give dark and bright background in turn. As an 

illustration, in Figure 2.17 dark-field and light-field isochromatic images of a 

disk in diametral compression are shown. 

 
15 (Aben & Guillemet, 1993) 
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Figure 2.17: Dark-field (a) and light-field (b) isochromatic 

images of a disk under diametral compression.16 

2.6. System  

From a schematic point of view and for a modelling purpose, all the process 

and the devices that work in the described production system can be seen in 

terms of functional blocks. This method simplifies the way that the system is 

studied and highlights the interaction of the parts of the system with each 

other. 

 

 

 
16 (Aben & Guillemet, 1993) 
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Figure 2.18: Functional block diagram of the studied system. The 
blocks are Operator function (OP), control (C), machine (M), glass 
behaviour (P), external conditions (D). 

In a simplified way, the system can be described as shown in Figure 2.18; as 

mentioned in the previous sections, all the production is based on the control 

of the permanent stress impressed on the glass sheet, so it can be defined the 

following blocks and variable: 

• Stress_sp: is the ideal distribution of permanent transversal stress 

that want to be obtained on the glass sheet 

• OP: the operator, in order to obtain the desired distribution, 

provides a distribution of temperatures T_glass_sp to input into the 

system control 

• C: is the temperature control of the system; the control receives a 

setpoint of temperature in 5 points across the ribbon width and by a 
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PID control regulate the 5 sections of cooling by acting on the valves 

opening Regul_cool 

• Regul_heat and flow_burn are controlled manually and act on the 

heating electrical resistances and the edge burners 

• M: once the setpoint of regulation of the machine is given, it 

generates a setting that causes a level of thermal power per each of 

the 5 sections across the ribbon width; since these sections are 

adjacent they affect the glass of the close section. The thermal power 

– whether in cooling or heating – causes the glass to get a certain 

temperature T_glass_pv, this temperature distribution measured by 

5 thermocouples at each section provide to the control a feedback of 

the glass state. 

• The temperature distribution on the glass T_glass_pv – that is very 

close to the temperature measured by the thermocouples – and the 

visco-elastic behaviour of the glass during the annealing phase, 

generate a continuous distribution of stress. The edge of the ribbon 

will be trimmed next; now the glass has a shape of a sheet of a precise 

rectangular shape, and the distribution of stress changes accordingly 

to the removal of the edges. The permanent transversal stresses are 

then measured with a correction factor in case the temperatures of 

the glass are not perfectly in isothermal and standard conditions to 

get the Stress_pv, that is the general output or feedback of the 

system. The feedback is generated by the Quality Control, and 

according to a specific interval of acceptance of the stress variation, 

evaluates if the product is compliant to the quality level required as 

shown in Figure 2.19. This information is sent to the operator 

controlling the process, who compensate for an eventual deviation 

in the output level. 
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• Some other conditions and settings affect the generation of the 

system’s output. Some of them are considered part of the production 

setting, such as the Pull – meant as the productivity of the line -, the 

Thickness of the glass sheet produced, the Velocity of the line and 

the kind of Glass produced. Other important variables are the 

temperature of the glass outcoming from the forming phase 

T_glass_in, the Burner position, the environmental temperature 

T_ext and the temperature of the air incoming in the heat exchanger 

T_air_in. 

 

 

Figure 2.19: Quality acceptance levels and example of permanent 

stress measurement across the sheet width. 

The system that will be analyzed and simulated is inside the red line in Figure 

2.18. In every moment all the above-mentioned variables assume a state or a 

value that characterize the operation of the system; the goal of this study is to 

detect patterns and correlations between the input variables of the system 

analyzed, and the output variables. 

In the next chapter, it will be explained the characterization of the model and 

all the steps that lead from the raw data collected on-line to a working and 



 

71 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

validated model, that is able to simulate the system’s output considering all 

the conditions and settings that it assumes. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

72 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

CHAPTER 3 
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EXPERIMENTAL MODEL 
DEVELOPMENT: A DATA ANALYSIS 

APPROACH 

3.1. Introduction 

The model developed fits into an industrial and production context where the 

study of systems and the correlation of process variables is essential to 

increase the level of in-depth knowledge of the operation of the machines 

and the individual process sections. This in-depth study has as its objective, a 

better knowledge of the production process in terms of the correlation 

between the production variables and characterization of the functioning of 

equipment, machines and physical phenomena related to them; as a direct 

consequence, it is possible to obtain operational results in terms of 

optimization of yield and production efficiency and therefore of cost 

reduction, energy-saving and control over the stability of quality output. 

In developing this model, the starting point is the context of automation and 

orientation to issues related to the Industry 4.0; from this point of view, the 

presence of an integrated data infrastructure that connects different 

departments of the production line, from automation management - and 

therefore from the field instrumentation and controls - through process 

control to the Data Analysis that allows, as in the case of this work, to provide 

predictive models that improve production conditions. To this purpose, the 

company AGC Glass Europe, where this Master's degree thesis was carried out, 

has prepared a series of actions that allow the development of this policy. 

As anticipated in Chapter 2, the development of this model has as its topic 

the study of a production system - meant as the union of machines and 

devices, and the reaction of the product under the action of some physical 

phenomena - in order to build a predictive model that is able to predict the 

process output as a function of different input parameters, such as the 
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regulation of the actuation devices, the initial conditions of the product and 

some external conditions. The outcome of the model is to provide a simulated 

result that is as close as possible to the production result actually measured 

(the accuracy of the predictive model is calculated in that way); after having 

built the forecast model and validated its precision, the model can be used to 

simulate the quality output in totally new production conditions, based on 

what "learned" in the training phase. Having a simulated process output 

available can be used in different ways at the operational level: firstly it can be 

provided to the process control operator to frequently obtain the result of the 

process even before the quality control and here identify any deviations that 

cause the qualitative output to vary outside a predetermined range; 

subsequently, the operator will make changes to the system regulation to 

balance this deviation. Another interesting point of use of this model is an 

engineering application; as explained in the previous chapter, the float glass 

production process is continuous and any action performed on the line, if not 

properly designed and programmed, can have a critical impact on the stability 

of the process and on the product itself. This said, the model acts as a support 

for the simulation of new operating conditions and machine settings, in order 

to test the effect they could have; once the conditions have been tested and 

the outcome of the test validated, these new adjustments can be applied and 

verified on the production line under standard production conditions. 

In order to build this predictive model, a black box study method was used. 

In systems theory, a black-box model is a system that, similar to a black box, 

can be described substantially in its external behaviour, i.e. only for how it 

reacts in output to certain input solicitation, but whose internal behaviour is 

not fully mathematically defined. This definition arises from the consideration 

that in the analysis of the system what is important at a macroscopic level or 

for practical purposes is the external behaviour, especially in a context of the 

interconnection of several systems, rather than the internal functioning whose 

result is precisely the external behaviour. This type of approach gives good 

results and is particularly useful in the case of very complex processes, where 
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for the characterization of each component and phenomenon, the 

identification of transfer functions is impractical or subject to very limiting 

simplification hypotheses. 

Ultimately, for the characterization of this black box, a Supervised Machine 

Learning method was used, which correlates several process variables each 

other using a regression algorithm (SVM, Support Vector Machine). To move 

from raw data collected by field instrumentation to a predictive model that 

can use this data to provide simulated output, the following steps must be 

achieved: 

▪ Data collection 

▪ Data pre-processing 

▪ Model selection 

▪ Model training 

▪ Parameters tuning 

▪ Model validation and testing 

▪ Prediction and results 

 

 

Figure 3.1: Steps of the Machine Learning model development. 
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3.2. Data collection 

In the production system under consideration, the availability of data derives 

from a series of data sources, these devices consist of sensors that generate a 

signal that is a function of the measured parameter. These data have a 

completely different nature from each other, based on the phenomenon being 

measured, the type of sampling, and the nature of the variable. At the field 

level, a classification can be as follows: 

▪ On-line: this instrumentation is permanently installed on a machine 

and generates a signal read by the control system, in addition to being 

used for process regulation, this data is collected and stored through 

a data infrastructure on a cloud database. The value of this variable is 

automatically sampled according to a certain frequency and some 

archiving optimization functions. To this group belong all the sensors 

that measure the input variables of the system under consideration, 

for example temperature, position, size, speed, flow rate and power. 

▪ Off-line: this instrumentation is installed outside the production line 

and produces data (the data is sampled) in a non-continuous manner 

and according to a variable sampling frequency. Given the 

characteristic of the measuring principle, this instrument is installed 

on an automatic handling system for the sampling of different points 

of the glass sheet. The measured data are analyzed and corrected 

according to the temperature of the glass; the final value is passed 

directly through an acquisition system and is stored on a cloud 

database. 

As mentioned some variables have a different sampling period, depending on 

the use in terms of process control: for example, the temperature control of 

the glass ribbon in the annealing tunnel requires a period of a few seconds, as 

the value provides feedback to the PID control for the management of several 

actuators. Another relative subdivision sees an automatic sampling, where the 
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control system automatically collects a certain value which is then stored, and 

a manual one, where the reading of the data is provided by a person who 

reports the value directly to the collecting system. At the control level, the 

nature of the variable can be divided into: 

▪ Setpoint: it is a value processed by the control and it is the state that 

the controlled variable must assume, this value is passed to an actuator 

that realizes this state. 

▪ Feedback or PV: it is the actual value that the variable assumes in a 

certain instant. The deviation from the setpoint defines an error and 

therefore a reaction by the control. In certain cases, it can be similar 

to the setpoint, if the dynamic behaviour of the actuator has a short 

period and therefore the error in the transient phase is close to zero. 

A case in which feedback and setpoints are considered equal is that 

of the actuators of the air control valves of the heat exchangers. 

3.3. Data preprocessing 

Once the data acquisition system has been created, which in this case had 

already been present and guaranteed the presence of more than 2 years of 

historical measurements, it is time to define which variables need to be used 

for the creation of the model. In this case, the variables represented in the 

following table have been extracted, that is: 
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Table 3.2: Variables present in the dataset, each variable represent 

the data coming from a different point of the process. 

Some of the variables present in Table 3.2, collect data from a different point 

of the process, meaning that each of them has more sensors that collect data. 

E.g., as explained in Chapter 2 about the lehr technology, the cooling heat 

exchangers are present in the zone A and B, on top and bottom surface of 

the ribbon and they have a regulation in 5 points across the ribbon width; this 

means that is passed to the model building 20 features that represent the 

cooling in a different point of the process.  

For clarity purpose, it is reported the system diagram that shows where the 

variables are working. 

Variable Phenomenon measured UOM
Kind of 

variable
Sampling

Electrical power heating resistances Ribbon heating kW FB AUTO

Valve opening of heat exchanger's air Ribbon cooling % SP AUTO

Burner gas flow Edge ribbon heating Nm3/h FB MAN

Glass ribbon initial conditions Glass temperature °C FB AUTO

Stress on glass sheet Transversal permanent stress Mpa FB AUTO

Ambient condition Air temperature near lehr °C FB MAN

Pull Daily productivity of the line tons SP AUTO

Thickness Thickness of the glass ribbon mm FB AUTO

Velocity Ribbon speed m/min FB AUTO

Glass Kind of glass produced - SP AUTO

FB: Feedback

SP: Setpoint

AUTO: Automatic

MAN: Manual
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Figure 3.3: Functional block diagram of the studied system. The 
blocks are Operator function (OP), control (C), machine (M), glass 

behaviour (P), external conditions (D). 

3.3.1. Choose of the sampling time 

From a first analysis of the present database, some substantial differences can 

be noticed on the sampling of the data; the first really important point is the 

definition of the sampling period. As seen, each variable has a different nature 

and is sampled according to a different frequency by the data collection system. 

Looking at the entire system, we note that the sampling of the output is the 

least dense (it requires longer intervention times since it is an operation 

performed manually) and therefore the historical data present are less than the 

other variables. This means that the output sampling period is also 2 orders of 

magnitude higher than the process variables and occurs at evenly spaced 

intervals; this characteristic is normal since the last ones are necessary for the 

process control (which therefore has very short characteristic periods), while 

the output value is a control of the final sheet and it is needed to guarantee the 

quality of the product sold. Also for this reason it has not been considered 

appropriate to interpolate the output values to obtain more intermediate values. 
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Ultimately, the acquisition period of the output variable was chosen as the 

sampling time for all the variables of the system; therefore, in correspondence 

with the sampling of the output, all the input variables are correlated to it. 

However, the input variables are not taken only at that particular moment, but 

their value is averaged over a wider evaluation interval, to have a better 

description of the value itself. An example is the one in Figure 3.4, where a 

series of signals that vary over time are represented over a period of 16 hours, 

their sampling time are equal to 10 s and therefore graphically a continuous and 

representative trend of the signal shape is obtained; the moment in which the 

output is sampled is shown in red: as mentioned, the sampling intervals of this 

variable are not constant and are much more spaced from each other than the 

other signals. The interval before the sampling of the output lasting ts=30 

minutes is shown in yellow, within it each input variable is evaluated; the 

average value in this range is taken as the value that contributed to the 

generation of the output and is therefore related to it. Each of these samples 

(output and average of the input in the interval ts) generates a row of the dataset, 

which will be used afterwards by the regression algorithm to build the model. 

  

Figure 3.4: Time evolution of the value of some variables 
(continuous coloured curves), sampling of the output (red 

straight line) and interval of calculation of the input variables 
(yellow). 
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For the evaluation of the size of the calculation interval ts of the input variables, 

some fundamental indicators were considered to describe the variation of the 

input data in the interval itself. These indicators are provided directly by the 

data extraction software and are: 

- The standard deviation of the data samples 

- Range of variation of the data samples  

- Number of data samples  

- Percentage of goodness in collecting the value 

For each variable, these parameters were monitored to not exceed a certain 

threshold, established based on the physical phenomenon of reference, the 

tractability of the data and the experience of the production technicians. 

Different lengths of the chosen interval were compared, between ts = 5, 30, 

120 minutes. Here are some examples of evaluations carried out on the most 

critical variables, to compare the three proposed duration classes: 
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Table 3.5: Evaluation table for the data extraction, the parameters 
reported are needed to evaluate the interval time ts according to 
the standard deviation, number of datapoints, value range and 

sampling quality. 

 

Figure 3.6: Trend of a cooling valve regulation (blue line) and 
comparison with a different sampling time: 5' (dark red), 30' 

(green) and 120' (dark green). 

Tag C1_LR_ZA_ATM_TEMP_TOP_C.MV Tag attributes:

start sorting 01/01/2018 scan time [class / s] 2 10

end sorting 01/03/2020 compdev 0

time interval 120 m excdev 0

n° of values 9480

n° of values usable (numbers) 100,0%

value good dev.st value interval count value interval range

min 3,5 14 0,000 0 0,000

max 100,0 100 38,972 723 100,000

mean 65,4 100 1,157 203,8 3,585

sorting condition (higher than) 99 0,500 5 0,500

n° of values sorted 100% 37% 37% 43%

Tag C1_LR_ZA_ATM_TEMP_TOP_C.MV Tag attributes:

start sorting 01/01/2018 scan time [class / s] 2 10

end sorting 01/03/2020 compdev 0

time interval 30 m excdev 0

n° of values 37920

n° of values usable (numbers) 100,0%

value good dev.st value interval count value interval range

min 0,0 13 0,000 0 0,000

max 100,0 100 46,649 184 100,000

mean 65,4 100 0,324 50,9 1,077

sorting condition (higher than) 99 0,500 5 0,500

n° of values sorted 100% 19% 31% 32%

Tag C1_LR_ZA_ATM_TEMP_TOP_C.MV Tag attributes:

start sorting 01/01/2018 scan time [class / s] 2 10

end sorting 01/03/2020 compdev 0

time interval 5 m excdev 0

n° of values 227520

n° of values usable (numbers) 100,0%

value good dev.st value interval count value interval range

min 0,0 33 0,000 0 0,000

max 100,0 100 25,733 32 74,000

mean 65,4 100 0,056 8,5 0,192

sorting condition (higher than) 99 0,500 5 0,500

n° of values sorted 100% 2% 29% 12%

2

3

1
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As can be seen from this graph, the interval of ts = 5 min better approximates 

the value of the variable (in fact the two curves are almost overlapped), on 

the contrary, the case of ts = 120 min seems to be not very representative of 

the signal trend over the time, while the interval of ts = 30 min is the most 

suitable for the representation of the signal considered. 

 

Figure 3.7: Trend of a cooling valve regulation (blue line) and 
comparison with standard deviation at different sampling time: 5' 
(grey), 30' (green) and 120' (light blue). 
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Figure 3.8: Trend of a cooling valve regulation (blue line) and 
comparison with value’s range at different sampling time: 5' 
(black), 30' (green) and 120' (purple). 

For the standard deviation too, as it is reasonable to expect, in the case ts = 

120 min the standard deviation is much higher than in the case ts = 5 min 

since has been considered a process condition that occurs for longer and 

therefore it has greater variability. Precisely for this reason, it is necessary to 

choose a not too high ts, otherwise the average data is no longer representative 

of a specific condition. The range parameter, on the other hand, indicates the 

variation between the minimum and maximum values in the interval ts, and 

therefore less representative compared to the standard deviation. 
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Figure 3.9: Trend of a cooling valve regulation (blue line) and comparison with 
datapoints counter at different sampling time: 5' (dark cyan), 30' (green) and 120' 
(violet). 

As for the number of values sampled at the field level, these remain at a very 

high level, therefore it has been not necessary to exclude any interval due to 

the quality of the sampling itself. From the graph shown, it can be seen that 

the case ts = 5 min obviously shows a greater variability of the sampled 

datapoints, precisely because in the case of non-sampling, they are present in 

a shorter interval, and therefore with a smaller number of total datapoints. 

3.3.2. General description of the data 

In addition to the consideration done in the previous paragraph, a graphical 

presentation is useful to understand the data. One can be plotting the box 

and whisker plot to graphically depict groups of numerical data through 

their quartiles. Box plots may also have whiskers, lines extending from the 

boxes that indicate variability outside the upper and lower quartiles. 

https://en.wikipedia.org/wiki/Quartile
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Figure  3.10: Box and whiskers plot of the output variables, values 
are normalized into a 0-1 interval. 

Another plot used to highlights the distribution of a certain vector of value 

is the distribution plot, that is useful for later evaluation on the 

preprocessing phase and model selection. 

 

Figure 3.11: Distribution plot of one of the input and output 

variables; values are normalized into a 0-1 interval. 

3.3.3. Outliers 

Many applications need to be able to decide if a new observation belongs to 

the same distribution as existing observations (inlier), or should be considered 

differently (outlier). The dataset of samples contains outliers that are defined 

as observations that are “far” from the others. Outlier detection functions try 

to fit the areas where the training data is the most concentrated, ignoring the 

deviating observations. Outlier detection is used for anomaly detection, where 

one is interested in detecting abnormal or unusual observations; is then also 
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known as unsupervised anomaly detection. In the context of outlier detection, 

the anomalies cannot form a high-density cluster and the estimator assumes 

that they are located in low-density regions.  

The Scikit-learn library provides a set of machine learning tools that can be 

used for this detection. This strategy is implemented with objects learning in 

an unsupervised way and the predict method makes use of a threshold on the 

raw scoring function computed by the estimator.  

An efficient way to detect outliers is to use the Local Outlier Factor (LOF) 

algorithm. The neighbors.LocalOutlierFactor (LOF) algorithm 

calculates a score reflecting the degree of the anomaly of the observations, 

reflecting its status of outlier. It is done measuring the local density deviation 

of a given data point with respect to its neighbors. The purpose is to detect 

the observations that have a substantially lower density than their neighbors. 

 

Figure 3.10: LOF method applied to detect outliers, circles 
around the black points are the score given to the single datapoint 
to evaluate the presence of an outlier.17 

 
17 (Scikit-Learn, s.d.) 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor
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Practically, the local density is obtained from the k-nearest neighbors 

approach. The LOF score of a sample is equal to the ratio between the 

average local density of his k-nearest neighbors, and its own local density; a 

normal observation is expected to have a local density similar to its neighbors, 

while abnormal data are expected to have a smaller local density. The number 

k of neighbors considered, must be is chosen as follow: 

1) greater than the minimum number of samples that a cluster has to 

contain so that other samples can be local outliers relative to this 

cluster 

2) smaller than the maximum number of near samples that can 

potentially be outliers 

Generally, these informations are not available and taking n_neighbors=30 

has given the best result in term of model performances. What makes the 

LOF algorithm efficient is that it takes local and global properties of datasets 

in consideration and it can perform well even in datasets where abnormal 

samples have different underlying densities. From a general point of view, the 

question is not how isolated the sample is, but how isolated it is with respect 

to the surrounding neighbourhood. 

This strategy is illustrated in Figure 3.10 and is applied at this model with the 

following script: 

 

Figure 3.11: Python script of the implementation of the LOF 

method. 
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There is also another method that has been tested for this purpose, but with 

lower results respect to the LOF method; is the case of the InterQuartile 

Range (IQR). Not all data distributions are normal enough to be treated as a 

Gaussian distribution. The IQR function is calculated as the difference 

between the 75th and the 25th percentiles of the data and defines the box in a 

box and whisker plot. 

The IQR method can be used to detect outliers by defining limits on the 

sample values outer the interval of k*IQR below the 25th percentile or above 

the 75th percentile. A common value for the factor k is the value 1.5. A factor 

k of 3 or more can be used to identify values that are extreme anomalies when 

described in the context of box and whisker plots. On a box and whisker plot, 

these limits are drawn as fences on the whiskers that are drawn from the box. 

Values that fall outside of this interval are drawn as dots. 

As mentioned this method has been implemented in the following way: 

 

Figure 3.12: Python script of the implementation of the IQR 
method. 
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3.3.4. Features scaling 

Feature scaling is a method used to normalize the range of independent 

variables or features of the dataset; since the range of values of raw data varies 

into different interval, some machine learning algorithms will not be able to 

learn properly without normalization. E.g., many classifiers are based on 

the calculation of the Euclidean distance between two points; if one of the 

features has a wider range of values, the distance will be affected by this 

particular feature. Therefore, the range of all features should be at the same 

variation range so that each feature contributes proportionately to the final 

distance; it is then necessary to transform all the variables into the same scale. 

There are several ways of scaling the data, two of them are Normalization and 

Standardization. 

The first rescale the variable into a range calculated with the minimum and 

maximum value that the variable itself can assume, with the following 

formula: 

𝑥′ =
𝑥 − 𝑚𝑖𝑛 (𝑥)

max(𝑥) − min (𝑥)
 

Where x’ is the transformed value and x is the original value (or original array). 

The transformed array will therefore vary within a range of 0 and 1. 

The second method is the standardization rescale the variable into a range 

calculated with a mean value equal to zero and a standard deviation equal to 

1, with the following formula: 

𝑥′ =
𝑥 − 𝜇

𝜎
 

Where 𝜎 is the standard deviation and 𝜇 is the mean value. 

Both methods have been applied to this model and tested according to the 

performances score, following this script: 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Statistical_classification
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Figure 3.13: Python script of the implementation of the 
Standardization and Normalization scaling methods. 

3.3.5. Training / Test dataset split 

The train-test split is a method needed to provide a consistent dataset to the 

training phase and another for evaluating the performance of a machine 

learning algorithm. The procedure consists of taking a dataset and dividing it 

into two subsets: the first subset is used to fit the model; the second subset is 

not used to train the model but instead, the input features of the dataset are 

provided to the model, then predictions are done and compared to the 

expected values. 

• Training dataset: fitting of the approximate function by regression 

task 

• Testing dataset: evaluating the fitting of the model 

The goal is to estimate the performance of the machine learning model on 

new data, so that was not used to train the model, that will be then the real 

working conditions of the model. I.g., to fit it on available data with known 

inputs and outputs, then make predictions on new examples in the future 

conditions where there are not the expected output or target values. These 

subsets must be enough big to be a suitable representation of the problem 

domain, indeed the original dataset must also be a suitable representation of 

the problem domain, meaning that there are enough records to cover all 

common cases and most uncommon cases in the domain, and even 

combinations of input variables observed in practice.  
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The procedure has one principal configuration parameter, which is the size 

of the train and test sets, for example, it has been chosen training set with the 

size of 0.80 means that the remaining percentage 0.20 is assigned to the test 

set. That split percentage should be chosen  according to the project’s 

objectives and considerations that include: 

• Computational cost in training the model 

• Computational cost in evaluating the model 

• Training set representativeness 

• Test set representativeness 

Furthermore, to maintain the chronological distribution of the data, the 

shuffle of the data samples into the two datasets has not been done; these 

operations can be simply  implemented in Python with the following code: 

 

Figure 3.14: Python script of the implementation of the train and 
test dataset split. 

3.4. Model selection 

Model selection is the process of selecting one final machine learning 

model from among a collection of machine learning models given from the 

available libraries. Model selection is a procedure used to evaluate both upon 

different types of models and the same model configured with different 

hyperparameters. 

In the specific case, different algorithms were tried for the realization of the 

model and subsequently tested to choose the final one that guarantees the 

best results in terms of accuracy; the tested models are the following: 

https://machinelearningmastery.com/train-final-machine-learning-model/
https://machinelearningmastery.com/train-final-machine-learning-model/


 

93 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

• Linear regression 

• Polynomial regression 

• Support Vector Machine (SVM) for Regression task 

The one that guaranteed the best results was the last one: the Support Vector 

Machine, on which the next description will focus. 

3.4.1. Support Vector Machine (SVM) for Regression 

Support vector algorithms are commonly used for classifications of data in 

SVMs but it can be used in regression models too; in regression models, it is 

used as Support Vector Regression. 

If explained in the most layman terms support vector regression works on the 

principles of SVM but with a few alterations. Here the variables on which 

model is applied are numerical and not categorical. SVR does not depend 

upon the distribution of underlying variables rather it uses kernel functions. 

It is useful to create a nonlinear model without changing the explanatory 

variables, hence giving a better interpretation. SVR uses the principle of 

maximal margin in which allows SVR to view as a convex optimization 

problem. 

Unlike other models, SVR tries the best to suit the best line within a 

predefined or a threshold error value. It classifies the data based upon two 

types one which is above the error line and one which is below the error line. 

For the lines that don’t pass the error is estimated as the difference between 

the predicted value and the actual value and is denoted using the epsilon ε, 

visually explained in Figure 3.15. 
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Figure 3.15: Representation of the regression Hyperplane (black 
solid line), the Boundary lines (dashed black lines) and datapoints 

(blue and red in case of margin violation).18 

The main characteristics of this algorithm are: 

• Hyperplane: A hyperplane is a subspace that has one less dimension 

than that of its surrounding space. In SVR hyperplane is used to 

predict continuous values. 

• Kernel: A kernel is a set of mathematical functions. This kernel 

function takes data as input and transforms it into the form required 

by the output. Helps in mapping lower-dimensional data points to 

higher dimensional data points. There are many types of kernels like 

polynomial kernel, Gaussian kernel and radial basis function. 

• Boundary Line: Parallel lines are drawn along two sides of the 

support vector used to define the threshold and have a value of 

epsilon. 

• Support Vector: Line from where the distance is minimum between 

two boundary points. 

 
18 (Géron, 2017) 
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3.5. Model training 

Once a dataset of samples has been generated, consisting of features and 

targets, the chosen algorithm is now able to search for patterns and 

correlations between output and each input. For this purpose, an iterative 

cycle was created to be able to simulate each measurement point of the output 

on the glass plate. The algorithm then repeats the same function for each 

output measurement point, thus generating 35 models with different 

characteristics, and each of which a certain number of specific 

hyperparameters have been set and more suited to the fitting of particular 

data. This method has been implemented in Python as visible in the following 

script:

 

Figure 3.16: Script of the implementation of the SVR training 
function. 

3.6. Parameters tuning 

Hyper-parameters are parameters that are not directly learnt by the estimator 

during the model training; in the Scikit-learn algorithms, they are passed as 

arguments. It is possible to search the hyper-parameter space for the 

best cross-validation score, that will be seen in the next paragraphs. 

An optimal parameters search consists of: 

• an estimator (kind of method used in the training phase) 

• a parameter space 

• a method for searching or sampling candidates 

https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation


 

96 

Master’s degree Thesis 
Modelling and simulation of a glass production system  

with Machine Learning algorithms 

• a cross-validation scheme 

• a score function 

Some models allow for specialized, efficient parameter search strategies, such 

as the function GridSearchCV that exhaustively considers all parameter 

combinations and try them to the model. Note that it is common that a small 

subset of those parameters can have a large impact on the predictive or 

computation performance of the model while others can be left to their 

default values. This process consists of performing hyperparameter tuning to 

determine the optimal values for a given model; in fact, the performance of a 

model deeply depends on the value of hyperparameters. It is not possible to 

know in a priori the best values for hyperparameters so ideally, we need to try 

all possible values to know the optimal ones. Doing this manually could take 

a considerable amount of time and resources and thus it has been used the 

function GridSearchCV to make the tuning of hyperparameters automatic. 

The GridSearchCV instance implements an estimator: when “fitting” it on a 

dataset all the possible combinations of parameter values are evaluated and 

the best combination is retained. To test these configurations a set of 

hyperparameters are passed to the function to be evaluated, then the function 

gives back a list of the configuration tested with a score. The configuration 

with the best value of the kind of score chosen is kept into a table and passed 

to the model training, to use the optimized parameters themselves. Here 

below it can be found the implementation of this function: 

 

https://scikit-learn.org/stable/modules/grid_search.html#gridsearch-scoring
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
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Figure 3.17: Implementation of the Hyperparameters tuning with 
the GridSearchCV function. 

The hyperparameters characteristic of the SVR are: 

- C: Manage the curve fitting to the datapoints; it gives a penalty term 

to each datapoint proportional to their distance to the regression 

curve. A higher value of C means higher overfitting 

- ϒ: define the influence of each datapoint to the regression curve, in 

other terms at which distance the datapoint has influence. A higher 

value means that only close datapoints influence the regression curve 

and far datapoints are not practically considered. A low value of 

gamma means less overfitting and also a more “straight” curve of 

regression 

- ε: define the thickness of the interval between the 2 margins 

Learning the parameters of a prediction function and testing it on the same 

data is methodologically wrong: if the model just repeats the labels of the 

samples already seen, will have a high score but it will fail to predict the output 
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on unseen data; this condition is called overfitting. Here is a flowchart of a 

usual cross-validation workflow in model training.  

 

Figure 3.18: Flowchart of the application of cross-validation 
methods in the model training. 

To implement the cross-validation has been used a k-fold CV approach; here 

the training set is split into k smaller sets and the following procedure is 

followed for each of the k “folds”: 

• the model is trained using k−1 of the folds as training data 

• the resulting model is validated on the remaining part of the data  

The performance measure reported by k-fold cross-validation is then the 

average of the values computed in the loop. The figure below shows this kind 

of partitioning. 
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Figure 3.19: Partitioning of the training dataset to perform the 

cross-validation with the k-fold approach. 

As mentioned the hyperparameters chosen differs from all the target variables, 

indeed every model has its own specific hyperparameters, in the following table: 

 

Table 3.20: Optimal hyperparameters used for the prediction 

model. 

Model n. 1 2 3 4 5 6 7 8 9 10

Kernel rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf

C 1.58 0.31 0.47 0.70 0.47 0.70 1.58 1.58 8.01 1.20

ε 9,39E-04 3,44E-04 9,80E-04 5,46E-04 9,70E-04 1,00E-03 9,80E-04 9,70E-04 9,39E-04 8,89E-04

ϒ 0.62 3.22 2.70 0.62 1.14 1.66 2.18 2.18 0.1 0.1

Model n. 11 12 13 14 15 16 17 18 19 20

Kernel rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf

C 8.01 5.34 3.56 1.58 0.70 1.58 2.38 0.47 0.47 0.31

ε 1.00E-07 9,39E-04 8,28E-04 1,72E-04 1,00E-03 9,90E-04 9,80E-04 7,17E-04 1.00E-07 8,59E-04

ϒ 0.1 0.1 0.1 0.1 1.14 0.62 0.1 2.70 1.66 2.18

Model n. 21 22 23 24 25 26 27 28 29 30

Kernel rbf rbf rbf rbf rbf rbf rbf rbf rbf rbf

C 0.31 0.20 2.38 2.38 8.01 8.01 8.01 8.01 5.34 0.31

ε 8,69E-04 3,84E-04 3,84E-04 7.08E-05 4.05E-05 9,49E-04 9,29E-04 9,90E-04 1.02E-05 4,65E-04

ϒ 1.66 2.18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.62

Model n. 31 32 33 34 35

Kernel rbf rbf rbf rbf rbf

C 1.20 5.34 0.47 0.47 1.05

ε 9,19E-04 8.09E-05 9,60E-04 9,60E-04 8,38E-04

ϒ 0.1 0.1 3.22 2.70 0.62
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3.7. Model testing 

The model is now applied to the test dataset, as mentioned in the previous 

paragraphs, new input data are given to the model and simulated the output, 

then the output will be compared to the expected results; as can be seen in 

the Figure 3.21 the measured values (historical data) and the predicted values 

are represented in the same graph to be confronted, the more the two curves 

are close the more the accuracy is high. The values resulting from this phase 

are still normalized, so to go back to physical unity of measures it is necessary 

to transform the results.  

  

Figure 3.21: Simulated output (red) and measured output (blue) 

put in comparison to visually evaluate the model accuracy. 

3.8. Prediction and model results 

At this point, the model is completed and ready to be brought into standard 

production conditions; again it will work with new data and conditions, and 

here it will perform with the accuracy expected in the model testing phase. 

Taking a step back to the purpose for which this model was born, we can 

understand how the accuracy of the model itself must be as high as possible 

for obvious reasons, and that in proportion to the size of the product 
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acceptance intervals, this should be as high as possible.

 

Figure 3.22: Results of the model; the measured (red) and 
predicted stress (blue) are averaged on the samples of the test 
dataset. The interval upon the predicted curve stands for the Mean 
Square Error of the model, that is compared to the interval of 
acceptance of the product quality (green and red). 

As shown in Figure 3.22, it is possible to notice an important result of the 

model. Are represented in this graph the curve of the measured values of the 

real system and the simulated values of the model, these values do not refer to 

a single sampling but to an average over all the samples of the test-set; as it can 

be seen the two curves are almost overlapping, therefore the residuals of the 

model are not relevant and the precision of the model seems to be high. Going 

deeper into the analysis, it is possible to note how the Mean Absolute Error 

(MAE) of the model is limited and in proportion to the quality acceptance 

intervals it is very low, this highlights a good overall accuracy of the predictive 

model. Going even more into the details of the results, it is noted that the Mean 

Absolute Error in addition to being contained below acceptable values, shows 

that the accuracy of the model, calculated on different bases, is at a very good 

level. 
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Figure 3.23: Mean Absolute Error of the model and Accuracy 
score, calculated on a different basis. The Global Accuracy (red) 
is based on the maximum variance of the mean measured output, 
and the other 2 Accuracy score are calculated upon the range of 
the quality acceptance in that point. 

The accuracy of the model was calculated using the MAE, based on three 

parameters: the first is the maximum difference between the average measured 

values assumed by the system output (this range is kept constant in the 

calculation of the global accuracy at each point); the other parameters are the 

maximum variation range allowed by the two product quality acceptance 

classes, these ranges are variable on the sheet’s width according to a production 

standard. 

Another interesting parameter of the model is evaluated with the calculation of 

the residuals; they are the difference between the measured and simulated  

output of the system. As mentioned in the previous chapters Bias and Variance 

take an important role into the model’s performances; to evaluate this point in 

the Figure 3.24 is shown how the average of the residuals of the model is almost 

equal to zero, this means that the presence of Bias is excluded and the presence 

of a systematic error too. The standard deviation of the residuals have a similar 

trend to the MAE and it is also at an acceptable  level. 
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Figure 3.24: Residuals analysis of the model. 

3.9. Consideration and further improvement 

The model has proved good general performances in the several stages of 

testing and validation, specifically from the point of view of accuracy; in this 

way, it reflects very well the objectives set at the beginning of the study. The 

use of this model in real production conditions can therefore lead to tangible 

benefits both in terms of process and energy saving, thus allowing an 

increasingly advanced management of the production process. 

By an improvement point of view, the potential of the algorithm and the model 

itself, it will be possible to insert additional variables into the model, deriving 

from the previous sections such as the Tin Bath to deeper integrate this model 

into the process. Considering the trend of the model scores, these are better in 

the central positions of the glass sheet with respect to the edges, where both 

the accuracy and the simulation residuals increase with a similar trend, leading 

to formulate some hypotheses: 

- near the edges of the ribbon, some variables were not taken into 

consideration that could have better explained the behaviour of the 
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system at that point. This is caused by the impossibility to have 

historical data, crucial for the characterization of the physical 

phenomenon, such as the combustion of the burners and the position 

of the burners themselves. Since these data were not available from the 

start, this was an expected effect. 

- near the edges, the heat exchange is higher than in the centre both in 

the A / B section and in the previous section of the process, and even 

the initial temperature conditions of the sheet are not characterized 

with precision, due to the lack of data also in this point. Again this was 

an expected effect. 

In this regard, it will be necessary to integrate the model of additional variables 

deriving from this section, in order to increase predictive performance. These 

variables are as follows: 

- Characterization of the burner combustion phenomenon, considering 

some fundamental variables such as the airflow rate, the calorific value 

of the gas used, the flame temperature, the speed of the jet and their 

position. 

- Initial conditions of the glass ribbon, entering section A of the 

annealing lehr 

- Air temperature at the inlet of the heat exchangers 

- Air pressure at the inlet of the heat exchangers 

- Ambient air temperature near the zones A / B 

The most important subsequent development in terms of use of this model is 

its implementation in a process supervision system, available to operators, and 

in order to increase production yield and reliability of the production itself. 
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