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Abstract 
 

In flight control system, rod-ends are used to connect the actuator piston rod to the flight 

control surface. Rod-ends are spherical joints substantially constituted by a sphere moving 

inside a housing. Different construction characteristics have been developed in order to 

ensure lubrication between elements.  

Rod-ends represent critical elements for flight control system due to three failure modes: 

excessive wear between components in relative motion, lubricant degradation, and crack 

propagation on the eye-shaped part of the rod-end body. Therefore, the goal of this thesis 

is the realization of a high-fidelity mathematical model of the component, which is able to 

describe the physical behaviour of the rod-end in order to provide a valid tool for a future 

CBD/PHM feasibility study.  

The system will be modelled as a journal bearing and divided in three part linked to three 

different work conditions. The first one, called “hydrodynamic lubrication model”, which 

occurs when the journal and the bearing are completely separated by a lubricant meatus. 

This model is based on the Reynolds equation. The second one, called “contact model”, 

uses the Lankarani and Nikravesh equation to describe the system when certain contact 

between elements is detected. The third one, called “mixed or partial lubrication model”, 

uses the previous models to describe the system when a lubricant meatus is still present, 

but its thickness is not enough to avoid some journal and bearing asperity contact. A 

fundamental parameter called “Tallian lambda” has been used to discriminate one work 

condition from the others. 

The rod-end model will be implemented into an Electro-Hydraulic Servo-Actuator 

(EHSA) model to ensure numerical stability and correct functioning. The effects of two 

failure modes have been investigated: that due to an anomalous wear on the accuracy 

position of the controlled surface, and the other one due to the lubricant degradation on 

the undesired forces exchanged between the internal elements of the rod-end. 
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Chapter 1                                       

Introduction 

The word prognostics is originally a Greek word “progignôskein” that means to know in 

advance. In engineering, prognostics can be defined as the process of RULs (Remining 

useful life) estimation of system/subsystem/component that is degrading due to either 

normal operation (no fault symptoms) or detected fault [31]. 

Therefore, the engineering discipline called prognostics can be divided in two subsequent 

steps [32]: 

• diagnosis: it represents the methodologies to detect fault or anomaly conditions, 

pinpoint or isolate which component in a system is faulty and decide on the 

potential impact of a failing or failed component on the health of the system. These 

methodologies are grouped under the name of “Fault Detection and Identification 

(FDI)”; 

• prognosis: it represents the prediction of the future system behaviour, in order to 

answer the question, ‘‘What is the remaining useful lifetime (RUL) of a machine or 

a component once an impending failure condition is detected, isolated, and 

identified?’’. 

The benefit from prognostics can be flourished if its information is used as the main source 

to system health management. PHM (Prognostics and Health Management) is the 

emerging engineering discipline that links studies of failure mechanisms to system life cycle 

management [33].  
As long as prognostics deals with the future knowledge of system condition and health, 

PHM finds application in Condition-Based Maintenance (CBM). This predictive 
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maintenance can replace the old and expensive scheduled or, even worse, after failure 

maintenance. 

The PHM/CBD system introduces the following main benefits: 

• achieve high reliability without adding many redundant devices [31]; 

• total life cycle cost management optimization, i.e. ROI maximization in order to 

achieve optimum cost-effectiveness versus performance decisions [34]; 

• minimization of machines downtime and better productivity [35]; 

• moving from fail and fix strategy to predict and prevent [36]. 

 

Since prognostics ensures an increase in safety, many applications are directed towards 

safety critical parts of vehicles especially in aerospace [31]. Flight control systems and their 

associated flight control servo-actuators are one of the critical aircraft systems and belong 

to the top operational disruption contributors. However, this is an engineering area where 

PHM has found very limited interest so far, especially for Electro-Hydraulic Servo-

Actuators (EHSA) [30]. 

S. Autin, J. Socheleau, A. Dellacasa, A. De Martin, G. Jacazio, and G. Vachtsevanos 

presented, in their work [30], the results of how an innovative fault diagnosis and failure 

prognosis framework for EHSAs can successfully be developed. The specific benefits of 

an efficient health monitoring system for aircraft flight control system are: 

• improvement of passenger’s safety by avoiding the scenario where the aircraft is no 

longer controllable; 

• improvement of aircraft reliability and dispatch ability by avoiding, for example, on 

ground immobilization and cancellations; 

• reduction of maintenance costs. 

 An extensive analysis was carried out by the authors to identify the critical, frequent and 

testable faliure modes and relative components [30]: 

• crack of the servo-valve internal feedback spring and hence a reduction of its 

stiffness; 
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• demagnetization of servo-valve torque motor and hence a reduction of the torque 

motor gain; 

• distorted jet pipe of the servo-valve and hence a non-symmetrical direction of the 

flow when the servo-valve current is equal to zero; 

• backlash in the actuator rod-end, thus vibration of the controlled surface and 

accuracy error. 

This work focuses the attention on the last component, the Rod-end. 
 

Rod-ends are connection elements composed of a spherical ball which is designed to 

rotate inside a housing. This spherical ball represents the bearing, while the housing, on 

which the sphere rotates, is the race. In order to connect the rod-end to another component 

or system, each side of the sphere is machined to obtain two parallel flat surfaces. Then, 

the modified sphere is bored through the centre. 

Rod-ends can be divided in two main categories [37]: 

• two-piece rod-ends: in this configuration the body is formed around the sphere, 

thus the race is actually part of the body; 

• three-piece rod-ends: here the housing is formed around the sphere. Next the 

housing is forced into the body. This three-piece design ensures better quality and 

precision and it is referred to as “aircraft” rod-end. 

The rod-end body allows the connection with the rod, usually through a threaded coupling. 

In Figure 1.1 a three-piece rod-end is displayed. 
 

 

Figure 1.1:   Three-piece rod-end [37]. 
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The lubrication between the sphere and the housing can also be provided in two different 

ways: 

• grease: where this material provides a lubrication meatus. The main problem of this 

solution is the leakage of grease through the rod-end sides; 

• fabric liner: in this case the inner housing surface has a woven fabric liner bonded 

to it. The woven fabric liner is mainly made up of matrix of reinforced fibers. A 

first fiber component (like Nomex) ensures strength and good bonding properties, 

while a second component (like PTFE) is mainly used to improve friction and wear 

properties of materials [38]. This solution allows the rod-end to be self-lubricated. 

For flight control system, rod-ends are used to connect one side of the actuator to the 

underlying airframe structure and the other one to the controlled surface, as shown in 

Figure 1.2. 

 

 

Figure 1.2:   Actuator installation configuration for an A300 elevator [39]. 

 

Three failure modes have been identified for rod-ends: 

• crack in the eye-shaped part of the body: if for any reason a crack is generated on 

this weak part, the stresses developed as the actuator operates may cause a growth 

of the crack till complete rupture of the rod-end body, as shown in Figure 1.3 (up); 

• lubricant degradation: it has been assessed that oil or base oil oxidation constitutes 

the main time dependent failure mode for lubricants [40]. Thus, the lubricant 

degradation reduces its load capacity allowing an easier metal to metal contact. 
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When the rod-end sphere is in contact with the housing an increase of friction force 

occurs. This may cause a plastic deformation of the actuator piston rod (as shown 

in Figure 1.3) since the friction force could generate a normal force and a torque at 

the end of the rod; 

• sphere or housing wear: rod-end spherical bearings are sized such to be subjected 

to a small backlash increase over the actuator service life. However, failures have 

occurred in which an anomalous wear of the spherical bearing caused a large 

backlash increase leading to high airframe vibrations in flight [30]. 

 

 

 

Figure 1.3:   Rod-end failure effects [41]. 

 

As it is possible to imagine, the occurrence of one of these failures compromises the correct 

functioning of flight control servo-actuators and their associated flight control surfaces and 

could lead to catastrophic events.  
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Therefore, the goal of this thesis is the realization of a high fidelity physical-based model 

of a rod-end which is able to simulate and confirm the failure modes, that the experimental 

evidence has shown, in order to be used as a valid tool for CBD/PHM future applications. 

Considering the rod-end construction characteristics and the failure modes previously 

exposed, it has been decided to model the system as a dynamically loaded journal bearing. 

A journal bearing consists of a cylindrical shaft rotating into a bush and the space between 

them contains lubricant. Therefore, the rod-end model is based on two main simplifying 

assumptions: 

• the spherical configuration of the rod-end is reduced to a cylindrical configuration, 

thus, no misalignment between the shaft and the bush axis is considered; 

•  no lubricant leakage, thus the proper amount of lubricant is always available. 

The rod-end model takes under consideration three different work conditions as function 

of the shaft-bush relative position. As the clearance is reduced, the system shifts from a 

hydrodynamic lubrication to a contact model passing through a mixed model which is 

obtained, as the name may suggest, as a mix of the previous two. 

The numerical stability of the model will be tested after its implementation into an EHSA 

complete model of a commercial aircraft in revenue service whose characteristics and 

performance are well known and documented. 

Both rod-end and EHSA complete models have been realized into MATLAB/Simulink 

environment. 
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Chapter 2                                           

Hydrodynamic lubrication model 

During the 19th century Beauchamp Tower, an English engineer, noticed that the lubricant 

oil in a journal bearing always leaked out of a hole when the load was applied. The hole 

was originally placed to allow oil to be supplied into the bearing to provide ‘lubrication’. 

Since the leakage of oil was unwanted, first the hole was plugged with a cork and then with 

a wooden bung, but still some leakage was detected and the bung was slowly pushed out of 

the hole by the oil. By the observation of this phenomenon Tower realized that the oil was 

pressurized by some as yet unknown mechanism. Tower then measured the oil pressure 

and found that it could separate the sliding surfaces by a hydraulic force [1]. 
 

Tower's detailed data were available to provide experimental confirmation of 

hydrodynamic lubrication almost at the exact time when Reynolds needed it. The result of 

this was a theory of hydrodynamic lubrication published in the Proceedings of the Royal 

Society by Reynolds in 1886 [2]. 

Reynolds provided the first analytical proof that a viscous liquid can physically separate two 

sliding surfaces by hydrodynamic pressure resulting in low friction and theoretically zero 

wear.  

There are two conditions for the occurrence of hydrodynamic lubrication [3]:  

• two surfaces must move relatively to each other with sufficient velocity for a load- 

carrying lubricating film to be generated;  

• surfaces must be inclined at some angle to each other, i.e. if the surfaces are parallel 

a pressure field will not form in the lubricating film to support the required load.   
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Taking under consideration the configuration where a flat horizontal surface (AB) is 

moving with a tangential speed with respect to a second inclined surface (CD), we can see 

in Figure 2.1 that the distance QP represents the motion of any point P, and the slope of 

the lines will represent the tangential forces in the fluid. 

The shape of these curves can be determined using the continuity equation. The quantity 

carried across any section PQ would be: 

 

 
𝑃𝑄 ⋅

𝑈

2
 

(2.1) 

 

and, consequently, would be proportional to PQ. The quantities carried across all sections 

must be the same, as the surfaces do not change their relative distances; therefore, there 

must be a general outflow from any vertical sections PQ equal to: 

 
 𝑈

2
⋅ (𝑃𝑄 − 𝑃1𝑄1) (2.2) 

 
This outflow will take place to the right and left of the section of greatest pressure (P1Q1).  
 

 

Figure 2.1:   Pressure distribution between inclined flat surfaces with tangential movement only 

[2]. 

 

When the moving surface (AB) is cylindrical and revolving about its axis (Figure 2.2) the 

curves of motion can be found by the same method as in the previous case.  
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Figure 2.2:   Pressure distribution between a revolving cylindrical surface and a static plane [2]. 

 

In the upper part of figures Figure 2.1 and Figure 2.2, the pressure distribution is displayed 

[2]: 

• for the first configuration the pressure of the intervening film of fluid would cause 

a force tending to separate the surfaces; 

• for the second configuration the fluid pressure acts to separate the surfaces on the 

right, but as the pressure is negative on the left, the surfaces will be drawn together. 

So that the total effect will be to produce a turning moment on the surface AB.  

 

In the following part of this chapter the Reynolds’s equation will be determined and 

integrated to find the pressure distribution inside the rod-end. Then, the integration of this 

pressure distribution over the bearing area will allow to find the load capacity of the 

lubricating film. 
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2.1 Reynolds equation 

Hydrodynamic lubrication can be expressed mathematically in the form of an equation 

which was originally derived by Reynolds [2] and is commonly known throughout the 

literature as the ‘Reynolds equation’.  
This equation can be derived from a simplification of the Navier-Stokes momentum and 

continuity equations. It is, however, more often derived by considering the equilibrium of 

an element of liquid subjected to viscous shear, by applying the continuity of flow principle 

[3].  

All the simplifying assumptions necessary for the derivation of the Reynolds equation are 

summarized in Table 2.1 [4]. 
 

Table 2.1:    Summary of simplifying assumptions in hydrodynamics [4]. 

 Assumption  Comment 

1 
Body forces are 

neglected 

 
Always valid, since there are no extra outside fields of 

forces acting on the fluids. 

2 
Pressure is constant 

through the film 

 
Always valid, since the range of hydrodynamic films 

thickness is small. 

3 
No slip at the 

boundaries 

 
Always valid, since the velocity of the oil layer adjacent 

to the boundary is the same as that of the boundary. 

4 
Lubricant behaves as 

a Newtonian fluid 

 
Usually valid with certain exceptions, e.g. polymeric 

oils. 

5 Flow is laminar 
 

Usually valid, except large bearings, e.g. turbines. 

6 
Fluid inertia is 

neglected 

 
Valid for low bearing speeds or high loads, where 

inertia is small compared to the viscous shear. Inertia 

effects could be included in more exact analyses. 

7 
Fluid density is 

constant 

 
Usually valid for fluids when there is not much thermal 

expansion. Definitely not valid for gases. 

8 
Viscosity is constant 

throughout the film 

 
Crude assumption but necessary to simplify the 

calculations, although it is not true. Viscosity is not 

constant throughout the generated film. 
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As said before the easiest way to deduce the Reynolds equation is by considering the 

equilibrium of an infinitesimal element of fluid from the hydrodynamic film. For simplicity, 

it is assumed that the forces on the element are initially acting in the ‘𝑥’ direction only 

(Figure 2.3) [3]. 

 

 

Figure 2.3:   Equilibrium of an element of fluid from the hydrodynamic film [3]. 

 

Since the element is in equilibrium, the forces acting on the left side must balance the forces 

acting on the right side: 

 

 
𝑝 𝑑𝑦𝑑𝑧 + (𝜏𝑥 +

𝜕𝜏𝑥
𝜕𝑧

𝑑𝑧) 𝑑𝑥𝑑𝑦 + (𝜏𝑥 +
𝜕𝜏𝑥
𝜕𝑦

𝑑𝑦)𝑑𝑥𝑑𝑧 =

= (𝑝 +
𝜕𝑝

𝜕𝑥
𝑑𝑥)𝑑𝑦𝑑𝑧 + 𝜏𝑥𝑑𝑦𝑑𝑧 + 𝜏𝑥𝑑𝑥𝑑𝑦 

(2.3) 

where: 

𝑝  is the pressure (Pa); 

𝜏𝑥  is the shear stress acting in the ‘𝑥’ direction (Pa). 

 

Assuming that the volume is different from zero (𝑑𝑥 𝑑𝑦𝑑𝑧 ≠ 0), both sides of equation (2.3) 

can be divided by this value, obtaining: 

 

 𝜕𝜏𝑥
𝜕𝑧

+
𝜕𝜏𝑥
𝜕𝑦

=
𝜕𝑝

𝜕𝑥
 (2.4) 

 

 

z

( dz)dxdy

dz
p dydz

dy

y

dx x

∂z

τx dxdz

τx+

τx dxdy

∂τx

( dy)dxdz
∂y

τx+
∂τx

( dx)dydz
∂x

p+
∂p
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Following the same procedure, taking under consideration only the forces acting along the 

‘𝑦’ direction, we can find the second equilibrium condition: 

 

 𝜕𝜏𝑦
𝜕𝑧

+
𝜕𝜏𝑦
𝜕𝑥

=
𝜕𝑝

𝜕𝑦
 (2.5) 

 

In the ‘𝑧’ direction, since the pressure is constant through the film (Assumption 2), the 

pressure gradient is equal to zero: 

 

 𝜕𝑝

𝜕𝑧
= 0 (2.6) 

 

Now the assumption of Newtonian lubricant (Assumption 4) has to be used (see Appendix 

A); the shear stress 𝜏 can be expressed in terms of dynamic viscosity and shear rates, as 

shown in equation (2.7): 

 

 

{
𝜏𝑥 = 𝜇

𝜕𝑢

𝜕𝑧

𝜏𝑦 = 𝜇
𝜕𝑣

𝜕𝑧

 (2.7) 

where: 

𝜏𝑦 is the shear stress acting in the ‘𝑦’ direction (Pa); 

𝑢  is the sliding velocity in the ‘𝑥’ direction (m/s); 

𝑣  is the sliding velocity in the ‘𝑦’ direction (m/s); 

𝜇  is the dynamic viscosity (Pas). 

 

Since the viscosity of the fluid is constant throughout the film (Assumption 8), the 

substitution of equations (2.7) into (2.4) and (2.5) gives: 

 

 

{
 
 

 
 𝜕

2𝑢

𝜕𝑧2
+
𝜕2𝑢

𝜕𝑦𝜕𝑧
=
1

𝜇

𝜕𝑝

𝜕𝑥

𝜕2𝑣

𝜕𝑧2
+
𝜕2𝑣

𝜕𝑥𝜕𝑧
=
1

𝜇

𝜕𝑝

𝜕𝑦

 (2.8) 

 

At this stage another assumption needs to be done; since 𝑢 and 𝑣, to a lesser degree, are 

the predominant velocities and ‘𝑧’ is a dimension much smaller than ‘𝑥’ and ‘𝑦’, compared 

with the two velocity gradients 𝜕𝑢 𝜕𝑧⁄  and 𝜕𝑣 𝜕𝑧⁄  all other velocity gradients are considered 

negligible [5]. 
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With this assumption the second terms on the left side of equation (2.8) drop out giving 

the equilibrium conditions for the forces acting in the ‘𝑥’ and ‘𝑦’ directions: 

 

 

{
 
 

 
 𝜕

2𝑢

𝜕𝑧2
=
1

𝜇

𝜕𝑝

𝜕𝑥

𝜕2𝑣

𝜕𝑧2
=
1

𝜇

𝜕𝑝

𝜕𝑦

 (2.9) 

 

Equations (2.9) can now be integrated. Separating the variables, 

 

 

{
 
 

 
 𝑢 =

1

𝜇

𝜕𝑝

𝜕𝑥
 
𝑧2

2
+ 𝐶1 𝑧 + 𝐶2

𝑣 =
1

𝜇

𝜕𝑝

𝜕𝑦
 
𝑧2

2
+ 𝐶3 𝑧 + 𝐶4

 (2.10) 

where: 

𝐶1, 𝐶2, 𝐶3 and 𝐶4  are integration constants; 

 

and, considering the following boundary conditions:  

 

 

{
 
 

 
 
𝑢 = 𝑈1       𝑎𝑡       𝑧 = 0
𝑢 = 𝑈2       𝑎𝑡       𝑧 = ℎ

 
𝑣 = 𝑉1       𝑎𝑡       𝑧 = 0
𝑣 = 𝑉2       𝑎𝑡       𝑧 = ℎ

 (2.11) 

where: 

ℎ is the thickness of the lubricant meatus, function of ‘𝑥’ and ‘𝑦’ (m); 

 

equations (2.12) give the velocity profile in the fluid film affected by the viscosity 𝜇, the film 

shape ℎ, surface velocities 𝑈1, 𝑈2, 𝑉1, 𝑉2 and the pressure gradients: 

 

 

{
 

 𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
 𝑧(𝑧 − ℎ) +

ℎ − 𝑧

ℎ
 𝑈1 +

𝑧

ℎ
 𝑈2

𝑣 =
1

2𝜇

𝜕𝑝

𝜕𝑦
 𝑧(𝑧 − ℎ) +

ℎ − 𝑧

ℎ
 𝑉1 +

𝑧

ℎ
 𝑉2

 (2.12) 

 

Now, the continuity equation is introduced (2.13) [5]: 

 

 𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤)

𝜕𝑧
= 4𝜋𝜌𝑚 (2.13) 
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where 

𝑢  is the sliding velocity in the ‘𝑥’ direction (m/s); 

𝑣  is the sliding velocity in the ‘𝑦’ direction (m/s); 

𝑤  is the velocity in the ‘𝑧’ direction (m/s); 

𝜌  is the density of the fluid (kg/m
3

); 

𝑚 is the generation of conserved quantity inside the element (1/s). It represents 

the presence of sources and sinks.  

 

With the state of lubricant time-independent and with no sources or sinks, the continuity 

equation can be written as: 

 

 𝜕(𝜌𝑤)

𝜕𝑧
= −

𝜕(𝜌𝑢)

𝜕𝑥
−
𝜕(𝜌𝑣)

𝜕𝑦
 (2.14) 

 

Substituting  𝑢 and 𝑣, (2.12), into the continuity equation (2.14): 

 

 
𝜕(𝜌𝑤)

𝜕𝑧
= −

1

2
(
𝜕

𝜕𝑥
(
𝜌

𝜇
 
𝜕𝑝

𝜕𝑥
 (𝑧2 − ℎ𝑧)) +

𝜕

𝜕𝑦
(
𝜌

𝜇
 
𝜕𝑝

𝜕𝑦
 (𝑧2 − ℎ𝑧))) + 

−
𝜕

𝜕𝑥
 𝜌 (

ℎ − 𝑧

ℎ
𝑈1 +

𝑧

ℎ
𝑈2) −

𝜕

𝜕𝑦
 𝜌 (

ℎ − 𝑧

ℎ
𝑉1 +

𝑧

ℎ
𝑉2) 

(2.15) 

 

By integrating with respect to ‘𝑧’ with the following boundary conditions, 

 

 {
𝑤 = 𝑊1       𝑎𝑡       𝑧 = 0
𝑤 = 𝑊2       𝑎𝑡       𝑧 = ℎ

 (2.16) 

 

and making use of the next relation
 

(as long as ℎ = ℎ(𝑥, 𝑦)) [5]: 

 

 
∫

𝜕

𝜕𝛼

ℎ(𝛼)

0

 𝑓(𝑧, 𝛼) 𝑑𝑧 =
𝜕

𝜕𝛼
 ∫ 𝑓(𝑧, 𝛼) 𝑑𝑧 − 𝑓(ℎ(𝛼), 𝛼)

𝜕ℎ(𝛼)

𝜕𝛼

ℎ(𝛼)

0

 (2.17) 
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the generalized Reynolds equation in three dimensions is obtained: 

 

 𝜕

𝜕𝑥
(
𝜌ℎ3

𝜇
 
𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜌ℎ3

𝜇
 
𝜕𝑝

𝜕𝑦
) = 6((𝑈1 − 𝑈2) 

𝜕(𝜌ℎ)

𝜕𝑥
+ (𝑉1 − 𝑉2) 

𝜕(𝜌ℎ)

𝜕𝑦
) + 

+6𝜌ℎ(
𝜕

𝜕𝑥
(𝑈1 +𝑈2) +

𝜕

𝜕𝑦
(𝑉1 + 𝑉2)) + 12𝜌(𝑊2 −𝑊1) 

(2.18) 

 

In equation (2.18): 

• on the left-hand side we have the pressure terms; 

• the first right-hand term is the contribution to the pressure due to the variation of 

the film thickness along ‘𝑥’ and ‘𝑦’ directions; 

• the second term on the right-hand side implies a variation of tangential velocities; 

• the third term on the right-hand side is due to the relative velocity of surfaces in a 

direction normal to the fluid film (‘𝑧’). 

As said (𝑊2 −𝑊1) represents the resultant normal velocity regardless of what produces it. 

In thrust bearings, this velocity can come only from the actual normal movement of the 

sliding surface. However, in journal bearings, as shown in Figure 2.4, a normal relative 

velocity can come from two sources [5]: 

• from the rotational velocity of the sliding surfaces; 

• from any actual motion of journal centre. 

 

Figure 2.4:   The effect of movement of bearing surfaces [5]. 
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It is convenient to express the last term of equation (2.18) only by the radial velocity that 

results from the motion of the shaft centre. By referring to Figure 2.4 and expanding the 

consideration previously made also along the ‘𝑦’ direction: 

 

 𝑊2 −𝑊1 = 𝑈2 sin 𝛼𝑥 + 𝑉2 sin 𝛼𝑦 + 𝑊0 ≅𝑈2 tan 𝛼𝑥 + 𝑉2 tan 𝛼𝑦 + 𝑊0= 

= 𝑈2
𝜕ℎ

𝜕𝑥
+ 𝑉2

𝜕ℎ

𝜕𝑦
+𝑊0 

(2.19) 

where: 

𝛼𝑥  is the angle between 𝑈2 and ‘𝑥’ direction (rad); 

𝛼𝑦 is the angle between 𝑉2 and ‘𝑦’ direction (rad); 

𝑊0 is the motion of journal centre (m/s).  

 

Defining 𝑈 = 𝑈1 + 𝑈2 and 𝑉 = 𝑉1 + 𝑉2, the generalized Reynolds equation can be rewritten 

in the following manner: 

 

 𝜕

𝜕𝑥
(
𝜌ℎ3

𝜇
 
𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑦
(
𝜌ℎ3

𝜇
 
𝜕𝑝

𝜕𝑦
) = 6 (𝑈 

𝜕(𝜌ℎ)

𝜕𝑥
+  𝑉 

𝜕(𝜌ℎ)

𝜕𝑦
) + 

+6𝜌ℎ (
𝜕

𝜕𝑥
𝑈 +

𝜕

𝜕𝑦
𝑉) + 12𝜌𝑊0 

(2.20) 
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2.2 Simplification and integration 

As said in the introduction chapter, each rod-end in the ESHA system is modelled as a 

journal bearing. 

A list of significant features of real journal bearings is shown in Table 2.2. In the last column 

of the table is expressed whether or not the specific feature is taken under consideration in 

this work. 

 

 Feature  Comment In consideration? 

1 
Leakage and 

sinks 

 
In the process the lubricant is 

continuously squeezed out the ends 

of the bearing, thus inlet fluid port 

may be needed. 

No. Lubricant leakage is 

neglected. 

2 
Striation / 

Cavitation 

 
The fluid film in journal bearing is 

rarely complete. For most liquids a 

phenomenon known as cavitation 

occurs when the pressure falls below 

atmospheric pressure. The reason 

for this is that most liquids contain 

dissolved air and minute dirt 

particles. If there is a significant drop 

in pressure, the operating 

temperature can be sufficient for the 

lubricant to evaporate. The lubricant 

vapour accumulates in the bubbles 

and their sudden collapse is the 

cause of most cavitation damage. 

Wear caused by vaporous cavitation 

progressively damages the bearing 

until it ceases to function effectively. 

The risk of vaporous cavitation 

occurring increases with elevation of 

bearing speeds and loads [7]. 

No. The determination 

of cavitation boundary is 

difficult and 

computationally 

expensive.  

3 Unbalance 

 
Journals could have some residual 

unbalance. This will affect the 

dynamic behaviour. 

No. The journal has 

isotropic proprieties. 
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Table 2.2:   Real journal bearing features (adapted form [5]). 

4 Heat transfer 

 
Not all the energy generated in a 

bearing is carried away as heat by the 

lubricant. Part of that energy is 

dissipated by conduction and 

radiation via the bearing shell, 

housing and journal. 

No. Heat generation 

and transfer are not 

taken under 

consideration in this 

work. 

5 
Elastic 

deformation 

 
Under heavy loads, both bearing and 

journal surfaces can deform. This 

effect will produce a different film 

shape with drastic changes in 

performances. 

No.  Journal and 

bearing have non-

deformable surfaces in 

the hydrodynamic 

lubrication model. 

6 
Thermal 

expansion 

 
When journal and bearing materials 

have different coefficient of thermal 

expansion, under appreciable 

temperature changes, the clearances 

will not retain their original shape. 

No. Journal and bearing 

thermal expansion 

coefficients are equal. 

7 Turbulence 

 
High speed, large clearances and low 

viscosity will cause turbulence with a 

resulting rise in power loss and a 

drop in lubricant flow.  

No. The Reynolds 

equation is based on the 

assumption of laminar 

flow (Table 2.1). 

8 Misalignment 

 
Assembly errors and particular work 

conditions cloud create axial 

misalignment. 

No. Journal and bearing 

axis are always parallel. 

9 
Variable 

viscosity 

 
The viscosity of the lubricant never 

remains constant. The viscosity of 

any fluid varies both with 

temperature and pressure. 

Yes. Vogel-Barus 

equation allows to take 

under consideration 

temperature and 

pressure dependencies. 

10 
Surface 

roughness 

 
When the lubricant film thickness 

has the same order on magnitude as 

the surface roughness, 

hydrodynamic lubrication 

requirements may not occur. 

Yes. A contact and a 

mixed hydrodynamic-

contact models are 

developed. 
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2.2.1 Reynolds equation for dynamic loaded journal bearing 

Let’s take under consideration a generic journal bearing, as shown in Figure 2.5. A journal 

bearing consists of a shaft (that’s called journal) rotating within a stationary bush (called 

bearing). 

 

 

Figure 2.5:   Unwrapped journal bearing scheme [3]. 

 

As shown in the previous figure, a cartesian reference system, with the following orientation, 

has been chosen: 

• ‘𝑥’-axis directed along the circumferential direction; 

• ‘𝑦’-axis directed along the radial direction; 

• ‘𝑧’-axis directed along the axial direction. 

By choosing the unidirectional velocity approximation, that imposes the relative axial 

speed, between the journal and the bearing, equal to zero and considering the lubricant as 

incompressible (𝜌 = 0), it’s possible to rewrite the Reynolds equation (2.20) using the new 

reference system: 

z
L

z

z = L/2

‘Unwrapped’ journal bearing film layer

z = −L/2

x = 0
θ = 0

x = 2πR
θ = 2π

L x,θ

2πR

Position where the film is cut.
It corresponds to x=0 and x=2πR

hmax

hmin

θ

O
j

Ob

journal

bearing

lubricant
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 𝜕

𝜕𝑥
(
ℎ3

𝜇
 
𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑧
(
ℎ3

𝜇
 
𝜕𝑝

𝜕𝑧
) = 6𝑈 

𝜕ℎ

𝜕𝑥
+ 6ℎ

𝜕𝑈

𝜕𝑥
+ 12𝑉0 (2.21) 

 

Usually, the effect of hydrodynamic pressure is looked as the contribution of two 

different actions: wedge and squeezing. The squeeze action relates the radial journal motion 

with the generation of load carrying capacity in the lubricant film (effect 1), whilst the wedge 

action deals with the relation between relative rotational velocity of the journal and bearing 

and the ability to produce such pressure [8]. Here, the hydrodynamic forces will consist of 

the contribution made by the progression of shaft centre (effect 2) and that due to the 

rotation of the journal about its own centre (effect 3). 

In equation (2.21) we have the mathematical writing of what just said [5]: 

• the first term, 6𝑈 𝜕ℎ 𝜕𝑥⁄ , represents the action of the journal, rotating with the 

tangential velocity 𝑈, over a wedge-shaped lubricant film given by ℎ(𝑥) (effect 3). In 

order for this term to generate positive pressure it must be negative, since the wedge-

shaped film implies that 𝜕ℎ 𝜕𝑥⁄ < 0; 

• the second term, 6ℎ 𝜕𝑈 𝜕𝑥⁄ , implies a variation of tangential velocity along the 

journal surface (effect 2) and, in order for this term to contribute to positive pressure 

𝜕𝑈 𝜕𝑥⁄  must be negative; 

• the last term is the expression for the velocity of shaft centre and it’s responsible for 

the squeezing effect (effect 1). Since 𝑉0 = 𝜕ℎ 𝜕𝑡⁄ , it can be seen that, when 𝑉0 acts 

in the same direction as the applied load, the lubricant film will decrease 𝜕ℎ 𝜕𝑡⁄ <

0 and the velocity will contribute to the load capacity. 

To be able to integrate this equation, we need to find expressions for the film thickness 

ℎ  and the velocities 𝑈 and 𝑉0.  

Let’s start with the geometrical definition of the film thickness. In Figure 2.6 a normal 

section with respect to the ‘𝑧’-axis is shown, where: 
 

𝑂𝑗 and 𝑅𝑗 are the centre and the radius (m) of the journal; 

𝑂𝑏 and 𝑅𝑏 are the centre and the radius (m) of the bearing; 

𝑒 is the eccentricity (distance 𝑂𝑏𝑂𝑗̅̅ ̅̅ ̅̅  between the centres of journal and bearing 

during the operation) (m); 

ℎ is the film thickness (m); 

휃 represents the coordinate in the circumferential direction, being measured 

from the maximum film thickness and with counter clockwise direction 

(rad). 



Chapter 2 - Hydrodynamic lubrication model 

 

 28 

It should be noted that the angle ‘𝛼’ is very small; this allows the evaluation of ℎ and 휃 along 

the line that connects 𝑂𝑗 and 𝐴  (generic point on the bearing surface). 

 

 

Figure 2.6:   Cross section of a journal bearing: basic geometry. 

 

Figure 2.7:   Geometry detail for the evaluation of film shape in journal bearings. 

 

Considering the triangle 𝑂𝑏𝑂𝑗𝐴 from Figure 2.6, which is shown in detail in Figure 2.7, it 

can be written: 

 

 𝑂𝑗𝐴 = 𝑂𝑗𝐶 + 𝐶𝐴 = 𝑂𝑗𝐵 + 𝐵𝐴 (2.22) 

θ

Ob

O
j

A

θ

h

B

Rb

R
j

e

hmax

hmin

Ob

O
jA

B

e
Rb

h R
j

θα

C
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or 

 

 𝑂𝑗𝐴 = 𝑒 𝑐𝑜𝑠휃 + 𝑅𝑏𝑐𝑜𝑠𝛼 = 𝑅𝑗 + ℎ (2.23) 

 

Thus,  

 

 ℎ = 𝑒 𝑐𝑜𝑠휃 + 𝑅𝑏𝑐𝑜𝑠𝛼 − 𝑅𝑗 (2.24) 

 

applying the sine rule and remembering that:  

 

 𝑠𝑖𝑛2𝛼 + 𝑐𝑜𝑠2𝛼 = 1 (2.25) 

 

we obtain: 

 

 

{
 
 

 
 𝑠𝑖𝑛𝛼 =

𝑒

𝑅𝑏
 𝑠𝑖𝑛휃

𝑐𝑜𝑠𝛼 = √1 − (
𝑒

𝑅𝑏
)
2

𝑠𝑖𝑛2휃

 (2.26) 

 

Since  𝑒/𝑅𝑏 ≪ 1 , substituting (2.26) into (2.24) yields: 

 

 ℎ = 𝐶 + 𝑒 𝑐𝑜𝑠휃+= 𝐶(1 + 휀 𝑐𝑜𝑠휃) (2.27) 

where: 

𝐶 is the clearance (the difference between the radii of bush and shaft 𝑅𝑏 − 𝑅𝑗) 

(m); 

휀 =
𝑒

𝐶
 is the eccentricity ratio, (-). 

 

Equation (2.27) gives a description of the film shape in journal bearings to within 0.1% 

accuracy [4]. 
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The relative motion of the journal and the bearing surfaces introduces both tangential, 

𝑈, and normal, 𝑉0, components of velocity. These velocities can be expressed in terms of 

the journal bearing components by noting that the journal rotates about its own axis and 

translates with respect to the bearing centre. 

Figure 2.8 shows the velocity components in a cross section of a journal bearing dynamically 

loaded, where: 
 

𝐹𝑒𝑥𝑡 is the external load acting on the journal centre; this force may vary both in 

magnitude and direction (N); 

𝜑 is the angle that expresses the direction of the external force (rad). By 

convention this angle has been referred to the vertical line and it has been 

assigned as positive if the direction is counter clockwise; 

Φ is the angle between the external load line and the line of centres, it’s called 

“attitude angle” (rad). By convention this angle always starts from the load 

line and ends at the line of centres and it has positive value if the direction 

is counter clockwise; 

𝑒 is the eccentricity, it expresses the radial position of the journal centre with 

respect to the bearing centre (m); 

χ is the angle that expresses the angular position of the journal centre with 

respect to the vertical line (rad); it’s given by the sum of 𝜑 and Φ; 

ω is the angular velocity of the journal with respect to its centre (rad/s). It’s 

positive if it has counter clockwise direction. 
 

Any point 𝑃’, on the surface of the journal at angular position 휃, has tangential and normal 

velocities relative to 𝑃 on the surface of the bearing. These velocities are made up by the 

components of the velocity of journal centre relative to the bearing centre plus the velocity 

of the surface of the journal about its own centre (Figure 2.8). Thus: 

 

 

{
𝑈 = ω𝑅𝑗  𝑐𝑜𝑠𝛼 +

𝑑𝑒

𝑑𝑡
 𝑠𝑖𝑛휃 − 𝑒

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑐𝑜𝑠휃

𝑉0 = −ω𝑅𝑗  𝑠𝑖𝑛𝛼 +
𝑑𝑒

𝑑𝑡
 𝑐𝑜𝑠휃 + 𝑒

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑠𝑖𝑛휃

 (2.28) 

 

or 

 

 

{
𝑈 = ω𝑅𝑗  𝑐𝑜𝑠𝛼 + 𝐶

𝑑휀

𝑑𝑡
 𝑠𝑖𝑛휃 − 𝐶휀

𝑑(𝜑 +Φ)

𝑑𝑡
 𝑐𝑜𝑠휃

𝑉0 = −ω𝑅𝑗  𝑠𝑖𝑛𝛼 + 𝐶
𝑑휀

𝑑𝑡
 𝑐𝑜𝑠휃 + 𝐶휀

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑠𝑖𝑛휃

 (2.29) 
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Figure 2.8:   Cross section of a journal bearing: velocity components.  

 

Since the angle 𝛼 is very small, the tangential velocity component can be rewritten as: 

 

 
{
ω𝑅𝑗  𝑐𝑜𝑠𝛼 ≈ ω𝑅𝑗
ω𝑅𝑗  𝑠𝑖𝑛𝛼 ≈ ω𝑅𝑗  𝛼

 (2.30) 

 

By substituting (2.30) into (2.29): 

 

 

{
𝑈 = ω𝑅𝑗 + 𝐶

𝑑휀

𝑑𝑡
 𝑠𝑖𝑛휃 − 𝐶휀

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑐𝑜𝑠휃

𝑉0 = −ω𝑅𝑗  𝛼 + 𝐶
𝑑휀

𝑑𝑡
 𝑐𝑜𝑠휃 + 𝐶휀

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑠𝑖𝑛휃

 (2.31) 

 

 

θ Ob

O
j

e

ω

dt
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The Reynolds’ equation (2.21) should be expressed in term of the journal bearing variables 

𝑒, 𝜑, Φ and 휃. 

The 𝑥 coordinate, in the unwrapped film, is written as 

 

 𝑥 = 𝑅𝑗  휃          and, hence,           𝜕𝑥 = 𝑅𝑗  𝜕휃 (2.32) 

 

By deriving equations (2.27) and (2.31) we obtain: 

 

 

{

𝑑ℎ

𝑑휃
= −𝐶휀 𝑠𝑖𝑛휃

𝑑𝑈

𝑑휃
= 𝐶

𝑑휀

𝑑𝑡
 𝑐𝑜𝑠휃 + 𝐶휀

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑠𝑖𝑛휃

 (2.33) 

 

Substituting (2.31) and (2.33) into (2.21), Reynolds equation can be rewritten in the 

following form: 

 

 𝜕

𝜕𝑥
(
ℎ3

𝜇
 
𝜕𝑝

𝜕𝑥
 ) +

𝜕

𝜕𝑧
(
ℎ3

𝜇
 
𝜕𝑝

𝜕𝑧
 ) = 

= 6(((𝜔 − 2
𝑑𝜑

𝑑𝑡
− 2

𝑑Φ

𝑑𝑡
− 2

𝐶휀

𝑅𝑗
 𝑐𝑜𝑠휃 (

𝑑𝜑

𝑑𝑡
+
𝑑Φ

𝑑𝑡
) −

𝐶

𝑅𝑗
(
𝑑𝜑

𝑑𝑡
+
𝑑Φ

𝑑𝑡
))
𝑑ℎ

𝑑휃

+ (2𝐶
𝑑휀

𝑑𝑡
𝑐𝑜𝑠휃 +

𝐶2휀

𝑅𝑗

𝑑휀

𝑑𝑡
(𝑠𝑖𝑛2휃 − 𝑐𝑜𝑠2휃) +

𝐶2

𝑅𝑗

𝑑휀

𝑑𝑡
𝑐𝑜𝑠휃))) 

(2.34) 

 

Now considering that 𝐶/𝑅𝑗 ≪ 1 and 𝑒/𝑅𝑗 ≪ 1 the fourth, the fifth, the seventh and the 

eighth terms on the right-hand side of equation (2.34) are negligible. The previous equation 

can be rewritten as: 

 

 𝜕

𝜕𝑥
(
ℎ3

𝜇
 
𝜕𝑝

𝜕𝑥
 ) +

𝜕

𝜕𝑧
(
ℎ3

𝜇
 
𝜕𝑝

𝜕𝑧
 ) = 6((𝜔 − 2

𝑑𝜑

𝑑𝑡
− 2

𝑑Φ

𝑑𝑡
)
𝑑ℎ

𝑑휃
+ 2𝐶

𝑑휀

𝑑𝑡
𝑐𝑜𝑠휃) (2.35) 

 

Equation (2.35) is the form of the Reynolds equation which is suitable for the present 

analysis. 

Equation (2.35) enables the calculation of the pressure field in a hydrodynamic loaded 

journal bearing as a function of the dynamic parameters 𝜔, �̇�,Φ̇, 휀 and 휀̇. 
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Commonly, the load angular rotation �̇� and the journal angular velocity 𝜔 are prescribed a 

priori as function of the mechanism configuration and the aerodynamic force acting on the 

controlled flight surface (Chapter 5), whereas Φ̇, 휀 and 휀̇ should be obtained in connection 

with the load instantaneous value from the dynamic analysis of the system. 

2.2.2 Numerical integration with finite difference method 

Reynolds equation given by (2.35) is one non-homogeneous partial differential equation of 

elliptical type and the exact solution is very difficult to obtain [9]. 

Equation (2.35) can be solved with a numerical procedure. In this work a numerical 

integration of Reynolds equation has been developed using the finite difference method. It 

consists in approximating the differential operator by replacing the derivatives in the 

equation using differential quotients. The domain is partitioned in space and in time and 

approximations of the solution are computed at the space nodes at any instant of time. The 

error between the numerical solution and the exact solution is determined by the error that 

is committed by going from a differential operator to a difference operator. This error is 

called the “discretization error” or “truncation error”. The term “truncation error” reflects 

the fact that a finite part of a Taylor series is used in the approximation. 
 

Equation (2.35) can be rewritten as: 

 

 𝜕

𝜕𝑥
(𝜆 

𝜕𝑝

𝜕𝑥
 ) +

𝜕

𝜕𝑧
(𝜆 

𝜕𝑝

𝜕𝑧
 ) = 𝑓 (2.36) 

where: 

𝜆 =
ℎ3

𝜇
   is the coefficient of the derivatives (m

3

/Pas); 

𝑓=6 ((𝜔 − 2
𝑑𝜑

𝑑𝑡
− 2

𝑑Φ

𝑑𝑡
)
𝑑ℎ

𝑑𝜃
+ 2𝐶

𝑑

𝑑𝑡
𝑐𝑜𝑠휃) is the known term for each point of 

the discretization at any instant of time 

(m/s). 

 

By using the finite difference method each derivative is substituting with a central 

differential quantity as:  

 

 𝜕𝑢

𝜕𝑥
≅
𝑢(𝑥 + ∆𝑥) − 𝑢(𝑥 − ∆𝑥)

2∆𝑥
 (2.37) 
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where:  

𝑢 ⊆ 𝐼 → ℝ is a generic function defined in 𝐼 and derivable; 

∆𝑥  is a generic increment such that 𝑢(𝑥 + ∆𝑥) and 𝑢(𝑥 − ∆𝑥) are still 

inside the range 𝐼. 
 

   The goal is the determination of the pressure distribution, due to the hydrodynamic 

lubrication, over the journal surface in order to be able to write the equations that describe 

the dynamic of this element. To do this, the first step is the definition of a finite difference 

mesh over the journal, as shown in Figure 2.9 and more in detail Figure 2.10: 

 

 

Figure 2.9:   Finite difference mesh developed over the journal. 

 

The journal surface is divided in 𝑚 + 1 intervals along the ‘𝑥’-axis an in 𝑛 + 1 intervals along 

the ‘𝑧’-axis. The discretization has the following characteristics:  

• 𝑚+ 2,   𝑚 respectively the number of total nodes and the number of internal  

  nodes along the ‘𝑥’-axis; 

• 𝑛 + 2,   𝑛 respectively the number of total nodes and the number of internal  

  nodes along the ‘𝑧’-axis; 
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• Δ𝑥 =
2𝜋𝑅𝑗

𝑚+1
 is the discretization step along the ‘𝑥’-axis;  

• Δ𝑧 =
𝐿

𝑛+1
 is the discretization step along the ‘𝑧’-axis.  

 

Figure 2.10:   Detail of the discretization over the journal. 
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The nodes sitting inside the grid are indexed by 𝑖 and 𝑘 such that 1 ≤  𝑖 ≤  𝑚 and 1 ≤

 𝑘 ≤  𝑛, whereas the boundary nodes are characterised by having at least one index equal 

a 0,  𝑚 +  1 or 𝑛 +  1. 

Therefore, a generic node of the discretization is identified by the following set of 

coordinates:  

 

 {
𝑥𝑖 = 𝑖 Δ𝑥
𝑧𝑘 = 𝑘 Δz

 (2.38) 

where: 

0 ≤ 𝑖 ≤ 𝑚 + 1  𝑖: index that represents the generic node associated to the  

    ‘𝑥’-axis; 

0 ≤ 𝑘 ≤ 𝑛 + 1  𝑘: index that represents the generic node associated to the  

    ‘𝑧’-axis. 

 

In equation (2.36) the coefficient 𝜆 = ℎ3/𝜇 is not constant over the journal surface due to 

the dependency of ℎ from 𝑥. For that reason, auxiliary subdivision nodes are added to the 

main discretization (which is represented in Figure 2.10 with bigger circles and indicated 

with the following nomenclature: (𝑖, 𝑘 − 1) , (𝑖 − 1 , 𝑘) and so on). Both along the ‘𝑥’ and 

the ‘𝑧’ directions, inside each main discretization intervals, a secondary auxiliary node is 

added (in Figure 2.10 the auxiliary nodes are represented with smaller circles and indicated 

with the nomenclature: (𝑖, 𝑘 −
1

2
) , (𝑖 −

1

2
 , 𝑘) and so on). 

With this type of discretization, the pressure and known term values will be calculated over 

the main nodes, meanwhile the coefficients 𝜆 over the secondary nodes. For brevity, the 

symbol (𝑖, 𝑘) will stand for the node (𝑥𝑖 , 𝑧𝑘) from now on. 
 

Indicate with 𝑝𝑖,𝑘 ≃ 𝑝(𝑥𝑖 , 𝑧𝑘) an approximation of the pressure 𝑝 at the node (𝑥𝑖 , 𝑧𝑘); 

moreover, let 𝑓𝑖,𝑘 ≃ 𝑓(𝑥𝑖 , 𝑧𝑘) and 𝜆𝑖,𝑘 ≃ 𝜆(𝑥𝑖 , 𝑧𝑘). Substituting in equation (2.36) the 

following equations: 

 

 

{
𝜏𝑥 = 𝜆 

𝜕𝑝

𝜕𝑥

𝜏𝑧 = 𝜆 
𝜕𝑝

𝜕𝑧

 (2.39) 

 

and using the differential quotients described in (2.37), along the ‘𝑥’ direction we obtain: 

 

 𝜕𝜏𝑥
𝜕𝑥

≅

𝜏
𝑖+
1
2,𝑘
− 𝜏

𝑖−
1
2,𝑘

∆𝑥
 (2.40) 
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where: 

 

 

{

𝜏
𝑖+
1
2,𝑘
= 𝜆

𝑖+
1
2,𝑘
 
𝑝𝑖+1,𝑘 − 𝑝𝑖,𝑘

∆𝑥

𝜏
𝑖−
1
2,𝑘
= 𝜆

𝑖−
1
2,𝑘
 
𝑝𝑖,𝑘 − 𝑝𝑖−1,𝑘

∆𝑥

 (2.41) 

 

Thus: 

 

 
𝜕

𝜕𝑥
(𝜆 

𝜕𝑝

𝜕𝑥
 ) ≅

𝜆
𝑖+
1
2
,𝑘
 
𝑝𝑖+1,𝑘 − 𝑝𝑖,𝑘

∆𝑥 − 𝜆
𝑖−
1
2
,𝑘
 
𝑝𝑖,𝑘 − 𝑝𝑖−1,𝑘

∆𝑥

∆𝑥
 

(2.42) 

 

or, 

 

 
𝜕

𝜕𝑥
(𝜆 

𝜕𝑝

𝜕𝑥
 ) ≅

𝜆
𝑖−
1
2,𝑘
 𝑝𝑖−1,𝑘 − (𝜆𝑖−12,𝑘

+ 𝜆
𝑖+
1
2,𝑘
)  𝑝𝑖,𝑘 + 𝜆𝑖+12,𝑘

 𝑝𝑖+1,𝑘

∆𝑥2
 

(2.43) 

 

In a similar manner, an equation for the derivatives in the ‘z’ direction is obtained: 

 

 
𝜕

𝜕𝑧
(𝜆 

𝜕𝑝

𝜕𝑧
 ) ≅

𝜆
𝑖,𝑘−

1
2
 𝑝𝑖,𝑘−1 − (𝜆𝑖,𝑘−12

+ 𝜆
𝑖,𝑘+

1
2
)  𝑝𝑖,𝑘 + 𝜆𝑖,𝑘+12

 𝑝𝑖,𝑘+1

∆𝑧2
 

(2.44) 

 

Substituting equations (2.43) and (2.44) into (2.36), the full discretized Reynolds equation 

is obtained: 

 

 𝜆
𝑖,𝑘−

1
2

∆𝑧2
 𝑝
𝑖,𝑘−1

+

𝜆
𝑖−
1
2
,𝑘

∆𝑥2
 𝑝
𝑖−1,𝑘

− (

𝜆
𝑖−
1
2
,𝑘
+ 𝜆

𝑖+
1
2
,𝑘

∆𝑥2
+

𝜆
𝑖,𝑘−

1
2

+ 𝜆
𝑖,𝑘+

1
2

∆𝑧2
)  𝑝

𝑖,𝑘
+ 

+

𝜆
𝑖+
1
2,𝑘

∆𝑥2
 𝑝𝑖+1,𝑘 +

𝜆
𝑖,𝑘+

1
2

∆𝑧2
 𝑝𝑖,𝑘+1 ≅ 𝑓𝑖,𝑘 

(2.45) 

 

Each equation links the values of the discrete pressure at five nearby nodes: the node where 

the equation is forced (𝑖, 𝑘), the ones immediately above (𝑖, 𝑘 + 1), below (𝑖, 𝑘 − 1), to the 

left (𝑖 − 1, 𝑘), and to the right (𝑖 + 1, 𝑘). These form a so-called computational molecule, 

typical of the finite difference scheme considered. Borrowing from geography, we may call 

the molecular nodes around the central one North, South, East and West (Figure 2.9 and 

Figure 2.10) [10]. 
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At this stage is important to understand which nodes of the discretization are unknown 

pressure quantities and which ones are already known. In this work, Dirichlet condition 

are used over the surface boundaries, as better explained in the following subchapter. 

In this case, therefore, the number of unknown nodes will be 𝑛 ⋅ 𝑚 and they are identified 

with the indexes 𝑖 and 𝑘 such as: 

1 ≤ 𝑖 ≤ 𝑚 

1 ≤ 𝑘 ≤ 𝑛 

 

As said, the number of unknown quantities is 𝑛 ⋅ 𝑚, consequently the exact same number 

of equations will be needed. In terms of matrix, therefore, the coefficients matrix will have 

𝑛 ⋅ 𝑚 rows and columns for a total amount of (𝑛 ⋅ 𝑚)2 items. 
 

In order to rewrite the algebraic system obtained in (2.45) into a matrix notation, we 

need first to replace the indices 𝑖 and 𝑘 with only one, say 𝑞, to number inner nodes. For 

this we use the lexicographic ordering (lex ordering for short), whereby the 𝑚 nodes on the 

first row from the bottom of the grid (𝑛 = 1) are ordered first, then those on the second 

row (𝑛 = 2), and so on; within each row the indexing goes from left to right [10]. This kind 

of ordering reminds the movement of the old typewriters. 

The lexicographic ordering is shown in Figure 2.11: 

 

 

Figure 2.11:   Lexicographic ordering. 
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It is easy to see that: 

 

 𝑞 = (𝑘 − 1) 𝑚 + 𝑖 (2.46) 

 

where: 

1 ≤ 𝑞 ≤ 𝑚 ∙ 𝑛  𝑞: single index used for the matrix notation. 

 

The right picture in Figure 2.12 shows the one-index numbering for the computational 

molecule of a strong inner node. 

 

 

Figure 2.12:   Transition from a two indices notation to a single index one. 

 

By setting 𝑝𝑖,𝑘 = 𝑝𝑞 and 𝑓𝑖,𝑘 = 𝑓𝑞 equation (2.45)  becomes: 

 

 𝑎𝑞−𝑚  𝑝𝑞−𝑚 + 𝑎𝑞−1 𝑝𝑞−1 − 𝑎𝑞 𝑝𝑞 + 𝑎𝑞+1 𝑝𝑞+1 + 𝑎𝑞+𝑚  𝑝𝑞+𝑚 = 𝑓𝑞 (2.47) 

where: 

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑎𝑞−𝑚 =

𝜆
𝑖,𝑘−

1
2

∆𝑧2
                                                  

𝑎𝑞−1 =

𝜆
𝑖−
1
2,𝑘

∆𝑥2
                                                   

𝑎𝑞 = (

𝜆
𝑖−
1
2,𝑘
+ 𝜆

𝑖+
1
2,𝑘

∆𝑥2
+

𝜆
𝑖,𝑘−

1
2
+ 𝜆

𝑖,𝑘+
1
2

∆𝑧2
)

𝑎𝑞+1 =

𝜆
𝑖+
1
2,𝑘

∆𝑥2
                                                   

𝑎𝑞+𝑚 =

𝜆
𝑖,𝑘+

1
2

∆𝑧2
                                                  

 (2.48) 

i,k

i,k+1

i+1,ki-1,k

i,k-1

q

q+m

q+1q-1

q-m
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For each node 𝑞 of the discretization, an equation like (2.47) can be written. By varying 

𝑞 from 1 to 𝑚 ⋅ 𝑛, five vectors, 𝒂𝒒−𝒎, 𝒂𝒒−𝟏, 𝒂𝒒, 𝒂𝒒+𝟏 and 𝒂𝒒+𝒎, are obtained; the 

components of these vectors can be calculated using (2.48). As we will see in the next 

subchapter, these vectors have few elements equal to zero due to the boundary conditions. 

These vectors allow the creation of the matrix notation: 𝑨 𝒑 =  𝒇, where 𝑨 is the matrix of 

coefficients and 𝒇 is the vector of known terms. 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
∗ ∗+1 ∗+𝑚
∗−1 ∗ ∗+1 ∗+𝑚

∗−1 ∗ ∗+1 ∗+𝑚
∗−1 ∗ ∗+1 ∗+𝑚

∗−𝑚 ∗−1 ∗ ∗+1 ∗+𝑚
𝑎𝑞−𝑚 ⋯ ⋯ 𝑎𝑞−1 −𝑎𝑞 𝑎𝑞+1 ⋯ ⋯ 𝑎𝑞+𝑚

∗−𝑚 ∗−1 ∗ ∗+1 ∗+𝑚
∗−𝑚 ∗−1 ∗ ∗+1

∗−𝑚 ∗−1 ∗ ∗+1
∗−𝑚 ∗−1 ∗ ∗+1

∗−𝑚 ∗−1 ∗ ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝑝𝑞−𝑚
⋮
⋮

𝑝𝑞−1
𝑝𝑞
𝑝𝑞+1
⋮
⋮

𝑝𝑞+𝑚

]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

𝑓𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(2.49) 
 

Equation (2.49) shows how equation (2.47) allows the creation of the matrix system which 

can be easily resolved by a calculation program as MATLAB. 

The coefficients matrix A in (2.49) presents asterisk elements marked with different 

subscript: 

∗ represents the elements of the main diagonal, which are given by the vector 

𝒂𝒒 components; 

∗+1 represents the elements of the first super-diagonal, which are given by the 

vector 𝒂𝒒+𝟏 components; 

∗−1 represents the elements of the first sub-diagonal, which are given by the 

vector 𝒂𝒒−𝟏 components; 

∗+𝑚 represents the elements of the mth super-diagonal, which are given by the 

vector 𝒂𝒒+𝒎 components;  

∗−𝑚 represents the elements of the mth sub-diagonal, which are given by the vector 

𝒂𝒒−𝐦 components. 
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General matrix diagonals can be specified by an index called 𝑡 measured relatively to the 

main diagonal, thus: 

 𝑡 = 0  for the main diagonal; 

 𝑡 = ±1  for the first super-diagonal and the first sub-diagonal; 

 𝑡 = ±𝑚 for the mth super-diagonal and mth sub-diagonal. 

The resulting matrix 𝑨 is pentadiagonal, meaning that it has five diagonals, such that each 

of them have at least one element different from zero. Actually, as it will be discussed in 

the next subchapter, the number of elements equal to zero is much smaller than the 

number of elements different from zero. 

2.2.3 Boundary conditions and weak internal nodes 

For hydrodynamic lubrication, three sets of boundary conditions known as the Full-

Sommerfeld, Half-Sommerfeld and Reynolds are widely quoted throughout the literature. 

• Full-Sommerfeld boundary condition 

The Full-Sommerfeld boundary condition [11] assumes that the pressure is equal to zero 

at the edges of the of the journal unwrapped surface:  
 

 𝑝 = 0          at           휃 = 0 and 휃 = 2𝜋 (2.50) 

 

This boundary condition is unlikely to apply to real fluids because it leads to a large negative 

pressure in the diverging region which is the mirror image of the pressure distribution in 

the converging region. Large negative pressures are physically unrealistic. Furthermore, 

because of these opposing negative and positive pressures, the predicted load capacity is 

zero. On the other hand, it has been shown that the hydrodynamic lubrication film is very 

efficient under such geometries and is capable of supporting a load. Hence some other 

boundary condition should be applied [3]. 
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• Half-Sommerfeld or Gümbel boundary condition 

To get closer to reality the previous boundary condition has been adapted to avoid negative 

pressures and to allow the generation of hydrodynamic forces. The Half-Sommerfeld or 

Gümbel boundary condition states: 

 

 𝑝 = 0          at           휃 = 0  and  휃 = 𝜋 
 

𝑝 = 0          at                 𝜋 < 휃 < 2𝜋 
(2.51) 

 

This boundary condition is very easy to apply from an engineering point of view, but, 

however, its physical basis is erroneous since discontinuity of flow at the boundary between 

the zero and non-zero pressure regions is implied. 

The flow rates per unit length, 𝑄𝑥,  can be found from integrating the lubricant velocity 

profile over the film thickness: 

 

 
𝑄𝑥 = ∫  𝑢 𝑑𝑧

ℎ

0

 (2.52) 

 

substituting 𝑢 from equation (2.12), yields: 

 

 
𝑄𝑥 =

ℎ3

12𝜇

𝜕𝑝

𝜕𝑥
 +
ℎ

2
𝑈 (2.53) 

 

As shown in Figure 2.14, between 0 and 𝜋 there is a value of 휃 such that 𝜕𝑝/𝜕𝑥 = 0  

(pressure maximum point). By applying the continuity between this angular position, where 

the film thickness is called ℎ, and 휃 = 𝜋, equation (2.53) yields: 

 

 ℎ

2
𝑈 ≠

ℎ𝑚𝑖𝑛
2

𝑈 (2.54) 

 

because ℎ is for sure bigger than ℎ𝑚𝑖𝑛 . 

Summarizing, both conditions analysed so far are not physically realistic, since one leads to 

predictions of large negative pressures and the other to a discontinuity of flow. 
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• Reynolds boundary condition 

The solution to this problem comes again from Reynolds, who stated that there is no 

negative pressure zone and, that, at the boundary between zero and non-zero pressure the 

pressure variation is also zero. 

 

 𝑝 = 0                    at           휃 = 0 
 

𝑝 =
𝜕𝑝

𝜕𝑥
= 0          at           휃 = 휃𝑐𝑎𝑣 

(2.55) 

where: 

휃𝑐𝑎𝑣 represents the angular position where the cavitation phenomenon begins.  

 

In fact, in the diverging region (휃 > 𝜋) the lubricating film starts to divide into streamers of 

lubricant and air spaces (Figure 2.13). As the film thickness continues to increase, the 

proportion of space occupied by lubricant streamers is correspondingly reduced. The 

balance between streamer volume and volume of air space is determined by the condition 

that the lubricant flow remains constant within the zero-pressure region [3]. 

 

 

 
 
 

Figure 2.13:   Cavitation effect [3]. 

 

Figure 2.14:   Comparation among Full-Sommerfeld, Half-Sommerfeld and Reynolds boundary 

conditions [12]. 
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The three boundary conditions just explained set a pressure value over the boundaries 

which are parallel with the ‘𝑧’-axis. In order to resolve the Reynolds equation on the journal 

surface, boundary conditions are also required for the two ‘𝑥’-axis parallel boundaries (see 

Figure 2.15). 
 

In conclusion, the boundary conditions that must be applied during computation have 

been chosen considering the following assumptions: 

• Reynolds condition must be applied at the cavitation boundary, that is, at: 

 휃 = 휃𝑐𝑎𝑣 = 𝜋 + 𝛼(𝑧) (2.56) 

Two facts should be noted about the location of the cavitation boundary; the first one 

is that it is a function of 𝑧, which means that this boundary does not lie along a line of 

constant 휃, and second, 𝛼(𝑧) is not known a priori and should be calculated as the 

solution of the pressure field [13]. Furthermore, the resolution of the pressure field 

using this condition requires an iterative procedure. For this reason and for the fact that 

the dependency of 휃𝑐𝑎𝑣 from 𝑧 is incompatible with the fixed discretisation step used 

in this work, it has been chosen not to use Reynolds condition; 

• each edge of the journal, along the ‘x’ direction, can be assumed in contact with the 

external environment. 

A shown in Figure 2.15, the boundary conditions applied are: 

 

 𝑝 = 𝑝𝑎𝑡𝑚 = 0           at           𝑧 = 0  and  𝑧 = 𝐿  
 

𝑝 = 0                          at           𝑥 = 0  and  𝑥 = 2𝜋𝑅𝑗 
(2.57) 

 

 

 

Figure 2.15:   Boundary condition over the journal surface. 
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Equation (2.51) shows that Full-Sommerfeld boundary condition is used for the 

determination of the pressure distribution; however, for those internal nodes which present 

negative pressure once the Reynolds equation is solved, a null pressure value is forced. By 

doing so, Half-Sommerfeld condition is applied. 
 

It’s important to notice that the way the angular coordinate 휃, and consequently the 

coordinate 𝑥, have been chosen, combined with the boundary condition used, leads to an 

error in the pressure distribution which occurs under certain operative conditions of the 

journal. 

Let’s take under consideration the journal bearing configuration shown in Figure 2.16 (left), 

where the journal radial velocity is negative, i.e. when the vector goes from 𝑂𝑗 to 𝑂𝑏. 

 

  

Figure 2.16:   Journal bearing configuration when �̇� < 0. 

 

Recalling that the hydrodynamic pressure is due to the wedge and the squeezing effects and 

that the coordinate 휃 (or 𝑥) is defined starting from the centre line in correspondence of the 

maximum film thickness, when �̇� is negative, the movement of the journal would generate 

a positive pressure field, due to the squeeze action, around 휃 = 0. Since the boundary 

condition previously defined force 𝑝 = 0 at this point, the squeeze effect on the pressure 

distribution, in such work condition, is heavily altered as shown in Figure 2.19 (up). 

The solution to this problem simply consists of changing the way the angular coordinate is 

defined. Since the Full-Sommerfeld boundary condition requires 𝑝 = 0 both at 휃 = 0 and 
휃 = 2𝜋, it’s possible to rotate 휃 by 180° and make it start in correspondence of the 

minimum film thickness (Figure 2.16 right). The new angular coordinate it’s called 휃′. 

By doing so the correct pressure distribution is preserved (Figure 2.19 down). 
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The new definition of the angular coordinate leads to the variation of few parameters 

needed by the Reynolds equation. 

 

 

Figure 2.17:   Cross section of a journal bearing: velocity components in the new reference 

system. 

 

By analysing Figure 2.17, with the same procedure explained earlier, we can say that: 

 

 ℎ = 𝐶 − 𝑒 𝑐𝑜𝑠휃′ = 𝐶(1 − 휀 𝑐𝑜𝑠휃′) (2.58) 

 

and 

 

 

{
𝑈 = ω𝑅𝑗 − 𝐶

𝑑휀

𝑑𝑡
 𝑠𝑖𝑛휃′ + 𝐶휀

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑐𝑜𝑠휃′        

𝑉0 = +ω𝑅𝑗  𝛼 − 𝐶
𝑑휀

𝑑𝑡
 𝑐𝑜𝑠휃′ − 𝐶휀

𝑑(𝜑 + Φ)

𝑑𝑡
 𝑠𝑖𝑛휃′

 (2.59) 

 

By substituting equations (2.58) and (2.59) into (2.21), Reynolds equation becomes: 
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Comparing (2.35) with (2.60), the only two things that change are how the film thickness is 

function of 휃′ and the minus sign that characterizes the last term in the previous equation. 

Thus, the discretization with finite difference of (2.60) is made with the exact same 

treatment we saw earlier for equation (2.35). The only care to be taken is the adjustment of 

the know term 𝒇 in the matrix notation 𝑨 𝒑 =  𝒇. 

To standardize the results, when the pressure distribution has been found, it’s better to go 

back to a condition where the angular coordinate starts from the maximum film thickness 

(Figure 2.16 left). Once the Reynolds equation is solved and each node of the discretization 

is associated to a pressure value, a simple readjustment of the pressure matrix is needed, as 

shown in Figure 2.18: 

 

 

Figure 2.18:   Pressure matrix readjustment. 
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The matrix readjustment is executed by moving the pressure values by columns along the 

‘x’-axis; in the ‘𝑧’ direction, no variations have to be done. 

In Figure 2.18, the coloured dots represent the pressure values over the nodes of the journal 

grid. The figure is divided in: 

• configuration A, where the angular coordinate is 휃′; it’s the result of the Reynolds 

equation (2.60) integration; 

• configuration B, where the angular coordinate is 휃; it’s the outcome of the matrix 

readjustment. 

Since the angular phase shift between 휃′ and  휃 is 180°: 

 

 휃′ = 휃 + 𝜋          and, hence,          𝑥′ = 𝑥 + 𝜋𝑅𝑗 (2.61) 

 

the first column (red dots) of the pressure distribution in the configuration A must be 

translated, without any variation, in the central column of the grid in the configuration B; 

the second column (yellow dots) in configuration A is moved over the first column on the 

right side with respect to the central one in configuration B. By proceeding in this way, the 

next columns (blue, cyan and green dots) are easily moved. When we reach the central 

column in configuration A (black dots), it means that 휃′ has reached the angular value 

where the angular coordinate 휃 is equal to zero. Thus, this column needs to be moved over 

the first column in configuration B. Again, using the same method, the dark grey, magenta, 

white and light grey dots columns can be readjusted. 

Since the journal grid in Figure 2.18 is the planar representation of the cylindrical surface 

of the journal: 

• the vertical boundaries, in configuration A, are actually overlapping in the wrapped 

configuration. For this reason, the pressure dots present the same red colour and, 

that’s why, the first and the last columns in configuration A converge in the central 

position in configuration B; 

• the central column in configuration A is doubled to create the first and the last 

column in configuration B. 

In Figure 2.19 is shown the pressure distribution obtained with the integration of Reynolds 

equation for a journal bearing with the geometric and dynamic data exposed in Table 2.3. 
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Figure 2.19:   Up: pressure distribution using angular coordinate 휃. Down: pressure distribution 

using angular coordinate 휃′ and matrix readjustment. 

 

By comparing the two images, we can see how the squeezing effect due to the negative 

journal radial velocity affects the pressure distribution around 휃 = 0. 
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Indeed, for 𝑥 = 0, the maximum pressure value, which is obtained for both cases at 𝐿/2 

along the ‘𝑧’-axis, is 0 Pa if the previous procedure is not applied (Figure 2.19 up), whilst is 

equal to 1.51 ⋅ 104 Pa if the auxiliary angular coordinate 휃′ and matrix readjustment are 

used (Figure 2.19 down).  

 

 

Table 2.3:   Journal bearing geometric and dynamic data for the determination of pressure 

distribution with �̇� < 0. 

 
 

The implementation of Dirichlet boundary condition in the finite difference method 

does not only affect the pressure value for the nodes of the discretization that actually 

belong to the boundary of the surface, but it also has an impact on those internal nodes 

which are located in the proximity of the boundaries. 

This can be explained with a couple of examples. Let’s take under consideration the 

internal node defined by 𝑖 = 1 and 𝑘 = 1, using the two indices numbering, or 𝑞 = 1, using 

the single index numbering; by referring to Figure 2.10, this node lies in the bottom left 

corner of the discretization. The computational molecule related to this node is shown is 

Figure 2.20. 

 

Data 
Symbol, 

unit of measurement 
Value 

Journal bearing length 𝐿, [m] 0.05 

Bearing radius 𝑅𝑏, [m] 0.05 

Journal radius 𝑅𝑗, [m] 0.048 

Journal angular speed 𝜔, [rad/s] 50 

Eccentricity, journal radial position 𝑒, [m] 0.0015 

Journal radial velocity �̇�, [m/s] -0.1 

Journal angular velocity �̇� = �̇� + Φ̇, [rad/s] 0 

Viscosity 𝜇, [Pas] 1.74 
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Figure 2.20:   Computational molecule for bottom left corner internal node; two indices 

numbering (on the left), single index numbering (on the right). 

 

Equation (2.45)  for the node in consideration becomes: 

 

 𝜆
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1
2
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+
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3
2

∆𝑧2
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1,1
+ 

+

𝜆3
2,1

∆𝑥2
 𝑝2,1 +

𝜆
1,
3
2

∆𝑧2
 𝑝1,2 ≅ 𝑓1,1 

(2.62) 

 

Since the boundary condition imposes zero pressure for the nodes which lie on the 

boundary,  𝑝1,0 (south node pressure) and  𝑝0,1 (west node pressure) are equal to zero. 

Thus, 

 

 

−(

𝜆1
2,1
+ 𝜆3

2,1

∆𝑥2
+
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1,
1
2
+ 𝜆
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3
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2,1

∆𝑥2
 𝑝2,1 +

𝜆
1,
3
2

∆𝑧2
 𝑝1,2 ≅ 𝑓1,1 (2.63) 

 

or, using the single index equation (2.47): 

 

 −𝑎1 𝑝1 + 𝑎2 𝑝2 + 𝑎1+𝑚 𝑝1+𝑚 = 𝑓1 (2.64) 

 

Comparing equation (2.47) with (2.64) we can see how the first and the second terms 

disappear. 
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The same procedure applied for the internal node with indices 𝑖 = 2 and 𝑘 = 1  (or 𝑞 = 2), 

leads to a computational molecule where the south node has a pressure equal to zero 

( 𝑝2,0 = 0). Therefore, equation (2.47) becomes: 

 

 𝑎1 𝑝1 − 𝑎2 𝑝2 + 𝑎3 𝑝3 + 𝑎2+𝑚  𝑝2+𝑚 = 𝑓2 (2.65) 

 

For this node, the comparison between equation (2.47) and (2.65) shows that only the first 

term disappears. 

Those two examples allow us to distinguish between strong and weak inner nodes: 

• strong inner nodes are characterised by the fact that their computational molecule 

is entirely made of inner nodes. The indices 𝑖, 𝑘 of strong inner nodes thus satisfy: 

 {
2 ≤ 𝑖 ≤ 𝑚 − 1
2 ≤ 𝑘 ≤ 𝑛 − 1

 (2.66) 

• on the other hand, the molecule of weak inner nodes includes one or two boundary 

nodes; this happens when 𝑖 is equal to 1 or 𝑚, and/or 𝑘 is equal to 1 or 𝑛. 

Equation (2.47), relative to a strong inner node, has exactly 5 pressure unknowns, whereas 

the equation of a weak inner node contains a lesser number of unknowns (3 or 4).  
In Table 2.4 weak inner nodes are taken under investigation and grouped according to the 

elements of equation (2.47) that disappear. In the first column of the table is specified which 

node or group of nodes is considered; to better understand their location, a schematic 

representation of the grid is shown in the second column. In the third column, equation 

(2.47) is written for such node/nodes by removing the elements that disappear due to their 

location, which are specified in column four. Lastly, in column five the number of pressure 

unknowns associated to the computational molecule of the node are indicated. 
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Table 2.4:   Analysis of weak inner nodes. 

 

Node/nodes 

numbering 

Schematic 

representation 
Equation (2.47) 

Missing 

elements 

N. 

unk. 

𝑖 = 1 and 𝑘 = 1 

or  𝑞 = 1  
−𝑎1 𝑝1 + 𝑎2 𝑝2 + 𝑎1+𝑚 𝑝1+𝑚 = 𝑓1 

first and 

second 
3 

2 ≤ 𝑖 ≤ 𝑚 − 1 and 

𝑘 = 1  

or                    

 2 ≤ 𝑞 ≤ 𝑚 − 1  
 

𝑎𝑞−1 𝑝𝑞−1 − 𝑎𝑞  𝑝𝑞 + 𝑎𝑞+1 𝑝𝑞+1 + 

+𝑎𝑞+𝑚  𝑝𝑞+𝑚 = 𝑓𝑞 
first 4 

𝑖 = 𝑚 and 𝑘 = 1  

or  𝑞 = 𝑚  

𝑎𝑚−1 𝑝𝑚−1 − 𝑎𝑚  𝑝𝑚 + 𝑎2𝑚  𝑝2𝑚 = 

= 𝑓𝑚 

first and 

fourth 
3 

𝑖 = 𝑚 and        

2 ≤ 𝑘 ≤ 𝑛 − 1 

or                       

𝑞 = (𝑘 − 1)𝑚 +𝑚  
 

𝑎𝑞−𝑚  𝑝𝑞−𝑚 + 𝑎𝑞−1 𝑝𝑞−1 − 𝑎𝑞  𝑝𝑞 + 

+𝑎𝑞+𝑚  𝑝𝑞+𝑚 = 𝑓𝑞 
fourth 4 

𝑖 = 𝑚 and 𝑘 = 𝑛  

or                     

𝑞 = (𝑛 − 1)𝑚 +𝑚  
 

𝑎𝑞−𝑚  𝑝𝑞−𝑚 + 𝑎𝑞−1 𝑝𝑞−1 − 𝑎𝑞  𝑝𝑞 = 

𝑓𝑞 

fourth and 

fifth 
3 

2 ≤ 𝑖 ≤ 𝑚 − 1 and 

𝑘 = 𝑛  

or                       

𝑞 = (𝑛 − 1)𝑚 + 𝑖 
 

𝑎𝑞−𝑚  𝑝𝑞−𝑚 + 𝑎𝑞−1 𝑝𝑞−1 − 𝑎𝑞  𝑝𝑞 + 

+𝑎𝑞+1 𝑝𝑞+1 = 𝑓𝑞 
fifth 4 

𝑖 = 1 and 𝑘 = 𝑛  

or                     

𝑞 = (𝑛 − 1)𝑚 + 1 
 

𝑎𝑞−𝑚  𝑝𝑞−𝑚 − 𝑎𝑞  𝑝𝑞 + 𝑎𝑞+1 𝑝𝑞+1= 

= 𝑓𝑞 

second 

and fifth 
3 

𝑖 = 1 and            

2 ≤ 𝑘 ≤ 𝑛 − 1 

or                       

𝑞 = (𝑘 − 1)𝑚 + 1 

 

𝑎𝑞−𝑚  𝑝𝑞−𝑚 − 𝑎𝑞  𝑝𝑞 + 𝑎𝑞+1 𝑝𝑞+1 + 

+𝑎𝑞+𝑚  𝑝𝑞+𝑚 = 𝑓𝑞 
second 4 
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Table 2.4 allows to make final considerations about vectors 𝒂𝒒−𝒎, 𝒂𝒒−𝟏, 𝒂𝒒, 𝒂𝒒+𝟏 and 𝒂𝒒+𝒎, 

presented in the previous subchapter. Those vectors, whose components are obtainable 

using equation (2.48), create the coefficients matrix 𝐴 by arranging them on certain 

diagonals, as visible in equation (2.49). 

As summarized in Table 2.4, the presence of weak inner nodes causes the disappear of 

certain components in vectors 𝒂𝒒−𝒎, 𝒂𝒒−𝟏, 𝒂𝒒, 𝒂𝒒+𝟏 and 𝒂𝒒+𝒎 leading to a matrix of 

coefficients 𝐴 that for 𝑚 = 7 and 𝑛 = 4 has the structure shown in Figure 2.21.  

 

 

Figure 2.21:   Structure of the matrix 𝐴 when 𝑚 = 7 and 𝑛 = 4. Thick dots denote the position 

of non-zero entries. 

 

The Reynolds equation has been integrated following the procedure explained in this 

chapter by writing a code in MATLAB which is visible Appendix B. Since the goal is the 

determination of the pressure distribution at each time step, the Reynolds equation needs 

to be implemented into Simulink environment. To do so, the MATLAB code has been 

written into a user-defined Matlab function block in Simulink called “Reynold equation 

solver” (see Figure 2.27).  
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2.3 Lubricant viscosity 

Experimental evidence has shown that viscosity varies, other than with temperature, also 

with pressure [3]. With increasing temperature, the viscosity of oils falls quite rapidly 

meanwhile lubricant viscosity increases with pressure. 

There are several viscosity-temperature equations available in literature: Reynolds, Slotte, 

Walther, Vogel, etc [14]; the most accurate is the Vogel equation:  
 

 𝜇 = 𝑎 𝑒𝑏/(𝑇−𝑐) (2.67) 

 

where:  

𝑎, 𝑏, 𝑐 are oil characteristic parameters; (Pas), (K), (K) respectively; 

𝑇 is the absolute temperature (K); 

𝜇 is the dynamic viscosity at temperature 𝑇 (Pas). 

 

The best correlation between viscosity and pressure is given by the Barus equation [15]: 

 

 𝜇 = 𝜇0 𝑒
𝛼 𝑝 (2.68) 

 

where: 

𝜇0 is the atmospheric viscosity (Pas); 

𝛼 is the pressure-viscosity coefficient (m
2

/N); 

𝑝 is pressure of concern (Pa); 

𝜇 is the dynamic viscosity at pressure 𝑝 (Pas). 

 

The lubricant, that divides the journal from the bearing into the rod-end, is subjected both 

to temperature changes, due to the external climate circumstances, and to pressure 

variations, due to the dynamic work conditions. Thus, combining (2.67) and (2.68), the 

Vogel-Barus model is obtained:  

 

 
𝜇 = 𝑎 𝑒𝑏/(𝑇−𝑐) 𝑒𝛼 𝑝 (2.69) 

 

In equation (2.69) the pressure-independent viscosity term 𝜇0 is only function of 

temperature according to the Vogel equation. 
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The use of Vogel-Barus equation is possible only knowing the value of the three constants 

𝑎, 𝑏, 𝑐, the pressure viscosity coefficient 𝛼 and the pressure of the lubricant: 

• the relation between the pressure and the viscosity creates a computational problem 

due to the fact that the Reynolds equation needs as input the lubricant viscosity, 

which is function of temperature and pressure, but the pressure is given by the 

resolution of the Reynolds equation itself; we are dealing with an algebraic loop. 

Algebraic loops occur when an input port with direct feedthrough is driven by the 

output of the same block. Simulink provides algebraic loop solvers that attempt to 

resolve the situation iteratively. Since the solution of algebraic loop extends the 

simulation time considerably, it’s been decided to break the loop using a memory 

block, which holds and delays its input by one integration time step. By doing so, 

at each time step, Reynolds equation is solved using the viscosity obtained through 

(2.69), where the pressure 𝑝 is calculated by an arithmetic mean of the previous 

time step pressure distribution, as express in (2.70): 

 
𝑝 =

𝑝𝑚𝑎𝑥𝑡−1 + 𝑝𝑚𝑖𝑛𝑡−1
2

 (2.70) 

where:  

𝑝𝑚𝑎𝑥𝑡−1 is the maximum value of the pressure distribution at the previous 

time step (Pa); 

𝑝𝑚𝑖𝑛𝑡−1 is the minimum value of the pressure distribution at the previous 

time step (Pa). 

 

This solution implies errors respect to the iterative method because the pressure 

distribution at the previous time step could be different from the one active at the 

present time step especially when the journal is in an off-balance dynamic condition; 

however, the need to perform long flight simulation makes this solution preferable; 

• there are various formulae available to calculate the pressure-viscosity coefficient. 

One of the early ones was derived by Wooster [15]: 

 
𝛼 = (0.6 + 0.965 𝑙𝑜𝑔10𝜇0) 10

−8 (2.71) 

where: 

𝜇0 = 𝑎 𝑒
𝑏/(𝑇−𝑐)  is the atmospheric viscosity (Pas); 
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• the characteristic parameters 𝑎, 𝑏, 𝑐 can be determined using three viscosity 

measurements at different temperatures for a specific oil. In aviation, the outside 

air temperature refers to the temperature of air around an aircraft, and for a cruising 

altitude of 12’000 m it can reach -54°C [16]. Since the actuator hydraulic fluid works 

between 40°C and 70°C in regime conditions, the servo-actuator chambers will tend 

to be at higher temperature than outside. Thus, the minimum temperature 

considered for the rod-end lubricant has been set at -40°C. The lubricant 

considered in this work is SAE 0W/30, where the suffix W stands for winter. The 

oils of this category are able to maintain low viscosity for cold temperatures, as 

visible in Figure 2.22. 

 

Figure 2.22:   Viscosity-temperature graph for some monograde and multigrade oils [3]. 

 

The three viscosity values needed for the calculation of the characteristic parameters 

are available on the data sheet of the lubricant manufacturers (Table 2.5): 

 

SAE 0W/30 

Temperature (°C) Dynamic viscosity (Pas) 

-40 6.5 

0 0.47 

100 0.009 

 

Table 2.5:   Dynamic viscosity at different temperature for SAE 0W/30.  
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Stachowiak and Batchelor developed, in their work [3], several MATLAB codes to 

help the reader to find solutions of tribological problems. Among them, the 

program “Viscosity” provides the solution to the Vogel equation and calculates the 

viscosity at any given temperature. This code has been elaborated and adapted to 

this work to obtain the Vogel characteristic parameters for SAE 0W/30 oil: 

 

 
{
𝑎 = 4.212 ⋅ 10−7  𝑃𝑎𝑠
𝑏 = 3.510 ⋅ 103         𝐾
𝑐 = 21.10                   𝐾

 (2.72) 

  

The viscosity-temperature dependency is shown in Figure 2.23: 

 

 

 Figure 2.23:   Dynamic viscosity vs. temperature for SAE 0W/30 oil. 

 

For more information about the Vogel equation code refer to [3]. 
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2.4 Hydrodynamic forces 

The integration of the pressure distribution around the journal allows the determination of 

hydrodynamic force and, thus, the total load that the journal bearing will support under 

hydrodynamic conditions. 

The hydrodynamic force is usually calculated from two components, one acting along the 

line of journal and bearing centres (𝐹𝑟)  and a second component perpendicular to the first 

(𝐹𝑡), as shown in Figure 2.24: 

 

 

Figure 2.24:   Hydrodynamic load components and pressure field acting on the journal. 

 

To analyse and derive expressions for the load components 𝐹𝑟 and 𝐹𝑡, consider a small 

element of area 𝑅𝑗𝑑휃𝑑𝑧, where the ‘𝑧’-axis is normal to the plane of representation of Figure 

2.24 (the reference system used is specified in Figure 2.5). 

The pressure acting on the infinitesimal element is highlighted in grey in the previous figure. 

The force exerted by the hydrodynamic pressure on the element is 𝑝𝑅𝑗𝑑휃𝑑𝑧 and this force 

is divided into two components as visible on the right side of Figure 2.24: 
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• −𝑝𝑅𝑗𝑐𝑜𝑠휃 𝑑휃𝑑𝑧 acting along the line of shaft and bush centres; 

• 𝑝𝑅𝑗𝑠𝑖𝑛휃 𝑑휃𝑑𝑧  acting in the direction normal to the line of centres. 

The integration of these two components, over the entire journal surface, leads to the 

hydrodynamic forces: 

 

 

{
 
 

 
 𝐹𝑟 = ∫ ∫ −𝑝𝑅𝑗𝑐𝑜𝑠휃 𝑑𝑧𝑑휃

𝐿

0

2𝜋

0

𝐹𝑡 = ∫ ∫ 𝑝𝑅𝑗𝑠𝑖𝑛휃 𝑑𝑧𝑑휃
𝐿

0

2𝜋

0

    

 (2.73) 

 

or, remembering that 𝑥 = 𝑅𝑗  휃, 

 

 

{
 
 

 
 𝐹𝑟 = ∫ ∫ −𝑝𝑅𝑗𝑐𝑜𝑠휃 𝑑𝑧𝑑𝑥

𝐿

0

2𝜋𝑅𝑗

0

𝐹𝑡 = ∫ ∫ 𝑝𝑅𝑗𝑠𝑖𝑛휃 𝑑𝑧𝑑𝑥
𝐿

0

2𝜋𝑅𝑗

0

    

 (2.74) 

 

The pressure 𝑝 is not known as a mathematical expression whose primitive function is 

obtainable, thus a numerical integration is needed to solve equations (2.74). 

The most common numerical integration methods are interpolatory, and they can be 

derived from this strategy [17]: 

1. interpolate the function that has to be integrated by a polynomial of low degree 

(which is easy to integrate); 

2. approximate the starting integral with the exact integral of the polynomial. 

The degree of the interpolating polynomial defines the numerical integration method used:  

• polynomial of degree 0: midpoint or rectangular rule; 

• polynomial of degree 1: trapezoidal rule; 

• polynomial of degree 2: Simpson’s rule. 
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Since the pressure profile is unknown between adjacent nodes of the discretization, the best 

and easiest way to link the pressures between two nearby nodes is with a straight line 

(polynomial of degree 1). Therefore, the trapezoidal rule has been used to solve equations 

(2.74). 

The general form of the trapezoidal rule is: 

 

 
∫ 𝑓(𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎) (

𝑓(𝑎) + 𝑓(𝑏)

2
)

𝑏

𝑎

 (2.75) 

 

Considering the computational molecule for a node with generic indices 𝑖, 𝑗 (Figure 2.10), 

the following graphs can be obtained: 

 

 

Figure 2.25:   Pressure profile between two nearby nodes for trapezoidal rule integration. 

 

Both equations (2.74) can be written in a more general form as: 

 

 
𝐹 = ∫ (∫ 𝑔(𝑥, 𝑧) 𝑑𝑧

𝐿

0

)
2𝜋𝑅𝑗

0

 𝑑𝑥 (2.76) 

where: 

𝑔(𝑥, 𝑧) = −𝑝𝑅𝑗𝑐𝑜𝑠휃 for the component 𝐹𝑟; 

𝑔(𝑥, 𝑧) = 𝑝𝑅𝑗𝑠𝑖𝑛휃 for the component 𝐹𝑡. 

 

Equation (2.76) is a double integral along ‘𝑥’ and ‘𝑧’ directions. The inner integral is 

approximated by a one-dimensional quadrature rule where 𝑥 is held fixed. The values 

obtained are then used to approximate the outer integral, also by a one-dimensional rule 

(2.75). 
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𝐺(𝑥) = ∫ 𝑔(𝑥, 𝑧)𝑑𝑧 =

Δ𝑧

2
  ∑(𝑔(𝑥, 𝑧𝑘−1) + 𝑔(𝑥, 𝑧𝑘))

𝑛+1

𝑘=1

𝐿

0

 (2.77) 

 

and thus: 

 

 
𝐹 = ∫ 𝐺(𝑥)𝑑𝑥 =

Δx

2
  ∑(𝐺(𝑥𝑖−1) + 𝐺(𝑥))

𝑚+1

𝑖=1

2𝜋𝑅𝑗

0

 (2.78) 

 

Substituting (2.77) into (2.78), the definitive equation for the double numerical integration 

with the trapezoidal rule is obtained: 

 

 
𝐹 =

Δx

2
 
Δ𝑧

2
∑ (∑(+𝑔(𝑥𝑖−1, 𝑧𝑘−1) + 𝑔(𝑥𝑖−1, 𝑧𝑘) + 𝑔(𝑥𝑖 , 𝑧𝑘−1) + 𝑔(𝑥𝑖 , 𝑧𝑘))

𝑛+1

𝑘=1

)

𝑚+1

𝑖=1

 (2.79) 

 

By substituting correctly 𝑔(𝑥, 𝑧), as reported in (2.76), equation (2.79) allows the calculation 

of the hydrodynamic components. The total hydrodynamic force is the resultant of 𝐹𝑟 and 

𝐹𝑡: 

 

 
𝐹ℎ𝑦𝑑𝑟𝑜 = √𝐹𝑟

2 + 𝐹𝑡
2 

 

(2.80) 

 

The direction of this force respect to the line of centres can be determined directly from 

the hydrodynamic components:  

 

 
Φℎ𝑦𝑑𝑟𝑜 = 𝑎𝑡𝑎𝑛 (

𝐹𝑡
𝐹𝑟 
) (2.81) 

 

Φℎ𝑦𝑑𝑟𝑜 represents the attitude angle with respect to 𝐹ℎ𝑦𝑑𝑟𝑜 , and it’s been called in this way 

in relation with Φ which is the angle between the external force and the line of centres 

(Figure 2.8). Obviously Φ and Φℎ𝑦𝑑𝑟𝑜 are equal when the journal is equilibrium conditions 

as well as 𝐹𝑒𝑥𝑡 and 𝐹ℎ𝑦𝑑𝑟𝑜. 
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There is another force that occurs when the journal is moving inside the lubricant, we are 

taking about the friction force. The friction force can be calculated by integrating the shear 

stress ‘𝜏’ over the bearing area. Using equation (2.7): 

 

 
𝐹𝑓𝑟𝑖𝑐𝑡 = ∫ ∫ 𝜏 𝑑𝑧𝑑𝑥

𝐿

0

= ∫ ∫ 𝜇
𝑑𝑢

𝑑𝑦
 𝑑𝑧𝑑𝑥

𝐿

0

2𝜋𝑅𝑗

0

2𝜋𝑅𝑗

0

 (2.82) 

 

Deriving equation (2.12), where the bearing is stationary, whereas the journal is moving, 

equation (2.82) can be rewritten as: 

 

 
𝐹𝑓𝑟𝑖𝑐𝑡 = ∫ ∫ ((𝑦 −

ℎ

2
)
𝑑𝑝

𝑑𝑥
+
𝜇𝑈

ℎ
)𝑑𝑧𝑑𝑥

𝐿

0

2𝜋𝑅𝑗

0

 (2.83) 

 

Equation (2.83) is integrated with the exact same numerical procedure previously exposed. 

It should be noted that the pressure derivative, in (2.83), has been approximated with a 

backward difference quotient, and 𝑦 has been set equal to ℎ since we are interested in the 

calculation of the friction force at the journal surface. 
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2.5 Journal dynamic 

The motion of the journal with respect to the bearing centre can be obtained by analysing 

the free body diagram shown in Figure 2.26: 

 

 

Figure 2.26:   Journal free body diagram in hydrodynamic conditions. 

 

In Figure 2.26, 𝑇𝑓 = 𝐹𝑓𝑟𝑖𝑐𝑡𝑅𝑗  represents the torque generated by the friction force due to 

the movement of the journal into the lubricant. The inertia force 𝑚�̈� has not been included 

because the direction of the journal acceleration is unknown a priori. Two reference 

systems are fixed in order to express the balance of forces: 

• the first one, characterized by unit vectors 𝒆1,𝑏 and 𝒆2,𝑏, has its origin coincident 

with 𝑂𝑏; 

• the second one, characterized by unit vectors 𝒆1,𝑗 and 𝒆2,𝑗, has its origin coincident 

with 𝑂𝑗. 
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To describe the journal motion is important to express the journal reference system respect 

to the bearing reference system, thus the relative rotation matrix is: 

 

 [
− 𝑠𝑖𝑛 휁     𝑐𝑜𝑠 휁
− 𝑐𝑜𝑠 휁 − 𝑠𝑖𝑛 휁

] (2.84) 

where: 

휁 = 𝜒 + 𝜋 = 𝜑 + Φ+ 𝜋 is the angle between 𝒆1,𝑏 and 𝒆1,𝑗 (rad). 

 

Therefore, the multiplication between (2.84) and the column vector [𝒆1,𝑏  𝒆2,𝑏] leads to: 

 

 
{
𝒆1,𝑗 = − 𝑠𝑖𝑛 휁 𝒆1,𝑏 + 𝑐𝑜𝑠 휁 𝒆2,𝑏
𝒆2,𝑗 = − 𝑐𝑜𝑠 휁 𝒆1,𝑏 − 𝑠𝑖𝑛 휁 𝒆2,𝑏

 (2.85) 

 

and, for derivation: 

 

 
{
�̇�1,𝑗 = −휁̇ 𝑐𝑜𝑠 휁 𝒆1,𝑏 − 휁̇ 𝑠𝑖𝑛 휁 𝒆2,𝑏 = 휁 ̇ 𝒆2,𝑗   

�̇�2,𝑗 = +휁̇ 𝑠𝑖𝑛 휁 𝒆1,𝑏 − 휁̇ 𝑐𝑜𝑠 휁 𝒆2,𝑏 = −휁̇𝒆1,𝑗
 (2.86) 

 

Equations (2.85) and (2.86) allow the determination of radial position of the journal 

(eccentricity) 𝒆, and its derivatives:  

 

 

{

𝒆 = 𝑒 𝒆1,𝑗                                                    

�̇� = �̇� 𝒆1,𝑗 + 𝑒휁̇ 𝒆2,𝑗                                  

�̈� = (�̈� − 𝑒휁̇2) 𝒆1,𝑗 + (𝑒휁̈ + 2�̇�휁̇) 𝒆2,𝑗

 (2.87) 

 

where the second and third terms of the last equation of (2.87) compose the drag 

acceleration, while the first term is the Coriolis acceleration and the fourth term is the 

relative acceleration of the journal with respect to the bearing. The last equation of (2.87) 

gives the components of the journal acceleration along 𝒆1,𝑗 and 𝒆2,𝑗. 

Now, the second Newton’s law allows the writing of the motion equations: 

 

 
{
𝑚𝑗�̈� − 𝑚𝑗𝑒�̇�

2 = 𝐹𝑒𝑥𝑡 cos(𝜒 − 𝜑) − 𝐹𝑟    

𝑚𝑗�̈� + 2𝑚𝑗�̇��̇� = −𝐹𝑒𝑥𝑡 sin(𝜒 − 𝜑) + 𝐹𝑡
 (2.88) 

where,  

𝑚𝑗  is the journal mass (Kg). 
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Equations (2.88) are second-order differential equations in 𝑒 and 𝜒, and they have been 

implemented in MATLAB/Simulink for a numerical solution. Thus, the calculation of 

both radial (𝑒, �̇�, �̈�) and angular (𝜒, �̇�, �̈�) dynamic quantities at each time step is performed.  

The quantities calculated at the instant of time 𝑡 will be used by the “Reynolds equation 

solver block” for the determination of the pressure distribution at instant of time 𝑡 + 1 

(Figure 2.27) 

 

 

Figure 2.27:   Simulink implementation of the hydrodynamic lubrication model. 
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Chapter 3                                                          

Contact model 

Hydrodynamic lubrication is responsible for maintaining the journal surface separated 

from the bearing surface thanks to the pressure field generated. This effect is reduced when 

one or more of the following aspects occur:  

• the sliding velocity is reduced; 

• the external force is increased; 

• the lubricant viscosity is reduced. This may occur both due to the lubricant 

degradation and an increase of temperature. 

These three effects are visible on the trajectory of the journal, as shown in Figure 3.1.The 

upper figure shows the trajectory of the journal where 𝜔 = 50 𝑟𝑎𝑑/s, 𝐹𝑒𝑥𝑡  = 250 𝑁 and 𝑇 =

20 °𝐶. The three bottom figures separately show the effect of the half reduction of the 

velocity (𝜔 = 25 𝑟𝑎𝑑/s), the doubling of the force (𝐹𝑒𝑥𝑡  = 500 𝑁) and the increase of 

temperature till 𝑇 = 60 °𝐶 
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Figure 3.1:   Effect of sliding velocity reduction (bottom left side); effect of external force 

increment (middle); effect of temperature increment (bottom right side). 

 

For the four work conditions the simulation time is fixed at 0.5 seconds, and, as we can see, 

the journal tends to get further away from the bearing centre when one of the previous 

effects takes place, meaning that the hydrodynamic sustenance is gradually reduced. 
 

Eventually though, the film thickness will have diminished to such a level that the small 

high points or asperities on each surface will come into contact. Contact between asperities 

causes wear and elevated friction. This condition, where the hydrodynamic film still 

supports the load but cannot prevent some contact between the opposing surfaces, is known 

as “partial hydrodynamic lubrication”. When the film thickness is reduced still further, the 

hydrodynamic lubrication fails completely and solid contact occurs [3]. 

In this chapter the contact between the journal and the bearing is analysed in order to obtain 

the motion equation and the pressure distribution.  
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3.1 Journal dynamic 

The same procedure used for the determination of the journal motion equations in the 

hydrodynamic condition can be applied when the contact between surface occurs. 

 

 

Figure 3.2:   Journal free body diagram in contract condition. 

 

Since equations (2.87) are still valid, the forces balance can be obtained using the free body 

diagram shown in Figure 3.2: 

 

 
{
𝑚𝑗�̈� − 𝑚𝑗𝑒�̇�

2 = 𝐹𝑒𝑥𝑡 cos(𝜒 − 𝜑) − 𝐹𝑟    

𝑚𝑗�̈� + 2𝑚𝑗�̇��̇� = −𝐹𝑒𝑥𝑡 sin(𝜒 − 𝜑) + 𝐹𝑡
 (3.1) 

 

which is exactly the same as (2.88). In this case 𝐹𝑟 and 𝐹𝑡 are not hydrodynamic forces, but 

the radial and the tangential friction forces due to the body pressing, acting at the point of 

contact 𝑃. 

It’s important, for a better interpretation of future results, to point out that, both in 

hydrodynamic and contact conditions, 𝐹𝑟 is positive if the force is discordant respect to 𝒆1,𝑗, 

while 𝐹𝑡 is positive if the force is concordant respect to 𝒆2,𝑗. 
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3.1.1  Radial force 

The radial force 𝐹𝑟 is applied in the direction perpendicular to the plane of contact and 

different models have been developed to explain the changes of this force on the contacting 

surface [18]. 

The best-known nonlinear force model for the contact between two spheres of isotropic 

materials was firstly developed by Hertz [19]. However, this law is restricted to frictionless 

surfaces and perfectly elastic solids; two hypothesis that are not verified in this application. 

Moreover, Hertz force model does not take into account the energy dissipation during the 

contact process, it cannot model the whole contact process accurately [20]. 

Lankarani and Nikravesh [21] utilized the general trend of the Hertzian contact law 

incorporated with a hysteresis damping factor to propose a continuous contact force model 

for the contact-impact analysis of multibody systems: 

 

 𝐹𝑟 = 𝐾𝛿𝑝
𝑛 + 𝐷𝛿�̇� (3.2) 

where:  

𝐾  is the generalized stiffness parameter (N/m); 

𝐷 is the hysteresis damping coefficient (Ns/m); 

𝛿𝑝 is the relative penetration depth (m), it will be defined in the following 

chapter; 

𝛿�̇� is the relative impact velocity (m/s); 

𝑛 exponential equal to 1.5 for metallic materials (-).  

 

In this work the contact occurs between two cylindrical shaped bodies. An 

experimentally validated contact force model, valid for cylindrical contact, is the Johnson 

model [22]. Unfortunately, due to its logarithmic form, its range of application is not 

general. Furthermore, the solution of Johnson equation requires a numerical iterative 

technique that may become computationally expensive. 

The most serious problem with the Lankarani and Nikravesh contact model is that it is not 

a good representation of cylindrical contact, leading to contact forces much lower than 

those predicted by the Johnson model, which is experimentally validated [23]. On the other 

hand, equation (3.2) has no mathematical limitation and it does not require the use of any 

iterative procedure. 

Pereira, Ramalho and Ambrosio [23] developed an enhanced cylindrical contact force 

model using the Johnson model as a reference, due to its accurate representation of 

cylindrical contact force, and the Lankarani and Nikravesh model as a template, due to its 

low computation expense. 
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The best correlation between the Johnson contact model and the new enhanced model is 

obtained in the form: 

 

 

𝐹𝑟 =
(𝑎𝐶 + 𝑏)𝐿𝐸∗

𝐶
𝛿𝑝

𝑛  (1 +
3(1 − 𝑐𝑒

2)

4

𝛿�̇�

𝛿�̇�
(−)
) (3.3) 

where:  

𝑎 = 0.965   for internal contact (-); 

𝑏 = 0.0965  for internal contact (m); 

𝐸∗ =
𝐸𝑏

1−𝜈𝑏
2 +

𝐸𝑗

1−𝜈𝑗
2 where 𝐸 and 𝜈 are, respectively, the Poisson’s ratio and 

Young’s modulus of the journal and the bearing (Pa); 

𝑐𝑒 = 0.9  is the restitution coefficient (-);  

𝛿�̇�
(−)

   is the relative initial normal impact velocity (m/s).  

 

For the exponential 𝑛, it was not possible to find a simple number to obtain a good fit for 

the complete range of clearances [23]: 

 

 𝑛 = 𝑌 𝐶−0.005 (3.4) 

where:  

𝑌 = {
1.51(𝑙𝑛(1000 𝐶))

−0.151
                    𝑖𝑓 𝐶 ∈ [0.005, 0.34954[ 𝑚𝑚

0.0151 𝐶 + 1.151                             𝑖𝑓 𝐶 ∈ [0.34954, 10.0[ 𝑚𝑚
  

 

It’s important to notice that equation (3.3) is valid only for the case where the energy 

dissipation is relatively small when compared to the maximum absorbed elastic energy, that 

is, the restitution coefficient is required to be near the unity [20]. Moreover, equation (3.3), 

was derived by Pereira, Ramalho and Ambrosio considering the geometrical and material 

properties of cylindrical bodies summarized in the following table: 

 

Property Range of variation 

Clearance 50 𝜇𝑚 ≤ 𝐶 ≤ 10 𝑚𝑚 

Young’s modulus 0.1 ≤ 𝐸 ≤ 0.5 

Poisson’s ratio 20.7 𝐺𝑃𝑎 ≤ 𝜈 ≤ 10000 𝐺𝑃𝑎 

Table 3.1:   Ranges of validity for equation (3.3). 
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3.1.2 Tangential friction force 

The friction phenomenon is generated when two contacting bodies slide or tend to slide 

from each other. The presence of friction manifests itself in the form of tangential forces 

generated on the contact surface and acting in a direction opposite to that of the relative 

motion between the two contacting bodies. Friction is a quite complex phenomenon which 

involves, for example, surface roughness, relative velocity, squeezing forces and it may lead 

to different friction regimes such as sliding and sticking [24]. 
 

In a journal bearing there are three different work conditions, linked to the sliding 

velocity 𝑣𝑡 between the contacting surfaces and the journal angular velocity 𝜔, that lead to 

three different types of friction force. The relative sliding velocity is given by the sum of two 

contributions: the journal angular velocity around its own centre and the relative angular 

velocity of the journal around the bearing centre: 

 

 𝑣𝑡 =  𝜔𝑅𝑗 + (𝑒 + 𝑅𝑗) �̇� (3.5) 

 

 Depending on the values of 𝑣𝑡 and 𝜔, each condition is explained one at the time: 

• 𝑣𝑡 ≠ 0  

In this case there is a relative velocity between the journal and the bearing, thus the 

system is working in dynamic friction condition. The most fundamental and 

simplest friction force model for sliding friction is the Coulomb’s law. This model 

relates tangential and normal components of reaction force at the contact point by 

the friction coefficient [25]. The definition of the Coulomb’s friction law poses 

numerical difficulties where the relative tangential velocity is in the vicinity of zero. 

The problem arises during the integration process of (3.1) because the friction force 

changes instantaneously from +𝐹𝑡 to −𝐹𝑡 for small positive and negative values of 

the relative velocity, which is perceived by the integration algorithm as a high 

frequency content in the dynamic response that leads to successive decreases in the 

integration time step and undesired oscillations (Figure 3.3) [26]. 

A continuous friction force-velocity model, compatible with the requirement for a 

stable integration, was presented by Ambrósio [27]: 

 

 𝑭𝑡 = −𝑓𝑑𝑐𝑑𝐹𝑟  
𝒗𝑡
|𝒗𝑡|

 (3.6) 
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where:  

𝑓𝑑  is the dynamic friction coefficient (-); 

𝐹𝑟 is the radial normal contact force (N); 

𝒗𝑡 is the sliding velocity (m/s); 

𝑐𝑑 = {

0       
|𝒗𝑡|−𝑣0

𝑣1−𝑣0

1      

 

𝑖𝑓    |𝒗𝑡|≤𝑣0       

𝑖𝑓    𝑣0<|𝒗𝑡|<𝑣1

𝑖𝑓    |𝒗𝑡|≥𝑣1          

  is the restitution coefficient (-), where 𝑣0 and

    𝑣1 are given tolerances for the relative  

    tangential velocity (m/s), as shown in  

    Figure 3.3. 

  

 

 

Figure 3.3:   Standard Coulomb’s friction law (left) and modified Coulomb’s 

friction law (right). 

 

Considering that 𝜔 and �̇� are defined positive if their direction is counter clockwise 

(Figure 2.8 and Figure 3.2), 𝑣𝑡 is positive if concordant with 𝒆2,𝑗 and negative 

otherwise. In relation with the sign convention defined in Figure 2.26 and Figure 

3.2 for 𝐹𝑟 and 𝐹𝑡, we can say that: 

 

 
{
𝐹𝑡 = −𝑓𝑑𝑐𝑑𝐹𝑟         𝑖𝑓   𝑣𝑡 > 0
𝐹𝑡 = 𝑓𝑑𝑐𝑑𝐹𝑟            𝑖𝑓   𝑣𝑡 < 0

 (3.7) 

 

• 𝑣𝑡 = 0 and 𝜔 = 0 

When, in a generic instant of time 𝑡, the journal does not rotate around its centre 

and the relative speed is zero, adherence between the journal and the bearing is 

obtained. The intention, here, is to understand if at the instant of time 𝑡 + 1 the 

FT

v0 v1
VT

FT

VT
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system will still work under static friction condition. From a physical point of view, 

static friction force acts in the opposite direction respect to that force which tends 

to generate a relative sliding between the surfaces in contact. This force, called active 

force, is the projection of the external load along the direction defined by 𝒆2,𝑗: 

 

 

The previous equation says that if 𝐹𝑒𝑥𝑡  𝑠𝑖𝑛Φ is positive then 𝐹𝑡 is concordant with 

𝒆2,𝑗  (𝐹𝑡 > 0), otherwise it’s discordant with 𝒆2,𝑗  (𝐹𝑡 < 0). 

Since the sliding speed is zero, the Coulomb’s model can be used to obtain the limit 

value for the static friction: 

 

 𝐹𝑡,𝑙𝑖𝑚 = −𝑓𝑎𝐹𝑟 (3.9) 

where:  

𝑓𝑎  is the static friction coefficient (-); 

𝐹𝑟 is the radial normal contact force (N). 

 

If the adherence between surfaces is maintained, the journal angular acceleration 

and speed with respect to the bearing centre (�̈�, �̇�) would be zero. Thus, the force 

equilibrium, along 𝒆2,𝑗 direction, of the journal free body diagram (Figure 3.2) is: 

 

 𝐹𝑡 = 𝐹𝑒𝑥𝑡  𝑠𝑖𝑛Φ (3.10) 

 

Now, the comparison between 𝐹𝑡 and 𝐹𝑡,𝑙𝑖𝑚 needs to be done: 

 

 |𝐹𝑡| ≤ |𝐹𝑡,𝑙𝑖𝑚| (3.11) 

 

If the result of (3.11) is true, it means that the static condition is maintained, thus 

�̈�, �̇� are actually zero, so the motion equations that have to be integrated at the 

instant of time 𝑡 + 1 become: 

 

 
{
𝑚�̈� = 𝐹𝑒𝑥𝑡 cos(𝜒 − 𝜑) − 𝐹𝑟
𝐹𝑡 = 𝐹𝑒𝑥𝑡  𝑠𝑖𝑛Φ                       

 (3.12) 

 

Otherwise, if (3.11) is false, the external force acting on the journal is too high and 

the system goes back to a dynamic friction condition (motion equations are (3.1)) 

where 𝐹𝑡 is given by (3.7); 

 𝑭𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐹𝑒𝑥𝑡  𝑠𝑖𝑛Φ (−𝒆2,𝑗) (3.8) 
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• 𝑣𝑡 = 0 and 𝜔 ≠ 0 

Under this speed values, equation (3.5) leads to: 

 

 
�̇� = −

𝜔𝑅𝑗

(𝑒 + 𝑅𝑗)
  (3.13) 

 

and the journal rolls without sliding on the bearing surface. Since there is no sliding 

in pure rolling condition, static friction force occurs at the contact point. By analogy 

with the previous case, it’s necessary to check if the journal maintain this work 

condition even in the next instant of time. 

The rotational equilibrium equation of the free body diagram (Figure 3.2) leads to: 

 

 
𝐹𝑡 =

𝐼𝑔  �̇�

𝑅𝑗
 (3.14) 

where:  

𝐼𝑔 =
𝑚𝑅𝑗

2

2
  journal moment of inertia relative to its axis (Kg m

2

); 

�̇�  journal angular acceleration with respect to its centre (rad/s
2

). 

 

The limit value for the static friction force is calculated in the same way as before 

(3.9), and, again, we procced with the comparison between 𝐹𝑡 and 𝐹𝑡,𝑙𝑖𝑚: 

 

 |𝐹𝑡| ≤ |𝐹𝑡,𝑙𝑖𝑚| (3.15) 

 

If (3.15) is true, the static friction condition is verified and the journal keeps its pure 

rotation motion over the bearing, otherwise, as it happened in the previous case, 

the external force acting on the journal is too high and the system goes back to a 

dynamic friction condition. Notice that in both pure rotation and dynamic 

conditions the motion equation are always the same (3.1); what changes is the 𝐹𝑡 

value, which is given by (3.14) in pure rotation condition and by (3.7) in dynamic 

condition.  
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   The journal motion equations are time-dependent differential equations and they are 

solved numerically by Simulink at each instant of time accordingly with the time step 

chosen. Now, the probability that the instants of time on which the equations are solved 

correspond with the instants of time where 𝑣𝑡 is equal to zero is very unlikely. Therefore, 

the detection of zero sliding velocity is entrusted to zero-crossing blocks, that give a Boolean 

true value as output if the input crosses a defined value (in our case zero). In Figure 3.4 is 

shown how the three work conditions previously explained have been implemented in 

Simulink. 

 

 

Figure 3.4:   Simulink implementation of tangential friction force. 
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3.2 Pressure distribution 

Even for the contact model, the pressure distribution over the journal surface needs to be 

calculated. The equation used for this purpose are the equations developed by Hertz in his 

contact theory. For the contact between two cylinders with parallel axes, the contact zone is 

a rectangle with length equal to 𝐿 and width equal to 2ℎ𝑤𝑖𝑑, where: 

 

 

ℎ𝑤𝑖𝑑 = √
𝐹𝑟
𝜋𝐿
 
1

𝐸∗∑𝜌
 (3.16) 

where:  

𝐹𝑟    is the contact normal force (3.3) (N); 

∑𝜌 =
1

𝑅𝑗
−

1

𝑅𝑏
    is the sum of curvatures (1/m). 

 

The pressure distribution is given by: 
 

 

𝑝 = 2
𝐹𝑟

𝜋𝐿ℎ𝑤𝑖𝑑
√1 − (

𝑥′

ℎ𝑤𝑖𝑑
)
2

  (3.17) 

where:  

𝑥′  is the axis whose origin is located where the contact occurs. 
 

The same space discretization used for the integration of Reynolds equation is used here 

to calculate the pressure distribution in contact condition. As we can see in Figure 3.5, the 

relation between the 𝑥 -axis and the 𝑥′-axis is: 𝑥′ = 𝑥 − 𝜋𝑅𝑗 . 

 

Figure 3.5:   Space discretization and relation between the coordinate 𝑥 and 𝑥′. 

The MATLAB function developed for the contact pressure distribution is available in 

Appendix B.
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Chapter 4                                                          

Mixed model 

If the lubricating film separating the surfaces is such to allow some contact between the 

asperities, then this type of lubrication is considered in the literature as “mixed” or “partial 

lubrication”. The contact load is shared between the contacting asperities and the film when 

mixed or partial lubrication prevails [3]. 

In the mixed model, hydrodynamic and contact models have been fused considering a 

parameter proposed by Tallian [28] that express the local film variation as a function of 

local surface roughness: 

 

 
𝜆𝑇 =

ℎ𝑚𝑖𝑛

√𝜎𝑗2 + 𝜎𝑏2
 

(4.1) 

where:  

ℎ𝑚𝑖𝑛 = 𝐶 − 𝑒  is the minimum film thickness (m); 

𝜎𝑗   is the RMS surface roughness of the journal (m); 

𝜎𝑗  is the RMS surface roughness of the bearing (m); 

𝜆𝑇  Tallian lambda (-). 

 

Using the Tallian lambda, it’s possible to discriminate the condition under which the system 

is working, as summarized in Table 4.1. 
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Tallian 

parameter range 
Description Model used 

𝜆𝑇 < 1 

Surface smearing or deformation accompanied 

by wear can occur. Certain contact between 

surfaces. 

Contact model 

(Chapter 3) 

1 ≤ 𝜆𝑇 < 1.5 

Surface distress is possible. The term “surface 

distress” means that surface glazing and 

spalling will occur. The original surface 

roughness has been suppressed by extreme 

plastic deformation of the asperities. 
Mixed model 

(Chapter 4) 

1.5 ≤ 𝜆𝑇 < 3 

Some glazing of the surface may occur; 

however, this glazing will not impair bearing 

operation or result in pitting.  

3 ≤ 𝜆𝑇 ≤ 4 Minimal wear can be expected with no glazing. 

𝜆𝑇 > 4 
Full separation of the surfaces by a lubricant 

film. 

Hydrodynamic 

lubrication model 

(Chapter 2) 

Table 4.1:   System work conditions as function of  𝜆𝑇 (adapted from [3]). 

 

The journal movement, in partial lubrication condition, is described by the same motion 

equations obtained in hydrodynamic and contact models (equations (2.88) and (3.1)). 

To be able to resolve the motion equations the forces 𝐹𝑟 and 𝐹𝑡 are needed. To guarantee 

the continuity between models, these forces are calculated using the radial and tangential 

forces coming from the hydrodynamic and contact models weighted as a function of the 

Tallian lambda. Therefore, when 𝜆𝑇 increases from 1 to 4 the radial and tangential forces 

coming from the contact model are progressively reduced from 100% to 0%, meanwhile 

the radial and tangential forces coming from the hydrodynamic model are progressively 

increased from 0% to 100%. Then, the weighted forces are added to each other to compose 

the mixed radial and tangential forces. The reverse thing happens when 𝜆𝑇 goes from 4 to 

1. 

The same procedure has been used for the determination of the friction force and the 

pressure distribution.  
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The scale parameters used the progressive variation of the forces are: 

 

 

{

𝜆𝑇−1

4−1
 

1 −
𝜆𝑇−1

4−1

  (4.2) 

 

where the first equation is used for the forces coming from the hydrodynamic model, while, 

the second one, for those coming from the contact model. 

In Figure 4.1, the Simulink implementation of the mixed model is displayed: 

 

 

Figure 4.1:   Simulink implementation of the mixed model. 

 

The Tallian parameter allows the definition of the penetration depth 𝛿𝑝, that was left in 

suspense in the previous chapter (equation (3.3)). Since the contact between the journal 

and the bearing surfaces starts when 𝜆𝑇 reaches 4, equation (4.1) allows the calculation of 

the eccentricity to which corresponds indentation equal to zero: 
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𝑒𝛿𝑝=0 = 𝐶 − 4√𝜎𝑗

2 + 𝜎𝑏2 (4.3) 

 

Thus, the penetration depth is: 

 

 
𝛿𝑝 = 𝑒 − 𝑒𝛿𝑝=0 = 𝑒 − (𝐶 − 4√𝜎𝑗

2 + 𝜎𝑏2) (4.4) 

 

Notice that (4.4) makes sense only for the mixed and contact models, i.e. for 𝑒 ≥ 𝑒𝛿𝑝=0 or 

𝜆𝑇 ≤ 4. 
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Chapter 5                                                          

Mechanism configuration 

The hydrodynamic lubrication and contact models require as input the relative angular 

speed between the journal and bearing surfaces (𝜔) and the direction of the external force 

(𝜑). These parameters can be obtained analysing the mechanism that provides the 

connection between the actuator and the primary flight control surface.  

Since this mechanism varies from aircraft to aircraft and depends on the surface that needs 

to be controlled, a simple configuration, composed by three links, has been chosen: 

 

 

Figure 5.1:   Geometric arrangement of redundant actuators [29]. 
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The mechanism is realized by the link of length ‘𝑙’ on which is mounted the actuator system, 

a frame of length ‘𝑡’ and inclination ‘휂’ respect to the horizontal line and a third link called 

“surface link” which is characterized by a L shape (with an angle ‘𝜉’), one side of length ‘𝑠’ 

and the other side of length ‘𝑙𝑠𝑢𝑟𝑓’. Thus, the link with the actuator can rotate around the 

frame in ‘O’, while the surface link in ‘Q’. 

The rod-end allows the connection between the piston rod and the surface link in ‘P’. To 

be more specific, the piston rod is fixed with the bearing of the rod-end, whereas the crank 

is connected with the journal, as visible in Figure 5.1. 

By using as input 휂, 𝑡, 𝑠, 𝑙 and the linear speed and acceleration of the piston 𝑙,̇ 𝑙 ̈, it is possible 

to calculate angular positions (𝛼, 𝛽, 𝛾), speeds (�̇�, �̇�, �̇�) and accelerations (�̈�, �̈�, �̈�) of one link 

with respect to each other. At first, these kinematic quantities are calculated in ideal 

conditions, i.e. considering that the rod-end journal is coaxial with the bearing (eccentricity 

equal to zero). Next, the effect of the rod-end presence will be considered on the 

mechanism, in particular to assess the error generated on the link of length ‘𝑠’ which will 

be used in the next chapter to solve the surface dynamic. 
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5.1 Ideal conditions 

Taking under consideration the mechanism scheme, in a generic configuration, 

represented in Figure 5.2, through the relative motion equations, the position, speed and 

acceleration of the point ‘P’ can be obtained. 
 

 

Figure 5.2:   Generic mechanism configuration under ideal conditions. 

 

In Figure 5.2, the kinematic quantities characterized by the apex “ ‘ “, describe the position, 

speed and acceleration of each link with respect the horizontal line, while the subscript ‘𝑖’ 

specifies that the variables are evaluated under ideal conditions. Once again, the arrow of 

each quantity describes the direction chosen as positive. 

Four reference systems are used: 

• the first one, with axis ‘𝑥’ and ‘𝑦’ placed in a generic position; 

• the second one characterized by a unit vector 𝝀𝑃𝑄, parallel to the side of the surface 

link of length ‘𝑠’, and a second unit vector 𝝁𝑃𝑄, perpendicular to the first. It is fixed 

in ‘P’; 

• the third one, similar to the previous one but related to the actuator link. The unit 

vectors are 𝝀𝑃𝑂 and 𝝁𝑃𝑂 ; 

• the fourth one, similar to the previous, but related to the frame link. The unit 

vectors are 𝝀𝑄𝑂 and 𝝁𝑄𝑂. 
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Now the relative motion equations are used. By expressing the motion of the point P with 

respect the point ‘O’: 

 

 

{

𝒓𝑃 = 𝒓𝑂 + 𝑙 𝝀𝑃𝑂                                                                         

𝒗𝑃 = 𝒗𝑂 + 𝑙𝛼′̇ 𝑖 𝝁𝑃𝑂 + 𝑙 ̇𝝀𝑃𝑂                                                    

𝒂𝑃 = 𝒂𝑂 + 𝑙𝛼′̈ 𝑖  𝝁𝑃𝑂+ 𝑙𝛼
′̇
𝑖
2
(−𝝀𝑃𝑂) + 2𝑙̇𝛼′̇ 𝑖  𝝁𝑃𝑂 + �̈� 𝝀𝑃𝑂

 (5.1) 

where 𝒗𝑂 and 𝒂𝑂 are zero. 

 

But the motion of ‘P’ can also be evaluated with respect to ‘Q’: 

 

 

{

𝒓𝑃 = 𝒓𝑄 + 𝑠 𝝀𝑃𝑄                                    

𝒗𝑃 = 𝒗𝑄 + 𝑠𝛾′̇ 𝑖 𝝁𝑃𝑄                              

𝒂𝑃 = 𝒂𝑄 + 𝑠𝛾′̈ 𝑖 𝝁𝑃𝑄 + 𝑠𝛾
′̇
𝑖

2
(−𝝀𝑃𝑄)

 (5.2) 

where 𝒗𝑄 and 𝒂𝑄 are zero. 

 

The relative motion equations of ‘Q’ with respect to ‘O’ are reduce to: 

 

 𝒓𝑄 = 𝒓𝑂 + 𝑡 𝝀𝑄𝑂 (5.3) 

 

From Figure 5.2 the relations between the kinematic quantities with and without the apex 

“ ‘ “ are obtained: 

 

 

            {

𝛾𝑖 = 𝛾
′
𝑖 − 휂 − 𝜋      

α𝑖 = 휂 − 𝛼
′
𝑖              

𝛽𝑖 = 2𝜋 − 𝛾
′
𝑖 + 𝛼

′
𝑖

 ⟹ {

�̇�𝑖 = 𝛾′̇ 𝑖          

α̇𝑖 = −𝛼′̇ 𝑖        

�̇�𝑖 = 𝛼′̇ 𝑖 − 𝛾′̇ 𝑖

⟹ {

�̈�𝑖 = 𝛾′̈ 𝑖          

α̈𝑖 = −𝛼′̈ 𝑖       

�̈�𝑖 = 𝛼′̈ 𝑖 − 𝛾′̈ 𝑖

 (5.4) 

 

In conclusion the relation between the reference systems fixed in ‘P’ is: 

 

 
{
𝝀𝑃𝑄 = 𝑐𝑜𝑠 (𝛾

′
𝑖 − 𝛼

′
𝑖) 𝝀𝑃𝑂 + 𝑠𝑖𝑛 (𝛾

′
𝑖 − 𝛼

′
𝑖)𝝁𝑃𝑂 = 𝑐𝑜𝑠 𝛽𝑖  𝝀𝑃𝑂 − 𝑠𝑖𝑛 𝛽𝑖  𝝁𝑃𝑂     

𝝁𝑃𝑄 = −𝑠𝑖𝑛 (𝛾
′
𝑖 − 𝛼

′
𝑖) 𝝀𝑃𝑂 + 𝑐𝑜𝑠 (𝛾

′
𝑖 − 𝛼

′
𝑖) 𝝁𝑃𝑂 = 𝑠𝑖𝑛 𝛽𝑖  𝝀𝑃𝑂 + 𝑐𝑜𝑠 𝛽𝑖  𝝁𝑃𝑂

 

 

{
𝝀𝑄𝑂 = cos(휂 − 𝛼

′
𝑖)  𝝀𝑃𝑂 + 𝑠𝑖 𝑛(휂 − 𝛼

′
𝑖)𝝁𝑃𝑂 = cos α𝑖  𝝀𝑃𝑂 + 𝑠𝑖𝑛 α𝑖  𝝁𝑃𝑂             

𝝁
𝑄𝑂
= −𝑠𝑖 𝑛(휂 − 𝛼′𝑖) 𝝀𝑃𝑂 + cos(휂 − 𝛼

′
𝑖)𝝁𝑃𝑂 = −𝑠𝑖𝑛 α𝑖  𝝀𝑃𝑂 + cos α𝑖  𝝁𝑃𝑂        

 

(5.5) 

 

The unknown kinematic quantities can be obtained noticing that position, speed and 

acceleration of ‘P’, evaluated with respect to ‘O’ and ‘Q’, must be equal. Thus, equations 

(5.1) and (5.2) can be equalled one by one. 



Chapter 5 - Mechanism configuration 

 

 86 

5.1.1 Angular positions 

By equalling the first equations of (5.1) and (5.2), and using (5.5): 

 

 𝑙 𝝀𝑃𝑂 = (𝑡 𝑐𝑜𝑠α𝑖 + s 𝑐𝑜𝑠𝛽𝑖) 𝝀𝑃𝑂 + (𝑡 𝑠𝑖𝑛α𝑖 − s 𝑠𝑖𝑛𝛽𝑖) 𝝁𝑃𝑂 (5.6) 

 

Thus, the angle between the actuator rod and the surface link is obtained: 

 

 
𝛽𝑖 = 𝑎𝑐𝑜𝑠 (

𝑙 − 𝑡 𝑐𝑜𝑠α𝑖
𝑠

) (5.7) 

 

The angles 𝛾𝑖 and α𝑖 are evaluated using the law of cosines: 

 

 

{
 
 

 
 𝛾𝑖 = 𝑎𝑐𝑜𝑠 (

𝑡2 + 𝑠2 − 𝑙2

2𝑠𝑡
)

α𝑖 = 𝑎𝑐𝑜𝑠 (
𝑙2 + 𝑡 − 𝑠2

2𝑙𝑡
)

 (5.8) 

5.1.2 Angular velocities 

By equalling the second equations of (5.1) and (5.2), and using (5.5): 

 

 𝑙𝛼′̇ 𝑖 𝝁𝑃𝑂 + 𝑙 ̇𝝀𝑃𝑂 =  𝑠𝛾′̇ 𝑠𝑖𝑛𝛽𝑖 𝝀𝑃𝑂 + 𝑠𝛾′̇ 𝑐𝑜𝑠𝛽𝑖 𝝁𝑃𝑂 (5.9) 

 

Considering again (5.4), the angular velocities are obtained: 

 

 

{
 
 
 

  
 �̇�𝑖 = 𝛾′̇ 𝑖 =

𝑙̇

𝑠 𝑠𝑖𝑛𝛽𝑖
                              

α̇𝑖 = −𝛼′̇ 𝑖 = −
𝑙̇

𝑙 𝑡𝑎𝑛𝛽𝑖
                       

�̇�𝑖 = 𝛼′̇ 𝑖 − 𝛾′̇ 𝑖 =
𝑙̇

𝑙 𝑡𝑎𝑛𝛽𝑖
−

𝑙̇

𝑠 𝑠𝑖𝑛𝛽𝑖

 (5.10) 
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5.1.3 Angular accelerations 

By equalling the third equations of (5.1) and (5.2), and using (5.5): 

 

 (𝑙𝛼′̈ 𝑖 + 2𝑙̇𝛼′̇ 𝑖) 𝝁𝑃𝑂 + (�̈�− 𝑙𝛼
′̇
𝑖
2
)  𝝀𝑃𝑂 = 

= (𝑠𝛾′̈ 𝑖 𝑠𝑖𝑛𝛽𝑖 − 𝑠𝛾
′̇
𝑖

2
𝑐𝑜𝑠 𝛽𝑖) 𝝀𝑃𝑂 + (𝑠𝛾′̈ 𝑖 𝑐𝑜𝑠 𝛽𝑖 + 𝑠𝛾

′̇
𝑖

2
𝑠𝑖𝑛𝛽𝑖)  𝝁𝑃𝑂 

(5.11) 

 

Considering again (5.4), the angular accelerations are obtained: 

 

 

{
  
 

  
 �̈�𝑖 = 𝛾

′̈
𝑖 =

𝑙̈ + 𝑙α̇𝑖
2 + 𝑠�̇�𝑖

2𝑐𝑜𝑠𝛽𝑖
𝑠 𝑠𝑖𝑛𝛽𝑖

                                                                               

α̈𝑖 = −𝛼′̈ 𝑖 = −
2𝑙α̇̇𝑖 + 𝑠�̈�𝑖𝑐𝑜𝑠𝛽𝑖 + 𝑠�̇�𝑖

2𝑠𝑖𝑛𝛽𝑖
𝑙

                                                      

�̈�𝑖 = 𝛼′̈ 𝑖 − 𝛾′̈ 𝑖 = −
2𝑙̇α̇𝑖 + 𝑠�̈�𝑖𝑐𝑜𝑠𝛽𝑖 + 𝑠�̇�𝑖

2𝑠𝑖𝑛𝛽𝑖
𝑙

−
𝑙̈ + 𝑙α̇𝑖

2 + 𝑠�̇�𝑖
2𝑐𝑜𝑠𝛽𝑖

𝑠 𝑠𝑖𝑛𝛽𝑖

 (5.12) 
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5.2 Real conditions 

As already said, the rod-end model described previously is able to give at any instant of 

time the relative position (𝑒, 𝜒), speed (�̇�, �̇�), and acceleration (�̈�, �̈�), of the journal centre 

with respect to the bearing centre. Thus, the presence of the rod-end modifies the ideal 

configuration exposed in the previous subchapter introducing errors on the kinematic 

quantities of the elements of the mechanism. The rod-end effects are called errors because 

they generate a variation of position of the link of length ‘𝑠’ and, thus, of the controlled 

surface position, and its derivatives, respect a condition where the connection is realized 

with an ideal joint. 

 

 

Figure 5.3:   Generic mechanism configuration in real conditions (thick lines) compared with the 

relative configuration in ideal conditions (thin lines). 

 

In Figure 5.3, the effect of the rod-end is shown, where, in order to maintain the scheme 

easy to read, only the position quantities are displayed and the eccentricity value has been 

considerably enlarged respect the other dimension of the system. 

For a given set of values coming from the rod-end model (𝑒, 𝜒) and a fixed position of the 

actuator (𝑙), the links of the mechanism will be arranged in a certain position as function of 

their degrees of freedom: 

O

Q

P

η

αi

γ

β
t

l

α

s

e

χ

eα

eγ

O
j

Ob

δ

eδ



Chapter 5 - Mechanism configuration 

 

 89 

• the actuator link will rotate around the frame in ‘O’ generating the error 𝑒𝛼; 

• the surface link will rotate around the frame in ‘Q’ generating the error 𝑒𝛾 for the 

side of length ‘𝑠’; 

• the frame, as such, will maintain its position. 

Thus, as shown in Figure 5.3, the mechanism, under real condition, can be modelled as a 

articulated quadrilateral where the connecting rod is given by the connection between the 

journal and the bearing centres. 

The goal of this subchapter is the calculation of the real kinematic quantities of the links of 

the mechanism for given values of 𝑒, 𝜒, 𝑙 and the associated derivatives. This can be done 

considering the loop closure equations for the articulated quadrilateral and the small-angle 

approximation. 

5.2.1 Angular positions 

By projecting the links of the mechanism along the parallel and perpendicular directions 

of the frame, the loop closure equations are obtained: 

 

 
{
𝑙 𝑐𝑜𝑠(α𝑖 + 𝑒α) + 𝑒 𝑠𝑖𝑛(𝜒 − 휂) + 𝑠 𝑐𝑜𝑠(𝛾𝑖 + 𝑒𝛾) = 𝑡

𝑙 𝑠𝑖𝑛(α𝑖 + 𝑒α) + 𝑒 𝑐𝑜𝑠(𝜒 − 휂) = 𝑠 𝑠𝑖𝑛(𝛾𝑖 + 𝑒𝛾)        
 (5.13) 

where the unknown quantities are α = α𝑖 + 𝑒α and 𝛾 = 𝛾𝑖 + 𝑒𝛾. 

 

Since the eccentricity 𝑒 is very small, the small-angle approximation can be used for 𝑒α and 

𝑒𝛾: 
 

 {
𝑠𝑖𝑛휃 ≅ 𝑡𝑎𝑛휃 ≅ 휃

𝑐𝑜𝑠휃 ≅ 1
 (5.14) 

 

The system of equations (5.13) can be solved using the substitution method: 

 

 

{
  
 

  
 

 
 
 
 
 
 
 
 

 

𝑒𝛾 =
𝑙 (𝑐𝑜𝑠α𝑖 + 𝑡𝑎𝑛α𝑖  𝑠𝑖𝑛α𝑖) + 𝑠 (𝑐𝑜𝑠𝛾𝑖 − 𝑡𝑎𝑛α𝑖 𝑠𝑖𝑛𝛾𝑖)

𝑠 (𝑡𝑎𝑛α𝑖  𝑐𝑜𝑠𝛾𝑖 − 𝑠𝑖𝑛𝛾𝑖)
+ 

+
𝑒 (𝑡𝑎𝑛α𝑖 𝑐𝑜𝑠(𝜒 − 휂) + 𝑠𝑖𝑛(𝜒 − 휂)) − 𝑡

𝑠 (𝑡𝑎𝑛α𝑖 𝑐𝑜𝑠𝛾𝑖 − 𝑠𝑖𝑛𝛾𝑖)
 

 

𝑒α =
1

𝑐𝑜𝑠α𝑖
(
𝑠 (𝑠𝑖𝑛𝛾𝑖 + 𝑐𝑜𝑠𝛾𝑖 𝑒𝛾) − 𝑒 𝑐𝑜𝑠(𝜒 − 휂)

𝑙
− 𝑠𝑖𝑛α𝑖) 

(5.15) 
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Thus, the unknown angular positions are obtained: 

 

 {
α = α𝑖 + 𝑒α
𝛾 = 𝛾𝑖 + 𝑒𝛾

 (5.16) 

 

The error on the angle 𝛽 can be evaluated with simple considerations about triangles. The 

sum of the internal angles of a triangle is equal to 𝜋 rad: 

 

 {
α𝑖 + 𝛾𝑖 + 𝛽𝑖 = 𝜋
α + 𝛾 + 𝛽 = 𝜋   

 (5.17) 

 

thus, substituting (5.16) into (5.17): 

 

 𝑒𝛽 = −(𝑒α + 𝑒𝛾) (5.18) 

 

The angle between the actuator and surface links is: 

 

 𝛽 = 𝛽𝑖 + 𝑒𝛽 (5.19) 

5.2.2 Angular velocities 

The real angular velocities can be obtained by deriving the loop closure equations (5.13):  

 

 

{
 
 

 
 

 
 
 
 
 
 

 

𝑙 ̇𝑐𝑜𝑠α − 𝑙 𝑠𝑖𝑛α (α̇𝑖 + 𝑒α̇) + �̇� 𝑠𝑖𝑛(𝜒 − 휂) + 𝑒 𝑐𝑜𝑠(𝜒 − 휂) �̇� + 

−𝑠 𝑠𝑖𝑛𝛾 (�̇�𝑖 + 𝑒�̇�) = 0 

 

𝑙 ̇𝑠𝑖𝑛α + 𝑙 𝑐𝑜𝑠α (α̇𝑖 + 𝑒α̇) + �̇� 𝑐𝑜𝑠(𝜒 − 휂) − 𝑒 𝑠𝑖𝑛(𝜒 − 휂) �̇� = 

=  𝑠 𝑐𝑜𝑠𝛾 (�̇�𝑖 + 𝑒�̇�) 

(5.20) 

 

Again, using the substitution method: 

 

{
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 

𝑒�̇� = −�̇�𝑖 +
𝑙 (𝑡𝑎𝑛α 𝑠𝑖𝑛α + 𝑐𝑜𝑠α) + �̇� (𝑡𝑎𝑛α 𝑐𝑜𝑠(𝜒 − 휂) + 𝑠𝑖𝑛(𝜒 − 휂))

𝑠 (𝑡𝑎𝑛α 𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛾)
+ 

+
𝑒�̇� (𝑐𝑜𝑠(𝜒 − 휂) − 𝑡𝑎𝑛α 𝑠𝑖𝑛(𝜒 − 휂))

𝑠 (𝑡𝑎𝑛α 𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛾)
 

𝑒α̇ = −α̇𝑖 +
1

𝑙 𝑐𝑜𝑠α
(𝑠 𝑐𝑜𝑠𝛾 (�̇�𝑖 + 𝑒�̇�) − �̇� 𝑐𝑜𝑠(𝜒 − 휂)) + 

+
1

𝑙 𝑐𝑜𝑠α
(𝑒 𝑠𝑖𝑛(𝜒 − 휂) �̇� − 𝑙̇ 𝑠𝑖𝑛α) 

(5.21) 
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By deriving equations (5.16) and (5.18), we obtain: 

 

 

{

α̇ = α̇𝑖 + 𝑒α̇
γ̇ = �̇�𝑖 + 𝑒�̇�

�̇� = �̇�𝑖 + 𝑒�̇�

 (5.22) 

5.2.3 Angular accelerations 

By deriving once again the loop closure equations (5.20) and using the substitutional 

method: 

 

{
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

𝑒�̈� = −�̈�𝑖 +
(𝑙̈ − 𝑙α̇2)(𝑡𝑎𝑛α 𝑠𝑖𝑛α + 𝑐𝑜𝑠α) + 2𝑙α ̇ (𝑡𝑎𝑛α 𝑐𝑜𝑠α − 𝑠𝑖𝑛α)

𝑠 (𝑡𝑎𝑛α 𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛾)
+ 

+
𝑠γ̇2(𝑡𝑎𝑛α 𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛾) + (�̈� − 𝑒�̇�2) (𝑡𝑎𝑛α 𝑐𝑜𝑠(𝜒 − 휂) + 𝑠𝑖𝑛(𝜒 − 휂))

𝑠 (𝑡𝑎𝑛α 𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛾)
+ 

+
(2�̇��̇� + 𝑒�̈�) (𝑐𝑜𝑠(𝜒 − 휂) − 𝑡𝑎𝑛α 𝑠𝑖𝑛(𝜒 − 휂))

𝑠 (𝑡𝑎𝑛α 𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛𝛾)
 

 

𝑒α̈ = −α̈𝑖 +
1

𝑙 𝑐𝑜𝑠α
(𝑠 𝑐𝑜𝑠𝛾 (�̈�𝑖 + �̈�𝛾) − 𝑠γ̇

2 𝑠𝑖𝑛𝛾 − (𝑙̈ − 𝑙α̇2)𝑠𝑖𝑛α − 2𝑙α ̇ 𝑐𝑜𝑠α) 

+
1

𝑙 𝑐𝑜𝑠α
((2�̇��̇� + 𝑒�̈�) 𝑠𝑖𝑛(𝜒 − 휂) − (�̈� − 𝑒�̇�2) 𝑐𝑜𝑠(𝜒 − 휂)) 

(5.23) 

 

By deriving equations (5.22) we obtain: 

 

 

{

α̈ = α̈𝑖 + �̈�α
�̈� = �̈�𝑖 + �̈�𝛾

�̈� = �̈�𝑖 + �̈�𝛽

 (5.24) 

 
 

   The above equations represent the complete analysis of the mechanism; the relative 

velocity between the journal and the bearing is �̇� and it is given by (5.22), meanwhile the 

direction of the external force action on the journal can be obtained noticing that it is always 

perpendicular to the link of length ’𝑠’ thus: 

 

 𝜑 = 𝛾 + η (5.25) 

where 𝛾 is given by (5.16) using (5.8) and (5.15). 

 

The study of the dynamic behaviour of the surface is described in the following chapter.  
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5.3 Piston rod actions 

Regardless the work condition of the system (hydrodynamic, mixed or contact), the forces 

acting on the journal are: 

• the radial force 𝐹𝑟, which is positive if the force vector is discordant respect to 𝒆1,𝑗; 

• the tangential force 𝐹𝑡 and the friction force 𝐹𝑓𝑟𝑖𝑐𝑡 , which are positive if the force 

vector is concordant respect to 𝒆2,𝑗. It is recalled that for the contact model the 

tangential force is due to the friction phenomenon thus, 𝐹𝑡 and 𝐹𝑓𝑟𝑖𝑐𝑡  coincide. For 

the hydrodynamic model, instead, the tangential force is the result of the Reynolds 

equation and it contributes to the journal sustenance, meanwhile the friction force 

is the braking effect generated by the lubricant due to the rotation of the journal. 

Using the action-reaction law and moving correctly the forces on the bearing centre by 

adding the transportation moments, the actions at the end of the piston rod can be obtained.  

The three reference systems involved in the calculation are shown in Figure 5.4, together 

with the bearing and the piston rod: 

 

 

Figure 5.4:   Reference systems reported on the bearing centre. 

 

where 𝒆1,𝑟 and 𝒆2,𝑟 are the unit vectors of the reference system fixed in the bearing centre 

and with parallel and perpendicular axis with respect to the piston rod.  
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By projecting the journal reference system on the piston rod: 

 

 
{
𝒆1,𝑗 = 𝑐𝑜𝑠 (𝜒 − 𝛼′) 𝒆1,𝑟 + 𝑠𝑖𝑛 (𝜒 − 𝛼′) 𝒆1,𝑟
𝒆2,𝑗 = 𝑠𝑖𝑛 (𝜒 − 𝛼′) 𝒆1,𝑟 − 𝑐𝑜𝑠 (𝜒 − 𝛼′) 𝒆1,𝑟

 (5.26) 

 

Thus, the axial and normal forces acting on the piston rod are: 

 

 
{
𝐹𝑎,𝑟 = −𝐹𝑡  𝑐𝑜𝑠 (𝜒 − 𝛼′) + 𝐹𝑟  𝑠𝑖𝑛 (𝜒 − 𝛼′)

𝐹𝑛,𝑟 = −𝐹𝑡  𝑠𝑖𝑛 (𝜒 − 𝛼′) − 𝐹𝑟  𝑐𝑜𝑠 (𝜒 − 𝛼′)
 (5.27) 

where: 

𝐹𝑎,𝑟 is the rod axial force (N); if positive, it tends to let the piston rod out of the 

sleeve; 

𝐹𝑛,𝑟 is the rod normal force (N); if positive, it generates a tension of the piston 

rod inferior fibres. 

 

Since the radial and tangential forces aren’t applied at the bearing centre (see Figure 2.26 

and Figure 3.2), different transportation moments are needed as function of the work 

condition: 

 

 

𝑀𝑡𝑟𝑎𝑠 = {

−𝐹𝑡  𝑒                               

−𝐹𝑡  (𝑒 + 𝑅𝑗)                  

−𝐹𝑡,ℎ  𝑒 − 𝐹𝑡,𝑐 (𝑒 + 𝑅𝑗)

    

𝑓𝑜𝑟 ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛                  

𝑓𝑜𝑟 𝑚𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛                      

 (5.28) 

 

where 𝐹𝑡,ℎ and 𝐹𝑡,𝑐 are the contributions to the tangential force respectively given by the 

hydrodynamic and contact models, when the system is working under mixed condition. 

The last action on the piston rod is given by the friction torque due to the movement of the 

journal into the lubricant: 

 

 𝑇𝑓𝑟𝑖𝑐𝑡 = 𝐹𝑓𝑟𝑖𝑐𝑡  𝑅𝑗         𝑓𝑜𝑟 ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑛𝑑 𝑚𝑖𝑥𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 (5.29) 

 

As expressed by (5.29), the friction effect given by the lubricant under contact condition 

has been neglected because it is smaller than the friction generated by the contact between 

metals. 

Both 𝑀𝑡𝑟𝑎𝑠  and 𝑇𝑓𝑟𝑖𝑐𝑡  , are positive if they generate a tension of the piston rod inferior fibres. 
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Chapter 6                                                          

Implementation and results 

The numerical verification of the rod-end model has been performed after its 

implementation into a Electro-Hydraulic Servo-Actuator (EHSA) model developed by 

Politecnico di Torino and provided to me by my university tutor. 

The EHSA considered in this work is a typical electrohydraulic primary flight control 

actuator and its reference architecture is shown in Figure 6.1. 

 

 

Figure 6.1:   EHSA reference architecture [30]. 

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018 

4 

 
Figure 1. EHSA reference architecture 

In the application considered in this feasibility study, two 
equal EHSAs, mounted in parallel, control the position of a 
primary flight control surface, and are operated in an active-
standby mode.  At the beginning of each flight, one EHSA is 
activated, while the other one is kept in standby mode, and is 
activated in case of failure of the first one.  The roles of the 
two EHSAs are periodically exchanged.  

5. HIGH-FIDELITY MATHEMATICAL MODEL 

A high-fidelity mathematical model is an essential tool to 
allow performing simulations of the equipment behavior in 
realistic flight conditions, thereby collecting data similar to 
those that could be obtained in flight.  The following sub-
paragraphs present the main features of the model. 

5.1. Model characteristics 

The mathematical model is a physics-based high-fidelity 
model made up by a complex set of differential and algebraic 
equations defining the relationships among the state variables 
and the physical parameters of all components of the EHSA.  
The model fully describes the set of two EHSAs working in 
active-standby mode to control the position of the flight 
control surface.  Figure 2 shows the schematics of the 
interconnection between the two EHSAs (Actuator 1, 
Actuator 2) and the flight control surface subjected to the 
aerodynamic load.  The mechanical connection between 
actuator and aerodynamic surface takes into account stiffness 
(ksa), structural damping (csa) and backlash (B).  External 
damping associated to the surface movement in the 
atmosphere (cext) is also considered as well as the inertia of 
the aerodynamic surface. 

 
Figure 2: Schematics of the connection between the EHSAs 

and the flight controil surface 

The servo-valve torque motor is modelled using the Urata 
(2007a) magnetic circuit model. Applying the proposed 
equations is possible to express the torque generated as a 
function of the magnetic flux density of each air-gap. The 
model also takes into account the influence of unequal air-
gap thickness in servo valve torque motor, this is achieved by 
expressing the reluctance of the air-gap as a function of air-
gap thickness. 

The torque obtained from the modeling of the torque motor 
is combined with the dynamic equations of the servo-valve 
jet pipe. The position of the jet pipe causes a different 
pressure recovery in the receiving ducts with ensuing 
variation of the pressures at the two opposite sides of the 
second stage spool of the servovalve.  These pressures 
determined are then used in the dynamic equation of the spool 
to calculate the opening of the servo-valve metering ports. 
The equations that describe the kinematic system take into 
account the influence of the feedback spring force, coulomb 
and viscous friction and structural stiffness and damping.  

Starting from the position of the servo-valve spool, the flow 
resistance and continuity equations are written for the 
hydraulic sub-system made up by servo-valve, passageways 
and hydraulic linear actuator that allow computing the 
pressures in the two chambers of the actuator. 

A 3-Degree-of-Freedom model describes the hydraulic linear 
actuator dynamics.  In fact, the mathematical model considers 
the following state variables relevant to the positions:  

 Position of the flight control surface 
 Position of the actuator output rod 
 Position of the underlying airframe structure, that 

deforms elastically when subjected to the actuator 
reaction loads 

It must also be noted that the model takes into account the 
dynamics of the two actuators connected to the flight control 
surface (Figure 2) acting in active-standby mode. The 
actuator model also considers the effect of coulomb friction 
as a function of the dynamic condition of the rod and of the 

giocogioco

spessore
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It is composed of the hydraulic and the control parts. The first consists of one 

electrohydraulic servo-valve and a linear hydraulic actuator. The servo-valve is of the jet 

pipe type and it is made up of two stages with the first stage receiving the current command 

as the input and using the torque motor in order to move the jet projector thus creating a 

pressure differential between the two sides of the second stage spool, which controls the 

flow to the hydraulic actuator. The control structure uses a linear position transducer as the 

feedback sensor for closed loop position control [30]. 

The position of a primary flight surface is generally controlled by more than one Electro-

Hydraulic Servo-Actuator, thus two equal EHSAs, mounted in parallel, have been 

considered during the modelling. At the beginning of each flight, one EHSA is activated, 

while the other one is kept in standby mode, and it is activated in case of failure of the first 

one. 
 

The double active-standby system was developed considering a mono-dimensional 

interconnection between the actuators and the controlled surface; therefore it is necessary 

to adapt the bi-dimensional results obtained in the previous chapters in order to ensure a 

good implementation of the rod-end, still maintaining the same configuration of the 

complete model. 

The rod-end implementation into a mono-dimensional configuration is shown in Figure 

6.2. 

 

 

Figure 6.2:   Connection between the EHSAs and the flight control surface. 
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The rod-end model has been implemented only on the active actuator line for two main 

reasons: the first one is because the active actuator balances almost by itself the aerodynamic 

load and the second one is to reduce the time needed by the simulator to execute the 

simulation. 

The free body diagrams of the surface, piston and sleeve for the active actuator lead to 

following equilibrium equations. 

For the piston: 

 

 𝑚𝑟�̈�𝑟 + 𝐹𝑓𝑟𝑖𝑐𝑡 𝑝,𝑠 = (𝑝1 − 𝑝2)𝐴𝑟 + 𝐹𝑎,𝑟 (6.1) 

 

for the sleeve: 

 

 𝑚𝑐�̈�𝑐 + 𝐶𝑠𝑎 �̇�𝑐 +𝐾𝑠𝑎𝑥𝑐 + (𝑝1 − 𝑝2)𝐴𝑐 = 𝐹𝑓𝑟𝑖𝑐𝑡 𝑝,𝑠 (6.2) 

 

for the surface: 

 

 𝑚𝑙�̈�𝑙 + 𝐶𝑡(�̇�𝑙 − �̇�𝑗) + 𝐶𝑡(�̇�𝑙 − �̇�𝑟,𝑠) + 𝐶𝑒𝑥𝑡,2�̇�𝑙 + 𝐾𝑡(𝑥𝑙 − 𝑥𝑗) + 

+𝐾𝑡(𝑥𝑙 − 𝑥𝑟,𝑠)+𝐹𝑎𝑟𝑒𝑜 = 0 
(6.3) 

 

where: 

𝑚𝑟 , 𝑚𝑐 , 𝑚𝑙  are, respectively, the piston rod, the sleeve and the surface masses 

(Kg); 

𝐴𝑟 ,  𝐴𝑐  are, respectively, the active piston areas of the piston and the sleeve 

(m
2

); 

𝐹𝑓𝑟𝑖𝑐𝑡 𝑝,𝑠 is the friction force generated between the piston and the sleeve (N); 

𝐾𝑠𝑎 , 𝐶𝑠𝑎  are, respectively, the structural stiffness (N/m) and damping (Ns/m) 

coefficients; 

𝐾𝑡 , 𝐶𝑡   are, respectively, the attachment surface stiffness (N/m) and 

damping (Ns/m) coefficients; 

𝐶𝑒𝑥𝑡,2  is the damping coefficient associated to the driving mechanism of 

the surface (Ns/m); 

𝐹𝑎𝑟𝑒𝑜  is the aerodynamic load (N). 
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Equations (6.1), (6.2) and (6.3) describe the linear actuator dynamic considering the 

following state variables relevant to the position: 

• position of the flight control surface, 𝑥𝑙 (m); 

• position of the rod-end journal of the active actuator reported on the mono-

dimensional configuration, 𝑥𝑗 (m); 

• positions of the actuator rods, 𝑥𝑟 and  𝑥𝑟,𝑠 (m); 

• positions of the cylinders, 𝑥𝑐  and  𝑥𝑐,𝑠 (m). 

For the standby actuator (whose parameters are characterized by the subscript , 𝑠) similar 

equations to (6.1) and (6.2) can be written. 

Now, the correlation among 𝑥𝑟 , �̇�𝑟 , �̈�𝑟  and 𝑥𝑗 , �̇�𝑗 , �̈�𝑗 needs to be defined. This can be 

obtained analysing again the real bi-dimensional configuration of the mechanism, shown in 

Figure 5.3. In this configuration 𝐾𝑡  and 𝐶𝑡 represent the stiffness and damping coefficients 

between the link of length ‘𝑠’ and the controlled surface, due to the materials compliance. 

Thus, the equilibrium equation (6.3) describes the surface dynamic with respect to the link 

of length ‘𝑠’. 

As already said, the point ‘P’ represents the position of the journal and bearing centres 

under ideal conditions, whereas the point ‘Oj’ is the position of the journal centre in a 

generic real condition, which are respectively related to 𝑥𝑟  and 𝑥𝑗 in the mono-dimensional 

configuration. 

The rod-end journal is connected to the link of length ‘𝑠’, thus the position, speed and 

acceleration of this link respect to its ideal conditions are expressed by 𝑒𝛾 , �̇�𝛾 , �̈�𝛾. Therefore, 

reporting these errors in the mono-dimensional case, the correlation between 𝑥𝑟 and 𝑥𝑗 is 

obtained: 

 

 𝑥𝑗 = 𝑥𝑟 + 𝑠𝑒𝛾 (6.4) 

 

By deriving equation (6.4): 

 

 
{
�̇�𝑗 = �̇�𝑟 + 𝑠�̇�𝛾
�̈�𝑗 = �̈�𝑟 + 𝑠�̈�𝛾

 (6.5) 

 

Where 𝑒𝛾, �̇�𝛾, �̈�𝛾 are calculated using equations (5.15), (5.21) and (5.23). 
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In Figure 6.3, the rod-end model implementation into the Simulink environment of the 

EHSA complete model is shown. Since the control structure has not been modified by the 

rod-end implementation, this part is not displayed in the following figure. 

 

 

Figure 6.3:   Simulink implementation of the rod-end model. 

 

Focusing on the active line, the actuation system gives the position of the actuator output 

rod, and its derivatives (equations (6.1), (6.2)), to the rod-end block which generates as 

output the position and speed of the journal reported on the mono-dimensional 

configuration and the axial force acting on the rod. The axial force is reported backwards 

as input for the actuation system, while the journal position and speed are given to the 

surface block along with the aerodynamic force and the position and speed of the standby 

actuator rod. The surface block solve equation (6.3) and gives the position and speed of 

the surface and the external force acting on the rod-end which is reported backwards to this 

block.  
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6.1 Numerical verification 

The rod-end model numerical verification is carried out using the EHSA complete model 

and giving, as input, a square wave command. But first the geometric characteristics of the 

rod-end need to be defined. The rod-end choice was mainly made considering the EHSA 

rod diameter, which is equal to 0.0476 m.  

The SI70ES female series rod-end from AST bearing has been chosen as reference rod-

end. The values of interest are summarized in Table 6.1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1:   Reference rod-end data (adapted from [42]). 

 

In Figure 6.4 the response of the mathematical system to a square wave command with 

amplitude equal to 50% of the actuator stroke is displayed. The surface position is obtained 

for two values of clearance between the journal and the bearing in order to show the 

accuracy error generated by the rod-end. 

The red line shows the surface position for a null value of the clearance, which represents 

the situation where the rod-end is replaced with an ideal joint. Meanwhile, the green line 

shows the surface position with a degraded rod end housing where, due to an anomalous 

wear, the clearance has reached 2 mm. Such a high value of internal free play, which is 

hardly obtainable in real rod-ends, has been chosen to clearly show the effects of the rod-

end presence. As visible, the green line is clearly distanced from the red one leading to 

accuracy errors. 

 

 

Data 
Symbol, 

unit of measurement 
Value 

Width 𝐿, [m] 0.049 

Sphere/Journal radius 𝑅𝑗, [m] 0.046 

Clearance range C, [𝜇m] 65 - 165 

Thread size      - M56x4 

Rod-end mass 𝑚, [Kg] 8.3 

Sphere/Journal mass 𝑚𝑗 , [Kg] 2 
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Figure 6.4:   System response to a square wave command. 

 

The following figures express the degraded rod-end (clearance equal to 2 mm) behaviour. 

In Figure 6.5 the rod-end model inputs are displayed. Moving from the upper graph to the 

bottom one, we have the external force (𝐹𝑒𝑥𝑡) and its direction (𝜑) followed by the journal 

angular velocity (𝜔) and the temperature (𝑇, which was kept equal to 20°C during the 

simulation). In Figure 6.6 and Figure 6.7 the journal centre trajectory is shown. To be more 

specific, in the first figure the cylindrical coordinates, radial position 𝑒 and angular position 

𝜒, are shown separately, meanwhile, in the second, the coordinates are combined into a 

polar plot to better understand the journal trajectory with respect to the bearing centre. 

Moreover, the first graph of Figure 6.6 indicates the condition in which the rod-end model 

is working: 0 for hydrodynamic lubrication, 1 for mixed and 2 for contact. 

Let’s try to give an explanation to the trajectory displayed in Figure 6.7. Imagine to divide 

this figure in four quadrants: the first one in the upper right side, the second in the upper 

left side, the third in the lower left side and the fourth in the lower right side. 

The simulation starts with the following set of initial values: 𝑒=0.001m and 𝜒=30°. 
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When the command is zero the aerodynamic load generates an oscillation of the controlled 

surface (Figure 6.4) which leads to an oscillation of the rod-end external force, even if it is 

not noticeable in Figure 6.5 because of the scale of the graph. The external force direction 

𝜑, which was defined starting from the vertical line (Figure 2.8 and equation (5.25)), remains 

constant (around 110°) because the piston rod doesn’t move. 

In this phase, the journal centre moves from the fourth to the third quadrant due to a 

variation of the angular position 𝜒, which is also defined starting from the vertical line and 

positive if counter clockwise (Figure 2.8). Maintaining an angular position equal to -70°, the 

journal centre oscillates along the radial direction due to the external force. This oscillation, 

of amplitude approximately equal to 1 mm, has an impact on the initial surface vibration 

(green line in Figure 6.4). 

When the positive command signal arrives, the external force becomes negative meaning 

that piston rod will be forced inside the actuator sleeve by the journal. The force direction 

increases up to 130° because of the mechanics configuration variation (Figure 5.1 and 

equation (5.25)). The journal is pressed against the bearing surface in the third quadrant. 

The system switches from a hydrodynamic lubrication to a mixed work condition. Due to 

the external force direction variation, the journal angular position has a slight increase up 

to -50°. The system reaches and maintains a stationary condition, where 𝑒 ≈ 0.002 m and 

𝜒 ≈ -50°, till 2.5 s. 

At 2.5 seconds the command switches instantaneously from +50% to -50% of the actuator 

stroke. The external force has a strong increase becoming positive, which means that piston 

rod tends to be pulled out from the actuator sleeve by the journal. The mechanism 

configuration changes again causing an external force direction reduction (till 90°). The 

journal centre moves from the third to the first quadrant. As shown in Figure 6.6, the radial 

position 𝑒 decreases, the journal passes close to the bearing centre, the angular position has 

a variation of 180° (reaching 130°) and then the journal moves away from the bearing centre. 

This transitory phase generates work condition variations: form mixed to hydrodynamic 

and then to mixed again. Thus, the system reaches another stationary condition, where 𝑒 ≈

 0.002 m and 𝜒 ≈ 95°. 

At 4 seconds the command returns to zero. When the piston rod starts moving, the external 

force becomes negative and its direction increases up to 110° (due to the mechanism 

configuration variation). Thus, the journal is pushed by these external conditions from the 

first to the third quadrant. The work condition passes form mixed to hydrodynamic and to 

mixed again. About the radial (𝑒) and angular (𝜒) positions, the same consideration as above 

can be made. When the piston rod reaches the command value, the rod-end system returns 

in hydrodynamic lubrication condition. Like the first phase, the aerodynamic load 
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generates an oscillation on the journal radial position 𝑒, while the angular position 𝜒 is 

around -70°. 

In Figure 6.5, the journal angular velocity around its centre (𝜔) is also displayed. As visible, 

this parameter is noticeably different from zero during the transitory phases, i.e. when the 

command changes and, thus, the mechanism configuration is varying. The short range of 

variation of the journal angular velocity makes the hydrodynamic lubrication effect mainly 

due to the squeezing action, which relates the radial journal motion with the generation of 

load carrying capacity in the lubricant film. The wedge action, which relates the relative 

surface velocity to the hydrodynamic pressure generation capacity, is secondary. 

In Figure 6.8 the forces acting on the journal are shown. The radial, tangential and frictional 

forces reach the highest values during transitory phases and in mixed work condition. 

When the system works in hydrodynamic lubrication condition these forces are way lower, 

meaning that the hydrodynamic pressure distribution struggle to support the external load. 

The friction force in hydrodynamic lubrication condition is almost zero, while in mixed 

condition it increases up to 5000 N. The friction force is proportional to the tangential 

force (equation (3.6)), this explains why the two graphs have the same trend. 

In Figure 6.9 the actions on the piston rod are displayed. 𝐹𝑎,𝑟𝑜𝑑 represents the force parallel 

to the piston rod axis, while 𝐹𝑛,𝑟𝑜𝑑 is the force acting in the perpendicular direction. 𝑀𝑟𝑜𝑑 

is the concentrated torque at the end of the piston rod. Since this torque is mainly given by 

the friction effect, it has the same trend of 𝐹𝑓𝑟𝑖𝑐𝑡  in Figure 6.8. 

In Figure 6.10 the pressure distribution acting on the journal at t=0.001 s is shown. 
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Figure 6.5:   Rod-end model inputs. 

 

Figure 6.6:   Journal trajectory (separated variables). 
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Figure 6.7:   Journal trajectory (united variables). 

 

Figure 6.8:   Forces acting on the journal. 
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Figure 6.9:   Torque and forces acting on the piston rod. 

 

Figure 6.10:   Pressure distribution at t= 0.001 s.  
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6.2 Lubricant degradation effects 

In this subchapter the effects of the lubricant degradation are analysed. The lubricant 

degradation, which is usually caused by the oil oxidation, leads to a reduction of viscosity. 

Therefore, a simple lubricant health coefficient has been introduced in the rod-end model. 

Three simulations have been carried out: the first one with lubricant health at 100% (blue 

line), the second at 80% (red line) and the third at 60% (yellow line). All tests are preformed 

considering a rod-end clearance of 0.002 m and giving to the EHSA mathematical model 

the exact square wave command previously exposed. 
 

   The lubricant degradation effects are visible on the radial, tangential and frictional forces 

acting on the journal (Figure 6.11) and, thus, on the actions developed at the end of the 

piston rod (Figure 6.12).  

The lubricant degradation causes a reduction on the load carrying capacity given by the 

hydrodynamic effect. Thus, as the lubricant degradation increases, the mixed and contact 

work conditions will be more easily accessible by the system, as visible from the first graph 

in Figure 6.11. 

Since the hydrodynamic support is reduced, more asperities of journal and bearing surfaces 

will enter in contact. This leads to a penetration increment and, thus, to a general increase 

of maximum values of radial, tangential and frictional forces (Figure 6.11). 

The actions displayed in Figure 6.12 represent the journal forces reported on the bearing, 

along the parallel and perpendicular directions of the piston rod axis. Therefore, a general 

increment of these actions is expected too, as visible in Figure 6.12. 
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Figure 6.11:   Lubricant degradation effects on the forces acting on the journal. 
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Figure 6.12:   Lubricant degradation effects on the actions at the end of the piston rod. 
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Chapter 7                                        

Conclusions and future works 

The rod-end is a critical component of flight control servo-actuators. Its failure would 

compromise the aircraft stability forcing the pilot to an emergency landing or causing even 

worse scenarios. For these reasons, rod-ends are well-suited components for CBD/PHM 

applications. An essential tool, in such direction, is a high-fidelity mathematical model to 

perform simulations of the component behaviour. The goal of this work is the realization 

of that model. 
 

Three different work conditions, and, consequently, three different Simulink blocks, 

have been considered as main body of the model: hydrodynamic lubrication, contact and 

a mixed hydrodynamic-contact conditions. In order to provide the external force direction 

and the relative speed between the journal and bearing surfaces, the kinematic of a 

reference mechanism, that allows the connection between the actuator to the controlled 

surface, has been implemented. 

The model requires as input the position of the piston rod and its derivatives, the 

temperature and the external force acting on the journal. The model, considering the 

journal position with respect to the bearing centre, realizes in which condition the system 

is working on and activates the correct block. As output, the model is able to give the 

position of the journal with respect to the bearing centre in cylindrical coordinates (and 

relative derivatives), the forces acting on the journal, the pressure distribution and the 

actions on the bearing along the piston rod parallel and perpendicular directions. 

Then, the rod-end model has been adapted to make it suitable for the mono-dimensional 

EHSA complete model where it needed to be implemented.  
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The model numerical stability has been verified using a square wave command as input for 

the EHSA model. This simulation has also shown the accuracy error produced on the 

controlled surface by an anomalous value of the rod-end clearance.  

The lubricant degradation simulation has allowed to see the increment of the friction force 

and, thus, an increase of those actions which tend to bend the piston rod. 
 

The rod-end model has proved to be a valid tool to simulate the effects of a degraded 

rod-end, in terms of: 

• excessive free play between the internal components due to an anomalous wear; 

• undesired forces increase due to lubricant degradation; 

• crack propagation on the rod-end body, where the pressure distribution can be used 

as input for this purpose. 

Since the rod-end configuration is independent from the actuator type, the model can be 

implemented not only on Electro-Hydraulic Servo-Actuator (EHSA) models, but also on 

other families like electromechanical actuators (EMA), which are also used in airspace field. 

Therefore, the model can be used for future CBD/PHM applications. Next steps consist 

in: 

1. execution of detailed analysis of rod-ends degradation and development of models 

which relate each fault to the variation of physical system parameters, thus: 

- wear – clearance increment model; 

- crack – body stiffness reduction model; 

- lubricant degradation – friction force increment model. 

As proven previously, the rod-end model is already able to show the last relation 

with the introduction of a simple lubricant health coefficient. The rod-end model 

cloud also be interfaced with a second approximation model of the actuator in order 

to evaluate the effects of friction force increment on the rod deformation and, thus, 

on the piston rod seals; 

2. execution of feature(s) selection for each of the fault modes addresses. Features 

represents those characteristic parameters, detectable by the system sensors, which 

express whether the system is healthy or not; 
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3. execution of Fault Detection and Identification (FDI) by comparing the current 

faulty feature distribution with the reference healthy conditions. According to the 

origin of these conditions two main approaches can be followed: data-driven or 

model based.  Respectively, the reference conditions are obtained through a 

predefined baseline or as outputs of a physical model. When the two distributions 

differ from each other by a threshold confidence level the fault is “detected”; 

4. execution of failure prognosis through two sequential steps, prediction and filtering. 

The prediction uses a fault/degradation model to estimate the failure probability, 

or probability density function (pdf), for the next instant of time. Particle filtering is 

then used for the estimation of the Residual Useful Life (RUL); 

5. execution of a prognostics performance algorithm to obtain the prognostic routine 

level of confidence. 

Another goal of this CBD/PHM study for rod-end, in addition to those referred in the 

introduction chapter, is to point out those extra sensors, which are not usually installed on 

flight control actuators, that allow the determination those features (point 2) which are not 

detectable through the standard onboard sensors. The information would be very useful 

for those companies that intend to actually implement a prognostic system on their aircraft. 
 

Considering the rod-end model, a further improvement could be realized in order to 

get closer to the real system. Instead of modeling the component as a journal bearing, the 

curvature of the internal elements, respect to a plane which contains the sphere boring axis, 

can be implemented. However, this improvement would make the Reynolds equation 

numerical integration quite harder. 

This model would lead to an enhanced CBD/PHM system and could be used to predict 

the effect of potential misalignments between the sphere boring and housing axis on the 

piston rod - rodend threaded connection. 
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Appendix A: Newtonian lubricant assumption 

The Newtonian lubricant assumption deals with the correlation between the stress and the 

deformation. A given constitutive formula may be good for a large group of fluids, but one 

general formula cannot describe all fluids. The simplest relation is a linear equation: the 

stress is proportional to the rate of strain (Newton’s viscosity law). 

At ordinary pressures and temperatures all gases obey these relations, as do many simple 

liquids. Liquids made up of complex molecules, liquid mixtures, and slurries of fine 

particles in a liquid do not obey linear relations and are said to be non-Newtonian [6]. 

The idea of a linear relation between stress and rate of strain was first put forward by 

Newton, and for this reason the viscosity law bears his name. Much later, George S. Stokes 

(English mathematician, 1819–1903) and C. L. M. H. Navier (French engineer, 1785–

1836) produced the exact equations that govern the flow of Newtonian fluids [6]. 
 

   Consider two flat surfaces separated by a layer of fluid of thickness ‘h’, as shown in Figure 

A.1. 

 

 

Figure A.1:   Schematic representation of the fluid separating two surfaces [3].  
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power to be sheared. Consequently the power losses are higher and more heat is generated
resulting in a substantial increase in the temperature of the contacting surfaces which may
lead to the failure of the component. For engineering applications the oil viscosity is usually
chosen to give optimum performance at the required temperature. Knowing the
temperature at which the oil is expected to operate is critical as oil viscosity is extremely
temperature dependent. The viscosity of different oils varies at different rates with
temperature. It can also be affected by the velocities of the operating surfaces (shear rates).
The knowledge of the viscosity characteristics of a lubricant is therefore very important in
the design and in the prediction of the behaviour of a lubricated mechanical system.

In this chapter a simplified concept of viscosity, sufficient for most engineering applications,
is considered. The refinements to this model, incorporating, for example, transfer of
momentum between the adjacent layers of lubricant and transient visco-elastic effects, can be
found in more specialized literature.

Dynamic Viscosity

Consider two flat surfaces separated by a layer of fluid of thickness ‘h’ as shown in Figure 2.1.
The force required to move the upper surface is proportional to the wetted area ‘A’ and the
velocity ‘u’, i.e.:

F a  A ´ u

Assume that the fluid film separating the surfaces is made up of a number of infinitely thin
layers. Compare now two fluid films of different thickness made up of equispaced layers. If
the surface velocity remains unchanged in these two cases then a single layer in the thicker
film will undergo less relative sliding than in the thinner film. The velocity gradients for
these two layers will be different. Since the thicker film contains more single layers, less force
will be needed to shear a single layer so the viscous resistance will vary as the reciprocal of
the film thickness ‘1/h’. The force needed to move the upper surface is thus proportional to:

F a  A ´  u/h (2.1)
  

h

u

= 0

F

area

Infinitely thin
fluid ‘layers’

A
u

FIGURE 2.1 Schematic representation of the fluid separating two surfaces.

This relationship is maintained for most fluids. Different fluids will exhibit a different

proportionality constant ‘h’, called the ‘dynamic viscosity’. The relationship (2.1) can be
written as:

F = h  ´ A ´ u/h (2.2)
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The force required to move the upper surface is proportional to the wetted area ‘A’ and 

the velocity ‘u’: 

 

 𝐹 ∝ 𝐴 ∗ 𝑢 (A.1) 

 

Assume that the fluid film separating the surfaces is made up of a number of infinitely thin 

layers. Compare now two fluid films of different thickness made up of equispaced layers. 

If the surface velocity remains unchanged in these two cases, then a single layer in the 

thicker film will undergo less relative sliding than in the thinner film. The velocity gradients 

for these two layers will be different. Since the thicker film contains more single layers, less 

force will be needed to shear a single layer so the viscous resistance will vary as the 

reciprocal of the film thickness ‘1/h’ [3].  

The force needed to move the upper surface is thus proportional to: 

 

 𝐹 ∝ 𝐴 ∗ 𝑢/h (A.2) 

 

The proportionally constant is different for different fluids and it is called “dynamic 

viscosity 𝜇”. The SI unit for dynamic viscosity is Pascal-second (Pas). 

 

 𝐹 =  𝜇 ∗ 𝐴 ∗ 𝑢/h (A.3) 

 

Rearranging gives: 

 

 
𝜏 = 𝜇 

𝑢

ℎ
=  𝜇 

𝜕𝑢

𝜕𝑧
 (A.4) 

where: 

𝜇  is the dynamic viscosity (Pas); 

𝜏 is the shear stress acting on the fluid (Pa); 

𝑢/ℎ  is the shear rate, i.e. velocity gradient normal to the shear stress (s
-1

). 

 

By considering a ‘𝑧’ axis vertically directed in Figure A.1, equation (A.4) can be rewritten 

as in  (2.7): 

 

 
𝜏 =  𝜇 

𝜕𝑢

𝜕𝑧
 (A.5) 
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Appendix B: MATLAB scripts  

Reynolds equation integration 

The Reynolds equation is solved using a function which needs as input the lubricant 

conditions, the discretization parameters, the geometrical characteristics and dynamic data 

of the rod-end and gives as output the pressure distribution matrix. 

 
xa = 0; xb = pi*2*Rj;     % initial and final coordinate long x-axis 
za = 0; zb = L;           % initial and final coordinate long z-axis 
n = 8;                    % internal nodes number long z-axis 
m = 11;                   % internal nodes number long x-axis (it MUST be an odd number) 

  
x = linspace(xa,xb,m+2).';              % column vector of  x-nodes 
delta_x = (xb-xa)/(m+1);                % x-range 
xI = (x(2:end)+x(1:(end-1)))/2;         % column vector x/2-nodes 

  
z = linspace(za,zb,n+2).';              % column vector of  z-nodes 
delta_ = (zb-z)/(n+1);                  % z-range 
zI = (z(2:end)+z(1:(end-1)))/2;         % column vector x/2-nodes 

 
function [P_distr, p_Vogel_in] =... 
Reynolds(omega,T,Rj,C,a,b,c,m,x,delta_x,xI,n,z,delta_z,zI,e,e_d,chi_d, ... 

C_health_lub,p_Vogel_in)  

 
%%%%%%%% parameters %%%%%%%% 
epsilon = e/C;          % eccentricity ratio [/] 
epsilon_d = e_d/C;      % eccentricity ratio derivative [1/s] 
mu0 =  a*exp(b/(T-c));  % pressure independent viscosity [Pa*s] 
alpha = (0.6+0.965*log10(mu0*(10^3)))*10^(-8);    % pressure-viscosity coefficient   

(Wooster) [m^2/N] 
mu = C_health_lub *mu0*exp(alpha*p_Vogel_in);     % dynamic viscosity [Pa*s] 

 
%%%%%%%% coefficient matrix and known term calculation if epsilon_d >= 0 %%%%%%%% 
if (epsilon_d >= 0) 
lambda_FH = @(z,x) 1/mu*(C*(1+epsilon*cos(x/Rj)))^3;    % lambda=h^3/mu 

[m^3/(Pa*s)](equations (2.26) (2.36)) 

f_FH = @(z,x) 6*((2*chi_d-omega)*(C*epsilon*sin(x/Rj))+2*C*epsilon_d*cos(x/Rj));    % 

known term [m/s](equation (2.36)) 
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%%%%%%%%% vectors a_q-1 and a_q+1 %%%%%%%% 
A_q_1 = zeros(length(z)-2,length(xI));                       % matrix initialization 
for k = [2:length(z)-1]                                      % moving on z-nodes 
    for i = [1:length(xI)]                                   % moving on xI-nodes 

A_q_1(k-1,i) = lambda_FH(z(k),xI(i))/(delta_x)^2;     % second or fourth equation 

of (2.48) 

    end 
end 

% vectors composition considering boundaries conditions (Table 2.4) using the previous 

matrix 

a_q_m1 = zeros(1,n*m).';                           % vector a_q+1 initialization 
a_q_p1 = zeros(1,n*m).';                           % vector a_q-1 initialization 
qm=1;                                              % counter 
qp=1;                                              % counter 

for k = [1:length(z)-2]                            % moving on z-nodes 
    for i = [1:length(xI)]                         % moving on xI-nodes 

if ((k==1 && i==1) || (k~=(length(z)-2) && i==length(xI)))       % for those weak 

nodes where a_q+1 component needs to be set to zero 
qm=qm; 
a_q_p1(qp) = 0; 
qp=qp+1; 
else if ((k==(length(z)-2) && i==length(xI)) || (k~=1 && i==1))  % for those weak 

nodes where a_q-1 component needs to be set to zero 
a_q_m1(qm) = 0; 
qm=qm+1; 
qp=qp; 
else          % for strong nodes 
a_q_m1(qm) = A_q_1(k,i); 
qm=qm+1;  
a_q_p1(qp) = A_q_1(k,i); 
qp=qp+1;  

       end 
       end 
    end 
end 

  
%%%%%%%% a_q-m and a_q+m coefficients %%%%%%%% 
A_q_m = zeros(length(zI),length(x)-2) ;                     % matrix initialization  
for k = [1:length(zI)]                                      % moving on zI-nodes 
    for i = [2:length(x)-1]                                 % moving on x-nodes 

A_q_m(k,i-1) = lambda_FH(zI(k),x(i))/(delta_z)^2;    % first or fifth equation of 

(2.48) 

    end 
end 
% vectors composition considering boundaries conditions (Table 2.4) using the previous 

matrix 

a_q_mm = zeros(1,n*m).';                           % vector a_q+m initialization 
a_q_pm = zeros(1,n*m).';                           % vector a_q-m initialization 
qm=1;                                              % counter 
qp=1;                                              % counter 
for k = [1:length(zI)]                             % moving on zI-nodes 
    for i = [1:length(x)-2]                        % moving on x-nodes 

if (k==1)                                                     % for those weak 

nodes where a_q+m component needs to be set to zero 
qm=qm; 
a_q_pm(qp) = 0; 
qp=qp+1; 
else if (k==(length(zI)))                                     % for those weak 

nodes where a_q-m component needs to be set to zero 
a_q_mm(qm) = 0; 
qm=qm+1; 
qp=qp; 
else            % for strong nodes 
a_q_mm(qm) = A_q_m(k,i); 
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qm=qm+1; 

a_q_pm(qp) = A_q_m(k,i); 
qp=qp+1;             
end 
end 

    end 
end 
  

%%%%%%%% a_q coefficients %%%%%%%% 
A_q = zeros(length(z)-2,length(x)-2);                            % matrix initialization 
for k = [2:length(z)-1]                                          % moving on z-nodes 
    for i = [2:length(x)-1]                                      % moving on x-nodes 

A_q(k-1,i-1) = -(lambda_FH(z(k),xI(i-1))/(delta_x)^2+ ...    % third equation of  
               lambda_FH(z(k),xI(i))/(delta_x)^2+ ...        % (2.48) 

               lambda_FH(zI(k-1),x(i))/(delta_z)^2+ ... 
               lambda_FH(zI(k),x(i))/(delta_z)^2);  

    end 
end 
a_q =reshape(A_q.',1,(length(z)-2)*(length(x)-2)).';                % the previous 

matrix in reshaped as a vector  

  
%%%%%%%% coefficient matrix A %%%%%%%% 
B = [a_q,a_q_m1,a_q_p1,a_q_mm,a_q_pm]; 
A = spdiags(B,[0,-1,+1,-m,+m],n*m,n*m); 

  
%%%%%%%% known term f %%%%%%%% 
F_i = zeros(length(z)-2,length(x)-2);                      % matrix initialization 
for k = [2:length(z)-1]                                    % moving on z-nodes 
    for i = [2:length(x)-1]                                % moving on x-nodes 

F_i(k-1,i-1) = f_FH(z(k),x(i)) ;  
    end 
end 
f = reshape(F_i.',1,(length(z)-2)*(length(x)-2)).';        % the previous matrix in 

reshaped as a vector  

 
%--------------------------------------------------------------------------------------% 
%%%%%%%% coefficient matrix and known term calculation if epsilon_d < 0 %%%%%%%% 
else 
lambda_FH = @(z,x) 1/mu*(C*(1-epsilon*cos(x/Rj)))^3; % lambda (equation (2.58)) 

f_FH = @(z,x) 6*((omega-2*chi_d)*(C*epsilon*sin(x/Rj))-2*C*epsilon_d*cos(x/Rj)); % known 

term (equation (2.60)) 

 
%%%%%%%%% a_q-1 and a_q+1 coefficients %%%%%%%% 
A_q_1 = zeros(length(z)-2,length(xI));  
for k = [2:length(z)-1]  
    for i = [1:length(xI)]  

A_q_1(k-1,i) = lambda_FH(z(k),xI(i))/(delta_x)^2;  
    end 
end 

a_q_m1 = zeros(1,n*m).'; 
a_q_p1 = zeros(1,n*m).'; 
qm=1  
    for i = [1:length(xI)]  

if ((k==1 && i==1) || (k~=(length(z)-2) && i==length(xI))) 
qm=qm; 

a_q_p1(qp) = 0; 
qp=qp+1; 
else if ((k==(length(z)-2) && i==length(xI)) || (k~=1 && i==1)) 
a_q_m1(qm) = 0; 
qm=qm+1; 
qp=qp; 
else 
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a_q_m1(qm) = A_q_1(k,i); 
qm=qm+1; 

a_q_p1(qp) = A_q_1(k,i); 
qp=qp+1;  
end 
end 

    end 
end 

%%%%%%%% a_q-m and a_q+m coefficients %%%%%%%% 
A_q_m = zeros(length(zI),length(x)-2);  
for k = [1:length(zI)]  
    for i = [2:length(x)-1]  

A_q_m(k,i-1) = lambda_FH(zI(k),x(i))/(delta_z)^2;  
    end 
end 
a_q_mm = zeros(1,n*m).'; 
a_q_pm = zeros(1,n*m).'; 
qm=1;  
qp=1;  
for k = [1:length(zI)]  
    for i = [1:length(x)-2]  

if (k==1) 
qm=qm; 
a_q_pm(qp) = 0; 
qp=qp+1; 
else if (k==(length(zI))) 
a_q_mm(qm) = 0; 
qm=qm+1; 
qp=qp; 
else 
a_q_mm(qm) = A_q_m(k,i); 
qm=qm+1;  
a_q_pm(qp) = A_q_m(k,i); 
qp=qp+1;             
end 
end 

    end 
end 

  
%%%%%%%% a_q coefficients %%%%%%%% 
A_q = zeros(length(z)-2,length(x)-2);  
for k = [2:length(z)-1] 

    for i = [2:length(x)-1] 
A_q(k-1,i-1) = -(lambda_FH(z(k),xI(i-1))/(delta_x)^2+ ... 
lambda_FH(z(k),xI(i))/(delta_x)^2+ ... 
lambda_FH(zI(k-1),x(i))/(delta_z)^2+ ... 
lambda_FH(zI(k),x(i))/(delta_z)^2);  

    end 
end 
a_q =reshape(A_q.',1,(length(z)-2)*(length(x)-2)).';  
  

%%%%%%%% coefficient matrix A %%%%%%%% 
B = [a_q,a_q_m1,a_q_p1,a_q_mm,a_q_pm]; 
A = spdiags(B,[0,-1,+1,-m,+m],n*m,n*m); 
  

%%%%%%%% inown term f%%%%%%%% 
F_i = zeros(length(z)-2,length(x)-2);   
for k = [2:length(z)-1]  
    for i = [2:length(x)-1]  

F_i(k-1,i-1) = f_FH(z(k),x(i));  
    end 
end 
f = reshape(F_i.',1,(length(z)-2)*(length(x)-2)).'; 
end 
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%%%%%%%% resolution  %%%%%%%% 
p_i = A\f;                                             % solution of equation system 
P = zeros(length(z),length(x));                        % matrix initialization 
qP=1;                                                  % counter 
for k = [1:length(z)]                                  % moving on z-nodes 
    for i = [1:length(x)]                              % moving on x-nodes 

if (k==1 | i==1 | k==length(z) | i==length(x))  % nodes lying on boundaries  
qP=qP; 
else 
P(k,i)=p_i(qP);                                 % internal nodes  
qP=qP+1; 
end 

    end 
end 

 
%%%%%%%% half-Sommerfeld boundary condition %%%%%%%% 
for k = [1:length(z)]  
    for i = [1:length(x)]  

if P(k,i)<0                                     % if the pressure is negative, 
P(k,i)=0;                                       % its value set to zero 
end 

    end 
end 

  
%%%%%%%% matrix reshape if epsilon_d < 0 figure 2.18 %%%%%%%% 
P_distr = zeros(length(z),length(x));                   % pressure distribution 

if(epsilon_d >= 0) 
P_distr = P; 
else 

for i = [length(x)/2+0.5:length(x)] 
P_distr(:,i-(length(x)/2-0.5)) = P(:,i); 
end 
for i = [2:length(x)/2+0.5] 
P_distr(:,i+(length(x)/2-0.5)) = P(:,i); 
end 

end  

 
%%%%%%%% pressure value for Vogel Barus viscosity equation %%%%%%%% 
p_max=max(max(P_distr));  % maximum pressure 
p_min=min(min(P_distr));  % minimum pressure 
p_mean=(p_max+p_min)/2;   % mean pressure 
if p_mean<=1e7            % the pressure value is limited to avoid numerical instability 

p_Vogel_out = p_mean; 
else 
p_Vogel_out = 1e7; 

end 
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Hydrodynamic pressure integration 

The numerical integration trapezoidal rule is applied in a Matlab function to obtain the 

radial, the tangential and frictional forces.  

  
function [Fr,Ft,Ff,Freac,PHi_Freac] = P_integration(x,z,Rj,P_distr)  
 

%%%%%%%% Hydrodynamic Fluid force and attitude angle using the trapezoidal rule %%%%%%%% 
DpDx= zeros(length(z),length(x));                     % matrix initialization  
for k = [1:length(z)]                                 % moving on z-nodes 
    for i = [2:length(x)]                             % moving on x-nodes    

DpDx(k,i)= (P_distr(k,i)-P_distr(k,i-1))/2;    % pressure derivative along x-axis 
    end  
end 
h_FH = @(z,x) C*(1+epsilon*cos(x/Rj));        % film thickness 
cos_FH = @(z,x) cos(x/Rj);                    % cos(x/RJ) 
sin_FH = @(z,x) sin(x/Rj);                    % sin(x/RJ) 

 
sum_z_cos = zeros(1,length(x));               % vector for Fr 
sum_z_sin = zeros(1,length(x));               % vector for Fr 
sum_z_Ff = zeros(1,length(x));                % vector for Ff 
 

% equations (2.77) and (2.78) 

for i = [1:length(x)]                         % moving on x-nodes  
    sum_z_cos(i)=0; 
    sum_z_sin(i)=0;  
    sum_z_Ff(i)=0; 
    for k = [2:length(z)]                     % moving on z-nodes 

sum_z_cos(i) = sum_z_cos(i)+(P_distr(k-1,i)* ...                                  

(-cos_FH(z(k-1),x(i))))+(P_distr(k,i)*(-cos_FH(z(k),x(i)))); 
sum_z_sin(i) = sum_z_sin(i)+(P_distr(k-1,i)* ...                                  

sin_FH(z(k-1),x(i)))+(P_distr(k,i)*sin_FH(z(k),x(i))); 
sum_z_Ff(i) = sum_z_Ff(i)+(h_FH(z(k),x(i))/2*DpDx(k,i)+ ...                       

(omega*Rj+e_d*sin_FH(z(k),x(i))-e*chi_d*cos_FH(z(k),x(i)))*mu/h_FH(z(k),x(i))); 

    end 

  
    sum_z_cos(i) = sum_z_cos(i)*0.5*delta_z;  
    sum_z_sin(i) = sum_z_sin(i)*0.5*delta_z; 
    sum_z_Ff(i) = sum_z_Ff(i)*0.5*delta_z; 
end 

  
Fr = 0; 
Ft = 0; 
Ff = 0; 
for i = [2:length(x)] 
    Fr = Fr+sum_z_cos(i-1)+sum_z_cos(i); 
    Ft = Ft+sum_z_sin(i-1)+sum_z_sin(i); 
    Ff = Ff+sum_z_Ff(i-1)+sum_z_Ff(i); 
    end 

  
Fr = Fr*0.5*delta_x;                         % radial force 
Ft = Ft*0.5*delta_x;                         % tangential force 
Ff = Ff*0.5*delta_x;                         % friction force 

  
Freac = sqrt(Fr^2+Ft^2);                     % reaction fluid force  
PHi_Freac = abs(atan(Ft/Fr));                % fluid attitude angle  
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Contact pressure field 

 The following Matlab function contains the Hertz theory equations for the pressure 

distribution in contact conditions. 

 
function P = Contact_pressure_distribution(F_cont,x,z,L,Rb,Rj,nu_b,nu_j,E_b,E_j) 

  
h_wid = sqrt((F_cont*(((1-nu_j^2)/(E_j))+((1-nu_b^2)/(E_b))))/(pi*L*((1/Rj)-(1/Rb)))); % 

half width contact area (equation (3.16)) 

  
P_FH = @(z,x_r) 2*F_cont/(pi*L*h_wid)*sqrt(1-(x_r/h_wid)^2); %  pressure distribution 

function handle (equation (3.17)) 

P = zeros(length(z),length(x));                       % Pressure matrix initialization 

  
% double for loop to fill the pressure matrix  
for i = [1:length(z)]                                 % moving on z-nodes 
    for j = [1:length(x)]                             % moving on x-nodes 

if (abs(pi*Rj-x(j))) <= h_wid 
P(i,j) = P_FH(z(i),abs((pi*Rj)-x(j))); 
else 
P(i,j) = 0;   
end 

    end 
end 
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