
Politecnico di Torino

Master’s Degree Thesis
In

Aerospace Engineering

Device for non-invasive Flight Test Instrumentation (FTI):
hardware & software

Supervisors: Candidate:
Prof. Manuela Battipede Samuel Lazzaro
Politecnico di Torino

Dr. Francesco De Vivo
HighTek S.r.l.

Academic Year 2019/2020

1

2

Summary

1 Flight Test 6

1.1 Introduction 6

1.2 Flight Test Categories 7

1.3 Flight Test Data 9

2 Requirements 10

3 Flight Test Instrumentation (FTI) 11

3.1 Data and Sensors 11

3.2 Charge Output Sensors 12

3.3 ICP® Sensors 13

3.4 What is an oscilloscope 15

3.5 Signal Conditioner or Oscilloscope IEPE 16

3.6 Software Development Kit (SDK) 18

3.7 Basic Instrumentation used 19

4 1st Application 22

4.1 First test: PCB USB Signal Conditioner 22

4.2 Second test: Odroid, blueFOX3 camera & Spatial 23

4.3 1st Application Implementation 25

4.4 Implementation of buttons on the screen 33

4.5 Fast Fourier Transform (FFT) 36

4.6 Sampling Time and Sampling Rate: Signal Acquisition 38

4.7 Fourier Transform Discretization 39

4.8 Cooley-Tukey FFT algorithm 40

4.9 FFT C++ code validation 45

4.10 1st Application Conclusions 48

5 Parameter Identification 50

6 2nd Application 59

6.1 Dynamic Stability 59

6.1.1 Longitudinal plane 60

6.1.2 Lateral-directional plane 62

6.2 2nd Application Implementation 63

3

6.3 Spatial Manager 68

6.4 Packet Summary 72

6.5 Damping Ratio and Natural Frequency 75

6.6 2nd Application conclusions 84

7 Conclusions 85

References 87

List of Figures

Figure 1: PCB monoaxial accelerometer 11

Figure 2: PCB triaxial accelerometer 12

Figure 3: Typical charge output sensor system 13

Figure 4: Typical ICP sensor system 14

Figure 5: Bench Oscilloscope and Portable Oscilloscope 15

Figure 6: USB Oscilloscope 16

Figure 7: PCB Signal Conditioner 4-channels line-powered 17

Figure 8: PCB Signal Conditioner 3-channels battery-powered 17

Figure 9: PicoScope 4224 IEPE - USB Oscilloscope 18

Figure 10: Bench Oscilloscope, Signal Conditioner and IEPE sensors 19

Figure 11: Signal Conditioner internal part 20

Figure 12: Miniature DeltaTron monoaxial accelerometer type 4518-003-Brüel&Kjær20

Figure 13: PCB model 485B39 (USB signal conditioner) 22

Figure 14: Software List 23

Figure 15: Odroid-N2 24

Figure 16: MvblueFOX3-M2004G with optical lens 24

Figure 17: Spatial IMU 25

Figure 18: Software output window 32

Figure 19: PLAY button icon 34

Figure 20: PAUSE button icon 34

Figure 21: EXIT button icon 34

Figure 22: FFT button icon 34

Figure 23: Time Domain Window 35

Figure 24: Computational Cost (DFT vs FFT) 36

Figure 25: Aliasing Problem [11] 39

Figure 26: Frequency Domain Window - FFT ideal case 42

Figure 27: Frequency Domain Window - FFT real case 43

file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238872
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238873
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238874
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238875
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238876
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238894
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238897
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238898

4

Figure 28: CAMERA button icon 44

Figure 29: TIME button icon 44

Figure 30: FFT function MATLAB Documentation 45

Figure 31: MATLAB results 46

Figure 32: C++ code results 47

Figure 33: Six Degrees of Freedom [15] 50

Figure 34: Helicopter rotor blades degrees of freedom [16] 51

Figure 35: Comparison of computed response using wind-tunnel-parameter values

with flight-measured response [17] 52

Figure 36: 3211 control input [5] 53

Figure 37: General systems identification problems [17] 54

Figure 38: Flight-test data measured for parameter estimation [17] 55

Figure 39: Typical match of computed response using estimated parameter values

with the flight-measured response [17] 56

Figure 40: Basic concept of contemporary parameter estimation techniques [17] 57

Figure 41: NEXT PAGE button icon 64

Figure 42: PREVIOUS PAGE button icon 664

Figure 43: Longitudinal plane window 65

Figure 44: Lateral-Directional plane window 66

Figure 45: Spatial web site [23] 68

Figure 46: Spatial Manager graphic interface [24] 69

Figure 47: Packet Rates - Spatial Manager 70

Figure 48: Spatial Packets [24] 73

Figure 49: System State Packet [24] 74

Figure 50: Raw Sensors Packet [24] 75

Figure 51: Output response according to damping ratio value [25] 75

Figure 52: X acceleration output signal 76

Figure 53: X acceleration curve on MATLAB 77

Figure 54: Time instant of the peaks 78

Figure 55: Time response of an underdamped oscillation 79

Figure 56: Decreasing Exponential curve 81

Figure 57: Curve fitting 83

Figure 58: Beetronics Full-HD Monitor 15'' [30] 85

file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238907
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238914
file:///C:/Users/Lenovo/Desktop/Tesi%20magistrale/TESI%20-%20LAZZARO.docx%23_Toc56238915

5

6

1 Flight Test

1.1 Introduction

The products of the aerospace world are continuously subjected to checks and tests
necessary to determine their correct functioning. The first tests are carried out on the
prototypes of the entire aircraft or even just of one of its systems (e.g. propulsion
system) and are performed at the end of product development to validate and certify
its correct functioning.
During the operational life of the aircraft, further flight tests may be carried out, for
example to verify that no functional problems have arisen. When changes are made in
certain parts, it is necessary to recertify the aircraft by carrying out a series of flight
tests that allow to obtain the necessary data to be analyzed and compared with those
prior to the changes or with the Regulations, in order to verify the correct functioning
of the aircraft and thus to obtain the new certification.

Carrying out a flight test campaign is not easy; in fact, in addition to requesting a
Permit to Fly issued by the competent national authority or by an Approved
Organization (DOA/POA), it is necessary to have the adequate FTI (Flight Test
Instrumentation) for the flight tests to be performed. The crew that has to carry out
the flight tests must also be made up of members with specific skills.
There is a document called FTOM (Flight Test Operations Manual) that describes the
flight test organization’s involvement in the process to issue a Permit to Fly and
describes the organization’s policies and procedures in relation to flight test. In this
manual, in fact, there must be a chart that represent the organizational structure and
the links between the different professional roles whom participate in the flight test
activities.
There must be also a list of the essential qualifications and a description of each team
member’s roles and responsibilities for that flight test category, in order to help the
company to ensure that it is composed of qualified personnel to perform those
particular flight test operations.

An indispensable professional figure is that of the Safety Manager, who must collect
and analyze hazards and maintain a register of risks, hazards and risk controls
mitigations.
Each flight test organization must develop a Safety Management System (SMS) in
order to consider traditional safety risks and to manage them in a systematic way.
A flight test Risk Management is also included in the FTOM, which is complementary to
the Safety Management, but they are not the same thing. In fact, the SMS manages
risks common to all flight activities (e.g. bird strike, mid-air collision), while the Risk
Management manages all the risks associated with a particular flight test [1].

The duration of a flight test campaign is highly variable because these tests can relate
to a single new system of an existing aircraft or also to a complete development and

7

certification of a new aircraft. Therefore, it can vary from a few weeks to many years
[2].

Flight tests can be performed on both civil and military aircraft.
First of all, it is necessary to define which system or part of the aircraft must be tested
and which tests must be performed. The content of the flight test determines the flight
test category, and the latter determines the required competence of the flight test
crew.

1.2 Flight Test Categories

The Flight Test categories are defined in Appendix XII to Part-21 and they are:

• Category 1 flight test
- “Fixed-wing aircraft: VMCG, VMU, spinning, initial stalling, or for rotary-

wing aircraft: H/V diagrams and Category A engine failures.
- Where encounter of surprising or even hazardous flight characteristics

can be expected.
- Upon determination, aircraft handling and performance in conditions

where at least one of the following parameters is approaching the
actual limits of the aircraft envelope: altitude, attitudes, weights, CG,
speed/Mach, stalls, temperature, engine and airfoil performance.

- Where the embodiment of new systems is anticipated to significantly
affect the aircraft’s handling or performance characteristics.

- When the crew of the chase aircraft has the duty to assist the test
aircraft crew in recovering from a critical flight situation (i.e. assist the
spinning aircraft crew in assessing the spin or triggering recovery
actions).” [3]

• Category 2 flight test
- “The flight test envelope has already been opened and it has been

demonstrated that the general behavior of the aircraft is adequately
safe and there are no unsafe flight characteristics.

- All-engines-operating climb performance.
- Cruise performance.
- Static stability demonstration.
- Function and reliability flights.
- Systems tests of autopilot or guidance/warning systems such as Terrain

Awareness and Warning System (TAWS) or Airborne Collision Avoidance
System (ACAS), when the modes themselves are tested, requiring
operating the aircraft by deviating from the standard operational
procedures. Additionally, in the case of embodiment of such systems on
an already certified aircraft, when the system integration in an existing

8

cockpit requires a more global crew procedure assessment - for
example, when the system has been integrated in cockpit screens and a
centralized warning system which requires a new cockpit procedure
assessment (note that some system tests may fall under Category 4; see
below).” [3]

• Category 3 flight test
This category concerns all the flight tests performed on a new aircraft that
already has a Type Certificate (TC) or a Supplemental Type Certificate (STC) but
which behavior is not yet known, so unexpected failure can occur which could
not be described in the Aircraft Flight Manual (AFM). Therefore, it is necessary
to perform these flights that are commonly referred to as production flight
tests.
If an aircraft does not have a TC or STC, any flight will be Category 1, 2 or 4
according to classification criteria.
If the flight test of an aircraft with a TC or STC requires flying outside the AFM
limitations, this flight should be considered as Category 1 or Category 2 flight
test.

• Category 4 flight test
These flights are those required by a DOA (Design Organization Approval) to
demonstrate compliance with the airworthiness requirements of “not yet
approved data”:

- cabin conversion;
- zonal drying system installation;
- Emergency Locator Transmission (ELT) installation;
- new cabin installation;
- cabin aircraft location pictorial system installation;
- new entertainment system installation;
- SATCOM and telephone installation;
- new radio equipment installation. [3]

Once the flight test category has been established, crew members are chosen
according to it: a Flight Test Organization required team members with different skills,
as test pilots, flight test engineers, designers, mechanics, certifying staff and safety
officer [4].

Subsequently, the Flight Test Engineer prepares a test plan containing the various
maneuvers to be carried out during the flight.

9

1.3 Flight Test Data

Once the maneuvers to be carried out have been established, the aircraft is
appropriately instrumented. The FTI (Flight Test Instrumentation) used must be
suitable for the type of data to be collected, which can be [2]:

• accelerations in all six degrees of freedom;

• aircraft attitude, angle of attack and sideslip angle;

• aircraft controls deflection (stick/yoke, rudder pedals, throttle position);

• engine performance parameters;

• noise levels;

• internal temperatures;

• structural loads.

Once the aircraft is instrumented, it is possible to begin ground and flight tests.

10

2 Requirements

In this thesis project two different applications have been dealt with, each of which
having its own requirements.

1st Application Requirements:

• FTI easy to transport and to mount on the aircraft;

• minimal use of external power sockets;

• use of 1 to 4 sensors;

• possibility to view in real time the images taken by a camera and the

accelerations trends and values in the time domain;

• possibility to perform a Fast Fourier Transform (FFT) in real-time during the

flight without having to use MATLAB;

• possibility to start and stop saving data in certain time windows using

appropriate buttons.

2nd Application Requirements:

• use a sensor capable of detecting the main dynamic parameters;

• possibility to view in real time the time histories of the main dynamic
parameters;

• possibility to start and stop saving data in certain time windows using
appropriate buttons;

• identify or implement the algorithms necessary to obtain information about
the natural frequency 𝑓𝑛 and damping ratio ζ of each parameter and / or
dynamic mode.

11

3 Flight Test Instrumentation (FTI)

3.1 Data and Sensors

In the aeronautical field, flight test campaigns are often carried out with the aim of
obtaining data that can be used for certification, for any modifications or for the
development of flight simulators of that type of aircraft.
In order to carry out a flight test campaign, it is necessary to have the appropriate
Flight Test Instrumentation (FTI) based on the data type to be measured and on the
flight tests that must be carried out.

In order to certify an aircraft modification, some of the data to be collected are:

• accelerations along X, Y, Z axes: to obtain the vibration levels to which a certain
point of the structure is subject.

• Euler’s angles, angular velocities and angular accelerations: to perform a dynamic
analysis.

Specific sensors are required to detect these types of data: accelerometers are usually
used to detect accelerations, but it is necessary to distinguish between the different
types available on the market and choose which of them is the most appropriate for
the case study.
Accelerometers are mainly divided into:

• Monoaxial accelerometers: allow to detect accelerations along a given axis (X, Y
or Z) based on their positioning. Each one required only one readout
instrument input channel.

• Triaxial accelerometers: allow to detect accelerations along all three axes (X, Y
and Z). Each one required three readout instrument input channels, one for
each axis. Moreover, their cost is more than twice than that of a monoaxial.

Figure 1: PCB monoaxial accelerometer

12

Figure 2: PCB triaxial accelerometer

Considering the probability of an accelerometer breaking due to external causes and
the significant cost difference between these two types, it is preferable to have three
monoaxial rather than a triaxial one, to still have 2 other accelerometers available.

There are different types of accelerometers based on their operating principle, for
example there are strain gauge, LVDT type accelerometer, laser accelerometer, MEMS
(Micro-Electro-Mechanical Systems) accelerometer, but a right compromise between
required quality and price is represented by piezoelectric accelerometers.

A piezoelectric accelerometer generates an electrical signal via a piezoelectric crystal
based on the compression it undergoes due to the inertia force generated by a mass
located on that crystal.

There are two different types of piezoelectric sensors [5]:

• Charge Output Sensors: they are piezoelectric sensors without built-in
electronics, with a high impedance output signal and they usually require
external charge or voltage amplifiers for signal conditioning.

• Internally Amplified Sensors: they are piezoelectric sensors with built-in
electronics, integrated circuits, and with a low impedance output signal. These
types of sensors are called ICP® (Integrated Circuit Piezoelectric, is a registered
trademark of PCB Group, Inc.) or IEPE (Integrated Electronics Piezo-Electric).

3.2 Charge Output Sensors

“Charge output sensors have the advantage of being able to operate under high
temperature environments and withstand up to +281°C. The output signal generated
by the piezoelectric signal is extremely sensitive to corruption from various
environmental factors, so low-noise cabling must be used to reduce radio frequency
interface (RFI) and electromagnetic interference (EMI).” Moreover, it is necessary to
use tie wraps or tape in order to reduce the noise due to the triboelectric effect, that is
the noise generated by cables motion [1].

13

Figure 3: Typical charge output sensor system

The output signal of a charge output sensor is characterized by a high impedance,
therefore, in order to correctly analyze the signal, it is necessary either to use a high
input impedance readout instrument or an in-line voltage and charge amplifier to
convert the output signal in a low impedance one.
Another disadvantage is that the high impedance of the output signal causes a loss of
the signal quality directly proportional to the cable length, therefore short low-noise
cables must be used.
This kind of cable has a graphite lubricant embedded in the dielectric layer in order to
minimize friction and generation of electrostatic charge (triboelectric effect) generated
by cable motion.

PE (PiezoElectric) accelerometer resolution is not generally specified on a datasheet
because it depends on the noise generated along the cables and on the amplifier gain.

Moreover, high impedance circuits required training and expertise to understand,
operate and maintain them. In fact, all high-impedance components must be kept
clean and dry, because their contamination due to adverse environment causes noise,
loss of signal quality and loss of low frequency response.

3.3 ICP® Sensors

ICP® is a term that uniquely identifies PCB’s piezoelectric sensors with built-in
electronics. ICP or IEPE sensors have many advantages over charge output sensors:

• Low impedance output signal (<100 ohms): the signal quality does not depend
on the cable length, therefore long cables can also be used without increase in
noise, loss of resolution, or signal attenuation. Signal quality it is not sensitive
to adverse environment because IEPE sensors are resistant to contamination.

14

• They are less sensitive to electrical interference (RFI and EMI) thanks to their
low impedance signal output, so it is not necessary to use low-noise cable, but
standard coaxial cables are enough. This implies a significant cost reduction.

• “Low per-channel cost because sensors require only low-cost, constant current
signal conditioners and ordinary cables.” [5] PE (PiezoElectric) and ICP sensors
have essentially the same cost, but the per-channel cost of the ICP system is
significantly lower because low-noise cables and charge amplifiers are not
required.

• They require less electrical power consumption.

• ICP sensor resolution is specified on the datasheet.

• They are easier to use, so less operator expertise, training and attention is
required compared to charge output sensors and high impedance circuits.

The only limit of IEPE sensors is that they cannot be used for operation under
temperatures environments outside the range -320°F < T < 325°F (-195.6°C < T <
162.8°C).

Therefore, for these reasons, it is preferred to use IEPE sensors.
All IEPE sensors require a constant current power source for proper operation: they
usually require a power supply current between 2mA - 4mA, but sometimes this range
could be extended to 0.5mA - 20mA depending on the sensor application.
It is therefore necessary to check the compatibility between the current required by
the IEPE sensor and that supplied by the signal conditioner or by the readout
instrument with an IEPE interface.

Figure 4: Typical ICP sensor system

15

3.4 What is an oscilloscope

An oscilloscope is an electronic test instrument that allows the user to view on a 2D
graph the noise and vibration signals obtained from one or more appropriate sensors.
The graph is displayed on the oscilloscope monitor or on a PC and the various trends
can be viewed both in the time domain and/or in the frequency domain according to
the user's needs.

There are different types of oscilloscopes based on functionality and workplace.
There are bench oscilloscopes used very often in laboratories as they are very bulky, or
portable oscilloscopes that have fewer functions but that can be easily transported and
used in different workplaces.

The sensors are connected to the oscilloscope via BNC coaxial cables.

The oscilloscopes can be powered via a power outlet, via batteries or via the USB port
of a PC.
If the oscilloscope can be connected to a PC via a USB port, there are usually software
that allow real-time visualization of the various graphs.

Figure 5: Bench Oscilloscope and Portable Oscilloscope

16

Figure 6: USB Oscilloscope

In this application, having to carry the oscilloscope on board an aircraft, it is preferable
to use an USB oscilloscope because it is easily transportable, not bulky and that does
not require a power supply from a power outlet.

3.5 Signal Conditioner or Oscilloscope IEPE

Two different devices can be used to feed an ICP sensor: a signal conditioner or an
oscilloscope with an IEPE interface.
A signal conditioner is a necessary device to provide the correct current intensity to
the IEPE sensors. Instead, an oscilloscope with an IEPE interface allows a direct
connection to the IEPE sensors, without having to use a signal conditioner.

There are different types of signal conditioners: they can be powered by battery or by
an external 32-38V DC power supply. In the latter case it is necessary to use a DC/DC
converter since helicopters usually have a 28V DC power socket. Then, a readout
instrument as an oscilloscope or a spectrum analyzer is necessary to save the data and
to display them, via software, on a PC in time or frequency domain. Normally the
readout instrument can be connected to the PC via USB or ethernet cable.
Currently, many instruments available on the market can be used in both oscilloscope
or spectrum analyzer modes, thus allowing the user to view the data in the domain he
prefers or sometimes even simultaneously in both time and frequency domains.

For each channel of the oscilloscope, the signal conditioner needs two channels, one
for the sensor input and the other for the oscilloscope. For this reason, battery-
powered signal conditioners, having smaller dimensions as they are usually portable,
have a maximum of three channels for the oscilloscope. However, one of the
requirements is to have four channels so that four monoaxial sensors can be used
simultaneously.

17

Figure 7: PCB Signal Conditioner 4-channels line-powered

Figure 8: PCB Signal Conditioner 3-channels battery-powered

In this case it is also preferable not to use a signal conditioner powered by an external
DC power supply in order to not use a DC/DC converter.

To avoid having to use a signal conditioner, it is possible to use an oscilloscope with an
IEPE interface, even if there are not many available on the market.
One of the available models is the PicoScope 4224 IEPE, a 2-channels oscilloscope
developed by Pico Technology: it is directly connected to the PC and powered by a USB
cable and it can be used in both IEPE and normal mode.
Its only disadvantage is that it has only two channels, therefore two PicoScope 4224
IEPE are necessary for the flight test activities with four IEPE sensors. The two
oscilloscopes must be synchronized to see the various graphs in real-time. To do this
synchronization is necessary to use a shared trigger signal, otherwise the scopes will be
running to separate internal clocks started independently.

18

Figure 9: PicoScope 4224 IEPE - USB Oscilloscope

Nevertheless, this solution is preferable as it is not necessary to use a signal
conditioner, half the number of cables are necessary because the sensors are directly
connected to the oscilloscope, consequently also the reliability of the instrumental
equipment is greater and maintenance costs are lower and, moreover, no battery
(which could suffer from excessive temperatures) and no external power supply are
needed.

In terms of acquisition costs, the two solutions are not very different, consequently the
choice falls on the reliability and compactness of the instrumental equipment.
The PicoScope supplied software is compatible with Windows, Linux and macOS
operating systems, and it has also the Software Development Kit (SDK).

3.6 Software Development Kit (SDK)

A Software Development Kit (SDK) is a collection of software development tools in
one installable packet [6].
An SDK is made up of libraries and codes that can be written in different programming
languages (e.g. Java, C, C++, etc.). These codes allow the programmer to create his
own software.
In this application the SDK allows the programmer to directly access the data
measured by the sensor and to use and save them as he prefers.

19

3.7 Basic Instrumentation used

The basic instrumentation used during flight tests is composed by:

• Oscilloscope;

• Signal Conditioner;

• ICP accelerometers.

The main problems that a Flight Test Engineer encounters in using this equipment are:

• both oscilloscope and signal conditioner need to be powered by a power
outlet;

• this FTI is too bulky;

• too many cables are needed to connect the various instruments, so there is a
higher probability of failure of one of them;

• connecting and disconnecting the various devices requires a certain amount of
time;

• data analysis (e.g. Fast Fourier Transform) cannot be performed during the
flight.

Figure 10: Bench Oscilloscope, Signal Conditioner and IEPE sensors

20

Figure 11: Signal Conditioner internal part

In the figure above there is the internal part of the 4-channel signal conditioner used:
care must be taken to use it correctly, i.e. the sensors channels must not be confused
with the oscilloscope channels. So, this signal conditioner has 4 input-channel (sensors)
and 4 output-channel (oscilloscope).

Figure 12: Miniature DeltaTron monoaxial accelerometer type 4518-003 - Brüel & Kjær

The sensor used for the 1st application is a Miniature DeltaTron monoaxial
accelerometer type 4518-003 made by Brüel & Kjær. DeltaTron is the Brüel & Kjær’s
proprietary name for IEPE accelerometers. Another name used by Brüel & Kjær is CCLD

21

(Constant Current Line Drive), while other proprietary names for this type of
accelerometers are ISOTRON®, PIEZOTRON® and ICP® [7].

This sensor detects a certain voltage value and transmits it to the oscilloscope. Each
oscilloscope has a certain resolution: if it has an 8-bits resolution, there are 256 (28)
possible values that must then be divided between positive and negative values. These
values are transcribed in a .csv file that can be saved on a suitably formatted USB key.
To obtain the acceleration value in g, a conversion must be performed: first of all, the
values present in the .csv file must be converted into volts [V], then a conversion factor
V/g is used which allows to obtain the final acceleration value in g.

The formula to perform the conversion is the following:

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑔] = 𝑐𝑠𝑣 𝑣𝑎𝑙𝑢𝑒 ⋅
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑙𝑒 ⋅ 8

2𝑏𝑖𝑡 𝑎𝑐𝑞 ⋅ 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

where:

- 𝑐𝑠𝑣 𝑣𝑎𝑙𝑢𝑒 is the acceleration value saved on the .csv file;
- 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑙𝑒: is equal to 0.5V;
- 𝑏𝑖𝑡 𝑎𝑐𝑞: is the oscilloscope resolution;
- 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: is the V/g conversion factor. For the 4518-003 it is equal

to 0.1 V/g.

22

4 1st Application

The aim of the 1st application is to use a new and adequate FTI in order to verify if a
certain part/component of the helicopter is subjected to acceptable accelerations and
that these are compliant with the Regulations.
In fact, when a modification is made on board a helicopter, it could be necessary to
recertify the helicopter itself as it is necessary to verify that this modification does not
cause unacceptable vibrations.

In order to perform this type of analysis, first of all, it is necessary to identify the new
hardware components to be used and to write the software code that will be
implemented on them.

4.1 First test: PCB USB Signal Conditioner

Initially, a first test was carried out using a PCB 2-channel USB signal conditioner which
does not require an oscilloscope to detect and output the accelerations detected by
the sensors.

Figure 13: PCB model 485B39 (USB signal conditioner)

The advantage of this product is that it is very small, therefore easily transportable, but
it has the disadvantage of not having an SDK. In order to display the accelerations on
the screen, i.e. the curves in the time domain or in the frequency domain, in fact it is
necessary to use third-party software, which sometimes can also be paid.

23

Figure 14: Software List

Using these software, it is also possible to create a text output file in which all the
values of the detected accelerations are written, but in this way the accelerations
could be used only in a post-processing phase and not during the processing phase.
Moreover, there are no software compatible with Linux.
Therefore, not being able to access the detected data at any time, the user is forced to
use other software to view the data.
A goal of this application, however, is precisely to be able to create an own software
through which the user can view the various curves in real time.
In order to create this software, it is essential that the detection instrument used has
an SDK. In this way, the software programmer work is simplified.

4.2 Second test: Odroid, blueFOX3 camera & Spatial

A second test was carried out using the following instrumentation:

• Odroid-N2: is a new generation single board computer with the main CPU
based on big.LITTLE architecture which integrates a quad-core ARM Cortex-A73
CPU cluster and a dual core Cortex-A53 cluster with a new generation Mali-G52
GPU.
The large metal housing heatsink is designed to optimize the CPU and RAM
heat dissipation and minimize throttling. The CPU is placed on the bottom side
of the PCB to establish great thermal characteristics.
It has 4 x USB 3.0, 1 x HDMI 2.0 and 1 x RJ45 Ethernet Port.
It is powered by DC 12V/2A [8].

24

Figure 15: Odroid-N2

• mvblueFOX3-M2004G: it is a monochrome (G) compact industrial USB3 camera
with a max frame rate of 436.9 Hz and a low resolution of 728x544 [9].
The camera will be positioned close enough to the target (e.g. main rotor), so a
low resolution is acceptable because, with this model, it has the advantage of
having a fairly high frame rate.

Figure 16: MvblueFOX3-M2004G with optical lens

• Spatial IMU: it is a ruggedized miniature GPS aided inertial navigation system
and AHRS that provides accurate position, velocity, acceleration and
orientation under the most demanding conditions. It combines temperature
calibrated accelerometers, gyroscopes, magnetometers and a pressure sensor
with an advanced GNSS receiver. These are coupled in a sophisticated fusion
algorithm to deliver accurate and reliable navigation and orientation [10].

25

This sensor can be connected to Odroid-N2 USB port and, thanks to its SDK, the
programmer can directly access the data collected and use them as he prefers
within his code.
The SDK can be downloaded directly from the Spatial website.
In this first application only the 3 accelerations along the X, Y and Z axes were
used.

Figure 17: Spatial IMU

The PicoScope and the Brüel & Kjær accelerometers were not used because, due to the
Covid-19, it was impossible to obtain this oscilloscope, consequently it was decided to
continue developing the application with the instrumentation already available.

4.3 1st Application Implementation

First of all, it is necessary to download the OS image from the following link using a
normal PC:
https://wiki.odroid.com/odroid-n2/os_images/ubuntu

Then, BalenaEtcher program is installed on a PC and it is used to install the operating
system (Linux) on a SD card.
Then the SD card is connected to the Odroid-N2 and it is therefore possible to use
Linux as an operating system on this device.

The camera driver is subsequently downloaded directly from the following website:
https://www.matrix-vision.com/serie-di-telecamere-industriali-compatte-usb3-vision-
mvbluefox3-m2.html.

Finally, the OpenCV C++ library for Linux is downloaded: this is an open source C/C++
library for Image Processing and Computer Vision.

https://wiki.odroid.com/odroid-n2/os_images/ubuntu
https://www.matrix-vision.com/serie-di-telecamere-industriali-compatte-usb3-vision-mvbluefox3-m2.html
https://www.matrix-vision.com/serie-di-telecamere-industriali-compatte-usb3-vision-mvbluefox3-m2.html

26

An Odroid-N2 has 6 available processing units which can be used to perform up to 6
operations in parallel. The multithreading technique is used to perform multiple
operations in parallel in a C++ code: this technique consists in creating functions that
are then performed in parallel. Each function is given as input to a different thread.
Each thread will be a child process executed inside the parent process, that is the main
process: consequently, a join must be made for each thread so that the parent process
is finished only when all the threads have ended. In fact, if the parent process was
terminated before 1 or more child processes, an error would occur.

Code steps:

1. Camera acquisition and switching on;
2. Image acquisition: starting live loop;
3. Spatial IMU acquisition and switching on;
4. Create a viewing window;
5. Create acceleration graphs in the time domain;
6. Video and data saving;
7. Fast Fourier Transform;
8. End of software execution.

3 different threads are executed at the same time: these are created using the
pthread_create() function:

// Initialize and set thread joinable

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

pthread_create(&thread_id_geo, &attr, getGeoInfo, (void *)&GEO);

// create thread for getting IMU

pthread_create(&thread_id_blueFOX3, &attr, blueFOX3, (void *)&GEO);

// create thread to acquire blueFOX3 camera

pthread_create(&thread_id_save_video, &attr, save_video, (void

*)&VIDEO);

// create thread to save the video

As input, each thread has a thread id, a certain function to perform and a structure.

The 3 functions used are:

• getGeoInfo
The first thread is the one related to the Spatial IMU sensor: the getGeoInfo
function is used to activate the sensor and to detect the data of interest. In this
case, accelerations along the 3 axes (X, Y, Z) are detected at each instant of
time.

27

/* copy all the binary data into the typedef struct for the

packet */

/* this allows easy access to all the different values

*/

if(decode_raw_sensors_packet(&raw_sensors_packet, an_packet) ==

0)

{

mtx_IMU.lock();

GEO->IMU_SRC.acc_x = raw_sensors_packet.accelerometers[0];

 GEO->IMU_SRC.acc_y = raw_sensors_packet.accelerometers[1];

 GEO->IMU_SRC.acc_z = raw_sensors_packet.accelerometers[2];

 GEO->flag_acc = 1

 mtx_IMU.unlock();

 }

In these lines of code, it is possible to note the use of the SDK to save the
accelerations detected into a typedef struct called GEO: this operation allows
easier access to the saved data.

• blueFOX3
To turn on the camera and start acquiring images, it is first necessary to
generate a setting file (.xml file) for setting the camera via wxPropView.
To start wxPropView via the Linux terminal, just type the following command:
wxPropView
Once the program has been started and the desired setting parameters have
been set, to generate the .xml file, go to Action → Capture Settings → Save
Active Device Settings → To a File.

Subsequently, a configuration file (.conf) is created in which to insert the serial
number of the camera and the name of the setting file (.xml file).

img = Mat(pRequest->imageHeight.read(),

pRequest->imageWidth.read(), CV_8UC1,

pRequest->imageData.read(), pRequest->imageLinePitch.read());

 cvtColor(img, img_1, COLOR_BayerBG2GRAY);

 mtx_blueFOX3.lock();

 img_1.copyTo(GEO->blueFOX3);

 mtx_blueFOX3.unlock();

The blueFOX3 function allows the program to access the configuration file
(.conf) and verify that the serial number of the camera is correct. Then it uses
the liveLoop function to save the image in a local variable called img, transform
it into a grayscale image called img_1 and, finally, copy it into a global variable
called GEO.blueFox3.

28

The mutex is used to prevent, when saving a data from a local variable to a
global one, a memory location error due to the pointer.

For example, if a copy of a value, just saved within a vector in cell n°5, was
made in another vector always in cell n°5 using the pointers, it can happen that
the value saved in cell n°5 of the second vector actually is the value saved in cell
n°6 or n°7 of the first vector.
That is, there may be a problem of overwriting the value that is to be saved
when saving it to another vector.

In order to avoid having a similar problem between the thread of the blueFOX3
function and the SensorFusion, two local variables and a global passing variable
(GEO.blueFOX3) are used.

// get blueFOX3 final image

 mtx_blueFOX3.lock();

 GEO->blueFOX3.copyTo(canvas(ROI_final_img));

 mtx_blueFOX3.unlock();

SensorFusion is a function that exactly allows to merge the various sensors, i.e.
the blueFOX3 camera and the Spatial IMU: in fact, the data collected by these 2
instruments are used within this function.

Before analyzing the last thread related to saving the video, it is advisable to
examine the work performed by the SensorFusion function.

This function was created to generate a window of suitable size in which to
view both the image taken by the camera and 2D graphs representing the
curves of the 3 accelerations in the time domain.
The graphs were created using the functions present in the OpenCV library: an
appropriately sized vector, initially empty for each acceleration, was created.
The vector is filled at each instant with the new measured value. Once the
vector is completely filled at the i-th instant, it is transformed into a circular
vector, i.e. the first element of the vector is eliminated, all its components are
shifted by one cell to the left in order to free the last memory cell, and finally
the last cell is filled with the acceleration value measured in that cycle.

The graphs were created using the following commands:
- arrowedLine: for x (time [s]) and y (acceleration [𝑚2/𝑠]) axes;
- line: to join the various points representing the accelerations values

measured at each instant of time.

29

First, the various matrices used for both camera image and graphics are
initialized.

 Mat canvas = Mat::zeros(1344,728,CV_8UC1);

 Mat canvas_2 = Mat::zeros(728,1344,CV_8UC1);

. . .
 // TIME DOMAIN window

 Mat mat_x = Mat::zeros(200, 728, CV_64F);

 Mat mat_y = Mat::zeros(200, 728, CV_64F);

 Mat mat_z = Mat::zeros(200, 728, CV_64F);

 Mat mat_time = Mat::zeros(100, 728, CV_64F);

Two initially empty matrices called canvas and canvas_2 were created with
equal size of the final window in order to be displayed. Then, using the Rect
OpenCV function, rectangles are created within this matrix such as to reserve a
certain number of pixels for each graph and for the image.

Rect ROI_final_img = Rect(0, 0, 728, 544);

Rect ROI_acc_x = Rect(0, 544, 728, 200);

Rect ROI_acc_y = Rect(0, 744, 728, 200);

Rect ROI_acc_z = Rect(0, 944, 728, 200);

Rect ROI_time = Rect(0, 1144, 728, 100);

Rect ROI_1 = Rect(1, 0, 727 - shift_y_axes, 1);

Rect ROI_2 = Rect(0, 0, 727 - shift_y_axes, 1);

ROI_1 and ROI_2 are used to create the circular vector.
ROI is the acronym of Region Of Interest.

Within an infinite while loop (while(!flag) with flag=0) all the operations
necessary to display the final window are carried out.

Initially the cycle ends once the "q" or “Q” key is pressed ⇒ flag=1.

char c = (char)waitKey(10);

 // Press q to exit from window

 if(c == 27 || c == 'q' || c == 'Q') flag = 1;

At the beginning of the while loop the accelerations are copied from a global
variable to a local one using the mutex (lock & unlock), as seen previously for
the image.

30

// get IMU accelerations

 mtx_IMU.lock();

 acc_x = GEO->IMU_SRC.acc_x;

 acc_y = GEO->IMU_SRC.acc_y;

 acc_z = GEO->IMU_SRC.acc_z;

 mtx_IMU.unlock();

Then the acceleration vectors begin to be filled. The min and max values of the
accelerations present in each vector are calculated, normalized and finally
scaled in order to be able to represent any value within the range of pixels
reserved on the ordinate axis for each graph.
The previous functions are then used to create the various lines and, finally, to
position the various graphs within the final display window.
The imshow command is used to show this final window to the user.

At the end of each iteration it is necessary to refresh the matrices containing
the graphs to avoid incorrectly overwriting the pixels. To execute this refresh,
each matrix has to be multiplied for 0 (black):

 // Image refresh

 mat_x = mat_x*0;

 mat_y = mat_y*0;

 mat_z = mat_z*0;

 mat_time = mat_time*0;

At the bottom of the window a space has been used to insert the date and time
calculated as follows:

time_t time_disp = time(nullptr);

 TIME_str = ctime(&time_disp);

 text = TIME_str.substr(0, TIME_str.length() -1);

putText(mat_time, text, Point(40, 40), FONT_HERSHEY_PLAIN, 1,

(255), 1, 1, false);

The putText function is used to insert a text string in a certain position within a
pixel matrix.
Lines, texts and images are saved in a proper matrix which is finally copied into
the respective ROI:

31

 // x & y axes & accelerations lines

 mat_x.copyTo(canvas(ROI_acc_x));

 mat_y.copyTo(canvas(ROI_acc_y));

 mat_z.copyTo(canvas(ROI_acc_z));

 mat_time.copyTo(canvas(ROI_time));

 // get blueFOX3 final image

 mtx_blueFOX3.lock();

 GEO->blueFOX3.copyTo(canvas(ROI_final_img));

 mtx_blueFOX3.unlock();

The matrix representing the final window is called canvas_2 and it is copied into
a new struct called VIDEO: that is, into a new global variable called
VIDEO.video_img.
This struct is given as input to the last thread to save the video of the entire
window, including the camera image, the graphs, the date and the time.

 if(SAVING.input_status == 1)

 {

 mtx_save_video.lock();

 canvas_2.copyTo(VIDEO->video_img);

 mtx_save_video.unlock();

 }

• save_video
In this last thread, always using the OpenCV functions, everything that appears
in the final window is saved, so as to be able to view its content even in the
post-processing phase.

VideoWriter video("./video.avi", CV_FOURCC('M', 'P', '4', 'V'),

15.0, img.size(), false);

 while(VIDEO->exit_status==0)

 {

 mtx_save_video.lock();

 VIDEO->video_img.copyTo(img);

 mtx_save_video.unlock();

 video.write(img);

 }

 video.release();

32

Figure 18: Software output window

The above figure is a screenshot of the final window seen by the user.

33

In this first version, some peculiarities can be noticed in the graphs: four values are
written on the ordinate axes, i.e. the max and min values and two intermediate values.
The origin of the graph does not coincide with the null value as otherwise, if for
example there were only negative accelerations, only half of the space available for
the graph would be used, making it more difficult for the user to understand the curve.

Looking at the window from top to bottom there are the following graphs:

• X axis accelerations;

• Y axis accelerations;

• Z axis accelerations;

All accelerations are calculated and represented in 𝑚2/𝑠.

After writing this first version of the code, a test was performed to verify that the
images were captured at an appropriate frame rate.

A 3-blades domestic fan was therefore used as a test target. By sticking a post-it on a
blade it is easier to identify its displacement in the lap.
In this way, it is possible to test the camera with something like a helicopter rotor.
A video was then recorded and then reviewed in slow motion in order to verify the
movement of the blade during the lap.

4.4 Implementation of buttons on the screen

When a flight test is performed, it is necessary to save the data and the camera images
only during some time windows of 10-20 seconds. For this reason, a code optimization
could be the implementation of some buttons to start and finish saving data.
In this way there would also be a memory saving because only a small amount of data
is saved.
In fact, the software is kept active throughout the flight test, but the data are saved
only during these time windows.

So, initially three buttons are added:

• PLAY: it allows to start saving data (accelerations) in a .xls file whose name
contains the date and time when this button was pressed. Moreover,
everything that appears on the screen from when the user presses the PLAY
button until he decides to finish recording by pressing the PAUSE or EXIT button
is saved in a video file. In this way also the camera images are saved.

34

Figure 19: PLAY button icon

• PAUSE: it allows to pause saving data and camera images, but the software
remains active and ready for a new time windows of data saving.

Figure 20: PAUSE button icon

• EXIT: it allows to terminate the program execution. It works also as a final
pause, i.e. if it is pressed during a data saving, it allows to terminate the
program after saving all the data of the final time window.

Figure 21: EXIT button icon

A fourth button is added in order to perform a Fast Fourier Transform (FFT):

• FFT: it allows to execute an FFT of the last data recorded and to create another
window with the acceleration graphs in the frequency domain.

Figure 22: FFT button icon

35

To let the user understand if the button was pressed correctly and/or which button
was pressed the last time, a black square will appear inside the PLAY or PAUSE button
icon.
The EXIT button replaces the “q” key with which the program was previously
terminated.
These four buttons allow to provide the user a graphic interface with which to execute
the various commands.

Figure 23: Time Domain Window

36

4.5 Fast Fourier Transform (FFT)

On the previous image there are four buttons: in fact, the last button added allows to
perform a Fast Fourier Transform (FFT) of the last data recorded.

The Fast Fourier Transform (FFT) is an algorithm used to perform the Discrete Fourier
Transform (DFT) or the Inverse Discrete Fourier Transform (IDFT) of a dataset. It is
widely used not only in engineering and mathematical applications, but also in the
musical and medical field (e.g. Magnetic Resonance Imaging (MRI), Computed Axial
Tomography (CAT), etc.).

The Fourier Analysis allows to switch from the time domain to the frequency domain
and vice versa: in this way different types of information usable in various field can be
obtained, e.g. to verify that the frequencies detected are not too close to the
resonance frequencies, in order to avoid a system collapse.

The DFT is a technique used to get the various frequencies associated with a series of
vibration and/or acceleration values; unfortunately, it requires quite high
computational time. Consequently, the FFT is often used as it is much quicker to
perform as it has much shorter computational times.

The FFT is based on the factorization of the “DFT matrix into a product of sparse
factors, which are mostly zero”.
Considering N as data size, these two methods have the following computational costs:

• DFT → O(𝑁2)

• FFT → O(𝑁 ⋅ 𝑙𝑜𝑔2(𝑁))

Figure 24: Computational Cost (DFT vs FFT)

37

Therefore, it is possible to notice that as N grows, the difference between these two
computational costs grows more and more, until it becomes truly high if N is of the
order of thousands or millions.

The Fourier Transform (FT) is a mathematic transformation performed on a certain f
function so defined:

𝑓: 𝑅𝑛 → 𝐶

Performing the FT of the f function, a new F function is obtained:

𝐹(ξ) = (𝐹𝑓)(ξ) =
1

(2π)
𝑛
2

∫ 𝑒−𝑖ξ𝑥

𝑅𝑛
𝑓(𝑥)𝑑𝑥

whilst the Inverse Fourier Transform is:

𝐹(−ξ) = (�̃�𝑓)(ξ) =
1

(2π)
𝑛
2

∫𝑒𝑖ξ𝑥 𝑓(𝑥)𝑑𝑥

with ξ, 𝑥 ∈ 𝑅𝑛.
Considering a certain signal, it is possible to make a distinction in the case it is analyzed
in the time domain or in the frequency domain.
In the time domain the signal is a h function which values are time dependent, so it is
h(t).
In the frequency domain, instead, the signal is characterized by a certain amplitude 𝐻
(which is generally a complex number and it can have an initial phase) which depends
on the frequency ν, so it is 𝐻(ν).
The Fourier Transform of a signal in the time domain allows to get its frequency
distribution, i.e., considering the h(t) function, the following formulas are obtained:

𝐻(ν) = ∫ ℎ(𝑡)𝑒2π𝑖ν𝑡
+∞

−∞

𝑑𝑡

ℎ(𝑡) = ∫ 𝐻(ν)𝑒−2π𝑖ν𝑡
+∞

−∞

𝑑𝑡

The Fourier Transform has some fundamental properties including the linearity
property, i.e.:

• The Fourier Transform of a two functions sum is equal to the sum of the
individual Fourier Transform.

• The Fourier Transform of a product between a c constant and a function is
equal to the product of the c constant and the function Fourier Transform.

38

Moreover, if the h(t) function is an even or odd function, also its Fourier Transform will
be an even or odd function [11].

4.6 Sampling Time and Sampling Rate: Signal Acquisition

When measuring an analog signal and converting it in a digital signal, a certain
sampling time Δ must be considered. Δ is the time that elapses between one
measurement and next, while the sampling rate ν𝑐 = 1/Δ is its reciprocal.

The samples of a time dependent signal h(t) are the following:

ℎ𝑛 = ℎ(𝑛Δ)

where n is an integer.

The sampling rate must be chosen considering the Nyquist-Shannon Theorem,
according to which the sampling rate ν𝑐 must be at least two times greater than the
maximum rate ν𝑚𝑎𝑥 to be detected, so:

ν𝑐 ≥ 2 ⋅ ν𝑚𝑎𝑥

The half of the sampling rate is called Nyquist critical frequency:

ν𝑛 =
ν𝑐
2
=
1

2Δ

The Nyquist-Shannon theorem considers the aliasing problem, that occurs in the
moment which the maximum frequency ν𝑚𝑎𝑥 is greater than ν𝑛. In that case, the 𝐻(ν)
values that should be out of the [−ν𝑛, ν𝑛] range are translated inside this range
causing a signal distortion.

To avoid the aliasing problem, some low pass filter or a greater sampling rate are used.
Usually the maximum sampling rate depends on the device used, but, if it is unknown,
it is possible to understand if there is an aliasing problem analyzing the Fourier
Transform behavior when it is near the Nyquist frequency range limits:

• If the Fourier Transform is almost 0 near these limits, the aliasing problem is
minimized.

• If the Fourier Transform stabilizes on a constant value different from 0, the
aliasing effects are not negligible, so there is a signal distortion.

39

Figure 25: Aliasing Problem [11]

4.7 Fourier Transform Discretization

The Fourier Transform is a continue function, but to execute a Discrete Fourier
Transform is necessary to discretize it. By sampling the input signal, N consecutive
samples are obtained:

ℎ𝑘 = ℎ(𝑡𝑘) with 𝑡𝑘 = 𝑘 and 𝑘 = 0, 1, 2, … , 𝑁 − 1

Having N input samples there will be N output samples, so it is possible to consider
only the discrete frequency value:

𝜈𝑛 =
𝑛

𝑁Δ
 with 𝑛 = −

𝑁

2
, −

𝑁

3
, … , +

𝑁

2

The lower and upper limits correspond to the Nyquist critical frequency, so they are
not independent like the other frequencies. Consequently, only N frequencies are
considered and therefore it is possible to approximate the Fourier Transform in this
way:

40

𝐻(ν𝑛) = ∫ ℎ(𝑡)𝑒2π𝑖ν𝑛𝑡
+∞

−∞

𝑑𝑡 ≃ ∑ ℎ𝑘

𝑁−1

𝑘=0

𝑒2π𝑖ν𝑛𝑡𝑘Δ = Δ∑ ℎ𝑘

𝑁−1

𝑘=0

𝑒2π𝑖𝑘𝑛/𝑁

The Discrete Fourier Transform (DFT) of N-ℎ𝑘 samples is:

𝐻𝑛 = ∑ ℎ𝑘𝑒
2π𝑖𝑘𝑛/𝑁

𝑁−1

𝑘=0

Therefore:

𝐻(ν𝑛) ≃ Δ𝐻𝑛

The Inverse Discrete Fourier Transform is:

ℎ𝑘 =
1

𝑁
∑𝐻𝑛𝑒

−2π𝑖𝑘𝑛/𝑁

𝑁−1

𝑛=0

4.8 Cooley-Tukey FFT algorithm

To perform a DFT it is necessary to perform some operations: it is possible to rewrite
the previous equation of DFT considering N samples and a complex number 𝑊𝑁:

𝑊𝑁 = 𝑒2π𝑖/𝑁

Consequently:

𝐻𝑛 = ∑ ℎ𝑘

𝑁−1

𝑘=0

𝑊𝑘𝑛

𝑊𝑘𝑛 is a complex matrix of dimensions N x N.

To obtain 𝐻𝑛, 𝑁2 operations must be performed. There are some algorithms that allow
to decrease significantly the number of operations, as the Cooley-Tukey factorization
algorithm, which is based on the idea of simplifying the calculations to be made by
decomposing the problem into simpler and faster subproblems to solve.
Thanks to this algorithm, only 𝑁𝑙𝑜𝑔2(𝑁) operations must be performed for an FFT,
consequently the computational time is much lower than that of the DFT.

41

Moreover, thanks to the Danielson-Lanczos lemma it is possible “to rewrite a DFT of
length N as the sum of two DFTs, each of length N/2. One is formed from the even-
numbered points (“e” apex), while the other from the odd-numbered points (“o” apex)”
[12].

Therefore:

𝐻𝑛 = ∑ ℎ𝑗

𝑁−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁 = ∑ ℎ2𝑗

𝑁/2−1

𝑗=0

𝑒
2π𝑖(2𝑗)𝑛

𝑁 + ∑ ℎ2𝑗+1

𝑁/2−1

𝑗=0

𝑒
2π𝑖(2𝑗+1)𝑛

𝑁 =

= ∑ ℎ2𝑗

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2 + ∑ ℎ2𝑗+1

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2 ⋅ 𝑒

2π𝑖𝑛
𝑁

= ∑ ℎ2𝑗

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2 +𝑊𝑁

𝑛 ∑ ℎ2𝑗+1

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2

⇒ 𝐻𝑛 = 𝐹𝑛

𝑒 +𝑊𝑁
𝑛𝐹𝑛

𝑜

The only problem of this algorithm is that it is valid only for a N samples that is power
of 2. In fact, otherwise, it would be impossible to find a number of operations equal to
𝑙𝑜𝑔2(𝑁), consequently the method would not be valid. However, there is a solution
for these cases: it is possible to fill the data pattern with null terms until the next
power of 2.
In this way the signal is not altered because the null terms inserted do not make any
contribution to the Fast Fourier Transform (FFT).

Finally, this algorithm is implemented in a C++ code in order to perform an FFT of the
last dataset saved when the user presses the FFT button.
If the user presses the FFT button, a new window is opened where the graphs obtained
in the frequency domain are displayed.

Assume to have the following sinusoidal input signals:

• X-axes: 𝑠𝑖𝑛(16 ⋅ π ⋅ 𝑡) + 𝑐𝑜𝑠(40 ⋅ π ⋅ 𝑡)

• Y-axes: 𝑠𝑖𝑛(8 ⋅ π ⋅ 𝑡) + 𝑐𝑜𝑠(24 ⋅ π ⋅ 𝑡)

• Z-axes: 𝑠𝑖𝑛(12 ⋅ π ⋅ 𝑡) + 𝑐𝑜𝑠(50 ⋅ π ⋅ 𝑡)

Considering these input signals, the frequencies expected to find in the frequency
domain are the following:

• X-axes: 𝑓1 = 8 𝐻𝑧 and 𝑓2 = 20 𝐻𝑧

• Y-axes: 𝑓1 = 4 𝐻𝑧 and 𝑓2 = 12 𝐻𝑧

• Z-axes: 𝑓1 = 6 𝐻𝑧 and 𝑓2 = 25 𝐻𝑧

42

Pressing the FFT button the FFT is performed, so the frequency domain window shown
is the following:

Such a clean graph can be obtained in an ideal case where there is not an error range
of the sensor used and where there is only a pure sinusoidal signal.

Figure 26: Frequency Domain Window - FFT ideal case

43

A graph obtained in a real case, on the other hand, can be the following, in which the
dominant frequencies (i.e. the peaks) are visible, but in which there are very small
values for almost all frequencies.

Figure 27: Frequency Domain Window - FFT real case

44

Each sensor, in fact, has a certain wide error range that can affect the data detected.

In this window there are two new buttons:

• CAMERA button: it allows to do a screenshot of the frequency domain window,
in order to allow the user to view even during the flight test the FFT performed
of all the data recorded.

Figure 28: CAMERA button icon

• TIME button: it allows to return to the time domain window in order to start a
new data recording. When the PLAY or PAUSE button is pressed, a new dataset
is recorded, so it is impossible to view the FFT of the previous dataset. For this
reason, the CAMERA button is added.

Figure 29: TIME button icon

However, the data obtained thanks the FFT are saved on a text file, thus the user can
use it during the post-processing phase.

45

4.9 FFT C++ code validation

To verify if the C++ code that performs the Fast Fourier Transform is correct, a
comparison was made with a MATLAB code using the fft function implemented in this
software.

Figure 30: fft function MATLAB Documentation [13]

This is the MATLAB Documentation about the fft function.

The validation test is performed considering 3 sinusoidal input signals with different
frequencies:

• 1st input signal: 𝑠𝑖𝑛(10 ⋅ π ⋅ 𝑡)

• 2nd input signal: 𝑠𝑖𝑛(20 ⋅ π ⋅ 𝑡)

• 3rd input signal: 𝑠𝑖𝑛(30 ⋅ π ⋅ 𝑡)

In the C++ code 3 accelerations along each axis (X, Y and Z) are used as input signals,
therefore the above written signals are used as input signals respectively for X, Y and Z
axis.

46

The following results are obtained with the MATLAB and C++ codes:

Figure 31: MATLAB results

47

Figure 32: C++ code results

48

On the abscissa axes there is the frequency in Hertz, while on the ordinate axes there
is the ratio between the magnitude and the number of samples N saved. In this case
N = 1602, so for the FFT the next power of 2 closest to N used is n = 2048.

It is important to notice that both x and y values are the same on the figures obtained
from the two different codes, therefore, the fft MATLAB function and the C++ code
implemented work the same way.

So, why write a C++ code that performs the Fast Fourier Transform when instead it is
possible to use directly the fft function on MATLAB?

There are several reasons: first, using a C++ code it is not necessary to have a MATLAB
license and to download MATLAB on the computer. Therefore, the user can also save
money from an economic point of view.
Moreover, in order to use MATLAB, the user should use multiple programs (C++ code
to acquire data and MATLAB to perform the FFT), consequently the use of the various
programs would be made more difficult and less immediate.
The MATLAB code would also require the opening of files, saving the data and creating
the various figures representing the graphs. This whole process would require a
greater amount of time than the time required to press a button that allows to
perform all this instantly. In this way, the user can save a lot of time and simplify his
work a lot.

However, in the C++ code, thanks to the text file where the data obtained with the FFT
are saved, the user can also use them during the post-processing phase for other
purposes.

4.10 1st Application Conclusions

Once the Fast Fourier Transform is performed, the user can view the data in the
frequency domain, and he can compare them to the previous data or to the
accelerations prescribed by the Regulations.

This application allows the Flight Test Engineer to use a non-invasive instrumentation,
easy to transport and to mount on the aircraft, and to carry out the various analyses in
a simpler and more immediate way.

The Flight Test Engineer can then perform analysis in real time when he is still on
board the aircraft: in this way, if from an analysis there are non-compliant results, it is
possible to repeat the maneuver immediately to try to understand, for example, why
there is a certain vibration. With the previous instrumentation, however, the Flight
Test Engineer could carry out these analyses only once landed, consequently it would

49

have been necessary to make the aircraft take off again, with a consequent loss of time
and an increase in flight test costs.

50

5 Parameter Identification

The Parameter Identification is a technique born around the 70s and concerns the
analysis of the control and stability characteristics of aircraft.

What is the difference between stability and control derivatives?

• Stability derivatives: measure how much forces and/or moments acting on
the aircraft change as a result of a small change in flight condition
parameter such as airspeed, altitude, angle of attack, etc.

• Control derivatives: measure how much forces and/or moments acting on
the aircraft change as a result of a small change in the deflection of a
control surface as rudder, elevator and aileron [13].

“Parameter Identification has become a significant tool for applications such as model
validation, handling qualities evaluation, control law design, and flight-vehicle design
and certification” [14].

Aircraft in flight have a dynamic like that of a mass-spring-damper system (II order
system) but they have at least 6 degrees of freedom (DOF): 3 translational and 3
rotational (roll, pitch, yaw).
For a helicopter 9 DOF are considered because there are also 3 DOF of the blade: lead-
lag, flap and pitch.

Figure 33: Six Degrees of Freedom [15]

51

Figure 34: Helicopter rotor blades degrees of freedom [16]

For the aircraft dynamic analysis 6 linearized equations of motion are usually used,
within which there are some terms called stability and control derivatives.
The value of many of these parameters depends on the speed, in fact they can be quite
different between the hover condition and the forward flight condition.

Usually a first estimate of these values is obtained even before the first flight of the
aircraft. This estimation is made through a combination of analysis, wind-tunnel tests
and assumptions made with some judgment.

Unfortunately, however, when the aircraft is in flight, it could have a different behavior
than the one predicted by these initial estimates. For this reason, flight-tests are
carried out with which to obtain more precise information relating to the values of the
stability and control derivatives.

52

In fact, the data obtained from the wind-tunnel tests (computed) are very different
from those obtained during flight tests (flight), as shown in the following figure:

Figure 35: Comparison of computed response using wind-tunnel-parameter values
with flight-measured response [17]

The results obtained through the flight-tests are very important for a subsequent
development of flight simulators of a specific helicopter or category of helicopters, but
also to carry out a better analysis to correct flying-quality problems or to develop
autopilots.

Using flight-test data allow to eliminate the errors generated by the assumptions and
approximations made during the initial estimates.

53

Before performing a flight-test campaign, it’s very important to choose what
maneuvers realize modeling the commands input. This choice is fundamental because
it allows to minimize the uncertainties present in the Parameter Estimation procedure
and to maximize the flight-test data content.
To perform this optimization in the command input modeling it is necessary to have a
priori knowledge about the dynamic of that specific helicopter [18].

How are flight-tests performed?
Before carrying out a flight test, the aircraft is instrumented with appropriate sensors
capable of measuring certain parameters: for example, accelerations, speeds and the
attitude that the aircraft assumes during flight.
Starting from a trim condition, the pilot performs one or more maneuvers using the
various commands: in the case of a helicopter the pilot uses all four pilot control
inputs: collective, longitudinal cyclic, lateral cyclic and pedals.
There are different types of standard input commands, e.g. step, pulse, doublet or
“3211”.
The “3211” is a sequence of sharp-edged pulses that excite both the short-period and
long-period (phugoid) modes and each number corresponds to each input duration
[19].

Figure 36: 3211 control input [5]

54

Usually these tests are carried out with the Stability and Control Augmentation System
(SCAS) turned off, except in the case the helicopter is so unstable that it does not allow
to obtain adequate time histories of the various parameters.

Some of the data that must be measured during a flight-test are fuel quantity in each
tank, nose boom static and dynamic pressures, external stagnation temperature,
aerodynamic angle of attack (α) and sideslip angle (β), roll, pitch, and yaw rates (p, q,
and r, resp.) and accelerations, body axes speeds (u, v, w) and accelerations, load
factors, longitudinal (θ) and lateral (φ) body attitudes, heading, collective, longitudinal
and lateral cyclic, and pedal command deflections (𝛅𝑪, 𝛅𝑩, 𝛅𝑨 and 𝛅𝑷, resp.) [18].

Therefore, both input and output data of the real system are measured.
To measure the inputs given by the pilot, it is also necessary to instrument the flight
controls with appropriate sensors that allow to have some information about
commands amplitude and duration.

When carrying out flight tests, the data detected by the sensors may be subject to
noise caused by the vibrations of the sensors’ cables, therefore, usually, a Kalman
Filter is used to mitigate the influence of noise on the data measured. In fact, using
data affected by noise would substantially influence the final analysis. Moreover, there
may be also external disturbances that are impossible to measure directly.

Figure 37: General systems identification problems [17]

55

If during a flight-test aileron and rudder small-amplitude pulses are performed, the
measured output data are roll and yaw rate, sideslip and bank angle, lateral
acceleration, as shown in the following figure:

Figure 38: Flight-test data measured for parameter estimation [17]

Once the time histories of all the main parameters have been obtained, a set of six or
more linearized equations of motion is used in which the stability and control
derivatives values obtained before the flight-tests are initially used. Starting from these
values and from the results obtained during the flight-tests, different trial-and-error
techniques can be used such as e.g. Ordinary Least Squares, Deterministic Least
Squares, Statistical Linearized Filter and Extended Kalman Filter.
Using these techniques, the stability and control derivatives final values are the ones
that allow to get as close as possible to the data obtained during flight-tests.

56

Therefore, flight and computed time histories have almost the exact same trend, as
shown in figure:

Figure 39: Typical match of computed response using estimated parameter values with
the flight-measured response [17]

To get a final estimate, several steps must be performed, consequently these
techniques are performed by computers with high computing capacities.

The techniques used for the Parameter Estimation have been improved more and
more over the years mainly for two reasons:

• the aircraft performances have improved significantly, consequently their
dynamics have changed;

57

• there is always the goal of having more accurate and efficient techniques, in
order to improve the results produced [17].

The Parameter Estimation techniques have five key points:

1. mathematical model;
2. estimation criterion;
3. computational algorithm;
4. total data acquisition system;
5. test input.

Figure 40: Basic concept of contemporary parameter estimation techniques [17]

A common result to all the Parameter Identification Analysis performed on different
types of aircraft and helicopter is that the final values of the stability and control
derivatives could be up to 50% different from the initially estimated values.
The final values of these parameters are those that make the simulation more realistic
and they are closer to the values obtained during flight-tests. Using these final values,
highly effective autopilots and simulators can be implemented.

Some stability derivatives, in fact, can be strongly influenced by phenomena that are
difficult to predict during initial phases, such as e.g. the main’s rotor’s wake that
impinges on the tail surfaces. Precisely because of these effects, the Parameter
Identification assumes even more importance, because the initial estimate of the
stability derivatives can determine not negligible differences compared to the real
values. Furthermore, the aircraft/helicopter project can have various evolutions

58

compared to the first configuration and, in this way, it is possible to obtain values as
close as possible to the real ones.

“The correlation coefficient between measured (𝑦) and simulated data (𝑦𝑠𝑖𝑚), defined
as the normalized cross-covariance function ρ𝑦𝑦𝑠𝑖𝑚, is given by (Bendat and Piersol

[20]):

ρ𝑦𝑦𝑠𝑖𝑚 =
∑ [(𝑦𝑖(𝑡) − (1/𝑁)∑ 𝑦𝑖(𝑡)

𝑁
𝑖=1)(𝑦𝑠𝑖𝑚𝑖

(𝑡) − (1/𝑁)∑ 𝑦𝑠𝑖𝑚𝑖
(𝑡)𝑁

𝑖=1)]𝑁
𝑖=1

√∑ [(𝑦𝑖(𝑡) − (1/𝑁)∑ 𝑦𝑖(𝑡)
𝑁
𝑖=1)

2
]𝑁

𝑖=1 √∑ [(𝑦𝑠𝑖𝑚𝑖
(𝑡) − (1/𝑁)∑ 𝑦𝑠𝑖𝑚𝑖

(𝑡)𝑁
𝑖=1)

2
]𝑁

𝑖=1

can be used to estimate how well the estimated signals can reproduce the measured
data. If the correlation coefficient is close to 1, one may conclude that the estimation
algorithm can provide a good fit to the experimental data, but on the other hand, if the
coefficient is close to 0, the estimation was poor” [18].

N is the simulated outputs number of the proposed model (for example five 3211
maneuvers).

The Parameter Identification is used not only in the time-domain, but also in the
frequency-domain, so frequency-based data are necessary, and they can be obtained
even with a conversion of time-based data [21].

59

6 2nd Application

Carrying out a real Parameter Estimation would require very precise knowledge both in
terms of techniques to be used and in terms of data. A good compromise could be to
use the same logic to derive an approximation of the fundamental dynamic
characteristics, namely:

• natural frequency 𝒇𝒏;

• damping ratio 𝛇.

Usually these two parameters are calculated by means of formulas within which there
are characteristic coefficients of the aircraft such as aerodynamic coefficients and
dimensionless aerodynamic derivatives. These parameters are calculated precisely
performing a Parameter Estimation.

The goal of this 2nd application is precisely to obtain quite realistic natural frequency 𝑓𝑛
and damping ratio ζ values by analyzing the time histories of the main parameters
measured during flight tests.

The main aim is to obtain in a sufficiently short time and in a very simple way an
accurate information regarding these two parameters of fundamental importance.

The idea is to calculate them in the following way:

• natural frequency 𝒇𝒏: analyzing the period T of the various oscillations of
the output signal.

• damping ratio 𝛇: analyzing how much the amplitude of the output signal
decreases with each oscillation.

6.1 Dynamic Stability

Usually the dynamic stability of a fixed wing aircraft is studied using the theory of small
perturbations which allows to decouple the longitudinal plane and the lateral-
directional plane.

The dynamic stability of a helicopter, on the other hand, can be studied by decoupling
the planes only in the case of hovering or low-speed flight. This difference is because
for a helicopter there are couplings between the loads present in the two planes which
therefore do not allow to decouple them.

60

Considering the two coupled planes, the state formulation in compact form is the
following:

�̇� = 𝐴 ⋅ 𝑥 = [
𝐴𝑙𝑜𝑛 𝐴𝑙𝑎𝑡−𝑙𝑜𝑛

𝐴𝑙𝑜𝑛−𝑙𝑎𝑡 𝐴𝑙𝑎𝑡
] ⋅ 𝑥

where 𝐴𝑙𝑜𝑛−𝑙𝑎𝑡 and 𝐴𝑙𝑎𝑡−𝑙𝑜𝑛 are the two coupling submatrices, in fact, they contain the
terms of cross-coupling.
The formulation of the state matrix A for full dynamics (coupled planes) is as follows:

𝐴 =

[

𝑋𝑢 𝑋𝑤 𝑋𝑞 −𝑔𝑐𝑜𝑠τ𝑐 𝑋𝑣 𝑋𝑝 𝑋𝑟 0 0

𝑍𝑢 𝑍𝑤 𝑍𝑞 + 𝑉 −𝑔𝑠𝑖𝑛τ𝑐 𝑍𝑣 𝑍𝑝 𝑍𝑟 0 0

𝑀𝑢 𝑀𝑤 𝑀𝑞 0 𝑀𝑣 𝑀𝑝 𝑀𝑟 0 0

0 0 1 0 0 0 0 0 0
𝑌𝑢 𝑌𝑤 𝑌𝑞 0 𝑌𝑣 𝑌𝑝 𝑌𝑟 − 𝑉 𝑔𝑐𝑜𝑠τ𝑐 0

𝐿𝑢
′ 𝐿𝑤

′ 𝐿𝑞
′ 0 𝐿𝑣

′ 𝐿𝑝
′ 𝐿𝑟

′ 0 0

𝑁𝑢
′ 𝑁𝑤

′ 𝑁𝑞
′ 0 𝑁𝑣

′ 𝑁𝑝
′ 𝑁𝑟

′ 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0]

where τ𝑐 is the flight path angle.

The state vector 𝒙 instead is:

𝑥 = {𝑢 𝑤 𝑞 θ 𝑣 𝑝 𝑟 φ ψ}𝑇

where:

• 𝑢,𝑤, 𝑞, θ: are the state variables of the longitudinal plane;

• 𝑣, 𝑝, 𝑟, φ, ψ: are the state variables of the lateral-directional plane.

If the helicopter is in hover or in low-speed flight the two planes can be decoupled.

6.1.1 Longitudinal plane

The state-space formulation for the longitudinal plane is:

�̇� = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢

{

�̇�
�̇�
�̇�

θ̇

} = [

𝑋𝑢 𝑋𝑤 𝑋𝑞 −𝑔𝑐𝑜𝑠τ𝑐
𝑍𝑢 𝑍𝑤 𝑍𝑞 + 𝑉 −𝑔𝑠𝑖𝑛τ𝑐
𝑀𝑢 𝑀𝑤 𝑀𝑞 0

0 0 1 0

] ⋅ {

𝑢
𝑤
𝑞
θ

} +

[

𝑋θ0 𝑋𝐵1
𝑍θ0 𝑍𝐵1
𝑀θ0 𝑀𝐵1

0 0]

⋅ {
θ0
𝐵1
}

61

𝐵 is the control matrix while 𝑢 is the command vector where there are the two
control variables θ0 and 𝐵1, respectively the collective command and
longitudinal cyclic.

The dynamic stability is studied using the eigenvalue analysis. Once the
eigenvalues of the state matrix 𝐴 have been found, there is a further difference
with respect to fixed-wing aircraft: for a fixed-wing aircraft there are two
complex conjugated pair of eigenvalues which represent:

• Short period mode: a fast and quite damped dynamic mode;

• Long period (phugoid) mode: a slow and slightly damped dynamic
mode.

In fact, the skill of a pilot is to perform a maneuver that triggers only the short
period mode and not also the phugoid one.

For a helicopter, instead, there are two real negative eigenvalues and one
complex conjugated pair of eigenvalues:

• First real negative eigenvalue represents a damped and aperiodic pitch
mode. In hovering the eigenvalue is λ ≃ 𝑀𝑞 < 0 and becomes more and

more negative as the speed increases. This dynamic mode is stable
thanks the inherent stability of the main rotor, which has a 𝑀𝑞 < 0

(damping derivative).

• Second real negative eigenvalue represents the heave mode, a damped
and aperiodic dynamic mode, that is, the response along the
helicopter's vertical axis following a change in the vertical speed 𝑤.
In hovering the eigenvalue is λ ≃ 𝑍𝑤, so it depends on the vertical
damping derivative 𝑍𝑤.

• The complex conjugated pair of eigenvalues represent the long-period
(phugoid) mode. At very low speeds the respective eigenvalue has a
slightly positive real part (𝑅𝑒(λ)>0) due to the poor efficiency of the tail
empennages at low speed, consequently it is a slightly unstable dynamic
mode. While starting from slightly higher speeds the real part of the
eigenvalue becomes negative (𝑅𝑒(λ)<0) as the dynamic pressure on the
tail empennages increases, consequently their efficiency increases and
therefore the phugoid becomes a stable dynamic mode.

62

6.1.2 Lateral-directional plane

The state-space formulation for the lateral-directional plane is:

�̇� = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢

{

�̇�
�̇�
�̇�
φ̇

ψ̇}

=

[

𝑌𝑣 𝑌𝑝 𝑌𝑟 − 𝑉 𝑔𝑐𝑜𝑠τ𝑐 0

𝐿𝑣
′ 𝐿𝑝

′ 𝐿𝑟
′ 0 0

𝑁𝑣
′ 𝑁𝑝

′ 𝑁𝑟
′ 0 0

0 1 0 0 0
0 0 1 0 0]

⋅

{

𝑣
𝑝
𝑟
φ
ψ}

+

[

𝑌𝐴1 𝑌θ𝑡𝑟
𝐿𝐴1
′ 𝐿θ𝑡𝑟

′

𝑁𝐴1
′ 𝑁θ𝑡𝑟

′

0 0
0 0]

⋅ {
𝐴1
θ𝑡𝑟
}

where 𝐴1 is the lateral cyclic while θ𝑡𝑟 is the pedal command.

The aerodynamic derivatives are always obtained with the decomposition in
principal axes of inertia: in this way all the rotations are around the principal
axes of inertia.

The principal axes of inertia do not coincide with the body axes because of 𝐼𝑋𝑍,
but while for a fixed-wing aircraft 𝐼𝑋𝑍 is at least two orders of magnitude
smaller than 𝐼𝑋𝑋 and 𝐼𝑍𝑍, for a helicopter it is high because of:

• Tail rotor;

• Tail empennages;

• Vertical and not uniform mass distribution.

Therefore, 𝐼𝑋𝑍 is only one order of magnitude smaller than 𝐼𝑋𝑋 and 𝐼𝑍𝑍,
consequently when the pilot gives a lateral cyclic command, in addition to the
roll response, there is also a yaw one because the moment of inertia 𝐼𝑋𝑍
couples the roll response to the yaw response.

The apexes “ ’ ” are therefore due to keep in consideration the 𝐼𝑋𝑍 moment of
inertia and its coupling effect:

𝐿𝑖
′ =

𝐿𝑖 +
𝐼𝑋𝑍
𝐼𝑋𝑋

𝑁𝑖

1 −
𝐼𝑋𝑍
2

𝐼𝑋𝑋𝐼𝑍𝑍

≃ 𝐿𝑖 +
𝐼𝑋𝑍
𝐼𝑋𝑋

𝑁𝑖

𝑁𝑖
′ =

𝑁𝑖 +
𝐼𝑋𝑍
𝐼𝑍𝑍

𝐿𝑖

1 −
𝐼𝑋𝑍
2

𝐼𝑋𝑋𝐼𝑍𝑍

≃ 𝑁𝑖 +
𝐼𝑋𝑍
𝐼𝑍𝑍

𝐿𝑖

63

There are five eigenvalues λ extracted from the state matrix 𝐴, but one of them
is null (λ = 0) and it represents the heading mode. The other four eigenvalues
are:

• A complex conjugated pair of eigenvalues for the dutch roll that have a
real positive part (𝑅𝑒(λ) > 0) at low speeds due to the poor efficiency
of the tail empennages and tail rotor at such speeds, consequently FCS
(Flight Control System) is used to stabilize this dynamic mode at these
speeds. Increasing the flight speed, their efficiency raises, so the dutch
roll became a stable dynamic mode (𝑅𝑒(λ) < 0).

• A real negative eigenvalue for the roll mode, that is an aperiodic stable
dynamic mode thanks to the main rotor. In fact, this is a symmetric case
of the pitch mode. In hovering the eigenvalue is λ ≃ 𝐿𝑃.

• A real negative eigenvalue for the spiral mode. For a helicopter the
spiral mode is always a stable dynamic mode thanks to the 𝑁𝑟 < 0 yaw
damping derivative that depends on the tail rotor characteristics. In fact,
in hover conditions, the eigenvalue is λ ≃ 𝑁𝑟 < 0. For a fixed-wing
aircraft, instead, the spiral mode eigenvalue is 𝑅𝑒(λ) ≃ 0, so the real
part of the eigenvalue switch from positive to negative values and vice
versa because of the dihedral effect, so it could be unstable [22].

6.2 2nd Application Implementation

For the 2nd application a new C++ code is necessary because only the Spatial will be
used, not the camera. In fact, using the Spatial, the fundamental variables described
previously can be measured, as the Euler’s angles, angular velocity and the
acceleration along the body axes.

Plotting the time history of each variable it will be possible to verify if, following a
certain pilot input command maneuver, the helicopter response is such that the
induced oscillations tend to decrease quite quickly.
The application aim is to get some approximative values but still quite realistic of the
natural frequency 𝑓𝑛 and the damping ratio ζ.

The same approach used for the 1st application was used to realize the graphs. Even in
this case two windows were created: one for the longitudinal plane variables and the
other one for the lateral-directional plane variables. This choice, as well as the chosen
variable, can be obviously modified according to the user’s needs.

64

The user can switch from a video screen to another through the new buttons inserted
near the ones previously described:

• NEXT PAGE button: this button is present in the longitudinal plane window and
it allows to switch to the lateral-directional plane window.

Figure 41: NEXT PAGE button icon

• PREVIOUS PAGE button: this button is present in the lateral-directional plane

window and it allows to switch to the longitudinal plane window.

Figure 42: PREVIOUS PAGE button icon

Even in this application the graphs are created from when the user starts the software,
but the several data values are saved on a text file only from when the user presses on
the PLAY button until he presses the PAUSE or EXIT button.

65

Figure 43: Longitudinal plane window

66

Figure 44: Lateral-Directional plane window

67

The user has full freedom in choosing which of the two screens to display at that
moment using the two buttons NEXT PAGE and PREVIOUS PAGE, without this choice
being able to modify or generate errors in the creation of the graphs in real time and in
saving the various data on the text file.

Moreover, in order to save two different videos (one for each display), another thread
save_video was created: so, when the user click to the PLAY button, two videos are
created and saved.
Consequently, another function called save_video_lat_dir was created in order to save
the video of the Lateral-Directional plane window.

// Initialize and set thread joinable

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

// create thread for getting IMU

pthread_create(&thread_id_geo,&attr,getGeoInfo,(void *)&GEO);

// create thread to save longitudinal plane video

pthread_create(&thread_id_save_video, &attr, save_video, (void

*)&VIDEO);

// create thread to save lateral-directional plane video

pthread_create(&thread_id_save_video_lat_dir, &attr,

save_video_lat_dir, (void *)&VIDEO);

SensorFusion(&GEO, &VIDEO);

// close thread for getting IMU

pthread_join(thread_id_geo, &status);

// close thread to save longitudinal plane video

pthread_join(thread_id_save_video, &status);

// close thread to save lateral-directional plane video

pthread_join(thread_id_save_video_lat_dir, &status);

pthread_attr_destroy(&attr);

In this way, for example, if the user has seen the Longitudinal plane window during the
saving phase, he can also be able to view the Lateral-directional plane window during
the post-processing phase.
The window chosen by the user during the saving phase does not affect in any way the
saving of the two videos and does not generate any type of error.
Consequently, the user has full freedom in choosing a specific window rather than
another in the registration phase.

68

6.3 Spatial Manager

From the Spatial web site [23] it is possible to download the Spatial Manager, available
for Mac, Windows and Linux. This is a graphic interface of the Spatial.

Figure 45: Spatial web site [23]

An update version of Java is necessary to use the Spatial Manager.

After downloading Java, it is recommended to use the following command in the Linux
Terminal Command Line to avoid having some permissions problems:

sudo adduser username dialout

To execute the .jar file and finally use the Spatial Manager it is necessary to use the cd
command to go in the .jar file directory and the last command to use is the following:

sudo java -jar SpatialManager-5.0.jar

After using this command, the Spatial Manager software will start.

The Spatial SDK codes allow to use several packets, each of one allows to get different
data types as angles, velocity in body axes / NED axes, angular velocity in body axes,
accelerations in body axes, angular accelerations, latitude, longitude, temperature and
pressure on the Spatial, g-force, etc.

69

To activate and/or deactivate the various packets, each distinguishable by its own ID,
and to change the rate used to get the data values, it is necessary to use the Spatial
Manager. In fact, these changes cannot be carried out by the C/C++ codes.

After starting Spatial Manager and connecting the Spatial to the pc, the following
screen appears:

Figure 46: Spatial Manager graphic interface [24]

A good pc graphic card is necessary to view the 3D map, otherwise this screen section
will appear completely black.

The top center screen is very similar to the aircraft Primary Flight Display (PFD), in fact
there are the heading, height, speed and attitude information. There are also the
artificial horizon and the same colors (brown and blue) which are used on the PFD.

To activate and/or deactivate packets the user must go in Configuration -> Packet
Rates and must add ID and Period for each packet that he wants to use.
In the Spatial Reference Manual [24] it is possible to find all the packets IDs.

70

The System State Packet (ID 20) and the Raw Sensors Packet (ID 28) are the default
packet enabled at 50Hz and these typically provide almost all the data that a user will
require. However, it is possible to change the output rate changing the Period.

Figure 47: Packet Rates - Spatial Manager

Before increasing the packet rates, it is essential to ensure that the baud rate is
adequate to handle the data throughput. By default, the Spatial is configured with a
baud rate of 115200.
The baud rate can be calculated using the packet rate and size.
The packet size is equal to the packet length add five to account for the packet
overhead.
By default, the packet rate is 50 Hz, so, considering that the System State Packet length
is 100, it is necessary to do the following calculations:

Data throughput = [100 (packet length) + 5 (fixed packet overhead)] x 50 (rate)
Data throughput = 5250 bytes per second

Minimum baud rate = Data throughput x 11 = 57750 Baud
Closest standard baud rate = 115200 Baud

71

Using these formulas, it is possible to calculate the necessary baud rate for each packet
rate that the user wants to use.
When the user wants to use multiple packets at the same rate, he must order them
from the lowest ID to the highest ID.

Once the necessary packets are activated, some changes on getGeoInfo function are
necessary in order to get the desired data:

an_decoder_t an_decoder;

an_packet_t *an_packet;

system_state_packet_t system_state_packet;

raw_sensors_packet_t raw_sensors_packet;

body_velocity_packet_t body_velocity_packet;

…

else if (an_packet->id == packet_id_raw_sensors) /* raw sensors packet

*/

{

/* copy all the binary data into the typedef struct for the packet */

/* this allows easy access to all the different values */

if(decode_raw_sensors_packet(&raw_sensors_packet, an_packet) == 0)

{

 mtx_IMU.lock();

 GEO->IMU_SRC.acc_x = raw_sensors_packet.accelerometers[0];

 GEO->IMU_SRC.acc_y = raw_sensors_packet.accelerometers[1];

 GEO->IMU_SRC.acc_z = raw_sensors_packet.accelerometers[2];

 GEO->flag_acc = 1;

 mtx_IMU.unlock();

 }

}

This one is an example of how call back a packet in the C++ code and how to use the
SDK. For each packet used it is necessary to add these simple command lines.

72

6.4 Packet Summary

The Spatial packets available are the following:

Packet ID Length R/W Name

System Packets
0 4 R Acknowledge Packet

1 - W Request Packet

2 1 R/W Boot Mode Packet

3 24 R Device Information Packet

4 4 W Restore Factory Settings Packet

5 4 W Reset Packet

10 - R/W Serial Port Pass-through Packet

State Packets
20 100 R System State Packet

21 8 R Unix Time Packet

22 14 R Formatted Time Packet

23 4 R Status Packet

24 12 R Position Standard Deviation Packet

25 12 R Velocity Standard Deviation Packet

26 12 R Euler Orientation Standard Deviation Packet

27 16 R Quaternion Orientation Standard Deviation Packet

28 48 R Raw Sensors Packet

29 74 R Raw GNSS Packet

30 13 R Satellites Packet

31 - R Detailed Satellites Packet

32 24 R Geodetic Position Packet

33 24 R ECEF Position Packet

34 26 R UTM Position Packet

35 12 R NED Velocity Packet

36 12 R Body Velocity Packet

37 12 R Acceleration Packet

38 16 R Body Acceleration Packet

39 12 R Euler Orientation Packet

40 16 R Quaternion Orientation Packet

41 36 R DCM Orientation Packet

42 12 R Angular Velocity Packet

43 12 R Angular Acceleration Packet

44 60 R/W External Position & Velocity Packet

45 36 R/W External Position Packet

46 24 R/W External Velocity Packet

47
16 or
24

R/W External Body Velocity Packet

73

48 8 R/W External Heading Packet

49 8 R Running Time Packet

50 12 R Local Magnetic Field Packet

51 20 R Odometer State Packet

52 8 R/W External Time Packet

53 8 R/W External Depth Packet

54 4 R Geoid Height Packet

55 - W RTCM Corrections Packet

56 - - External Pitot Pressure Packet

57 12 R/W Wind Packet

58 16 R Heave Packet

59 - - Post Processing Packet

60 - R Raw Satellite Data Packet

67 13 R/W External Odometer Packet

68 25 R/W External Air Data Packet

72 8 R/W Gimbal State Packet

73 24 R Automotive Packet

Configuration Packets
180 4 R/W Packet Timer Period Packet

181 - R/W Packets Period Packet

182 17 R/W Baud Rates Packet

184 4 R/W Sensor Ranges Packet

185 73 R/W Installation Alignment Packet

186 17 R/W Filter Options Packet

187 - - Advanced Filter Parameters Packet

188 13 R/W GPIO Confguration Packet

189 49 R/W Magnetic Calibration Values Packet

190 1 W Magnetic Calibration Confguration Packet

191 3 R Magnetic Calibration Status Packet

192 8 R/W Odometer Confguration Packet

193 5 W Set Zero Orientation Alignment Packet

194 49 R/W Reference Point Offsets Packet

195 33 R/W GPIO Output Confguration Packet

198 64 R/W User Data Packet

199 65 R/W GPIO Input Confguration Packet

Figure 48: Spatial Packets [24]

For the 2nd application the Body Velocity Packet (ID 36) was added because it is
necessary to get the velocity in body axes (X, Y, Z) u, v, w.

The default packets System State Packet (ID 20) and Raw Sensors Packet (ID 28) allow
to get the following data values [24]:

74

System State Packet
Packet ID 20

Packet Length 100

Field # Bytes Offset Data Type Size Description

1 0 u16 2 System status, see section 13.9.1.1

2 2 u16 2 Filter status, see section 13.9.1.2

3 4 u32 4 Unix time (seconds), see section 13.9.1.4

4 8 u32 4 Microseconds, see section 13.9.1.5

5 12 fp64 8 Latitude (rad)

6 20 fp64 8 Longitude (rad)

7 28 fp64 8 Height (m)

8 36 fp32 4 Velocity north (m/s)

9 40 fp32 4 Velocity east (m/s)

10 44 fp32 4 Velocity down (m/s)

11 48 fp32 4 Body acceleration X (m/s/s)

12 52 fp32 4 Body acceleration Y (m/s/s)

13 56 fp32 4 Body acceleration Z (m/s/s)

14 60 fp32 4 G force (g)

15 64 fp32 4 Roll (radians)

16 68 fp32 4 Pitch (radians)

17 72 fp32 4 Heading (radians)

18 76 fp32 4 Angular velocity X (rad/s)

19 80 fp32 4 Angular velocity Y (rad/s)

20 84 fp32 4 Angular velocity Z (rad/s)

21 88 fp32 4 Latitude standard deviation (m)

22 92 fp32 4 Longitude standard deviation (m)

23 96 fp32 4 Height standard deviation (m)

Figure 49: System State Packet [24]

Raw Sensors Packet

Packet ID 28

Packet Length 48

Field # Bytes Offset Data Type Size Description

1 0 fp32 4 Accelerometer X (m/s/s)

2 4 fp32 4 Accelerometer Y (m/s/s)

3 8 fp32 4 Accelerometer Z (m/s/s)

4 12 fp32 4 Gyroscope X (rad/s)

75

5 16 fp32 4 Gyroscope Y (rad/s)

6 20 fp32 4 Gyroscope Z (rad/s)

7 24 fp32 4 Magnetometer X (mG)

8 28 fp32 4 Magnetometer Y (mG)

9 32 fp32 4 Magnetometer Z (mG)

10 36 fp32 4 IMU Temperature (deg C)

11 40 fp32 4 Pressure (Pascals)

12 44 fp32 4 Pressure Temperature (deg C)

Figure 50: Raw Sensors Packet [24]

6.5 Damping Ratio and Natural Frequency

Previously, the various dynamic ways in which a helicopter responds to a certain
command given by the pilot have been described. The periodic dynamic modes are
characterized by a natural frequency 𝑓𝑛 and a damping ratio ζ.
If 0 < ζ < 1 the dynamic mode is underdamped, while if ζ > 1 it is overdamped.

Figure 51: Output response according to damping ratio value [25]

76

If ζ = 1 the output response is critically damped, so it reaches steady state value as
quickly as possible without being weakened, while if ζ > 1 the response does not
oscillate around the steady state value but takes longer to reach the steady state than
the critically damped case.

The aim of this 2nd application is to find an approximation of the natural frequency 𝑓𝑛
and damping ratio ζ in a simple way, analyzing the output responses obtained after a
command input given by the pilot.

Considering the following figure representing a capture of the longitudinal plane
window, it is possible to notice that the output response is underdamped (ζ < 1)
because of its decrease in amplitude over time and of its oscillation around a
stationary value.

Figure 52: X acceleration output signal

To facilitate the work of estimating the natural frequency 𝑓𝑛 and the damping ratio ζ, it
is possible to use in a MATLAB code the data saved in output in the .xlsx file.

77

The same curve represented on MATLAB is the following:

Figure 53: X acceleration curve on MATLAB

By representing this curve on MATLAB, it is possible to see its complete trend over
time.

The natural frequency 𝑓𝑛 can be calculated by inverse the time elapsed between one
peak and the next one.

78

Figure 54: Time instant of the peaks

The first peak occurs at the time instant 𝑡 = 0.9147 𝑠, while the next one at 𝑡 =
 4.947 𝑠, therefore the time elapsed between one peak to the next one is equal to
𝑇𝑑 = 4.0323 𝑠 and the damped natural frequency is 𝑓𝑑 = 1/𝑇𝑑 = 0.248 𝐻𝑧.

The undamped natural frequency is equal to:

𝑓𝑛 = 𝑓𝑑 ⋅ √1 − ζ2

Therefore, in order to obtain the natural frequency 𝑓𝑛, it is necessary to calculate the
damping ratio ζ.

Obviously, this curve is just an example, i.e. the values present must not be considered
as real values obtained from a flight test on board an aircraft.

Moreover, it is possible to calculate the damping ratio ζ in different ways: the simplest
one is to use the Logarithmic Decrement method which exploits the knowledge of the
amplitudes of two peaks to finally obtain a damping ratio value. This method can be
used only for an underdamped system (ζ < 1) and it becomes less and less precise for
0.5 < ζ < 1 [26].

79

Analyzing the time response of an underdamped vibration it is possible to calculate the
logarithmic decrement δ that represents the reduction rate of the amplitude of a free
dumped oscillation.

Figure 55: Time response of an underdamped oscillation

δ is equal to the natural logarithm of the ratio of any two successive amplitudes.
Considering the time response of an underdamped vibration 𝑥(𝑡) it is possible to
obtain, after some steps, a formula for the logarithmic decrement δ:

𝑥(𝑡) = 𝐴𝑒−ζω𝑛𝑡𝑐𝑜𝑠(ω𝑑𝑡 − ϕ)

where ω𝑛 = 2π ⋅ 𝑓𝑛 is the natural pulsation, ζ is the damping ratio and

ω𝑑 = ω𝑛 ⋅ √1 − ζ2 is the natural damped pulsation.

Considering two instants time 𝑡1 and 𝑡2, the relative amplitudes are:

𝑋1 = 𝐴𝑒−ζω𝑛𝑡1 𝑋2 = 𝐴𝑒
−ζω𝑛𝑡2 = 𝐴𝑒−ζω𝑛(𝑡1+𝑇𝑑)

The ratio between these two amplitudes is:

𝑋1
𝑋2
=

𝐴𝑒−ζω𝑛𝑡1

𝐴𝑒−ζω𝑛(𝑡1+𝑇𝑑)
= 𝑒ζω𝑛𝑇𝑑

Therefore, the logarithmic decrement δ is by definition:

δ = ln
𝑋1
𝑋2
= ζω𝑛𝑇𝑑 = ζω𝑛

2 ⋅ π

ω𝑛√1 − ζ2
=
2 ⋅ π ⋅ ζ

√1 − ζ2

80

Finally, it is possible to calculate the damping ratio ζ reversing the previous formula:

• If ζ ≪ 1 (ζ < 0.1):

ζ =
δ

2 ⋅ π

• If ζ > 0.1:

ζ =
δ

√4 ⋅ π2 + δ2

The same procedure can be performed considering any pair of amplitude values, e.g.
𝑋1 and 𝑋𝑁+1.
In this case the second amplitude used is:

𝑋𝑁+1 = 𝐴𝑒−ζω𝑛(𝑡1+𝑁⋅𝑇𝑑)

The amplitude ratio is:

𝑋1
𝑋𝑁+1

=
𝐴𝑒−ζω𝑛𝑡1

𝐴𝑒−ζω𝑛(𝑡1+𝑁⋅𝑇𝑑)
= 𝑒ζω𝑛𝑁𝑇𝑑

and the natural logarithm of this ratio is:

ln
𝑋1
𝑋𝑁+1

= 𝑁 ⋅ (ζω𝑛𝑇𝑑) = 𝑁 ⋅ δ

Therefore, the logarithmic decrement δ is equal to:

𝛿 =
1

𝑁
ln

𝑋1
𝑋𝑁+1

This is a general formula to calculate δ [27].

Using the Logarithmic Decrement Method in the previous case it is possible to obtain
the damping ratio ζ:

δ = ln
4.288

2.282
= 0.63

ζ =
δ

√4 ⋅ π2 + δ2
=

0.63

√4 ⋅ π2 + 0.632
= 0.1 ⇒ 𝑓𝑛 =

𝑓𝑑

√1 − ζ2
= 0.25 𝐻𝑧

81

There are also other methods to calculate the damping ratio ζ, e.g. it is possible to
obtain it in an iterative way finding a decreasing exponential curve that envelops the
response.
This exponential curve is of the following type:

f(𝑡) = A ⋅ 𝑒−ζω𝑛𝑡 = 𝐴 ⋅ 𝑒
−ζ⋅

2π𝑓𝑑
√1−ζ2

𝑡

and this curve passes through each peak of the response [28].

However, in this function there are two unknowns:

- Damping ratio ζ;
- Maximum amplitude 𝐴.

The problem of the 2nd unknown can be easily fixed considering the value of the 1st
peak and the time when it occurs: from figure 53 can be noticed that 𝑦 = 4.288 and
tymax = 0.91 𝑠.

Therefore, the exponential curve can be rewritten in this way:

𝑓(𝑡 + 𝑡𝑦𝑚𝑎𝑥) = 4.288 ⋅ 𝑒
−ζ

2π𝑓𝑑
√1−ζ2

⋅(𝑡+𝑡𝑦𝑚𝑎𝑥)

Finally, using 𝑓𝑑 = 0.248 𝐻𝑧 (calculated previously) and ζ = 0.1, it is possible to
obtain the correct decreasing exponential curve:

Figure 56: Decreasing Exponential curve

82

Finally, the undamped natural frequency can be calculated:

𝑓𝑛 =
𝑓𝑑

√1 − ζ2
= 0.25 𝐻𝑧

Another method to calculate both ω𝑛 and ζ is to use the Least Squares Method to find
the function that fits the set of data saved in the .xlsx file and that has the following
kind of equation:

f(𝑡) = 𝐹∞ + A ⋅ 𝑒
−ζ⋅2π⋅𝑓𝑛 ⋅ 𝑐os (2π ⋅ 𝑓𝑛 ⋅ √1 − ζ

2 ⋅ t + ϕ)

where 𝐹∞ is the steady state value of the function.

Once the equation of the function in this form is obtained, it is possible to derive
immediately the natural frequency 𝑓𝑛 and the damping ratio ζ.

The following MATLAB script [29] can be used to obtain them, considering the first
1000 values of the dataset:

time = tbl.VarName1;
signal = tbl.VarName6;

y = signal(1:1000, 1);
x = time(1:1000, 1);

yu = max(y);
yl = min(y);
yr = (yu-yl); % Range of ‘y’
yz = y-yu+(yr/2);
zx = x(yz .* circshift(yz,[1 0]) <= 0); % Find zero-

crossings
per = 2*mean(diff(zx)); % Estimate period
ym = mean(y); % Estimate offset

% Function to fit
fit = @(b,x) b(1).*(cos(2*pi*x./b(2) + 2*pi/b(3))) .*

exp(b(4).*x) + b(5);

% Sum-squared-error cost function
fcn = @(b) sum((fit(b,x) - y).^2);

83

% Minimise Least-Squares
s = fminsearch(fcn, [yr; per; -1; -1; ym], options)

xp = linspace(min(x),max(x));

figure(1)
plot(x,y,'b', 'LineWidth',1)
hold on
plot(xp,fit(s,xp), '--r', 'LineWidth',1.25)
hold off
grid
text(5, 3, sprintf('%.2f\\cdot cos(2\\cdot \\pi\\cdot

%.4f\\cdot x%+.2f\\cdot 2\\cdot\\pi)\\cdot e^{%.4f\\cdot x}

+ %.2f', s(1),1/s(2),1/s(3),s(4),s(5)))

legend('Data', 'Regression')

The final figure obtained is the following, in which the equation of the curve obtained
through the curve fitting is also transcribed:

Figure 57: Curve fitting

84

Therefore:

{
𝑓𝑛 ⋅ √1 − ζ2 = 0.2487

ζ ⋅ 2π ⋅ 𝑓𝑛 = 0.1571

⇒
𝑓𝑛 = 0.25 𝐻𝑧

𝜁 = 0.1

6.6 2nd Application conclusions

Using one of these three simple methods it is therefore possible to obtain a fairly
realistic information about the dynamic characteristics of natural frequency 𝑓𝑛 and
damping ratio ζ of each periodic dynamic mode.

This information can also be used to predict or not the use of a particular flight control
system necessary to make these values acceptable, i.e. in such a way that they comply
with both the Regulations and the requirements.

85

7 Conclusions

In the two previous applications two different C++ codes were therefore used: these
codes must then be subjected to appropriate validation and certification tests in
accordance with the current regulations in the software field.

Finally, it will be necessary to decide which hardware to use to view the windows
created by the software.

There are two main possibilities:

• use an external screen properly connected with the Odroid;

• use a computer screen, which in turn replaces the Odroid.

In fact, there may be the need to use a computer instead of the Odroid if the
computing power of the latter is not sufficient to perform the various data acquisition
and processing cycles with an appropriate frequency.

However, both choices are very valid: the laptop allows to use a single device to
perform calculations and to display information. The Odroid and an external monitor,
instead, allow, respectively, to perform the various calculations and display the
information.

An external monitor that could be used is the Beetronics Full-HD Monitor 15’’:

Figure 58: Beetronics Full-HD Monitor 15'' [30]

The Odroid can be connected to the monitor using an HDMI cable.

86

The new Flight Test Instrumentation (FTI) allows both to have a greater quantity of
information than the previous one, and to carry out various operations in real time
directly using the graphic interface created. It is also easier and more intuitive to use.

87

References

[1

]

EASA, April 2018. [Online]. Available:

https://www.easa.europa.eu/sites/default/files/dfu/FTOM%20Guide.pdf.

[2

]

«Wikipedia,» [Online]. Available: https://en.wikipedia.org/wiki/Flight_test.

[3

]

EASA, [Online]. Available:

https://www.easa.europa.eu/sites/default/files/dfu/Annex%20to%20EDD%202015-

026-R.pdf.

[4

]

EASA, 4 September 2013. [Online]. Available:

https://www.easa.europa.eu/sites/default/files/dfu/Presentation%204%20-

%20Flight%20test%20organisation.pdf.

[5

]

PCB Piezotronic, "General Signal Conditioning Guide".

[6

]

https://en.wikipedia.org/wiki/Software_development_kit.

[7

]

Brüel & Kjær, 20 11 2013. [Online]. Available:

http://pcfarina.eng.unipr.it/Public/Standing-Wave/bruel_2013-11-20.pdf.

[8

]

Hard Kernel, [Online]. Available: https://www.hardkernel.com/shop/odroid-n2-

with-4gbyte-ram/.

[9

]

Matrix Vision, [Online]. Available: https://www.matrix-vision.com/serie-di-

telecamere-industriali-compatte-usb3-vision-mvbluefox3-m2.html.

[1

0]

Advanced Navigation, [Online]. Available:

https://www.advancednavigation.com/product/spatial.

[1

1]

D. L. Buglio, «La trasformata veloce di Fourier (FFT): analisi e implementazione in

C++,» Milano, 2015.

[1 «Wolfram MathWorld,» [Online]. Available:

88

2] https://mathworld.wolfram.com/Danielson-LanczosLemma.html.

[1

3]

[Online]. Available: https://en.wikipedia.org/wiki/Stability_derivatives.

[1

4]

O. S. N. Ranjan Ganguli. [Online]. Available:

https://www.researchgate.net/publication/28603906_Rotorcraft_Parameter_Identi

fication_from_Real_Time_Flight_Data.

[1

5]

[Online]. Available: https://en.wikipedia.org/wiki/Six_degrees_of_freedom.

[1

6]

[Online]. Available: https://en.wikipedia.org/wiki/Helicopter_rotor.

[1

7]

NASA, 1973. [Online]. Available:

https://www.nasa.gov/centers/dryden/pdf/87847main_H-806.pdf.

[1

8]

L. C. S. G. Ronaldo Vieira Cruz. [Online]. Available:

http://downloads.hindawi.com/journals/mpe/2010/231594.pdf.

[1

9]

«Rotor & Wind International,» [Online]. Available:

https://www.rotorandwing.com/2018/01/12/ray-prouty-archives-parameter-

identification/.

[2

0]

J. S. Bendat and A. G. Piersol, Measurement and Analysis of Random Data, John

Wiley & Sons, New York, 2000.

[2

1]

[Online]. Available:

https://www.researchgate.net/publication/260944785_Applications_of_Parameter

_Estimation_Methods_in_Helicopter_Identification.

[2

2]

M. P. A. Q. Giorgio Guglieri, Meccanica del volo dell'elicottero, Milano: Società

Editrice Esculapio, 2018.

[2

3]

A. Navigation. [Online]. Available:

https://www.advancednavigation.com/product/spatial.

[2 Advanced Navigation, [Online]. Available:

89

4] https://www.advancednavigation.com/sites/default/files/product_documents/Spat

ial%20Reference%20Manual%20v4.4_0.pdf.

[2

5]

«HWRELOAD,» [Online]. Available: https://forum.hwreload.it/threads/cos%C3%A8-

un-vrm-a-cosa-serve-come-funziona.2160/page-2.

[2

6]

«Wikipedia,» [Online]. Available:

https://en.wikipedia.org/wiki/Logarithmic_decrement.

[2

7]

«andrew.cmu.edu,» [Online]. Available: https://www.andrew.cmu.edu/course/24-

352/Handouts/logdecrement.pdf.

[2

8]

«MathWorks,» 13th September 2018. [Online]. Available:

https://it.mathworks.com/matlabcentral/answers/418825-damping-factor-and-

natural-frequency-out-of-time-response-data.

[2

9]

«MathWorks,» 8 July 2018. [Online]. Available:

https://it.mathworks.com/matlabcentral/answers/265375-damped-cosine-wave-

fitting.

[3

0]

Beetronics, [Online]. Available: https://www.beetronics.it/monitor-led-ips-15-

pollici-metallo.

	1 Flight Test
	1.1 Introduction
	1.2 Flight Test Categories
	1.3 Flight Test Data

	2 Requirements
	3 Flight Test Instrumentation (FTI)
	3.1 Data and Sensors
	3.2 Charge Output Sensors
	3.3 ICP® Sensors
	3.4 What is an oscilloscope
	3.5 Signal Conditioner or Oscilloscope IEPE
	3.6 Software Development Kit (SDK)
	3.7 Basic Instrumentation used

	4 1st Application
	4.1 First test: PCB USB Signal Conditioner
	4.2 Second test: Odroid, blueFOX3 camera & Spatial
	4.3 1st Application Implementation
	4.4 Implementation of buttons on the screen
	4.5 Fast Fourier Transform (FFT)
	4.6 Sampling Time and Sampling Rate: Signal Acquisition
	4.7 Fourier Transform Discretization
	4.8 Cooley-Tukey FFT algorithm
	4.9 FFT C++ code validation
	4.10 1st Application Conclusions

	5 Parameter Identification
	6 2nd Application
	6.1 Dynamic Stability
	6.1.1 Longitudinal plane
	6.1.2 Lateral-directional plane

	6.2 2nd Application Implementation
	6.3 Spatial Manager
	6.4 Packet Summary
	6.5 Damping Ratio and Natural Frequency
	6.6 2nd Application conclusions

	7 Conclusions
	References

