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1 Flight Test 

 
1.1 Introduction 

 
The products of the aerospace world are continuously subjected to checks and tests 
necessary to determine their correct functioning. The first tests are carried out on the 
prototypes of the entire aircraft or even just of one of its systems (e.g. propulsion 
system) and are performed at the end of product development to validate and certify 
its correct functioning. 
During the operational life of the aircraft, further flight tests may be carried out, for 
example to verify that no functional problems have arisen. When changes are made in 
certain parts, it is necessary to recertify the aircraft by carrying out a series of flight 
tests that allow to obtain the necessary data to be analyzed and compared with those 
prior to the changes or with the Regulations, in order to verify the correct functioning 
of the aircraft and thus to obtain the new certification. 
 
Carrying out a flight test campaign is not easy; in fact, in addition to requesting a 
Permit to Fly issued by the competent national authority or by an Approved 
Organization (DOA/POA), it is necessary to have the adequate FTI (Flight Test 
Instrumentation) for the flight tests to be performed. The crew that has to carry out 
the flight tests must also be made up of members with specific skills. 
There is a document called FTOM (Flight Test Operations Manual) that describes the 
flight test organization’s involvement in the process to issue a Permit to Fly and 
describes the organization’s policies and procedures in relation to flight test. In this 
manual, in fact, there must be a chart that represent the organizational structure and 
the links between the different professional roles whom participate in the flight test 
activities. 
There must be also a list of the essential qualifications and a description of each team 
member’s roles and responsibilities for that flight test category, in order to help the 
company to ensure that it is composed of qualified personnel to perform those 
particular flight test operations. 
 
An indispensable professional figure is that of the Safety Manager, who must collect 
and analyze hazards and maintain a register of risks, hazards and risk controls 
mitigations. 
Each flight test organization must develop a Safety Management System (SMS) in 
order to consider traditional safety risks and to manage them in a systematic way. 
A flight test Risk Management is also included in the FTOM, which is complementary to 
the Safety Management, but they are not the same thing. In fact, the SMS manages 
risks common to all flight activities (e.g. bird strike, mid-air collision), while the Risk 
Management manages all the risks associated with a particular flight test [1]. 
 
The duration of a flight test campaign is highly variable because these tests can relate 
to a single new system of an existing aircraft or also to a complete development and 
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certification of a new aircraft. Therefore, it can vary from a few weeks to many years 
[2]. 
 
Flight tests can be performed on both civil and military aircraft. 
First of all, it is necessary to define which system or part of the aircraft must be tested 
and which tests must be performed. The content of the flight test determines the flight 
test category, and the latter determines the required competence of the flight test 
crew. 
 
 

1.2 Flight Test Categories 

 
The Flight Test categories are defined in Appendix XII to Part-21 and they are: 
 

• Category 1 flight test 
- “Fixed-wing aircraft: VMCG, VMU, spinning, initial stalling, or for rotary-

wing aircraft: H/V diagrams and Category A engine failures. 
- Where encounter of surprising or even hazardous flight characteristics 

can be expected. 
- Upon determination, aircraft handling and performance in conditions 

where at least one of the following parameters is approaching the 
actual limits of the aircraft envelope: altitude, attitudes, weights, CG, 
speed/Mach, stalls, temperature, engine and airfoil performance. 

- Where the embodiment of new systems is anticipated to significantly 
affect the aircraft’s handling or performance characteristics. 

- When the crew of the chase aircraft has the duty to assist the test 
aircraft crew in recovering from a critical flight situation (i.e. assist the 
spinning aircraft crew in assessing the spin or triggering recovery 
actions).” [3] 

 

• Category 2 flight test 
- “The flight test envelope has already been opened and it has been 

demonstrated that the general behavior of the aircraft is adequately 
safe and there are no unsafe flight characteristics. 

- All-engines-operating climb performance. 
- Cruise performance. 
- Static stability demonstration. 
- Function and reliability flights. 
- Systems tests of autopilot or guidance/warning systems such as Terrain 

Awareness and Warning System (TAWS) or Airborne Collision Avoidance 
System (ACAS), when the modes themselves are tested, requiring 
operating the aircraft by deviating from the standard operational 
procedures. Additionally, in the case of embodiment of such systems on 
an already certified aircraft, when the system integration in an existing 
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cockpit requires a more global crew procedure assessment - for 
example, when the system has been integrated in cockpit screens and a 
centralized warning system which requires a new cockpit procedure 
assessment (note that some system tests may fall under Category 4; see 
below).” [3] 

 

• Category 3 flight test 
This category concerns all the flight tests performed on a new aircraft that 
already has a Type Certificate (TC) or a Supplemental Type Certificate (STC) but 
which behavior is not yet known, so unexpected failure can occur which could 
not be described in the Aircraft Flight Manual (AFM). Therefore, it is necessary 
to perform these flights that are commonly referred to as production flight 
tests. 
If an aircraft does not have a TC or STC, any flight will be Category 1, 2 or 4 
according to classification criteria. 
If the flight test of an aircraft with a TC or STC requires flying outside the AFM 
limitations, this flight should be considered as Category 1 or Category 2 flight 
test. 
 

• Category 4 flight test 
These flights are those required by a DOA (Design Organization Approval) to 
demonstrate compliance with the airworthiness requirements of “not yet 
approved data”: 

- cabin conversion; 
- zonal drying system installation; 
- Emergency Locator Transmission (ELT) installation; 
- new cabin installation; 
- cabin aircraft location pictorial system installation; 
- new entertainment system installation; 
- SATCOM and telephone installation; 
- new radio equipment installation. [3] 

 
Once the flight test category has been established, crew members are chosen 
according to it: a Flight Test Organization required team members with different skills, 
as test pilots, flight test engineers, designers, mechanics, certifying staff and safety 
officer [4]. 
 
Subsequently, the Flight Test Engineer prepares a test plan containing the various 
maneuvers to be carried out during the flight.  
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1.3 Flight Test Data 

 
Once the maneuvers to be carried out have been established, the aircraft is 
appropriately instrumented. The FTI (Flight Test Instrumentation) used must be 
suitable for the type of data to be collected, which can be [2]: 
 

• accelerations in all six degrees of freedom; 

• aircraft attitude, angle of attack and sideslip angle; 

• aircraft controls deflection (stick/yoke, rudder pedals, throttle position); 

• engine performance parameters; 

• noise levels; 

• internal temperatures; 

• structural loads. 

Once the aircraft is instrumented, it is possible to begin ground and flight tests. 
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2 Requirements 

 
In this thesis project two different applications have been dealt with, each of which 
having its own requirements. 
 
1st Application Requirements: 
 

• FTI easy to transport and to mount on the aircraft; 

• minimal use of external power sockets; 

• use of 1 to 4 sensors; 

• possibility to view in real time the images taken by a camera and the 

accelerations trends and values in the time domain; 

• possibility to perform a Fast Fourier Transform (FFT) in real-time during the 

flight without having to use MATLAB; 

• possibility to start and stop saving data in certain time windows using 

appropriate buttons. 

 
2nd Application Requirements: 
 

• use a sensor capable of detecting the main dynamic parameters; 

• possibility to view in real time the time histories of the main dynamic 
parameters; 

• possibility to start and stop saving data in certain time windows using 
appropriate buttons; 

• identify or implement the algorithms necessary to obtain information about 
the natural frequency 𝑓𝑛 and damping ratio ζ of each parameter and / or 
dynamic mode. 

 

 
 
 
 

  



11 
 

3 Flight Test Instrumentation (FTI) 

 
3.1 Data and Sensors 

 
In the aeronautical field, flight test campaigns are often carried out with the aim of 
obtaining data that can be used for certification, for any modifications or for the 
development of flight simulators of that type of aircraft. 
In order to carry out a flight test campaign, it is necessary to have the appropriate 
Flight Test Instrumentation (FTI) based on the data type to be measured and on the 
flight tests that must be carried out. 
 
In order to certify an aircraft modification, some of the data to be collected are: 

• accelerations along X, Y, Z axes: to obtain the vibration levels to which a certain 
point of the structure is subject. 

• Euler’s angles, angular velocities and angular accelerations: to perform a dynamic 
analysis. 
 

Specific sensors are required to detect these types of data: accelerometers are usually 
used to detect accelerations, but it is necessary to distinguish between the different 
types available on the market and choose which of them is the most appropriate for 
the case study. 
Accelerometers are mainly divided into: 
 

• Monoaxial accelerometers: allow to detect accelerations along a given axis (X, Y 
or Z) based on their positioning. Each one required only one readout 
instrument input channel. 

 

 

• Triaxial accelerometers: allow to detect accelerations along all three axes (X, Y 
and Z). Each one required three readout instrument input channels, one for 
each axis.  Moreover, their cost is more than twice than that of a monoaxial.  
 

Figure 1:  PCB monoaxial accelerometer 
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Figure 2:  PCB triaxial accelerometer 

 
Considering the probability of an accelerometer breaking due to external causes and 
the significant cost difference between these two types, it is preferable to have three 
monoaxial rather than a triaxial one, to still have 2 other accelerometers available. 
 
There are different types of accelerometers based on their operating principle, for 
example there are strain gauge, LVDT type accelerometer, laser accelerometer, MEMS 
(Micro-Electro-Mechanical Systems) accelerometer, but a right compromise between 
required quality and price is represented by piezoelectric accelerometers. 
 
A piezoelectric accelerometer generates an electrical signal via a piezoelectric crystal 
based on the compression it undergoes due to the inertia force generated by a mass 
located on that crystal. 
 
There are two different types of piezoelectric sensors [5]: 

• Charge Output Sensors: they are piezoelectric sensors without built-in 
electronics, with a high impedance output signal and they usually require 
external charge or voltage amplifiers for signal conditioning. 

• Internally Amplified Sensors: they are piezoelectric sensors with built-in 
electronics, integrated circuits, and with a low impedance output signal. These 
types of sensors are called ICP® (Integrated Circuit Piezoelectric, is a registered 
trademark of PCB Group, Inc.) or IEPE (Integrated Electronics Piezo-Electric). 

 
 

3.2 Charge Output Sensors 

 
“Charge output sensors have the advantage of being able to operate under high 
temperature environments and withstand up to +281°C. The output signal generated 
by the piezoelectric signal is extremely sensitive to corruption from various 
environmental factors, so low-noise cabling must be used to reduce radio frequency 
interface (RFI) and electromagnetic interference (EMI).” Moreover, it is necessary to 
use tie wraps or tape in order to reduce the noise due to the triboelectric effect, that is 
the noise generated by cables motion [1]. 
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Figure 3:  Typical charge output sensor system 

 
The output signal of a charge output sensor is characterized by a high impedance, 
therefore, in order to correctly analyze the signal, it is necessary either to use a high 
input impedance readout instrument or an in-line voltage and charge amplifier to 
convert the output signal in a low impedance one. 
Another disadvantage is that the high impedance of the output signal causes a loss of 
the signal quality directly proportional to the cable length, therefore short low-noise 
cables must be used. 
This kind of cable has a graphite lubricant embedded in the dielectric layer in order to 
minimize friction and generation of electrostatic charge (triboelectric effect) generated 
by cable motion. 
 
PE (PiezoElectric) accelerometer resolution is not generally specified on a datasheet 
because it depends on the noise generated along the cables and on the amplifier gain. 
 
Moreover, high impedance circuits required training and expertise to understand, 
operate and maintain them. In fact, all high-impedance components must be kept 
clean and dry, because their contamination due to adverse environment causes noise, 
loss of signal quality and loss of low frequency response. 
 
 

3.3 ICP® Sensors 

 
ICP® is a term that uniquely identifies PCB’s piezoelectric sensors with built-in 
electronics. ICP or IEPE sensors have many advantages over charge output sensors: 
 

• Low impedance output signal (<100 ohms): the signal quality does not depend 
on the cable length, therefore long cables can also be used without increase in 
noise, loss of resolution, or signal attenuation. Signal quality it is not sensitive 
to adverse environment because IEPE sensors are resistant to contamination. 
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• They are less sensitive to electrical interference (RFI and EMI) thanks to their 
low impedance signal output, so it is not necessary to use low-noise cable, but 
standard coaxial cables are enough. This implies a significant cost reduction. 

• “Low per-channel cost because sensors require only low-cost, constant current 
signal conditioners and ordinary cables.” [5] PE (PiezoElectric) and ICP sensors 
have essentially the same cost, but the per-channel cost of the ICP system is 
significantly lower because low-noise cables and charge amplifiers are not 
required. 

• They require less electrical power consumption. 

• ICP sensor resolution is specified on the datasheet. 

• They are easier to use, so less operator expertise, training and attention is 
required compared to charge output sensors and high impedance circuits. 

 
The only limit of IEPE sensors is that they cannot be used for operation under 
temperatures environments outside the range -320°F < T < 325°F (-195.6°C < T < 
162.8°C). 
 
 

 

 
Therefore, for these reasons, it is preferred to use IEPE sensors. 
All IEPE sensors require a constant current power source for proper operation: they 
usually require a power supply current between 2mA - 4mA, but sometimes this range 
could be extended to 0.5mA - 20mA depending on the sensor application. 
It is therefore necessary to check the compatibility between the current required by 
the IEPE sensor and that supplied by the signal conditioner or by the readout 
instrument with an IEPE interface. 
 
 
 
 

Figure 4:  Typical ICP sensor system 



15 
 

3.4 What is an oscilloscope 

 
An oscilloscope is an electronic test instrument that allows the user to view on a 2D 
graph the noise and vibration signals obtained from one or more appropriate sensors. 
The graph is displayed on the oscilloscope monitor or on a PC and the various trends 
can be viewed both in the time domain and/or in the frequency domain according to 
the user's needs. 
 
There are different types of oscilloscopes based on functionality and workplace. 
There are bench oscilloscopes used very often in laboratories as they are very bulky, or 
portable oscilloscopes that have fewer functions but that can be easily transported and 
used in different workplaces. 
 
The sensors are connected to the oscilloscope via BNC coaxial cables. 
 
The oscilloscopes can be powered via a power outlet, via batteries or via the USB port 
of a PC. 
If the oscilloscope can be connected to a PC via a USB port, there are usually software 
that allow real-time visualization of the various graphs. 
 
 

 

 
 

Figure 5:  Bench Oscilloscope and Portable Oscilloscope 
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Figure 6:  USB Oscilloscope 

In this application, having to carry the oscilloscope on board an aircraft, it is preferable 
to use an USB oscilloscope because it is easily transportable, not bulky and that does 
not require a power supply from a power outlet. 
 
 

3.5 Signal Conditioner or Oscilloscope IEPE 

 
Two different devices can be used to feed an ICP sensor: a signal conditioner or an 
oscilloscope with an IEPE interface. 
A signal conditioner is a necessary device to provide the correct current intensity to 
the IEPE sensors. Instead, an oscilloscope with an IEPE interface allows a direct 
connection to the IEPE sensors, without having to use a signal conditioner. 
 
There are different types of signal conditioners: they can be powered by battery or by 
an external 32-38V DC power supply. In the latter case it is necessary to use a DC/DC 
converter since helicopters usually have a 28V DC power socket. Then, a readout 
instrument as an oscilloscope or a spectrum analyzer is necessary to save the data and 
to display them, via software, on a PC in time or frequency domain. Normally the 
readout instrument can be connected to the PC via USB or ethernet cable.  
Currently, many instruments available on the market can be used in both oscilloscope 
or spectrum analyzer modes, thus allowing the user to view the data in the domain he 
prefers or sometimes even simultaneously in both time and frequency domains. 
 
For each channel of the oscilloscope, the signal conditioner needs two channels, one 
for the sensor input and the other for the oscilloscope. For this reason, battery-
powered signal conditioners, having smaller dimensions as they are usually portable, 
have a maximum of three channels for the oscilloscope. However, one of the 
requirements is to have four channels so that four monoaxial sensors can be used 
simultaneously. 
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Figure 7:  PCB Signal Conditioner 4-channels line-powered 

 

 
Figure 8:  PCB Signal Conditioner 3-channels battery-powered 

In this case it is also preferable not to use a signal conditioner powered by an external 
DC power supply in order to not use a DC/DC converter. 
 
To avoid having to use a signal conditioner, it is possible to use an oscilloscope with an 
IEPE interface, even if there are not many available on the market. 
One of the available models is the PicoScope 4224 IEPE, a 2-channels oscilloscope 
developed by Pico Technology: it is directly connected to the PC and powered by a USB 
cable and it can be used in both IEPE and normal mode. 
Its only disadvantage is that it has only two channels, therefore two PicoScope 4224 
IEPE are necessary for the flight test activities with four IEPE sensors. The two 
oscilloscopes must be synchronized to see the various graphs in real-time. To do this 
synchronization is necessary to use a shared trigger signal, otherwise the scopes will be 
running to separate internal clocks started independently. 
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Figure 9:  PicoScope 4224 IEPE - USB Oscilloscope 

 
Nevertheless, this solution is preferable as it is not necessary to use a signal 
conditioner, half the number of cables are necessary because the sensors are directly 
connected to the oscilloscope, consequently also the reliability of the instrumental 
equipment is greater and maintenance costs are lower and, moreover, no battery 
(which could suffer from excessive temperatures) and no external power supply are 
needed. 
 
In terms of acquisition costs, the two solutions are not very different, consequently the 
choice falls on the reliability and compactness of the instrumental equipment.  
The PicoScope supplied software is compatible with Windows, Linux and macOS 
operating systems, and it has also the Software Development Kit (SDK). 
 
 

3.6 Software Development Kit (SDK) 

 
A Software Development Kit (SDK) is a collection of software development tools in 
one installable packet [6]. 
An SDK is made up of libraries and codes that can be written in different programming 
languages  (e.g. Java, C, C++, etc.). These codes allow the programmer to create his 
own software. 
In this application the SDK allows the programmer to directly access the data 
measured by the sensor and to use and save them as he prefers. 
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3.7 Basic Instrumentation used 

 
The basic instrumentation used during flight tests is composed by: 

• Oscilloscope; 

• Signal Conditioner; 

• ICP accelerometers. 
 
The main problems that a Flight Test Engineer encounters in using this equipment are: 

• both oscilloscope and signal conditioner need to be powered by a power 
outlet; 

• this FTI is too bulky; 

• too many cables are needed to connect the various instruments, so there is a 
higher probability of failure of one of them; 

• connecting and disconnecting the various devices requires a certain amount of 
time; 

• data analysis (e.g. Fast Fourier Transform) cannot be performed during the 
flight. 

 

 
 

Figure 10:  Bench Oscilloscope, Signal Conditioner and IEPE sensors 
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Figure 11:  Signal Conditioner internal part 

In the figure above there is the internal part of the 4-channel signal conditioner used: 
care must be taken to use it correctly, i.e. the sensors channels must not be confused 
with the oscilloscope channels. So, this signal conditioner has 4 input-channel (sensors) 
and 4 output-channel (oscilloscope). 
 

 
Figure 12:  Miniature DeltaTron monoaxial accelerometer type 4518-003 - Brüel & Kjær 

The sensor used for the 1st application is a Miniature DeltaTron monoaxial 
accelerometer type 4518-003 made by Brüel & Kjær. DeltaTron is the Brüel & Kjær’s 
proprietary name for IEPE accelerometers. Another name used by Brüel & Kjær is CCLD 
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(Constant Current Line Drive), while other proprietary names for this type of 
accelerometers are ISOTRON®, PIEZOTRON® and ICP® [7].      
                    
This sensor detects a certain voltage value and transmits it to the oscilloscope. Each 
oscilloscope has a certain resolution: if it has an 8-bits resolution, there are 256 (28) 
possible values that must then be divided between positive and negative values. These 
values are transcribed in a .csv file that can be saved on a suitably formatted USB key. 
To obtain the acceleration value in g, a conversion must be performed: first of all, the 
values present in the .csv file must be converted into volts [V], then a conversion factor 
V/g is used which allows to obtain the final acceleration value in g. 
 
The formula to perform the conversion is the following: 
 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 [𝑔] = 𝑐𝑠𝑣 𝑣𝑎𝑙𝑢𝑒 ⋅
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑙𝑒 ⋅ 8

2𝑏𝑖𝑡 𝑎𝑐𝑞 ⋅ 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 
where: 

- 𝑐𝑠𝑣 𝑣𝑎𝑙𝑢𝑒 is the acceleration value saved on the .csv file; 
- 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑙𝑒: is equal to 0.5V; 
- 𝑏𝑖𝑡 𝑎𝑐𝑞: is the oscilloscope resolution; 
- 𝑠𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: is the V/g conversion factor. For the 4518-003 it is equal 

to 0.1 V/g. 
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4 1st Application 

 
The aim of the 1st application is to use a new and adequate FTI in order to verify if a 
certain part/component of the helicopter is subjected to acceptable accelerations and 
that these are compliant with the Regulations. 
In fact, when a modification is made on board a helicopter, it could be necessary to 
recertify the helicopter itself as it is necessary to verify that this modification does not 
cause unacceptable vibrations. 
 
In order to perform this type of analysis, first of all, it is necessary to identify the new 
hardware components to be used and to write the software code that will be 
implemented on them. 
 
 

4.1 First test: PCB USB Signal Conditioner 

 
Initially, a first test was carried out using a PCB 2-channel USB signal conditioner which 
does not require an oscilloscope to detect and output the accelerations detected by 
the sensors. 

 
Figure 13:  PCB model 485B39 (USB signal conditioner) 

 
The advantage of this product is that it is very small, therefore easily transportable, but 
it has the disadvantage of not having an SDK. In order to display the accelerations on 
the screen, i.e. the curves in the time domain or in the frequency domain, in fact it is 
necessary to use third-party software, which sometimes can also be paid.  
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Figure 14:  Software List 

Using these software, it is also possible to create a text output file in which all the 
values of the detected accelerations are written, but in this way the accelerations 
could be used only in a post-processing phase and not during the processing phase. 
Moreover, there are no software compatible with Linux. 
Therefore, not being able to access the detected data at any time, the user is forced to 
use other software to view the data. 
A goal of this application, however, is precisely to be able to create an own software 
through which the user can view the various curves in real time. 
In order to create this software, it is essential that the detection instrument used has 
an SDK. In this way, the software programmer work is simplified. 
 
 

4.2 Second test: Odroid, blueFOX3 camera & Spatial 

 
A second test was carried out using the following instrumentation: 
 

• Odroid-N2: is a new generation single board computer with the main CPU 
based on big.LITTLE architecture which integrates a quad-core ARM Cortex-A73 
CPU cluster and a dual core Cortex-A53 cluster with a new generation Mali-G52 
GPU. 
The large metal housing heatsink is designed to optimize the CPU and RAM 
heat dissipation and minimize throttling. The CPU is placed on the bottom side 
of the PCB to establish great thermal characteristics. 
It has 4 x USB 3.0, 1 x HDMI 2.0 and 1 x RJ45 Ethernet Port. 
It is powered by DC 12V/2A [8]. 
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Figure 15:  Odroid-N2 

 

• mvblueFOX3-M2004G: it is a monochrome (G) compact industrial USB3 camera 
with a max frame rate of 436.9 Hz and a low resolution of 728x544 [9]. 
The camera will be positioned close enough to the target (e.g. main rotor), so a 
low resolution is acceptable because, with this model, it has the advantage of 
having a fairly high frame rate. 
 

 
Figure 16:  MvblueFOX3-M2004G with optical lens 

 

• Spatial IMU: it is a ruggedized miniature GPS aided inertial navigation system 
and AHRS that provides accurate position, velocity, acceleration and 
orientation under the most demanding conditions. It combines temperature 
calibrated accelerometers, gyroscopes, magnetometers and a pressure sensor 
with an advanced GNSS receiver. These are coupled in a sophisticated fusion 
algorithm to deliver accurate and reliable navigation and orientation [10].  
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This sensor can be connected to Odroid-N2 USB port and, thanks to its SDK, the 
programmer can directly access the data collected and use them as he prefers 
within his code. 
The SDK can be downloaded directly from the Spatial website. 
In this first application only the 3 accelerations along the X, Y and Z axes were 
used. 

 
Figure 17: Spatial IMU 

 
The PicoScope and the Brüel & Kjær accelerometers were not used because, due to the 
Covid-19, it was impossible to obtain this oscilloscope, consequently it was decided to 
continue developing the application with the instrumentation already available. 
 
 

4.3 1st Application Implementation 

 
First of all, it is necessary to download the OS image from the following link using a 
normal PC: 
https://wiki.odroid.com/odroid-n2/os_images/ubuntu 
  
Then, BalenaEtcher program is installed on a PC and it is used to install the operating 
system (Linux) on a SD card. 
Then the SD card is connected to the Odroid-N2 and it is therefore possible to use 
Linux as an operating system on this device. 
 
The camera driver is subsequently downloaded directly from the following website: 
https://www.matrix-vision.com/serie-di-telecamere-industriali-compatte-usb3-vision-
mvbluefox3-m2.html. 
 
Finally, the OpenCV C++ library for Linux is downloaded: this is an open source C/C++ 
library for Image Processing and Computer Vision. 

https://wiki.odroid.com/odroid-n2/os_images/ubuntu
https://www.matrix-vision.com/serie-di-telecamere-industriali-compatte-usb3-vision-mvbluefox3-m2.html
https://www.matrix-vision.com/serie-di-telecamere-industriali-compatte-usb3-vision-mvbluefox3-m2.html
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An Odroid-N2 has 6 available processing units which can be used to perform up to 6 
operations in parallel. The multithreading technique is used to perform multiple 
operations in parallel in a C++ code: this technique consists in creating functions that 
are then performed in parallel. Each function is given as input to a different thread. 
Each thread will be a child process executed inside the parent process, that is the main 
process: consequently, a join must be made for each thread so that the parent process 
is finished only when all the threads have ended. In fact, if the parent process was 
terminated before 1 or more child processes, an error would occur. 
 
Code steps: 

1. Camera acquisition and switching on; 
2. Image acquisition: starting live loop; 
3. Spatial IMU acquisition and switching on; 
4. Create a viewing window; 
5. Create acceleration graphs in the time domain; 
6. Video and data saving; 
7. Fast Fourier Transform; 
8. End of software execution. 

 
3 different threads are executed at the same time: these are created using the 
pthread_create() function: 
 
 

// Initialize and set thread joinable 

pthread_attr_init(&attr); 

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); 

     

pthread_create(&thread_id_geo, &attr, getGeoInfo, (void *)&GEO);                

// create thread for getting IMU 

 

pthread_create(&thread_id_blueFOX3, &attr, blueFOX3, (void *)&GEO);           

// create thread to acquire blueFOX3 camera 

 

pthread_create(&thread_id_save_video, &attr, save_video, (void 

*)&VIDEO);    

// create thread to save the video 
 

 
As input, each thread has a thread id, a certain function to perform and a structure. 
 
The 3 functions used are: 
 

• getGeoInfo 
The first thread is the one related to the Spatial IMU sensor: the getGeoInfo 
function is used to activate the sensor and to detect the data of interest. In this 
case, accelerations along the 3 axes (X, Y, Z) are detected at each instant of 
time. 
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/* copy all the binary data into the typedef struct for the 

packet */ 

/* this allows easy access to all the different values             

*/ 

if(decode_raw_sensors_packet(&raw_sensors_packet, an_packet) == 

0) 

{ 

mtx_IMU.lock(); 

GEO->IMU_SRC.acc_x = raw_sensors_packet.accelerometers[0]; 

      GEO->IMU_SRC.acc_y = raw_sensors_packet.accelerometers[1]; 

      GEO->IMU_SRC.acc_z = raw_sensors_packet.accelerometers[2]; 

      GEO->flag_acc = 1 

      mtx_IMU.unlock(); 

      } 
 

 
In these lines of code, it is possible to note the use of the SDK to save the 
accelerations detected into a typedef struct called GEO: this operation allows 
easier access to the saved data. 

 

• blueFOX3 
To turn on the camera and start acquiring images, it is first necessary to 
generate a setting file (.xml file) for setting the camera via wxPropView. 
To start wxPropView via the Linux terminal, just type the following command: 
wxPropView 
Once the program has been started and the desired setting parameters have 
been set, to generate the .xml file, go to Action → Capture Settings → Save 
Active Device Settings → To a File. 
 
Subsequently, a configuration file (.conf) is created in which to insert the serial 
number of the camera and the name of the setting file (.xml file). 
 

 
img = Mat(pRequest->imageHeight.read(),  

pRequest->imageWidth.read(), CV_8UC1,  

pRequest->imageData.read(), pRequest->imageLinePitch.read() );       

 

      cvtColor(img, img_1, COLOR_BayerBG2GRAY);   

                

      mtx_blueFOX3.lock(); 

      img_1.copyTo(GEO->blueFOX3); 

      mtx_blueFOX3.unlock(); 
 

The blueFOX3 function allows the program to access the configuration file 
(.conf) and verify that the serial number of the camera is correct. Then it uses 
the liveLoop function to save the image in a local variable called img, transform 
it into a grayscale image called img_1 and, finally, copy it into a global variable 
called GEO.blueFox3. 
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The mutex is used to prevent, when saving a data from a local variable to a 
global one, a memory location error due to the pointer. 
 
For example, if a copy of a value, just saved within a vector in cell n°5, was 
made in another vector always in cell n°5 using the pointers, it can happen that 
the value saved in cell n°5 of the second vector actually is the value saved in cell 
n°6 or n°7 of the first vector. 
That is, there may be a problem of overwriting the value that is to be saved 
when saving it to another vector. 
 
In order to avoid having a similar problem between the thread of the blueFOX3 
function and the SensorFusion, two local variables and a global passing variable 
(GEO.blueFOX3) are used. 
 

 
// get blueFOX3 final image 

      mtx_blueFOX3.lock(); 

      GEO->blueFOX3.copyTo(canvas(ROI_final_img)); 

      mtx_blueFOX3.unlock(); 
 

 
SensorFusion is a function that exactly allows to merge the various sensors, i.e. 
the blueFOX3 camera and the Spatial IMU: in fact, the data collected by these 2 
instruments are used within this function. 
 
Before analyzing the last thread related to saving the video, it is advisable to 
examine the work performed by the SensorFusion function. 

 
This function was created to generate a window of suitable size in which to 
view both the image taken by the camera and 2D graphs representing the 
curves of the 3 accelerations in the time domain. 
The graphs were created using the functions present in the OpenCV library: an 
appropriately sized vector, initially empty for each acceleration, was created. 
The vector is filled at each instant with the new measured value. Once the 
vector is completely filled at the i-th instant, it is transformed into a circular 
vector, i.e. the first element of the vector is eliminated, all its components are 
shifted by one cell to the left in order to free the last memory cell, and finally 
the last cell is filled with the acceleration value measured in that cycle. 
 
The graphs were created using the following commands: 
- arrowedLine: for x (time [s]) and y (acceleration [𝑚2/𝑠]) axes; 
- line: to join the various points representing the accelerations values 

measured at each instant of time. 
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First, the various matrices used for both camera image and graphics are 
initialized. 
 

 
     Mat canvas = Mat::zeros(1344,728,CV_8UC1); 

    Mat canvas_2 = Mat::zeros(728,1344,CV_8UC1); 

. . . 
     // TIME DOMAIN window 

     Mat mat_x = Mat::zeros(200, 728, CV_64F); 

     Mat mat_y = Mat::zeros(200, 728, CV_64F); 

    Mat mat_z = Mat::zeros(200, 728, CV_64F); 

     Mat mat_time = Mat::zeros(100, 728, CV_64F); 
 

 
Two initially empty matrices called canvas and canvas_2 were created with 
equal size of the final window in order to be displayed. Then, using the Rect 
OpenCV function, rectangles are created within this matrix such as to reserve a 
certain number of pixels for each graph and for the image. 
 

 
Rect ROI_final_img = Rect(0, 0, 728, 544); 

Rect ROI_acc_x = Rect(0, 544, 728, 200); 

Rect ROI_acc_y = Rect(0, 744, 728, 200); 

Rect ROI_acc_z = Rect(0, 944, 728, 200); 

Rect ROI_time = Rect(0, 1144, 728, 100); 

 

Rect ROI_1 = Rect(1, 0, 727 - shift_y_axes, 1); 

Rect ROI_2 = Rect(0, 0, 727 - shift_y_axes, 1); 

  

 
ROI_1 and ROI_2 are used to create the circular vector. 
ROI is the acronym of Region Of Interest. 
 
Within an infinite while loop (while(!flag) with flag=0) all the operations 
necessary to display the final window are carried out. 
 
Initially the cycle ends once the "q" or “Q” key is pressed ⇒ flag=1. 
 

 
char c = (char)waitKey(10);  

                     

      // Press q to exit from window  

      if( c == 27 || c == 'q' || c == 'Q' ) flag = 1; 
 

 
At the beginning of the while loop the accelerations are copied from a global 
variable to a local one using the mutex (lock & unlock), as seen previously for 
the image. 
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// get IMU accelerations 

      mtx_IMU.lock(); 

      acc_x = GEO->IMU_SRC.acc_x; 

      acc_y = GEO->IMU_SRC.acc_y; 

      acc_z = GEO->IMU_SRC.acc_z;      

      mtx_IMU.unlock(); 
 

 
Then the acceleration vectors begin to be filled. The min and max values of the 
accelerations present in each vector are calculated, normalized and finally 
scaled in order to be able to represent any value within the range of pixels 
reserved on the ordinate axis for each graph. 
The previous functions are then used to create the various lines and, finally, to 
position the various graphs within the final display window. 
The imshow command is used to show this final window to the user. 
 
At the end of each iteration it is necessary to refresh the matrices containing 
the graphs to avoid incorrectly overwriting the pixels. To execute this refresh, 
each matrix has to be multiplied for 0 (black): 
 

 
      // Image refresh 

      mat_x = mat_x*0; 

      mat_y = mat_y*0; 

      mat_z = mat_z*0; 

      mat_time = mat_time*0; 
 

 
At the bottom of the window a space has been used to insert the date and time 
calculated as follows: 
 

       

time_t time_disp = time(nullptr); 

      TIME_str = ctime(&time_disp); 

                     

      text = TIME_str.substr(0, TIME_str.length() -1);  

                     

putText(mat_time, text, Point(40, 40), FONT_HERSHEY_PLAIN, 1, 

(255), 1, 1, false );  

 

             

The putText function is used to insert a text string in a certain position within a 
pixel matrix. 
Lines, texts and images are saved in a proper matrix which is finally copied into 
the respective ROI: 
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      // x & y axes    &    accelerations lines 

      mat_x.copyTo(canvas(ROI_acc_x)); 

      mat_y.copyTo(canvas(ROI_acc_y)); 

      mat_z.copyTo(canvas(ROI_acc_z)); 

      mat_time.copyTo(canvas(ROI_time)); 

                  

      // get blueFOX3 final image 

      mtx_blueFOX3.lock(); 

      GEO->blueFOX3.copyTo(canvas(ROI_final_img)); 

      mtx_blueFOX3.unlock(); 

 

 
The matrix representing the final window is called canvas_2 and it is copied into 
a new struct called VIDEO: that is, into a new global variable called 
VIDEO.video_img. 
This struct is given as input to the last thread to save the video of the entire 
window, including the camera image, the graphs, the date and the time. 
 

  

      if(SAVING.input_status == 1) 

      {                     

       mtx_save_video.lock(); 

       canvas_2.copyTo(VIDEO->video_img); 

       mtx_save_video.unlock(); 

      }   
 

 

• save_video 
In this last thread, always using the OpenCV functions, everything that appears 
in the final window is saved, so as to be able to view its content even in the 
post-processing phase.  
 
 

VideoWriter video("./video.avi", CV_FOURCC('M', 'P', '4', 'V'), 

15.0, img.size(), false); 
 

    while(VIDEO->exit_status==0) 

     { 

        mtx_save_video.lock(); 

        VIDEO->video_img.copyTo(img); 

       mtx_save_video.unlock(); 

 

        video.write(img); 

 

     } 

 

     video.release(); 
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Figure 18: Software output window 

 
The above figure is a screenshot of the final window seen by the user. 
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In this first version, some peculiarities can be noticed in the graphs: four values are 
written on the ordinate axes, i.e. the max and min values and two intermediate values. 
The origin of the graph does not coincide with the null value as otherwise, if for 
example there were only negative accelerations, only half of the space available for 
the graph would be used, making it more difficult for the user to understand the curve. 
 
Looking at the window from top to bottom there are the following graphs: 

• X axis accelerations; 

• Y axis accelerations; 

• Z axis accelerations; 
 
All accelerations are calculated and represented in 𝑚2/𝑠. 
 
After writing this first version of the code, a test was performed to verify that the 
images were captured at an appropriate frame rate. 
 
A 3-blades domestic fan was therefore used as a test target. By sticking a post-it on a 
blade it is easier to identify its displacement in the lap. 
In this way, it is possible to test the camera with something like a helicopter rotor. 
A video was then recorded and then reviewed in slow motion in order to verify the 
movement of the blade during the lap. 

 
 

4.4 Implementation of buttons on the screen 

 
When a flight test is performed, it is necessary to save the data and the camera images 
only during some time windows of 10-20 seconds. For this reason, a code optimization 
could be the implementation of some buttons to start and finish saving data. 
In this way there would also be a memory saving because only a small amount of data 
is saved. 
In fact, the software is kept active throughout the flight test, but the data are saved 
only during these time windows. 
 
So, initially three buttons are added: 
 

• PLAY: it allows to start saving data (accelerations) in a .xls file whose name 
contains the date and time when this button was pressed. Moreover, 
everything that appears on the screen from when the user presses the PLAY 
button until he decides to finish recording by pressing the PAUSE or EXIT button 
is saved in a video file. In this way also the camera images are saved. 
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Figure 19: PLAY button icon 

• PAUSE: it allows to pause saving data and camera images, but the software 
remains active and ready for a new time windows of data saving. 
 

 
Figure 20: PAUSE button icon 

• EXIT: it allows to terminate the program execution. It works also as a final 
pause, i.e. if it is pressed during a data saving, it allows to terminate the 
program after saving all the data of the final time window. 

 

 
 

Figure 21: EXIT button icon 

A fourth button is added in order to perform a Fast Fourier Transform (FFT): 
 

• FFT: it allows to execute an FFT of the last data recorded and to create another 
window with the acceleration graphs in the frequency domain. 
 

 
Figure 22: FFT button icon 
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To let the user understand if the button was pressed correctly and/or which button 
was pressed the last time, a black square will appear inside the PLAY or PAUSE button 
icon. 
The EXIT button replaces the “q” key with which the program was previously 
terminated. 
These four buttons allow to provide the user a graphic interface with which to execute 
the various commands. 
 

Figure 23: Time Domain Window 
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4.5 Fast Fourier Transform (FFT) 

 
On the previous image there are four buttons: in fact, the last button added allows to 
perform a Fast Fourier Transform (FFT) of the last data recorded. 
 
The Fast Fourier Transform (FFT) is an algorithm used to perform the Discrete Fourier 
Transform (DFT) or the Inverse Discrete Fourier Transform (IDFT) of a dataset. It is 
widely used not only in engineering and mathematical applications, but also in the 
musical and medical field (e.g.  Magnetic Resonance Imaging (MRI), Computed Axial 
Tomography (CAT), etc.). 
 
The Fourier Analysis allows to switch from the time domain to the frequency domain 
and vice versa: in this way different types of information usable in various field can be 
obtained, e.g. to verify that the frequencies detected are not too close to the 
resonance frequencies, in order to avoid a system collapse.  
 
The DFT is a technique used to get the various frequencies associated with a series of 
vibration and/or acceleration values; unfortunately, it requires quite high 
computational time. Consequently, the FFT is often used as it is much quicker to 
perform as it has much shorter computational times. 
 
The FFT is based on the factorization of the “DFT matrix into a product of sparse 
factors, which are mostly zero”. 
Considering N as data size, these two methods have the following computational costs: 
 

• DFT → O(𝑁2) 

• FFT → O(𝑁 ⋅ 𝑙𝑜𝑔2(𝑁)) 
 

 
Figure 24:  Computational Cost (DFT vs FFT) 
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Therefore, it is possible to notice that as N grows, the difference between these two 
computational costs grows more and more, until it becomes truly high if N is of the 
order of thousands or millions. 
 
The Fourier Transform (FT) is a mathematic transformation performed on a certain f 
function so defined: 
 

𝑓: 𝑅𝑛 → 𝐶 
 
Performing the FT of the f function, a new F function is obtained: 
 

𝐹(ξ) = (𝐹𝑓)(ξ) =
1

(2π)
𝑛
2

∫ 𝑒−𝑖ξ𝑥

𝑅𝑛
𝑓(𝑥)𝑑𝑥 

 
whilst the Inverse Fourier Transform is: 
 

𝐹(−ξ) = (�̃�𝑓)(ξ) =
1

(2π)
𝑛
2

∫𝑒𝑖ξ𝑥 𝑓(𝑥)𝑑𝑥 

 
with ξ,  𝑥 ∈ 𝑅𝑛. 
Considering a certain signal, it is possible to make a distinction in the case it is analyzed 
in the time domain or in the frequency domain. 
In the time domain the signal is a h function which values are time dependent, so it is 
h(t). 
In the frequency domain, instead, the signal is characterized by a certain amplitude 𝐻 
(which is generally a complex number and it can have an initial phase) which depends 
on the frequency ν, so it is 𝐻(ν). 
The Fourier Transform of a signal in the time domain allows to get its frequency 
distribution, i.e., considering the h(t) function, the following formulas are obtained: 
 

𝐻(ν) = ∫ ℎ(𝑡)𝑒2π𝑖ν𝑡
+∞

−∞

𝑑𝑡 

ℎ(𝑡) = ∫ 𝐻(ν)𝑒−2π𝑖ν𝑡
+∞

−∞

𝑑𝑡 

 
The Fourier Transform has some fundamental properties including the linearity 
property, i.e.: 
 

• The Fourier Transform of a two functions sum is equal to the sum of the 
individual Fourier Transform. 

• The Fourier Transform of a product between a c constant and a function is 
equal to the product of the c constant and the function Fourier Transform. 
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Moreover, if the h(t) function is an even or odd function, also its Fourier Transform will 
be an even or odd function [11]. 
 
 

4.6 Sampling Time and Sampling Rate: Signal Acquisition 

 
When measuring an analog signal and converting it in a digital signal, a certain 
sampling time Δ must be considered. Δ is the time that elapses between one 
measurement and next, while the sampling rate ν𝑐 = 1/Δ is its reciprocal. 
 
The samples of a time dependent signal h(t) are the following: 
 

ℎ𝑛 = ℎ(𝑛Δ) 
 
where n is an integer. 
 
The sampling rate must be chosen considering the Nyquist-Shannon Theorem, 
according to which the sampling rate ν𝑐 must be at least two times greater than the 
maximum rate ν𝑚𝑎𝑥  to be detected, so: 
 

ν𝑐 ≥ 2 ⋅ ν𝑚𝑎𝑥 
 
The half of the sampling rate is called Nyquist critical frequency: 
 

ν𝑛 =
ν𝑐
2
=
1

2Δ
 

 
The Nyquist-Shannon theorem considers the aliasing problem, that occurs in the 
moment which the maximum frequency ν𝑚𝑎𝑥  is greater than ν𝑛. In that case, the 𝐻(ν) 
values that should be out of the [−ν𝑛,  ν𝑛] range are translated inside this range 
causing a signal distortion. 
 
To avoid the aliasing problem, some low pass filter or a greater sampling rate are used. 
Usually the maximum sampling rate depends on the device used, but, if it is unknown, 
it is possible to understand if there is an aliasing problem analyzing the Fourier 
Transform behavior when it is near the Nyquist frequency range limits: 
 

• If the Fourier Transform is almost 0 near these limits, the aliasing problem is 
minimized. 

• If the Fourier Transform stabilizes on a constant value different from 0, the 
aliasing effects are not negligible, so there is a signal distortion. 
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Figure 25:  Aliasing Problem [11] 

 
 

4.7 Fourier Transform Discretization 

 
The Fourier Transform is a continue function, but to execute a Discrete Fourier 
Transform is necessary to discretize it. By sampling the input signal, N consecutive 
samples are obtained: 
 
ℎ𝑘 = ℎ(𝑡𝑘)       with  𝑡𝑘 = 𝑘  and  𝑘 =  0,  1,  2,  … ,  𝑁 − 1 

 
Having N input samples there will be N output samples, so it is possible to consider 
only the discrete frequency value: 
 

𝜈𝑛 =
𝑛

𝑁Δ
  with  𝑛 = −

𝑁

2
,  −

𝑁

3
,  … ,  +

𝑁

2
 

   
The lower and upper limits correspond to the Nyquist critical frequency, so they are 
not independent like the other frequencies. Consequently, only N frequencies are 
considered and therefore it is possible to approximate the Fourier Transform in this 
way: 
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𝐻(ν𝑛) = ∫ ℎ(𝑡)𝑒2π𝑖ν𝑛𝑡
+∞

−∞

𝑑𝑡 ≃ ∑ ℎ𝑘

𝑁−1

𝑘=0

𝑒2π𝑖ν𝑛𝑡𝑘Δ = Δ∑ ℎ𝑘

𝑁−1

𝑘=0

𝑒2π𝑖𝑘𝑛/𝑁 

 
The Discrete Fourier Transform (DFT) of N-ℎ𝑘  samples is: 
 

𝐻𝑛 = ∑ ℎ𝑘𝑒
2π𝑖𝑘𝑛/𝑁

𝑁−1

𝑘=0

 

 
Therefore: 
 

𝐻(ν𝑛) ≃ Δ𝐻𝑛 
 
 
The Inverse Discrete Fourier Transform is: 
 

ℎ𝑘 =
1

𝑁
∑𝐻𝑛𝑒

−2π𝑖𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

 
 

4.8 Cooley-Tukey FFT algorithm 

 
To perform a DFT it is necessary to perform some operations: it is possible to rewrite 
the previous equation of DFT considering N samples and a complex number 𝑊𝑁: 
 

𝑊𝑁 = 𝑒2π𝑖/𝑁 
 
Consequently: 
 

𝐻𝑛 = ∑ ℎ𝑘

𝑁−1

𝑘=0

𝑊𝑘𝑛 

 
𝑊𝑘𝑛 is a complex matrix of dimensions N x N. 
 
To obtain 𝐻𝑛, 𝑁2 operations must be performed. There are some algorithms that allow 
to decrease significantly the number of operations, as the Cooley-Tukey factorization 
algorithm, which is based on the idea of simplifying the calculations to be made by 
decomposing the problem into simpler and faster subproblems to solve. 
Thanks to this algorithm, only 𝑁𝑙𝑜𝑔2(𝑁) operations must be performed for an FFT, 
consequently the computational time is much lower than that of the DFT. 
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Moreover, thanks to the Danielson-Lanczos lemma it is possible “to rewrite a DFT of 
length N as the sum of two DFTs, each of length N/2. One is formed from the even-
numbered points (“e” apex), while the other from the odd-numbered points (“o” apex)” 
[12]. 
 
Therefore: 
 

𝐻𝑛 = ∑ ℎ𝑗

𝑁−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁 = ∑ ℎ2𝑗

𝑁/2−1

𝑗=0

𝑒
2π𝑖(2𝑗)𝑛

𝑁 + ∑ ℎ2𝑗+1

𝑁/2−1

𝑗=0

𝑒
2π𝑖(2𝑗+1)𝑛

𝑁 = 

 

= ∑ ℎ2𝑗

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2 + ∑ ℎ2𝑗+1

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2 ⋅ 𝑒

2π𝑖𝑛
𝑁  

= ∑ ℎ2𝑗

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2 +𝑊𝑁

𝑛 ∑ ℎ2𝑗+1

𝑁/2−1

𝑗=0

𝑒
2π𝑖𝑗𝑛
𝑁/2  

 
⇒    𝐻𝑛 = 𝐹𝑛

𝑒 +𝑊𝑁
𝑛𝐹𝑛

𝑜 
 
The only problem of this algorithm is that it is valid only for a N samples that is power 
of 2. In fact, otherwise, it would be impossible to find a number of operations equal to 
𝑙𝑜𝑔2(𝑁), consequently the method would not be valid. However, there is a solution 
for these cases: it is possible to fill the data pattern with null terms until the next 
power of 2. 
In this way the signal is not altered because the null terms inserted do not make any 
contribution to the Fast Fourier Transform (FFT). 
 
Finally, this algorithm is implemented in a C++ code in order to perform an FFT of the 
last dataset saved when the user presses the FFT button. 
If the user presses the FFT button, a new window is opened where the graphs obtained 
in the frequency domain are displayed. 
 
Assume to have the following sinusoidal input signals: 
 

• X-axes: 𝑠𝑖𝑛(16 ⋅ π ⋅ 𝑡) + 𝑐𝑜𝑠(40 ⋅ π ⋅ 𝑡) 

• Y-axes: 𝑠𝑖𝑛(8 ⋅ π ⋅ 𝑡) + 𝑐𝑜𝑠(24 ⋅ π ⋅ 𝑡) 

• Z-axes: 𝑠𝑖𝑛(12 ⋅ π ⋅ 𝑡) + 𝑐𝑜𝑠(50 ⋅ π ⋅ 𝑡) 
 
Considering these input signals, the frequencies expected to find in the frequency 
domain are the following: 
 

• X-axes: 𝑓1 = 8 𝐻𝑧 and 𝑓2 = 20 𝐻𝑧 

• Y-axes: 𝑓1 = 4 𝐻𝑧 and 𝑓2 = 12 𝐻𝑧 

• Z-axes: 𝑓1 = 6 𝐻𝑧 and 𝑓2 = 25 𝐻𝑧 
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Pressing the FFT button the FFT is performed, so the frequency domain window shown 
is the following: 
 

 
 

 
Such a clean graph can be obtained in an ideal case where there is not an error range 
of the sensor used and where there is only a pure sinusoidal signal. 
 

Figure 26:  Frequency Domain Window - FFT ideal case 
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A graph obtained in a real case, on the other hand, can be the following, in which the 
dominant frequencies (i.e. the peaks) are visible, but in which there are very small 
values for almost all frequencies. 
  

Figure 27:  Frequency Domain Window - FFT real case 
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Each sensor, in fact, has a certain wide error range that can affect the data detected. 
 
In this window there are two new buttons: 
 

• CAMERA button: it allows to do a screenshot of the frequency domain window, 
in order to allow the user to view even during the flight test the FFT performed 
of all the data recorded. 
 

 
Figure 28:  CAMERA button icon 

 

• TIME button: it allows to return to the time domain window in order to start a 
new data recording. When the PLAY or PAUSE button is pressed, a new dataset 
is recorded, so it is impossible to view the FFT of the previous dataset. For this 
reason, the CAMERA button is added. 
 

 
Figure 29:  TIME button icon 

 
However, the data obtained thanks the FFT are saved on a text file, thus the user can 
use it during the post-processing phase. 
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4.9 FFT C++ code validation 

 
To verify if the C++ code that performs the Fast Fourier Transform is correct, a 
comparison was made with a MATLAB code using the fft function implemented in this 
software. 
 

 
 

Figure 30:  fft function MATLAB Documentation [13] 

 
This is the MATLAB Documentation about the fft function. 
 
The validation test is performed considering 3 sinusoidal input signals with different 
frequencies: 
 

• 1st input signal: 𝑠𝑖𝑛(10 ⋅ π ⋅ 𝑡) 

• 2nd input signal: 𝑠𝑖𝑛(20 ⋅ π ⋅ 𝑡) 

• 3rd input signal: 𝑠𝑖𝑛(30 ⋅ π ⋅ 𝑡) 
 
In the C++ code 3 accelerations along each axis (X, Y and Z) are used as input signals, 
therefore the above written signals are used as input signals respectively for X, Y and Z 
axis. 
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The following results are obtained with the MATLAB and C++ codes: 
 

 
 

Figure 31:  MATLAB results 
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Figure 32:  C++ code results 
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On the abscissa axes there is the frequency in Hertz, while on the ordinate axes there 
is the ratio between the magnitude and the number of samples N saved. In this case   
N = 1602, so for the FFT the next power of 2 closest to N used is n = 2048.  
 
It is important to notice that both x and y values are the same on the figures obtained 
from the two different codes, therefore, the fft MATLAB function and the C++ code 
implemented work the same way. 
 
So, why write a C++ code that performs the Fast Fourier Transform when instead it is 
possible to use directly the fft function on MATLAB? 
 
There are several reasons: first, using a C++ code it is not necessary to have a MATLAB 
license and to download MATLAB on the computer. Therefore, the user can also save 
money from an economic point of view. 
Moreover, in order to use MATLAB, the user should use multiple programs (C++ code 
to acquire data and MATLAB to perform the FFT), consequently the use of the various 
programs would be made more difficult and less immediate. 
The MATLAB code would also require the opening of files, saving the data and creating 
the various figures representing the graphs. This whole process would require a 
greater amount of time than the time required to press a button that allows to 
perform all this instantly. In this way, the user can save a lot of time and simplify his 
work a lot. 
 
However, in the C++ code, thanks to the text file where the data obtained with the FFT 
are saved, the user can also use them during the post-processing phase for other 
purposes. 
 
 

4.10 1st Application Conclusions 

 
Once the Fast Fourier Transform is performed, the user can view the data in the 
frequency domain, and he can compare them to the previous data or to the 
accelerations prescribed by the Regulations. 
 
This application allows the Flight Test Engineer to use a non-invasive instrumentation, 
easy to transport and to mount on the aircraft, and to carry out the various analyses in 
a simpler and more immediate way. 
 
The Flight Test Engineer can then perform analysis in real time when he is still on 
board the aircraft: in this way, if from an analysis there are non-compliant results, it is 
possible to repeat the maneuver immediately to try to understand, for example, why 
there is a certain vibration. With the previous instrumentation, however, the Flight 
Test Engineer could carry out these analyses only once landed, consequently it would 
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have been necessary to make the aircraft take off again, with a consequent loss of time 
and an increase in flight test costs. 
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5 Parameter Identification 

 
The Parameter Identification is a technique born around the 70s and concerns the 
analysis of the control and stability characteristics of aircraft. 
 
What is the difference between stability and control derivatives? 
 

• Stability derivatives: measure how much forces and/or moments acting on 
the aircraft change as a result of a small change in flight condition 
parameter such as airspeed, altitude, angle of attack, etc. 
 

• Control derivatives: measure how much forces and/or moments acting on 
the aircraft change as a result of a small change in the deflection of a 
control surface as rudder, elevator and aileron [13]. 

 
“Parameter Identification has become a significant tool for applications such as model 
validation, handling qualities evaluation, control law design, and flight-vehicle design 
and certification” [14]. 
 
Aircraft in flight have a dynamic like that of a mass-spring-damper system (II order 
system) but they have at least 6 degrees of freedom (DOF): 3 translational and 3 
rotational (roll, pitch, yaw). 
For a helicopter 9 DOF are considered because there are also 3 DOF of the blade: lead-
lag, flap and pitch. 
 

 
 

Figure 33:  Six Degrees of Freedom [15] 
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Figure 34:  Helicopter rotor blades degrees of freedom [16] 

For the aircraft dynamic analysis 6 linearized equations of motion are usually used, 
within which there are some terms called stability and control derivatives. 
The value of many of these parameters depends on the speed, in fact they can be quite 
different between the hover condition and the forward flight condition. 
 
Usually a first estimate of these values is obtained even before the first flight of the 
aircraft. This estimation is made through a combination of analysis, wind-tunnel tests 
and assumptions made with some judgment. 
 
Unfortunately, however, when the aircraft is in flight, it could have a different behavior 
than the one predicted by these initial estimates.  For this reason, flight-tests are 
carried out with which to obtain more precise information relating to the values of the 
stability and control derivatives. 
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In fact, the data obtained from the wind-tunnel tests (computed) are very different 
from those obtained during flight tests (flight), as shown in the following figure: 
 

 
 

Figure 35:  Comparison of computed response using wind-tunnel-parameter values 
with flight-measured response [17] 

 
The results obtained through the flight-tests are very important for a subsequent 
development of flight simulators of a specific helicopter or category of helicopters, but 
also to carry out a better analysis to correct flying-quality problems or to develop 
autopilots. 
 
Using flight-test data allow to eliminate the errors generated by the assumptions and 
approximations made during the initial estimates. 
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Before performing a flight-test campaign, it’s very important to choose what 
maneuvers realize modeling the commands input. This choice is fundamental because 
it allows to minimize the uncertainties present in the Parameter Estimation procedure 
and to maximize the flight-test data content. 
To perform this optimization in the command input modeling it is necessary to have a 
priori knowledge about the dynamic of that specific helicopter [18]. 
 
 
How are flight-tests performed? 
Before carrying out a flight test, the aircraft is instrumented with appropriate sensors 
capable of measuring certain parameters: for example, accelerations, speeds and the 
attitude that the aircraft assumes during flight. 
Starting from a trim condition, the pilot performs one or more maneuvers using the 
various commands: in the case of a helicopter the pilot uses all four pilot control 
inputs: collective, longitudinal cyclic, lateral cyclic and pedals. 
There are different types of standard input commands, e.g. step, pulse, doublet or 
“3211”. 
The “3211” is a sequence of sharp-edged pulses that excite both the short-period and 
long-period (phugoid) modes and each number corresponds to each input duration 
[19]. 
 

 

Figure 36:  3211 control input [5] 
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Usually these tests are carried out with the Stability and Control Augmentation System 
(SCAS) turned off, except in the case the helicopter is so unstable that it does not allow 
to obtain adequate time histories of the various parameters. 
 
Some of the data that must be measured during a flight-test are fuel quantity in each 
tank, nose boom static and dynamic pressures, external stagnation temperature, 
aerodynamic angle of attack (α) and sideslip angle (β), roll, pitch, and yaw rates (p, q, 
and r, resp.) and accelerations, body axes speeds (u, v, w) and accelerations, load 
factors, longitudinal (θ) and lateral (φ) body attitudes, heading, collective, longitudinal 
and lateral cyclic, and pedal command deflections (𝛅𝑪,  𝛅𝑩,  𝛅𝑨 and 𝛅𝑷, resp.) [18]. 
 
Therefore, both input and output data of the real system are measured. 
To measure the inputs given by the pilot, it is also necessary to instrument the flight 
controls with appropriate sensors that allow to have some information about 
commands amplitude and duration. 
 
When carrying out flight tests, the data detected by the sensors may be subject to 
noise caused by the vibrations of the sensors’ cables, therefore, usually, a Kalman 
Filter is used to mitigate the influence of noise on the data measured. In fact, using 
data affected by noise would substantially influence the final analysis. Moreover, there 
may be also external disturbances that are impossible to measure directly. 
 

 
 

Figure 37:  General systems identification problems [17] 
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If during a flight-test aileron and rudder small-amplitude pulses are performed, the 
measured output data are roll and yaw rate, sideslip and bank angle, lateral 
acceleration, as shown in the following figure: 
 

 
 

Figure 38:  Flight-test data measured for parameter estimation [17] 

 
Once the time histories of all the main parameters have been obtained, a set of six or 
more linearized equations of motion is used in which the stability and control 
derivatives values obtained before the flight-tests are initially used. Starting from these 
values and from the results obtained during the flight-tests, different trial-and-error 
techniques can be used such as e.g. Ordinary Least Squares, Deterministic Least 
Squares, Statistical Linearized Filter and Extended Kalman Filter. 
Using these techniques, the stability and control derivatives final values are the ones 
that allow to get as close as possible to the data obtained during flight-tests. 
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Therefore, flight and computed time histories have almost the exact same trend, as 
shown in figure: 
 

 
 

Figure 39:  Typical match of computed response using estimated parameter values with 
the flight-measured response [17] 

 
To get a final estimate, several steps must be performed, consequently these 
techniques are performed by computers with high computing capacities. 
 
The techniques used for the Parameter Estimation have been improved more and 
more over the years mainly for two reasons: 
 

• the aircraft performances have improved significantly, consequently their 
dynamics have changed; 
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• there is always the goal of having more accurate and efficient techniques, in 
order to improve the results produced [17]. 

 
 
 
The Parameter Estimation techniques have five key points: 
 

1. mathematical model; 
2. estimation criterion; 
3. computational algorithm; 
4. total data acquisition system; 
5. test input. 

 

 
 

Figure 40:  Basic concept of contemporary parameter estimation techniques [17] 

 
A common result to all the Parameter Identification Analysis performed on different 
types of aircraft and helicopter is that the final values of the stability and control 
derivatives could be up to 50% different from the initially estimated values. 
The final values of these parameters are those that make the simulation more realistic 
and they are closer to the values obtained during flight-tests. Using these final values, 
highly effective autopilots and simulators can be implemented. 
 
Some stability derivatives, in fact, can be strongly influenced by phenomena that are 
difficult to predict during initial phases, such as e.g. the main’s rotor’s wake that 
impinges on the tail surfaces. Precisely because of these effects, the Parameter 
Identification assumes even more importance, because the initial estimate of the 
stability derivatives can determine not negligible differences compared to the real 
values. Furthermore, the aircraft/helicopter project can have various evolutions 
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compared to the first configuration and, in this way, it is possible to obtain values as 
close as possible to the real ones. 
 
“The correlation coefficient between measured (𝑦) and simulated data (𝑦𝑠𝑖𝑚), defined 
as the normalized cross-covariance function ρ𝑦𝑦𝑠𝑖𝑚, is given by (Bendat and Piersol 

[20]): 
 

ρ𝑦𝑦𝑠𝑖𝑚 =
∑ [(𝑦𝑖(𝑡) − (1/𝑁)∑ 𝑦𝑖(𝑡)

𝑁
𝑖=1 )(𝑦𝑠𝑖𝑚𝑖

(𝑡) − (1/𝑁)∑ 𝑦𝑠𝑖𝑚𝑖
(𝑡)𝑁

𝑖=1 )]𝑁
𝑖=1

√∑ [(𝑦𝑖(𝑡) − (1/𝑁)∑ 𝑦𝑖(𝑡)
𝑁
𝑖=1 )

2
]𝑁

𝑖=1 √∑ [(𝑦𝑠𝑖𝑚𝑖
(𝑡) − (1/𝑁)∑ 𝑦𝑠𝑖𝑚𝑖

(𝑡)𝑁
𝑖=1 )

2
]𝑁

𝑖=1

 

 
can be used to estimate how well the estimated signals can reproduce the measured 
data. If the correlation coefficient is close to 1, one may conclude that the estimation 
algorithm can provide a good fit to the experimental data, but on the other hand, if the 
coefficient is close to 0, the estimation was poor” [18]. 
 
N is the simulated outputs number of the proposed model (for example five 3211 
maneuvers). 
 
The Parameter Identification is used not only in the time-domain, but also in the 
frequency-domain, so frequency-based data are necessary, and they can be obtained 
even with a conversion of time-based data [21]. 
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6 2nd Application 

 
Carrying out a real Parameter Estimation would require very precise knowledge both in 
terms of techniques to be used and in terms of data. A good compromise could be to 
use the same logic to derive an approximation of the fundamental dynamic 
characteristics, namely: 
 

• natural frequency 𝒇𝒏; 

• damping ratio 𝛇. 
 
Usually these two parameters are calculated by means of formulas within which there 
are characteristic coefficients of the aircraft such as aerodynamic coefficients and 
dimensionless aerodynamic derivatives. These parameters are calculated precisely 
performing a Parameter Estimation. 
 
The goal of this 2nd application is precisely to obtain quite realistic natural frequency 𝑓𝑛 
and damping ratio ζ values by analyzing the time histories of the main parameters 
measured during flight tests. 
 
The main aim is to obtain in a sufficiently short time and in a very simple way an 
accurate information regarding these two parameters of fundamental importance. 
 
The idea is to calculate them in the following way: 
 

• natural frequency 𝒇𝒏: analyzing the period T of the various oscillations of 
the output signal. 

• damping ratio 𝛇: analyzing how much the amplitude of the output signal 
decreases with each oscillation. 

 
 

6.1 Dynamic Stability 

 
Usually the dynamic stability of a fixed wing aircraft is studied using the theory of small 
perturbations which allows to decouple the longitudinal plane and the lateral-
directional plane. 
 
The dynamic stability of a helicopter, on the other hand, can be studied by decoupling 
the planes only in the case of hovering or low-speed flight. This difference is because 
for a helicopter there are couplings between the loads present in the two planes which 
therefore do not allow to decouple them. 
 
  



60 
 

Considering the two coupled planes, the state formulation in compact form is the 
following: 
 

�̇� = 𝐴 ⋅ 𝑥 = [
𝐴𝑙𝑜𝑛 𝐴𝑙𝑎𝑡−𝑙𝑜𝑛

𝐴𝑙𝑜𝑛−𝑙𝑎𝑡 𝐴𝑙𝑎𝑡
] ⋅ 𝑥 

 
where 𝐴𝑙𝑜𝑛−𝑙𝑎𝑡 and 𝐴𝑙𝑎𝑡−𝑙𝑜𝑛 are the two coupling submatrices, in fact, they contain the 
terms of cross-coupling. 
The formulation of the state matrix A for full dynamics (coupled planes) is as follows: 
 

𝐴 =

[
 
 
 
 
 
 
 
 
 
𝑋𝑢 𝑋𝑤 𝑋𝑞 −𝑔𝑐𝑜𝑠τ𝑐 𝑋𝑣 𝑋𝑝 𝑋𝑟 0 0

𝑍𝑢 𝑍𝑤 𝑍𝑞 + 𝑉 −𝑔𝑠𝑖𝑛τ𝑐 𝑍𝑣 𝑍𝑝 𝑍𝑟 0 0

𝑀𝑢 𝑀𝑤 𝑀𝑞 0 𝑀𝑣 𝑀𝑝 𝑀𝑟 0 0

0 0 1 0 0 0 0 0 0
𝑌𝑢 𝑌𝑤 𝑌𝑞 0 𝑌𝑣 𝑌𝑝 𝑌𝑟 − 𝑉 𝑔𝑐𝑜𝑠τ𝑐 0

𝐿𝑢
′ 𝐿𝑤

′ 𝐿𝑞
′ 0 𝐿𝑣

′ 𝐿𝑝
′ 𝐿𝑟

′ 0 0

𝑁𝑢
′ 𝑁𝑤

′ 𝑁𝑞
′ 0 𝑁𝑣

′ 𝑁𝑝
′ 𝑁𝑟

′ 0 0

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0]

 
 
 
 
 
 
 
 
 

 

 
where τ𝑐 is the flight path angle. 
 
The state vector 𝒙 instead is: 
 

𝑥 = {𝑢 𝑤 𝑞 θ 𝑣 𝑝 𝑟 φ ψ}𝑇 
 
where: 

• 𝑢,𝑤, 𝑞, θ: are the state variables of the longitudinal plane; 

• 𝑣, 𝑝, 𝑟, φ, ψ: are the state variables of the lateral-directional plane. 
 
If the helicopter is in hover or in low-speed flight the two planes can be decoupled. 
 
 

6.1.1 Longitudinal plane 

 
The state-space formulation for the longitudinal plane is: 

 
�̇� = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢 

 
 

{

�̇�
�̇�
�̇�

θ̇

} = [

𝑋𝑢 𝑋𝑤 𝑋𝑞 −𝑔𝑐𝑜𝑠τ𝑐
𝑍𝑢 𝑍𝑤 𝑍𝑞 + 𝑉 −𝑔𝑠𝑖𝑛τ𝑐
𝑀𝑢 𝑀𝑤 𝑀𝑞 0

0 0 1 0

] ⋅ {

𝑢
𝑤
𝑞
θ

} +

[
 
 
 
𝑋θ0 𝑋𝐵1
𝑍θ0 𝑍𝐵1
𝑀θ0 𝑀𝐵1

0 0 ]
 
 
 
⋅ {
θ0
𝐵1
} 
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𝐵 is the control matrix while 𝑢 is the command vector where there are the two 
control variables θ0 and 𝐵1, respectively the collective command and 
longitudinal cyclic. 
 
The dynamic stability is studied using the eigenvalue analysis. Once the 
eigenvalues of the state matrix 𝐴 have been found, there is a further difference 
with respect to fixed-wing aircraft: for a fixed-wing aircraft there are two 
complex conjugated pair of eigenvalues which represent: 
 

• Short period mode: a fast and quite damped dynamic mode; 

• Long period (phugoid) mode: a slow and slightly damped dynamic 
mode. 

 
In fact, the skill of a pilot is to perform a maneuver that triggers only the short 
period mode and not also the phugoid one. 
 
For a helicopter, instead, there are two real negative eigenvalues and one 
complex conjugated pair of eigenvalues: 
 

• First real negative eigenvalue represents a damped and aperiodic pitch 
mode. In hovering the eigenvalue is λ ≃ 𝑀𝑞 < 0 and becomes more and 

more negative as the speed increases. This dynamic mode is stable 
thanks the inherent stability of the main rotor, which has a 𝑀𝑞 < 0 

(damping derivative). 
 

• Second real negative eigenvalue represents the heave mode, a damped 
and aperiodic dynamic mode, that is, the response along the 
helicopter's vertical axis following a change in the vertical speed 𝑤. 
In hovering the eigenvalue is λ ≃ 𝑍𝑤, so it depends on the vertical 
damping derivative 𝑍𝑤. 

 

• The complex conjugated pair of eigenvalues represent the long-period 
(phugoid) mode. At very low speeds the respective eigenvalue has a 
slightly positive real part (𝑅𝑒(λ)>0) due to the poor efficiency of the tail 
empennages at low speed, consequently it is a slightly unstable dynamic 
mode. While starting from slightly higher speeds the real part of the 
eigenvalue becomes negative (𝑅𝑒(λ)<0) as the dynamic pressure on the 
tail empennages increases, consequently their efficiency increases and 
therefore the phugoid becomes a stable dynamic mode. 
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6.1.2 Lateral-directional plane 

 
The state-space formulation for the lateral-directional plane is: 
 

�̇� = 𝐴 ⋅ 𝑥 + 𝐵 ⋅ 𝑢 
 
 

{
 
 

 
 
�̇�
�̇�
�̇�
φ̇

ψ̇}
 
 

 
 

=

[
 
 
 
 
𝑌𝑣 𝑌𝑝 𝑌𝑟 − 𝑉 𝑔𝑐𝑜𝑠τ𝑐 0

𝐿𝑣
′ 𝐿𝑝

′ 𝐿𝑟
′ 0 0

𝑁𝑣
′ 𝑁𝑝

′ 𝑁𝑟
′ 0 0

0 1 0 0 0
0 0 1 0 0]

 
 
 
 

⋅

{
 
 

 
 
𝑣
𝑝
𝑟
φ
ψ}
 
 

 
 

+

[
 
 
 
 
 
𝑌𝐴1 𝑌θ𝑡𝑟
𝐿𝐴1
′ 𝐿θ𝑡𝑟

′

𝑁𝐴1
′ 𝑁θ𝑡𝑟

′

0 0
0 0 ]

 
 
 
 
 

⋅ {
𝐴1
θ𝑡𝑟
} 

 
where 𝐴1 is the lateral cyclic while θ𝑡𝑟 is the pedal command. 
 
The aerodynamic derivatives are always obtained with the decomposition in 
principal axes of inertia: in this way all the rotations are around the principal 
axes of inertia. 

 

The principal axes of inertia do not coincide with the body axes because of 𝐼𝑋𝑍, 
but while for a fixed-wing aircraft 𝐼𝑋𝑍 is at least two orders of magnitude 
smaller than 𝐼𝑋𝑋 and 𝐼𝑍𝑍, for a helicopter it is high because of: 
 

• Tail rotor; 

• Tail empennages; 

• Vertical and not uniform mass distribution. 
 

Therefore, 𝐼𝑋𝑍 is only one order of magnitude smaller than 𝐼𝑋𝑋 and 𝐼𝑍𝑍, 
consequently when the pilot gives a lateral cyclic command, in addition to the 
roll response, there is also a yaw one because the moment of inertia 𝐼𝑋𝑍 
couples the roll response to the yaw response. 
 
The apexes “ ’ ” are therefore due to keep in consideration the 𝐼𝑋𝑍 moment of 
inertia and its coupling effect: 
 

𝐿𝑖
′ =

𝐿𝑖 +
𝐼𝑋𝑍
𝐼𝑋𝑋

𝑁𝑖

1 −
𝐼𝑋𝑍
2

𝐼𝑋𝑋𝐼𝑍𝑍

≃ 𝐿𝑖 +
𝐼𝑋𝑍
𝐼𝑋𝑋

𝑁𝑖  

𝑁𝑖
′ =

𝑁𝑖 +
𝐼𝑋𝑍
𝐼𝑍𝑍

𝐿𝑖

1 −
𝐼𝑋𝑍
2

𝐼𝑋𝑋𝐼𝑍𝑍

≃ 𝑁𝑖 +
𝐼𝑋𝑍
𝐼𝑍𝑍

𝐿𝑖 
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There are five eigenvalues λ extracted from the state matrix 𝐴, but one of them 
is null (λ =  0) and it represents the heading mode. The other four eigenvalues 
are: 
 

• A complex conjugated pair of eigenvalues for the dutch roll that have a 
real positive part (𝑅𝑒(λ) > 0) at low speeds due to the poor efficiency 
of the tail empennages and tail rotor at such speeds, consequently FCS 
(Flight Control System) is used to stabilize this dynamic mode at these 
speeds. Increasing the flight speed, their efficiency raises, so the dutch 
roll became a stable dynamic mode (𝑅𝑒(λ) < 0). 
 

• A real negative eigenvalue for the roll mode, that is an aperiodic stable 
dynamic mode thanks to the main rotor. In fact, this is a symmetric case 
of the pitch mode. In hovering the eigenvalue is λ ≃ 𝐿𝑃. 

 

• A real negative eigenvalue for the spiral mode. For a helicopter the 
spiral mode is always a stable dynamic mode thanks to the 𝑁𝑟 < 0 yaw 
damping derivative that depends on the tail rotor characteristics. In fact, 
in hover conditions, the eigenvalue is λ ≃ 𝑁𝑟  <  0. For a fixed-wing 
aircraft, instead, the spiral mode eigenvalue is 𝑅𝑒(λ) ≃ 0, so the real 
part of the eigenvalue switch from positive to negative values and vice 
versa because of the dihedral effect, so it could be unstable [22]. 

 
 

6.2 2nd Application Implementation 

 
For the 2nd application a new C++ code is necessary because only the Spatial will be 
used, not the camera. In fact, using the Spatial, the fundamental variables described 
previously can be measured, as the Euler’s angles, angular velocity and the 
acceleration along the body axes. 
 
Plotting the time history of each variable it will be possible to verify if, following a 
certain pilot input command maneuver, the helicopter response is such that the 
induced oscillations tend to decrease quite quickly. 
The application aim is to get some approximative values but still quite realistic of the 
natural frequency 𝑓𝑛 and the damping ratio ζ. 
 
The same approach used for the 1st application was used to realize the graphs. Even in 
this case two windows were created: one for the longitudinal plane variables and the 
other one for the lateral-directional plane variables. This choice, as well as the chosen 
variable, can be obviously modified according to the user’s needs. 
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The user can switch from a video screen to another through the new buttons inserted 
near the ones previously described: 
 

• NEXT PAGE button: this button is present in the longitudinal plane window and 
it allows to switch to the lateral-directional plane window. 
 

 
Figure 41:  NEXT PAGE button icon 

 

• PREVIOUS PAGE button: this button is present in the lateral-directional plane 

window and it allows to switch to the longitudinal plane window. 

 

 

Figure 42:  PREVIOUS PAGE button icon 

Even in this application the graphs are created from when the user starts the software, 
but the several data values are saved on a text file only from when the user presses on 
the PLAY button until he presses the PAUSE or EXIT button. 
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Figure 43:  Longitudinal plane window 
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Figure 44:  Lateral-Directional plane window 
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The user has full freedom in choosing which of the two screens to display at that 
moment using the two buttons NEXT PAGE and PREVIOUS PAGE, without this choice 
being able to modify or generate errors in the creation of the graphs in real time and in 
saving the various data on the text file. 
  
Moreover, in order to save two different videos (one for each display), another thread 
save_video was created: so, when the user click to the PLAY button, two videos are 
created and saved. 
Consequently, another function called save_video_lat_dir was created in order to save 
the video of the Lateral-Directional plane window. 
 
// Initialize and set thread joinable 

pthread_attr_init(&attr); 

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); 

 

   

// create thread for getting IMU    

pthread_create(&thread_id_geo,&attr,getGeoInfo,(void *)&GEO); 

 

// create thread to save longitudinal plane video                                        

pthread_create(&thread_id_save_video, &attr, save_video, (void 

*)&VIDEO);   

  

// create thread to save lateral-directional plane video                     

pthread_create(&thread_id_save_video_lat_dir, &attr, 

save_video_lat_dir, (void *)&VIDEO); 

 

 

SensorFusion( &GEO, &VIDEO ); 

 

     

// close thread for getting IMU    

pthread_join(thread_id_geo, &status);  

 

// close thread to save longitudinal plane video 

pthread_join(thread_id_save_video, &status); 

 

// close thread to save lateral-directional plane video      

pthread_join(thread_id_save_video_lat_dir, &status);             

 

 

pthread_attr_destroy(&attr); 

 

 
 
In this way, for example, if the user has seen the Longitudinal plane window during the 
saving phase, he can also be able to view the Lateral-directional plane window during 
the post-processing phase. 
The window chosen by the user during the saving phase does not affect in any way the 
saving of the two videos and does not generate any type of error. 
Consequently, the user has full freedom in choosing a specific window rather than 
another in the registration phase. 
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6.3 Spatial Manager 

 
From the Spatial web site [23] it is possible to download the Spatial Manager, available 
for Mac, Windows and Linux. This is a graphic interface of the Spatial. 
 

 
 

Figure 45:  Spatial web site [23] 

 
An update version of Java is necessary to use the Spatial Manager. 
 
After downloading Java, it is recommended to use the following command in the Linux 
Terminal Command Line to avoid having some permissions problems: 
 
sudo adduser username dialout 
 
To execute the .jar file and finally use the Spatial Manager it is necessary to use the cd 
command to go in the .jar file directory and the last command to use is the following: 
 
sudo java -jar SpatialManager-5.0.jar 
 
After using this command, the Spatial Manager software will start. 
 
The Spatial SDK codes allow to use several packets, each of one allows to get different 
data types as angles, velocity in body axes / NED axes, angular velocity in body axes, 
accelerations in body axes, angular accelerations, latitude, longitude, temperature and 
pressure on the Spatial, g-force, etc. 



69 
 

To activate and/or deactivate the various packets, each distinguishable by its own ID, 
and to change the rate used to get the data values, it is necessary to use the Spatial 
Manager. In fact, these changes cannot be carried out by the C/C++ codes.  
 
After starting Spatial Manager and connecting the Spatial to the pc, the following 
screen appears: 
 

 
Figure 46:  Spatial Manager graphic interface [24] 

 
A good pc graphic card is necessary to view the 3D map, otherwise this screen section 
will appear completely black. 
 
The top center screen is very similar to the aircraft Primary Flight Display (PFD), in fact 
there are the heading, height, speed and attitude information. There are also the 
artificial horizon and the same colors (brown and blue) which are used on the PFD. 
 
To activate and/or deactivate packets the user must go in Configuration -> Packet 
Rates and must add ID and Period for each packet that he wants to use. 
In the Spatial Reference Manual [24] it is possible to find all the packets IDs. 
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The System State Packet (ID 20) and the Raw Sensors Packet (ID 28) are the default 
packet enabled at 50Hz and these typically provide almost all the data that a user will 
require. However, it is possible to change the output rate changing the Period. 
 

 
Figure 47:  Packet Rates - Spatial Manager 

 
Before increasing the packet rates, it is essential to ensure that the baud rate is 
adequate to handle the data throughput. By default, the Spatial is configured with a 
baud rate of 115200. 
The baud rate can be calculated using the packet rate and size. 
The packet size is equal to the packet length add five to account for the packet 
overhead. 
By default, the packet rate is 50 Hz, so, considering that the System State Packet length 
is 100, it is necessary to do the following calculations: 
 
Data throughput = [100 (packet length) + 5 (fixed packet overhead)] x 50 (rate) 
Data throughput = 5250 bytes per second 
 
Minimum baud rate = Data throughput x 11 = 57750 Baud 
Closest standard baud rate = 115200 Baud 
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Using these formulas, it is possible to calculate the necessary baud rate for each packet 
rate that the user wants to use. 
When the user wants to use multiple packets at the same rate, he must order them 
from the lowest ID to the highest ID. 
 
Once the necessary packets are activated, some changes on getGeoInfo function are 
necessary in order to get the desired data: 
 
an_decoder_t an_decoder; 

an_packet_t *an_packet; 

     

system_state_packet_t system_state_packet; 

raw_sensors_packet_t raw_sensors_packet; 

body_velocity_packet_t body_velocity_packet; 

 

… 
 
else if (an_packet->id == packet_id_raw_sensors) /* raw sensors packet 

*/ 

{ 

/* copy all the binary data into the typedef struct for the packet */      

/* this allows easy access to all the different values             */ 

if(decode_raw_sensors_packet(&raw_sensors_packet, an_packet) == 0)        

{ 

      mtx_IMU.lock(); 

            GEO->IMU_SRC.acc_x = raw_sensors_packet.accelerometers[0]; 

            GEO->IMU_SRC.acc_y = raw_sensors_packet.accelerometers[1]; 

            GEO->IMU_SRC.acc_z = raw_sensors_packet.accelerometers[2]; 

 

            GEO->flag_acc = 1; 

            mtx_IMU.unlock(); 

    } 

} 

 

 

This one is an example of how call back a packet in the C++ code and how to use the 
SDK. For each packet used it is necessary to add these simple command lines. 
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6.4 Packet Summary 

 
The Spatial packets available are the following: 

 
Packet ID  Length  R/W  Name 

System Packets 
0  4  R  Acknowledge Packet 

1  -  W  Request Packet 

2  1  R/W  Boot Mode Packet 

3  24  R  Device Information Packet 

4  4  W  Restore Factory Settings Packet 

5  4  W  Reset Packet 

10  -  R/W  Serial Port Pass-through Packet 

State Packets 
20  100  R  System State Packet 

21  8  R  Unix Time Packet 

22  14  R  Formatted Time Packet 

23  4  R  Status Packet 

24  12  R  Position Standard Deviation Packet 

25  12  R  Velocity Standard Deviation Packet 

26  12  R  Euler Orientation Standard Deviation Packet 

27  16  R  Quaternion Orientation Standard Deviation Packet 

28  48  R  Raw Sensors Packet 

29  74  R  Raw GNSS Packet 

30  13  R  Satellites Packet 

31  -  R  Detailed Satellites Packet 

32  24  R  Geodetic Position Packet 

33  24  R  ECEF Position Packet 

34  26  R  UTM Position Packet 

35  12  R  NED Velocity Packet 

36  12  R  Body Velocity Packet 

37  12  R  Acceleration Packet 

38  16  R  Body Acceleration Packet 

39  12  R  Euler Orientation Packet 

40  16  R  Quaternion Orientation Packet 

41  36  R  DCM Orientation Packet 

42  12  R  Angular Velocity Packet 

43  12  R  Angular Acceleration Packet 

44  60  R/W  External Position & Velocity Packet 

45  36  R/W  External Position Packet 

46  24  R/W  External Velocity Packet 

47  
16 or 
24 

R/W  External Body Velocity Packet 
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48  8  R/W  External Heading Packet 

49  8  R  Running Time Packet 

50  12  R  Local Magnetic Field Packet 

51  20  R  Odometer State Packet 

52  8  R/W  External Time Packet 

53  8  R/W  External Depth Packet 

54  4  R  Geoid Height Packet 

55  -  W  RTCM Corrections Packet 

56  -  -  External Pitot Pressure Packet 

57  12  R/W  Wind Packet 

58  16  R  Heave Packet 

59  -  -  Post Processing Packet 

60  -  R  Raw Satellite Data Packet 

67  13  R/W  External Odometer Packet 

68  25  R/W  External Air Data Packet 

72  8  R/W  Gimbal State Packet 

73  24  R  Automotive Packet 

Configuration Packets 
180  4  R/W  Packet Timer Period Packet 

181  -  R/W  Packets Period Packet 

182  17  R/W  Baud Rates Packet 

184  4  R/W  Sensor Ranges Packet 

185  73  R/W  Installation Alignment Packet 

186  17  R/W  Filter Options Packet 

187  -  -  Advanced Filter Parameters Packet 

188  13  R/W  GPIO Confguration Packet 

189  49  R/W  Magnetic Calibration Values Packet 

190  1  W  Magnetic Calibration Confguration Packet 

191  3  R  Magnetic Calibration Status Packet 

192  8  R/W  Odometer Confguration Packet 

193  5  W  Set Zero Orientation Alignment Packet 

194  49  R/W  Reference Point Offsets Packet 

195  33  R/W  GPIO Output Confguration Packet 

198  64  R/W  User Data Packet 

199  65  R/W  GPIO Input Confguration Packet 

Figure 48:  Spatial Packets [24] 

For the 2nd application the Body Velocity Packet (ID 36) was added because it is 
necessary to get the velocity in body axes (X, Y, Z) u, v, w. 
 
The default packets System State Packet (ID 20) and Raw Sensors Packet (ID 28) allow 
to get the following data values [24]: 
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System State Packet 
Packet ID 20 

Packet Length 100 

Field # Bytes Offset Data Type Size Description 

1 0 u16 2 System status, see section 13.9.1.1 

2 2 u16 2 Filter status, see section 13.9.1.2 

3 4 u32 4 Unix time (seconds), see section 13.9.1.4 

4 8 u32 4 Microseconds, see section 13.9.1.5 
 

5 12 fp64 8 Latitude (rad) 

6 20 fp64 8 Longitude (rad) 

7 28 fp64 8 Height (m) 

8 36 fp32 4 Velocity north (m/s) 

9 40 fp32 4 Velocity east (m/s) 

10 44 fp32 4 Velocity down (m/s) 

11 48 fp32 4 Body acceleration X (m/s/s) 
 

12 52 fp32 4 Body acceleration Y (m/s/s) 
 

13 56 fp32 4 Body acceleration Z (m/s/s) 

14 60 fp32 4 G force (g) 

15 64 fp32 4 Roll (radians) 

16 68 fp32 4 Pitch (radians) 
 

17 72 fp32 4 Heading (radians) 

18 76 fp32 4 Angular velocity X (rad/s) 
 

19 80 fp32 4 Angular velocity Y (rad/s) 

20 84 fp32 4 Angular velocity Z (rad/s) 

21 88 fp32 4 Latitude standard deviation (m) 

22 92 fp32 4 Longitude standard deviation (m) 

23 96 fp32 4 Height standard deviation (m) 

Figure 49:  System State Packet [24] 

 

Raw Sensors Packet 

Packet ID 28 

Packet Length 48 

Field # Bytes Offset Data Type Size Description 

1 0 fp32 4 Accelerometer X (m/s/s) 

2 4 fp32 4 Accelerometer Y (m/s/s) 

3 8 fp32 4 Accelerometer Z (m/s/s) 

4 12 fp32 4 Gyroscope X (rad/s) 
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5 16 fp32 4 Gyroscope Y (rad/s) 

6 20 fp32 4 Gyroscope Z (rad/s) 

7 24 fp32 4 Magnetometer X (mG) 

8 28 fp32 4 Magnetometer Y (mG) 

9 32 fp32 4 Magnetometer Z (mG) 

10 36 fp32 4 IMU Temperature (deg C) 

11 40 fp32 4 Pressure (Pascals) 

12 44 fp32 4 Pressure Temperature (deg C) 
 

Figure 50:  Raw Sensors Packet [24] 

 

6.5 Damping Ratio and Natural Frequency 

 
Previously, the various dynamic ways in which a helicopter responds to a certain 
command given by the pilot have been described. The periodic dynamic modes are 
characterized by a natural frequency 𝑓𝑛 and a damping ratio ζ. 
If 0 < ζ < 1 the dynamic mode is underdamped, while if ζ >  1 it is overdamped. 
 

 
 

Figure 51:  Output response according to damping ratio value [25] 
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If ζ = 1 the output response is critically damped, so it reaches steady state value as 
quickly as possible without being weakened, while if ζ > 1 the response does not 
oscillate around the steady state value but takes longer to reach the steady state than 
the critically damped case. 
 
The aim of this 2nd application is to find an approximation of the natural frequency 𝑓𝑛 
and damping ratio ζ in a simple way, analyzing the output responses obtained after a 
command input given by the pilot. 
 
Considering the following figure representing a capture of the longitudinal plane 
window, it is possible to notice that the output response is underdamped (ζ < 1) 
because of its decrease in amplitude over time and of its oscillation around a 
stationary value. 
 

 
 

Figure 52:  X acceleration output signal 

To facilitate the work of estimating the natural frequency 𝑓𝑛 and the damping ratio ζ, it 
is possible to use in a MATLAB code the data saved in output in the .xlsx file. 
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The same curve represented on MATLAB is the following: 

 
 

Figure 53:  X acceleration curve on MATLAB 

By representing this curve on MATLAB, it is possible to see its complete trend over 
time. 
 
The natural frequency 𝑓𝑛 can be calculated by inverse the time elapsed between one 
peak and the next one. 
 



78 
 

 
Figure 54:  Time instant of the peaks 

The first peak occurs at the time instant 𝑡 =  0.9147 𝑠, while the next one at 𝑡 =
 4.947 𝑠, therefore the time elapsed between one peak to the next one is equal to 
𝑇𝑑 = 4.0323 𝑠 and the damped natural frequency is 𝑓𝑑 = 1/𝑇𝑑 = 0.248 𝐻𝑧. 
 
The undamped natural frequency is equal to: 
 

𝑓𝑛 = 𝑓𝑑 ⋅ √1 − ζ2 
 
Therefore, in order to obtain the natural frequency 𝑓𝑛, it is necessary to calculate the 
damping ratio ζ. 
 
Obviously, this curve is just an example, i.e. the values present must not be considered 
as real values obtained from a flight test on board an aircraft. 
 
Moreover, it is possible to calculate the damping ratio ζ in different ways: the simplest 
one is to use the Logarithmic Decrement method which exploits the knowledge of the 
amplitudes of two peaks to finally obtain a damping ratio value. This method can be 
used only for an underdamped system (ζ <  1) and it becomes less and less precise for 
0.5 <  ζ <  1 [26]. 
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Analyzing the time response of an underdamped vibration it is possible to calculate the 
logarithmic decrement δ that represents the reduction rate of the amplitude of a free 
dumped oscillation. 
 

 
Figure 55:  Time response of an underdamped oscillation 

 
δ is equal to the natural logarithm of the ratio of any two successive amplitudes. 
Considering the time response of an underdamped vibration 𝑥(𝑡) it is possible to 
obtain, after some steps, a formula for the logarithmic decrement δ: 
 

𝑥(𝑡) = 𝐴𝑒−ζω𝑛𝑡𝑐𝑜𝑠(ω𝑑𝑡 − ϕ) 
 
where ω𝑛 = 2π ⋅ 𝑓𝑛 is the natural pulsation, ζ is the damping ratio and                     

ω𝑑 = ω𝑛 ⋅ √1 − ζ2 is the natural damped pulsation. 
 
Considering two instants time 𝑡1 and 𝑡2, the relative amplitudes are: 
 

𝑋1 = 𝐴𝑒−ζω𝑛𝑡1        𝑋2 = 𝐴𝑒
−ζω𝑛𝑡2 = 𝐴𝑒−ζω𝑛(𝑡1+𝑇𝑑) 

 
The ratio between these two amplitudes is: 
 

𝑋1
𝑋2
=

𝐴𝑒−ζω𝑛𝑡1

𝐴𝑒−ζω𝑛(𝑡1+𝑇𝑑)
= 𝑒ζω𝑛𝑇𝑑 

 
Therefore, the logarithmic decrement δ is by definition: 
 

δ = ln
𝑋1
𝑋2
= ζω𝑛𝑇𝑑 = ζω𝑛

2 ⋅ π

ω𝑛√1 − ζ2
=
2 ⋅ π ⋅ ζ

√1 − ζ2
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Finally, it is possible to calculate the damping ratio ζ reversing the previous formula: 
 

• If ζ ≪ 1 ( ζ < 0.1 ): 

ζ =
δ

2 ⋅ π
 

 

• If ζ > 0.1: 

ζ =
δ

√4 ⋅ π2 + δ2
 

 
The same procedure can be performed considering any pair of amplitude values, e.g. 
𝑋1 and 𝑋𝑁+1. 
In this case the second amplitude used is: 
 

𝑋𝑁+1 = 𝐴𝑒−ζω𝑛(𝑡1+𝑁⋅𝑇𝑑) 
 
The amplitude ratio is: 
 

𝑋1
𝑋𝑁+1

=
𝐴𝑒−ζω𝑛𝑡1

𝐴𝑒−ζω𝑛(𝑡1+𝑁⋅𝑇𝑑)
= 𝑒ζω𝑛𝑁𝑇𝑑 

 
and the natural logarithm of this ratio is: 
 

ln
𝑋1
𝑋𝑁+1

= 𝑁 ⋅ (ζω𝑛𝑇𝑑) = 𝑁 ⋅ δ 

Therefore, the logarithmic decrement δ is equal to: 
 

𝛿 =
1

𝑁
ln

𝑋1
𝑋𝑁+1

 

This is a general formula to calculate δ [27]. 
 
Using the Logarithmic Decrement Method in the previous case it is possible to obtain 
the damping ratio ζ: 
 

δ = ln
4.288

2.282
= 0.63 

 
 

ζ =
δ

√4 ⋅ π2 + δ2
=

0.63

√4 ⋅ π2 + 0.632
= 0.1   ⇒    𝑓𝑛 =

𝑓𝑑

√1 − ζ2
= 0.25 𝐻𝑧 
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There are also other methods to calculate the damping ratio ζ, e.g. it is possible to 
obtain it in an iterative way finding a decreasing exponential curve that envelops the 
response. 
This exponential curve is of the following type: 
 

f(𝑡) = A ⋅ 𝑒−ζω𝑛𝑡 = 𝐴 ⋅ 𝑒
−ζ⋅

2π𝑓𝑑
√1−ζ2

𝑡

 
 
and this curve passes through each peak of the response [28]. 
 
However, in this function there are two unknowns: 
 

- Damping ratio ζ; 
- Maximum amplitude 𝐴. 

 
The problem of the 2nd unknown can be easily fixed considering the value of the 1st 
peak and the time when it occurs: from figure 53 can be noticed that 𝑦 =  4.288 and 
tymax = 0.91 𝑠. 

Therefore, the exponential curve can be rewritten in this way: 
 

𝑓(𝑡 + 𝑡𝑦𝑚𝑎𝑥) = 4.288 ⋅ 𝑒
−ζ

2π𝑓𝑑
√1−ζ2

⋅(𝑡+𝑡𝑦𝑚𝑎𝑥)

 

 
Finally, using 𝑓𝑑 = 0.248 𝐻𝑧 (calculated previously) and ζ =  0.1, it is possible to 
obtain the correct decreasing exponential curve: 

 
Figure 56:  Decreasing Exponential curve 
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Finally, the undamped natural frequency can be calculated: 
 

𝑓𝑛 =
𝑓𝑑

√1 − ζ2
= 0.25 𝐻𝑧 

 
Another method to calculate both ω𝑛 and ζ is to use the Least Squares Method to find 
the function that fits the set of data saved in the .xlsx file and that has the following 
kind of equation: 
 

f(𝑡) = 𝐹∞ + A ⋅ 𝑒
−ζ⋅2π⋅𝑓𝑛 ⋅ 𝑐os (2π ⋅ 𝑓𝑛 ⋅ √1 − ζ

2 ⋅ t + ϕ) 

 
 
where 𝐹∞ is the steady state value of the function. 
 
Once the equation of the function in this form is obtained, it is possible to derive 
immediately the natural frequency 𝑓𝑛 and the damping ratio ζ. 
 
 
The following MATLAB script [29] can be used to obtain them, considering the first 
1000 values of the dataset: 
 

 
time = tbl.VarName1; 
signal = tbl.VarName6; 

  
y = signal(1:1000, 1); 
x = time(1:1000, 1); 

  
yu = max(y); 
yl = min(y); 
yr = (yu-yl);                             % Range of ‘y’ 
yz = y-yu+(yr/2); 
zx = x(yz .* circshift(yz,[1 0]) <= 0);   % Find zero-

crossings 
per = 2*mean(diff(zx));                   % Estimate period 
ym = mean(y);                             % Estimate offset 

 
% Function to fit 
fit = @(b,x)  b(1).*(cos(2*pi*x./b(2) + 2*pi/b(3))) .* 

exp(b(4).*x) + b(5);      

 
% Sum-squared-error cost function 
fcn = @(b) sum((fit(b,x) - y).^2);       
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% Minimise Least-Squares                                         
s = fminsearch(fcn, [yr;  per;  -1;  -1;  ym], options)  

                                  
xp = linspace(min(x),max(x)); 

  
figure(1) 
plot(x,y,'b', 'LineWidth',1) 
hold on 
plot(xp,fit(s,xp), '--r', 'LineWidth',1.25) 
hold off 
grid 
text(5, 3, sprintf('%.2f\\cdot cos(2\\cdot \\pi\\cdot 

%.4f\\cdot x%+.2f\\cdot 2\\cdot\\pi)\\cdot e^{%.4f\\cdot x} 

+ %.2f', s(1),1/s(2),1/s(3),s(4),s(5))) 

 
legend('Data', 'Regression') 
 

 
The final figure obtained is the following, in which the equation of the curve obtained 
through the curve fitting is also transcribed: 

 
Figure 57:  Curve fitting 
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Therefore: 
 

{
𝑓𝑛 ⋅ √1 − ζ2 = 0.2487

ζ ⋅ 2π ⋅ 𝑓𝑛 = 0.1571
 

 

⇒     
𝑓𝑛 = 0.25 𝐻𝑧

𝜁 =  0.1
 

 
 
 

6.6 2nd Application conclusions 

 
Using one of these three simple methods it is therefore possible to obtain a fairly 
realistic information about the dynamic characteristics of natural frequency 𝑓𝑛 and 
damping ratio ζ of each periodic dynamic mode. 
 
This information can also be used to predict or not the use of a particular flight control 
system necessary to make these values acceptable, i.e. in such a way that they comply 
with both the Regulations and the requirements. 
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7 Conclusions 

 
In the two previous applications two different C++ codes were therefore used: these 
codes must then be subjected to appropriate validation and certification tests in 
accordance with the current regulations in the software field. 
 
Finally, it will be necessary to decide which hardware to use to view the windows 
created by the software. 
 
There are two main possibilities: 

• use an external screen properly connected with the Odroid; 

• use a computer screen, which in turn replaces the Odroid. 
 
In fact, there may be the need to use a computer instead of the Odroid if the 
computing power of the latter is not sufficient to perform the various data acquisition 
and processing cycles with an appropriate frequency. 
 
However, both choices are very valid: the laptop allows to use a single device to 
perform calculations and to display information. The Odroid and an external monitor, 
instead, allow, respectively, to perform the various calculations and display the 
information. 
 
An external monitor that could be used is the Beetronics Full-HD Monitor 15’’: 
 

 
Figure 58:  Beetronics Full-HD Monitor 15'' [30] 

The Odroid can be connected to the monitor using an HDMI cable. 
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The new Flight Test Instrumentation (FTI) allows both to have a greater quantity of 
information than the previous one, and to carry out various operations in real time 
directly using the graphic interface created. It is also easier and more intuitive to use. 
  



87 
 

References 
 

[1

]  

EASA, April 2018. [Online]. Available: 

https://www.easa.europa.eu/sites/default/files/dfu/FTOM%20Guide.pdf. 

[2

]  

«Wikipedia,» [Online]. Available: https://en.wikipedia.org/wiki/Flight_test. 

[3

]  

EASA, [Online]. Available: 

https://www.easa.europa.eu/sites/default/files/dfu/Annex%20to%20EDD%202015-

026-R.pdf. 

[4

]  

EASA, 4 September 2013. [Online]. Available: 

https://www.easa.europa.eu/sites/default/files/dfu/Presentation%204%20-

%20Flight%20test%20organisation.pdf. 

[5

]  

PCB Piezotronic, "General Signal Conditioning Guide". 

[6

]  

https://en.wikipedia.org/wiki/Software_development_kit. 

[7

]  

Brüel & Kjær, 20 11 2013. [Online]. Available: 

http://pcfarina.eng.unipr.it/Public/Standing-Wave/bruel_2013-11-20.pdf. 

[8

]  

Hard Kernel, [Online]. Available: https://www.hardkernel.com/shop/odroid-n2-

with-4gbyte-ram/. 

[9

]  

Matrix Vision, [Online]. Available: https://www.matrix-vision.com/serie-di-

telecamere-industriali-compatte-usb3-vision-mvbluefox3-m2.html. 

[1

0]  

Advanced Navigation, [Online]. Available: 

https://www.advancednavigation.com/product/spatial. 

[1

1]  

D. L. Buglio, «La trasformata veloce di Fourier (FFT): analisi e implementazione in 

C++,» Milano, 2015. 

[1 «Wolfram MathWorld,» [Online]. Available: 



88 
 

2]  https://mathworld.wolfram.com/Danielson-LanczosLemma.html. 

[1

3]  

[Online]. Available: https://en.wikipedia.org/wiki/Stability_derivatives. 

[1

4]  

O. S. N. Ranjan Ganguli. [Online]. Available: 

https://www.researchgate.net/publication/28603906_Rotorcraft_Parameter_Identi

fication_from_Real_Time_Flight_Data. 

[1

5]  

[Online]. Available: https://en.wikipedia.org/wiki/Six_degrees_of_freedom. 

[1

6]  

[Online]. Available: https://en.wikipedia.org/wiki/Helicopter_rotor. 

[1

7]  

NASA, 1973. [Online]. Available: 

https://www.nasa.gov/centers/dryden/pdf/87847main_H-806.pdf. 

[1

8]  

L. C. S. G. Ronaldo Vieira Cruz. [Online]. Available: 

http://downloads.hindawi.com/journals/mpe/2010/231594.pdf. 

[1

9]  

«Rotor & Wind International,» [Online]. Available: 

https://www.rotorandwing.com/2018/01/12/ray-prouty-archives-parameter-

identification/. 

[2

0]  

J. S. Bendat and A. G. Piersol, Measurement and Analysis of Random Data, John 

Wiley & Sons, New York, 2000.  

[2

1]  

[Online]. Available: 

https://www.researchgate.net/publication/260944785_Applications_of_Parameter

_Estimation_Methods_in_Helicopter_Identification. 

[2

2]  

M. P. A. Q. Giorgio Guglieri, Meccanica del volo dell'elicottero, Milano: Società 

Editrice Esculapio, 2018.  

[2

3]  

A. Navigation. [Online]. Available: 

https://www.advancednavigation.com/product/spatial. 

[2 Advanced Navigation, [Online]. Available: 



89 
 

4]  https://www.advancednavigation.com/sites/default/files/product_documents/Spat

ial%20Reference%20Manual%20v4.4_0.pdf. 

[2

5]  

«HWRELOAD,» [Online]. Available: https://forum.hwreload.it/threads/cos%C3%A8-

un-vrm-a-cosa-serve-come-funziona.2160/page-2. 

[2

6]  

«Wikipedia,» [Online]. Available: 

https://en.wikipedia.org/wiki/Logarithmic_decrement. 

[2

7]  

«andrew.cmu.edu,» [Online]. Available: https://www.andrew.cmu.edu/course/24-

352/Handouts/logdecrement.pdf. 

[2

8]  

«MathWorks,» 13th September 2018. [Online]. Available: 

https://it.mathworks.com/matlabcentral/answers/418825-damping-factor-and-

natural-frequency-out-of-time-response-data. 

[2

9]  

«MathWorks,» 8 July 2018. [Online]. Available: 

https://it.mathworks.com/matlabcentral/answers/265375-damped-cosine-wave-

fitting. 

[3

0]  

Beetronics, [Online]. Available: https://www.beetronics.it/monitor-led-ips-15-

pollici-metallo. 

 

 


	1 Flight Test
	1.1 Introduction
	1.2 Flight Test Categories
	1.3 Flight Test Data

	2 Requirements
	3 Flight Test Instrumentation (FTI)
	3.1 Data and Sensors
	3.2 Charge Output Sensors
	3.3 ICP® Sensors
	3.4 What is an oscilloscope
	3.5 Signal Conditioner or Oscilloscope IEPE
	3.6 Software Development Kit (SDK)
	3.7 Basic Instrumentation used

	4 1st Application
	4.1 First test: PCB USB Signal Conditioner
	4.2 Second test: Odroid, blueFOX3 camera & Spatial
	4.3 1st Application Implementation
	4.4 Implementation of buttons on the screen
	4.5 Fast Fourier Transform (FFT)
	4.6 Sampling Time and Sampling Rate: Signal Acquisition
	4.7 Fourier Transform Discretization
	4.8 Cooley-Tukey FFT algorithm
	4.9 FFT C++ code validation
	4.10 1st Application Conclusions

	5 Parameter Identification
	6 2nd Application
	6.1 Dynamic Stability
	6.1.1 Longitudinal plane
	6.1.2 Lateral-directional plane

	6.2 2nd Application Implementation
	6.3 Spatial Manager
	6.4 Packet Summary
	6.5 Damping Ratio and Natural Frequency
	6.6 2nd Application conclusions

	7 Conclusions
	References

