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CHAPTER 1 

INTRODUCTION 
 

1.1 Smart Materials Property Overview 
Smart materials are a new generation of materials with the general feature that environmental 
changing conditions can significantly influence their material properties. These materials can adapt 
to different stimuli, such as temperature, electrical and magnetic field, chemicals, pressure, and 
loads. The modification obtained of stiffness, damping, or shape of the smart materials can provide 
multiple functionalities of the material or its structure.  

These materials are widely used for civil, mechanical, aerospace, mechatronics, biomedical, and 
energetic purposes because they can detect changes in the environment (using them as sensors), or 
be controlled by modifying some outside conditions (using them as actuators). 

Smart materials can be classified in three different way: 

1) Type of material response: it can be active or passive 
2) Modifications obtained: geometrical or chemical-physical 
3) Type of magnetic field involved: electrical, thermal, or magnetic 

 

In this dissertation, piezoelectric smart materials will be used and studied to develop an analytical 
framework to understand embedded sensors and energy harvesting devices' behavior. They will be 
embedded because the embedding will protect them from harsh environments. 

 

 

1.1.1     Piezoelectric Material Properties 

Piezoelectricity is the properties of some particular materials to convert mechanical stress or strain 
into electrical energy due to the crystal lattice's polarization and, at the same time, if they are 
exposed to an electrical field, they are affected by elastic deformation.  
Piezoelectricity has two different properties: 
 

1. Direct piezoelectric effect: the application of mechanical forces to the material is converted 
into electrical potential, so there is a voltage output from the material. 

2. Inverse piezoelectric effect: applying an external electric field to the material produces a 
reorganization of the crystal inside the piezoelectric material that becomes an elastic 
deformation. 
 

So, the process itself is reversible. 
These type of materials are ruled by two costitutive equations 
 
                  1.1 
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                     1.2 
 
 
Where    is the electric displacement,     is the permittivity of the material,           are the electrical field, 
     represents the direct piezoelectric and             are the mechanical stress, and       is the mechanical 
compliance. 
 
In order to better understand the piezoelectricity effect, it is necessary to understand the concept of 
dielectric materials. Piezoelectric materials, such as quartz, are a particular type of anisotropic 
dielectrics materials. These type of material don't have a cristal symmetric center, and when they 
are exposed to an electrical field or are loaded with other methods, the electrical dipoles appear (an 
electro-neutral unit of volume made by two opposite and equal charges separated by a finite 
distance), and they align with it making the reticular crystal asymmetric. This mechanism's results 
are the polarization of the material, which is the total moment dipole for a unit of volume.  
 
 
 

  
 

 
   
 

  
1.3 

 
 
The other type of piezoelectric materials (e.g. quartz) are pyroelectric (e.g. ZnO), and ferroelectric 
(e.g.PZT, PMN-PT, PVDF). 
Pyroelectricity is a property that some materials have, and it is a subcategory of the piezoelectric 
materials. This property allows the material to change their polarization if heat sources are applied 
to it or vice-versa. 
 
The last subcategory of materials that are considered piezoelectric is the one that will be studied and 
used in this work, the ferroelectric materials.  
These materials are crystal with a high dielectric constant that allows them to hold their polarization 
even after the electric field is removed.  
The main characteristic of these class of materials are: 
 

1. The presence of a hysteresis circle polarization-electrical field. 
2. Residual polarization also without an electrical field. 
3. After a specific temperature T_c (Curie temperature), they become paraelectric materials. 
4. After one particular point, they present saturation of the polarization. Even if a huger 

electrical field is applied, the polarization will not increase 
5. They present Weiss domains in different directions. 
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1.1.2     UAM Process Overview 
 

The Ultrasonic consolidation is an innovative technology patented by Dawn White in 1999. Solidica 
Inc commercialized it, and now, this technology belongs to Fabrisonic Inc. 

Ultrasonic consolidation (UC), also known as Ultrasonic Additive Manufacturing (UAM), is an 
emerging solid-state technique that allows the formation of three-dimensional objects by 
ultrasonically joining, layer by layer, foils of similar and dissimilar metals for embedded objects, to 
form a solid part.  It mainly differs from other technologies because it creates a joining without 
melting between two metals, and it works with low temperatures. 

The main advantage of this technology are:  

 An atmosphere control is not required  during the process. 

  Due to the low temperature of the process, less energy is required. 

  Distortion and residual stresses are reduced because of the micro-friction process. 

  Uniform composition without adhesive or fillers, integration of a wide variety of 
components, such as fibers and electronics, into a solid-state matrix. 

Although these advantages, the UC operation shows critical welding failure issues as the height of 
the built feature increases and is related to the tape walking. As shown in the figure--, the walking 
problem could be a severe problem. The tape can move during the bonding process with the 
component's loss, but the reasons for this problem are not bright yet. 
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Figure 1: Walked Alluminum tape detail 

Regarding the height of the structure, there is the "height to width ratio problem" (Robinson, Zhang, 
and Ram 2006). When the width of the structure is almost its height feature, bonding failure occurs, 
height feature, bonding failure occurs. 

In order to understand this work, a comprehensive understanding of the welding process, the 
machine, and the bonding process is required. 

Figure -- shows an overview of the UC process. The UAM process begins with the placement of a 
layer of a thin metal foil on a sacrificial baseplate. Then the vibrations generated by the 
piezoelectric device, which vibrates at a frequency of 20 kHz with an amplitude range between 5 
and 40 um, are transmitted by a circular rolling Sonotrode, which is pressed against the foil with a 
load from 50 to 1600 N. The transverse motion imparted to the top of the tape creates a friction 
action between the baseplate and the foil. This action induces a motion between the foil and the 
baseplate to shear surface asperities and disperses surface oxides. The high-frequency transverse 
vibration results in a shear deformation between the baseplate and the foil. This process induces 
grain growth and dynamic recrystallization across the surface that ends with micro welds at the 
bonding interface.  

When the bonding of a layer is completed, additional layers are deposited to create a substrate and 
welded with the same procedure. After a layer deposition is welded, the subtractive step, with a 
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computer numerical control (CNC) milling machining, is started. The CNC milling head is used to 
shape the deposition in order to produce a 3D metal structure. This whole process is repeated until 
the desired dimensions of the structure are reached. 

Along with selective laser sintering (SLS), an additive manufacturing process that allows to sinter 
powder creating 3D objects, UAM is one mechanism to embed smart materials in structures. The 
UAM technique was chosen because of his particular characteristic that allows embedding smart 
materials at room temperature and doesn't affect the embedded material. 

 

1.2     Thesis Objective 

The objective of this chapter is to explain the concept of this work and his development. 

This dissertation has given an analytical framework that allows to understand what can happen if  a 
piezoelectric sensor is inside of a beam and how the position, length, and thickness can impact the 
beam's behavior on different aspects and the harvested electrical power. 

 

1.3     Thesis Outline 

The manuscript is organized as follows: 

Chapter one:  A brief overview on UAM (ultrasonic additive manufacturing) process and an 
introduction of the piezoelectric materials  properties followed by the research motivation and 
objective. 

Chapter two: A review of all the relevant literature that allows the realization of this dissertation. 

Chapter three: An analytical study of the governing equations of motion and electrical behavior of 
an Al3003/PVDF/Al3003 beam and an analytical analysis of the free vibration problem.. 

Chapter four: A dynamic study of the structure considered in chapter three followed by a 
description of the FEA model used to validate the analytical analysis done 

Chapter five: A parametric 3D analysis based on the variation of geometric properties of  the 
piezoelectric material considerate and the variation  of the resistance of the equivalent circuit 
considered  is presented in order to understand how the variation of these variables affect the beam 
behavior. 

Chapter six: Provides results and suggested direction for future works  
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CHAPTER 2 

LITERATURE REVIEW 
In this chapter, a literature review of energy harvesting and stepped beam analysis has been 
presented.  

Piezoelectric materials were used and studied in many ways due to their low cost, versatility, and 
capacity to transform energy from the external system and transform it into electrical power. 
Researchers have used many methods and several types of analysis in order to study, improve, and 
control the harvesting process. Tiersten [23], in his work, deeply studied a way to use Hamilton's 
principle to describe the piezoelectric physical effect mathematically valid for a linear piezoelectric 
material, using the variational principle. This principle was used to obtain approximated boundary 
conditions and governing equations that can be solved precisely. Henry A. Soldano, Daniel J. 
Inman, and Gyuhae Park [11],  and  Rames Chandra and Inderjit Choprat [] showed and described 
the various harvesting power effect, their behavior, and their applications as sensors and actuators in 
different structures such as beams and plates. To be exact, Henry A. Soldano, Daniel J. Inman, and 
Gyuhae Park [12] made a review on the power harvesting of the piezoelectric devices describing the 
fundamentals of this process, the efficiency of this phenomena, and every aspect related to it such as 
the storage mechanism and the circuitry related and the damping effect of the power harvesting.  

Many investigation were made to optimize the location on a surface of a piezoelectric material in a 
smart structure and control specific natural behavior of the beam, Crawley and de Luis [5] focused 
on using the piezoelectric materials as actuators in intelligent structures. These authors developed 
static and dynamic analytical models. Then, they bonded piezoelectric materials to a substructure 
and in laminated structures to show the effectiveness of this materials actuator. Then, they found the 
position to maximize the moments and the modal forces of a system, Barboni et al. [2], Ip and Tse 
[14] Quek et al. [21] found the optimal length position to maximize the deflection of the structure. 
Barboni et al. [2] found that a criterion that allows finding the best length position for actuators 
could be the dynamic deflection in the case of a cantilever beam. This method will enable them to 
understand that the optimal placement is placed between two consecutive points on the beam, where 
the curvature is equal to zero. Ip and Tse [14] discovered that it would obtain the maximum 
efficiency if the sensor is placed at the antinodes of the fourth and the fifth nodes modes, while 
Quek et al. [] worked on the study of a sensor that can control the first and the second modes of the 
normal modes simultaneously. Wang and Wang [24], and 'Peng et al.[16] found the position to 
maximize the controllability degree, and Moheimani and Ryall [18] Maximized the degree of the 
modal controllability. 

As regards the stepped beam analysis, D.C.D. Oguamanam and J.S. Hansen [6] and Francesco 
Danzi, and James Gibert [9] worked on an analytical study of an Euler-Bernoulli stepped beam whit 
a piezoelectric element for harvesting and sensing purposes. Oguamanam [6] studied a stepped 
beam structure with an arbitrary angle between the two sections of the beams and a tip mass at the 
end of the second part. The authors presented a complete and detailed analytical study focusing on 
the governing equation of the motion, free vibration analysis, and the orthogonality condition of this 
type of structure. On the other hand, Danzi [9] studied an angle-shaped resonator composed of two 
beams attached with different angle configurations. The writers focused on the mathematical 
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derivation for the system's dynamic and the electro-mechanical equation that rules the angle-shaped 
resonator's motion and compared the analytical solution founded with a  semi-analytical solution 
using a FEA model. 

Reviewing the literature founds that nobody studied what would happen using a single eccentric 
layer of PVDF and the optimal parameters that allows to find the optimal harvesting power output 
related to them. In the next sections an analytical study of a cantilever stepped beam with a 
piezoelectric embedded layer will be showed. 
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CHAPTER 3  

MODAL FREQUENCIES AND SHAPES 
In this chapter an analytical framework is developed  for modelling an Euler Bernoulli beam with 
an embedded piezoelectric element. The goal is to determine the modal frequencies and modal 
shapes that can used in the Chapter 4  to develop analytical solutions to the forced vibration 
analysis. The beam is multifunctional in that the embedded element can be used a sensor, energy 
harvester or as a means to control unwanted oscillations or a large amplitude response. 

The chapter begins by presenting the assumptions that were made during the formulation of the 
framework, the derivation of the motion equations of the beam, and the determination of the modal 
shapes and frequencies of the system.  A linear constitutive relationship for both the piezoelectric 
and structural elements was used, and the whole structure was considered as an isotropic material.  
The  Extended Hamilton's principle along with Kirchhoff’s Voltage Law are used  to derive the 

differential equations that govern the electrical and the mechanical behaviour of this structure. 

3.1 Electromechanical Euler-Bernoulli Model with Embedded 
Element 

Figure 2 depicts the model considered for this analysis. This system is composed of a  metal with a 
an embedded piezoelectric element placed near the base of the beam and can be modelled as two  
separate beams, a composite connected to a homogenous  beam. The first  beam’s origin is at the 

base and extends to the end of the piezoelectric element.  The section has  length l, modulus   , 
width b, height      , and a mass density   . The latter starts from the end of the first beam to 
the end of the entire structure and has length L, modulus   , width b, height        

 
, and mass 

density   . Similarly, the piezoelectric element embedded in the structure has length l, modulus   , 
width b, height     and density    electromechanical coupling constant     and permittivity    .  

In  Euler-Bernoulli beam or thin beam theory, the cross-section of the beam is not affected by 
deformation under transverse or axial load.   Additionally, the cross-section of the beam remains 
normal and planar with respect to the deformed axis of the beam during the deformation. This is 
shown in Figure 2 by the lack of distortion in line segments BA and CD after bending to yield  
            .  It is important to note that neutral axis varies along the length of the  beam. Note 
that  two materials cause the first beam’s  neutral axis to be shifted from the beam's geometric 

center. The position can be obtained using axial equilibrium and assuming the strain is continuous 
across the cross section of the beam while the stress is discontinuous. The resulting location of the 
neutral axis can be written as 

    
     

    
       

                        

                
  (3.1)  

for the first beam and Zn=h/2 for the second beam.  Note that the analysis of the system requires two 
fixed coordinate systems X1-Y1 and X2-Y2. Using the assumption that the beam is thin, then the axial 
strain of this structure can be expressed as 
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                   (3.2)  

 where xi is the scalar in the respective fixed coordinate system and the variable z represents the 

distance from the point of interest to the neutral axis and  
       

   
   is the second derivative of the 

deformation in each beam section or approximately 1/Ri, where Ri is the radius of curvature in a 
respective section. 

The bending stress in the beam and the piezoelectric layer can be written as 

                                     (3.3)  

where     is the coupling constant and     is the electric field that is generated across the 
piezoelectric element in the three material direction. The z components can be written as 

     
    

          
             

 
(3.4)  

The final equation is  Ohm’s law and  states that the current (Q) flowing across a resistor (R) is 
proportional  to the voltage (    )  across the resistor 

        . (3.5)  

The total displacement for the first beam can be written as 

                        (3.6)  
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Figure 2: Displacement field for an Euler-Bernoulli beam with an embedded piezoelectric element, 
shown in gray. 

where             denotes the transverse deflection of the first beam and       represents the 
transverse motion of the beam relative to the base. Furthermore, the displacement for the second 
beam can be written as  

                                               
 (3.7)  
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The Hamilton's principle was used to obtain the coupled electromechanical behavior of the whole 
beam by integrating the Lagrangian over time 

 
  

  

  

                  
  

  

    (3.8)  

where the time    and    are arbitrary, T the kinetic energy, U the potential energy,    the electrical 
work and     the work done by the nonconservative forces. In the sections that follow the 
Lagrangian will be split into two parts and variational calculus will be used to derive the governing 
equations, continuity equations, and boundary conditions.  

3.1.1 Energy Expressions 

Calculating the energy of the beam, one must t account for the change in material in the cross 
section of the composite beam from  metal to  piezoelectric element and back to metal. The  kinetic 
energy in the first beam can be written in the following form 

 
  

 

 
      

   

  
 
 

       

     

   

 
 

 
 
 

 

 

 
 

 
      

   

  
 
 

       

        

     

 
 

 
 
 

 

 

 
 

 
      

   

  
 
 

       

           

        

 
 

 
 
 

 

 

               

(3.9)  

Integrating Eqn. (3.9)  allows the kinetic energy can be simplified as 

  

  
 

 
        

   

  
 
 

   

 

 

     (3.10)  

where        represents the beam mass per unit of length and is equal to                    . 

Similarly, the strain energy can be written as 

 
  

 

 
               

 

 
              

        

     

 
 

 
 
 

 

 

     

   

 
 

 
 
 

 

 

 
 

 
              

           

        

 
 

 
 
 

 

 

            
(3.11)  

Integrating Eqn. (3.11),  the potential  energy can be simplified as 
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(3.12)  

The flexural rigidity        and  first moment of arear    are  defined as 

  
         

  

 
   

     
       

                 
          

3 1  2+3 22 3+  2 32 6 2 3  + 33  32  + 3  2b+ 
  

 
    

         
            

     
         

  b, 
 
 

(3.13)  

and 

  
     

 

 
            . 

 
 

(3.14)  

The electrical  potential energy can be written as 

  

                    
        

     

 
 

 
 
 

 

 

 

 

(3.15)  

where the electrical displacement D is 

  
              (3.16)  

 

Plugging Eqn. (3.16) into Eqn.        the electrical potential can be simplified as 

  

   
 

 
    

               

     
     

       

   
      

 

 
    

   

     
      

 

 

 

 

 

 

(3.17)  

The nonconservative work equation can be written as 

 
       , (3.18)  

The variational equations should be obtained from the kinetic energy, the mechanical potential, the 
electrical potential, and the work done by nonconservative forces. 
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 The variation of the kinetic energy of the first beam can be written as 

 
               

 

 

 
             

   
            

  

  

  

  

 
    

   
                                  

(3.19)  

 

Using  integration by parts the variation of the strain energy of  the first beam can be written as: 

 
     

  

  

          
             

    
               

 

 

  

  

        
             

    
             

 

 

        
             

    
  

            

   
  

 

 

 
 

 
       

 

 

 
             

   
         

 
 

 
             

            

   
  

 

 
      

(3.20)  

 

The electrical potential energy of the first beam can be written as 

 
      

  

  

   
 

 
        

       

    
         

 

 

  

  

 
 

 
             

      

   
  

 

 
 
 

 
    

 

  
        

 

 

     

 

(3.21)  

 

Finally, the nonconservative work of the first beam  can be written as 

 
              

  

  

  

  

  (3.22)  

Similar to the analysis for the first beam, the kinetic energy of the second beam can be expressed as 

 
  

 

 
      

  

  
  

  

  
         

 
 

 
 
 

 
 

 
 
 

 

 

 

 

(3.23)  

    While the strain energy of the second beam can be written as  

  

   
 

 
         

             

    
 

 

   

 

 

 
(3.24)  
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where the constant          is equal to     
       . 

The variation in kinetic energy can be written as 

  

     
  

  

              
             

   
 
            

   
 
       

   

  

  

 

 

   
              

   
 

             

   
            

   
 
             

   
 
       

   

   
            

   
            

   
             

   
 
            

   
 
       

   

   
          

   
 

       
             

(3.25)  

 

The variation in  strain energy can be written as 

  

     
  

  

            
             

    
         

 

 

  

  

         
             

    
             

 

 

         
             

    
  

            

   
  

 

 
      

 

(3.26)  
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3.2 Governing Equations and Boundary Conditions 

Grouping the  similar variational terms under the integrand and at the boundaries yields the 
following equations of motion. 

       

       

   
       

       

   
            

            (3.27)  

 

 
       

       

   
 
            

   
 
       

   
   

            

      
  

       
       

   
     

(3.28)  

 

    
       

   
 

 

 

  
  

  
      (3.29)  

Eqn. (3.27) and Eqn. (3.28) describes the  mechanical governing equation, while the Eqn. (3.29) is 
the electrical governing equation, the electromechanical coupling is represented by   and is equal to 
       ,    is the capacitance of the piezoelectric element layer and is equal to    

 

  
. The 

boundary conditions can be written as 

             , (3.30)  

 
      

   
         (3.31)  

 
            , (3.32)  

       

   
         

(3.33)  

 
      

            

   
     

(3.34)  

 
      

            

   
     

(3.35)  

and are obtained by grouping that variation at x1 =0 and x2=L. The continuity between the two 

beams can be written as  
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(3.36)  

 

gives the continuity of shear and  

 

       
             

   
       

         
             

   
 
            

   
 
       

   

 

 

   
            

      
         

 

(3.37)  

gives the continuity of moments. 

 

3.3  Free Vibration 

In order to solve the free vibration problem base acceleration is set to zero and the composite beam 
is assumed to be operating under short circuit conditions, i.e., the resistive load approaches zeros.  
This yields the following equations 

           
       

   
            

       

   
     (3.38)  

 

        
       

   
 
            

   
   

            

      
        

       

   
     (3.39)  

 along with comparable changes to the boundary conditions. 

Next, the method of the separation of the variables was used to decompose the displacement of the 
two beams in a temporal (  and   ) and a spatial coordinate (           components in the form 

                                                        (3.40)  

Substituting the definition of             in  Eqn. (3.38)  into Eqn.() leads to the following 
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                                               (3.41)  

where  prime denotes the derivative with respect to the spatial  coordination.  Equation ()  can be 
rearranged as  

 
                

            
 

      

     
        (3.42)  

solutions to         can be expressed as  

                                                        (3.43)  

where                     . 

Substituting into Eqn. () and noting that             and can factored out  of the governing 
equation to yield 

                               
                               (3.44)  

The  solution to Eqn. ()  using the homogenous boundary conditions of the second beam  

 
                                                     

 
    

        
 

(3.45)  

Using the homogenous boundary conditions of the second beam  the solution  can be simplified to  

                                                     
 
    

                      
(3.46)  

where the values of the constants                   is determined by the remaining  boundary 
conditions.  The wave numbers    and    are related by 

 
      

      
  
  

      

      
  
 , (3.47)  

and  corresponding to the same modal  frequencies  . The boundary conditions can be written as 
matrix equation whose entries are function of a single wavenumber, see Eqn. ().  Here we, seek a 
nontrivial solution to this system of equations which can be determined by setting the determinant 
of the matrix to zero.  The matrix entries     are reported in Appendix B. 
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 (3.48)  

 

The determinant of Eqn. (3.48) gives the characteristic equation of this structure. The characteristic  
equation is transcendental and must be solved numerically.  In this case a script was written in 
MATLAB to determine the eigenvalues,    , and the corresponding modal frequencies.   

This chapter has presented the formulation for the equation of motion of an Euler-Bernoulli beam 
with an embedded piezoelectric element.  The analytical model was validated with FEA analysis 
using the commercial code PATRAN. In the next chapter, these results will provide the basis for a 
modal superposition representation of the response of the beam under a base excitation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 
 

CHAPTER 4 

DYNAMIC OF THE Al3003/PVDF/Al3003 STEPPED BEAM 
In this chapter a study of the dynamic of the Al3003/PVDF/Al3003 is developed and then, the FEA 
model, used to prove the analytical results obtained,  is described. 

4.1  Orthogonality  of Normal Modes Eluer-Bernoulli  Model  with  
Embedded Element 
An orthogonality of normal modes condition analysis was necessary in order to solve the Forced 
vibration problem and obtain the results  needed. Since a stepped  beam  analysis was done, two 
orthogonality conditions were studied (the former for the first part of the beam and the latter for the 
second part of  it), and then, to be coherent with the assumptions made,  the solution of both cases 
were added to obtain the orthogonality condition valid for whole model.  

4.1.1 First Part of the Beam 

The orthogonality condition is derived using the boundary conditions               and (3.27), 
(3.28) that represent the mechanical governing equation of the motion of the first beam and the 
electrical governing equation that govern the PVDF sensor layer. 

The eigenvalue problem can be solved considering an harmonic solution, with frequency  : 

 

   

   
       

        

   
     

                
(4.1) 

 

To derive the orthogonality equation the first section of the beam, two eigenvalues    
  and    

  and 
the relatives eigen functions       ,        were considered where i and j represents the modes 
while 1 and 2 represents the beam associaterd. So that: 

 

   

   
       

         

   
      

               
(4.2) 

 

And 

   

   
       

         

   
      

               
(4.3) 
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Can be written. 

Mathematically    
     

   and      
     

  have a different notation because one is referred to the first 
beam and the second one is referred to the second part of the structure, but, physically, the 
frequencies  of the normal modes of these two beams are the same because it is the same structure 
but analyzed  as two different structures. That allows the assumption that: 

 

    
     

          
     

  (4.4) 

 

Multiplying the (4.2) by         and       by        ,  integrating by the length of the beam, 
plugging the boundary conditions and the continuity equations              , and then 
subtracting the two equations resulting from these mathematical operations  allows to write the 
orthogonality condition of the first beam as: 

 

 
    

     
                         

 

 

                               
      

    
                

       
      

      

    
                           

                 

 

 

    
                           

                 

 

 

     
 

 

 

 

(4.5) 
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4.1.2 Second Part of the Beam 

Conforming to the analysis that was done for the first part of the beam, the orthogonality conditions 
is derived using the boundary conditions               and the  equation        that represent 
the mechanical governing equation of the motion of the second part of the beam. 

The eigenvalue problem can be solved considering an harmonic solution, with frequency  : 

 

 
       

  

   
       

        

   
  

   
                    

    
 
         

 

(4.6) 

 

To derive the orthogonality equation the second section of the beam, considering still valid the 
assumption made for       and (4.3). Two eigenvalues    

  and    
  and the relatives eigenfunctions 

      ,        were considered. So that: 
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And 

 
       

  

   
       

         

   
  

     
                      

    
 
          

 

       

 

Can be written 

Multiplying the (4.7) equation by         and       equation by        ,  integrating by the length 
of the beam, plugging the boundary conditions and the continuity equations              , and 
then subtracting the two equations resulting from these mathematical operations allows to write the 
orthogonality condition of the first beam as: 
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4.1.3 Orthogonality of Normal Modes Solution 

Adding equation       with equation        and rearranging, will bring directly to the formulation 
searched : 

    
     

                        
 

 

                                             
      

    
                

       
      

               

    
                                    

 
                  

 
 
 

       

 

      is called orthogonality of the normal modes, where     is the Kronecker delta defined as: 
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4.2.1 Forced Vibration Problem 

In this section, the problem of the forced vibration of a stepped beam is investigated. 

The first and the second subchapters contain the analysis of the forced vibration of the first and the 
second part of the beam, respectively, while the last subchapter contains the equation that governs 
the whole structure. As was done before, the forced vibration equation of the first and the second 
beam were added in order to obtain the equation that governs the structure. Then a passage from the 
modal coordinates to the physical one was done to obtain the real displacement that this beam has 
under a base excitation. 

 

4.2.1.1 First Part of the Beam 

Through the modal analysis approach, the solution of equation        can be written as a a linear 

combination of the beam’s normal modes such as: 

                       
   

 

    

                                                 

Where             is the displacement relatives to the first part of the beam,         represents the 

normal mode found by solving the free vibration problem,    depicts the modal coordinates. 

Plugging        into (3.27) -(3.28)  and then factoring out     , brings to the formulation of the 

governing equations of the first part of the beam for this kind of analysis: 

 
 
 

 
             

                
     

   
           

   

                                    
        

   
     

 

 

        
  
 

  

                             

 

Then multiply the first equation of (4.13)  by         and integrating over the length of the first 
beam, plugging        into the boundary conditions and the continuity equations               
and rearranging, brings to the equation that rules the first part of the beam: 
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4.2.2 Second Part of the Beam 

As was done for the first part of the beam, the governing equation of the motion is given by 

             . Through the modal analysis approach, the solution of equation        can be 

written as a linear combination of the beam’s normal modes such as: 

                 
   

 

    

                                                                        

Where             is the displacement relatives to the second part of the beam,         represents 

the normal mode found by solving the free vibration problem,    depicts the modal coordinates. 

Plugging        into (3.29) , and Factoring out     , it brings to the formulation of the forced 

vibration governing equations for  the second  part of the beam: 
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Then, multiply (4.16 ) by         and integrating over the length of the second beam, plugging the 
result of the previous passage into the boundary conditions and the continuity equations        
       and rearranging. It brings to the equation that rules the second part of the beam: 

 
                                              

 
         

 

 

 

           
        

   

        

   
  

 

 

 

        
            

 

 

 

 

 

       

 

4.2.3 Forced Vibration Solution 

 The equation that rules the forced vibration problem of this beam can be found adding        and 
equation       . This passage allows to write the solution equation that governs the forced 
vibration problem as: 
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Noticing that, the first part of        is equal to the orthogonality condition        and assuming 
that i=j, so the Kroekner delta is equal to 1, neglectic the dumping effect, is possible to write 
equation (4.18) and the second equation of        as: 

 

      
                              

 

  

 
   

 

   

           
 

 
   

       

 

 

Where the voltage    is equal to: 

 

 

    

 
      

   
            

 
   

 
 
        

    
 

   
            

 
    

 

       

 

 

 

The modal coordinate    is equal to: 
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And the modal forcing    is : 

 

 
                        

 

 

                        
       

  
       

 

 

  

 

       

 

4.3 FEA Model Description 

In order to validate the analytical work done in this dissertation,  a FEA model, with the PATRAN 
software, was done. 

In Figure 3 is shown the model that was created for this purpose while the material geometries and 
the material properties are shown in the table ... 

 

 

Figure 3: PATRAN model of the cantilever stepped beam with an embedded sensor used for the 
validation, lateral view. 

 

The whole structure was created as the summation of two beams (to be coherent with the analytical 
analysis done in this work). The material's properties and geometries showed in Table 5.1 were 
added to the software, and then a composite material was created  to reproduce the first part of the 
beam. Multiple ways to develop the material could be followed, one of them could be creating three 
3D solid models with different material properties each other, put them one above  the other and 
then, with the program, impose the contact between  them. By the way, a composite model was 
preferred to have a lighter model and a faster NASTRAN software analysis.  



28 
 

After that, the properties were assigned. The composite material Al3003/PVDF/Al3003 with an 
orientation of  0 degrees was assigned to the first beam and the Al3003 to the second beam  both as 
a 2D shell. 

After these operations, the model was mashed with a mesh seed and then an Isomesh. A fixed static 
constraint was then associated with the nodes related to the first part of the beam's extremity 
because of the cantilever beam's assumption.  

An observation should be done. Due to the student version that was used for this model, the mesh 
wasn't extremely tight. The PATRAN student edition limitation imposes a 5000 elements model, at 
least, but the mesh was tight enough to match the results from the MATLAB results for the whole 
analysis so a valid model was obtained. 

 

Table 1: Material Properties and geometries of the analyzed beam 

Property PVDF Al3003 
(First Part of the 

Beam) 

Al 3003 
(Second Part of 

the Beam) 
Young 

modulus                        

Length                      
Width                      

Density           1604.3 0.51% 
Thickness                           

Piezoelectric 
Strain                                  

Constant 
Relative                

Dielectric 
Constant          

 

After this procedure, the model was ready for a normal modes analysis to obtain the normal modes' 
frequency and validate the free vibration solution , but it wasn’t enough to satisfy the requirement 
of the FRF analysis in order to validate the forced vibration problem, so, a non-spatial frequency 
field with the required interval of frequencies and value of  0.987 G was created. This non-spatial 
field was then associated with the fixed constraint and the acceleration in the y-axis direction, and 
which became from static to time-dependent and the dumping value of  0.006 was added to the 
software. 
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Figure 4: PATRAN model of the meshed cantilever stepped beam with an embedded sensor used 
for the validation, with base acceleration and constraints applied on the root. 

 

4.3.1 FEA Model Validation 
To validate the model described in section 4.3, a first analysis of the normal modes of a cantilever 
stepped beam  made only in Al3003 was done. In order to use the same model described in the 
previous chapter,  the PVDF layer was considered equal to zero and it was replaced with a layer of 
Al3003 with the same geometric properties.  

Table 2 shows the results of the pre validation analysis and it can be stated that  the frequency of the 
normal modes are coherent with the results obtained from the analytical model  (it was used the 
model described in the third chapter  with some modification). The analytical model shows higher 
results as the nth frequency of normal modes increase but  the error is below 1%. In addition, the 
shapes of the normal modes obtained from the PATRAN software match with the shapes that was 
obtained from the analytical work done in chapter 3  so the FEA model model can be considerate 
accurate,  reliable and used to compare the results of the analysis made with the PVDF sensor 
embedded. 

 

Table 2: Comparison of modal frequency of the analytical solution and the FEA model for an 
Al3003 stepped beam 

Mode Analytical Result 
[Hz] 

Finite Element 
Analysis [Hz] 

% Error 

1 47.0 47.0 0.01% 
2 294.8 294.4 0.13% 
3 825.4 823.1 0.27% 
4 1617.5 1609 0.51% 
5 2673.8 2651 0.82% 
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Figure 5: Modal shapes of Al3003 stepped  beam: a), c), e), g), i) are analytical mode shapes, and 
b), d), f), h)  and j) are the FEA mode shapes. The red line indicates beam section one and the black 

line indicates beam section two. 

 

After the pre-validation, a validation of the normal modes and the displacement with the effective 
model  (Al3003/PVDF/Al3003)  was done. The results obtained from the analytical analysis are 
shown in the Table () and match accurately with the one obtained with the model presented in this 
dissertation,  note that the models agree closely with the greatest percentage difference is less than 
0.82%. Note that greatest error occurs at mode, the fundamental mode of the analytical mode and 
the FEA model differs by 0.01%. Figure 5 depicts  both the analytical and finite  element mode 
shapes. The modes are normalized by setting            As expected the modes resemble those 
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of a cantilevered beam.  Figure 1 a), c), e), g), i) are analytical mode shapes. The red line indicates 
beam section one and the black line indicates beam section two. Figure 2 b), d), f), h)  and j) are the 
FEA mode shapes. Visually the modal shapes from the two analysis  are indistinguishable.  

The displacement is shown in the Table 2 and also matches with the one obtained from the 
PATRAN model with an error of  3.85%.  

 

Figure 6: Modal shapes of of composite beam: a), c), e), g), i) are analytical mode shapes, and b), 
d), f), h)  and j) are the FEA mode shapes. The red line indicates beam section one and the black 

line indicates beam section two. 
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Table 3: Comparison of modal frequencies of the analytical solution and FEA model. 

Mode Analytical [Hz] Finite Element 
Analysis [Hz] 

% Error 

1 46.6 46.6 0.01% 
2 293.6 293.3 0.13% 
3 823 820.7 0.27% 
4 1612.4 1604.3 0.51% 
5 2665.6 2647.8 0.82% 

 

 

Table 4: Displacement result comparison of the analytical solution and the FEA model, composite 
cantilever Al3003/PVDF/Al3003 beam 

 Analytical [Hz] Finite Element 
Analysis [Hz] 

% Error 

Displacement 
[m]                         
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CHAPTER  5 

ANALYTICAL RESULTS 
In order to understand the behavior and the response of  the cantilever beam and  the harvested 
voltage output under a base excitation, a parametric study with the model depicts in this dissertation 
was done. modifying four different variables is it possible to find the optimum geometry and  
resistance configuration: 

1. PVDF layer length 
2. PVDF layer position 
3. PVDF layer thickness 
4. Young modulus variation 

The dimensions of the beam considerate d for this analysis are shown in table 1 

 

5.1 PVDF Length Variation 
In order to find the optimum length of the PVDF that allows a maximum of the voltage, a 3D 
parametric analysis was run. The parameters that were considered as variables were: 

1. Length of the first part of the beam 
2. The resistance of the equivalent circuit 
3. Voltage output of the piezoelectric material 

As regards the length variation  it was considered an alpha parameter. The length of the first part of 
the beam  (the one with the PVDF layer)  was equal to alpha, while the length of the second one 
was            , then, the Alpha variable was increased from 0 to   (the total length of  the 
whole beam to obtain all the possible response of the structure. The range of the resistance was 
from                      , higher values where not considered because these are non-physically 
possible for  real application  of this structure. 

It is important to notice that the analysis presented in this dissertation was done under the Euler-
Bernoulli theory, so, this results is accurate for alpha that respect the length restriction of the thin 
beam.  When the first part of the beam or the second one is too short, the analysis doesn’t show an 

accurate solution because it breaks the assumptions made. 
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Figure 7: PVDF length 3D analysis variation. X-axis= resistance variation, Y-axis=piezoelectric 
layer’s length, Z-axis= piezoelectric voltage output 

 

Fig. 7  shows the results obtained from the analytical analysis. It is obvious  that the maximum 
voltage output is reached when the first part of the beam's length is equal to the second part. In 
addition, the resistance behavior was as expected, a fast increase until the resistance is equal to     
and then the output value starts to increase slightly. As regards the Frequency of the first normal 
modes is possible to notice, from Fig 8 a minimum value when the length of the first part of the 
beam is equal to the second one so, when the output voltage of the piezoelectric material shows a 
maximum.  

 

Figure 8: PVDF length-frequency of normal modes variation, 2D analysis, first frequency of normal 
modes variation with a fixed resistance of 8e8 [Ohm], X-axis= length of the first part of the beam 

Y-axis=first frequency of normal modes. 



35 
 

 

Figure 9: PVDF length-voltage output variation with fixed resistance of 8e8 detail, 2D analysis, X-
axis:  , Y-axis: piezoelectric material output tension 
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5.2 PVDF Layer Position 
In order to find the optimum position of the PVDF that allows a maximum of the voltage, 
parametric analysis was run with three variables: 

1. Position of the PVDF layer 
2. The resistance of the equivalent circuit 
3. Voltage output of the piezoelectric material 

 

For this analysis, was considered a PVDF layer of 1/8 of the thickness of the beam and a total 
thickness of 0.004m. The PVDF layer was moved from the top of the beam to the middle of  it with 
an increase of  1/20 of the total beam thickness. The piezoelectric material was moved until the 
middle of the beam because of the symmetrical geometry of the structure and  then the symmetrical 
results. 

 

Figure 10: Piezoelectric layer Position variation, 3D analysis, X-axis= resistance variation, Y-
axis=piezoelectric layer’s length, Z-axis= piezoelectric voltage output 

 

As shown in Fig. 10, the optimum of the voltage is found when the PVDF layer is placed on the top 
or on the bottom of the beam, where the strain developed is maximum. As regards the output 
variation between the Y-Z axis, as shown in Fig 13, it is possible to notice that the voltage output 
doesn’t show a linear variation with the variation of the position but the curve is slightly flexed. 
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Figure 11: PVDF layer position-neutral axis variation, 2D analysis, X-axis= PVDF layer position, 
Y-axis=neutral axis position. 

 

The analysis of the variation of the first frequency of the normal modes  and the output tension of 
the piezoelectric material obtained shows, as expected, a symmetry in the results. The shapes of the 
curve shows a minimum when there the voltage output is maximum, at the top or at the bottom of 
the beam. 

 

Figure 12: PVDF position-frequency of normal modes variation, 2D analysis, first frequency of 
normal modes variation with a fixed resistance of 8e8 [Ohm], X-axis= PVDF position [m], Y-

axis=first frequency of normal modes. 
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Figure 13: PVDF position-voltage output variation with fixed resistance of 8e8 [Ohm] detail, 2D 
analysis, X-axis: PVDF layer position, Y-axis: piezoelectric material output tension 

 

6.3 PVDF Layer Thickness 
In order to find the optimum thickness of the PVDF that allows a maximum of the voltage harvesting, a 
parametric analysis was run. The parameters that were considered as variables were: 

1. The thickness of the PVDF layer 
2. The resistance of the equivalent circuit 
3. Voltage output the piezoelectric material 

The parametric analysis started  with a PVDF layer a thickness equal of zero, it increased of 1/25 of the total 
thickness of the beam and ended with a PVDF thickness equal to the thickness of the whole structure. 

 

 

Figure 14: PVDF thickness variation, 3D analysis, X-axis=  resistance variation, Y-axis= 
piezoelectric layer’s thickness, Z-axis=  piezoelectric voltage output 
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Fig 14 depicts the output voltage related to the variation of the resistance and the thickness of the 
PVDF structure. As is shown, the optimum of the voltage is not when the first part of the beam  is 
made with only PVDF but when there is a part of  base material and a part of PVDF. Fig. shows the 
variation of the Neutral axis related to the thickness of the PVDF material 

 

 

Figure 15: PVDF layer thickness-neutral axis variation, 2D analysis, X-axis= PVDF layer 
thickness, Y-axis= neutral axis position. 

 

 
 

Figure 16: PVDF  layer thickness-voltage output variation with fixed resistance of 8e8 detail, 2D 
analysis, X-axis: PVDF layer thickness, Y-axis: piezoelectric material output tension 
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As the 3D analysis showed, is possible to understand that the maximum output voltage is found 
when the thickness of  first part of the beam  is equal to the 0.65% of the total thickness of the beam 

 

5.4 YOUNG Modulus Variation 
To relate the Young modulus of the base material with the Young  modulus of the PVDF it was 
considered that  the young modulus of the base material was equal to the Young modulus of the 
PVDF material  multiplied by a variable that allows to obtain multiple materials based on his value, 
alpha. A 3D  parametric analysis was run to understand the voltage output of the PVDF layer and 
the parameters considered as variables were: 

1. Material Young modulus 
2. Resistance of the equivalent circuit 
3. Voltage output of the piezoelectric material 

Fig. 17  depicts the solution of the analysis .It is possible to notice that the higher output voltage is 
obtained when the base material is softer and,  the output tension decrease fast between alpha 
parameters from 0-7 Fig, then the voltage output decrease too but slower.  

 

Fig. 17: Young modulus- variation, 3D analysis, X-axis=  resistance variation, Y-axis=          

     
,     

Z-axis=  piezoelectric voltage output 
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Figure 18:. Young modulus-neutral axis variation, 2D analysis, X-axis= =          

     
, Y-axis= neutral 

axis position. 

 

As regard the First Frequency of the normal modes, is possible to see  that it increase with the 
young modulus of the base material. That means that harder is the material and higher is the first 
frequency of the normal modes. 

 

Figure 19: Young modulus-frequency of normal modes variation, 2D analysis, first frequency of 
normal modes variation with a fixed resistance of 8e8 [Ohm], X-axis= =          

     
, Y-axis= first 

frequency of normal modes 
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Figure 20: Young modulus-voltage output variation with fixed resistance of 8e8 [Ohm] detail, 2D 
analysis, X-axis:          

     
, Y-axis: piezoelectric material output tension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 
6.1 Summary 
Piezoelectric materials were always used as sensors and actuators because of their cost and the 
capability to convert mechanical stress into electric charge and vice versa. Over the last few years, 
many research types were made to apply this kind of material in wireless technology and low-power 
electronic devices. 

The objective of this work was to develop a model that allows to explore the effect of the position 
of a piezoelectric material embedded into a  cantilever beam related to the harvesting power, to 
understand the behavior of this smart structure under a base vibration, and to find the optimum 
output voltage harvesting power. To this scope, the development of this work was done with three 
steps. The initial stages of the work were spent in the study of the problem and with the analysis of 
the free vibration response of the structure. Once the first part of the work was done, A dynamic 
analysis of the structure was made and then confronted with an FEA model's simulation to validate 
the results. To this end, many FEA models were created to find the most accurate one. 
Conclusively, A parametric analysis was run in order to obtain the different harvested power output 
related to the various configurations of the smart structure. 

In light of the results obtained from this work, the optimal configuration for a beam with an 
embedded piezoelectric material and any material as base material presents the PVDF layer on the 
top/bottom edge of the beam with a length equal to ½ of the total length of the structure and a smart 
material thickness of the 65% of the total height of the beam. Regarding the Elastic material study, 
the harder the base material is, and less is the output voltage harvested from the Piezoelectric layer 
so, it is suggested to use this sensor with a soft base material to harvest the maximum power from 
the smart material.  

For instance, for the beam configuration studied in this dissertation, the optimal output voltage is 
obtained from a PVDF position on the top or the bottom of the beam, a  layer length of 0.16 m (out 
of the total length of 0.32 m), and thickness of 0.0026 m (out of the 0.004 m of the total thickness). 

 

Table 5: Optimal configuration for a beam with a PVDF sensor embedded 

Parameter Optimal 
Configuration 

First part of the 
beam length  

Half of the total 
length of the beam 

Second part of the 
beam length 

Half of the total 
length of the beam 

Embedded 
piezoelectric 

thickness 

65% of the 
total thickness 

of the beam 
Base material 

thickness 
35% of the total 
thickness of the 
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beam 
Resistance of the 
equivalent circuit 8e8 [ohm] 

 

 

6.2 Future Work 
There are several possibilities of work for the future to further this work. The first step in the future 
should be to build the beam and test the framework that has been developed. After that, it can be 
extended the framework to a higher-order beam theory. Furthermore, a non-linear analytical 
analysis model could be studied, and the results could be compared with physical experimentations. 
Another extension could be adding a crack propagation theory, test this structure in a simulation 
environment, and then confront the results. Finally, the same work with a Timoshenko theory could 
be developed to overcome some of the limitations that rule the slender beam. 
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APPENDIX A 

HAMILTONIAN EQUATION 
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APPENDIX B 
COEFFICIENTS OF CONSTRAINTS EQUATIONS 
 
The matrix showed in equation (3.48) denote a system of five equations in 4 unknown variables    
         while, to solve the dynamic problem, it was used the system showed in (B.1), it is 
basically the same system showed in (3.48) but it has one more variable: V. The determinants of 
these two matrix give the characteristic equations. 

 
 

 
 
 
 
 
 
                  

                  

                  

                  

                  

                   
 
 
 
 
 

 
 
 

 
 
  
  
  

  

  

  
 
 

 
 

 

 
 
 

 
 
 
 
 
 
 
  
 
 

 
 

 

 

 
 

(B.1) 

Where the coefficients     are: 
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      (B.31) 

    
  

  
                      

(B.32) 

    
  

  
                      

(B.33) 

      (B.34) 
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APPENDIX C 

CLAMP DESIGN PROCESS 

Motivation 

In order to reduce the walking problem that affects the UAM machine's welding and increase the 
percentage of good welding, some improvement to the UAM machine was necessary. 

As shown in Fig., the clamp equipped to the UAM machine provides two types of force. An axial 
force that prevents the movement and the slipping of the tape during the welding, and a horizontal 
pull that follows the tape's elongation caused by the plastic deformation of the aluminum under the 
normal force and the transversal vibrations provided by the sonotrode. 

In the first part of the developing process, it was considered to substitute the clamp machine device 
of the UAM machine with one tool that clamps the tape with a normal force only, reduces the tape 
walking problem (that often affected our weldings), and increases the welding performances.  After 
different designs and tests, it was realized that substitute the clamp of the machine would be too 
ambitious, so we opted, after the third design, to use the pulling and clamp effect that the machine 
provides but improve in some way to obtain better weldings and, with the last design, it was 
designed a guide for the tape to reduce the walking problem and maintain the welding path straight. 
Unfortunately, the last design was never built and tested. 

First Design 

The first clamp design consisted of a structure of 10"long, 2" wide and 1" thick with several aligned 
holes of 0.28” of diameter where it is possible to set the screws which are going to put an axial 

force on the tape and provide the clamping effect. Two bolts on the device's edge are necessary to 
hold the clamp to the baseplate and receive contrast the opposite force received from the clamping 
effect. There are several vantages with this structure, but the most important is that this clamp can 
move. Hence, it is possible to clamp near the end of the welding so reduce the length of the 
aluminum that it should be placed on the base plate, saving material, and reducing the possibility of 
walking (it was noticed by colleagues and me that longer is the welding path and the tape and more 
are the chances of walking of the foil) . The main disadvantage of this tool is the few degrees of 
freedom. There are only certain places where it is possible to set the foil, so there are fewer 
possibilities to use the welding plate efficiently. 
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Figure 21: First Design Model, Upper view 

Second Design 

The second design was an improvement of the first one. This new structure, shown in 22 solved two 
main problems, the few degrees of freedom of the first design and the high degree of inflection of 
the system (while the clamp effect was provided) due to the normal force that the screw receives 
from the clamp function. Four parts form this clamp, a bottom and an upper part of 10" long, 2" 
wide, a screwdriver structure of 0.28" of internal diameter, 0.32" of external diameter with two 
cylinders on the side, and two supports of different height in order to be adaptable to the extra 
height of the welding. The screw was inserted into the screwdriver in order to obtain the normal 
force that needed to fix the tape on the plate, with this support the upper and bottom parts of this 
structure. Have a buttonhole, so it was possible to shift the setscrew driver in the right position for 
the different weldings and efficiently use the welding plate. This clamp allows the creation of 
different structures with many shapes and gives the freedom to create complex structures without 
concerning the welding or foils' position. 

 

Figure 22: Second design model, upper view 
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Figure 23: Second design model, screw driver detail 

This structure's main problems were the crack initiation on the junction of the set screwdriver and 
the possibility that the screwdriver could move under a transverse vibration. After many weldings, 
there were a higher possibility that a crack could appear on the junction between the two cylinders 
and the screwdriver. This issue brings us to the new clamp next design 

 

Third Design 

With the third design, it was decided to improve the second one's structure, adding some features. 
The whole clamp has the same dimension exception made for the setscrew driver. Instead of the 
cylinder setscrew driver shape, a rectangular parallelepiped shape and four smaller rectangular 
parallelepipeds were used on the edges. It was chosen this design because many sites were made on 
the clamp's upper part, where the four extremities can be inserted and fix the set screwdriver after 
the clamp function. With this new feature, the setscrew driver couldn’t move under the vibrations 

forces caused by the sonotrode, so the tape was fixed in a better way. 
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Figure 24: Third design model, upper view 

 

Figure 25: Third design model, screw driver detail 

 

 

 

Third Design: Fabrication And Test Results 

The prototype of this structure was made by PLA and printed with the Ultimaker printer. This 
material fitted the requirements of durability and strength perfectly because of his excellent 
properties with a flexural strength of 103 MPa, impact strength Izod tested to 5.1 kJ/m², and a 
hardness of 83 Shore D. The creation of this structure took 14 hours but, after them, the test was run 
immediately. 

In Fig. 26  is shown the clamp while was working on the plate. The screw fixed the tape perfectly, 
but the normal force resulting from this action was enough to bend the upper clamp part as is 
possible to see in Fig. 27. This bending didn't affect the welding, but this problem could affect the 
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lifetime of the structure. So an improvement with the material was necessary, and an Al3003 clamp 
was thought for this purpose. 

 

 

Figure 26: Third design model test, upper view 

 

Figure 27: Third design clamp model bending, lateral view 
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Many tests were run with this structure, and many things were noticed. From Fig. 28 is possible to 
see the first problem of the clamper, it doesn't follow the elongation of the tape (because the screw 
provides only a normal force), so there is an excess of material after the end of the welding. In 
addition, the screws used to fix the tape affected the baseplate leaving a little damaging it. 

 

 

Figure 28: First test result, lateral view 

From Fig. 28 it is easy to notice that setting the screw, the tape received a torsional momentum 
force. Indeed Fig. 29  and Fig. 30 show a different elongation on the left side of the tape and a little 
walk of the tape. 
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Figure 29: Second test result, lateral view 

 

Figure 30: Second test result, detail 
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Figure 31: Welding parameters, UAM machine display 

After these considerations, it was decided to create a new design without screws that provided also 
a pulling horizontal force to follow the tape elongation. 
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 Fourth Design 

With the fourth design, the approach of this problem was completely changed. In light of the issue 
that showed up during the third design test, It was decided to use a device that allows the clamp to 
follow the elongation of the tape, fix the Aluminum foil inside itself, and didn't affect the plate. 

With this clamp, a cylinder, and two blocks on his edge to support it was used.  Inside the blocks, It 
was made room for the two sides of the main cylinder (in order to allow the contact between them),  
and two springs (that gave the rotation and the tension needed to follow the aluminum foil's 
elongation). As regards the cylinder, as is shown in Fig. 33 , holes for the screws, on the top of it, 
and a rectangular hole along all his length was made.  

To make the tool work, it was necessary to turn the cylinder, obtain the torque momentum, then 
insert the tape in the cylinder's hole and fix it, setting the screw in the correct position. All the 
functions that were needed were achieved with this clamp: fix the aluminum foil, and follow the 
tape's elongation. After many calculi, it was realized that the main problem of this structure was the 
spring. It should give a huge momentum, but, to obtain this force, a spring with a diameter that 
doesn't follow our requirements was needed, so the idea of spring was abandoned, and a new 
designed was thought 

.  

Figure 32: Fourth design, cylinder support, lateral view, detail 
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Figure 33: Fourth Design, Cylinder, lateral view detail 

 

 

 

Fifth Design 

Due to the previous design dimension, it was decided to obtain the clamp and the pulling function 
effects from the machine's clamp device and use the clamp as an additional tool that provides an 
angle to the tape. With this angle, it is possible to create structures and weldings without the issue 
that other systems on the baseplate could cause a failure of the welding, tape walking, or damage to 
the tape during the welding phase. Damages of different entities can occur because the tape could 
be placed above other structures (as the standard procedure says, in order to use the baseplate more 
efficiently). During the elongation phase, the aluminum foil caused by the sonotrode action could be 
affected by the friction received by the upper part of the other weldings or other sharp parts. As Fig. 
shows, the new clamp is made by two cylinders of 1" each made in  PLA, two bearings of 0.5" each 
made by softer plastic, and two parallelepipeds rectangular shaped as bases. The Functioning of this 
device is easy to be understood. The tape is placed on the top of the upper cylinder to obtain the 
needed angle. The tape is then rolled on the lower cylinder (the effects of this action are that the 
tape is parallel to the machine's clamp to maximize the pulling and the fixing function provided by 
the machine clamp). Another advantage of this tool is that the friction received from the cylinders' 
surfaces helps the tape don't slip under the machine's clamp device.  
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Figure 34: Fifth Design, upper view 

 

The clamp's most remarkable effect was adding friction that the tape received from the two 
cylinders that helped to reduce the walking problem, but it wasn't enough to significantly overcome 
this issue. After this consideration came the last idea for a clamp that could improve the machine 
welding. 

 

Sixth Design 

In light of all the previous designs, tests, and considerations, it was noticed that the machine's clamp 
was enough to our goal. The use of the machine's clamp was the right way, so it was decided to add 
a new feature to it, a guide. The third design was modified by changing the screwdriver with a guide 
made by two straight pieces of 2" long and 0.15" wide made by PLA. The clamp and these two 
pieces should be fixed close to the welding end on the aluminum tape edges. In this way, the 
aluminum foil's elongation, obtained during the welding phase, is guided. This simple solution 
decreases the walking problem hugely. By the way, this tool was never prototyped and tested. 

 

 

Figure 35: Sixth Design 
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Figure 36: Sixth Design, upper view 
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