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1. Chapter 1: INTRODUCTION

Since the dawn of the Industrial Revolution in the early 1800s, the burning of fossil fuels like
coal, oil and gasoline have greatly increased the amount of greenhouse gases in the atmosphere,
especially CO,. Atmospheric CO; levels have increased by more than 40 percent since the
beginning of the Industrial Revolution, from about 280 parts per million (ppm) in the 1800s to
400 ppm today. The last time Earth's atmospheric levels of CO> reached 400 ppm was during
the Pliocene Epoch, between 5 million and 3 million years ago, according to the University of
California, San Diego's Scripps Institution of Oceanography (www.c2es.org). The amounts of

CO2 emission in the past and in the predicted future are showed in Figure 1.1.
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Figure 1.1: Global Carbon Dioxide Emissions, 1850-2040 (www.c2es.org
The increasing levels of greenhouse gases and the resulting global warming, is expected to have
significant impact. If global warming continues unchecked, it will cause significant climate
change, a rise in sea levels, increasing ocean acidification, extreme weather events and other
severe natural and societal impacts which can lead to a huge influence to the life quality, health

and environment.

In contrast, most renewable energy sources produce little to no global warming emissions. The
term renewable energy refers to energy sources that are in nature and are renewed in whole or
in part, in particular, the energy of watercourses, wind, non-accumulated solar energy, biomass,
geothermal energy, and so on. The efficient use of these sources plays important role in energy
production, reduction of greenhouse gas emissions, reduction of fossil fuel imports,
development of local industry and job creation. Renewable energy technologies are clean and

have a much lower environmental impact than conventional energy technologies.


https://scripps.ucsd.edu/programs/keelingcurve/2013/12/03/what-does-400-ppm-look-like/
https://scripps.ucsd.edu/programs/keelingcurve/2013/12/03/what-does-400-ppm-look-like/

Some numbers are represented in Figure 1.2 in order to show the difference between renewable
and non-renewable resources. Burning natural gas for electricity releases between 0.270 and
0.910 kilograms of carbon dioxide equivalent per kilowatt-hour (CO2eq/kWh); coal emits
between 0.640 and 1.630 kilograms of CO2eq/kWh. Wind, on the other hand, is responsible for
only 0.009 to 0.018 kilograms of COzeq/kWh on a life-cycle basis; solar 0.030 to
0.090; geothermal 0.045 to  0.090; and hydroelectric between 0.045 and 0.227

(Www.ucsusa.org).
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Figure 1.2: Green-house gas emission due to Renewable Resources and Non-Renewable
Resources (www.ucsusa.org)

With renewables, the world can be led into a new age of sustainable development in which there
is not any concern about the limitation of energy, the significant growth of energy prices and
the environmental protection. In order to do that, the contributions of each person, region,
country will play an important role in accelerating the rate of using renewable energy and
decreasing the green-house gas emission. As engineers, we have enough knowledge and skills
to be a part of this contributions by exploiting some geo-structures as a device to collect energy
and use them for daily activities. In term of civil engineering, geothermal energy from the
subsurface of the Earth can become an enormous potential of renewable energy that can be used
for different kinds of purposes. So, ground-embedded structures such as shallow foundations,

bored piles, diaphragm walls, tunnel linings, etc. can be used as absorber elements for ground
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https://www.ucsusa.org/resources/environmental-impacts-wind-power
https://www.ucsusa.org/resources/environmental-impacts-solar-power
https://www.ucsusa.org/resources/environmental-impacts-geothermal-energy
https://www.ucsusa.org/resources/environmental-impacts-hydroelectric-power

heat exchange. With heat carrier fluid circulating through the piping system attached within
concrete elements, heat is extracted from the ground or stored in the ground for heating and
cooling of associated buildings. One of the major strength of this method is that the geothermal
system can be attached to the in-place geo-structures used for structural purpose, it results in
the saving of initial cost for installation with respect to other systems. However, it is obvious
that the structure will suffer from the significant change in stress and strain due to temperature
variation, this point needs to be thoughtfully taken into account, then the thermal - hydraulic-

mechanical problem will be discussed in this thesis.

Hence, the objective of this thesis is to study the energy performance of an innovative energy
wall, called GeothermSkin and to evaluate the effects of some important factors to this
performance, such as supply temperature, flow rate, direction and position of piping
deployment, examining the environmental impact on the surrounding ground and structural

effects on the supporting wall.

Content of the thesis:

» Chapter 1: The introduction of renewable energy and the need to employ the geo-structure
as heat exchanger so as to exploit the heat from the ground.

» Chapter 2: The introduction of shallow geothermal energy and the principle of using heat
pump to extract and inject geothermal energy from ground to provide them for
heating/cooling system.

» Chapter 3: The introduction of energy geostructures as energy piles, energy tunnels,
energy diaphragm walls.

» Chapter 4: A description about experimental campaign and an interpretation of its results
is represented in order to introduce GeothermSkin system designed and installed by Prof
Marco Barla and Dr Matteo Baralis in an office building in Torino (Italy), interpreting
the thermal performance of this system as well as its effect on the wall and the
surrounding ground.

» Chapter 5: Using FEFLOW software to build a numerical model with input data of a
specific test, comparing the thermal performance of experimental results and numerical
results.

» Chapter 6: Some conclusion related to thermal performance, its dependency upon
different factors, thermal affection on ground temperature, water content of soil, stress

and strain of the wall.



2.  Chapter 2: SHALLOW GEOTHERMAL ENERGY

2.1. Introduction
2.1.1. Geothermal energy

Geothermal Energy (from the ancient Greek "geo", earth, and "thermos", heat) is, in its broad
definition, the thermal energy contained in our planet, the Earth. The heat can be extracted from
a depth up to about 10 km, which is the maximum depth reached by human drilling. Part of this
heat is continuously generated by the decay of the long-lived radioactive
isotopes of uranium (U238, U235), thorium (Th232) and potassium (K40), which are
present in the Earth, part, in uncertain proportions, are other potential sources of heat such as
the primordial energy of planetary accretion (Dickson and Fanelli, 2004). Because the
difference in temperature between deep hotter zones and shallow colder zones generates the
conductive flow of heat from the former towards the latter, called Earth’s heat flow that varies
from place to place, and with time, depending on the geological and physical condition of the
underground. On average, the heat flow from the continental crust is 65 mW/m? and from the

oceanic crust is 101 mW/m? (Dickson and Fanelli, 2004).

The heat flow at the Earth’s surface derives from the radiogenic decay within the upper crust,
the heat generated in the most recent magmatic episode, and the heat coming from the mantle
and inner Earth’s structures. In continental crust, where the isotope heating is larger since
granitic rocks rich of long-living radioactive isotopes are common, the heat flow is highest in
areas having experienced “recent” (less than 65 million year) magmatic activity, whereas it
decreases in older crusts. In oceanic crust, the concentration of radiogenic heating is negligible
due to the rock composition (basaltic), but the crust thickness is smaller than in continents and
the heat flow largely derives from heat flowing from the mantle. Most plate boundaries are
below sea level and the young oceanic crust has very high heat flow values. Geothermal

exploitation from continental areas is much more popular.

To extract energy from the ground, water can be used as a carrier of heat. The two main
mechanisms involved are conduction and convention. Warm and hot fluids can be extracted
from the underground in a wide range of temperature and discharge rate, and used directly for
their heat content or to produce electric power. Even the modest temperatures at shallower

depths, they can be used to extract or store heat by means of ground source heat pumps.



2.1.2. Shallow geothermal system

With developments of the ground-source heat pump application, the earth can be used as a heat
source for heating in summer or as a heat sink for cooling in winter in all countries. The
geothermal heat pump doesn’t create electricity, but it greatly reduces consumption of it. As a
result, one of the best way to reduce the operation cost of heating and cooling systems in
building is the installation of a geothermal heat pump, an economical and energy-efficient
technology for space heating and cooling and water heating. In winter, geothermal heat pump
systems draw thermal energy from the shallow ground to warm the building. In summer, a
cooling mode is active by reversing the process above, using the ground as a sink to store the
heat within the building. The system uses electricity to move thermal energy between the
building and the ground and change it to a higher or lower temperature to meet the heating or
cooling requirements, rather than converting it to electricity. A lower amount of electricity is

consumed compared to traditional heating and cooling systems.

Geothermal heat pumps use the earth as a heat source or sink by means of a circulating water
loop. Since the heat pump supplies both heating and cooling, only one appliance is needed to
satisfy both conditioning needs. There is no need of exterior equipment such as cooling towers
or condensing units or heating plants. Each heat pump unit can heat or cool at any time and the
part load performance is excellent. Maintenance is simpler and less costly than conventional

fossil fuel and cooling tower systems.

Geothermal heat pump (also called Ground Source Heat Pumps, GSHP) is a system with three

main components as in Figure 2.1:

» The ground side to get heat out of or into the ground,
» The heat pump to convert the heat to a suitable temperature level, and

» The building side transferring the heat or cold into the room.

Heat Source Type of Heat Pump Output
Water Wet Radiator
Ground 3 Under floor

3 Warm air

Hot Water

Figure 2.1: Sources, type and output of Geothermal Heat Pump (Geothermal Community)



2.2.  Classification of geothermal resources

Standard international terminology classification is not clearly presented throughout the
geothermal community. The following, however, are some of the most common classifications
in this discipline.

2.2.1. Based on the depth

il Geological assurance

- = Undiscovered — ol

P ogsible

Usedul

Becessible

Subgconsmic

Residual

Rasource base

Resource

Economic feasibility s

Energy which could be exracted economically
and legally in the near future

Resermve

That part of resources which can be extracted
economically and legally at present

Inaccessible

' Depth

Figure 2.2: Diagram showing the different categories of geothermal resources. (Dickson and
Fanelli, 2004)

Due to the limitation of drilling to a particular depth, only the thermal heat contained in this

limited depth can be exploited, called accessible resource base; that is all of the thermal energy

stored between the Earth's surface and a specified depth in the crust, beneath a specified area

and measured from local mean annual temperature according to Muffler and Cataldi (1978).
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The accessible resource base includes useful and residual resource bases. Part of useful resource
base (Resource) that could be extracted economically and legally at some specified time in the
near future (less than a hundred years) and the remaining part, called identified economic
resource (Reserve), can be extracted legally at a cost competitive with other commercial energy
sources and that are known and characterized by drilling or by geochemical, geophysical and
geological evidence. Besides, residual resource base is the stored energy for further future.
These and other terms that may be used in geothermal discipline are showed in Figure 2.2, in
which the vertical axis is the degree of economic feasibility; the horizontal axis is the degree of

geological assurance.

2.2.2. Based on the enthalpy

The most common criterion for classifying geothermal resources is based on the enthalpy of
the geothermal fluids that act as the carrier transporting heat from the deep hot rocks to the
surface. Enthalpy, which can be considered more or less proportional to temperature, is used to
express the heat (thermal energy) content of the fluids. The resources are divided into low,
medium and high enthalpy resources, according to criteria that are generally based on the
energy content of the fluids and their potential forms of utilization. Table 2.1 reports the
classifications proposed by a number of authors. Temperature values or ranges involved case
by case should be indicated in each category, since terms such as low, intermediate and high

can lead to the ambiguity and confusion.

Table 2.1: Classification of geothermal resources (°C) (Dickson and Fanelli, 2004)

(a) (b) (c) (d) (e)
Low enthalpy resources <90 <125 <100 <150 <190
Intermediate enthalpy 125- 100-
resources 90-130 1 575 200 i i
High enthalpy resources | >150 >225 >200 >150 >190

Sources:

(b) Hochstein (1990).

(d) Nicholson (1993).

(a) Muftler and Cataldi (1978).

(c) Benderitter and Cormy (1990).

(e) Axelsson and Gunnlaugsson (2000)




2.2.3. Based on the geothermal system

A distinction is made between water- or liquid-dominated geothermal systems and vapor-
dominated (or dry steam) geothermal systems (White, 1973). In water-dominated systems,
liquid water is the continuous, pressure-controlling fluid phase. Some vapor may be present,
generally as discrete bubbles. These geothermal systems, whose temperatures may range from
125 to 225 °C, are the most widely distributed in the world. Depending on temperature and
pressure conditions, they can produce hot water, water and steam mixtures, wet steam and, in
some cases, dry steam. In vapor-dominated systems, liquid water and vapor normally co-exist
in the reservoir, with vapor as the continuous, pressure-controlling phase. Geothermal systems
of this type are rare, and are high-temperature systems. They normally produce dry-to

superheated steam.

Another division between geothermal systems is that based on the reservoir equilibrium state
(Nicholson, 1993), considering the circulation of the reservoir fluid and the mechanism of heat
transfer. In dynamic systems, the reservoir is continually recharged by water that is heated and
then discharged from the reservoir either to the surface or into underground permeable
formations. Heat is transferred through the system by convection and circulation of the fluid.
This category includes high-temperature (>150 °C) and low-temperature (<150 °C) systems. In
static systems (stagnant or storage systems), there is only minor or no recharge to the reservoir
and heat is transferred only by conduction. This category includes low temperature and geo-
pressured systems. The geo-pressured reservoirs consist of permeable sedimentary rocks,
included within impermeable low-conductivity strata, containing pressurized hot water that
remained trapped at the moment of deposition of the sediments. The geo-pressured reservoirs
can also contain significant amounts of methane. The geo-pressured systems could produce
thermal and hydraulic energy (pressurized hot water) and methane gas. These resources have

been investigated extensively, but so far there has been no industrial exploitation.

2.3.  Utilization of geothermal resources
2.3.1. Electric power production

Electricity generation mainly needs steam to rotate a turbine that activates a generator, which
produces electricity. Most power plants still use fossil fuels to boil water for steam, whereas
geothermal power plants use steam produced from or heated by underground hot fluids. Three
main types of technology are available: dry steam, flash steam and binary cycle, depending on

the characteristics of the geothermal fluid.



In dry steam power plants, the steam is drawn from underground resources of steam, and is
piped directly from underground wells to the power plant. The geothermal fluids must be in
vapor state when they reach the surface. These systems, named vapor-dominated systems, are

characterized by very high temperature.

Flash steam power plants are the most common and use geothermal reservoirs of water with
temperatures greater than 182 °C. This very hot water flows up through wells in the ground
under its own pressure. As it flows upward, the pressure decreases and some of the hot water
boils into steam. The steam is then separated from the water and used to power a
turbine/generator. Any leftover water and condensed steam are injected back into the reservoir,

making this a sustainable resource.

Binary cycle power plants operate on water at lower temperatures of about 107-182 °C. Binary
cycle plants use the heat from the hot water to boil a working fluid, usually an organic
compound with a low boiling point. The working fluid is vaporized in a heat exchanger and
used to turn a turbine. The water is then injected back into the ground to be reheated. The water
and the working fluid are kept separated during the whole process, so there are little or no air

emissions. (www.nrel.gov)

2.3.2. Direct use

Low-temperature geothermal resources show a tremendous potential for direct-use
applications, with temperature ranging between about 20 and 150 °C. The main types of direct
applications of geothermal energy are space heating, bathing and swimming (including
balneology), agricultural (greenhouses and soil heating), industry, and aquaculture (mainly fish

farming).

Space condition refers to the alteration of the climate in an enclosed space by either heating or
cooling. While the use of geothermal energy for space heating is popular in cold climates, in
tropical climates, geothermal energy could be used to cool building. Although the initial
investment cost is higher than the conventional system, the operation cost is comparatively
lower than in conventional one. Some of the health benefits derived from bathing in geothermal
water include treatment of high blood pressure, skin diseases, diseases of the nervous system
and relieving the symptoms of rheumatism. The use of geothermal energy to heat swimming
pools is a common practice, especially in the cold countries where almost all outdoor swimming
pools are geothermally heated all year round. The major application of geothermal energy in

agriculture is the heating of greenhouses in order to control the climate, mainly temperature and
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relative humidity. The industrial uses of geothermal energy are numerous and involve mainly
heating and cooling. Drying or dehydration of agricultural products is one of the major
industrial applications of geothermal energy. For example, animal products need to be

processed immediately after production in order to preserve them for later use.

2.3.3. Geothermal heat pump

To heat or cool a space we need to transfer heat. To this aim, the thermal energy stored in the
ground at shallow depth may be used. Below a depth of a few meters from the ground surface,
the temperature is not affected by the seasonal change of air temperature and is essentially
constant and equal to the mean annual air temperature. The thermal energy of the ground can
be exploited by using heat pumps, which convert the low-temperature geothermal energy to
thermal energy at a higher temperature by exploiting the physical property of fluids to absorb
and release heat when they vaporize or condense, respectively. This part will be discussed more

in the following.

2.4.  Principle of a geothermal heat pump

A heat pump is a device which allows the transport of heat from a lower temperature level to a
higher one, by using external energy. The most common type of heat pump is the compression

heat pump.

low pressure ‘ high pressure

compressor

-

<f:|—‘ evaporator condensor || <=
| |

I
asn jeay

221n0S Jeay

— |
expansion valve
Figure 2.3: Scheme of a compression heat pump (Geothermal Community)
As the Second Law of Thermodynamics, heat will flow only from hotter to colder matter, but
a heat pump will draw heat from the ground at, say, 5 °C and use it to warm a building to 21

°C. In a compression heat pump, the thermodynamic principle is the fact that a gas becomes
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warmer when it is compressed into a smaller volume. In a heat pump, a medium with low
boiling point (refrigerant) is evaporated by the ground heat, the resulting vapor (gas) is
compressed (by using external energy, typically electric power) and thus heated, and then the
hot gas can supply its heat to the heating system. Still being in the high pressure part, the vapor
now condenses again to a liquid after the useful heat has been transferred. Finally, the fluid
enters back into the low-pressure part through an expansion valve, gets very cold and can be

evaporated again to continue the cycle as showed in Figure 2.3.

An alternative is the absorption heat pump (AHP) which is a heat pump driven by thermal
energy such as combustion of natural gas, steam solar-heated water, air or geothermal-heated
water, differently from compression heat pumps that are driven by electric energy. AHP really
does a useful energy transfer from a lower temperature-level source of energy, free of cost (i.e.,
air, water, or soil) to a higher temperature level. The cycle is divided into two parts: the first
part is a “working fluid” desorption from liquid absorbent at the highest temperature in the
system. The second part happens at lower temperature and lower pressure for easy energy
transfer. When “working fluid” goes in vapor phase with liquid absorbent (separated in the first
part), then a heat delivering at intermediate temperature occurs. When vapor is condensed at
the highest pressure, it delivers heat at intermediate temperature also. This useful heat is

provided to the user.

In both cases, the amount of external energy input (electric power or heat) has to be kept as low
as possible to make the heat pump ecologically and economically desirable. The measure for
this efficiency is the COP (Coefficient of Performance). For an electric compression heat pump,

it is defined as:

useful heat
electric power input

COP =

The higher the COP, the lower the external energy input compared to the useful heat. COP is
dependent on the heat pump itself (efficiency of heat exchangers, losses in compressor, etc.)
and on the temperature difference between the low-temperature (ground) side and the high
temperature (building) side. COP can be given for the heat pump under defined temperature
conditions (e.g. 5 °C ground / 35 °C heating supply), or as an average annual COP in a given

plant, also called SPF (Seasonal Performance Factor).

In heating mode, the heat pump works as follows: heat from the earth connection arrives at an

earth connection-to refrigerant heat exchanger called the evaporator. The refrigerant is colder
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than the temperature of the heat transfer fluid from the earth connection, so heat flows into the
refrigerant. This heat causes the liquid refrigerant to evaporate; its temperature does not increase
much. This gaseous, low pressure and low temperature refrigerant then passes into an
electrically-driven compressor. This raises the refrigerant’s pressure and, as a consequence, its
temperature. The high temperature, high pressure, gaseous output of the compressor is fed into
a second heat exchanger, called the condenser. In water-to-air heat pumps, a fan blows air to be
heated through this “air coil”. In water-to-water heat pumps, water which will heat the building
flows through the condenser. Since the refrigerant is hotter than the air or water, it transfers
heat to it. As it loses heat, the refrigerant’s temperature drops and it condenses. This high
temperature liquid refrigerant then passes through an expansion valve. The valve reduces the
pressure of the refrigerant, and as a consequence, its temperature drops significantly. Now, this
low temperature liquid flows to the evaporator and the cycle starts again. In this way, the heat
from the water or other heat transfer fluid in the earth connection is transferred to the air or

water in the building, hence the name “water-to-air heat pump” or “water-to-water heat pump”.

For working fluid (refrigerant), suitable substances are those with large specific heat capacities
and which evaporate at low temperatures. Today, only chlorine free refrigerants are permitted.
These are non-ozone depleting refrigerants (Ozone Depletion Potential, ODP = 0). R134a,
R407C, R410A, R404A and propane fulfill these conditions. The most used refrigerants are
R134a and R407C and other blends as they are both non-flammable and nontoxic.

2.5.  Overview of ground systems for geothermal heat pump

The ground system links the geothermal heat pump to the underground and allows for extraction
of heat from the ground or injection of heat into the ground. These systems can be classified

generally as open or closed systems.

To choose the right system for a specific installation, several factors have to be considered:
geology and hydrogeology of the underground (sufficient permeability is a must for open
systems), area and utilization on the surface (horizontal closed systems require a certain area),
existence of potential heat sources like mines, and the heating and cooling characteristics of the

building(s).

In the design phase, accurate data of the key parameters for the chosen technology are
necessary; to size the ground system in such a way that optimum performance is achieved with
minimum cost. Wells must be properly designed and developed, and periodic maintenance on

the well and well pumps must be performed.
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The terms “open” and “closed loop” systems are originated from the USA, and may be looked
upon as practical descriptions of systems with boreholes with plastic pipes (closed) and systems
where groundwater is pumped from and injected through water wells (open). These terms are
also used in Europe.
The various shallow geothermal systems to transfer heat out of or into the ground comprise:

» Horizontal ground heat exchangers: 1.2 - 2.0 m depth (horizontal loops)

» Borehole heat exchangers: 10 - 250 m depth (vertical loops)

» Energy piles: 5 - 45 m depth

» Ground water wells: 4 - 50 m depth

» Water from mines and tunnels

Systems using a heat exchanger inside the ground are also called “closed” systems; systems
producing water from the ground and having a heat exchanger (e.g. the evaporator) above

ground are called “open” systems.

2.5.1. Closed vertical loop

This system applied for single resident buildings consists of one or several boreholes in which
borehole heat exchangers (BHE) are installed. The boreholes may commonly be up to 200 m
deep and drilled into almost any type of soil and rock. The BHE is connected to a heat pump.
By circulating a heat carrier fluid (water mixed with antifreeze), heat is extracted from the
borehole surroundings and transferred to the heat pump from which heat at a higher temperature

1s distributed to the building, as illustrated in Figure 2.4.

Several types of borehole heat exchangers have been used or tested; the two possible basic
concepts are (Figure 2.5):

» U-pipes, consisting of a pair of straight pipes, connected by an 180° - turn at the bottom.
One, two or even three of such U-pipes are installed in one hole. The advantage of the U-
pipe is low cost of the pipe material, resulting in double U-pipes being the most frequently
used borehole heat exchangers in Europe.

» Coaxial (concentric) pipes, either in a very simple way with two straight pipes of different

diameter, or in complex configurations.

During the winter season, the temperature of the fluid and the borehole surroundings will
gradually get lower. The fluid will then often reach a temperature well below the freezing point.

As a result, the COP of the heat pump will gradually drop. However, in a correctly designed

13



system, the temperature will not be as low as making the heat pump to stop. This is a great

advantage of GSHP’s compared to air as heat source.

In the summer, these systems may provide free cooling directly or the heat pump operates as a
cooling machine and stores condenser heat in the ground. This is a great advantage, especially
in warmer climates. By definition, using the system also for cooling, turns it into a borehole

thermal energy storage (BTES) system.

Figure 2.5: Cross-sections of different bypass of boreholes heat exchangers (Geothermal
Community)
If the system is used for heat extraction only, which is the most common practice in colder
climates, a single borehole recovers its normal temperature naturally during the summer season.
If several boreholes are used, it is great importance that the boreholes are not too close to each
other. The holes are drilled at a distance of about 6 m and depth between 30 and 120 m (Figure
2.4).

In terms of thermal properties of the ground, they are strongly influenced by the soil volumetric

water content, volume fraction of solids and volume fraction of air. Air is a poor thermal
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conductor and reduces the effectiveness of the solid and liquid phases to conduct heat. While
the solid phase has the highest conductivity, it is the variability of soil moisture that largely
determines thermal conductivity. As such soil moisture properties and soil thermal properties
are very closely linked and are often measured and reported together. As a result, from a
geological point of view, the best efficiency of vertical loops is obtained in crystalline rocks
with a high content of silica, such as granites and gneisses. Among the sedimentary rocks, the
best efficiency is achieved in quartzite and dense sandstones with a low porosity. However, it
is important to know that almost any types of rocks are technically feasible, as well as any types
of soil. This makes the vertical loops having a very high potential regardless the geological

conditions at site.

2.5.2. Closed loop horizontal systems

Connection in parallel

Figure 2.6. Ground heat exchanger a) Closed horizontal type and b) Trench type
(Geothermal Community)
The shallowest system is the horizontal loop. This consists of a plastic pipe that is typically
ploughed or dug down in the garden of a residential house as shown in Figure 2.6.a). This
system may not be of interest for a driller, but may still be considered by an installer as an
option of heat exchangers. Compared to vertical loops, this system takes a lower investment for
construction. On the other hand, it is less efficient due to a lower working temperature of the
fluid. This is partly due to the relatively lower thermal conductivity of the soil compared to a
rock. Furthermore, the technique is based on freezing the moisture in the soil that requires a
rather low fluid temperature over a long part of the winter season. The freezing process will
continuously draw water towards the pipe, hence creating ice scaling around the plastic pipes.
The ice itself will have a positive effect on the thermal conductivity. The pipes can be connected

in series or parallel (Figure 2.6.a).
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For the trench collector (Figure 2.6.b), a number of pipes with small diameter are attached to
the steeply inclined walls of a trench. The main thermal recharge for all horizontal systems is
provided mainly by the solar radiation to the earth's surface. It is important not to cover the

surface above the ground heat collector, or to operate it as a heat store.

However, in later years a more compact system has been developed called “slinky”. This consist
of coils of plastic pipes, that are placed vertical in dug ditches (Figure 2.7), one at each wall of
the ditch. A slinky configuration would flatten a spiral of piping at the bottom of a wide trench
or large scraped area. The slinky loops could be placed adjacent to each other in a large

excavated area and then backfilled to a depth of 1,8 to 2,5 m.

Figure 2.7: Closed horizontal-Slinky loop (Geothermal Community)
2.5.3. Open loop systems (groundwater systems)

Ground water is a valuable natural source especially for drinking water. Still, using ground
water for energy extraction is fairly common in many countries for both heating and cooling.
The reason for this is that groundwater systems are more efficient than closed loop systems
because the temperature of groundwater is practically constant all over the year (if pumped
from a depth of 10 m or more) and that water is the best carrier of thermal energy (the highest

heat capacity).

As illustrated in Figure 2.8, the technology “normal” groundwater wells are used for energy
extraction. However, to create a system with extraction and injection is more challenging. Such
systems have to be circulated under pressure and under perfectly airtight conditions to avoid

problems with clogging and corrosion induced by chemical processes.

In the country side, a single well or even a dug well may be used. In these cases, the chilled

water is disposed to surface water or infiltrated by a buried stone bed. However, in several
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countries, due to environmental and legal issues, it is not possible to discharge chilled water in
neither the surface water nor the different aquifer levels. As a result, doublet wells have
normally to be used, one or several for production and approximately an equal number of wells

for reinjection of chilled water.

Groundwater can also be used for direct cooling with great interest due to its very high
efficiency. The maximum temperature requirements would typically be about 10 °C for comfort

cooling and about 25 °C for process heating.

Figure 2.8: Open ground water loop system (Geothermal Community)

17



3. Chapter 3: ENERGY GEOSTRUCTURES

3.1. Introduction

As discussed in the previous chapter, the geostructures are not only used to carry and transfer
the loads to the soil, but they can be also designed as a part of heating system. Some practical
examples of energy geostructures are: retaining wall, tunnels, foundation piles and diaphragm

walls.

In the past, the awareness of environmental protection leads to the increasing need of utilizing
renewable energy, then Ground Source Heat Pumps (GSHP) are efficient and environmental
friendly systems for buildings. However, GSHP suffers from the economic barriers of the
relatively high initial capital cost, which is significantly affected by the excavation cost of
Ground Heat Exchanger (GHE). The drilling cost can be significant reduced or eliminated if
GHE is embedded in the building foundations which is already required for structural purposes.
So-called thermo-active foundations or energy geostructures work at the same time as structural

elements and components of the GSHP system.

To explain how the thermo-active system works, Brandl (2006) interpreted as follow. Basically
there are two circuits: the primary circuit contains closed pipework in earth-contact concrete
elements (piles, barrettes, diaphragm walls, columns, base slabs, etc.) through which a heat
carrier fluid is pumped to exchange energy between the building and the ground. The carrier
fluid is a heat transfer medium of either water, water with antifreeze (glycol) or a saline solution.
It is shown that glycol-water mixtures are the most suitable, especially because they contain
also additives to prevent corrosion in the header block, valves, the heat pump, etc. The
secondary pipework is a closed fluid-based circuit embedded in the floors and walls of buildings
or bridge decks, road structures, platforms, etc. Commonly, a heat pump connects the two
closed circuits, in which heat exchange occurs, as shown in Figure 3.1. The main charge of the
pump is to increase the temperature level from 10-15 °C to 25-35 °C in heating mode.
Therefore, a low electrical energy is required to raise the originally non-usable heat resources

to a higher, usable temperature.

The use of energy geostructures has become more popular around the world, especially in some
pioneering countries as Austria and Switzerland (1980s) with first application for base slabs,
then piles (1984) and diaphragm walls (1996), and UK, Germany (Brandl, 2006). There are
many researches that have been conducted by different authors around the world. Brandl (2006)

described the projects of a rehabilitation center, and the first thermo-active traffic tunnel, called
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Lainzer Tunnel in Vienna which involved the use of piles as heat-exchangers, while the
absorber pipes are situated in diaphragm walls, in bottom slabs and between the primary and

secondary lining of the station tunnels in Metro line U2, Vienna.

Primary Secondary
circuit circuit
Connecting lines Manifolds
o= - 1
—_— T o -—
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\ ( Header block: Heat pump

collector (for heating)
distributor (for cooling)

Absorber pipes (= ground heat exchangers)
incorporated in energy foundations (e.g. energy piles)

Figure 3.1 Scheme of a geothermal energy system (Brandl, 2006)
Di Donna et al. (2016) investigated how some important factors affect the energy performance
of diaphragm walls equipped as heat-exchangers, in which different parameters (such as wall
length, the ratio between the panel height and the excavation depth, the velocity of heat carrier

fluid, number of pipes) were taken into consideration.

Sterpi et al. (2018) described a case study of 6-storey residential building located in Tradate,
Varese, Italy, in which the field observation and optimization by numerical modelling were
done for heat-exchanger systems embedded in diaphragm walls and base slab area to optimize

their energy performance.

Suckling and Smith (2002) described the first use of energy walls in the United Kingdom where
an installation at Keble College, Oxford included a thermally-activated, bored pile retaining

wall in addition to thermally-activated bearing piles.

3.2.  Energy piles

The plastic piping can be fixed to the reinforcement cage of the piles in a plant or on the site

(Figure 3.2), the latter is more common.

According to Brandl (2006), the percentage of (large-diameter) bored piles has been steadily
increasing since the year 2000. Austria is a pioneer to promote the use of this type of
geostructures, since 1985 more than 1 million meters of cast iron piles have been installed. As
known, the heat exchangers are inserted into the fresh concrete, and have to be secured against
uplift until the concrete has sufficiently hardened. The standard diameter of such driven piles

is d =170 mm, but this can be increased significantly by shaft grouting. Nevertheless, the
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geothermal effectiveness of such thin energy piles is smaller than that of driven precast concrete
piles or large-diameter bored piles, despite of the high thermal conductivity of cast iron. The
small diameter enables the installation of only one pipe loop and no coiled piping. Moreover,
the contact area with the ground is relatively small. In soft soils, buckling of the piles also has

to be considered (Brandl, 2006).

Figure 3.2: Absorber pipes attached to the reinforcement cage (Brandl, 2006)
Energy piles will be subjected to a net change of the temperature relative to the initial condition
over time, which causes thermal stresses and head displacements. Under thermo-elastic
conditions, if the pile is a free body, i.e. it has no restraints, it will expand while heating and
contract during cooling to yield a thermal free strain, then the length of piles will also change.
If the pile is perfectly restrained, it will keep its length, but thermally induced stresses will be
created. In reality, a pile will not expand or contract freely as it will be confined by the structure
on top and the surrounding soil, at different levels of restrain (Figure 3.3). The restrained strain
provokes a thermal stress in the pile and the thermally induced axial load which affects the

verification of bearing capacity of piles.

When a thermal load is transmitted from the pile to the soil, the soil reacts by changing its
volume (expansion or contraction of the pore water and soil structure) and by modifying the
strength of contact between soil particles. Coarse-grained soils do not seem to be affected by
temperature variations due to their drained behavior. On the other hand, fine-grained soils show
a densification and a reduction in the undrained shear strength with increasing temperature due

to an increase in the pore water pressure that cannot be dissipated. This results in a reduction in
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effective stresses (short-term). Sutman (2016) reported that an excess pore water pressure of

0.7% of the effective stress is generated by 1°C increase in soil temperatures.
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Figure 3.3: Response mechanism of a pile heat exchanger, a) for heating and b) for cooling

Pagola et al. (2018) reported that the pile bearing capacity is not reduced to a critical level in
terms of structural integrity. They described an analysis of monotonic temperature variations in
the range from 6 °C to 50 °C - 60 °C and they concluded that higher temperatures increase the
strength of the clay-concrete contact. This is explained by the thermal consolidation of the clay
that results in an increase of the contact surface, even though the interface friction angle is
reduced. They also concluded that there was no impact of temperature on the interface shear

strength (as described in Figure 3.4) between concrete and a low plasticity clay.
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Figure 3.4: Clay/concrete interface behavior assessed using thermal borehole shear device

(Pagola et al., 2018)

In order to characterize the degradation of the pile-soil interface under thermal cyclic loads,
constitutive laws and numerical models can be applied to reproduce the cyclic behavior of
energy piles. The main research programs covering the thermo-mechanical behavior of the

energy pile-soil systems include full-scale, lab-scale and numerical studies.
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3.3. Energy tunnels

The application of heat exchange in tunnels have become more popular due to its efficiency. In
comparison with foundation, substantially larger ground volumes can be used for geothermal
heat. In high overburden tunnels, significantly higher temperatures can also be utilized.
Additionally, geothermal heat production can be based on shallow tunnels, like metros. The
first application of this kind can be found in the Lainzer tunnel in Austria (Adam & Markiewicz,

2009).

Moreover, when mechanized tunneling is used, the tunnel segmental lining is precast in factory
and then placed onsite by a tunnel boring machine (TBM), so the preparation and optimization
for each segment can be done before. The system could also allow cooling the tunnel using the
heat produced internally by fast moving trains or vehicles. These main characteristics allow a
tunnel lining to become a mean of thermal exchange (Barla and Di Donna, 2018). The tunnels
with different local conditions and features can be classified into two types: “cold” and “hot”
tunnels. Referring to cold tunnels, the air temperature during the year is around 15°C that can
be slightly increased due to the moderate frequency passage of trains. The diameters of this
kind of tunnels are normally large, about 10-12m. The prevailing temperatures in the tunnel
only have a limited effect on the temperature in the surrounding ground. Instead, hot tunnels
usually present high internal temperatures. Extra heat can be added from starting and braking
of trains with rapid cycle frequency and from the numerous stations. A schematic representation
of a segmental lining equipped with geothermal heat exchangers is presented in Figure 3.5

(Barla et al., 2016).

Although enhancing thermal exchange and optimization could be done during design process
of geostructures by changing some factors, such as surface and width of concrete members or
choice of materials according to thermal conductivity, in most cases, the structural design has
been already done, then followed by the thermal design. In this situation, the need to optimize
heat exchanger elements is essential to make the geostructures as well as buildings more

efficient and economical.

Based on the increasingly popular use of TBMs, Barla and Di Donna has designed a novel
energy tunnel precast segmental lining, named Enertun which is patented at Politecnico di
Torino. They suggest a layout of pipes perpendicular to the tunnel axis, thus implying a head
losses reduction of 20-30% (Barla et al., 2019). Furthermore, it is clear that groundwater flow

contributes significantly to the energy efficiency of geothermal systems that leads to the interest
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in installing energy tunnels in zones with groundwater flow. Figure 3.6 shows the heat
exchanged by a ring of energy tunnel lining, comparing Enertun configuration with the one
employed in the past. If no difference is shown in the absence of groundwater flow, an increase
of about 10% is found when considering Enertun in the case of groundwater flow perpendicular

to the tunnel axis. (Barla et al., 2019).
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Figure 3.5: Schematic representation of a tunnel segmental lining equipped as ground heat

exchanger (Barla et al., 2016)

Figure 3.7 shows the main steps that characterized the preparation of the segments. The primary
circuit which is embedded in the ground connects with heat pump via header pipes, then the
heat pump transfers the heat from an environment with a given temperature to another one
characterized by a different temperature via the secondary circuit, represented by the building

to be heated or cooled.
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Figure 3.6: Comparison between Enertun and previous configurations in terms of heat

exchange obtained from numerical simulation (Barla et al., 2019)
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Figure 3.7: Preparation stages of energy segments: (a) moulding, (b) casting, (c) demoulding
and (d) circulation test (Barla et al., 2019)
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Figure 3.8: Efficiency of different configurations (Barla et al., 2016)
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Table 3.1:Testing results with different input parameters (Barla et al., 2016)

Fluid Inlet Inlet Reynolds
velocity, | temperature, | temperature, | Tg-Two | Two-Twi | number,
% Tin Tin Re
[m/s] [°C] [°C] [°C] [°C] [-]
0.3 4 7.84 6.16 3.84 6107
0.4 4 7.05 6.95 3.05 8143
Winter 0.5 4 6.53 7.47 2.53 10179
0.6 4 6.16 7.84 2.16 12215
0.8 4 5.67 8.33 1.67 16287
1 4 5.36 8.64 1.36 20359
04 28 23.73 9.73 4.27 8143
0.5 28 24.46 10.46 3.54 10179
Summer g 28 25.66 11.66 | 234 | 16287
1 28 26.1 12.1 1.9 20359

Regarding the efficiency of the system, firstly the most favorable ring configuration that was
chosen had to be verified, followed by determining the most suitable inlet fluid velocity to
optimize the plant performance, then the quantity of exchanged heat could be evaluated. By
doing some numerical models of 5 different types of configuration, the rings connected in
parallel solution is the most suitable (see Figure 3.8). On the other hand, the most suitable inlet
fluid velocity can be defined based on the simulation with different values of fluid velocity
ranging from 0.3 to 1 m/s, then Q extracted during winter and injected during summer can be
computed based on the difference between the inlet and outlet temperature of the pipe circuit,

see Table 3.1. It appears that the optimized inlet fluid velocity was 0.4 m/s.

Barla et al. (2016) suggested the optimized solution using the system both for heating and
cooling to maintain the sustainability of the system, in which the temperature reduction induced
by the winter heat extraction is recharged by the heat injection resulting from the use of the
system for summer conditioning. The results obtained for the seasonally cyclic heating-cooling

hypothesis are described in Figure 3.9.

In comparison with traditional heating plants, the annual cost in operating the energy tunnel
system is significantly lower. Figure 3.10 shows the saving of annual cost with the same amount

of produced energy.
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Figure 3.9: Temperatures in the soil at different distance from the tunnel during three years

of cycling heating and cooling (Barla et al., 2016)
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Figure 3.10: Annual operating cost savings with respect to other heating/cooling systems

(Barla et al., 2016)

3.4. Energy diaphragm walls

Diaphragm wall is a continuous reinforced concrete wall which supports an underground
structure, as a foundation or facilitate cut off provision in order to support deep excavation.
Diaphragm wall forms a rectangular section constructed in-situ under the soil. These walls are
constructed panel-by-panel each interlocked to ensure structural stability and water tightness.
The diaphragm walls can have a thickness ranging from 60 cm to 150 cm with a width of 2.0
to 3.5 m. The diaphragm walls can be constructed up to a depth of 60 m.

The geothermal diaphragm walls, unlike conventional ones, have a system of polyethylene
pipes which are necessary for transporting the heat transfer fluid. The loops are attached to the
outside face of the reinforcement cage near external surface, the external cover need to be

increased to maintain 75 mm of cover to the loops. However, the bending and shear capacity of
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the wall have minor effect due to relatively small diameters of the geothermal loops and the
effective area of the concrete wall is only marginally reduced by the introduction of geothermal

loops and can be ignored in the capacity calculation (Amis et al., 2011).

In comparison with the construction sequences of normal diaphragm wall, those for geothermal
one are a little bit different:

» Quality control and pre-installation testing;

» Lifting of the diaphragm armature cage;

» Installation of the pipes;

» Fixing the pipes to the cage as it is lowered;

» Cutting of excess pipes and their protection;

» Aptitude test of the pipes before casting concrete;

» Casting (of the diaphragm) of concrete.

The geothermal loops are fabricated at the factory under controlled conditions, then are coiled
ready for dispatch to site. On site the coiled loops are then placed onto a drum arrangement (as
shown in Figures 3.11 and 3.12) to enable the loops to be fed out and fixed onto the
reinforcement cage as it is lowered into the prepared panel. Unlike other geostructures which
will be surrounded by soil on all faces, the energy diaphragm walls will have one face

permanently partially exposed to the basement.

Figure 3.11: Feeding Geothermal Loop onto Reinforcement Cage (Amis et al., 2011).
The integration of the GSHP system into the diaphragm wall has to be assured, although this
system would not have any adverse impact on the construction process and quality of the
completed diaphragm wall panels. Normally, the heat exchanger system should be used in both
conditions (heating in winter season and cooling in summer season), so the heat carrier fluid
inside the pipes is always changing, and the maximum and minimum temperature of the liquid

must be set for any possible evolutions. With a variable temperature during the year and the
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temperature difference between the fluid and the concrete, a thermal stress is generated around

the pipes, but quite limited.

Figure 3.12: Geothermal Loop and Reinforcement Cage Installation (Amis et al., 2011).

Furthermore, in areas away from heat exchangers, the thermal stress in the structure is mainly
caused by the change of temperature of surrounding soil, but its range caused by geothermal
energy utilization is rather small. A thermal expansion of pore water increases the pore water
pressure, and consequently decreases the effective stress of the soil. Besides, an increasing

temperature reduces the internal viscosity, and hence the shear resistance.

The efficiency of an energy diaphragm wall depends on many factors such as: the arrangement
of the loops inside the cage, the spacing between two consecutive pipes, the concrete and soil
thermal properties, the presence of groundwater flow, the velocity of heat carrier fluid,
boundary conditions and the temperature difference between the soil and the heat carrier fluid
of loops in the diaphragm walls. Almost all these parameters were taken into account from

different authors during the last years.

Xia et al. (2012) analyzed the new technology on the Shanghai Museum of Nature History by
attempting to investigate the heat transfer performance of heat exchangers embedded in
diaphragm walls based on field experiment. The influential factors to heat transfer performance
were further studied, such as heat exchanger types, inlet water temperature, water velocity and
operation modes (presented in Table 3.2). Some heat exchanger types were investigated and
their sizes are shown in Figure. 3.13. Type (a) (b) were in W-shape, consisted of two single U-
shaped tubes in series connection with a distance of 15 cm and 75 cm respectively. Type (c)

included only one single U-shaped tube with the distance of branch tubes being 75 cm.
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Table 3.2: Experimental schemes of heat transfer test in diaphragm walls (Xia et al., 2012)

No. | Influence factors Factor levels Other conditions
1 Heat te;pcehsanger Tubes type (a), (b), (c) Velocity 0.6 m/s; inlet temperature 35 °C
Water velocity 0.25, 0.45, 0.6, 0.75, 0.90, 1.05, . o
2 (m/s) 130, 1.5 Tubes type (b); inlet temperature 7 °C
Inlet water i .
3 temperature (°C) 32.0,35.0, 38.0 Tubes type (a), (b), (c); velocity 0.6 m/s
4 | Operation modes Interm1tFent operatlon.(l :1), Tubes type (b); velocity 00.6 m/s, inlet
Continuous operation temperature 35 °C

In comparison with the heat exchangers in boreholes, firstly the heat exchange rate per meter
in diaphragm wall is higher. The buried depth of the heat exchangers in boreholes is about 80-
100 m compared to about 20-40 m in diaphragm wall, however the heat exchange rate is
relevant to the buried depth with adverse proportion (the smaller the buried depth of heat
exchangers, the higher the heat exchange rate per meter). Secondly, due to the unlimited size
of diaphragm wall, the two single U-shaped absorber tubes in series connection (W-shaped)
with larger intervals can perform better than double U-shaped heat exchangers in borehole while
all other conditions being equal. Thirdly, a lot of heat is released due to the hydration of concrete
which may lead to the rise of temperature of concrete to 60-70 °C at the most, and its recovery

speed is very slow.

The temperature of underground is a very important factor which influences the heat exchange
rate, i.e., the higher the temperature of underground, the lower the heat exchange rate for space
cooling, and the higher the heat exchange rate for space heating. Fourthly, the surrounding
medium of absorber tubes in diaphragm wall is concrete, while the surrounding of absorber
tubes in borehole is backfills and soil. Because of the higher thermal conductivity and heat
capacity of concrete, heat exchangers in diaphragm wall may perform better than those in
borehole while all other conditions being equal. As a result, it is obvious that the heat
exchangers in diaphragm wall are very different from those in borehole, so the research results
and experience of heat exchangers in borehole cannot be used directly in diaphragm wall (Xia

etal., 2012).

Considering the effect of heat exchanger types on the energy performance, the heat exchange
rate of type (b) is higher than that of type (a) and the heat exchange rate of type (c) is the lowest
at any time as presented in the Figure 3.14. Compared with single U-shaped heat exchangers in
the same condition, the heat transfer rate of W-shaped heat exchanger in diaphragm walls is 25-

40% higher (Xia et al., 2012).
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Figure 3.13: Three types of underground heat exchangers: (a) W-shaped type, (b) improved

W-shaped type and (c) single U-shaped type (Xia et al., 2012)

The effective water velocity is 0.6-0.9 m/s, so a reasonable velocity should be determined,
instead of pursuing an extensive high water velocity. The heat transfer rate changes linearly
with the temperature of inlet water with the rate of 1°C increase with respect to 15% rise of heat

exchange rate (Xia et al., 2012).

Di Donna et al. (2016) applied statistically based parametric analysis techniques to the energy
assessment of diaphragm walls and suggested an optimization of their energy efficiency. The
most important parameters affecting energy performance could be: thermal conductivity
concrete (Acon), the difference between the soil and excavation air temperature (AT), the wall
length (L), the ratio between the panel height and the excavation depth (R), the width of wall
(W), concrete cover (C), the velocity of heat carrier fluid (v) and the number of pipes (or pipe
spacing, sp), besides the diameter of pipes and panel length do not significantly affect the
energy efficiency. In order to do this, 8 cases could be defined with different values of input
parameters (see Table 3.3). Then, 8 numerical models were set to compute the heat transfer
rates at four different time frames corresponding to 3, 5, 30 and 60 days after the activation of

geothermal system.

Increasing the concrete thermal conductivity is a positive way to improve the energy efficiency.
In contrast, the embedment ratio, as well as concrete cover seem to have a minor effect on the
energy efficiency. The panel width is the third most influential parameter in the short term, but
its influence decreases in the long term. See Figure 3.15 to have a better illustration which

compares the effect of each factor normalized by the largest effect in the same time frame.
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Observing the variation of the parameters’ influence with time, it is clear to distinguish those

that play an important role in the short or long term.
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Figure 3.14: Relationship curves of heat exchange rate and time under different types of heat
exchangers (Xia et al., 2012)
Table 3.3: A set of runs for a specific case study and results (Di Donna et al., 2016)

Run Parameter Results
No | W[ R sp C \ AT | Xeon | q-3d | g-5d | g-30d | g-60d

[m] | [m] | [em] | [mm] | [m/s] | [oC] | [()] | [C**)] | [(*)] | [(*5)] | [(**)]
0.8 125 25 | 50 | 0.2 1.5 | 30.8 | 24.6 | 15.1 | 133

08 1.25] 25 | 100 | 1.2 3 | 335|248 | 139 | 11.8
08| 2 | 75 | 50 | 02 3 (2320190 98 | 77
08| 2 | 75 | 100 | 12 15 [ 220 | 193 | 11.7 | 9.8
121125 75 | 50 | 12 3 | 318268 | 157 | 140
12]125] 75 | 100 | 02 15| 188 [ 159 | 72 | 55
12] 2 [ 25 ] 50 | 12 15 | 372 [ 276 | 109 | 8.1
8 [12] 2 | 25 | 100 | 02 3 | 388 | 307 | 168 | 184
Unit: (*): [W/(mK)], (**): [W/m?]

NN N[ |WIN |~

NI

In conclusion, for short term considerations, the pipe spacing is the most important factor
affecting energy efficiency and this suggests that maximizing the number of pipes installed is
one route to get the optimization, however the pipe spacing influence reduces with time and
hence other factors including long term payback periods need to be considered for finalizing
design spacings. In the long term, the temperature excess between the wall and the excavation

is the single most important factor governing energy efficiency.

The field observation results done by Sterpi et al. (2018) were compared with those of Brandl
(2006) and Xia et al. (2012) in terms of the average heat rate. By normalizing the overall area
of the diaphragm walls or the base slab, Brandl (2006) reported 30 W/m? for diaphragm walls
fully embedded in the soil and 10-30 W/m? for base slabs, while 33.6-43.2 W/m is the range of
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the heat rates per unit depth depending on the heat exchanger layout into the diaphragm wall,
for 32°C fluid inlet temperature by normalizing the diaphragm wall depth (Xia et al., 2012).
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Figure 3.15: Normalized effect of each parameter in terms of heat exchanged (Di Donna et

al., 2016)

Meanwhile, Sterpi et al. (2018) gave the seasonal average heat rate per unit depth of 33.4 W/m,
in good agreement with Xia et al. (2012) with similar boundary conditions in both cases. In
contrast, the seasonal average heat rates per unit surface are 13.9 W/m? and 5.2 W/m? for the
diaphragm walls and the base slab respectively (Sterpi et al., 2018), which are much lower than
the references of Brandl (2006), so ground heat exchangers installed in those geostructures that
are only partially embedded in the soil may behave sensibly worse. However, if the overall
resulting performance of 13.9 W/m? is considered as the average of the performance of the two
parts (below and over excavation level), weighed by their pertinence areas (one third for below
part and two third for over part), the performance of the portion below excavation results in

31.5 W/m?, namely very close to 30 W/m?.

There are two aspects to enhance the heat exchange, namely the increase of the distance
between pipe branches circulating the fluid at different temperatures and the minimization of
the length of the path exposed to the excavation that, in some conditions, can negatively affect
the heat exchange. In the numerical analysis, Sterpi et al. (2018) suggested three models to
make the comparison and see the advantages, they are base layout (total length is 90 m), two
enhanced layouts which are single W-shaped and double W-shaped loops with 40 m and 60 m
of total length respectively, see Figure 3.16 for more detail.
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a)
Figure 3.16: Layout of the Base (a), Single-W (b) and Double-W (c) heat exchanger pipe
(units m) (Sterpi et al., 2018)

For both enhanced layouts, the fluid temperature undergoes a rather continuous increase as a
result of the negligible interference between branches at very different temperatures, especially
the first and the last, now being 0.6 m apart from each other. In both cases, the negative
influence of a low thermal condition at the excavation side is confirmed by the lower
temperature increase (or lower energy) observed in the calibrated model with respect to the
initial model as showed in Table 3.4. In calibrated models, a boundary condition with a
seasonally varying damping factor was used to simulate the effect of excavation sides, whereas

this damping factor was kept constant in initial models.

Table 3.4: Energy performance of the three pipe layouts in December 2015 (Sterpi et al.,

2018)
/Saw AT with respect
Layout Le[:;%lth E [kWh] q[W] [3\//1112] to base layourt) [%]
I C I C I C I C
Base 90 | 223 | 157|371 | 263 |20.6 | 14.6 - -
Single-W 40 | 238|173 |395| 289 | 22 |16.1 6.6 10
Double-W 60 | 255182 [425| 304 |23.6]169| 14.5 15.8

Note: I: Initial model, C: Calibrated model

The energy performances of the three different layouts are compared in Table 3.4, in terms of
total exchanged heat E, average heat rate q, and specific average heat rate q/Sqw per unit panel
wall surface, in December 2015. The slightly better performance of the Single-W layout
compared to the base one (+6.6% in the initial model, +10% in the calibrated model, as average

heat rate) demonstrates that a long piping is unnecessary if the thermal interference among
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branches is not minimized and the fluid circulates mostly above the excavation level. The
markedly better performance of the Double-W layout (+14.5% in the initial model, +15.8% in
the calibrated model) basically is the result of a longer pipe and of using both embedded faces
of the wall. In conclusion, Single-W layout and the Double-W layout can exchange 10.0% and
15.8% more heat than the base layout, with a pipe length equal to 45% and 67% of the base

layout respectively.

34



4. Chapter 4: DESCRIPTION OF EXPERIEMENTAL
SETUP (GEOTHERMSKIN)

Many advantages of geothermal system are described in parts above, besides in contemporary
world, policies are pushing the building sector to a higher efficiency imposing high standards
in the primary supply (European Parliament, European Council, 2009). However, the existing
energy solutions still present some weakness, i.e. in dense urban areas, especially in central
districts where available surfaces are limited for solar energy installation or horizontal
geothermal systems to generate enough energy. On the other hand, vertical geothermal systems
usually require high initial costs related to drillings and excavation. It is clear that thermal
activation of earth-contact area of the buildings can be considered as a proper solution without

drilling or excavation costs related to borehole heat exchanger installation.

It is clear that the depths reached by the underground parts of buildings is directly proportional
to the number of stories above the ground level, so the foundation of buildings with limited
number of stories (8-10 floors) do not reach to the homoeothermic zone where the temperature
profiles commonly show a constant temperature, suggesting that the temperature is uniform in
space and constant in time. As a result, the temperatures of the ground at these depths are
slightly less favorable than those of vertical shallow geothermal systems. However, the cost-
benefit balance is still of great interest because the expected efficiency of a system installed at

these depths is relatively low and the low installation cost of very shallow geothermal system.

In this perspective, Baralis and Barla (2019) suggested a novel energy system, called
GeothermSkin, conceived to minimize the installation-related costs. This system is intended to
be installed during building construction or refurbishment. The basic idea of this system is to
provide a full or at least a partial fulfilment of the renewable energy requirements of building
by transforming the earth-contact area of a building into a heat exchanger for heating and

cooling of the building itself.

4.1. Prototype experimental site
4.1.1. Experimental site description

The first realization was designed for experimental purposes intended to test the system energy
performance and thermal impact that is exerted on the surrounding ground. Based on
components available on the market, a setup was designed in a small scale and not used to fulfill

the energy needs of the served building, but used to test a set of different conditions and
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configurations in the same location with sufficient heat supply for a small size commercial heat
pump.

This kind of system has been applied for the building of the Energy Center Laboratory in Torino
(Italy) in 2019. The building was recently built and hosts private and academic research offices
and laboratories. An auditorium is also present at the ground level of the building for a total
gross floor area of about 7000 m?. The building was conceived as a smart energy building with
high efficiency standards to control and monitor energy consumption. An extremely large
number of smart sensors monitor indoor environment and energy consumption on all the 4
elevated stories and on the basement level, including the 2000 m? underground car park. A wide

monitoring system was designed and put in place during prototype construction.

4.1.2. GeothermSkin description

The energy GeothermSkin system covers as a skin structural elements which are in contact with
the ground as presented in the Figure 4.1. The GeothermSkin system can be put in place by
fixing to the reinforcement cages of the earth-contact structural elements or to the outer surface
and then buried by backfilling, but there is a little difference in installation process between
new and existing building. In the case of new construction, the system can be installed once the
structural works are completed which means just after the removal of formworks and before
the backfilling of the ground or attached directly to reinforcement cage. In contrast, in the case
of existing buildings, an excavation need to be done to have enough external space next to the
walls for setting up the system. Therefore, the horizontal area occupancy is obviously avoided

in this case.

The whole system of GeothemSkin is constituted of many modular panels with maximum width
of 2.5 m which allow these modules to be assembled directly on site without the need of special
transportation. The modules compose a network of polymeric pipes (crosslinked polyethylene
PE-Xa or high density polyethylene PE-D) with proper resistance to high temperatures, high
pressures and corrosion. These panels are bounded to the vertical elements by a proper support
and fixing system, namely common anchoring system used for radiant panel-based heating

systems.

Figure 4.2 summarizes the main components of the GeothemSkin system, in which the modular
panels are placed at preferable positions with a minimum spacing of 30 cm from the digging
bottom and 10 cm from the edges. Moreover, the internal diameters of pipes are from 20 to 30

mm, with the thickness of 2 to 4 mm, while the heat carrier fluid within the pipes is a mixture
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of water and glycol that allows to operate safely the system in a range of temperatures down to
-20 °C (freezing point of -30 °C). The single modules (i.e. element indicated as 20, 30, 40) can
present different shapes differentiated by the preferential direction in pipe deployment and
placed on the outer surface of the underground walls (indicated as 10). They can be oriented
horizontally (module 20, 30) and vertically (module 40) and work independently, namely

parallel, but it is possible to make connections between them.

Figure 4.1: Render of the GeothermSkin energy system applied to a residential building
basement (Baralis and Barla, 2019)

40 30 31 32

Figure 4.2: Main components of the novel energy wall system GeothermSkin (Baralis and
Barla, 2019)
The first kind of connection to the collector pipes is to bring them to the inner side of the

building by using appropriate holes, then these pipes are in turn connected to the
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heating/cooling distribution system through a heat pump. Differently, the second configuration
is the direct connection between the exit end of a circuit and the entrance end of the neighboring
one which is established directly on the exterior wall surface. The deployment of manifolds is
conceived to facilitate inspection and intervention. Due to the modularity of the system and its
easily inspected ability, the failure detection of single modules and exclusion of damaged pipes
from the network could be done actively to keep the system’s functionality even in the case of

local damages.

4.1.3. Experimental setup
a/ Pipe layout

The thermal energy is not involved in the building demand, but it just provides a sufficient
energy supply for a heat pump. Designing process of this layout had to take into account the
minimum space required for installation of the system without any interference with daily
activities of the building. The ground heat exchanger system was located on the south-eastern
facade of the building at the most distant corner in order to reduce significantly the thermal
effect exerted by the building and the car park on the ground to this system. The layout,

direction, length, entrance and exit ends the panel are shown in the Figure 4.3 and Table 4.1.

Table 4.1: Heat exchanger circuits experimental setup details (Baralis and Barla, 2019)

Circuit | Pipe direction | Pipe length [m] | Entrance end | Exit end
1 Horizontal 26.6 H2 H1
2 Horizontal 27 H3 H2
3 Vertical 29.3 H4 H3

A set of three different modules (the first two panels in horizontal and the third one in vertical
direction) allows to comparatively test at identical working conditions in both configurations.
A properly designed manifold connection hence allows to select the modules to be tested with
parallel rather than sequential connection. Hydraulic circuit was driven to the inner side of the
wall by means of four small diameter holes with a 130 mm diameter (indicated with letter H in
Figure 4.3). Besides, another larger core was realized in the middle circuit in order to bring the
sensor cables of the monitoring system to the acquisition unit. Figure 4.3 describes the
deployment of the pipes network in the experimental site with the identification of the modules
and of the drilled holes H1 - H2 - H3 - H4 for manifold connection and HM for monitoring

sensors wires (dimensions are indicated in centimeters).
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In order to reduce the thermal influence of the air temperature at the ground level, the heat
exchanger coil covered the wall from about 150 cm below ground surface up to the maximum
depth of the basement level of approximately 4.60 m below ground surface. An area of 210 cm
width per 300 cm height resulted in an effective exchanging area of 6.3 m? per module while

neglecting the relatively small shallower parts reaching the ends.
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Figure 4.3: Deployment of the pipes network in the experimental (Baralis and Barla, 2019)

Figure 4.4: Trench shoring process: (a) early stage of excavation and (b) bottom of the
excavation (Baralis and Barla, 2019)

The excavation was done to install the modules into the exterior surface of the walls. However,
as mentioned above, there would be no need to do the excavation in case of new construction,
while the ground surrounding the existing walls need to be excavated to generate space for
modular setup. In the experimental site, due to the small available area for the excavated
material and facilities, excavation faces were built vertical. Because of the shape of the
excavation and the depth reached, the shaft was secured by means of relevant iron trench shores

(Figure 4.4). Once the excavation was completed, the pipes network was fixed to the exterior
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surface of the wall and the three circuits were manually put in place by a series of simple metal

clamps with approximately 75 cm spacing (Figure 4.5).

The protection of the pipe system from damages during soil compaction process had to be
considered. One of the proper methods is providing thin sand layers limited to the very narrow
surroundings of the walls, which reduces shear forces on the pipe network. However, the

compaction process had to be done carefully.
b/ The system distribution

Hydraulic circuit brings the fluid to the heat exchangers and vice versa by a series of connection
valves that are in turn attached to the main flow and return pipes of the heat pump. In particular,
the hydraulic circuit has been equipped with a manifold that allow to test different
configurations of the heat exchangers (see Figure 4.6), the series of valves mounted on the
manifolds allow to singularly exclude from circulation one or more modules. Consequently, the
modules are connected in parallel rather than sequentially. The flow in these main flow and
return pipes has to be able to feed multiple heat exchanger circuit simultaneously. These pipes
were made of high density polyethylene with a larger nominal diameter of 32 mm and to be
tested properly against leakage before connecting to the manifold system. Furthermore, the
system was pressurized up to 2 bar and pressure decrease over time was measured by means of

an appropriate pressure gauge.

Figure 4.5 Pipe deployment fixed by regularly distant clamps (Baralis and Barla, 2019)
Nominal heat power of currently installed heat pump is of 3.15 kWt with a declared COP of
4.72. Thus electric supply is about 0.67 kWe including consumption from the two circulation
pumps which are embedded in the heat pump. Each of the circulation pumps is conceived to
serve separately the user side rather than the ground side. While on the ground side nominal

flow rate is 0.65 m>/h, a significantly lower flow rate (0.29 m3/h) is set up at the user side. Flow
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rate is also directly measured at the heat exchanger side where some energy meters were

installed in proximity to the manifold in the cavaedium.

Retun 3 Flow3 Flow 2
FOHms TAW S Tow 2
o

Figure 4.6: Manifold connecting the pipes from/to the heat pumps with the heat exchanger
modules (Baralis and Barla, 2019)

The heat pump internally performs a thermodynamic cycle on R407C type refrigerant fluid
(working volume 1.16 kg) which is composed by HFC components (mixture of 23% R32, 25%
R125 and 52% R134A) that allows to provide water at high temperatures up to 65 °C at the hot
side of the cycle. In particular, the user (secondary) circuit is composed of a fan coil to dissipate

the refrigerant/heating energy and a buffer accumulator tank (Figure 4.7).

Secondary circuit pipes are 22 mm diameter galvanized steel pipes with the same thermal
insulation as the primary circuit. The use of a fan coil can dissipate the heat produced by the
heat pump during winter season, while during the summer season the fan coil heats up the
temperature of the heat carrier fluid. The internal fan coil can be fed with heat carrier fluid at

temperatures in the range of 5 °C to 85 °C. Electrical ventilation engine allows to produce a

flow rate of 340 m’/h.
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4.1.4. Monitoring system

An extensive monitoring system was designed to analyze thermo-mechanical induced effects
on the wall and thermal alteration, water content and pore pressures in the ground volume facing

the GeothermSkin prototype.

a/ Stress-strain monitoring system

In natural conditions, the temperature of the wall external surface and of the surrounding ground
are almost the same, but slightly different from the temperature in free field conditions. The
ground close to the wall over excavation level suffers from the thermal change due to the
influence of the air inside, especially, the presence of a heat exchanger within the structure
generates the thermal alteration beyond the external surface of the equipped wall. The heat
carrier fluid is circulated in the pipes of ground side and user side (outdoor and indoor units of
the heat pump), it arrives at the heat pump from ground loop and carries heat at low temperature
during heating, or enters the circuit of ground side and carries heat at high temperature during
the cooling season. This is especially true at the entrance end of the circuit, while along the path
the temperatures drop/increase respect to the wall temperature decreases as a result of the heat
exchange with the ground (Baralis and Barla, 2019). It is clear that the changes in temperature
lead to deformation that is proportional to the temperature variation, then strains are in turn
related and cause stresses acting on the structural elements. However, in this work the thermo-
mechanical aspects have been neglected because of the main interest in the thermal and
hydraulic coupled analysis directly involved in the determination of the geothermal

performances. Nonetheless, a brief qualitative description of collected data will be given.

Strains were measured by a series of 5 gauges that were firmly fixed to the wall by two dowels
(for each gauge) glued by chemical anchoring agent in specifically drilled holes, see Figure 4.8:
(a) fixing dowels positioning prior to installation and (b) after the installation. Besides, 4
pressure cells sensors were put in place in addition to the previously mentioned strain gauges
to measure the stress field acting at the wall surface in different directions. Pressure is recorded
by converting it through a transducer into an electrical signal conveyed to the acquisition unit
and data-logger. The instrument detects the pressure acting on the direction normal to the
measure plate. In particular, sensor Cp2 allows to measure the normal direction to the wall, so
some concrete was cast behind the plate filling the 5.5 cm thick void space in order to provide
a perfect contact between plate and wall surface (see Figure 4.9 with (a) Cp2 with backfilling

to guarantee perfect contact and (b) Cp4 positioning).
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Placement and accurate positioning of the sensors was performed according to the scheme of

Figure 4.10 and Table 4.2

(b)
Figure 4.8: Strain gauges installation (Baralis and Barla, 2019)

(a) (b)
Figure 4.9: Installation of the pressure cells on the wall surface (Baralis and Barla, 2019)

b/ Temperature and hygrometric monitoring system

Regarding to the temperature measurement, a large number of PT-100 (see Figure 4.11a) were
positioned on four planes at different depths that were materialized during backfilling
operations. The thermal resistances are specifically designed for ground monitoring. Some
potential damages to the sensors or their cables could be caused by the possible aggressive

environment in the ground and problems related to soil compaction, i.e. impacts with larger
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particles or boulders in the heterogeneous ground at the site. As a result, these sensors and

cables need to be used together with a metallic protection.

750
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h 4 Circuit 1 Circuit 2 Circuit 3
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Cp3. 4 Cp4+) | ® Outlet

Figure 4.10: Heat exchangers prototype layout and monitoring stress and strain sensors
on the wall surface (Baralis and Barla, 2019)
Table 4.2: Location of stress and strain sensors on the wall surface with the direction of axis

(Baralis and Barla, 2019)

Loop Instrument Depth [cm] Axis Code

1 Strain gauge 170 H Bel

1 Pressure cell 200 N Cp2

1 Strain gauge 260 \Y% Be4

1 Strain gauge 350 H Be7

1 Pressure cell 410 A% Cp3

2 Strain gauge 170 \% Be2

2 Strain gauge 260 H Be5

2 Strain gauge 350 \% Be8

2 Pressure cell 410 H Cp4

3 Strain gauge 170 H Be3

3 Pressure cell 170 A% Cpl

3 Strain gauge 260 \Y% Be6

3 Pressure cell 350 H* Cp5

3 Strain gauge 350 H Be9
Note: V = vertical, N = normal, H = horizontal, H* = due to
excavation backfilling, accidental hit induced a 15° counter-
clockwise rotation of the plate

Backfilling process was done in stages with planes being shown in Figure 4.11b. Each
materialized plane was executed consecutively by roughly compacting and equalizing to

designed depths. Temperature sensors were positioned in strings composed of 4 or 8 sensors in
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each plane, depending on the depth and on the specific alignment. It is expected that along the
depth of the wall, the thermal gradient tends to be bigger and bigger, so the maximum distance
between measurement points and the wall should be smaller at deeper planes. The accuracy of
the collected data might be assured by perfect contact between the sensors’ bodies and the
ground. Installing the sensors by digging correctly at desired positons as designed with small
holes did not only retain perfectly the mentioned contact, but it resulted in smaller differences
between the part subjected to sensor insertion and the rest of the plane in terms of compaction
in comparison with larger digs. As mentioned in the part above, the sensor protection from the
upper parts or compaction process could be done by covering these sensors with a thin sand
layer. There were still little shifts of sensor positions because of the presence of pebbles within
the compacted soil that obstructed the exact placement of the sensors. Although the positions
of the sensors were accurately measured just after installation, acceptable shifts of Scm in
magnitude with respect to the designed location could be allowed, see Figure 4.14 and Figure

4.15.

Apart from the thermal monitoring apparatus, a total of 18 hydrometers were included in the
monitoring system up to the maximum depth (4.6 m below ground surface) reached by the wall.
They measure the volumetric content of water as a percentage of the total volume investigated
by the probe with 0.03% volume of precision and also temperature measurement is embedded
in the 10-cm long sensor (see Figure 4.12) with 2 °C accuracy. Since the shallower plane was
at 0.75 m below ground surface and the infiltration due to rainfalls (or garden watering) starts
from the ground surface with significant gradients in the very shallower layers, 8 sensors were
installed above plane A. The cables, sensors were protected before final ground backfilling by
placing them in resistant plastic tubes which were filled with finer ground parts (mainly sands)

and have been removed only after the ground levelling (Figure 4.13).

All the sensors cables, as mentioned above, are driven to specifically drilled hole HM in the
wall (shown in Figure 4.3) and headed over the cavaedium where they were carefully arranged
with excess length to avoid straps due to ground settlements during the consolidation phase. In
the cavaedium, the acquisition unit was operated by the electrical system of the building, but
there was still a backup battery remaining in the system as well in order to ensure continuous
operations and avoid data losses. All process of data collection can be uploaded on the internet

for remote consultation and download.
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Wall Excavation

-075

(a) (b)
Figure 4.11: (a)Temperature monitoring sensors for ground monitoring and (b) depth

location of the sensors along planes (Baralis and Barla, 2019)

Other significant information related to the energy system is the amount of heat exchange.
Measurement could be done by three different energy meters installed on the collector manifold.
Each meter is made up of two separate pieces: the first one functions as a monitor of the flow
rate of the heat carrier fluid with an ultrasonic flow meter on the return pipe. The second one
couples the flow rate measurement with the temperatures at two distinct points (the inlet and
outlet ends of the circuits) measured by PT-500 thermal resistances, see Figure 4.7 for detail
distribution. In order to compare the differences in energy performance of two different
directional configurations at the same conditions, the two first meters were set up to measure
the data from circuit 1 and 3 respectively. Besides, the energy performance of the whole
GeothermSkin system can be evaluated based on the data measurement of the third meter
installed on the main flow and return pipes of the system. Data collected were the circulation
pump speed of both the primary and secondary circuit, the inlet and outlet temperatures of both
the circuits, the temperature of the buffer tank on the secondary circuit and the cavaedium air
temperature. In order to delineate heat pump efficiency and the unit energy cost of the system,
it is planned to acquire further parameters as the power consumption of the heat pump through
a dedicated electricity meter and the flow rate on the secondary circuit through the installation

of an additional energy meter.
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J’-_..-:r,a A
(a) (b)
Figure 4.12: Volumetric water content sensor installed at the experimental facility in Torino:
(a) before installation and (b) once installed before burial on plane B where the green cables
are connected to the temperature sensors while the thicker black ones are the hygrometer

sensors cables (Baralis and Barla, 2019)

(a) (b)

Figure 4.13: (a)Installation of hydraulics sensors above the plane at very shallow depths

within plastic pipes filled with sand before ground backfilling. Sensors included 8
hygrometers and (b) 3 tensiometers (Baralis and Barla, 2019)
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Figure 4.14: Temperature sensor location on (a)Plane A and (b) on Plane B along with their
codification. Also some hygrometer sensors nominated as SOxx are depicted (Baralis and

Barla, 2019)
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Figure 4.15: Temperature sensor location on (a)Plane C and (b) on Plane D along with their

codification. Also some hygrometer sensors nominated as SOxx are depicted (Baralis and

Barla, 2019)
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4.2. Experimental results

The ground heat exchangers installation, together with the thermo-hydro-mechanical
monitoring system, was completed in July 2019. The hydraulic circuit was completely
saturated with the water-glycol mixture in August 2019 and thus the experimental campaign

started in September 2019.

For this thesis, a set of 6 different tests in heating mode were analyzed from the end of January
to the beginning of May. These results particularly illustrate the thermal performances of the
installation, the ground thermal affection and the mechanical actions on the wall. Test
information can be found in Table 4.3. The tests cover a variety of possible configuration from
the heat exchanger geometry point of view. In fact, the links between different circuits in all
tests were parallel, but the various number of circuits and different sets of circuits employed
was performed. The thermal performances during the tests conducted with different couples of
circuits (1 and 2, 1 and 3, 2 and 3) allow to comparatively define the more efficient solution
from the thermal point of view. Besides, the activation of single, double or triple circuits will

enable to test the relevance of thermal interference among neighboring modules.
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Figure 4.16: Thermal performance of experimental H 2+3 20200207 20200210
with parallel link of circuit 2 and 3 in heating mode.
Although the heat carrier fluid circulation is continuous, the thermal cycle operates

discontinuously, so the parametrization of target temperature should be considered carefully in
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order to optimize the overall system performances. Discontinuous thermal cycle is driven by
the temperature of the fluid delivered to the fan coil user (namely BT3 in the Figure 4.16). The
relationship between the cavaedium air temperature and the supply one was presented by means
of a curve that can be adjusted manually on the heat pump, in which the thermal cycle starts
when the difference between the calculated target temperature Trarget and the real one Trear (the

outlet temperature at user side, BT3) exceeds an imposed value in specific time.

DegreeMinute = z (Ter= Tager)- t

4.1)
Table 4.3: List of tests carried out
Link | Starti Endi Duration Target
No Test code (:i:) gmlélg gnirelg Temp
[h] [°C]
H_1+2 20191220 20200113 20/12/2019 | 13/01/2020
! *) P 1930 1053 | 74 |
31/01/20 03/02/20
2 | H_1+2 20200131 20200203 P 18.00 09.20 63.3 35
07/02/20 10/02/20
3 H 2+3 20200207 20200210 P 1930 09.20 61.8 45
14/02/20 17/02/20
4 | H_1+3 20200214 20200217 P 19.20 9.20 62.0 45
21/02/20 24/02/20
5 H_1+3 20200221 20200224 P 18.04 10.04 64.0 45
28/02/20 02/03/20
6 | H 1+2+3 20200228 20200302 | P 18.40 9.25 62.8 45
05/03/20 07/05/20
7 H 1 20200305_20200507 - 1925 10.00 1502.6 45
(*): Tests taken from Baralis and Barla (2019)
(**): The letter P indicates an in parallel connection. Tests are identified with the first letter
“H” indicating the heating and the following numbers indicate the activated heat
exchangers (Circuit 1, 2 or 3)

4.2.1. Energy wall thermal performance

Monitoring systems allowed to determine the thermal performance during different tests in
terms of instantaneous and mean exchanged thermal power, temperature range of the inlet and
outlet of the system. The heat losses in the main collector/distributor pipes in the cavaedium
can be neglected because of the small temperature gradient between the heat carrier fluid and
the cavaedium ambient temperature, together with the complete and heavy insulation of the
pipes. As a result, these temperatures mentioned above should be taken into account as outlet

and inlet of the heat pump.
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One example of experimental interpretation of test H 2+3 20200207 20200210 (Test 3) with
parallel link of circuit 2 and 3 in heating mode is showed in Figure 4.16 in order to see thermal
performance of the system. Heat exchange is calculated on the basis of the temperature

difference at the inlet and outlet ends of the ground loop, according to Equation 4.2:

q=0.p,.c,(T,-T,,) 4.2)

where Q is the flow rate, registered by the flow meter mounted on the main collector pipe, pris
the unit weight of the fluid, cris its specific heat capacity, Tin and Tou are the inlet and the outlet
heat pump temperatures on the ground loop respectively. All parameters used for the

interpretation are listed in Table 4.4.

These values are referred to the mixture of the propylene glycol to water mixture at the specified
proportions in volume and considering the mean temperature of the fluid of 8 °C. The
dependency of the unit weight and the specific heat capacity was neglected due to the limited
temperature ranges experienced. As regards system performance, instantaneous heat exchange
rate peak value was recorded during the initial heating ramp and was equal to 5.25 kW,
corresponding to a temperature difference of 5.1 °C. Beside this starting point of the ramp,
maximum heat exchange rate was 2.15 kW corresponding to a temperature change of 2.1 °C.
During the compressor activation phase, the power generated was about 1-1.4 kW (as clearly
shown in Figure 4.16). However, the main interest is to define the mean thermal power that can
be exchanged by the system. This can be evaluated as the ratio of the total amount of heat

provided by the system over the test time as in Equation 4.3:

t

stop

I qdt
2 44
Dean = = (4.3)
tst()p “ Lstart tst()p - tsturt

Where tstart and tsiop are the start and ending times of the test respectively and q is calculated
according to Equation 4.2 for each time step. This means that power can also be interpreted as
the slope of the interpolating line of the cumulated exchanged energy depicted in Figure 4.16.
In the test, mean thermal power reached the approximate value of 478 W, then the heat
exchange rate was computed by the ratio of the mean thermal power and the area of activated
circuits (11.5 m? per each circuit). Table 4.5 reports the heat exchanges for the tests carried out.
Detailed information and graphs regarding the tests carried out are extensively reported in

Appendix A.
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Table 4.4: Parameters’ values for calculation of heat exchange rate in experiment

H 2+3 20200207 20200210

Quantity Value
Propylene Glycol to water mixture [%] 25
Flow rate [1/s] 0.26
Unit weight [kg/m?] 1028.31
Specific heat capacity [kJ/kg°C] 3.889

Table 4.5: Thermal performances of the energy wall from experimental results interpretation

Peak Average
No Flow Tem Exchange
Test code rate | Power P- | power &
change rate

Wh] | kW] | [°C1 | kWl | [W/m?]

H_1+2 20191220 20200113 (*) | 910.0 | 2.13 | 2.1 | 0492 | 21.39
H_1+2 20200131 20200203 | 925.0 | 2.67 | 2.6 | 0333 | 14.48
H_2+3 20200207 20200210 | 925.8 | 226 | 22 | 0478 | 20.78
H_1+3 20200214 20200217 | 282.0 | 1.75 | 56 | 0.115| 5.00
H 143 20200221 20200224 | 930.7 | 248 | 24 | 0445 | 1935

H_1+2+3 20200228 20200302 | 1006.0 | 2.46 | 2.2 | 0476 | 13.80

7 H 1 20200305 20200507 713.4 | 3.25 4.1 0.363 31.57
(*): tests taken from Baralis and Barla, 2019

NN AW —

Based on the Figure 4.17, in terms of mean heat exchange rates, the results from different tests
in the case circuits with different pipe main direction are almost the same. It is evident that the
heat rates were approximately 20 W/m? when comparing three tests of Test 1 (both circuits 1
and 2: horizontal), Test 3 (circuit 2: horizontal, circuit 3: vertical) and Test 5 (circuit 1:
horizontal, circuit 3: vertical) which were conducted in similar conditions (similar values of
flow rate, the same properties of fluid, target temperature of 45 °C). Furthermore, the same
results of two latter tests which included two circuits with the same direction deployment, but
different positions also showed that the heat exchange rate is independently from position of

circuits.

On the other hand, Test 2 was also conducted in similar conditions with Test 1, but the target
temperature was lower with 35 °C compared to 45 °C of the latter. The heat rate of this test was
around 5 W/m? smaller than that of the Test 1, which can be explained by considering the
temperature range of the fluid in the heat exchanger. Baralis and Barla (2019) conducted the
Test H 142 in three different values of target temperatures which were 35 °C, 45 °C as

mentioned above and 55 °C for the other one. In Figure 4.18, temperature ranges of the brine
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in the heat exchanger are almost stable, independently from the temperature to be delivered to
the user, which presented by the blue and green line in Figure 4.18. Indeed, tests carried out
with circuit 1 and 2 with parallel connection in heating mode highlight only slight differences
in the thermal range. However, this slight difference also led to a decrease in heat rate. As a
results, this finding might suggest that the expected temperature at user side plays important
role in heat exchange rate of the system: the higher is the target temperature, the bigger is the

amount of heat rate exchanged.
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Figure 4.17: Thermal performance comparison of different tests
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Figure 4.18: Comparison of thermal levels in heating tests depending on the supply
temperature (Baralis and Barla, 2019)
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Figure 4.20: Thermal performance interpretation of experimental test

H 1+3 20200214 20200217 with parallel link of circuit 1 and 3 in heating mode

Regarding Test H 1+3 20200214 20200217 (Test 4), maximum heat exchange rate was only
1.75 kW although a temperature change was biggest in all tests, comprising 5.6 °C, while these
values of other tests were virtual identical, with more or less 2.4 kW and 2.6 °C (Figure 4.19).
During the compressor activation phase the power generated is about 0.4-0.8 kW (as clearly
shown in Figure 4.20). Furthermore, its heat rate was significantly smaller than those of others,

accounting for only 5 W/m?. These much smaller values resulted from the much lower flow
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rate with only 282 1/s in comparison with more than 900 1/s of other tests. As a conclusion, the

thermal performance is significantly affected by flow rate.

Results from Test H 1+2+3 20200228 20200302 (Test 6) with the activation of three circuits
showed an identical average power with respect to those of other tests with two activated
circuits, but the larger activated area of three circuits led to a decrease in the heat rate. Similarly,
although the average power of Test H 1 20200305 20200507 (Test 7) was lower than those
of other tests due to a smaller value of flow rate, the heat rate obviously increased because of
the small activated area of one circuit. This finding might be associated with heat flux as a
function of the pipe length, it can be observed that: (i) pipes of different lengths and same inlet
and outlet locations exchange the same heat flux, and also: (ii) pipes of the same length but
different distance between inlet and outlet exchange the same heat flux (Sterpi et al., 2014). For
example, Test H 1+3 and Test H 2+3 (Test 3 and Test 5) have the same pipe length, different
position of inlet and outlet, but the heat flux in both tests witnessed little difference which may
be due to the difference of time period. Another example is the comparison of Test H_1+3 and
Test H 1+2+3 (Test 5 and Test 6), they have the same position of inlet and outlet, different pipe
length, but the heat flux in both tests were similar with a slightly larger value belonging to Test
6 due to its slightly higher flow rate. In conclusion, in order to reduce the initial investment
cost, but still assure a sufficient heat exchange rate, the less number of circuits or even single
circuit should be used rather than using more circuits with parallel linking if all other conditions

are the same.

Mean thermal power values were normalized by the wall area interested by each circuit. In
particular, the shallower portion of the wall that was not equipped with the heat exchanger was
computed too. The inclusion of this area leads to conservative evaluation of the heat exchange
rate. Results show a thermal efficiency of about 13-22 W per unit area in heating mode. It is
clear in Figure 4.21, these values are almost consistent with previous literature referred to
classical energy wall (15 W/m? of Bourne-Webb et al. (2016), around 20 W/m? of Di Donna et
al. (2016), 14 W/m? of Sterpi et al. (2018)), except the result of Test 7 which is also in line with
the suggested value for feasibility studies of Brandl (2006).

The thick concrete wall has a significant thermal resistance, the hydraulic circuit is not directly
connected to the external facade as the support system ensures a minimum distance (about 5
cm) and soil is interposed between the circuit and the wall. As a result, the heat flux towards
the inner facade of the wall seemed to be relatively small and negligible, there was no

measurement there.
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Figure 4.21: Heat rates of different tests in comparison with previous literature

4.2.2. The impact of GeothermSkin on the surrounding ground

As mentioned in Chapter 2, geothermal systems use the subsurface as a heat source/sink
depending on the operative mode. Injection or extraction of thermal energy thus can negatively
impact on the temperatures at the site, affecting the resource either in the short or the long term.
Source affection can be concisely represented by the heat plume generated. Thus the
characterization of its magnitude, extension and position plays an important role in design

process of geothermal structures.

a/ Thermal impact of GeothermSkin system

An extensive network of PT-100 sensors was installed in the experimental site with the sensors
deployment being presented in previous paragraphs. All data resulting from the experimental
campaign has been collected, processed and reported in Appendix A. Some typical and
representative results only are shown in this part, in particular reported results refer to Test

H 2+3 20200207_20200210 (Test 3).

As it can be seen from Figure 4.22, the ground temperature is more stable than the outdoor air
temperature. At shallower depths and at the nearest location to the wall (C2T1, C12T1), daily
temperature of the ground fluctuated slightly. In contrast, at bigger distances from the cold
boundaries (upper surface and wall facade, like C2T4, C12T4), the temperature trend kept
almost unchanged during the whole test. During the experimental campaign in heating mode,
the mean thermal level resulted to be hotter at higher depths, which was clearly indicated by

comparing the records of paired sensors on string 2 and string 12 that are located at same
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planimetric position but different depths (0.75 m and 3.35 m below ground surface
respectively). On the other hand, the ground temperature experienced a slight decrease by the

thermal activation (the small difference in temperature between the starting point and ending

point).
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Figure 4.22: Thermal records along string 2 (plane A) and string 12 (plane C) during
experiment H 2+3 20200207 20200210
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Figure 4.23: Temperatures records from chain 2 of experimental test

H 1+3 20200214 20200217
Regarding Test 4, the inlet temperature of circuit in this test changed significantly overtime. As
in Figure 4.23, this temperature change ranged from 5 °C to more than 20 °C, 15 °C of difference

was much higher than those of the Test 3 or Test 5 with only 5 °C changes for both of them.
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Furthermore, the maximum temperature of inlet of circuit in Test 4 was about 10 °C higher than
those of others, which resulted in the lower amount of heat carried by the fluid. However, the
effect of thermal system on the ground temperature in this case was also minor because the

temperature kept almost unchanged during the test as illustrated in Figure 4.23.
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Figure 4.24: Ground temperature at the beginning of tests in different positions near along
the wall
Figure 4.24 shows that ground temperatures at the beginning of tests were the same in different
positions near along the wall. These temperatures varied between different tests which means
that they changed in time due to the affection of environment. Furthermore, the temperature
change during the test is reported in Figure 4.25, where it is clear that the variations of the
ground temperature in all tests were similar in different positions. Additionally, the ground
temperature of Test 4 and 5 was unchanged, while a small change of around 0.5 °C was recorded
in Test 2, 3 and 6. In contrast, the ground temperature of Test 1 and 7 experienced a significant
change with about 2.5 °C and 10 °C respectively, however this seems to result from the affection
of the external temperature and environmental affection such as rainfall as these tests were

operated in a long period of time (around 24 and 63 days respectively).

Thus, the experimental results seem to suggest that there is a minor impact or even no influence
on the ground temperature exerted by the system when it is used in heating mode during winter
season. As a result, the thermal status of the ground is virtually equal to the undisturbed

conditions.
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H 2+3 20200207 20200210
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b/ Impact on the ground partial saturation

Due to the low influence also from the thermal point of view, there was also no significant
alteration caused by the thermal activation on the hygrometric equilibrium of the ground near
the wall. It can be clearly seen from Figure 4.26 that the water content seemed to be virtually
unaffected by any external influence. Furthermore, the absence of water infiltration due to
rainfall led to a limited volumetric water content, slightly decreasing in time. Additionally, the
water content felt with depth with 5% at the base of the wall and around 10% at plane A (0.75
m below ground surface). Similarly, the water tension witnessed little rise recorded by the

tensiometers, with the difference of 2 kPa compared to the start of the test.

4.2.3. Structural effects on the wall

Similar to the environmental aspects, the structural impact of thermal system on the supporting
wall structure seemed to be extremely low. Data collected by strain gauges and pressure cells
of the monitoring system revealed an extremely low change due to the thermal activation. In
Figure 4.27, all strain gauges and pressure cells rose slightly at the beginning of test and almost
remained unchanged later, even backed to the original values after the halt of test. As a result,
it can be considered that there was no influence of thermal system on the wall in terms of
structural effects. This finding is confirmed by the rest of the experimental campaign (see
Appendix A), in which both stress and strain were almost stable during the test duration, except
some cases witnessing variations due to the rainfall affection. It is clearer in Figure 4.28, the
impact in term of deformation is extremely limited (from almost null to a maximum of about
90 e, excluding Test 7). Also stresses variations are extremely limited (from 40 to 200 kPa),
confirming that the impact that is exerted on the wall because of the thermal activation is minor.
This evidence seems to suggest that from the technical point of view, structural design of such
structures might be carried out without taking into consideration the application of the
GeothermSkin system. Associating with all comments above, collected data suggest that no
relevant impacts are exerted by the system both from the wall structural point of view and on

the surrounding ground.
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Figure 4.27: Strain gauges and pressure cells records from test H 2+3 20200207 20200210
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Figure 4.28: Stresses and strain variations induced by GeothermSkin thermal activation

during the heating experimental campaign.
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5. Chapter 5: NUMERICAL MODELLING

5.1. Thermal-Hydraulic-Mechanical Analysis

A numerical modeling of coupled thermo-hydro-mechanical (THM) analysis is required in
order to predict the distribution of stresses, strains, displacements and interstitial pressure
around an energy geostructure.
Energy geostructures are made up of elements in reinforced concrete, such as piles, foundation
slabs, walls. They are not only subjected to a mechanical component of stress given by the load,
but they are also able to exchange heat with the surrounding environment. The three aspects,
thermo-hydro-mechanical, are coupled since the variations of the solid volume are influenced
by the presence of temperature gradient, the heat exchanged depends on the presence of water
flow, the density of the water varies with the heat load and the mechanical response of the
materials depends both on the fluid pressure (effective stress) and on the variation in
temperature. All the equations that governs a THM analysis will be introduced:
»  Mechanical field:

Equilibrium equations

Congruence equations

Constitutive laws
»  Hydraulic field:

Mass conservation equation

Darcy’s laws
»  Thermal field:

Energy conservation equation

»  Boundary conditions

5.1.1. Mechanical field equations

»  Equilibrium equations

Timoshenko and Goodier (1951) equations must be satisfied by the soil:
div(aij)+ pg =0
Where the div operator is the divergence, ojj is the tensor of the total stresses, gi the gravity

vector and p the density of the material, which includes the density of the water pw and the solid

particles ps.
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The definition of effective stress allows to consider the hydraulic component, thus the hydro-

mechanical coupling is introduced and the equation is transformed as:
div(o]; ) +Vp,+pg =0

V is the gradient, pw the pore water pressure and ¢’ the effective stress tensor that can be written
in incremental form by introducing the constitutive law.
»  Compatibility equations
The deformations € can be written in terms of displacements u along x axis, displacement v
along y axis and displacement w along z axis:

g, = a—u;g =@;5 =a—w

ox T oy T oz
L _du v v ow_dw du
Yooy ax Y o0z oyt ox oz

Since deformations are a function of only three displacements, these are not independent.
Mathematically it can be demonstrated that for the existence of a compatible displacement field,
all the above mentioned deformation components and their derivatives must exist and be
continuous for at least the second derivative.
»  Constitutive laws

In order to obtain a solution for the system, other equations must be introduced: constitutive

laws relate stresses to strains. For an elastic material, they are:

B E[(l —V)E, +VE, +ng]

T =2
E[(l —V)E, +ve + vgz]
o =
7 A+v)(1-2v)
E[(l -v)e, +ve, + vey]
o =
: 1+v)1-2v)

t,=Gy,7,.=Gy,;7., =Gy,

Where, for homogeneous, linear, isotropic, elastic materials, E is Young’s modulus, v is the
Poisson coefficient, while G is the Lame¢ constant (shear modulus).

In order to consider the thermal coupled effects, the vector form is introduced:

do! =C

ij ijkl

(dgk, +d5Tk1)

Where Cijx 1s the stiffness matrix composed by 36 elements, which can be written in function

of only E and v in case of isotropic, linear, elastic material:

65



1 XY 0 0 0
1-v 1-v
v 1 0 0 0
1-v 1-v
v Y 0 0 0
c - E(l—v) 1-v 1-v
ik~ 71 Nf1 A\ —
MOev)(i-2v) o 0 o0 =% 0 0
2(1-v)
0 0 0 1-2v
2(1-v)
0 0 0 0 -2y
i 20-v) |

Thermal deformation is defined as:
de), = B,dT
Where B is the linear coefficient of thermal expansion [°C!] and dT is the temperature

increment.

5.1.2. Hydraulic field equations

»  Mass conservation equation
The mass conservation equation was obtained using some theorems of fluid mechanics and
using Darcy's law. The latter describes the motion of a fluid within a porous material and it is

expressed as:
v=—KVh
v is the velocity, K the permeability of the soil and Vh the hydraulic load.

The mass conservation equation in transitory conditions can be mathematically described by

Poisson’s equations:

o’h 0’h O°h) Oe,
Kl —+—+—|=
ox° oy° 0Oz ot
&vis the volumetric deformations.
If the conditions of stationary regime exist, the volume does not change over time and the

previous equation is reduced to that of Laplace:

2 2 2
(ah o’h ah]:o

+ +
ox>  oy* oz
The latter one describes a decoupled problem, since there are no mutual influences between the

mechanical problem and the hydraulic one, therefore the field of interstitial pressure can be
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determined independently from the solution of the mechanical problem. In vector form, the

Poisson equation becomes:

. M

div(KVh) = 0¢,
. M
Kkvip= 9%
or

Where the Laplacian operator Vh s defined as divergence of the gradient. Adding the thermal

rate, the final equation is:

. M T
kvip =2 05
Ot Ot
Where the thermal deformation is defined as:
gl =3BAT

5.1.3. Thermal field equations

>

Energy conservation equation

The heat transmission is a complex phenomenon which involves many material properties

where the transmission takes place. However, there are three different ways or better

mechanisms of transmission, described in the following.

Conduction is an energy transporting way which is proper of solid or liquid phase in a
porous material, no fluid’s macroscopic movement is required. Fourier’s law governs this
mechanism where the transfer of kinetic energy takes place from high temperature zones

to the adjacent low ones, and the heat transfer [W/m?] expressed as:

qcond = _j’ %’T

Where A is the thermal conductivity of the material [W/mK] and VT is the temperature

313

gradient. The sign “-“ is related to the way of decreasing temperatures.
Convection happens through a fluid in movement, hypothesis of saturated material was
made, always with different temperature; the transfer energy with macroscopic

transportation is equal to:

qCOnV = CWpW K/’AT
Where cy is the specific heat of water [J/kgK] and AT is the difference of temperature

between the two systems.
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- Radiation is the mechanism of transfer between two surfaces with different temperatures.
Its contribution to heat transfer is minor, so it will not be taken into account in our
analysis.

The equation of conservation of energy under steady-state conditions in the case of only

conduction is provided by the Laplace equation:

—2
VT=0
On the other hand, in the case of transitory conditions, always only by conduction, the
mass conservation equation can be described mathematically by the Poisson equation:

—2 oT
AV T =pc—
p ot

The second member is the accumulation of heat and it is formed from:
pc=np,c, +(1-n)p.c,
That is the specific heat of the soil in which water specific heat cy and solid skeleton one
cs are included; Conduction and convection can be blended together and, in the case of
transitory conditions, the final equation would be:
oT

VT + div(pwcw\ng - pca =0

5.1.4. Boundary conditions

It is known that, to solve a problem that can be expressed in the form of differential equations,
boundary conditions are necessary firstly to reproduce a real condition, secondly to reduce the
unknowns to have a determinated system. The choice of the boundary condition is more
important in our analysis in order to create an appropriate model and reduce costs, rather than
the complicated and long-time calculation related to equations above or even may lead to the

divergence of the solution or to the convergence to a wrong solution.
There are several types of boundary conditions:

»  Dirichlet Boundary Condition
This condition specifies the value that the unknown function needs to take on along the
boundary of the domain. For example, the Laplace equation, the boundary value problem with
the Dirichlet boundary conditions is written as:

Ap(x)=0,VxeQ

(o(x) = f(x),Vx € 0Q
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where ¢ is the unknown function, x 1is the independent variable (e.g. the spatial
coordinates), Q is the function domain, 6Q is the boundary of the domain, and f is a given scalar

function defined on 0L2.

»  Neumann Boundary Condition
It specifies the values that the derivative of a solution is going to take on the boundary of the
domain. For example, the Laplace equation, the boundary value problem with the Neumann

boundary conditions is written as:

Ago(x) =0,VxeQ

Op(x)
on

=f(x),VxEGQ

Where n is the unit normal to the boundary surface, if Q = R

»  Robin Boundary Condition
It consists of a linear combination of the values of the field and its derivatives on the boundary.
For example, the Laplace equation, the boundary value problem with the Robin boundary

conditions is written as:
Ago(x) =0,VxeQ

a(p(x)+ba(g—£lx)=f(x),‘v’xe8§2

where a and b are real parameters. This condition is also called “impedance condition”.

»  Mixed Boundary Condition

It consists of applying different types of boundary conditions in different parts of the domain.
It is important to notice that boundary conditions must be applied on the whole boundary: the
“free” boundary is anyway subjected to a homogeneous Neumann condition. The mixed
boundary condition differs from the Robin condition because the latter consists of different
types of boundary conditions applied to the same region of the boundary, while the mixed
condition implies different types of boundary conditions applied to different parts of the
boundary.

»  Cauchy Boundary Condition

The Cauchy boundary condition is a condition on both the unknown field and its derivatives. It
differs from the Robin condition because the Cauchy condition implies the imposition of two

constraints (1 Dirichlet boundary condition + 1 Neumann boundary condition), while the Robin
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condition implies only one constraint on the linear combination of the unknown function and

its derivatives.

Particularly, boundary conditions are referred to:

- In mechanical field: displacements applied for given points (Dirichlet), stress and strain
tensors and external loads applied for given points (Neumann)

- In hydraulic field: hydraulic conditions such as hydraulic head, or velocity or/and
pressure to be taken by a certain set of nodes (Dirichlet), some constraints on the
derivative of velocity or pressure fields (Neumann)

- In thermal field: surface at fixed temperature (Dirichlet), heat flux across the boundaries

(Neumann).

5.2. Numerical Modelling

A numerical model was built to evaluate the thermal performance of GeothermSkin system,
particularly all information of Test H 2+3 20200207 20200210 (Test 3) could be applied for

this model to make a comparison between the numerical result and the experimental result.

5.2.1. Calculation software

In this thesis, the FEFLOW software was used to compute the Thermo-Hydro analyses.
FEFLOW (Finite Element subsurface FLOW simulation system) is a computer program for
simulating groundwater flow, mass transfer and heat transfer in porous media and fractured
media. The program uses finite element analysis to solve the groundwater flow equation of both
saturated and unsaturated conditions as well as mass and heat transport, including fluid density
effects. The software was firstly introduced by Hans-Jorg G. Diersch in 1979. In 1992,
FEFLOW became a registered trademark, after that FEFLOW has been developed further,

continuously improved and extended as a commercial simulation package.

5.2.2. Geometry of the model

The geometry of the model was created through the AutoCAD software (Figure 5.1.a) and
imported DXF file into the FEFLOW software, then elements in CAD file can be converted
into points, lines and polygons. As a result, based on these elements, numerical software can
generate of the geometry of the domain (polygon elements) and of the heat exchange systems
(line elements). The geothermal probes in which the heat transfer fluid circulates, were located
on the outside surface of the wall, with a 5 cm of distance from the wall surface due to clamps.

The external geometry of the 2D model was defined as follow: the edges of the 2D geometry
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are located at a distance of 20 cm from the pipes. Furthermore, 10 m in the direction of the
ground and 1.5 m towards the building were added in model from the wall to take into account
for the effect of the ground and the air. Additionally, the model was limited to a depth of 15 m

from ground surface, where the temperature is believed to keep unchanged throughout the year.
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Figure 5.1: a) DXF model imported to FEFLOW (dimensions in m) (AUTOCAD); b) Mesh

generation

Figure 5.2:The piping system was modelled by discrete features
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Figure 5.3: Simulation-Time Control

Figure 5.4: 3D model

Then, the mesh was generated thanks to the Supermesh and the Mesh Generator toolbar of the
FEFLOW software which determined the domain limits of the Finite Element Mesh. In the case
of flow analysis, a mesh with triangular elements is more suitable, some modification of mesh
size of polygons, lines and points in the Supermesh (Figure 5.1.b) was done with denser mesh
close to the geothermal probes. In 2D mesh, the number of nodes is 5912, the number of

elements is 11502.

Using the Problem Settings command to define the simulation time, for Test 3, the duration
lasted from 19:30 07/02/2020 to 9:20 10/02/2020, which was about 61.83 hours, so the
simulation time was set from time t = 0 [h] to t = 61.83 [h] (Figure 5.3), direction of gravity

according to the negative y axis.
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The 3D Layer Configurator toolbar was used to create a 3D model from 2D: the number of
layers and slices were equal to 22, and 23 respectively as showed in Figure 5.4. In 3D model,
the number of nodes is 135976, the number of elements is 253044. The pipes of the three circuits
were modeled through discrete features (Figure 5.2) which are present within the software.
Discrete features can be added to models to represent highly conductive
one-dimensional features, for each discrete feature, geometry and flow and possibly also mass,
age- and heat-transport properties need to be defined, its concept is similar to beam elements in
structural FE softwares. For the simulation within discrete features, three different flow laws
can be chosen: Darcy, Hagen-Poiseuille, Manning-Strickler. In this case, the most suitable
formulation for small diameter pipes is Hagen-Poiseuille which neglects the thermal properties
of the material that constitutes the pipe. In Test 3, the circuits 2 and 3 were connected by parallel
linking, so it was not necessary to define the connection between them. For parallel connection,
2 circuits were run separately by imposing the inlet fluid at entrances and measuring the
temperature of ends of both circuits. In order to do that, 2 observation points needed to be set

at 2 end points of the circuits.

5.2.3. Parameters of materials

The characteristics of the subsoil and the materials have to be defined, in particular thermal,
geolithological and textural properties of the materials. The properties that most influence the
thermal behavior of the subsoil are the water content, the physical characteristics and the
thermal properties of the solid matrix. The main parameters that were used to describe the model

are mentioned as below:

»  Porosity n: the ratio between volume of voids (Vv) and total volume (V)
»  Thermal conductivity K: ability of a material to transmit heat; it increases as the water

_; PE
u

content increases. K

with p and p respectively density and viscosity of the fluid, g the acceleration of gravity

and k the permeability of the porous medium.
»  Thermal capacity C,: quantity of heat that must be released or taken away from a unit

0

volume of a substance to raise (or decrease) its temperature by 1 K: C = N
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»  Thermal diffusivity a: measure of how quickly a material is able to diffuse heat inside it;

it is the ratio; ¢ = —

»  Storage coefficient S: amount of water per unit volume of a saturated formation that is

stored or expelled from storage due to the compressibility of the mineral skeleton.

In terms of thermal properties of materials, for small plants, the parameters are estimated from
the presumed stratigraphy, while for plants with higher thermal potential, the thermal properties
are measured on site. The most commonly used technique for the in-situ study of the heat
exchanger's thermal properties is the GRT (Geothermal Response Test). The following tables
(Table 5.1, 5.2, 5.3, 5.4) show the thermal properties used in the model, associated respectively

with the ground of the Energy Center site, air, concrete and geothermal probes.

In particular, the hydraulic, hydro-dispersive and thermal parameters of the aquifer are the result

of pumping tests, with temperature monitoring, conducted for three consecutive months (Barla

etal., 2013).

Table 5.1: Soil parameters

Parameter Value Unit
Hydraulic conductivity Kxx 4.15.107 [m/s]
Hydraulic conductivity Kyy 2.075. 10 [m/s]
Hydraulic conductivity Kz, 4.15.10° [m/s]

Storage coefficient 10 [m™]
Porosity 0.25 [-]
Thermal capacity of the fluid 4.2 [MJ/m*/K]
Thermal capacity of the solid 2 [MJ/m*/K]
Thermal cortlldqctivity of the 0.65 [W/m/K]
uid
Thermal condgctivity of the o [(W/m/K]
solid
Longitudinal heat loss 3.1 [m]
Transverse heat loss 03 [m]

Table 5.2: Parameters of geothermal probes
J &

Parameter Value Unit
Storage coefficient 10 [m']
Cross area 3.14 [cm?]
Hydraulic radius 0.5 [cm]
Thermal capacity of the fluid 42 | [MI/m¥/K]
Thermal cortlldqctivity of the 0.65 [(W/m/K]
uid
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Table 5.3: Air parameters

Parameter Value Unit
Hydraulic conductivity Kxx 102 [m/s]
Hydraulic conductivity Kyy 102 [m/s]
Hydraulic conductivity K, 102 [m/s]

Storage coefficient 10 [m™]
Porosity 1 [-]

Thermal capacity of the fluid 10° | [MJ/m*/K]
Thermal conductivity of the

0.53 | [W/m/K]

fluid
Longitudinal heat loss 5 [m]
Transverse heat loss 0.5 [m]

Table 5.4: Concrete Parameters

Parameter Value Unit
Hydraulic conductivity Kxx 1071 [m/s]
Hydraulic conductivity Kyy 1071 [m/s]
Hydraulic conductivity K, 1071 [m/s]

Storage coefficient 10 [m!]
Porosity 0 [-]

Thermal capacity of the solid 1.05 [MJ/m?*/K]

Thermal conductivity of the
solid

112 | [Wm/K]

Soil

Conductivity. K_yy Wall

- Patches -

Inside air

I 0.000398107
1.59489€-05
6.30957e-07

6.30957e-14
2.5118%e-15
1e-16

Figure 5.5: 3D Model - Hydraulic conductivity K,y

Figure 5.5 shows the 3D model in which it is possible to distinguish the air part, the wall and

the ground, particularly the vertical hydraulic conductivity Kyy of different materials.

5.2.4. Boundary conditions (BC)

To carry out a simulation of the heating test involving circuits 2 and 3 in parallel linking, it was

necessary to provide the model with specific initial conditions and boundary conditions.
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a/ Temperature BC of soil at the depth of 15 m

Soil at this depth can be considered as undisturbed soil, so its temperature is almost constant
throughout the year. Additionally, as discussed above, the temperatures recorded in all sensors
were not affected by the thermal system and seemed to be the temperatures of undisturbed soil,
the temperature at sensor C18T4 which was the furthest and deepest position from the ground
surface and the wall surface could be considered to apply for the soil at 15 m depth. In Test 3,
the temperature at sensor C18T4 remained at 13.5 °C throughout the duration. Therefore, a
temperature BC of 13.5 °C was set in the model at a depth of 15 m (Figure 5.9.a).

b/ Temperature BC of soil at ground surface

Regarding the upper surface of the domain (the ground surface), it was not possible to set
constant BC temperatures because of its dependency on season. In this case, a definition of time
series was introduced to define time variations of temperature. Time series consist of a unique
ID as an identifier, a name, a curve type, a time mode, and a set of value pairs (time vs. value)
and the interpolation law between the data pairs. Temperature values were measured by the
thermo-hygro-pluvio anemometric station with radiometer located in Via della Consolata, 10,
the site that is closest to the location of the Energy Center. In Test 3, the surface temperatures
varied from 19:30 07/02/2020 to 9:20 10/02/2020 with duration being 61.83 hours, so by setting
the starting point and the ending point of the test corresponding to t = 0 [h] and t =61.83 [h] in
the model, the time series curve could be plotted as in Figure 5.6. Then, the temperature BC of

the nodes of the upper surface was set as in Figure 5.9.a.

<% Time-series Editor ? X
D: |1 ~| Mame: | surface temp | curve types [Linear > Time mode: Linear ~ O
L 1 I A B A N FA [
Time [h] Value [*C] ~
o 10
0.25 9.5
0.5 9.1
0.75 87
1 B.S5
1.25 8.5
1.5 8.2
175 2
2 7.6
2.25 7.3
2.3 71
275 6.8
3 6.5
3.25 6.3
3.5 6
373 5.9
4 5.8
425 5.8
4.5 5.8
475 59 v
Cancel Apol

Figure 5.6 Time series of surface temperature
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¢/ Temperature BC of air part

The temperatures of the air inside building also varied with time, and this data was collected in

site during the test, namely BT1. Also, using time series to define the temperature variation and

plot it as in Figure 5.7. Then, the nodes in the surface separating the soil and air parts and in the

slice near the wall (slice 18) were applied by the time series for temperature BC (Figure 5.9.a).

? X

Time mode: Linear ~ @
ollel [l

<2 Time-series Editor
m: |2 v| | MName: | ATR TEMP | curve type: [Linear -
2
; : : {18 | B3
? H H Time [h]
n H
i 10
\ [ 2 0008333333
e \ ] : 3 0.016666667
f : 4 005
s | | l\I i 5 0033323333
3 | I | 6 0.041666667
. : [ ! 0 T 7005
i / 3 L 2 0058333333
i [ LT 1 T 9 0.066666667
7 ; Ja H EAE Y LT Ty 10 0075
; | ? 'r'ﬂ ;: 1N 0083333333
ol ' h.l.‘f i LR N 12 0091668657
: H H 13 01
. 140108333333
""" 15 0.116666667
; : g 16 04125
4_ ......................... SN S ...... TN S ....... SN SR SO S, 17 0.133333333
. : H 12 0.141666667
5 | 19015
a0 0 2 » 4 s e g0 0158333331
Import... Export Delete =

Cancel Apply

Value (] A
10.5
10.5
10.6
10.5
10.5
10.5
10.5
10,5
10.5
10.5
10.5
10.4
10.5
10.5
10.4
10.5
10.5
10.4
10.5
10.5 y

Figure 5.7: Time series of air temperature

d/ Temperature of the heat fluid at the entrance points (inlet temperature)

Moving to the BC of the geothermal probes, in the same way as the previous BC temperature,

the time series was created as in Figure 5.8, it was then also applied for the inlet fluid at the

entrances of circuit 2 and 3 (see Figure 5.9.b)

<% Time-series Editor

Time mode: Linear ~ @
olel [+

8 0.058333333
9 0.066666667
10 0075

n 0.083333333
12 0.091666667
13 0.1

14 0108333333
15 0.116666667
16 0,125

17 0.133333333
18 0141666667

1D: M dt|  MName: | Inlet temp | curve type: |Linear v:
12 H T
! ] i )| @
m__ B H ': Time [h]
i e d g |rr; (W ;_ 3003333333
Al :
|15 A |
i1 { Ill,!iz_lf' 111 iﬂ ------ 3 0016666657
e |l ” LE | J|| | i - 4 0,025
NRTEVRIN | | E| | lli' IRIRIR :r ...... 5 0033333333
LY Ay 6 0041666667
e s 7005

-
i

" e E : ] 19015
' ' ! I ! ' ) 20 0158333333
10 0 10 B 30 0 50 80 70 :
Impart... Export ~ Delete =

Valuel] A
"7
9.9
78
7
6.7
6.5
6.5
6.7
T.2
75
7.7

Cancel Apply

Figure 5.8: Time series of inlet fluid
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& o W

Figure 5.9:Temperature BC of the model: a) Temperature BC of nodes in different surfaces,
b) Temperature BC of the inlet fluid (red circles in the figure)

e/ Initial temperature of soil

An initial temperature condition was set on the ground of the domain. These temperatures which
could be considered as the temperatures of undisturbed soil were taken from sensors at the time
before starting time of the test (07/02/2020 19:30). It can be seen from the test, these
temperatures almost kept unchanged during the duration of test and they varied with depth. In
this case, the values from the sensors at furthest distances from the wall could be selected for
reference, because they were the least affected positions by the geothermal system, particularly
sensors C3T4 at plane A, C8TS5 at plane B, C13T4 at plane C, C18T4 at plane D as showed in
Table 5.5. From this, the interpolating logarithmic function is obtained by using excel to

describe the variation of soil temperature with depth (see Figure 5.10)

Table 5.5: Temperatures of different sensors

Sensor | Depth [m] | Distance [m] | Temperature [°C]
C3T4 -0.75 0.75 9.16
C8T5 -2.15 2.15 9.75
C13T4 -3.35 3.35 11.65
C18T4 -4.6 4.6 13.34

The interpolation function is: Temp =2.1354x1n (abs ( Y gtobal )) +9.2631

Where, Temp is the temperature of soil node [°C], ygiobat is the depth of soil node or coordinate
of node in y-direction [m]. Finally, initial temperature of each soil node were then applied this

function by using expression tool. See Figure 5.11 for graphical point of view.
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Temperature [oC]

16.00
14.00

1200 e

......

1000 et ® y=2.1354In(x) +9.2631

8.00
6.00
4.00
2.00

0.00

Depth[m]
Figure 5.10: Interpolation line of temperature

Temperature
- Continuous -

["C]
Il 150334
Il 138834

12,7334

11.5534
B 104334
Il 923339
Il 5.13338
Il 598337
Il 553336
Il 468335
W 553334

Figure 5.11: Initial temperature of soil in Test 3
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1/ The speed of fluid in the circuit 2 and 3
Firstly, the speed of fluid had to be calculated based on the flow rate (Q) of Test 3 and the area
(S) of pipe. In this test, the flow rate kept constant at 925.8 [I/h] or 0.257 [I/s] during the

duration, the diameter of the pipe was 20 mm and the area of pipe was:
2
S = 7[% =0.000314 [m?]

Therefore, the velocity of fluid was:

-9 0.257x107

= =0.8186 [m/s]
S 0.000314

However, this velocity was the one of main pipe, in this case, the fluid velocity of Circuit 2 and
3 were different from above because the linking of them was parallel. Regarding detail data of
Test 3, the flow rate in both circuit were almost the same, so the input velocity of Circuit 2 and

3 were set to be equal to a haft of main fluid velocity (0.4093 [m/s]).

Using the Fluid-flux BC function, the speed of the fluid inside circuits 2 and 3 was set: entering
circuit 3, the assigned speed was equal to -0.4093 m/s and at the output of circuit 2, it was equal
to 0.4093 m/s (the negative sign indicates the incoming fluid, the positive sign is the outgoing
fluid), see Figure 5.10 for a graphical point of view.

Figure 5.12: Circuit 2 and 3 with fluid speed at entrances and ends, and a set of 2
observation points (02 and O3)
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5.2.5. Results and discussion
a/ Thermal performance

After running the model, the outlet temperatures of Circuit 2 and 3 were collected by 2
observation points at the points O2 and O3 as presented in Figure 5.12. Also, the inlet
temperature was recorded by interpretation process of input data at each time step with respect
to the time step of outlet temperature. The variation of inlet, outlet temperatures of both circuits
were plotted in Figure 5.13. Also, the temperature distribution in the slice of piping system is
showed in Figure 5.15, and in 3D model as showed in Figure 5.16.

The quantification of the heat exchange was also calculated by using Equation 4.2, but the flow
rate was equal to a half of main fluid in experiment (see Table 5.6). At each time step, after
calculating the heat exchanges, the instantaneous powers were also computed by multiplying
the heat exchange by the time step. Then, the average power was defined by dividing the total
power of the system by the duration of time. The process above was done separately in Circuit
2 and 3, and the final average power of the system was the summation of both circuits. With 23
m? area of both circuits, the heat exchanged rate was equal to 22.68 W/m?. The result is
presented in Table 5.7.

Table 5.6: Parameters’ values for calculation of heat exchange rate in numerical result.

Quantity Value
Propylene Glycol to water mixture [%] 25
Flow rate [1/s] 0.13
Unit weight [kg/m?] 1028.31
Specific heat capacity [kJ/kg°C] 3.889
Duration [h] 61.8333

Table 5.7: The heat exchange rate result of numerical model

Mean power | Heat exchange
Total Energy [kWh] | Mean power [kW] (kW] rate [W/m?]
Circuit 2 | Circuit 3 | Circuit 2 | Circuit 3 | Two circuits Two circuits
20.579 11.679 0.333 0.189 0.522 22.68

Table 5.8: Thermal performance comparison between numerical and experimental methods

Mean power [kW] Heat exchange rate [W/m?]
Numerical | Experimental | Numerical | Experimental
result result result result
0.522 0.478 22.68 20.78
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In Table 5.8, the mean power of numerical result was almost 0.05 kW larger than that of
experimental one. This minor difference between experimental and numerical results may be
due to the neglect of thermal resistance of probe material and concrete wall, the 2 °C accuracy
of soil temperature of monitoring systems, besides the numerical model could be considered as
an ideal condition which was not affected by environmental factors. In conclusion, the

numerical results seem to have a good agreement with the experimental results.

Time [h]

Figure 5.13: Variation over time of inlet and outlet temperatures

—— Qutlet Temperature of Cirouit 2 Outlet ternperature of Circuit 3 Outlet Temperature (experiment)

VAVAW. V\ A\ 7
/\.\/\/\/\/\v VARY \/-\/\/\, vV \ YAVAV.

Time [h]
Figure 5.14: Comparison of outlet temperatures between numerical and experimental
methods
The outlet temperatures in experiment were recorded at the main pipe, while these values in
numerical model were collected separately at the ending points of two circuits. As a result, there
were some temperature differences as seen in Figure 5.14. However, the variations of outlet
temperature of numerical and experimental methods had the same shape during the time, it also

confirms the agreement between both methods.
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Figure 5.15: Temperature distribution in the slice of piping system at the end of duration
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Figure 5.16: Temperature distribution in 3D model at the end of duration

b/ Temperature of soil

In order to test the affection of thermal system on the surrounding soil in terms of temperature,
some observation points were set at positions with respect to the sensors C3T1, C9T1, C13T]1,
C19T1 to collect soil temperatures at these points during Test 3 with exact location in Table

5.9.
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Then, the comparisons of both methods are presented in Figure 5.17, 5.18, 5.19, 5.20. In each
sensor point, although the temperature values experienced little differences between two
methods with the largest one belonging to the sensor C19T1 (3 °C), both methods shared the
similar trend regarding temperature variation. The reason for these differences could be from
the initial temperature condition that was set in the numerical model by setting a logarithmic
function for temperature distribution with depth. However, the main interest in this case is the
change of temperature during the test, both methods also confirmed that there is no or minor

effect of the thermal system to the soil temperature.

Table 5.9: Location of the sensors (or observation points)

Sensor Depth | Distance from the
[m] wall surface [m]

C3T1 | 0.75 0.50

CI9T1 | 2.15 0.30

CI3T1 | 3.35 0.50

CI9T1 | 4.60 0.30

Sensor C3T1

= Numerical result Experimental result

Temperature [°C]
=2]

7.8
7.6
7.4

Time [h]

Figure 5.17: Comparison of soil temperature between two method at sensor C3T1
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Figure 5.18: Comparison of soil temperature between two method at sensor C9T1
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Figure 5.19: Comparison of soil temperature between two method at sensor C13T1
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Figure 5.20: Comparison of soil temperature between two method at sensor C19T1
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6. Chapter 6: CONCLUSIONS

This thesis is based on the experimental campaign of an energy wall system at the Energy

Center Laboratory in Torino (Italy).

Firstly, introducing the concept of geothermal energy and its different forms is fundamental to
understand how the technology works and what is the principle of heat pump system. At the
base of this, energy geostructure has been described. Thanks to the huge surface in contact with
the ground, tunnels are perhaps the ones that can best exploit the geothermal system.

Nevertheless, energy piles and energy diaphragm wall are widely used around the world.

The main aim of this thesis is to introduce the concept and the realization of a very shallow
geothermal system that exploits the earth-contact area of the buildings was presented. The
system, called GeothermSkin, allows to employ the geothermal energy avoiding the high initial
costs related to excavation and drilling needed in normal geothermal systems. This system is
conceived as an external application of modular heat exchangers. These modules can be applied
on the underground walls of buildings and interest extremely limited depths, so not to interfere

with deeper systems.

The realization of a prototype system made up of three modules of various configuration
reaching 4.6 m depth, allowed to test the thermal performance of the system. The impact on the
structure and the surrounding ground in terms of stresses, strains, temperatures and water
content was studied as well thanks to the extensive monitoring system which allowed to collect
numerous data during the experimental campaign. At this stage, only data related to the heating
mode has been recorded, more tests in cooling mode will be done in order to have an overall

interpretation of the system.

A total of 6 tests were driven, in addition to 1 test taken from M. Baralis and M. Barla (2019),
all of them were in heating operative mode and in parallel linking between circuits. As regards
the heating operations, it resulted that the system can continuously produce 13 up to 22 W per
equipped unit area, in good agreement with expectation from similar systems known in
literature. This heat exchange rate is equivalent in all kinds of direction of the circuit
deployment and position. The temperature at user side plays important role in thermal
performance of the system with being proportional to the heat exchange rate. Although higher
exchange rate can be obtained by rise of supply temperature, the more frequent activation may
induce premature wear of the heat pump. Additionally, appropriate flow rate allows to obtain

higher value of heat rate, in particular a much lower value of flow rate leads to the significant
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decrease in heat rate even in the case of high difference temperature between inlet and outlet of
the ground loop. The heat flux is almost independent from the number of circuits, their
direction, their deployment, so in order to reduce the initial investment cost, but still assure a
sufficient heat exchange rate, the less number of circuits or even single circuit should be used
rather than using more circuits with parallel linking if all other conditions are the same. On the
other hand, a numerical model was built by using FEFLOW software to simulate the behavior
of the system from the thermal point of view, it resulted in an agreement in the comparison of

the heat flux and heat rate obtained from experimental campaign and from numerical model.

On the basis of thermal performances, the system is expected to provide a valuable contribution
to the fulfilment of clean energy production from new and refurbished buildings. Furthermore,
the system may be used in combination with other renewable energy sources (as the solar
thermal panels) to make the housing completely self-sustaining. It means that the electricity

used by the system can be supplied by renewable energy.

The extensive monitoring plan allowed to identify the extremely low effect of the thermal
system to the temperature, the water content, tension of the ground and from the structural point
of view of the wall. Indeed, the ground temperature changes during the test were so small with
the maximum value being only approximately 0.7 °C. It could be considered that minor impact
or even no influence on the ground temperature is exerted by the system when it is used in
heating mode during winter season. As a result, the thermal status of the ground is virtually
equal to the undisturbed conditions. Furthermore, due to the low influence also from the thermal
point of view, no significant alteration seems to be exerted by the thermal activation on the
hygrometric equilibrium of the ground near the wall. Also strains on the equipped walls surface
were found to be limited below 90 pe. It was moreover detected virtually no affection on

hygrometric values and on stresses at wall-ground contact.

As mentioned above, the GeothermSkin system did not result in any impact on temperature of
soil in general. The preliminary experimental results suggest that this very shallow geothermal
system allows to obtain a satisfying amount of energy and virtually not affecting the geothermal
energy of deeper systems. As a result, the system may be adopted as a supplementary energy
supplier beyond deeper installations as Borehole Heat Exchangers, open loop wells, energy
piles and tunnels. This kind of energy system may play a role in exploiting geothermal

resources, especially in densely inhabited areas.
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A.APPENDICES

1. Test H 1+2 20200131 20200203

Table A.1: Main features of the test

Test start time 31/01/20 18.00
Test end time 03/02/20 09.20
Duration [h] 63.3
Operative mode Heating
Active circuit(s) 1;2
Circuit link Parallel
Target temperature user [°C] 35
Flow rate at the ground side [1/h] 923

88



GeothermSkin Outlet - BT10
GeothermSkin Inlet - BT11
Plant Inlet - BT3

Indoor Temperature - BT1

Air Temperature
Heat with the ground
N Power

— Target temperature

55 —/— - — — 30
3 T:s‘;'t start Testend
50 — 1 I B
45 _; l Mean power : B
E 0.356 KW = —_
40 = ' - §
U 35 = VNI N AN A N B TN NN A . —
& 38 ) NN — 20 =
w 30 — | 1 L -
4 = 1 | g
3 25 _E , - 1 '_‘5 _ =
T 20 = 1 1 . = I =
£ 203 . a2, 1§
a 15 _:\—-— e # f " e 4 _:_ =
£ E o A-' e o J4-10 =
10 .. T T . o= R S = =
K e l = ‘!__,‘-' Yas Y v ¥ Vo' =ye E 3 g S
e ! ~ P =
0 = [ < 3
3 I E 1
10 = Z0—o
s § § S s §
s & T = z 8
P~ — o T~ oy oy
=] = = = = =
ny s S S o —
A g I
Figure A.1: Thermal performance interpretation of experimental test
H 1+2 20200131 20200203 with parallel link of circuit 1 and 2 in heating mode.
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Figure A.2: Tensiometer and hygrometers records of experimental test

H 1+2 20200131 20200203 together with monitored rainfall from Politecnico weather

station.
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Figure A.3: Stresses and strains monitored at the wall external facade during experimental

test H 1+2 20200131 20200203



Test Start

oo oL ool oLoDoLoOMoOoTIOLICUTIOUTO U

Temperature [°C]
mmmbpmu‘mm-a-lmmwm‘oo—n—xmmwwhhwmmm-l-l

Test End -
L ‘f Indoor air C1T4
(N | ! ——— Surface air c1T5
q | | | Inlet ciTe
1 | c1T1 c1T7
| — C1T2 c1T8
cIT3
CIRCUIT 1 CIRCUIT 2 CIRCUIT 3
R T -

oI

vl

10374 § 04T

I
I
v = I
;. 1
: IiHI \‘IHH| IH‘H H|HHI HIH‘I HI‘HII HHHI| ‘HIH‘ L0, 130 65 s L85 4
§888888s88s8s888sg8s8gg¢g¢gs
§gdaggdeggdasggasgsgdeg
$§§ 5§88 88ggeygsegeesgegy
S5 s5 5535533838838 33ITIsd
Time [d/m h:m]
Figure A.4: Temperatures records from chain 1 of experimental test
H 1+2 20200131 20200203
Test Start Test End
» | L Indoor air —— C2T2
; | vl — Surface air coT3
X Inlet c2T4
. C2T1
CIRCUIT 1 CIRCUIT 2 CIRCUIT 3

0
Temperature [°C]
mmmbp_mu‘_mcn_-t-l‘a:mp_:n‘o_o—n—xmmwwhhwmmm-lﬂ
OO NOOONOLOMOMOMOOOOMOMICOOoOIONOoOL0

31707 00:00

03/0p 06:0p
03/02 12:00
03/02 18:09
04102 00:00
04/02 06:00
04/02 4 2:00
04402 4 8:00
0502 00:00

o
<
S
S
g
&
<1

31101 05,9
31/071 4 2:00
31709 18:00
01/02 00.0g
O1/02 06:00
01/02 12:00
01402 18,
02/02 00.0g
02/02 0g:9g
02102 12,0,
02102 18:0p

Time [d/m h:m]
Figure A.5: Temperatures records from chain 2 of expe
H _1+2 20200131 20200203

91

5 4 CIT7

- - -

1cTs

iciTe

rimental test

jcsa



C3T2

—— — — 4o ey

Test Start
;g Indoor air
gjg ~—— Surface air C3T3
55 Inlet c3T4
2’2 C3T1
48
© 155
— %,g
L 410
S 105
&0
as 9:0 CIRCUIT 1 CIRCUIT 2 CIRCUIT 3
o 85 T
£ 80 |eari i oz
& ;g 1 cat2 &
= g'g e e A a5 pest
gg B :
) o 4wiTs 10274 f C4T4
i l
i ,

31709 18:00
01/02 00.0g
O1/02 06:00
01/02 12:00
01402 18,
02/02 00.0g
0202 08:09
02102 12,0,
03/02 12:00
03/02 4g, 00
04102 00:00
04/02 pg., 0
04/02 4 2:00
04/02 18:09
05402 g, 00

Time [d/m h:m]
Figure A.6: Temperatures records from chain 3 of experimental test

H 1+2 20200131 20200203

—— — — 4o ey

75 Test Start Test End -
70 | L ‘f Indoor air c4T12
g:g 1 1y At ~ Surface air cats
55 1 1 Inlet caTa
o cat1
410
54
© i35
— %,g
L 410
S 105
T 100
5 gg CIRCUIT 1 CIRCUIT 2 CIRSUIT 2
o 85
£ 88 Yoam
2 70
gg 3 Ve Voo
gg e jors josta
45 —— —— 4TS 10274
49 |
30 =
25 T T [
8888888888888 s88s8s5sgs8¢gs8
SES2gEI gL ieg e EgeNes
L S - o S < TR N S SN o VIS < VAN J SN B VA S o N Q
£ 888888 eggssegsss s
Smmsoosoggggggbé”g@goa
Time [d/m h:m]

Figure A.7: Temperatures records from chain 4 of experimental test

H 1+2 20200131 20200203

92



z
g 2
5 i
' il
C,..: m .
& 3 3 i
: 3 g
.
= . ‘
M~ . ) ), .

n o e / | :
M__m__mmw E ; |
wn 8 2 Y
538

<
= ®
z 8 e
SEsLhb
23888

Test Start

ool
<o
O
o
—OCHo0D
TN
+ o
o
~N©

[D.] ainiesadwa)

00:60 zg/
0081z
0021 2o/
00:90 205,
00:00 gg4,,
00:9; 20/gp
00:21 2018,
00:9p c0/ep
00:00 zg,¢
009y 20120
00:zy 20/z0
00:90 202,
00:0p Z0/zp
U0BL 20,1
00:zy Zong
0090 zg,
00:gp 2o
0081 10,6
60zt 1oy 0
cn..mo 1o, e
00:00 197,

Time [d/m h:m]

] [ test
' rimenta
' exper
' n 35 of
records from chai
ratures 1 )
- Tempera
] A.8: Te
Figure

203
1+2 20200131 20200
H_

c1aT
3

1oiata

1c1aT4

e =
= 8
5
3
& o
ot
J
"
2 -
Coa s .
E L S
ZWH,;\I. o
- IS b
O = § g
PR : |
Q
ﬂew : |
66 ; u
"
0o
5es b
: A I
E . [=] _
1 e - -
: Bl = . _
ce = u.
525 -
252 g :
S @ £

oo
<<
oW

M~rso

a0 00

ooo

i
LaeleplaNl

<+
Oy

M~M~

[D.] @iniesadwa)

00:00 29,64
00:gy 200
021 20r3g
00:90 205,
0000 20/kg
0081 Zoseg
0021 2/
00:90 /0,
00:00 /g,
0081 2070
9021 20729
0090 202
00:00 z, vzo
00y 20/1g
0021 21
00:90 2,
Go:og 2010
00:gy 10/1e
Do..wp _.D\Hm,
00:99 Log
00:00 4y

Time [d/M H:m]

j [ test
) rimenta
in 6 of expe
ecords from chain
ratures r )
- Tempera
igure A.9: Ten
Figure

93

203
1+2_20200131_20200
H_



1ciata
1c1aTa

3

CIRCUIT

at
12
vosTs
yoara

Cc7T2
C7T3
C7T4

CIRCUIT

=
©

@

8 _ - -
t g E >
S K =
w £ 0 &

[

—— Indoor air

Test Start

NGOG N N~ — 00006000 NN G F eI er ol

[D.] 2iniesadws)

00:00 29/
0o:g; 20v0
0024 275
00:90 20,5,
Go:gp 20/tp
9081 20/
00'zy 20eg
00:90 2,0
00:00 g5,
0081 207
0021 2070
00:90 20,2
00:0g 20/z0
Oo:gy €0/ig
0021 27,0
00:90 20/
00:09 2o/t
00:g; Long
co,.NF 10, g
00:9¢ e
00:00 1.9y,

Time [d/M H:m]

Figure A.10: Temperatures records from chain 7 of experimental test

H 1+2 20200131 20200203

1
1oiata
1c1aT4

3

CIRCUIT

<+ D © I~ © §
EEFEEE &Y
0 W o o L
oo o0aoo >
Q
&
o
o
I P K E
= 5 038 &
= | |}l
© g
s & ~N o0 . H
(] h C .
SEFEEE = 3 3
T S5 = © 0 © -1 =
Ewh 000 Bl = ¢ x
7 _7 ol 8 & 3

Test Start

NN OO T NN~ 0000 0 0NN O G Feici ol

[D.] @iniesadwa)

00:00 29,64
00:gy 200
0021 zZ01pg
00:90 zg5,
00:00 2 50
0o:gy 20/eg
00z 2080
00:90 /0,
00:00 &gy,
0081 2070
9021 20729
00:90 20,7,
00:00 z, vzo
00y 20/1g
0021 21
00:90 25,
Go:og 2010
Q0:gy Orie
00:21 1oy
00:99 Log
00:00 4y

Time [d/M H:m]

Figure A.11: Temperatures records from chain 8 of experimental test

H 1+2 20200131 20200203
94



+ 0 © K o
EEEEE
oo ;oo
OO0 O0o0o
-
= ®
© g
s O
S @ = o
St gk E
T S =0 o
fEwE£00

coT3

Test Start

3

CIRCUIT

at
12
vosTs
yoara

5013

CIRCUIT

IRCUT 1
1

[

NGOG N N~ — 00006000 NN G F eI er ol

[D.] 2iniesadws)

00:00 29/
00:g; zg b0
0024 275
00:90 20,5,
Go:gp 20/tp
9081 20/
00'zy 20eg
00:90 2,0
00:00 200,y
0081 207
0021 2070
00:90 20,2
00:0g 20/z0
Oo:gy €0/ig
0021 27,0
00:90 20/
00:09 2o/t
00:g; Long
co,.NF 10, g
00:9¢ e
00:00 1.9y,

Time [d/M H:m]
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Figure A.23: Temperatures records from chain 20 of experimental test
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2. Test H 2+3 20200207 20200210

Table A.2: Main features of the test

Test start time

07/02/20 19.30

Test end time 10/02/20 09.20
Duration [h] 61.8
Operative mode Heating
Active circuit(s) 2:;3
Circuit link Parallel
Target temperature user [°C] 45
Flow rate at the ground side [1/h] 925.8

101




Temperatures [°C]

Suction potential [kPa]

GeothermSkin Outlet - BT10
GeothermSkin Inlet - BT11
Plant Inlet - BT3

Indoor Temperature - BT1

Air Temperature
Heat with the ground
I Pover
— Target temperature

— 30
— 20 =
- !
=
-
S =
= S
4—:— g
o0— 10
33 T 5
= o
2 3
15
01—

— 5008
5009
S010
— S011
S012
8013
— S014
5015
« = S016
8017
— 5018
B Rainfall

55 Testend
s0 Test Ist:?rt : ;3
11 _._ F g _.. — .
45 i — VAVAVRvAYRY /1
40 e D Mean power S|
i 0.478 kW 11
35 s e i |
1 I
30 1 |
25 y '\ -
20 ! | =
1 1 =
R e | | =
S P z
5 : =
0 I E
I =
5 1 5
| -
-10 |II||||!I|l||||||i||||||||||II||||||||III!|||||||II!II|||||i|i|||||||!II|||||||i||||||||||||||||| -_
S § § § § § S $ S S§ 5 s s 8 ¢ s ¢
g§ &§ ¥ ¥ §&§ & Y ¥ &8 £ ¥ 2 & & ¥ ¥ 0§
~ o ~ o o~ ~ ) b | k| ] o ag J ~ ~ g o ~
S § § £ § § § § § 5§ 5§55 5§ § £ ¢
§ § 8§ 5§ § & § &8 8§ 8 8§ s 5 5 5=
Figure A.24: Thermal performance interpretation of experimental test Test
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Figure A.25: Tensiometer and hygrometers records of experimental test

H 2+3 20200207 20200210 together with monitored rainfall from Politecnico weather
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Figure A.26: Stresses and strains monitored at the wall external facade during experimental
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Figure A.45: Temperatures records from chain 19 of experimental test
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Figure A.46: Temperatures records from chain 20 of experimental test
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3. Test H 1+3 20200214 20200217

Table A.3: Main features of the test

Test start time

14/02/20 19.20

Test end time 17/02/20 9.20
Duration [h] 62
Operative mode Heating
Active circuit(s) 1;3
Circuit link Parallel
Target temperature user [°C] 45
Flow rate at the ground side [1/h] 282
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Figure A.47: Thermal performance interpretation of experimental test
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Figure A.50: Temperatures records from chain 1 of experimental test
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Figure A.51: Temperatures records from chain 2 of experimental test
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Figure A.54: Temperatures records from chain 5 of experimental test
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Figure A.55: Temperatures records from chain 6 of experimental test
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Test Start Tes; End ——— Indoor air c8T4
| —— Surface air - C8T5
| Inlet csTe
i —— caT1 caT7
]y — CBTZ caTs
8 ] C8T3
° ] - . . . - . . .
e,
: B — 2 LLIL Ll
g
S ] WALL
-— = F—-—-
© ! Ty cem 1com I teemy i comt ictom
o
) o, rom (s jesr2 (crors g
Q = S012 I I S014
£ ? Jeoms o (car3 fcors { Giars
¢ ' IFHTI coT4
L 4 | 1
{cere 1cire lICB'!(EEISI | CoT15 jcats  jcioTe
llcs'ucalsl jcete  jc9T7
S013
s} ous jeo, wes (e [ e |
o O O 0O O 0O 0O 0 0O 0O 0 O 0 0 O 0 O o 0O 0O O o0 O o o
eSS esgesogSs eSS oS geSe s
O © N ©® QO © N ©® O O N ® O O N DD O O N XD QO O N OO
S 0 -~ - 0 O v - 0 0 -~ - 0O 0 vy O O v~y O O v - O
£99888888889888g8g8gg8gg8¢8¢
¥ Y ¥ F O U U N O 0 © 08 N NNNOO o oSS SO O
- e e e M ™ = o e e e e e = e e Oy
Time [d/M H:m]

Figure A.57: Temperatures records from chain 8 of experimental test
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Figure A.58: Temperatures records from chain 9 of experimental test
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Figure A.59: Temperatures records from chain 10 of experimental test
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. Temperatures records from chain 11 of experimental test
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Figure A.61: Temperatures records from chain 12 of experimental test
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Figure A.62: Temperatures records from chain 13 of experimental test
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Figure A.64: Temperatures records from chain 15 of experimental test
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4. Test H 1+3 20200221 20200224

Table A.4: Main features of the test

Test start time 21/02/20 18.04
Test end time 24/02/20 10.04
Duration [h] 64
Operative mode Heating
Active circuit(s) 1;3
Circuit link Parallel
Target temperature user [°C] 45
Flow rate at the ground side [1/h] 930.7
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5. Test H 1+2+3 20200228 20200302

Table A.5: Main features of the test

Test start time

28/02/20 18.40

Test end time 02/03/20 9.25
Duration [h] 62.75
Operative mode Heating
Active circuit(s) 1;2;3
Circuit link Parallel
Target temperature user [°C] 45
Flow rate at the ground side [1/h] 1006
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6. Test H 1 20200305 20200507

Table A.6: Main features of the test

Test start time

05/03/20 19.25

Test end time

07/05/20 10.00

Duration [h] 1502.6
Operative mode Heating
Active circuit(s) 1
Circuit link

Target temperature user [°C] 45
Flow rate at the ground side [1/h] 713.4
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Figure A.129: Temperatures records from chain 11 of experimental test

H 1 20200305 20200507

— C1272

Indoor air

C12T3
C12T4

Surface air
Inlet

Test Start

c B g g
‘ F b
: Els® &
: 5 5B 5 5
L & B 5
|||||| ‘
5
28 858 &
='% o % o
(== °
RS-
5 SRS )

wretet o T

[D.] 2imeiadwal

L e A e |

00:09 gp,
00 501,

90:00 G/60
00 Gy

Time [d/m h:m]

Figure A.130: Temperatures records from chain 12 of experimental test

H 1 20200305 20200507
162



|cisT
|c1sT2
1custs
|cisTs

clamy |cisT
| G143 | CisTs
jciata jcisTe

|
|
-

C13T2
C13T3
C13T4
WALL
jezm
1cizrz
jcizrs
WALL
|ezm
g2tz
je121s
|crze

—— C14T2
C14T3
C14T4

gz
So18

o

Jorima

Surface air

Indoor air
Inlet
C13T1
Indoor air
Surface air
Inlet
C14T1
tenn
g
So15
jenTs
|enms

tEtwreEt oo

= 00:00 g,
00 50,40
0:00 50,90

H 1 20200305 20200507

Time [dfm h:m]
Figure A.131: Temperatures records from chain 13 of experimental test
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