
POLITECNICO DI TORINO

Master of Science in Electronic Engineering

Master Thesis

Study and investigation of
Bluetooth Low Energy security in

the IoT environment

Supervisor
prof. Mariagrazia Graziano

Candidate
Daniela Catanzaro

Company Supervisor
Teoresi S.p.A.

Ing. Alberto Bertone

December 2020

Compiled with LATEX

Abstract

Bluetooth is one of the most popular and important wireless connection nowadays.
Suffice it to say that, due to the pandemic situation caused by COVID-19 in 2020,
the most useful italian application in order to do a good contact tracing (Immuni)
is based on Bluetooth Low Energy technology. This is only an example of a global
current issue to understand the significance of it.

But Bluetooth standard is growing year by year with the growth of IoT systems
used in daily life, such as smart locks, smart security systems, smart assistants,
fitness trackers, and more. IoT environment has reached about 30 billion of devices
in which Bluetooth (especially BLE) is one of the most radio protocol used.

For these reasons it’s easy to understand that the security level of this kind of
standard technology is an important key requirement.

There are mainly two kinds of Bluetooth: one, the Bluetooth Basic Rate
(also present with the optional feature Enhanced Data Rate BR/EDR) and sec-
ond the Bluetooth Low Energy (BLE). This thesis is focused on the connection
among different types of BLE devices in the smart home scenario, in order to in-
vestigate on the security standard applied. The study has been made through
the exploitation of the Ubertooth One: an open source 2.4 GHz wireless develop-
ment platform, with the aim of making Bluetooth experimentations, on a Ubuntu
derivative distribution (it has been used xubuntu-18.04.5-desktop-amd64 available
at http://cdimage.ubuntu.com/xubuntu/releases/18.04/release/).

Powerful tools provided by the Ubertooth have been used in order to find some
critical issues and some security vulnerabilities in different types of BLE devices.

3

http://cdimage.ubuntu.com/xubuntu/releases/18.04/release/

’Security is always too much
until
the day is not enough’
W.H. Webster, Former
Director, FBI

6

Acknowledgements

First, I would like to thank my Supervisor prof. Mariagrazia Graziano to have
accepted to be my tutor. Thank you for the support and for the interest in this
work. Also, thanks for thirst for the knowledge you transmit during lessons: from
a student point of view, it is very important.

Second, I would express my big thanks to my company Supervisor, ing. Alberto
Bertone, who believed in me from the beginning. Thanks for giving me the chance
to do my thesis in Teoresi S.p.A., beyond the difficulties due to Covid-19 and the
smartworking 1000 km away.

Also, I have to thank my parents and all my friends and colleagues for having
accompanied me in these years.

7

8

Contents

List of Tables 12

List of Figures 14

List of acronyms and abbreviations 17

1 The Bluetooth BR/EDR standard: an overview 20
1.1 The Bluetooth BR/EDR protocol stack 21

1.1.1 Bluetooth radio interface . 22
1.2 Power levels . 23
1.3 Piconet and scatternet . 23
1.4 Bluetooth connection basics . 25

1.4.1 Bluetooth pairing . 25
1.4.2 Bluetooth baseband links . 26

1.5 Bluetooth device states . 28
1.6 Packets structure . 30

2 The Bluetooth Low Energy 31
2.1 Bluetooth classic vs BLE . 32
2.2 BLE architecture . 34

2.2.1 The controller . 34
2.2.2 The host . 35

2.3 BLE star-bus vs BR/EDR scatternet 37
2.4 BLE device states . 38

2.4.1 Advertising state . 39
2.4.2 Scanning state . 40
2.4.3 Connection establishment 40

2.5 BLE packets structure . 42

3 Tha basis of the BLE security 45
3.1 Pairing & Bonding . 46

3.1.1 Phase I . 47
3.1.2 Phase II . 47

9

3.1.3 Phase III . 48
3.2 Security goals . 48
3.3 Types of attacks . 49

3.3.1 MiTM attack . 49
3.3.2 DoS attack . 50
3.3.3 Passive Eavesdropping . 50

4 Bluetooth sniffing: the Ubertooth One 51
4.1 How to discover a Bluetooth device 52

4.1.1 Bluetooth MAC address structure 52
4.1.2 Public and random address 53

4.2 Experimental setup . 54
4.3 Ubertooth One tools: classic Bluetooth 56

4.3.1 Intercepting Bluetooth MAC addresses 57
4.3.2 Passive Bluetooth sniffing 58
4.3.3 Detecting AFH channel map 60

4.4 The ubertooth-btle tool . 62
4.4.1 The "follow" mode . 62
4.4.2 The "don’t follow" mode . 64
4.4.3 The "promiscuous" mode . 64

5 Breaking the Bluetooth Low Energy security 67
5.1 Passive Eavesdropping . 67

5.1.1 Eavesdropping in "follow" mode 68
5.1.2 Eavesdropping in "promiscuous" mode 74

5.2 Interception attack . 77
5.3 Jamming attack . 87

5.3.1 Jamming results . 91

6 Conclusion and future perspectives 93

Bibliography 95

10

11

List of Tables

1.1 Power classes and corresponding ranges 23

2.1 Differences between Bluetooth classic and Bluetooth Low Energy . 32
2.2 Power classes and corresponding ranges 37
2.3 Scanning parameters . 40

5.1 Results of the jamming attack . 92

12

13

List of Figures

1.1 Bluetooth protocol stack [26] . 21
1.2 A Bluetooth chip scheme [17] . 22
1.3 A piconet [28] . 23
1.4 A scatternet [28] . 24
1.5 Graphical representation of a) SCO link and b) an ACL link [29] . . 27
1.6 The state diagram of a Bluetooth BR/EDR device [17] 29
1.7 The packet structure of Bluetooth Basic Rate [17] 30
1.8 The packet structure of Bluetooth BR/EDR [17] 30

2.1 Differences between protocol stacks [31] 33
2.2 BLE protocol stack [12] . 34
2.3 The frequency spectrum and RF channels in BLE protocol [12] . . . 35
2.4 A Generic Attribute Protocol (GATT) Profile [40] 36
2.5 a) BR/EDR Scatternet topology vs b) BLE Star-bus topology [35] . 38
2.6 The state diagram of a BLE device [17] 39
2.7 A BLE connection process [37] . 42
2.8 A BLE packet structure [41] . 42
2.9 a) an Advertising channel PDU and b) a Data channel PDU [17] . . 43

3.1 The three phases of pairing and bonding [6] 46

4.1 Ubertooth block diagram . 51
4.2 Bluetooth address structure [43] . 52
4.3 Random Static Address format . 53
4.4 Random Private Resolvable Address format 54
4.5 The Ubertooth One . 54
4.6 Bluetooth status on board the system 55
4.7 Bluetooth MAC address of the device 56
4.8 Ubertooth spectrum analyzer . 56
4.9 The hcitool scan result of discoverable devices 57
4.10 The ubertooth-scan result of non-discoverable devices 57
4.11 The ubertooth-rx result of all LAPs sniffing 58
4.12 The ubertooth-rx in survey mode 59

14

4.13 The hcitool name of a target device 59
4.14 The AFH channel map of a given piconet 60
4.15 The AFH channel map of a given piconet in binary form 61
4.16 The ubertooth-btle result in the "follow" mode 62
4.17 The ubertooth-btle result in the "don’t follow" mode 64
4.18 The ubertooth-btle result in the "promiscuous" mode 65

5.1 A Wireshark pcap file screenshot 69
5.2 An Advertising PDU Header in Wireshark 70
5.3 A complete ADV_SCAN_IND captured packet 71
5.4 a)The SCAN_REQ and b) SCAN_RSP packets 72
5.5 A complete CONNECT_REQ captured packet 73
5.6 The Channel Map related to the CONNECT_REQ captured packet 74
5.7 The resulting pcap file of captured packets in promiscuous mode . . 75
5.8 The output terminal of the Ubertooth in promiscuous mode when

an access address is located . 76
5.9 The experimental setup with the ThermoBeacon 78
5.10 The result of the captured connection between the smartphone and

the ThermoBeacon . 78
5.11 Zoom of the result of the captured connection between the smart-

phone and the ThermoBeacon . 79
5.12 a) The LL_FEATURE_REQ and b) LL_FEATURE_RSP packets 80
5.13 a) The LL_VERSION_IND and b) LL_CONNECTION_UPDATE_REQ

packets . 81
5.14 All the Attribute data exchanged between the smartphone and the

ThermoBeacon . 82
5.15 a) the Request and b) the correspondent Response 83
5.16 The content of the Write Request packet 85
5.17 The pairing and connection establishment with the ThermoBeacon

from the laptop (third user) . 86
5.18 a) The scan of the smartphone in search of the beacon and b) its

failure . 86
5.19 The jamming code: a) an example of error, b) the four filled fields

and c) the "Built all threads" . 91
5.20 The result of the jamming attack on the earphones 92

15

16

List of acronyms and
abbreviations

A2DP Advanced Audio Distribution Profile
ACL Asynchronous Connectionless
AES Advanced Encryption Standard
AFH Adaptive Frequency Hopping
ATT Attribute Protocol
BLE Bluetooth Low Energy
BR/EDR Basic Rate/Enhanced Data Rate
CRC Cyclic Redundancy Check
DOS Denial of Service
DTM Direct Test Mode
ECDH Elliptic-curve Diffie–Hellman
FEC Forward Error Coding
FHSS Frequency Hopping Spread Spectrum
GAP Generic Access Profile
GATT Generic Attribute Protocol
GSFK Gaussian Frequency Shift Keying
HCI Host Controller Interface
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
ISM Industrial, Scientific and Medical
IP Internet Protocol
IRK Identity Resolving Key
L2CAP Logical Link Control and Adaptation Protocol
LAN Local Area Network
LAP Lower Address Part
LL Link Layer
LMP Link Manager Protocol
LTK Long Term Key
MAC Media Access Control
MIC Message Integrity Check
MITM Man In The Middle

17

NAP Non Significant Address Part
NFC Near Field Communication
OBEX Object Exchange Protocol
OOB Out Of Band
OUI Organizationally Unique Identifier
PAN Personal Area Network
PDU Protocol Data Unit
PHY Physical Layer
PPP Point-to-Point Protocol
PSK Phase-Shift Keying
RF Radio Frequency
RSSI Received Signal Strenght Indicator
SCO Synchronous Connection Orientated
SDP Service Discovery Protocol
SIG Special Interest Group
SMP Security Manager Protocol
STK Short Term Key
TCS BIN Telephony Control Service
TCP Transmission Control Protocol
TK Temporary Key
UAP Upper Address Part
UDP User Datagram Protocol
UUID Universally Unique Identifier
WAE Wireless Application Environment
WAP Wireless Application Protocol

18

19

Chapter 1

The Bluetooth BR/EDR
standard: an overview

The first official version of Bluetooth was released by Ericsson in 1994. It was
named after King Harald “Bluetooth” Gormsson of Denmark who helped unify
warring factions in the 10th century CE. [12] From 1998 Bluetooth technology is
developed by the Bluetooth Special interest Group (Bluetooth SIG), formed by
Intel, Apple, Lenovo, Nokia, Ericsson, Toshiba, Microsoft.

First, this standard was born with the need to do a wireless connection be-
tween a personal computer and some peripherals, such as a mouse, a printer or
a keyboard. Nowadays the Bluetooth radio chip is integrated in the hardware of
billion of systems in the IoT environment, especially in the automotive and medical
scenario. It replaces easily the cable connection between devices in a range of few
meters.

Bluetooth uses 2.4 GHz ISM band spread spectrum radio (2400-2483.5 MHz),
with GSFK modulation (Gaussian Frequency Shift Keying).[24] The FHSS (Fre-
quency Hopping Spread Spectrum) technique is used to reduce the effect of radio
frequency interferences on transmission quality.

Today Bluetooth technology is the implementation of the protocol defined by
the IEEE 802.15 standard. [23] It is designed to operate on a short distance (PAN)
with a relatively low transmission rate (about 1Mbit/s) and a cheap hardware, dif-
ferently from Wi-Fi connection, whose aim is to transmit data with a higher rate
in a very wide range (LAN).

In this chapter an overview on the Bluetooth Basic Rate (also with its optional
function EDR) will be done.

20

1.1 – The Bluetooth BR/EDR protocol stack

1.1 The Bluetooth BR/EDR protocol stack
Bluetooth protocol stack defines the way through wich devices should communicate
each other. It contains several layers, shown in figure 1.1.

Figure 1.1. Bluetooth protocol stack [26]

The basic layers are five:
• Bluetooth radio: contains specific information about frequency and mod-

ulation;

• Baseband: related to the connection establishment, the device discovery,
MAC processing, timing and power control;

• LMP: responsible of configuring and managing the connection in baseband.
Also includes security aspects (e.g. authentication and encryption);

• L2CAP: adapts upper layer protocols to the baseband layer. Provides both
connectionless and connection-oriented services. [23];

• SDP: gives device’s information, services and the characteristics between
Bluetooth devices.

Also, for the sake of completeness:
• RFCOMM is a reliable transport protocol that emulates the physical RS232;

• HCI provides an interface method for accessing the Bluetooth hardware ca-
pabilities.

• PPP, OBEX, TCP/UDP/IP, WAE/WAP are among the adopted pro-
tocols;

• TCS BIN is the protocol regarding the call control (voice and data calls).

21

1 – The Bluetooth BR/EDR standard: an overview

1.1.1 Bluetooth radio interface
A particular interest must be given to the lowest level, the Bluetooth Radio. As
already explained, Bluetooth devices operate in the 2.4 GHz ISM band. In USA
and in most of Europe 83.5 MHz are allocated in this band and these are divided
into 79 RF channels, spaced 1 MHz. France, Spain and Japan allocate less and
only 23 channels are available, always spaced 1 MHz.

Bluetooth is a FHSS system: the radio hops through the full spectrum of 79
or 23 RF channels using a pseudorandom hopping sequence.[25] The time slot in
which a packet is transmitted is of 625 µs, that equals to a hopping rate of 1600
hop/s.

The GFSK modulation ensures the low cost and the simplicity of the design,
paying with a slower rate. In this type of modulation, the frequency of the carrier is
shifted. A binary one is represented by a positive frequency deviation and a binary
zero is represented by a negative frequency deviation. The modulated signal is then
filtered using a filter with a Gaussian response curve to ensure the sidebands do
not extend too far either side of the main carrier.[27]

Figure 1.2. A Bluetooth chip scheme [17]

An important note here must be done: the GFSK modulation is used only for
Bluetooth version BR. If the optional EDR is used, a single packet is transmit
both with the GFSK (for the first part) and the PSK (for the second part). In
particular, in the PSK modulation, the phase of the carrier is shifted according to
the incoming bits. Also, in BR/EDR, the Grey code is used.

22

1.2 – Power levels

1.2 Power levels
Bluetooth devices are divided into three classes depending on the maximum output
RF power of the transmitter. This classification provides three different ranges up
to which each of them can work.

Classes Maximum power [dBm] Power control capability Range [m]

1 20 Mandatory 100
2 4 Optional 10
3 0 Optional 1

Table 1.1. Power classes and corresponding ranges

The table 1.1 shows clearly this difference. Also, it has been highlighted the
power control capability (to save battery power), mandatory only for class 1.

1.3 Piconet and scatternet
Bluetooth has been designed to work in a multi-user environment. Devices that
communicate with each other have to follow the same frequency-hopping sequence.
Thus, they can operate in two ways: as a master or as a slave.

The master device decides the hopping frequency; if some slave wants to com-
municate with it, it must synchronize in frequency and time.
A set of two or more (up to eight) Bluetooth devices sharing the same channel is
called piconet. An example is shown in figure 1.3.

Figure 1.3. A piconet [28]

23

1 – The Bluetooth BR/EDR standard: an overview

In figure 1.3 there is a piconet with one master (the laptop) and seven devices
acting as slaves. Up to seven slaves can be active and served simultaneously by
the master. The slaves in each piconet stay synchronized with the master clock
and hop according to a channel-hopping sequence that is a function of the master’s
address. Since channel-hopping sequences are pseudorandom, the probability of
collision among piconets is small. [25] Also, the frequency hop occurs by making
a jump from a channel physical to another based on a pseudo-random sequence
(based on master’s Bluetooth address).

A device can be a master of only one piconet. The device can, at the same
time, also be a slave in another piconet that is within range. A slave can also
participate in two different piconets that are within its range. However, because
the master device determines the hopping pattern used for a piconet, a device
cannot be a master of more than one piconet. [28] Bluetooth defines a structure
called scatternet to facilitate interpiconet communication. For instance, figure
1.4 illustrates a scatternet in which a laptop pc communicates with devices in both
piconets. In piconet 1 it acts as master, while in piconet 2 as a slave.

Figure 1.4. A scatternet [28]

The advantage of the piconet/scatternet scheme is that this allows multiple
devices to share the same physical area, thus in order to use the available bandwidth
efficiently.
Several logical channels can simultaneously share the same bandwidth (79 MHz);
collisions will occur when devices of different piconets on different logical channels
are at the same frequency.

24

1.4 – Bluetooth connection basics

1.4 Bluetooth connection basics
Frequency hopping method provides a reduction in terms of interference but also it
makes connecting devices a little more complicated. Connections between master
and slave are maintained until broken, e.g. disconnecting one of two.
There are four types of Bluetooth connection channel:

• Basic piconet channel: this Bluetooth connection channel is used only
when all 79 channels are used within the hop-set (more rarely);

• Adapted piconet channel: widely used since it allows the system to use a
reduced hop-set, i.e. between 20 and 79 channels;

• Inquiry channel: this connection channel is used when a master device finds
a slave device or devices within range;

• Paging channel: used when a master and a slave device make a physical
connection.[27]

Piconet channel is the only channel that can be used to transfer user data. It
is divided into 625 µs intervals (slot), in which a different hop frequency is used.
The channel is shared between the master and the slave devices using a frequency-
hop/time-division-duplex (FH/TDD) scheme whereby master-slave and slavemas-
ter communications take turns. Slave-to-slave communication is not supported at
the piconet layer. If two slaves need to communicate peer to peer, they can either
form a separate piconet or use a higher layer protocol.[25]
On the other hand, inquiry and paging are used to discover devices and then es-
tablish a connection (respectively). Both are asymmetric procedures: this means
that the two devices must be in two different initial states, otherwise they would
never discover each other. During inquiry or paging, both devices must use the
same channel-hopping sequence, as could be expected.

1.4.1 Bluetooth pairing
Bluetooth pairing is the process with which a connection can be established, re-
sulting in a possible data transfer. Usually it starts manually by the user. For sake
of simplicity, all steps of a pairing process are the following:

1. Set to discoverable mode: the two devices must be descoverable. So, the
user must turn on the Bluetooth, in order to make them find;

2. Prompt for passkey: the user has to digit a PIN. Usually the default PIN
is ’0000’, but it is recommended to change it for security reasons;

25

1 – The Bluetooth BR/EDR standard: an overview

3. Send passkey: device 1 sends the passkey that has been entered to Device
2. [27] After the comparison between the two passkeys, if they are the same,
the pairing is established;

4. Pairing established: a connection is established, and now data transfer is
possible.

After the data transfer is finished, the user can remove himself the Bluetooth
pairing. The two devices will remember each other for a future reconnection without
user intervention.

1.4.2 Bluetooth baseband links
To provide effective mechanisms for the data transfer over a Bluetooth link, the
standard has a number of protocols and different types of link to ensure that the
wireless link is managed in the most effective manner. [27]

There are two main types of links: the Synchronous Connection Orientated
communications link (SCO) and the Asynchronous Connectionless communications
link (ACL).

• SCO: this type of link is used where data is to be streamed rather than
transferred in a framed format (transport of telephone-grade voice). This is
done through a symmetrical link between master and slave (an application
must reserve a slot in both directions at regular intervals), exchanging data
periodically in the form of reserved time slot in order to stream the audio data
without delays and with a known maximum latency. A master can create up
to 3 links SCO with 3 different slaves at the same time. A slave can make up
to 3 links SCO with the same master or 2 with different masters.

• ACL: it is used for carrying framed data and it’s the most used link. An
ACL link makes a packet switching connection between master and slave:
packets are exchanged sporadically and only when data are available to be
sent from top levels of the Bluetooth stack. Slots are allocated to satisfy
the quality of service requirement of each ACL. (Baseband specification has
defined multislot packets, which are three or five slots long and transmitted
in consecutive slots).[25] The choice of which slave has to transmit or to
receive is made by the master in each slot. A slave can answer with a packet
ACL in the next slot "slave-master" if and only if it was addressed directly in
the previous slot "master-slave". Otherwise, there is the possibility to send
broadcast packets, which can be received by all the listening slaves. [29] Also,
most of ACL packets incorporate forward error coding (FEC) in order to
detect and correct errors that may occur.

26

1.4 – Bluetooth connection basics

Finally, each device has to schedule ACL traffic in order to respect the slots
reserved for SCO traffic. Since SCO links have priority over data, ACLs can work
only with unused slots. The master is responsible of this distribution of available
slots. Figure 1.5 shows a graphic representation oh both types of links.

(a)

(b)

Figure 1.5. Graphical representation of a) SCO link and b) an ACL link [29]

27

1 – The Bluetooth BR/EDR standard: an overview

1.5 Bluetooth device states
At a datalink level, a Bluetooth device can be in one of these three principal states:

• Standby: default state of the device. It can not send or receive any packet
(low power mode);

• Connection: typical state of a piconet, which allows a two-way communica-
tion between master and slave;

• Park: when a slave comes out from a piconet, leaving that address free. It
takes a "parking" address and it can wake up at periodic intervals in order to
listen to any messages from the master.

or in one of these secondary states (for the search phase): page, page scan, in-
quiry, inquiry scan, master response, slave response, inquiry response. This search
phase provides that a device in inquiry mode sends a specific packet at different
frequencies requiring a response from devices in state inquiry scan that are receiv-
ing it. If the device in inquiry state decides to establish a connection, it moves
to page status and the device that will be scanned by it must be in the page scan
state. After this scanning both devices will change their state: device in page sta-
tus passes to master response state, while the other goes from page scan to slave
response, synchronising with each other. Once the connection is established, both
devices passes to connection state: the first becomes the master, the second the
slave of that piconet.[17]
For each of these phases a different physical channel type is used in terms of fre-
quency: in the search phase the Inquiry channel is used, while in the connection
phase the Paging channel and in the transmission phase the Basic piconet channel
or Adapted piconet channel. (see also Sec. 1.4)

Finally, in the Connection state a device can be in one of these other three
states:

• Connection-active mode: the device is actively involved in the piconet. If
it’s a master, it schedules the transmissions according to traffic requests to
and from slaves. Otherwise, if it is a slave in active mode, it keep listening
the channel in the slot "master-slave";

• Connection-hold mode: a slave in this state will not support any ACL
packet, while it can still support SCO links. This mode is useful to solve
capacity problems in terms of bandwidth available on the channel;

• Connection-sniff mode: in this mode the listening activity of a slave on
the channel will be reduced. Generally, if a slave has an active ACL link, it
must listen to the channel in all master transmission slots for receive packets.

28

1.5 – Bluetooth device states

Instead, in this state, the number of slots used by the master in order to
transmit packet to the "sniff slave" can be reduced. This means that there
will be some periodic sniff slots specifically used in order to do this master-
sniff slave communication.

The overall behaviour can be summarized with the state diagram depicted in
Figure 1.6.

Figure 1.6. The state diagram of a Bluetooth BR/EDR device [17]

29

1 – The Bluetooth BR/EDR standard: an overview

1.6 Packets structure
The packet structure of the Bluetooth BR differs from that of BR/EDR, since the
modulation of the second part is no more the GFSK, but the PSK (see Sec. 1.1.1).

Starting from the BR, the general format of its packet is divided in three different
parts: access code, header, payload, as shown in Figure 1.7.

Figure 1.7. The packet structure of Bluetooth Basic Rate [17]

• Access code: it is the first part of the packet, used to identify all packets
transmitted in the same physical channel. In this case, they have the same
access code. It’s composed by 72 bits if there is the header (during the
connection), otherwise it has 68 bits and it’s called shortened access code
(used for synchronization and identification of devices in the search phase);

• Header: composed by 54 bits, containing control information on connection,
such as the type of baseband link used (ACL or SCO);

• Payload: from 0 to 2745 bits. It contains the information in the strict sense.

Instead, with the optional EDR, the packet structure is that of Figure 1.8 below.

Figure 1.8. The packet structure of Bluetooth BR/EDR [17]

As mentioned above, only the second part changes, due to the different modula-
tion used. GUARD is a "watch interval" (from 4.75 µs to 5.25 µs); SYNC represents
the beginning of synchronization sequence. Finally, TRAILER is composed by two
different symbols depending on the type of PSK used (in Fig. 1.8 e.g. DPSK is the
Differential PSK).

30

Chapter 2

The Bluetooth Low Energy

From 1998, year from which the Bluetooth technology is managed by the SIG, many
versions of it have been released.

In Chapter 1 an overview of the Bluetooth BR/EDR version has been done,
only to be able to make a comparison with the version BLE, focus of this thesis.

Bluetooth Low Energy (BLE) is part of Bluetooth Core Specification and is a
wireless technology specifically designed to be used for novel applications in IoT.[6]
BLE was introduced in the 4.0 version of the Bluetooth specification, released
in 2010. It is sometimes referred to as Bluetooth Smart or BTLE, and some-
times mistaken as Bluetooth 4.0 (since this version really included both types of
Bluetooth).[12] From that other versions have been developed during these 10 years,
introducing enhancements and features focused on BLE. The last version is the 5.2,
released on 31 December 2019. Moreover, BLE versions are backwards compatible
with each other. However, the communication may be limited to the features of
the older version of the two communicating devices.

BLE arises from the need to reduce the power consumption. It is aimed at very
low power communication with shorter data frames, fast connection, maximized
idle time and low peak transmit or receive power. It exchanges data in short bursts
which fit well the needs of the low throughput devices. In fact, BLE is used by lots
of devices that are powered by small, coin-cell batteries such as watches, sports and
fitness, health care, keyboards, beacons (IoT devices), so overall used by embedded
sensors.[30]

31

2 – The Bluetooth Low Energy

2.1 Bluetooth classic vs BLE
Let’s start emphasizing differences and common things between BR/EDR and BLE.
For simplicity and clarity, these main features are summarized in the table below.

Features Bluetooth classic Bluetooth Low Energy

Topology Scatternet Star Bus
Power consumption Less then 30mA Less then 15mA

Speed 700 Kbps 1 Mbps
RF Frequency band (2400-24835) MHz (2402-2480) MHz
Frequency channels 79 channels 40 channels

Modulation GFSK, DPSK GFSK
Latency 100ms 3ms
Spreading FHSS(1MHz channel) FHSS(2MHz channel)

Message size (bytes) 358 (Max) 8-47
Throughput 0.7-2.1 Mbps Less then 0.3 Mbps

Slaves 7 Unlimited
Range 100 m 50 m

Table 2.1. Differences between Bluetooth classic and Bluetooth Low Energy

In BLE there are not power classes. (as in Tab. 1.1). Since its main feature
is related to the low power consumption, the maximum output power is about
10dBm, and the minimum is -20dBm. This is due to the fact that there are some
modifications, such as a reduction of frequency channels and shorter packet size
(explained in detail in the following sections).

It is important to notice that BLE is incompatible with Bluetooth classic, since
there is a big difference in terms of technical specification, implementation, and
the types of applications to which they are each suited (the first used for sensor
data and low-bandwidth application, the second for audio streaming, file transfers,
and headsets). Thus, a device implementing only the low energy feature cannot
communicate with a device that only implements Bluetooth Classic. In order to
have interoperability between classic or traditional bluetooth and BLE devices dual
mode devices having protocol stack of both need to be developed. Dual mode BLE
hardware chips have been developed by many vendors such as CSR, Broadcom,
Nordic semiconductor, EM Microelectronics, Texas Instruments etc.[31]

32

2.1 – Bluetooth classic vs BLE

Figure 2.1 depicts protocol stack for standard Bluetooth device, dual mode
device and single mode device. Dual mode device supports both BLE and Standard
Bluetooth protocols and hence it can interoperate with standard bluetooth devices
as well as BLE devices.

Figure 2.1. Differences between protocol stacks [31]

33

2 – The Bluetooth Low Energy

2.2 BLE architecture
The three main blocks in the architecture of a BLE device are: the application,
the host, and the controller.

Figure 2.2. BLE protocol stack [12]

For sake of clarity and completeness, each block is briefly covered in the follow-
ing sections, except for the Application layer, since it strictly depends from the
application to be handled. It represents the code especially written in the specific
case.

2.2.1 The controller
The controller is the lower level of BLE stack, split into several layers explained
below:

• Physical Layer (PHY): it is referred to analog communications (radio hard-
ware). In detail, it defines the modulation and demodulation of analog signals
and applies source coding to transform the signals into digital symbols.[33]
Also BLE (like Bluetooth classic) uses the 2.4 GHz ISM band, but the channel
division is different, as seen in Table 2.1. It uses 40 channels, each separated
2 MHz each other (center-to-center), and in this way divided: three of these,
called Primary Advertising Channels, are referred to the search and dis-
covery phases (explained in detail later); the other 37 channels are called

34

2.2 – BLE architecture

Secondary Advertising Channels and are used only for data transfer.
This type of channel division in shown in figure 2.3.

Figure 2.3. The frequency spectrum and RF channels in BLE protocol [12]

Other features related to the PHY are the type of modulation (GFSK) and
the FHSS, used also in Bluetooth BR/EDR. (see Chapter 1).

• Link Layer (LL): it directly interfaces with PHY and, through the HCI, it
is able to provide the higher-level layers an abstraction and a way to interact
with the radio. Thus, PHY and LL are isolated from these higher-levels that
do not have to worry about the complexity of those modulation techniques
and timing setting that define the operation of BLE radio. Main tasks of LL
are: random number generation, CRC generation and verification, encryption.
Also, it is responsible of the process related to the connection establishment.

• Direct test Mode (DTM): it’s used for certification RF tests.

2.2.2 The host
• Host Controller Interface (HCI): it is an intermediate interface that al-

lows the controller to communicate with the upper-layers of the protocol stack.
This is done through a set of commands from the host to the controller and
events in the opposite direction. In many cases the host and the controller
can be made up on different chipsets so that the job of the HCI is to allow
interoperability between the two layers.

• Logical Link Control and Adaptation Protocol (L2CAP): also present
in BR/EDR protocol stack, it mainly adapts upper layer protocols to the
baseband layer. In BLE also it takes the larger packets from the upper layers
and splits them into chunks that fit into the maximum BLE payload size
supported for transmission. On the receiver side, it takes multiple packets and
combines them into one packet that can be handled by the upper layers.[12].

35

2 – The Bluetooth Low Energy

• ATT: it is a peer-to-peer protocol that defines how to transfer data between
the server and the client: the first is the device that exposes its data to
the peer device, the client, that has to read these exposed data in order to
send commands and requests. This type of data has a structure defined by a
generic term called attribute.

• GATT: Similarly to ATT, GATT takes on the same roles, but at a higher
level. It uses ATT as its transport protocol to exchange data between devices.
In particular, the so called "GATT services" are defined: these consist in
Services and Characteristics that are transmitted by the devices. Both mas-
ter and slave devices, in fact, transmit objects that are Profiles, which contain
Services, which contain Charachteristics in their turn. The different profiles
define what a particular device can do (e.g. some earphones implement the
A2DP profile, that allows the user to listen music transmitted from the mo-
bile phone). Characteristics that belong to the same Service are identified
by an UUID, a 128-bit unique ID number. A clear representation of this
hierarchical organization is shown in figure 2.4.

Figure 2.4. A Generic Attribute Protocol (GATT) Profile [40]

• Security Manager Protocol (SMP): it is the peer-to-peer protocol used to
generate, manage and assign encryption keys and identity keys (more details
in Chapter 3).

• Generic Access Profile (GAP): this block represents the basic features
common to all BLE devices, such as access modes and procedures used by

36

2.3 – BLE star-bus vs BR/EDR scatternet

transport, protocols and from the application profiles. It specifies if and how
two devices can interact each other. Also, through it the device is discoverable
from the outside world.
Finally, the following 4 roles for a device are defined by the GAP:

GAP Role Features

BROADCASTER Only sends advertising events
OBSERVER Only receives advertising events

PERIPHERAL Accepts the connection
CENTRAL Initiates the connection

Table 2.2. Power classes and corresponding ranges

2.3 BLE star-bus vs BR/EDR scatternet
As already seen, Bluetooth BR/EDR connection is based on a piconet/scatter-
net topology, in which a master device controls up to seven slaves per piconet; the
slaves communicate with the master device but they do not communicate with each
other, even if they can belong to different piconets (composing overall a scatternet).

Differently, in a BLE connection the used topology is called Star-bus: in this
case the slave (peripheral) is no more always listening from incoming connections
from master (central) device, but itself invites connections, in order to respect the
low power consumption constraint. On the other hand the master will listen for
advertisements from slaves and make connections on the back of an advertisement
packet. Also, the slaves communicate on a separate physical channel with the
master. Most commonly, in a BLE connection, the master can be a smartphone, a
computer or a tablet, connected with slaves like smart-home thermostat or a smart-
watch at the same time. These two different topologies are compared graphically
in figure 2.5.

37

2 – The Bluetooth Low Energy

(a) (b)

Figure 2.5. a) BR/EDR Scatternet topology vs b) BLE Star-bus topology [35]

2.4 BLE device states
The link layer level defines five states (differently from BR/EDR with three main
states) in which a BLE device can operate:

• Standby: usually the default state;

• Advertising: devices in this state are called advertisers. They start search-
ing, sending advertising packets that will be received from initiating or scan-
ning devices;

• Scanning: the state in which the device scans for advertisers;

• Initiating: the scanning device that decides to make a connection with the
advertiser;

• Connection: when a connection is established. The device that was in
initiating state becomes the master, while the advertiser will be the slave.

The ability to switch from active state (connection) to stand-by state, allows
the slave to reduce the power consumption during time intervals between one trans-
mission and the next one. From Figure 2.6 it can be clear that this passage can
take place, however, only through the advertising states and initiating; so that, the
connection phase must always be preceded by a search phase.

38

2.4 – BLE device states

Figure 2.6. The state diagram of a BLE device [17]

2.4.1 Advertising state
Specifically, in this state a device sends out packets containing useful data for oth-
ers to receive and process. The packets are sent at a fixed interval defined as
the advertising interval (from 20 ms up to 10.24 s in small increments of 625
µs).[12] Only 3 channels (Primary Advertising Channels, 37, 38 and 39, see fig-
ure 2.3) out of 40 are used in this state, which are spread apart in the frequency
spectrum and also are specially selected in order to avoid any type of interference
(mainly from Wi-Fi channels) . In BR/EDR case, instead, channels of inquiry scan
and page scan are 32, so that this phase requires 22.5 ms against the 1.2 ms (in
the worst case) of the BLE, thus achieving a power consumption of 10-20 times less.

Packets sent by advertisers allow these last to be found by centrals, thus es-
tablishing a connection. This advertising data consists up to 31 bytes of user
configurable data (instead of the secondary advertisement data that supports up to
254 bytes). An additional 31 bytes can be sent as a scan response (from advertiser)
to a scan request (from master).
The main advantage of staying in the advertising state is that multiple masters
can discover the advertising data without the need for a connection. However, the
drawbacks are the lack of security and the inability for the advertiser to receive
data from a master (data transfer is unidirectional).[12]

39

2 – The Bluetooth Low Energy

2.4.2 Scanning state
When not connected, Bluetooth Low Energy devices can either advertise their
presence by transmitting advertisement packets or scan for nearby devices that are
advertising. The process of scanning for devices is called device discovery.[12]
There are two types of scanning:

• Active scanning: the mode in which a device that listens for advertisements,
then sends scan requests from the advertisers;

• Passive scanning: the mode in which a device can only receive data from
advertiser, but does not send any scan request.

Some scanning parameters (imposed by the Bluetooth core specification) are
summarized below in the table 2.3.

Parameter Description Range

Scan Interval interval between two consecutive scan windows 10ms to 10.24s
Scan Window duration of scanning for advertisement 10ms to 10.24s
Scan Duration how long the device can stay in the scan state from 10ms to infinity

Table 2.3. Scanning parameters

2.4.3 Connection establishment
After a mandatory search phase, two devices (one in advertising state and one
in the initiating state) can establish a connection on the same physical channel.
This happens when the central is listening on the advertising channel where the
peripheral is advertising, discovering it in such a way. At this point, the initiator
sends a packet called connect_req to the peripheral, that triggers the forming of
the connection.
This packet defines some information:

• Frequency hopping sequence: the connection happens on the remaining
37 channels from advertisement (in most cases all 37 channels are used).
So that, BLE connections "hop" across various data channels, which follow a
precise hopping pattern, and through a connect_req packet the hop incre-
ment and the channel map are defined. Obvioulsy, master and slave follow
the same hopping pattern at the same time.

40

2.4 – BLE device states

In particular:

– The Hop interval can be directly evaluated through the formula:

HopInterval = ∆t
37 × 1.25 ms (2.1)

where ∆t is the time interval between two consecutive packets on the
same data channel.

– TheHop Increment is evaluated from the "interarrival time" of packets
on two different data channels. [41] So, if 0 and 1 channel indexes are
considered: first, a data packet is send on channel 0; then, jumping to
channel 1, the interarrival time is the time waiting for a second packet
to arrive.
Also for this, a mathematical treatment has been done. Hop increment
has to satisfy the equation:

0 +HopIncrement× channelsHopped = 1 (2.2)

where the channelsHopped between the two packets is:

channelsHopped = ∆t
hopInterval × 1.25 ms (2.3)

with ∆t the interarrival time.
So, the HopIncrement is the inverse of channelsHopped, and since this
last is surely non-zero, its inverse is well defined.

– Finally, the channel map is defined: given a precise HopIncrement, the
nextChannel in a channel hopping pattern is:

nextChannel = channel +HopIncrement (2.4)

• Connection interval: the interval between two consecutive (and periodic)
connection events, in which the two connected devices exchange packets be-
tween them. This interval is in the range of 7.5 ms to 4 s, with a step size of
1.25 ms;

• Slave latency: this parameter defines the number of connection events that
the peripheral can safely skip, reducing also the power consumption;

• Supervision timeout: defined as the maximum time between two received
data packets before the connection is considered lost.

41

2 – The Bluetooth Low Energy

The entire process from the stand-by state to a connection establishment is
depicted in figure 2.7.

Figure 2.7. A BLE connection process [37]

2.5 BLE packets structure
In the BLE standard only one packet structure is defined, both for advertising
and data packets. This is composed by four fields: Preamble, Access Address,
Protocol Data Unit (PDU) and Cyclic Redundancy Check (CRC), as
shown in figure 2.8.

Figure 2.8. A BLE packet structure [41]

• Preamble: an alternative binary sequence; it’s 1 byte used by the receiver
for synchronization;

42

2.5 – BLE packets structure

• Access Address: it determines if the packet is for advertising or for data; if
it is for the first case, the Access Address is fixed (and equal to 0x8e89bed6),
while for the data it is a random 32 bits value, communicated from the master
to the slave when they set up a connection;

• PDU: PDU field can vary from 2 to 39 bytes. In both cases it has a header
first, that determines the type of broadcast or logical link carried on the
physical channel. Also, in an advertising packet this header contains the pay-
load type, payload length and generically also the address of the advertiser.
Second, there is the payload that contains information for the connection re-
quest or data for the setup of the connection. Finally, in a data packet, there
is also a third part called Message Integrity Check, that is an authenti-
cation code used in encrypted communications. This difference in shown in
figure 2.9;

• CRC: Cyclic Redundancy Check, method for calculating checksums. It rep-
resents a check for data integrity.

The implementation of packets in the Bluetooth Low Energy standard allows
to omit already known information and thus have shorter packets compared
to the BR/EDR standard: this contributes to have lower latency value and
therefore a low power consumption.

(a)

(b)

Figure 2.9. a) an Advertising channel PDU and b) a Data channel PDU [17]

43

44

Chapter 3

Tha basis of the BLE security

Security issues of the BLE are the main focus of this thesis, in order to be able to
test its security standard.
As already seen in Chapter 2, security is handled by the SMP, in which rules and
algorithms (on which modes and procedures of GAP are build) are implemented.

The data stored at a server is organized in attributes, and BLE allows the
server to specify an access control policy for them. Each such policy describes how
an attribute can be accessed (read-only, write-only, or read-and-write), and which
security level is needed to access it.[15] GAP defines two of them:

• Security Mode 1: it enforces security through encryption, and contains
four levels:

1. Level 1: No security;
2. Level 2: Unauthenticated pairing with encryption;
3. Level 3: Authenticated pairing with encryption;
4. Level 4: Authenticated LE Secure Connections pairing with encryption.

• Security Mode 2: it enforces security through data signing, and contains
two levels:

1. Level 1: Unauthenticated pairing with data signing;
2. Level 2: Authenticated pairing with data signing.[38]

Each connection starts its in Security mode 1, Level 1, and can later be upgraded
to any security level by means of an authentication procedure. If a particular service
request and the associated service have different security modes and/or levels, the
stronger security requirements prevail.[11]

45

3 – Tha basis of the BLE security

3.1 Pairing & Bonding
The processes of pairing and bonding start after a connection is established between
a central and a peripheral.

Pairing is a temporary security measure that happens immediately after the
connection, in which the two devices announce their pairing features to negotiate
a common association method. Once authenticated, the link through them is en-
crypted and keys are distributed to allow security to be restarted on a reconnection
more quickly. Bonding must occur when connections are repeated.

Low Energy Pairing uses a CBC-MAC (Cipher Block Chaining Message Au-
thentication Code) authenticated encryption algorithm, implementing the AES
(Advanced Encryption Standard). NIST (National Institute of Standards and
Technology)[11] considers the AES-CMAC and P-256 elliptic curve the most se-
cure algorithm for all low energy connection in BLE 4.2.

Pairing is related to the so called phase 1 and phase 2, while bonding represents
the phase 3, that one can notice in figure 3.1.

Figure 3.1. The three phases of pairing and bonding [6]

46

3.1 – Pairing & Bonding

3.1.1 Phase I
In this phase of pairing features exchange, the central starts the pairing process
by sending a pairing request message to the peripheral, which responds with a
pairing response message.
Through these two messages, the connected devices exchange among them their
own information about features of each, including:

• Input/Output capability: yes or no input support;

• Out-Of-Band (OOB) method support;

• Authentication requirement, including bonding and MITM protection;

• Maximum encryption key size;

• The different security keys devices are requesting to use.

3.1.2 Phase II
What happens in Phase II is different according to which connection is used, since
both use different pairing methods (even if some of them have the same name, the
process is different):

• LE Secure connections: used for Bluetooth version 4.2 and later (so only
for BLE). This improves LE security using the key agreement ECDH pro-
tocol (using the P-256 Elliptic Curve). Through this algorithm, the devices
exchange their public keys, from what a secret symmetric key (DHKey) is
generated. After this, it is sure that both devices generate the same LTK
(Long Term Key), that is saved for future SessionKey generation and link
encryption.[4];
In particular, association methods that can be used (according to features
exchanged in Phase I) are:

– Passkey Entry: designed for situations in which the devices supports
entering the six-digit passkey, but without a display capability (e.g. a
pairing between a laptop and a mouse). The final confirm value is gen-
erated from the public key of both devices;[6]

– Numeric Comparison: the most secure association method; a func-
tion converts the exchanged public keys into a six-digit pin. Each device
displays the number and the user confirms that these two displayed num-
bers match by pressing a “Yes” button on each device to proceed the
pairing process.[4]. It ensures to avoid MiTM (Man in The Middle) at-
tack since, if it is running, the two numbers on displays will no more
match;

47

3 – Tha basis of the BLE security

– Just Works: used even if one of two devices has no I/O capabilities.
It uses the same protocol of the Numeric Comparison, except for the
displayed numbers, since one or both devices may not support a display.
For this reason, this method is vulnerable to a MiTM attack;

– OOB: called Out-of-Band, since this method is used when the devices
exchange the LTK no more over BLE, but over an extra communication
channel, e.g. the NFC for smartphones. Thus, the security level of this
method depends strictly on that of the used extra channel.

• LE Legacy connections: used for all Bluetooth version. In this type, two
keys are exchanged: the TK (Temporary Key) and the STK (Short Term
Key). Pairing methods used by it are:

– Passkey Entry: used only if devices have I/O capabilities. It consists
in a six-digit number (TK) that can be written manually by the user;

– Just works: the TK here is set to be 0, so that it is the least secure
method;

– OOB: like the OOB of the LE Secure Connection, an extra communi-
cation channel is used.

3.1.3 Phase III
The phase III corresponds to the bonding process, that is an optional process:
the device can be non-bondable or bondable. If non-bondable (default state),
no keys will be stored by the device for future reconnections; instead, if bondable,
the central initiates pairing with the same "bonding bit set" in the authentication
requirements of the Pairing Request message. If the peripheral device is bondable,
it will respond with the bonding bit set.
If all this happens, the keys will be distributed after the link is encrypted, and then
the keys are stored. Once the keys have been distributed and stored, the pair of
devices are said to be bonded.[38]

3.2 Security goals
A BLE connection has to respect some aspects in order to be defined a "secure
connection". Mainly these aspects are:

• Privacy: a measure to how private is the connection. Every Bluetooth
device is represented by a unique address (MAC address), that also has to be
protected from a third malicious device.
In this sense, the Identity Resolving Key (IRK) is used in order to protect

48

3.3 – Types of attacks

the private identity of the device. Only a device with privacy requirements
needs to distribute its IRK and real MAC address to its peer device;[4]

• Integrity: check if the data packet is free from corruption. This is done
through CRC and MIC;

• Confidentiality: how the data exchanged between the two peer devices is
confidential and readable only in that connection;

• Authentication: in order to be sure to be connected to that specific device
and not to another third malicious user.

Obviously, not all the BLE connections can be defined "secure". Surely, the LE
legacy is the most vulnerable connection, and in fact attackers prefer BLE 4.0 and
4.1 versions in the majority of cases.
But the security of a connection does not depend only on the LE connection used;
also it can depend on the design or on the implementation of that specific device
manufacturer.

3.3 Types of attacks
Some of the most known types of attacks are: MiTM attack, DoS attack and
Passive Eavesdropping.

3.3.1 MiTM attack
One of the most known attack is called MiTM attack, already mentioned earlier.
"Man-in-The-Middle" means that there is a third "man" that wants to intercept
the connection between two devices. The attacker pretends to be one of these de-
vices (both master or slave), so that it can communicate with the true peer device,
reading its personal data and writing the false data. As seen previously, the Just
Works method is the least secure for this type of attack. In particular, in LE Secure
Connections, it does not check if the six-digit pin number matches, since it’s not
sure that both devices have display support.

The best known type of MiTM attack is called Spoofing Attack: the attacker
pretends to be a legitimate device and communicates with the target collecting
sensitive information, such as password. That is, in a spoofing attack, the attacker
does not relay messages, but pretends to be the slave of interest communicating
with the master.[6] Only the Passkey Entry or the Numeric Comparison may avoid
this type of attack. OOB connection depends on the security level of the extra

49

3 – Tha basis of the BLE security

channel used.

Recently, some researchers [15] found a type of spoofing attack called BLESA:
they discovered some vulnerabilities in the BLE stack regarding a reconnection be-
tween two already paired devices. In BLESA, the attacker wants to be a previously-
paired device, so rejects the authentication requests coming from the client, and
then sends spoofed data to it.

3.3.2 DoS attack
The Denial-of-Service attack is referred to an attack that makes a resource un-
available for a legitimate user. For instance, in version 4.0, during a connection the
slaves can have only one master; when the master connects to the slaves, these will
stop to be in broadcasting mode and they will be invisible to any other device. So
that, this makes it vulnerable to DoS attacks, since attackers could enhance their
advertisement rate to win such a connection race. The situation has been mitigated
in Version 4.1 as it supports the multi-master mode.[6]

Two types of this kind of attack are the Jamming Attack, that blocks the
advertisements of one slave, making it unconnectable for other devices, and the
Denial-of-Sleep (DoSL), in which the attacker consumes the power of a device by
connecting/disconnecting with it many times, paralyzing it.

3.3.3 Passive Eavesdropping
This attack occurs when an attacker is listening a conversation during a communi-
cation between two peer devices. BLE traffic, in this case, is easy to follow, since
the communication happens only on 40 RF channels, compared to the 79 channels
of the Bluetooth classic.

BLE versions 4.0 and 4.1 are the favourites for the passive eavesdropping, since
they use the LE legacy connection method. Specifically, for the Just Works and
the Passkey Entry, TK can be easily guessed, since, e.g., in the first method TK is
set to 0.

50

Chapter 4

Bluetooth sniffing: the Ubertooth
One

For the purpose of this thesis work, the Ubertooth One has been used. By defi-
nition, this is an "open source 2.4 GHz wireless development platform" created in
order to make Bluetooth experimentations.

The Ubertooth is a USB-dongle used to sniff Bluetooth traffic: it captures the
RF modulated signals (that correspond to a transmission of a packet) of the lowest
levels (Physical and Link Layers) and it turns these RF into bits, with which the
user can work.

Figure 4.1. Ubertooth block diagram

Figure 4.1 represents a simplified block diagram to better explain its hardware
components: first, there is a RF frontend that captures the RF signals, that are
transmitted to a second stage CC2400 Radio. This radio chip has a narrowband
transceiver that has the capability of monitoring a BLE channel at a given moment.
Also, obvioulsy, it has the task of demodulation (GFSK used) of the RF into bits.
Then, this bitstream is passed to the LPC (an ARM based microcontroller) that
entirely processes packets.

51

4 – Bluetooth sniffing: the Ubertooth One

Ubertooth One is more powerful with respect to a simple Bluetooth chip: this
last is able to pay attention to only one channel at time, while the Ubertooth can
listen the traffic broadcasted on the entire frequency range.
Normally, there are different USB-dongles with the same aim of intercept Bluetooth
traffic, but in this work this particular platform has been chosen since it is low cost
and it is able to sniff both Bluetooth classic and BLE communications.

4.1 How to discover a Bluetooth device
Before starting with the analysis of the Ubertooth tools, it is important to under-
stand the way in which a Bluetooth device can be discovered.
A Bluetooth device has an associated identity address (Bluetooth MAC ad-
dress), that is a 48-bit value which uniquely identifies that particular device
(BD_ADDR). It is usually displayed as 6 bytes like this: 00:11:22:33:ee:ff, so
written in hexadecimal way.

4.1.1 Bluetooth MAC address structure

Figure 4.2. Bluetooth address structure [43]

Figure 4.2 clearly represents the structure of a Bluetooth MAC address. First,
the upper half part is the so called OUI: the most significant 24 bits that determine
the manufacturer of that device; it is assigned by the IEEE. The second lower half
part, instead, is assigned by vendor.
Going deeply, the 48-bits can be divide into three parts:

• NAP: 2 bytes that contain the first 16 bits of the OUI. Its value is used in
the Frequency Hopping Synchronization frames;

52

4.1 – How to discover a Bluetooth device

• UAP: contains the other 8 bits of the OUI and it is used for seeding in various
Bluetooth specification algorithms;[43]

• LAP: totally assigned by the vendor, so that it uniquely identifies the device.
With the UAP it represents the significant address part of the BR_ADDR.

4.1.2 Public and random address
While the structure remains the same both for classic Bluetooth and BLE addresses,
for these last one useful feature is available: a BLE device can have a public or a
random address.

• Public address: this is a type of address that can never change and that is
assigned to a device uniquely. It is a global fixed address that must be regis-
tered with the IEEE; also, it follows the same guidelines as MAC Addresses
and shall be a 48-bit extended unique identifier (EUI-48);[44]

• Random access: it’s more popular with respect to the public one since it
does not require the registration on the IEEE. It can be generated runtime
or can be programmed into the device. Also, it can be distinguished in:

– Random Static Address: it can be considered an alternative version
of the public address, since it can never change during runtime, but only
at bootup. Its format is represented in figure 4.3, where the random
part has to be chosen by the manufacturer.

Figure 4.3. Random Static Address format

– Random Private Address: specifically used to provide more security
to the Bluetooth device, preventing its tracking. It can be:

∗ Resolvable: it has the aim of preventing malicious tracking from
"non trusted" devices; instead, for "trusted" devices (bonded de-
vices), it is resolvable, so that the connection can happen again.
This resolvability is done through a key shared between them (the
already mentioned IRK) during the bonding process. This address
changes periodically (every 15 minutes is recommended) and it has
the format shown in figure 4.4: the upper half 24 bits represent a
hash value which is generated using the prand (the lower 24 bits,
two of which are fixed to be 1 and 0) and the IRK.

53

4 – Bluetooth sniffing: the Ubertooth One

Figure 4.4. Random Private Resolvable Address format

∗ Non-resolvable: it is less used, since it can not be resolvable by
any device (generally used by beacons). The only aim of it is to
prevent the device tracking. Also, it has the same format shown in
figure 4.3, but the two least significant bits are both equal to 0.

4.2 Experimental setup
All tests and experimentations have been made up with these two requirements
primarily:

• an Ubuntu derivative distribution, Xubuntu-18.04.5, installed as virtual ma-
chine on the Oracle VM Virtual box. The option "update packages from
repositories during installation" has been chosen;

• the Ubertooth One, already descripted. Following the build guide [42], after
installing some prerequisites from the operating system’s package repositories,
the Bluetooth baseband library (libbtbb) has to be build in order to decode
Bluetooth packets. Also, the host code for configuring and updating firmware,
and for using tools has been installed from Ubertooth repository; the used
firmware version is the 2018-12-R1 (API:1.06).

Figure 4.5. The Ubertooth One

54

4.2 – Experimental setup

Figure 4.5 is a real photo of the Ubertooth One used. It provides the use of an
antenna, that obviously must be connected in order to have the correct functioning,
once it is inserted via USB-port.

After installing all, to verify that the correct firmware version has been updated,
the following command has to be run on the terminal:
ubertooth−u t i l −v

Finally, the last step consists in activating the Bluetooth device already on
board the system, since the Ubertooth uses both this and the device itself. One
can do so typing first:
s e r v i c e b luetooth s t a r t
and then, to verify the effective enabled status:
s e r v i c e b luetooth s t a tu s
which displays the following screen on terminal:

Figure 4.6. Bluetooth status on board the system

Now, to have another confirm, through the command
h c i t o o l dev
if Bluetooth is running, the system answers giving the MAC address of the device
(a DELL personal computer in this specific case), as in figure 4.7.

55

4 – Bluetooth sniffing: the Ubertooth One

Figure 4.7. Bluetooth MAC address of the device

Once verified the active state of Bluetooth, and once the Ubertooth One has
been inserted into the USB port, the sniffing can start.

4.3 Ubertooth One tools: classic Bluetooth
Different tools are provided by the Ubertooth One, most of which are related to
classic Bluetooth sniffing. In this section an analysis of the most used and most
powerful of these last will be done, just in order to show its capabilities.
First of all, to verify the proper functionality of the Ubertooth, one has to run:
ubertooth−specan−ui
with which the Ubertooth’s spectrum analyzer is displayed, as in figure 4.8. It shows
the Bluetooth traffic in the area in the entire frequency spectrum (2400-2480 MHz).
The white lines represent the activity in that precise moment, while the green ones
are a graphical representation of the maximum signal strenght (measured in dBm)
at that detected frequency.

Figure 4.8. Ubertooth spectrum analyzer

56

4.3 – Ubertooth One tools: classic Bluetooth

4.3.1 Intercepting Bluetooth MAC addresses
One can start the analysis of Bluetooth traffic trying to intercept tha MAC address
(or a part of it) of the Bluetooth devices in the area.
A device can be discoverable or non-discoverable for security concerns: the first
sends an inquiry response to the device in inquiry state that would like to establish
a connection with it (see Chapter 1), while the second remain invisible to these
inquiry packets and does not reply.

In order to find discoverable devices, just a default linux Bluetooth tool needs
to be printed: the hcitool command (already mentioned before, using the BlueZ
package). In particular:
h c i t o o l scan
which just starts a scan of classic Bluetooth devices that are present, returning
their MAC addresses and their names, like in figure 4.9.

Figure 4.9. The hcitool scan result of discoverable devices

The scan of non discoverable devices can be done with the Ubertooth One: one can
use the ubertooth-scan tool, that gives the information depicted in figure 4.10;
it makes an active device scanning and inquiry using both the Ubertooth and the
BlueZ package with the hcitool (just typing ubertooth-scan -s -x).

Figure 4.10. The ubertooth-scan result of non-discoverable devices

From the ubertooth-scan one can know the LAP that belongs to the non-discoverable
device that acts as master in that particular moment of the conversation. Also, it
gives information about the channel over which the packet is sent (printing also the
AFH map, that will be discussed later), information about the clock and about the
Signal-to-Noise Ratio, with a default value of the noise equal to -55.

57

4 – Bluetooth sniffing: the Ubertooth One

4.3.2 Passive Bluetooth sniffing
For classic Bluetooth discovery, sniffing, and decoding the most complete and useful
tool is the ubertooth-rx. It has two main operation modes: piconet following or
survey mode.
By only typing:
ubertooth−rx
it makes a passive sniffing for all LAPs, giving the same information of the ubertooth-
scan, like in figure 4.11, where a continuous output will be displayed on the terminal.
(here the clkn is the master’s clock).

Figure 4.11. The ubertooth-rx result of all LAPs sniffing

The piconet following mode is the default mode, so when no arguments are
passed to the tool, like in figure above. In this case, after all LAPs have been
printed, one can try to obtain the corresponding UAP giving the command:
ubertooth−rx − l <lap>
but after many attempts one can realize that the UAP calculation is not so straight-
forward and rarely succeds. In any case, it is surely able to discover all types of
devices and to follow that specific piconet.

Instead, in survey mode the tool will print out all the LAPs and the related
information like before, but observing all the possible piconets in the air. This is
done by typing:
ubertooth−rx −z

that, in absence of a specific timeout, will run indefinitely, until the user stops the
sniff with a ctrl-C.

58

4.3 – Ubertooth One tools: classic Bluetooth

What will be displayed on the terminal is shown in figure 4.12.

Figure 4.12. The ubertooth-rx in survey mode

Only the last part of a long list of detected LAPs has been shown here. A timeout
can be given by adding a value in milliseconds, like:
ubertooth−rx −z −t 180
after which the tool stops itself (it has been tested that under 180ms nothing
appears. A good value can be 600ms).
So that one can notice a new part of the Survey Results, in which the tool can
be able to calculate an UAP with a given LAP. In figure 4.12 it has been able to
evaluate the UAP of one device. From this discovery, through the command
h c i t o o l name 00 : 0 0 :C4 : E3 : E2 : 1E
one can figure out the name of the device, as in figure 4.13.

Figure 4.13. The hcitool name of a target device

So, it turns out that the Bluetooth MAC address can be recovered even if the NAP
is unknown, since it is just a non significant part.
This tool works also for undiscoverable devices, even in survey mode.

59

4 – Bluetooth sniffing: the Ubertooth One

4.3.3 Detecting AFH channel map
It is now well known that the Bluetooth standard uses the Adaptive Frequency
Hopping technique in order to avoid interferences as much as possible. In Classic
Bluetooth data are transmitted over 79 different channels spaced 1 MHz; during a
connection, the master changes very quickly the channel over which it transmits,
following the hopping sequence (that is pseudorandom).

Ubertooth One provides a specific command that prints out the AFH channel
map for a given UAP and LAP, so for a given piconet. So that, once recovered these
two info through the ubertooth-rx in survey mode, one can type (in this particular
case)
ubertooth−afh −u c4 − l e3e21e
that will show the AFH map only when it is updated, like in figure 4.14.

Figure 4.14. The AFH channel map of a given piconet

Or, one can use
ubertooth−afh −u c4 − l e3e21e −r

60

4.3 – Ubertooth One tools: classic Bluetooth

with which the AFH will be printed every second in binary mode (figure 4.15).
The AFH map tells to both communication devices which of the 79 channels are

Figure 4.15. The AFH channel map of a given piconet in binary form

good to use and which to leave out. It consists of 80 bits (20 hex digits) corre-
sponding to the 79 channels (and 1 reserved bit). Channels usable for Bluetooth
have the corresponding bit in the AFH map set. So, the more "1" bits are, the less
interference is there.[46]

So, these just presented are the most powerful tools provided by the Ubertooth
in order to capture some information about classic Bluetooth devices. From the
several experiments done it appears that this open source wireless platform is surely
able to capture the LAP of BR_ADDRs available in the area. Just this feature
represents a risk for the identity user, since by collecting all the available informa-
tion (LAP, SNR, channel map,..) one can be able to track that device.
Though, there are mainly two drawbacks: first, the Ubertooth struggles to solve
UAPs and only in the 20% of tests done it was able to evaluate it (see figure 4.12),
and second, when there is no data exchanged, it requires some minutes to print the
wanted information, making it incompatible with high mobility scenarios where
observation times can be very short [1].

61

4 – Bluetooth sniffing: the Ubertooth One

Many works are present in literature, in which researchers try to develop new
platforms with the aim of completely hacking a classic BT device (e.g. in [1] a new
BT sniffer has been made up, making a comparison with the Ubertooth One). This
is not exactly the focus of this thesis, but an overview of the tools provided by the
used platform was necessary for the sake of completeness.

4.4 The ubertooth-btle tool
The ubertooth-btle is the name of the tool provided by the Ubertooth referred
to Bluetooth Low Energy connections only. It is the most useful way in order to
sniff BLE and, sometimes, interfere within connections.
Mainly, it has three modes of operation: "follow", "don’t follow" or "promiscuous"
mode. In the first mode, Ubertooth follows connections; it listens on one of the
three advertising channels (per default, the channel 37). Once a BLE connection is
established, Ubertooth will follow the hops along the channels in order to capture
the transmissions between the devices.[47] In "don’t follow" mode, it no longer fol-
lows connections, but it only prints advertisements. Finally, in "promiscuous" mode,
it sniffs active connections, monitoring an arbitrary data channel and discovering
also empty data packets.

4.4.1 The "follow" mode
This operation mode can be set up by typing on the terminal the command:
ubertooth−b t l e −f
that gives as result a continuous list of BLE advertising packets and some other
useful information, as in figure 4.16 (that shows only one of the many captured
packets).

Figure 4.16. The ubertooth-btle result in the "follow" mode

62

4.4 – The ubertooth-btle tool

As mentioned before, without typing anything except for "-f ", the captured
packets belong to channel 37 per default. If one wants to extend its search to one
of the other two advertising channels (e.g. 38 channel), the following command has
to be run:
ubertooth−b t l e −f −A 38
Now, considering again figure 4.16, the discovered information are several: one can
notice the frequency (2402 MHz, the frequency of channel 37), the Access Address
(fixed to 0x8e89bed6 for all the advertising packets), the RSSI measured in dBm,
that gives an estimation of the device distance.
Also, the data contained in the payload (see Chapter 2) is available, the name of
the manufacturer company and some other useful private information that will be
deeply analyzed in next chapter, through the help of a packet analyzer.

One feature that can be exploited in this mode consists in following connections
of a specific target device, knowing its Bluetooth MAC address. This can be made
up by running:
ubertooth−b t l e −f −t<BR_ADDR>
that uses the -t command line flag. In this way, the Ubertooth will only sniff
connections in which that specific BR_ADDR belongs to the peripheral or to the
central. To clear the follow mode from the target the -tnone command is used:
ubertooth−b t l e −f −tnone

63

4 – Bluetooth sniffing: the Ubertooth One

4.4.2 The "don’t follow" mode
In "don’t follow", as already said, Ubertooth doesn’t follow connections and just
prints advertisment packets continuously.
The mode can be set up by typing:
ubertooth−b t l e −n
Practically, it gives the same information of the "follow" mode, and in fact is the
least used operation mode.

Anyway, for the sake of clarity, an example of what is the corresponding result,
is given in figure 4.17.

Figure 4.17. The ubertooth-btle result in the "don’t follow" mode

4.4.3 The "promiscuous" mode
Finally, the last and third main operation mode is an experimental mode used to
sniff connections when they have already been established.
It is set by the following command:
ubertooth−b t l e −p
printing, again, a continuous output on the terminal that now gives no more infor-
mation about advertisement packets, but data packets.

In fact, from figure 4.18 one can notice that first of all, the channel frequency
is now changed and equal to 2440 MHz, that corresponds to channel 17 (see also
figure 2.3), that is a Secondary Advertisement Channel on which data packets are
transferred. Second, the access address is no more fixed to be 0x8e89bed6, but
it’s a random 32 bits value, communicated from the master to the slave when they

64

4.4 – The ubertooth-btle tool

Figure 4.18. The ubertooth-btle result in the "promiscuous" mode

set up a connection. And third, the term "LL Data PDU" clarifies that this is a
PDU of a data packet, that in the examined case is an empty packet or a L2CAP
continuation. This means that this can be a packet containing a "continuation" of
L2CAP protocol information fields, control information, and/or upper layer infor-
mation data.
This is possible since the BLE stack supports fragmentation and recombination of
L2CAP PDUs at the link layer. This fragmentation allows L2CAP and higher-
level protocols built on top of L2CAP, such as the ATT, to use larger payload sizes.
When fragmentation is used, larger packets are split into multiple link layer packets
and reassembled by the link layer of the peer device.[48] Per default, BLE devices
assume the size of the L2CAP PDU equal to 27 bytes, which corresponds to the
maximum size of a BLE packet that can be transmitted in a single connection event.

So that, it has been proven that the Ubertooth One is able to sniff both classic
Bluetooth and Bluetooth Low Energy. It has been shown that in this last case
it provides different operation modes, with which many interesting and private
information can be shown.
With the help of the ubertooth-btle tool, some attacks have been tried to different
BLE target devices, the results of which are explained in the next Chapter.

65

66

Chapter 5

Breaking the Bluetooth Low
Energy security

Finally, after the analysis of the most known and useful tools provided by the Uber-
tooth One, in this last Chapter some tests have been made on different BLE devices
in order to discover the vulnerabilities of this standard type.

As already seen, ubertooth-btle tool is a powerful tool in order to sniff BLE
connections, even if it is extremely experimental.
In Chapter 3, the most known types of attacks which can destroy the security of the
BLE protocol were discussed theoretically. Now, the purpose is to try to implement
these attacks using the Ubertooth One, analyzing the results.

5.1 Passive Eavesdropping
To recap, the eavesdropping is the ability of a third user to intercept a connection
between two peer devices, following that. BLE devices hop across the 40 channels
already known, and they "stay" on a single channel only the time spent to send or
receive a packet.

To sniff a connection, and so to do an attack of this type, one needs four
indicators which uniquely identify that specific communication:

• Hop interval;

• Hop increment;

• Access Address;

• CRC init.

67

5 – Breaking the Bluetooth Low Energy security

where the "CRC init" is a connection-specific 24 bit value, used in order to filter
out false positive packets.
The Ubertooth One is a sniffer specifically implemented in order to be able to obtain
these four values: in the ubertooth-btle tool in connection follow mode, these values
are extracted from the connection initialization packet. In promiscuous mode, they
are recovered by exploiting properties of BLE packets.[41]

The aim is to exploit the platform in both operation modes while a connection
between two known devices has been established, trying to detect useful information
through a packet analyzer, Wireshark. Precisely, it is a network packet analyzer
with the purpose to present captured packet data deeply in detail.
Wireshark is build together with the libbtbb 2018-12-R1, so that it is already at the
disposal. In this work, Wireshark 2.6.10 version has been used (the version can
be verified by typing wireshark -v on the terminal), which includes the Ubertooth
BLE plugin by default.

So, it is already able to capture BLE packets, but some options need to be
fixed, following the build guide ([51]). In particular, one needs to enter in the
section "Payload Protocol" the btle together with a DLT=147, in order to be able
to analyze packets in the correct way.
Once everything has been build correctly, tha analysis can start.

5.1.1 Eavesdropping in "follow" mode
In Chapter 4 it has already been explained how to set up both operation modes.
Starting from the following one, now by typing
ubertooth−b t l e −f −c f i l e . pcap

it displays the well known continuous output on the terminal (figure 4.16) both
with a file with a pcap extension, which identifies the file format created by the
libpcap that can be read by the Wireshark analyzer.

Notice that the -c flag has been used to do this work. Also, it is possible to run
the command with the -q flag (instead of -c), but it has been tested that there is
no difference in terms of captured connections.

Anyway, an example of how a Wireshark pcap file looks like, is shown in the
screenshot in figure 5.1.

68

5.1 – Passive Eavesdropping

Figure 5.1. A Wireshark pcap file screenshot

All captured packets will be displayed and analyzed by Wireshark; sometimes
malformed packets can occur since they cannot be well read for incorrect CRC,
packet header or other wrong values.

As already known, the Ubertooth One in the follow mode captures packets,
present in the air, staying on channel 37 (even if it can be changed). So all the
displayed packets in figure 5.1 belong to one of the three Primary Advertisement
Channels, representing different types of Advertisement Packets. As figure 2.9
shows, an Advertising PDU is divided into an Advertising PDU Header and an
Advertising Payload.

69

5 – Breaking the Bluetooth Low Energy security

The Avertising PDU Header contains several information about the advertising
data contained in the payload, among which there are the lenght, that defines the
size of the payload, and the definition of the PDU type.
All these information are recovered by Wireshark, like in figure 5.2, from which one
can just know the used Channel Selection Algorithm (a BLE feature in order to
select data channels for each connection event), the type of tx address (public or
random), the length and the PDU type.

Figure 5.2. An Advertising PDU Header in Wireshark

The Bluetooth Core Specification ([52]) specifies 4 different PDU types:

• ADV_NONCONN_IND: represent non connectable devices, that are ad-
vertising information to any listening device;

• ADV_SCAN_IND: similar to the previous one, with the option additional
information via scan responses;

• ADV_IND: sended when a peripheral device requests connection to any
possible central device;

• ADV_DIRECT_IND: sended when a peripheral device requests connec-
tion to a specific central device.

So that, the PDU can be an ADV_IND or ADV_DIRECT_IND if a pe-
ripheral would like to establish a long-term connection; instead, it will be set to
ADV_NONCONN_IND or ADV_SCAN_IND if the peripheral would broadcast
data without establishing a long connection.

Also, the Advertising Payload contains the information for the connection re-
quest or the data for the setup of the connection.
A complete captured ADV_SCAN_IND packet is shown in figure 5.3.

70

5.1 – Passive Eavesdropping

Figure 5.3. A complete ADV_SCAN_IND captured packet

From the last section called "Advertising Data", there are information about the
service UUID data, which includes a list of Service UUIDs. In this specific case a
16-bit Service Class UUIDs is used, which in general is assigned by the Bluetooth
SIG to member companies (Google Inc. in figure), and also the entire Service Data
in shown.

Finally, also the values of the Advertising Address and of the CRC are recovered,
in order to reconstruct an entire BLE Advertisement packet.

71

5 – Breaking the Bluetooth Low Energy security

But, in addition to these four types of Advertising packets, other packets are
transmitted on the Primary Advertisement Channel, as one can notice from figure
5.1. In fact search, discovery and connection phases (corresponding to Advertising,
Scanning and Connection states respectively) take place on these channels.
So that, one can notice first two types of "scanning" packets:

• SCAN_REQ: a packet sent by a device that is in "active scanning" (the
master) to an advertiser (the peripheral), since it would request more infor-
mation without establishing a connection;

• SCAN_RSP: the correspondent response packet send by the advertiser.

(a)

(b)

Figure 5.4. a)The SCAN_REQ and b) SCAN_RSP packets

Figure 5.4 shows the two packets just explained. Notice that the Scanning and
Avertising addresses have been highlighted in order to better understand this ex-
change of request and response. Also, the response packet is broadcasted, and it
usually contains more data with respect to the advertising one. These additional
information are recovered into the "Scan Response Data".

72

5.1 – Passive Eavesdropping

Finally, the last type of packet that the Ubertooth can capture on this same
physical channel (37th in this example) is related to the beginning of a connection,
that happens between the scanner (which is called initiator in this phase) and the
advertiser.

Specifically, the connection begins when the initiator sends theCONNECT_REQ
packet to the advertiser, that contains all that four values needed to identify a com-
munication.

Figure 5.5. A complete CONNECT_REQ captured packet

As figure 5.5 evidences, that values are all recovered from the capture in "follow"
mode.
So that it has been proven that the Ubertooth One is able to do a complete Passive
Eavesdropping attack successfully.

The communication will take place on the other 37 channels, so that the Uber-
tooth gives also the hexadecimal value of the Channel Map and the complete list
of the used channels during the connection (see figure 5.6). This can help the "ma-
licious user" which can intercept the data packet, knowing on which channels the
data is tranferred.

73

5 – Breaking the Bluetooth Low Energy security

Figure 5.6. The Channel Map related to the CONNECT_REQ captured packet

5.1.2 Eavesdropping in "promiscuous" mode
As already clarified, the Ubertooth One in promiscuous mode is able to capture
data packets on the default channel 17th.
So that, once the channel map of a connection has been recovered in "follow" mode,
one can think to capture data of this communication hopping between the used
channels. The platform is not able to hop instantaneously from a channel to another
one, and so the wanted data channel has to be set at first, by typing:

ubertooth−b t l e −u t i l −c2420

in which the 9th channel has been set up, referring to figure 5.6.
So now the promiscuous mode con be entered, again with the pcap file, in this way:

74

5.1 – Passive Eavesdropping

ubertooth−b t l e −p −c f i l e . pcap
After several attempts, setting many different channels, it was possible to observe
that the majority of the captured packets are empty and so not useful, like in figure
5.7.

Figure 5.7. The resulting pcap file of captured packets in promiscuous mode

Also, the Source and Destination fields can not be expressed, so that one can not
know to which active communication that packet belongs.
Many and many tests were done in this work related to the promiscuous mode,
since theoretically it can be able to make the Passive Eavesdropping attack too,
even if it was clarified that it’s so strictly experimental.
But in practice, this attack doesn’t succeed no more: the "promiscuous Ubertooth"
is rarely able to locate an access address and following that, and when it manages
to do this, it can not recover both the hop interval and the hop increment.

An access address can be located when packets with that address are captured
at least 4 times, like in figure 5.8, which clearly shows that the only two values
capable to recover are the address and the CRC.

75

5 – Breaking the Bluetooth Low Energy security

Figure 5.8. The output terminal of the Ubertooth in promiscuous mode
when an access address is located

76

5.2 – Interception attack

5.2 Interception attack
Basing on the practical theory just explained, three different BLE target devices
have been taken into account in order to try to capture a complete conversation.
The master device has always been the same: an Asus Zenfone MAX, with BLE
version 4.0, while the three peripherals were:

• a ThermoBeacon (ORIA) with BLE 5.0;

• the Mi Band 3 fitness tracker with BLE 4.2;

• a pair of DOQAUS C1 Bluetooth earphones, with BLE 5.0.

The experiments consisted in pairing and connecting the smartphone with one
peripheral at a time, trying to follow that conversation. Having physical access to
all devices, their MAC address were already known; vice versa, they could be easily
found through the tools before presented.

To do this, the Ubertooth was set to work in "following" mode, logging packets
to a pcap file, and changing each time the advertising channel on which it was lis-
tening, in order to have more possibilities to find something.
After several and several attempts, the result was that all the peripherals could be
always found in Advertising State, but not all the conversations could be captured.
In particular, even if the processes of pairing and connection were always done
manually by the author of this work (so surely the connection existed), the Uber-
tooth was never able to capture the beginning of the connection of the MiBand and
the earphones (connect_req packet) and either its continuation. These tests have
been run multiple times, but each time the Ubertooth was missing the connection
request.

The only connection that it was able to capture was that between the smart-
phone and the ThermoBeacon: it is a temperature sensor that connects with the
Zenfone through the SensorBlue application (figure 5.9); each time it finds the
Beacon within its range, this communicates current values of temperature and hu-
midity.

In wireless technology a beacon is the concept of broadcasting a small piece of
information.[5] A Bluetooth Low Energy solution is ideal for beacons since they will
run for years on a single coin cell battery. The low-power constraint is achieved by
mantaining the transmission time as short as possible in order to allow the device
to go to "sleep" mode between the transmissions.

77

5 – Breaking the Bluetooth Low Energy security

Figure 5.9. The experimental setup with the ThermoBeacon

So that, in order to be able to capture the connection, the Beacon was always
kept "awake" through the "Find" and "Thermo" functions of the SensorBlue app.
In this way the sensor could send information continuously.

After many tests, finally the connection was captured, as shown in figure 5.10.

Figure 5.10. The result of the captured connection between the smart-
phone and the ThermoBeacon

78

5.2 – Interception attack

From figure 5.11 one can notice that the Ubertooth One was set to be in "fol-
lowing" mode, so it was capturing all the packets of devices in Advertising. But, at
a certain point, it was able to capture a connect_req packet and to locate the cor-
respondent Access Address (0x639f17d9), following that connection hopping from a
data channel to another one. In particular, the MAC address of the ThermoBeacon

Figure 5.11. Zoom of the result of the captured connection between the smart-
phone and the ThermoBeacon

has been recognized (7e:cf:00:00:07:ae): first, it was in Advertising State, transmit-
ting an adv_ind packet (like in theory, it was sending a request connection to a
possible master). After this, it received the connect_req from the central device,
establishing the connection.

The first important thing discovered about this concerns the MAC address of
the smartphone: in all the multiple tests performed, it has been noticed that its
MAC address never appears (knowing it in advance). Actually, since in this case
the connection between the smartphone and the beacon has surely been manu-
ally established, investigating on the feature of BLE, it has been found that from
version 4.0 of Bluetooth (so with the BLE) the MAC address of a device can be
replaced with a random value that changes at timing intervals determined by the
manufacturer.[54]

So, in this experiment, it is sure that MAC address belongs to the Zenfone, be-
cause it is already known. But in general, if a third user does not know its address,
it is quiete impossible to track it. This is a very important and useful BLE feature,
since it has been already explained that the MAC address is synonymous of each
phone.

Instead, this is not true for the considered peripherals, since their MAC address
have been always matched. This can be a matter of costs: it is more likely that a
manufacturer spends more on a smartphone than on a thermobeacon.

79

5 – Breaking the Bluetooth Low Energy security

However, surely the connection has been established. From that moment, the
Ubertooth will be able to follow the conversation hopping on the used channels,
even if it was set to work in "following" mode (in which it has to listen only the
three Primary Advertising Channels.)

From figure 5.11 one can observe that after three unknown packets, there was
an exchange of features between the central and the peripherals, through the
LL_FEATURE_REQ and the LL_FEATURE_RSP.
This exchange of features, depicted in figure 5.12, started with a request from the

(a) (b)

Figure 5.12. a) The LL_FEATURE_REQ and b) LL_FEATURE_RSP packets

Peripheral to the Central, which responds later through the feature_rsp. One can
notice that the two feature sets are different, since the two devices have two differ-
ent version of BLE implemented (4.0 for the Central and 5.0 for the Peripheral).
In fact, both use the LE Encryption, but the Peripheral presents also some other
feature released from BLE version 5.0. The three main improvements are related
to:

• LE 2M PHY: supported from the beacon, it is twice faster than the common
LE 1M PHY, so that the energy consumption decreases;

• LE Coded: stays for "long-range"; this allows BLE connectivity to extend
more, even beyond 1 km;

• LE Extended Advertising: used in order to send more data with respect
to the legacy advertisements allow.

80

5.2 – Interception attack

After that, the Ubertooth captured other two control opcodes, LL_VERSION_IND
and LL_CONNECTION_UPDATE_REQ, details of which are shown in fig-
ure 5.13.
In the first, there was an exchange of versions (e.g. the Company Identifier); in the

(a)

(b)

Figure 5.13. a) The LL_VERSION_IND and b)
LL_CONNECTION_UPDATE_REQ packets

second there was the update of the connection interval between two data tranfer
events, that in this case was equal to 6 ms.

Finally, the conversation started: it is already known from Chapter 2 that all
data is sent using the ATT and GATT protocols, which have to design how data
is represented. This packet will be forwarded to (or received from) the L2CAP
layer. Starting from this L2CAP packet, the information obtained in this specific
experiment concern the lenght and the CID (Channel Identifier) of the packets: the
lenght were variables, while the CID was fixed and set to be 0x0004, a flag used to
indicate the Attribute Protocol, that so represented the destination logical channel.

So that, in this server/client architecture, the ATT Protocol defines the data
structure using the attribute, a format composed of four fields:

• Attribute type, defined through the UUID;

• Attribute handle, a non-zero value used to reference the attribute. Handle
values must be in increasing order;

81

5 – Breaking the Bluetooth Low Energy security

• Attribute permission, that specifies if that resource can be read or written,
toghether with the security level required;

• Attribute value, that can have a variable lenght.

Also, it defines the method through which attributes can be read or written.

(a)

(b)

Figure 5.14. All the Attribute data exchanged between the smartphone
and the ThermoBeacon

Figure 5.14 only shows the list of the Attribute data exchanged in the considered
conversation.

82

5.2 – Interception attack

First, there was a series of Attribute PDU methods: Read by type Request and,
correspondently, a Read by type Response through which the GATT can define, or
include, or also declare its services and their correspondent characteristics. The
request is sent by the client (defined as Central or Master in GAP, so the smart-
phone), while it’s the server that responds to it (so, the ThermoBeacon), that owns
tha data.

(a)

(b)

Figure 5.15. a) the Request and b) the correspondent Response

83

5 – Breaking the Bluetooth Low Energy security

By way of example, in figure 5.15 one of these request and response exchange has
been shown. In particular, the request was referred to the GATT Characteristics
Declaration (assigned to which there was a specific UUID), sent in order to start
a Characteristic. Then, in the correspondent response, there must be three fields
(referring to the case in example):

• Characteristic Property: assigned flag 0x20, correspondent to the "Indi-
cate" property, so that the characteristic Value can be indicated;

• Value Handle: the ATT handle that contains the value for characteristic.
In this case: 0x000a;

• Characteristic UUID: in order to identify the type of the value, with a flag
0x2a05, that represents theGATT_SERVICE_CHANGED_UUID with
a null value.

This was only an example, but a long list of different types of requests and
responses was displayed and captured. And this is so useful in order to be able to
read all possible information about services and their characteristics, so that about
the data transferred.

So, all this allows a malicious user to read/write from/to a characteristic, inter-
cepting a conversation and "entering" in it. But, why?
From figure 5.15 one can notice the wording "Authentication Signature: False",
present in all captured packets of the conversation.
Going deep and investigating on the beacon and the used application, it has been
found that the used security level needed to access to an attribute is the Mode 1 -
Level 2, that means that there is the encryption without the authenticated pairing.
(there is an unauthenticated key exchange for the link encryption, Chapter 3)
In fact, two important packets were missing in the conversation, immediately after
the connect_req packets: the LL_ENC_REQ and the correspondent
LL_ENC_RSP, in which the phase of pairing takes place and through which the
security keys are exchanged between the two devices.
Since the BLE versions of the two target devices are different (4.0 and 5.0), surely
the LE Legacy connection has been used, since the LE Secure connection has been
implemented only from 4.2 version and later. Also, the ThermoBeacon has no I/O
capabilities, so it can be concluded that the used pairing method was the Just
Works, in which the TK is set to be equal to 0.

84

5.2 – Interception attack

As a proof of all just said, a Write Request packet has been interpreted, which
correponds to a write-command sent by the smartphone.
From figure 5.16 one can observe the Value 0400000000 transmitted for a charac-

Figure 5.16. The content of the Write Request packet

teristic which handle is 0x0021 (unknown in this case). Part of this value represents
the password used for connecting the beacon with the smartphone: 000000, that,
decoded in ASCII code is equal to "....", so nothing. So, the Just Works pairing
method has been used!

So that, having already defined the Security Goals that a connection has to
respect to be defined secure, this target connection was not secure at all, except
for the randomization of the MAC address that however is only a feature of the
smartphone.

Theoretically, the Just Works pairing method is the least secure with respect to
a Man-in-The-Middle attack. Since the TK is set to 0, a simple Spoofing Attack
can be done now.
It has been used the Bluez package (already installed), in particular the blue-
toothctl command. Through this, the laptop would impersonate the smartphone,
so it pretends to be the legitimate device.
After a scan, the pair between the laptop and the ThermoBeacon easily succedeed
through the Just Works method, as shown in figure 5.17. As one can see, all the
requests are now redirected to the laptop, and no more to the smartphone.

85

5 – Breaking the Bluetooth Low Energy security

Figure 5.17. The pairing and connection establishment with the ThermoBeacon
from the laptop (third user)

So that, the laptop can now read/write from/to a characteristic while the beacon
is not able to understand that now it is communicating with a third user. In fact,
while spoofing, the smartphone is no more able to connect to the beacon, as figure
5.18 represents.

(a) (b)

Figure 5.18. a) The scan of the smartphone in search of the beacon and b) its failure

86

5.3 – Jamming attack

So, finally, it has been just demonstrated how the connection involved in this
experiment is not so secure. The target BLE peripheral was only a ThermoBea-
con, but there are many and many beacons that implement Bluetooth Low Energy
protocol in the IoT environment nowadays and that can be attacked and spoofed
as just done.
Perhaps some of these also implement the Just Works method still, both for LE
Legacy or LE Secure connections. In this last case, if again the pairing phase is
unauthenticated, a LTK different from 0 can be used to connect the two peer de-
vices. Following the above steps and trying to interpret the content of the value
correspondent to a Write Request packet, one is able to intercept the involved pass-
word and to do easily a Spoofing Attack. E.g. a beacon of this type can be a
bike lock (most bike locks use BLE today); if a third person is able to attack it,
he will be also able to unlock the bicycle! So, relating to this method, a strong
vulnerability has been found.

Instead, for the other two peripherals, the Ubertooh has not been able to capture
nothing, except for their advertising packets. That is why a Jamming Attack has
been tested on them, descripted in the next section.

5.3 Jamming attack
Since the strong vulnerability found related to the Advertising State and since this
is common to the three BLE considered peripherals, a Jamming Attack has been
set and tested on them. It is a type of DoS attack, that blocks the advertisements
of one peripheral, making it non connectable to the legitimate central device (the
same Zenfone MAX smartphone).

Investigating on the source code of the ubertooth-btle tool, it has been found
that there is a way to do a jamming attack only using the Ubertooth. This can be
done associating a flag "-I " or "-i" to the "following" mode, which have the task to
interfere (continuously or not) to a selected target device (its MAC address has to
be specified).
After several attempts, it has been tested that this Ubertooth method does not
work in the proper way: no results have been highlighted on the target peripherals.
That is why, it has been decided to use a Python code, in order to do this work.
First, to be able to run it, the l2ping must be installed on the Xubuntu virtual
machine (if Kali Linux is used, the l2ping is already installed). The l2ping sends
L2CAP pings (echo requests) to a target MAC address. Second, python3 and other
packets related to it have to be provided in order to run correctly the code.

87

5 – Breaking the Bluetooth Low Energy security

The jamming.py code is the following one:

import os
import time
import numpy as np

de f JAMMING(MAC_address , pack_size , Adv_channel) :
os . system (’ l 2p ing − i hc i0 −s ’ + s t r (pack_size) +’ −f ’ + MAC_address
+ Adv_channel)

de f pr intLogo () :
p r i n t (’\ x1b [0 ; 3 4m’)
p r i n t (’JAMMING ATTACK’)
p r i n t (’\ x1b [0m’)

de f main () :
pr intLogo ()
time . s l e e p (0 . 5)
p r i n t (’ ’)
os . system (" c l e a r ")

MAC_address = input (’MAC address > ’)

i f l en (MAC_address) == 17 : #wr i t e the mac address l i k e 1 1 : 2 2 : 3 3 : 4 4 : 5 5 : 6 6
p r i n t (’MAC address matched ’)
e l s e :
p r i n t (’ERROR: Wrong value o f MAC address ’)
e x i t (0)

channe l s = np . array ([3 7 , 38 , 3 9])
f r e qu en c i e s = np . array ([2 402 , 2426 , 2480])
s e l e c t i o n = d i c t ()

f o r i in range (l en (channe l s)) :
s e l e c t i o n [channe l s [i]] = f r e qu en c i e s [i]

Adv_channel = input (’ Adver t i s ing channel > ’)
#g ive i n f o on what adv e r t i s i n g channel in use
Adv_channel = in t (Adv_channel)

88

5.3 – Jamming attack

i f Adv_channel not in channe l s :
p r i n t (’ERROR: s e l e c t an Adver t i s ing Channel ’)
e x i t (0)
e l s e :
p r i n t (’ Used channel f requency : ’ , s e l e c t i o n [Adv_channel])

t ry :
pack_size = in t (input (’ Packet s i z e > ’))
#input an i n t e g e r va lue o f packet s i z e
except :
p r i n t (’ERROR: Packages s i z e must be an in t ege r ’)
e x i t (0)

from thread ing import Thread

try :
Threads_counter = in t (input (’ Threads count > ’))
#input an i n t e g e r va lue o f threads
except :
p r i n t (’ERROR: Threads value must be an in t ege r ’)
e x i t (0)

p r i n t (’ ’)
os . system (’ c l e a r ’)

p r i n t (’\ x1b [0 ; 3 4m’)
p r i n t (’JAMMING ATTACK’)
p r i n t (’\ x1b [0m’)

f o r i in range (0 , 5) :
p r i n t (’ [∗] ’ + s t r (5 − i))
time . s l e e p (1)
os . system (’ c l e a r ’)
p r i n t (’ [∗] Bu i ld ing threads in 5 . . . \ n ’)

f o r i in range (0 , Threads_counter) :
p r i n t (’ [∗] Bu i l t thread number + s t r (i + 1))
Thread (t a r g e t=JAMMING, args=[s t r (MAC_address) ,
s t r (pack_size) , s t r (Adv_channel)]) . s t a r t ()

p r i n t (’ Bu i l t a l l threads . . . ’)

89

5 – Breaking the Bluetooth Low Energy security

pr in t (’ S t a r t i ng . . . ’)

i f __name__ == ’__main__’ :
t ry :
os . system (’ c l e a r ’)
main ()
except KeyboardInterrupt :
time . s l e e p (0 . 5)
p r i n t (’\n [∗] Aborted ’)
e x i t (0)
except Exception as e :
time . s l e e p (0 . 5)
p r i n t (’ERROR: ’ + s t r (e))

So, the Jamming Attack through this code can be launched only if four values
are filled:

• the MAC_address of the target device under attack;

• theAdvertising channel over which advertising packets are sent (discovered
through the help of the Ubertooth One);

• the Packets sizes, which have to be sent to the device (in Mbytes);

• the number of Threads (imported from threading python library), that send
packets at the same time;

Obvioulsy, the code must be run when the device is broadcasting data, so it is
in advertising state. If it is already connected to one central, the jamming attack
is not valid.
The code makes decide the right value of the packet size to send (to be discovered
after several attempts for each target peripheral). Also, python Threads have been
involved, in order to execute them independently from the rest of the code.

Figure 5.19 shows different parts of the running code: an example of error due
to the MAC address wrongly written, the four fields that have to be filled and the
building of the threads.

90

5.3 – Jamming attack

(a) (b)

(c)

Figure 5.19. The jamming code: a) an example of error, b) the four filled fields
and c) the "Built all threads"

5.3.1 Jamming results
What is expected is an abnormal behaviour of the device: it can power off, or
it can still be awake but no more capable to connect to the legitimate user (the
smartphone). There is not a global behaviour for all devices, so that it must be
tested for each of them.

Table 5.1 shows the minimum packet size combined with the minimum number
of threads required in order to have some reaction in the target device (discovered
after many tests).
One can observe, as expected, that the beacon has a stronger reaction: it directly
turns off, differently from the fitness tracker and the earphones that become not
connectable but still awake.
This can be due for the fact that all BLE devices can handle small amounts of data,
in order to respect the low power consumption constraint; so if large quantities of
echo requests packets are sent, the device goes haywire. But, a beacon takes smaller
data size with respect to the other two peripherals. So, it requires a smaller number

91

5 – Breaking the Bluetooth Low Energy security

of threads and littler packet size in order to be invested by the jamming attack.

Also, the difference that exists in these two numbers related to the Mi Band
and the DOQAUS can be related to the different versions of BLE involved: the
earphones use version 5.0 so that it presents a little more robustness.

Target Packet size Threads number Jamming reaction
ThermoBeacon 200 50 Turns OFF
Mi Band 3 500 400 Awake but not connectable

DOQAUS C1 600 500 Awake but not connectable

Table 5.1. Results of the jamming attack

Finally, figure 5.20 represents the real reaction of the jamming attack (e.g.) on
the earphones: these last are still awake (the white led on), but the legitimate user,
so the smartphone, can no longer connect to them.
So that, the Jamming Attack succeeded.

Figure 5.20. The result of the jamming attack on the earphones

92

Chapter 6

Conclusion and future
perspectives

The aim of this work was to study the Bluetooth Low Energy standard, finding
some vulnerabilities in its security through the help of Ubertooth One platform.
After a deep analysis in the BLE protocol at layers level, also having done a com-
parison with its precursor BR/EDR, the security has been investigated.

The Ubertooth One has been tested: it turns out that it is still a well-done plat-
form in order to do BLE experiments. In particular, it is so powerful as sniffer able
to follow established connection (in "follow" mode) and able to capture packets.
But it can not do all the work alone: a packet analyzer (Wireshark) has been used
in order to better view the types of captured packets or to be able to recognize a
target MAC address or also to decode the content of the packet (written in hex-
adecimal) in ASCII code.

It has been demonstrated that the Ubertooth is able to do a complete Pas-
sive Eavesdropping attack but only if it is set to be in "follow" mode, since the
"promiscuous" one is strictly still experimental and in 90% of cases only manages
empty packets.

Then, three different BLE target devices have been involved in the experiment:
it is so important to test their security, since nowadays IoT market is flooded with
BLE devices. In fact, some vulnerabilities have been found, that can be exploited
to corrupt the security and the integrity of a connection. It has been proven that
the ThermoBeacon has more vulnerabilities with respect to the fitness tracker and
the earphones, since it can be easily the subject of a Spoofing Attack, differently
from the other two peripherals.
Obviously, all beacons have to be tested in this sense to prove their security, but in
this work only three IoT devices within the smart home scenario were at disposal.

93

6 – Conclusion and future perspectives

Also, a deep common vulnerability has been found while devices are broadcast-
ing data, so that are waiting for a connection request from any possible central.
Exploiting first the Ubertooth tool able to display devices in advertising together
with their correspondent MAC address, a Jamming Attack through the presented
Python code can be done.
Knowing in advance the addresses of the three target peripheral, this attack has
been performed evaluating its results.
It turns out that all the three are vulnerable to the jamming: the beacon turns
off (earlier) and the other two remain awake but not connectable to the legitimate
central (the smartphone involved in the experiment).

So, finally, some vulnerabilities in this type of protocol have been found. Surely,
this depends also on the type of BLE device involved: e.g. the smartphone, with
the random change of its MAC address, is more secure than the ThermoBeacon.
This is also a matter of costs: manufacturers have always a security budget to re-
spect when they launch a new device on the market, and perhaps fore some devices
this is much lower than others.
But since the IoT environment has reached about billion of devices that implement
the BLE standard, it could definetly be a very good idea to invest more money in
order to improve security.

Devices involved in this work belong to the IoT environment, especially to the
smart home scenario. Future researches may concern BLE in automotive scenario,
since it is in complete transformation. E.g. through smartphone the user can
lock/unlock the vehicle via BLE, so it is easy to understand that its security is a
very important key requirement.

94

Bibliography

[1] M. Cominelli, F. Gringoli, P. Patras, M. Lind, G. Noubir, "Even Black
Cats Cannot Stay Hidden in the Dark: Full-band De-anonymization
of Bluetooth Classic Devices", 2020 IEEE Symposium on Security
and Privacy.

[2] S. Sarkar, J. Liu, E. Jovanov, "A Robust Algorithm for Sniffing BLE
Long-Lived Connections in Real-time", 2019 IEEE Global Commu-
nications Conference (GLOBECOM).

[3] C. Gentner, D. Gunther, P. H. Kindt, "Identifying the BLE Adver-
tising Channel for Reliable Distance Estimation on Smartphones".

[4] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, X. Fu, "Breaking Secure
Pairing of Bluetooth Low Energy Using Downgrade Attacks", 29th
USENIX Security Symposium.

[5] J. Lindh, "Bluetooth Low Energy Beacons", Texas Instruments, Oc-
tober 2016.

[6] Y. Zhang, J. Weng, R. Dey, X. Fu, "Bluetooth Low Energy (BLE)
Security and Privacy", Springer Nature Switzerland AG 2019 X.(S.)
Shen et al. (eds.), Encyclopedia of Wireless Networks.

[7] K. Lounis, M. Zulkernine, "Bluetooth Low Energy Makes “Just
Works” Not Work", 2019 3rd Cyber Security in Networking Confer-
ence (CSNet).

[8] S. Jasek, "BLE security essentials", Hardwear.io, Hague, 13.09.2018.
[9] W. K. Zegeye, "Exploiting Bluetooth Low Energy Pairing Vulnera-

bility in Telemedicine", 2015, Morgan State University.
[10] E. Fantini, "iBeacon: Una nuova tecnologia per la localizzazione in

ambienti chiusi", 2013, ALMA MATER STUDIORUM – UNIVER-
SITÀ DI BOLOGNA.

[11] J. Padgette, J. Bahr, M. Batra, M. Holtmann, R. Smithbey, L. Chen,
K. Scarfone, "Guide to Bluetooth Security", May 2017, NIST Special
Publication 800-121.

[12] M. Afaneh, "Intro to Bluetooth Low Energy" 2018 Novel Bits, LLC.

95

Bibliography

[13] M. Andersen, "Identification, Location Tracking and Eavesdropping
on Individuals by Wireless Local Area Communications", June 2019,
NTNU.

[14] S. Sevier, A. Tekeoglu, "Analyzing the Security of Bluetooth Low
Energy", January 2019.

[15] J. Wu, Y. Nan, V. Kumar, D. Tian, A. Bianchi, M. Payer, D. Xu,
"BLESA: Spoofing Attacks against Reconnections in Bluetooth Low
Energy", 2020, USENIX Workshop.

[16] A. J. Rose, "SECURITY EVALUATION AND EXPLOITATION
OF BLUETOOTH LOW ENERGY DEVICES", March 2017, AIR
FORCE INSTITUTE OF TECHNOLOGY, Ohio.

[17] A. Tiberto, "Confronto tra Bluetooth Basic Rate e Bluetooth Low
Energy", 2013, Università degli studi di Padova.

[18] Wireshark User’s Guide, Version 3.3.0.
[19] Bluetooth Sniffing with Ubertooth: A Step-by-step guide. [On-

line]. Available: https://wiki.elvis.science/index.php?title=
Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide.

[20] Ubertooth One Getting Started – Kali Linux [On-
line]. Available: https://hackersgrid.com/2018/07/
ubertooth-one-getting-started-kali-linux.html.

[21] Bluetooth: tutte le informazioni importanti sul popolare stan-
dard radiofonico [Online]. Available: https://www.ionos.it/
digitalguide/server/know-how/bluetooth/

[22] S. Pandey, "Hacking Internet of Things: Bluetooth Low Energy"
[23] V. Tsira, G. Nandi, "Bluetooth Technology: Security issues and its

prevention", October 2014, Vikethozo Tsira et al, Int.J.Computer
Technology and Applications,Vol 5 (5),1833-1837.

[24] M. Conti, D. Moretti, "System Level Analysis of the Bluetooth stan-
dard", Università politecnica delle Marche.

[25] P. Bhagwat, "Bluetooth: technology for short-range wireless apps",
inIEEE Internet Computing, vol. 5, no. 3.

[26] "BLUETOOTH" [Online]. Available: https://people.unica.it/
michelenitti/files/2012/04/ST-CM9-BT.pdf.

[27] "Bluetooth radio interface, modulation, and
channels" [Online]. Available: https://www.
electronics-notes.com/articles/connectivity/bluetooth/
radio-interface-modulation-channels.php.

[28] "Piconets and Scatternets" [Online]. Available: https://flylib.
com/books/en/4.152.1.144/1/

[29] M. Tallarico, "Confronto tra due protocolli per reti Wireless: IEEE
802.11 e Bluetooth" [Online]. Available: http://fly.isti.cnr.it/
didattica/tesi/Tallarico/tesi.pdf

96

https://wiki.elvis.science/index.php?title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide
https://wiki.elvis.science/index.php?title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide
https://hackersgrid.com/2018/07/ubertooth-one-getting-started-kali-linux.html
https://hackersgrid.com/2018/07/ubertooth-one-getting-started-kali-linux.html
https://www.ionos.it/digitalguide/server/know-how/bluetooth/
https://www.ionos.it/digitalguide/server/know-how/bluetooth/
https://people.unica.it/michelenitti/files/2012/04/ST-CM9-BT.pdf
https://people.unica.it/michelenitti/files/2012/04/ST-CM9-BT.pdf
https://www.electronics-notes.com/articles/connectivity/bluetooth/radio-interface-modulation-channels.php
https://www.electronics-notes.com/articles/connectivity/bluetooth/radio-interface-modulation-channels.php
https://www.electronics-notes.com/articles/connectivity/bluetooth/radio-interface-modulation-channels.php
https://flylib.com/books/en/4.152.1.144/1/
https://flylib.com/books/en/4.152.1.144/1/
http://fly.isti.cnr.it/didattica/tesi/Tallarico/tesi.pdf
http://fly.isti.cnr.it/didattica/tesi/Tallarico/tesi.pdf

Bibliography

[30] F. Li, "Simulation multi-moteurs multi-niveaux pour la validation des
spécifications système et optimisation de la consommation", 2016,
École Doctorale des Sciences et Technologies de l’Information et
de la Communication, UNIVERSITE NICE SOPHIA ANTIPOLIS
POLYTECH’NICE-SOPHIA.

[31] "Bluetooth vs BLE-difference between Bluetooth and
BLE(Bluetooth Low Energy)" [Online]. Available: https://www.
rfwireless-world.com/Terminology/Bluetooth-vs-BLE.html.

[32] M. Woolley, "Bluetooth Core Specification Version 5.2 Feature
Overview", 2020, Bluetooth

[33] "BLE protocol stack" [Online]. Available: https://medium.com/
@pcng/ble-protocol-stack-controller-2d2d5371deec.

[34] "Chapter 4. GATT (Services and Characteristics)" [On-
line]. Available: https://www.oreilly.com/library/view/
getting-started-with/9781491900550/ch04.html

[35] "BLE overview" [Online]. Available: http://www.summitdata.com/
blog/ble-overview/.

[36] "Bluetooth Low Energy Scanning and Advertising" [Online].
Available: https://dev.ti.com/tirex/explore/node?node=
AD4sGbaamTCyn0DvZgBAsg__krol.2c__LATEST

[37] "Bluetooth Low Energy Connection Process" [Online].
Available: https://microchipdeveloper.com/wireless:
ble-link-layer-connections

[38] "Bluetooth® Low Energy Security Modes and Procedures" [On-
line]. Available: https://microchipdeveloper.com/wireless:
ble-gap-security

[39] C. Munteanu, B. Szente, G. Farkas, "Detecting and preventing Blue-
tooth Low Energy Attacks", 16 April 2020, bitdefender

[40] T. Willingham, C. Henderson, B. Kiel, Md Shariful Haque, T. Atk-
ison, "Testing vulnerabilities in Bluetooth Low Energy", 2018, Con-
ference on ACMSE ’18 ;

[41] M. Ryan, "Bluetooth: With Low Energy comes Low Security", iSEC
Partners

[42] "Build Guide" [Online]. Available: https://github.com/
greatscottgadgets/ubertooth/wiki/Build-Guide

[43] "Bluetooth MAC Address Changer for Windows" [On-
line]. available: https://macaddresschanger.com/
what-is-bluetooth-address-BD_ADDR

[44] M. Afaneh, "Bluetooth Addresses & Privacy in Bluetooth Low
Energy", [Online]. Available: https://www.novelbits.io/
bluetooth-address-privacy-ble/#:~:text=A%20Bluetooth%
20address%20sometimes%20referred,addresses%3A%20public%

97

https://www.rfwireless-world.com/Terminology/Bluetooth-vs-BLE.html
https://www.rfwireless-world.com/Terminology/Bluetooth-vs-BLE.html
https://medium.com/@pcng/ble-protocol-stack-controller-2d2d5371deec
https://medium.com/@pcng/ble-protocol-stack-controller-2d2d5371deec
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
http://www.summitdata.com/blog/ble-overview/
http://www.summitdata.com/blog/ble-overview/
https://dev.ti.com/tirex/explore/node?node=AD4sGbaamTCyn0DvZgBAsg__krol.2c__LATEST
https://dev.ti.com/tirex/explore/node?node=AD4sGbaamTCyn0DvZgBAsg__krol.2c__LATEST
https://microchipdeveloper.com/wireless:ble-link-layer-connections
https://microchipdeveloper.com/wireless:ble-link-layer-connections
https://microchipdeveloper.com/wireless:ble-gap-security
https://microchipdeveloper.com/wireless:ble-gap-security
https://github.com/greatscottgadgets/ubertooth/wiki/Build-Guide
https://github.com/greatscottgadgets/ubertooth/wiki/Build-Guide
https://macaddresschanger.com/what-is-bluetooth-address-BD_ADDR
https://macaddresschanger.com/what-is-bluetooth-address-BD_ADDR
https://www.novelbits.io/bluetooth-address-privacy-ble/#:~:text=A%20Bluetooth%20address%20sometimes%20referred,addresses%3A%20public%20and%20random%20addresses.
https://www.novelbits.io/bluetooth-address-privacy-ble/#:~:text=A%20Bluetooth%20address%20sometimes%20referred,addresses%3A%20public%20and%20random%20addresses.
https://www.novelbits.io/bluetooth-address-privacy-ble/#:~:text=A%20Bluetooth%20address%20sometimes%20referred,addresses%3A%20public%20and%20random%20addresses.

Bibliography

20and%20random%20addresses.
[45] "UBERTOOTH-RX 1 "March 2017" "Project Ubertooth"

"User Commands"", [Online]. Available: https://github.
com/greatscottgadgets/ubertooth/blob/master/host/doc/
ubertooth-rx.md

[46] "Adaptive Frequency Hopping (AFH)" [Online]. Avail-
able:https://askubuntu.com/questions/607940/
how-to-interpret-hcitool-afh-afh-map

[47] "Bluetooth Sniffing with Ubertooth: A Step-by-step guide",
[Online]. Available: https://wiki.elvis.science/index.php?
title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_
guide#Step_4_-_Intercepting_Lower_Address_Part_.28LAP.
29_Packets

[48] "Logical Link Control and Adaptation Layer Protocol (L2CAP)",
[Online]. Available: https://software-dl.ti.com/lprf/
simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/
html/ble-stack-3.x/l2cap.html

[49] "Bluetooth DOS attack" [Online]. Available: https://github.
com/crypt0b0y/BLUETOOTH-DOS-ATTACK-SCRIPT/blob/master/
Bluetooth-DOS-Attack.py

[50] "ubertooth-btle", [Online]. Available: https://github.com/
greatscottgadgets/ubertooth/blob/master/host/README.
btle.md

[51] "Capturing BLE in Wireshark", [Online]. Available:
CapturingBLEinWireshark

[52] "Bluetooth Low Energy – It Starts with Advertising" - Bluetooth core
Specifications, [Online]. Available: https://www.bluetooth.com/
blog/bluetooth-low-energy-it-starts-with-advertising/

[53] "BLE Channel Selection Algorithms", [Online]. Avail-
able: https://www.mathworks.com/help/comm/ug/
ble-channel-selection-algorithms.html

[54] "Bluetooth Technology Protecting Your Privacy", [On-
line]. Available: https://www.bluetooth.com/blog/
bluetooth-technology-protecting-your-privacy/

[55] R. Heydon, "An introduction of Bluetooth Low En-
ergy", [Online]. Available: https://datatracker.
ietf.org/meeting/interim-2016-t2trg-02/materials/
slides-interim-2016-t2trg-2-7

[56] "The attribute protocol" [Online]. Available:
http://lpccs-docs.dialog-semiconductor.com/
tutorial-custom-profile-DA145xx/att.html

98

https://www.novelbits.io/bluetooth-address-privacy-ble/#:~:text=A%20Bluetooth%20address%20sometimes%20referred,addresses%3A%20public%20and%20random%20addresses.
https://www.novelbits.io/bluetooth-address-privacy-ble/#:~:text=A%20Bluetooth%20address%20sometimes%20referred,addresses%3A%20public%20and%20random%20addresses.
https://github.com/greatscottgadgets/ubertooth/blob/master/host/doc/ubertooth-rx.md
https://github.com/greatscottgadgets/ubertooth/blob/master/host/doc/ubertooth-rx.md
https://github.com/greatscottgadgets/ubertooth/blob/master/host/doc/ubertooth-rx.md
https://askubuntu.com/questions/607940/how-to-interpret-hcitool-afh-afh-map
https://askubuntu.com/questions/607940/how-to-interpret-hcitool-afh-afh-map
https://wiki.elvis.science/index.php?title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide#Step_4_-_Intercepting_Lower_Address_Part_.28LAP.29_Packets
https://wiki.elvis.science/index.php?title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide#Step_4_-_Intercepting_Lower_Address_Part_.28LAP.29_Packets
https://wiki.elvis.science/index.php?title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide#Step_4_-_Intercepting_Lower_Address_Part_.28LAP.29_Packets
https://wiki.elvis.science/index.php?title=Bluetooth_Sniffing_with_Ubertooth:_A_Step-by-step_guide#Step_4_-_Intercepting_Lower_Address_Part_.28LAP.29_Packets
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/l2cap.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/l2cap.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/l2cap.html
https://github.com/crypt0b0y/BLUETOOTH-DOS-ATTACK-SCRIPT/blob/master/Bluetooth-DOS-Attack.py
https://github.com/crypt0b0y/BLUETOOTH-DOS-ATTACK-SCRIPT/blob/master/Bluetooth-DOS-Attack.py
https://github.com/crypt0b0y/BLUETOOTH-DOS-ATTACK-SCRIPT/blob/master/Bluetooth-DOS-Attack.py
https://github.com/greatscottgadgets/ubertooth/blob/master/host/README.btle.md
https://github.com/greatscottgadgets/ubertooth/blob/master/host/README.btle.md
https://github.com/greatscottgadgets/ubertooth/blob/master/host/README.btle.md
Capturing BLE in Wireshark
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.bluetooth.com/blog/bluetooth-low-energy-it-starts-with-advertising/
https://www.mathworks.com/help/comm/ug/ble-channel-selection-algorithms.html
https://www.mathworks.com/help/comm/ug/ble-channel-selection-algorithms.html
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
http://lpccs-docs.dialog-semiconductor.com/tutorial-custom-profile-DA145xx/att.html
http://lpccs-docs.dialog-semiconductor.com/tutorial-custom-profile-DA145xx/att.html

	List of Tables
	List of Figures
	List of acronyms and abbreviations
	The Bluetooth BR/EDR standard: an overview
	The Bluetooth BR/EDR protocol stack
	Bluetooth radio interface

	Power levels
	Piconet and scatternet
	Bluetooth connection basics
	Bluetooth pairing
	Bluetooth baseband links

	Bluetooth device states
	Packets structure

	The Bluetooth Low Energy
	Bluetooth classic vs BLE
	BLE architecture
	The controller
	The host

	BLE star-bus vs BR/EDR scatternet
	BLE device states
	Advertising state
	Scanning state
	Connection establishment

	BLE packets structure

	Tha basis of the BLE security
	Pairing & Bonding
	Phase I
	Phase II
	Phase III

	Security goals
	Types of attacks
	MiTM attack
	DoS attack
	Passive Eavesdropping

	Bluetooth sniffing: the Ubertooth One
	How to discover a Bluetooth device
	Bluetooth MAC address structure
	Public and random address

	Experimental setup
	Ubertooth One tools: classic Bluetooth
	Intercepting Bluetooth MAC addresses
	Passive Bluetooth sniffing
	Detecting AFH channel map

	The ubertooth-btle tool
	The "follow" mode
	The "don't follow" mode
	The "promiscuous" mode

	Breaking the Bluetooth Low Energy security
	Passive Eavesdropping
	Eavesdropping in "follow" mode
	Eavesdropping in "promiscuous" mode

	Interception attack
	Jamming attack
	Jamming results

	Conclusion and future perspectives
	Bibliography

