
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

Exploration of logic-in-memory
architectures for hybrid

CMOS/Emerging Technologies
circuits
First volume

Supervisors
prof. Marco VACCA
prof. Mariagrazia GRAZIANO
prof. Maurizio ZAMBONI

Candidate
Michele Bianco

Academic year 2019 – 2020

Rectangle

Stamp

This work is subject to the Creative Commons Licence

Summary

Today, Von Neumann’s bottleneck and reaching physical limits in transistor
scaling put a stop to the rapid improvement of integrated circuits. The
Logic in Memory approach is a promising way to redefine the exchange of
information between CPU and memory, memory is no longer seen as a single
data storage unit but is designed to be able to perform logic and arithmetic
functions. From a more technological point of view, new devices are being
studied to replace or complement CMOS technology. In the first part of this
thesis a brief introduction of the state of the art of Logic in Memory will be
given, the MTJ and pNML devices will also be introduced. In the second
part, useful methods will be proposed to create a 3D hybrid system using
the two new technologies and CMOS. Through the proposed methodologies,
a new memory architecture has been developed that allows the processing of
data within it. The thesis work ends by proposing a new type of processor
capable of operating a high number of operations in parallel, this is done by
exploiting the new memory architecture created.

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Logic in Memory . 2
1.2 MTJ technology . 6
1.3 pNML technology . 7

1.3.1 pNML Random Access Memory 8

2 3D hybrid system 11
2.1 Transfer from MTJ to pNML 12

2.1.1 Transfer with n = m 13
2.1.2 Transfer with n > m 15
2.1.3 Design choices . 15

2.2 Transfer between pNML cells 17
2.2.1 Unidirectional flow . 19
2.2.2 Bidirectional flow . 21
2.2.3 Flow with transfer between groups 23

2.3 pNML memory reading . 24
2.3.1 Line reading . 24
2.3.2 Transfer between two groups 26
2.3.3 Transfer between more than two groups 29
2.3.4 Multiple paths . 40
2.3.5 Mixed technique . 42
2.3.6 Critical path . 44
2.3.7 Methodologies for using transfer between groups 45

2.4 Logical/Arithmetic plan . 46
2.5 Transfer from the logic plane to the pNML cells 47

v

2.6 Writing of MTJ memory . 47

3 VLIW processor 49
3.1 Transport triggered architecture 49
3.2 TTA 3D hybrid system . 50

4 Move data memory 53
4.1 Section . 56

4.1.1 Grade three sections 57
4.1.2 Grade N sections . 57

4.2 Introduction to the general conditions 57
4.3 Ordering of instructions . 58
4.4 True overlaps and overlaps at the start 60

4.4.1 Overlaps at the start 60
4.4.2 True overlaps . 60

4.5 Example with N = 6 . 61
4.5.1 Calculation of SO and O 62
4.5.2 Execution first three instructions 63
4.5.3 Instruction number 3 63
4.5.4 Instruction number 5 66

4.6 Calculation of true overlaps 69
4.6.1 Exact method . 70
4.6.2 Approximate method by excess 70
4.6.3 Approximate method by semi-weighted excess 71
4.6.4 Approximate method by weighted excess 71

4.7 Conditions at the start: general case with O = 3 72
4.8 Conditions for O > 3 . 73

4.8.1 Conditions on arrival 73
4.8.2 Conditions on the start 73

4.9 Algorithm for calculating instructions path 74
4.9.1 Ideal path calculation 74
4.9.2 Non-ideal paths . 76

5 A new processor with move data memory 79
5.1 Role of the compiler . 79
5.2 General scheme . 80
5.3 Hardware architecture of memory 81

5.3.1 Movements in both directions 82
5.3.2 Memory block scheme 83

vi

5.4 Control signal generator . 83
5.4.1 Single move control signal generator 85

5.5 Pipelining . 89

6 VHDL processor implementation 91
6.1 Addresses calculator . 92
6.2 ModelSim Simulation . 93

6.2.1 Pipelined Architecture 94

Conclusions 97

Bibliography 98

vii

List of Tables

2.1 Hardware complexity . 32
4.1 D’ calculation . 74
4.2 S’ calculation (1) . 75
4.3 S’ calculation (2) . 76
4.4 S’ values . 76
4.5 S1’ and S2’ before division . 77
4.6 S1’ and S2’ after division . 77

viii

List of Figures

1.1 (A) Von Neumann architecture (B) Harvard architectures . . . 2
1.2 Different approaches for in-memory computations. (A) Computation-

near-Memory, (B) Computation-in-Memory, (C) Computation-
with-Memory, (D) Logic-in-Memory. [1] 4

1.3 Configurable Logic-in-Memory array [1] 5
1.4 Data movement in CLiM array [1] 5
1.5 (A) High level schematic of LiM array, (B) Different types of

LiM cells [3] . 6
1.6 Logic gates implementation [8] 8
1.7 Bistable magnetization in Nano Magnetic Logic devices. (A)

iNML, (B) pNML [10] . 9
1.8 Memory block diagram. (a) Standard memory, (b) Distributed

memory [15] . 9
2.1 3D sistem . 12
2.2 From MTJ mem. to pNML mem. 13
2.3 MTJ input in pNML cell . 13
2.4 Single destination transfer . 14
2.5 Multiple destination transfer 15
2.6 Single destination transfer n>m 16
2.7 Number of MTJ input in the multiplexer of each pNML cell . 17
2.8 Types of elementary structures 18
2.9 Unidirectional flow. From left to right: unidirectional flow

through adjacent lines, unidirectional circular flow, unidirec-
tional tree flow. 19

2.10 Unidirectional flow hardware architectures 20
2.11 Bidirectional flow. From left to right: bidirectional flow through

adjacent lines, bidirectional circular flow, bidirectional tree flow. 21
2.12 Bidirectional tree flow hardware architectures 22
2.13 Bidirectional flow hardware architectures 23

ix

2.14 Flow with transfer between groups 24
2.15 Memory reading . 25
2.16 Memory divided into two groups 26
2.17 Memory group reading architecture 27
2.18 Generation of reading signals 28
2.19 Reading path . 29
2.20 Memory divided into four groups 30
2.21 Line and output multiplexer 30
2.22 Generation of reading signals for more that two groups 31
2.23 Command generator . 31
2.24 Read interconnections vs m with different g 34
2.25 Increase respect to no-groups 34
2.26 Normalized ratio vs m . 35
2.27 Normalized ratio vs g . 35
2.28 Splitting of the multiplexer . 36
2.29 Critical path vs m . 37
2.30 Critical path vs g . 37
2.32 Ag/At vs g (2) . 38
2.31 Ag/At vs g (1) . 39
2.33 Ag/At normalized vs g . 39
2.34 Memory reading multiple paths 40
2.35 Memory reading multiple paths architecture 41
2.36 Memory reading mixed technique 42
2.37 Memory reading mixed technique architecture 43
2.38 Critical path reduction (1) . 44
2.39 Critical path reduction (2) . 45
2.40 Different type of transfer between groups 46
2.41 Single ALU . 47
3.1 General architecture of a transport triggered architecture [17] 50
3.2 Reading and writing circuitry 51
3.3 TTA made with hybrid system 52
4.1 Connection of lines . 54
4.2 Connections for downward movements 55
4.3 Three overlapping movements: example 1 55
4.4 Three overlapping movements: example 2 56
4.5 Line addressing . 57
4.6 Three overlapping movements: example 3 58
4.7 Move instructions . 59
4.8 Ordering of instructions . 59

x

4.9 overlaps at the start . 60
4.10 Memory under consideration 61
4.11 Six move instructions . 62
4.12 Values of SO and O . 62
4.13 paths for first three instructions 63
4.14 Condition check instruction 3 64
4.15 Conditions at the start O=3 and SO=3 64
4.16 General conditions O=3 and SO=3 65
4.17 [SiD(i−1)D(i−2)] example . 65
4.18 Paths for instructions 3 and 4 66
4.19 Condition on arrival check instruction 5 67
4.20 Macro-groups O=3, SO=4 . 67
4.21 Elementary group O=3, SO=4 68
4.22 Elementary group O=3, SO=4 without repetitions 68
4.23 Paths for instructions 5 . 69
4.24 Move example . 70
4.25 Exact method . 71
4.26 Comparison between methods 72
4.27 Cmax O=3 . 73
4.28 Instruction path . 75
4.29 Flow diagram S’ calculation 78
5.1 Processor instruction and composition of a single move 80
5.2 General scheme of processor 80
5.3 Hardware architecture for one direction line movement 81
5.4 Hardware architecture for both directions line movement . . . 82
5.5 Up/down multiplexer . 83
5.6 Memory block diagram . 84
5.7 Control signal generator . 85
5.8 Single move control signal generator 86
5.9 CT and ST selector Generator 87
5.10 CT sel Generator . 88
5.11 ST sel Generator . 89
6.1 Circuit described in VHDL language 92
6.2 Addresses calculator block . 92
6.3 Single move processor simulation 94
6.4 Multiple move processor simulation 94
6.5 Pipelined circuit . 95
6.6 Pipelined single move processor simulation 95

xi

Chapter 1

Introduction

The first integrated circuits date back to the 1960s, the materials used were
mainly germanium and silicon, the latter subsequently becoming the most
widely used material. The technological improvements, in terms of the num-
ber of transistors per unit of area, since the mid-1960s have been well foreseen
by moore’s law for about 50 years. This law, assumed that the number of
transistors would double every 18 months, this hypothesis was made in re-
alization of the ability of man to reduce the size of transistors. However,
in recent years the ability to reduce size has decreased due to physical and
economic constraints. Looking at the performance, it grew faster than an
exponential because simultaneously increased the density of transistors and
the frequency of clock. Today, the power dissipated places a limit on this
,therefore, it is no longer possible to maintain the clock’s frequency increase
that Moore’s law provided. Another aspect that has characterized the last
few years is the ever growing gap that has formed between the performance
of the processors and those of the memories. The lower rate of growth of the
latter worsens the performance of the overall system, the potential of the pro-
cessors cannot be exploited to the maximum in structures where they have
to wait for memory. In the widely used architecture of Von Neumann, this
problematic takes the name of Von Neumann bottleneck. Figure 1.1 shows
the architecture of V.N. and the Harvard one, also widely used. both pro-
vide for a continuous exchange of information between CPU and memories.
Various techniques have been seen over the years to alleviate this disparity
in performance, the most effective was probably that of creating a memory
hierarchy. Fast, expensive and small memories were interposed between the
CPU and gradually larger but slower memories. In doing so, it has been

1

Introduction

possible to limit the total waiting time of the processor as data is often im-
mediately available. Currently, new architectural solutions are being sought
to solve the problem, a new type of approach known as logic-in-memory will
be briefly analyzed. Moreover, emerging technologies are nowadays studied
for the realization of 3D circuits and to solve the problems of increasing dis-
sipated leakage power in CMOS circuits. For these reasons, the principle
of operation of the MTJ and pNML devices will be briefly analyzed in this
chapter.

Figure 1.1. (A) Von Neumann architecture (B) Harvard architectures

1.1 Logic in Memory
The purpose of the Logic in Memory approach is to limit the number of
memory accesses by bringing the computation into the memory, the limited
number of data transfers brings benefits in terms of performance and energy.
There are different approaches to Logic in Memory, it is possible to make a
classification based on how the storage and computation units interact with
each other, in this perspective, four main classes are identified [4]:

• Computation-near-Memory (CnM): Memory and logic are still two
separate entities, bringing them as close as possible becomes essential to

2

1.1 – Logic in Memory

reduce the length of interconnections and increase the memory band-
width.

• Computation-in-Memory (CiM): This solution is designed to keep
the memory array and data writing and reading methods unchanged.
The processing functions are inserted in the analog circuits used for
reading, usually the sense amplifier circuits are modified. Logic circuits
based on sense amplifiers will be analyzed in the next chapter.

• Computation-with-Memory (CwM): The results of the operations
are taken from a memory in which they were previously saved, usually
it is possible to use a look up table that provides the address of the
memory containing the result.

• Logic-in-Memory (LiM): The storage cells are modified to add com-
putational capabilities inside them, the cells can communicate with each
other in different and predetermined ways.

Configurable Logic-in-Memory Architecture (CLiMA)

There is a further approach in which both LiM and CiM strategies converge,
Figure 1.3 shows the structure of a Configurable Logic-in-Memory (CLiM)
array. the CLiM cell is a memory cell with an additional programmable
circuitry capable of performing various operations. Extra-column logic and
Extra-row logic are added to the array to perform specific operations. The
operations that cannot be carried out within the array are delegated to ex-
ternal units (CnM), this architecture is designed to be as flexible as possible
and to exploit the various advantages that the three strategies (LiM, CnM,
CiM) offer.

Data movement in CLiM array

The memory array is designed not only to save the data processed by a cell
on it but also to allow data mobility over the entire memory. The options
allowed inside the memory are shown in figure 1.4 and are the following:

• intra-row: computation between more cells in the same row.

• intra-column: computation between cells in the same column.

• inter-column: computation between two column.

3

Introduction

Figure 1.2. Different approaches for in-memory computations. (A) Compu-
tation-near-Memory, (B) Computation-in-Memory, (C) Computation-with-
-Memory, (D) Logic-in-Memory. [1]

• inter-row: computation between two row.

The computation skills listed above are possible thanks to additional mul-
tiplexers inside the cells, which allow the data to be saved in the neighboring
cells in all directions.

Programmable-LiM

Is an approach to build different types of LiM arrays [3], the high level
scheme is the one shown in figure 1.5. Memory cells can be traditional or
with computational skills (LiM), operations involving cells of the same row
are governed by a row interface (RI), while a memory interface manages
operations involving multiple rows. The structure is designed to be flexible,
the number and position of the LiM cells is decided during the design phase,
even the functions of the RI and MI can be multiple. The structure is thought

4

1.1 – Logic in Memory

Figure 1.3. Configurable Logic-in-Memory array [1]

Figure 1.4. Data movement in CLiM array [1]

5

Introduction

to be built through the use of structures present in a library and modular with
each other. The overall system is designed to consist of a LiM, a CPU and a
scheduler. The LiM unit can be used as a traditional memory that exchanges
data with the CPU, or to carry out operations inside it. The scheduler decides
which operations should be performed with a LiM approach and which not.

Figure 1.5. (A) High level schematic of LiM array, (B) Different
types of LiM cells [3]

1.2 MTJ technology
A Magnetic Tunnel Junction (MTJ) is a nano structure composed of two
ferromagnetic (FM) layers separated by an insulating layer [6]. The magne-
tization of one of the two layers is fixed, this layer is called fixed layer. The
magnetization of the variable layer can be parallel to that of the fixed layer
(P) or antiparallel (AP). The figure below shows the Vertical structure of
magnetic tunnel junction with CoFeB for the two ferromagnetic layers and
with MgO as insulator. The device has two different resistance values in
the two configurations (Rap, Rp), for this reason the binary information is
contained in the resistance value.

Device reading

In order to read the contents of the MTJ cell, circuits composed of a hybrid
CMOS/MTJ circuitry are used. The cell to be read is inserted in circuits

6

1.3 – pNML technology

based on sense amplifiers, which exploit the ability of a resistance to influence
the discharge time of a circuit.

Device writing (SST-MTJ)

There are several techniques that allow to modify the polarization of the
variable layer, the most used is the one based on the spin transfer torque
switching mechanism (SST) and we speak in these cases of SST-MTJ. The
SST technique is based on making a current I flow in the device for a suffi-
ciently long time, the direction of the current determines the orientation of
the polarization. If the current I is a current parallel to the polarization of
the fixed layer, the anti parallel configuration (AP) is obtained. Conversely,
it is possible to configure the device in the parallel configuration (P) through
a current of opposite sign. The switching time (τ) depends both on the in-
tensity of the current and on parameters that depend on how the device is
built.

MTJ/CMOS logic gates

Through the use of hybrid MTJ/CMOS circuitry it is possible to create logic
gates in which one of the inputs is represented by the MTJ element. All
the logic/arithmetic elements can be built by interposing a CMOS logic tree
between the MTJ cells and the sense amplifier circuit, the logic tree changes
according to the logic function to be implemented.

1.3 pNML technology
Nano Magnetic Logic (NML) is a promising emerging technology in which
information is stored in the magnetization of a nanomagnets, binary informa-
tion can be encoded thanks to its bistable magnetization. They have char-
acteristics of non-volatility, high density integration, low power consumption
and possible integration to CMOS. The two main implementations of this
technology are: in-plane Nano Magnetic Logic (iNML), and perpendicular
nano Magnetic Logic (pNML). Figure 1.7 shows the differences between these
two implementations, in iNML devices (A) the magnetization is on the same
plane as the magnet, in pNML (B) the magnetization is perpendicular in-
stead. The figure also shows how the two polarizations are associated with
the two binary values, in pNML the polarization pointing up is associated
with the value ’1’. The reversal process of pNML is governed by domain wall

7

Introduction

Figure 1.6. Logic gates implementation [8]

(DW) nucleation, the application of an external perpendicular field nucleates
the DW. To guarantee the signal flow directionality, one side of the magnet
is more sensitive to magnetic field changes. This region is called artificial nu-
cleation center (ANC) and it is obtained by a partial Focus-Ion-Beam (FIB)
irradiation. The writing of a pNML device therefore takes place through the
nucleation of the ANM and the subsequent propagation of the signal along
the magnet. The magnetization of the ANM is affected by the coupling of
the magnetic fields of neighboring magnets. however, the fields produced by
the neighbors are not sufficient to change the status of the device. In order
to modify the magnetization it is necessary to apply an additional external
field, this field is produced by a clock. The sum of the fields produced by the
neighbors and that of the clock is sufficient to magnetize the device in one
of the two configurations.

1.3.1 pNML Random Access Memory
pNML technology can be used to create distributed RAM memories [22], the
block diagrams of a standard and a distributed memory can be seen in figure
1.8. In a distributed memory, the content of the cell to be read is scrolled by
making it pass inside the underlying cells. This implementation of a RAM

8

1.3 – pNML technology

Figure 1.7. Bistable magnetization in Nano Magnetic Logic devices.
(A) iNML, (B) pNML [10]

became functional for memories built in pNML technology. This strategy will
be the basis of the structures analyzed in chapter 2. The distributed cells
can be changed from the standard ones by adding an output multiplexer,
the output of the cell can assume the value stored in the cell itself, or the
content of the previous one. Having cells with small integrated multiplexers
allows to have a lower input-output latency than in the case of a single output
multiplexer.

Figure 1.8. Memory block diagram. (a) Standard memory, (b)
Distributed memory [15]

9

10

Chapter 2

3D hybrid system

So far it has been quickly analyzed, separately, the operating principle of the
two technologies. In this chapter the goal is to study the project methodolo-
gies aimed at creating a hybrid MOS/MTJ/pNML system. Such a hybrid
system is interesting as it can be developed on a three-dimensional (3D)
structure, furthermore, the compatibility of the pNML logic with the data
in MTJ format is immediate, therefore it does not require the conversion of
the format by reading as happens in a MOS/MTJ structure. The idea is to
have a generic CMOS circuitry, this communicates with a data memory in
which the information is stored in MTJ cells, the contents of the cells can be
processed through a pNML circuitry physically located above the memory,
in the passage a pNML memory can be placed between the MTJ memory
and the logic where a copy of the data is made. It is useful to think of the
MTJ memory as the main data memory and the pNML memory as a kind
of register file.

11

3D hybrid system

Figure 2.1. 3D sistem

The goal is to create useful guidelines for the implementation of this hybrid
system, for this purpose, the following points will be examined:

• Transfer from MTJ to pNML

• Transfer from pNML cells to cells of the same type

• Reading of the pNML memory: how to send data out

• Logical / arithmetic plan

• Transfer from the logic plane to the pNML cells

• Writing of the MTJ memory

2.1 Transfer from MTJ to pNML
The minimum transferable unit is assumed to be the MTJ memory row, this
will be called line in pNML memory. To transfer only a subset of the row,
a multiplexer must be introduced. Given a memory MTJ composed of 2n

rows and a memory pNML composed of 2m lines (figure 2.2), the purpose is
to study the transfer from the first structure to the second in the following
cases:

12

2.1 – Transfer from MTJ to pNML

Figure 2.2. From MTJ mem. to pNML mem.

• Transfer with the same memory n = m

• Transfer with n > m

2.1.1 Transfer with n = m

In the two cases two further distinctions are made:

1. Single destination transfer:

The free layers of the MTJ cells are extended until they become the
possible inputs of the pNML cell, an input multiplexer is necessary in
order to select one of the possible inputs (Fig 2.3).

Figure 2.3. MTJ input in pNML cell

13

3D hybrid system

In the case in question there is a one-to-one correspondence between
row and line, which is why each line communicates only with one line.
This solution has the minimum number of inputs on the multiplexer,
it is a simple but inflexible solution, moreover, the pNML memory is a
simple copy of the main memory. Such a solution can be useful in sys-
tems whose purpose is to interpolate the data inside a memory without
however wanting to modify the main memory. The figure 2.4 shows an
example of this type of transfer.

Figure 2.4. Single destination transfer

2. Multiple destination transfer:

The aim is to increase the flexibility of the system by introducing the
possibility of having multiple destinations for each single row. Each row
can communicate with B lines. Let B be the number of blocks, then,
B = 2n/2k with 2k number of lines per block. Given the generic row
Ri with [0 <= i <= (2n − 1)], it communicates with the line j of all
the blocks with j = remainder(i/2k) with [0 <= j <= (2k − 1)]. This
solution presents greater flexibility, greater complexity and more area
due to the fact that on each multiplexer there are B inputs. The figure
2.5 below shows a simple example of this transfer mode with two blocks
and therefore two possible destinations for each row.

14

2.1 – Transfer from MTJ to pNML

Figure 2.5. Multiple destination transfer

2.1.2 Transfer with n > m

Being the pNML memory interposed between the MTJ data memory and
the logic plane, very often there is interest in having it smaller and therefore
faster than the first. Also in this case there are two further distinctions:

1. Single destination transfer:
Also in this case the first memory is composed of 2n rows and the second
of 2m lines, being n > m, each single line must contain one of the
2(n−m) possible rows(Fig. 2.6). In this case a 2(n−m) input multiplexer
is required. Thinking of a hypothetical control unit that generates the
signals necessary for the transfer of the row, n addressing bits will be
necessary. Of these, the n−mMSB can be used as a multiplexer selector,
the rest will identify the line.

2. Multiple destination transfer:
It is possible to increase the level of flexibility by dividing the memory
into blocks and using the strategy seen above, however, the number of
possible MTJ inputs on each cell becomes 2(n−m) ∗ B. This solution if
not well designed can greatly increase the complexity.

2.1.3 Design choices
In a structure with the same size of memory there is a larger area of the pNML
memory but a more essential transfer circuitry. So these considerations can

15

3D hybrid system

Figure 2.6. Single destination transfer n>m

be useful:

• If you want a fast memory and you are not constrained in the transfer
time, better n > m.

• If you want a slower and larger memory or if you are constrained in the
transfer time, better n = m.

• The subdivision into blocks increases flexibility at the expense of transfer
time, does not affect the size of the memory and therefore does not affect
its internal speed (line reading, etc.).

The figure 2.7 summarizes how the size of the input multiplexer varies
according to the design choices.

16

2.2 – Transfer between pNML cells

Figure 2.7. Number of MTJ input in the multiplexer of each pNML cell

2.2 Transfer between pNML cells
The hybrid structure that is being studied in this chapter could be used in
order to create a system that uses logic in memory as a strategy of interpo-
lation of data in memory, from this point of view it is useful to introduce
methodologies that allow to move data to the internal memory itself. It is
assumed to have a distributed pNML memory which allows a flow of lines
within the memory, therefore also in this case the line is the movable elemen-
tary unit. In the previous chapter it was seen the elementary structure that
allows to have a distributed memory, in our case it is necessary to introduce
an input multiplexer as it is not the only upper line to be a possible input.
Three types of elementary structures have been identified that can make up
memory. The architecture of these three structures is visible in the figure
2.8, followed by a brief description of the advantages and disadvantages of
each. The input data (datain) is the generic data contained in another line
of the memory that at that moment crosses the cell, it is known from what
was studied in the previous chapter that in a distributed memory the output
data can assume the value of the stored data or the one entering the cell
itself, in the latter case the cell is in a transparency mode. The two modes
of reading or transparency are selectable with the output multiplexer. If the
cell wanted to be written, the desired input must be selected and the reading
signals (Rs, Wr) must be activated.

17

3D hybrid system

Figure 2.8. Types of elementary structures

The three structures have however some differences:

• Type A: The exchange of data between lines is allowed, there is no
path through which the data coming from the MTJ memory can flow
through the distributed memory without entering the cell. The reading
(or transparency) and writing of the cell can take place at the same time
given the separate paths.

• Type B: Transfer between lines is allowed. In this structure, the MTJ
data can bypass the cell and go directly to another part. however, the
storage of the MTJ data is not allowed if at that moment the cell is in-
volved in a read operation, the read and write operations are conflicting.

• Type A’: This structure is similar to the type A one but does not allow
the transfer between lines, however it has been introduced as it will be
useful in other sections of the thesis.

The transfers between cells are therefore supported by structures A and
B, the flow can occur along one direction only or along two directions. The
first case is now analyzed.

18

2.2 – Transfer between pNML cells

2.2.1 Unidirectional flow
In this case the data flow can only take place in one direction, it is an inflex-
ible solution which nevertheless allows to study the components necessary
to support the movement of data within the memory. There are several
possibilities:

Figure 2.9. Unidirectional flow. From left to right: unidirectional flow
through adjacent lines, unidirectional circular flow, unidirectional tree flow.

1. Unidirectional flow through adjacent lines:
The information flows from top to bottom and passes through each cell,
it is the simplest solution both from the point of view of memory hard-
ware and as regards the control signals. In the left side of figure 2.10
an example realized with elementary structures of type A is visible, sup-
posing the transfer of the line i into the line j (j > i) is required, it
is necessary to: select the output multiplexer of cell j in the mode of
reading, select the output multiplexers of all the intermediate lines in
transparency and finally set cell i in writing mode (selin, W r, Rs). How
to generate the control signals starting from the addresses of the lines

19

3D hybrid system

will be better examined in the next section. What has been said remains
valid even when using type B structures.

2. Unidirectional circular flow:
In order to also allow the transfer of data from a lower line to a higher
one, the first and last line can be connected. The flow remains unidi-
rectional but the transfer is no longer just from top to bottom. Net of
the connection between the last and the first line, the architecture and
therefore its functioning remain unchanged.

Figure 2.10. Unidirectional flow hardware architectures

3. Unidirectional tree flow:
Additional multiplexers can be used to minimize the maximum num-
ber of cells traversed. This technique involves a small increase in area
but also a more complex control. in the right part of the figure 2.10 it
is visible how it is possible to manage more input lines with the sim-
ple addition of a multiplexer, the fact of having separate multiplexers
could simplify the control in fact keeping everything as before (reading,

20

2.2 – Transfer between pNML cells

transparency and writing) will be sufficient a additional control unit to
manage the additional multiplexers, the selection will be made according
to the starting address and the destination address. That said, if the
project requires particular attention to consumption, a system will be
needed that makes only the necessary lines transparent in order to avoid
unnecessary switching of the data. Given a system with unidirectional
tree flow, the maximum number of inputs in the additional multiplexer
is equal to: log 2(numberoflines).

2.2.2 Bidirectional flow

Figure 2.11. Bidirectional flow. From left to right: bidirectional flow
through adjacent lines, bidirectional circular flow, bidirectional tree flow.

1. Bidirectional flow through adjacent lines:
With reference to the figure 2.13, the information flows in two directions
and passes through each cell. An additional multiplexer on the cell is
required to choose the direction, the output of the new multiplexer can
be one between the output of the previous cell and the output of the

21

3D hybrid system

next one. Flow direction is controlled by the up/down signal. The figure
2.13 also shows an example with elementary structures of type B, note
that in this case also Selin must be correctly set.

2. Bidirectional circular flow:

Compared to the previous case, a direct connection is added between the
last and the first line. In this case, the generation of the control signals
must be done on the basis of the shortest path to reach the destination.

3. Bidirectional tree flow:

As seen previously, additional multiplexers can be used to minimize the
maximum number of cells crossed. Figure 2.12 shows the changes made
on the architecture to make it bidirectional. The inputs of the up /
down multiplexer are selected from among all the possible ones, both up
and down. Compared to the unidirectional case, double the additional
multiplexers will be needed.

Figure 2.12. Bidirectional tree flow hardware architectures

22

2.2 – Transfer between pNML cells

Figure 2.13. Bidirectional flow hardware architectures

2.2.3 Flow with transfer between groups

In order to create a useful memory for logic applications in memory, it may
be useful to divide the memory into groups if. For example, an ALU is
associated with each pair of groups. In this case there is interest in moving
the data from one group to another without too much interest in the line.
Such a solution, as we will see later, can also be exploited to increase the
memory reading parallelism. All the techniques studied up to now are valid
and can be adopted within the single group. In the example shown (figure
2.14), the transfer is allowed between lines with the same position in the
different groups. Within the same group, movements through adjacent cells
are allowed.

23

3D hybrid system

Figure 2.14. Flow with transfer between groups

2.3 pNML memory reading
The structures just seen also allow the reading of the cells, the read line goes
through the memory down to the exit. If there is no interest in memories that
allow internal transfer, type A’ cells can be used with the same methods seen
above. However, the goal is to implement structures that allow the reading
of several lines at the same time. In this perspective, two distinct techniques
have been identified. A third solution is also possible, given by combining
the two.

1. Creation of groups with transfer between group.

2. Creating multiple exit routes.

2.3.1 Line reading
In order to understand how a subdivision into groups of the memory can
allow the reading of more lines at the same time, it is useful first of all to

24

2.3 – pNML memory reading

analyze how the reading of a line occurs in a structure made by a single
group. The example 2.15 shows a memory made with elementary structures
of type A’.

Figure 2.15. Memory reading

The only thing necessary is the address of the line to be read (note that
line 0 is the one connected to the output). The address is encoded in a signal
consisting of all the output multiplexer selectors: Sel =′ 0′ cell content,
Sel =′ 1′ previous output. The address is encoded in such a way that its
value indicates the number of ones in the vector of the selectors starting from
LSB, in this way it is possible to set all the multiplexers between the line
and the output in transparency mode. Here are some examples of addresses
from which the selection vectors are obtained:

25

3D hybrid system

2.3.2 Transfer between two groups
In order to understand how it is possible to read several lines simultaneously
through this technique, let’s take for example the structure in the figure 2.16.
The memory is the same as before but divided in two.

Figure 2.16. Memory divided into two groups

The simultaneous reading is done through the two available outputs, one
for each group. In the simplest case in which the lines belong to different
groups, the reading is immediate. In the event that the two lines are on
the same group it is necessary to transfer one of the two, in this case the
group receiving the information will have the task of making it flow to the
exit. On the right of the figure 2.16 we can see the block diagram of the

26

2.3 – pNML memory reading

memory, the signals Ad are the addresses of the line to be read already
encoded in the vector of the output selectors, the vectors Cd are used to
transfer information between the groups. The figure shows the hardware
changes that must be made in order to support the transfer between groups,
an additional multiplexer is interposed between the output multiplexer and
the contents of the cell. The purpose of this modification is to allow the
reading of the same address line of the other group. Supposing that the line
i of group0 through group1 wants to be read, it will be sufficient to read the
line i of group1 by setting the multiplexer on the line of group0. The vectors
C are those containing the selectors of the added multiplexers.

Figure 2.17. Memory group reading architecture

27

3D hybrid system

Generation of reading signals

The figure 2.18 summarizes through a block diagram the fundamental steps
to read several lines simultaneously using this method. R1 and R2 are the
addresses to read, at this moment the memory is seen as unique. The com-
mand generator has the task of generating the addresses of the individual
groups (R private of MSB) putting them in the right order. If R1 and R2
have the same MSB, an address must be transferred to the other group. C1
and C0 are one-bit signals that indicate whether to activate C corresponds
to the address A0/A1. As the passage through a different group increases
the path to the exit it is convenient to move the line closer to the exit.

Figure 2.18. Generation of reading signals

• Example: Suppose to have the goal to read memory lines 4 and 6, so
R1 =′′ 100′′ and R2 =′′ 110′′. Since R1 and R2 have the same MSB
they belong to the same group, R1 is the smallest value and must be
transferred. At the command generator output we have: A0 =′′ 00′′,
A1 =′′ 10′′, C0 =′′ 1′′, C1 =′′ 0′′. Finally follows the decoding, from
which: Ad0 =′′ 000′′, Ad1 =′′ 001′′, Cd0 =′′ 0001′′, Cd1 =′′ 0000′′.

28

2.3 – pNML memory reading

Figure 2.19. Reading path

2.3.3 Transfer between more than two groups
The concept can be extended to read 4, 8 .. 2n words simultaneously. The
memory must be divided into two groups and proceed, using the same division
by two method, on each group. The figure 2.20 shows how the starting
memory would look once it has been divided into four blocks. Through this
method it is possible to read multiple words from memory at the same time
(one for each block), the system implementation requires to allocate new
hardware resources. In particular, having G groups of L lines each, for each
group L multiplexer with G inputs (red in Fig. 2.21) are required to select
one of the possible lines of equal addressing of each block, however, each
grouping eliminates an output multiplexer on each block (green).

Generation of reading signals

If there are more than two blocks, the control is slightly complicated. The
goal is to have a compact memory seen from the outside, the inputs will
therefore be the only addresses of the lines to be read. Suppose to have a
memory made up of 2m lines, the address will therefore be made up ofm bits.

29

3D hybrid system

Figure 2.20. Memory divided into four groups

Figure 2.21. Line and output multiplexer

The memory is then internally divided into G groups, being G a power of two
2g, it means that each block will have 2(m−g) lines. It therefore takes m− g
bits to point every single line in a block. The remaining g bits of the starting
address can be used as multiplexer selector (red), in this perspective it is
necessary to find an intelligent way to select the possible lines. The simplest
solution is the one in which the value of the selector indicates the number of

30

2.3 – pNML memory reading

the block from which the line is to be taken. Referring to the block structure
of the previous case, it can be extended as shown in the figure 2.22.

Figure 2.22. Generation of reading signals for more that two groups

Each address R is associated with the pair C and A, in reality the com-
mand generator consists in the simple separation of the address as shown in
the figure 2.23, therefore it does not complicate the control in any way. The
decoder always works in the same way in the generation of signals Ad. The
signal Cd is instead a vector equal to the size of the block in which each
element is made up of g bits, the purpose of the decoder is to set the element
A of the vector equal to C. This technique is general and can also be used
in the simple case of two blocks.

Figure 2.23. Command generator

31

3D hybrid system

Interconnection increase

This subsection aims to study what are the costs, in terms of additional
hardware, of having a subdivision of the memory into groups. In particular,
the purpose is to analyze the total number of interconnections necessary to
read the memory. There is also an increase in the real memory area, in fact
with the increase of the groups it is necessary to increase the area of the line
multiplexer. The analysis now aims to study the problem of interconnection
of reading control signals, trying to understand how they change. In this
regard, the table is divided into four columns:

Out mux Line mux Signals l.mux Decoder out
no groups 2m − 1 0 0 2m − 1
2g groups 2m − 2g 2m g (2m) ∗ (g + 1) − 2g

Table 2.1. Hardware complexity

• Out mux:
Indicates the number of multiplexers to be inserted at the line output
over the entire memory. These multiplexers always have unitary weight
in terms of control signals, since the only signal needed is a one-bit
selector. In the analysis the size of the line is not taken into account,
this is because the subdivision of the memory does not affect the size of
the line, all the values in the table must be multiplied by the number
of cells in a line to get the real total number. If the memory is unique
the number is equal to 2m−1 because two cells share a multiplexer. If
the subdivision is made, each group has 2(m−g) line, for each group we
therefore have 2(m−g) − 1 multiplexer. To obtain the total number it is
finally necessary to multiply by the number of groups. Once multiplied
the value in the table is obtained.

• Line mux:
Indicates the number of line multiplexers to be inserted on the entire
memory. Remember that these multiplexers are those useful for selecting
all possible lines with equal addressing within the group (red). If there is
no subdivision these are not necessary. If there are groups, it is sufficient
to observe that on each line it is necessary to insert one before the output
multiplexer.

32

2.3 – pNML memory reading

• Signals l.mux :
Number of control signal on the single line multiplexer (bit number of
the selector), equal to g.

• decoder out:
Indicates the number of outputs of the decoder block. This is the most
important parameter because it quantifies the total number of intercon-
nections necessary to control the memory. Is the sum of selectors of the
two types of multiplexer (g ∗ 2m) + (2m − 2g) = (2m) ∗ (g + 1) − 2g

The control signals are not the only ones to weigh on the interconnections,
necessary for reading, when this is divided into groups. The values of the
lines must in fact be carried from one group to another, these signals are
input to the line multiplexers. Adding these additional interconnections to
those coming out of the decoder 5.3.1 is obtained.

[(2g + g) ∗ 2m] + (2m − 2g) = (2m) ∗ (2g + g + 1) − 2g (2.1)

This expression is the one that indicates the total number of read intercon-
nections, the graph in the figure 2.24 shows its value with m between 5 and
20 for different values of G (= 2g). for G = 0 only the decoder outputs are
used. It is useful to analyze the growth in the number of interconnections,
due to the subdivision, by comparing it with the number of interconnections
with the same m but with a memory not subdivided into groups. The graph
2.25 shows that the ratio decreases with the amount of groups, it can also
be noted that the latter depends on the number of groups but only slightly
depends on the number of memory lines. However, the ratio normalized re-
spect to the parallelism of reading (figure 2.26) provides a better indication
than the usefulness of the division into groups. This parameter indicates
how much the interconnections to read G words increase compared to the
interconnections outside the memory that would be needed if the memories
were really G.

33

3D hybrid system

Figure 2.24. Read interconnections vs m with different g

Figure 2.25. Increase respect to no-groups

34

2.3 – pNML memory reading

Figure 2.26. Normalized ratio vs m

Figure 2.27. Normalized ratio vs g

35

3D hybrid system

The figure 2.27 shows the trend of the normalized ratio, for several m, as
a function of g. It can be noted that the value becomes unitary as a first
approximation for values of g greater than ten, this value however represents
a very strong parallelization, difficult to use in reality. For more realistic
values, greater interconnections are required respect to have more memory,
however, if it is true that as regards the external interconnections there is a
loss, there is a considerable saving in the area of the memory that should not
be replicated. Another important advantage of the subdivision into groups
is that of having a reduced critical path compared to a single memory.

Critical path

The main benefit of having a grouped memory is to significantly reduce the
critical path. Assuming that the propagation of the signal on the line is
negligible, the critical path can be seen as the sum of the multiplexers that
the data must cross to reach the output. Since the number of inputs affects
the input / output delay, it is possible to imagine multiplexers with more
than two inputs as composed of a series of multiplexers of two.

Figure 2.28. Splitting of the multiplexer

In the case of standard distributed memory, the critical path is 2m − 1
multiplexer. Once the subdivision has been applied, the equation 5.2 provides
the new critical path.The first part of the equation (2(m−g) − 1) represents
the maximum number of crossings for each group, the additional value g
represents the number of line multiplexer levels to cross. Figure 2.29 shows
the trend of the normalized critical path as a function of m, figure 2.30 shows
the trend as a function of g for different values of m.

Cp = 2(m−g) − 1 + g (2.2)

36

2.3 – pNML memory reading

Figure 2.29. Critical path vs m

Figure 2.30. Critical path vs g

37

3D hybrid system

Area

Now it is necessary to try to estimate the increase in memory area, the
increase in area is essentially due to the multiplexers to be inserted to select
the line. It is supposed to know the area (At) of the memory before it is
subjected to a division. It is also assumed to know the ratio K between the
total area At and the area dedicated only to the reading circuitry (mux out
and mux line), so K = At/Ar. The total area after the subdivision into
groups is therefore:

Ag = At ∗ (1 − k) + At ∗ k ∗ [((2g − 2m) + 2m ∗ (2g − 1))/(2m − 1)] (2.3)

The area is the sum of the portion of non-reading circuitry plus that
dedicated to reading multiplied by the rate of increase. By simplifying the
results:

Ag = At ∗ (1 − k) + At ∗ k ∗ 2g (2.4)
dividing by At:

Ag/At = (1 − k) + k ∗ 2g (2.5)
The trend is shown in figures 2.31 and 2.32. Figure 2.33 instead shows the

value of Ag/At normalized with respect to the parallelism of the data.

Figure 2.32. Ag/At vs g (2)

38

2.3 – pNML memory reading

Figure 2.31. Ag/At vs g (1)

Figure 2.33. Ag/At normalized vs g

39

3D hybrid system

2.3.4 Multiple paths

Another method that can be used to increase the number of lines that can be
read at the same time is to create more output paths, this technique simply
consists in replicating the output paths, therefore it is necessary to introduce
new output multiplexers in the memory. Figure 2.34 shows an example with
2 output paths.

Figure 2.34. Memory reading multiple paths

Figure 2.35 instead shows the same example showing the internal archi-
tecture in the case of elementary structures of type A and type A’.

Interconnections of reading signals

In this case there is a linear increase of the interconnections necessary to
carry the control signals for reading, these pass from 2m − 1 to N ∗ (2m − 1)
with N number of paths.

40

2.3 – pNML memory reading

Figure 2.35. Memory reading multiple paths architecture

Area

Differently from what seen on the group memory, it is not necessary to intro-
duce line multiplexers. There is therefore only the need to insert new output
multiplexers. Therefore the following equations can be used:

An = At ∗ (1 − k) + At ∗ k ∗N (2.6)

An/At = (1 − k) + k ∗N (2.7)

From this point of view, the two methods are identical with the same
number of possible parallel readings.

Critical path

The critical path remains unchanged at 2m − 1

41

3D hybrid system

2.3.5 Mixed technique
By making a comparative analysis of the two techniques it can be noted that
the division into groups improves the critical path but requires a greater
number of interconnections. A mixed technique may be used using both
techniques at the same time.

Figure 2.36. Memory reading mixed technique

The two branches are independent from each other, the control circuit
can be replicated identical and be used on different branches. the connection
between different groups always takes place between the same branches. The
figure 2.37 shows the hardware implementation of this technique.

Interconnections

The number is obtained by multiplying 5.3.1 by N. In the example shown in
the figure we have g = 1 and N = 2.

NI = [(2m) ∗ (2g + g + 1) − 2g] ∗N (2.8)

42

2.3 – pNML memory reading

Critical path

The critical path is influenced only by the division into groups, therefore the
formula associated with it is valid.

Area

The increase due to the subdivision must be multiplied by N:

Am/At = (1 − k) + k ∗ (N ∗ 2g) (2.9)

Figure 2.37. Memory reading mixed technique architecture

43

3D hybrid system

2.3.6 Critical path

For simplicity of treatment, up to now, it has been assumed that the in-
formation flowed from top to bottom. To halve the number of maximum
multiplexers to cross, the information can be taken from half of the mem-
ory/group. The most identifying bit of the address is used as a selector for
the final multiplexer, the remaining bits are encoded and sent the same in
both the high and low half. It is necessary to modify the operation of the
multiplexers of the lower part, in fact, these must scroll the data with a 0.
This technique halves the critical path for free. All the previous techniques
are also valid with groups made in this way.

Figure 2.38. Critical path reduction (1)

Another technique to reduce the critical path could be to add by-pass mul-
tiplexers. This technique can be combined with the previous one if necessary.

44

2.3 – pNML memory reading

Figure 2.39. Critical path reduction (2)

2.3.7 Methodologies for using transfer between groups
The transfer technique between groups has been seen up to now with the
aim of increasing the reading parallelism, however, the architecture shown
above makes sense only if the plan is to create a memory that also allows the
transfer between cells of the same group. If, on the other hand, the memory
does not allow the transfer of the lines to the same group, which therefore
allows reading only, it is better to build a tree structure that carries the
output data as on the left part of the figure 2.40. There is a third possibility
which provides, in addition to the transfer between lines of the same group,
the transfer over the entire memory. the simplest example with unidirectional
transfer between adjacent lines is shown in the right part of the figure 2.40. to
read a line using the transfer between groups, the black colored multiplexer
must always be transparent.

45

3D hybrid system

Figure 2.40. Different type of transfer between groups

2.4 Logical/Arithmetic plan
The arithmetic part can be implemented directly inside some memory lines,
assuming however that some data can be processed outside the memory, it
is useful to define how a logic plan can be structured. Two distinct cases can
be identified.

1. Single ALU: In this case the simplest method is to have two groups, the
outputs of each group are the inputs of the ALU. As an alternative to a
parallel reading, the data can be read and sent individually.

2. Multiple ALU: It is possible to use the techniques seen above to read
several lines at the same time, an ALU is assigned to each pair of lines
read.

46

2.5 – Transfer from the logic plane to the pNML cells

Figure 2.41. Single ALU

2.5 Transfer from the logic plane to the pNML
cells

It is sufficient to send the output of the ALU to the input multiplexer of the
cells. Transfers from MTJ to pNML and that from ALU to MTJ cannot be
run simultaneously on the same line.

2.6 Writing of MTJ memory
The writing of the MTJ memory can be done in the traditional way through
mos circuitry. Another possibility is to pass from pNML to MTJ technology
by writing the free layer of the latter, in this way it is possible to write the
cell directly, for example from the arithmetic logic plane.

47

48

Chapter 3

VLIW processor

Very long instruction word (VLIW) processors are designed to increase the
level of parallelism in the execution of instructions, complex instructions are
often carried out through simpler instructions executable in parallel. The
CPU contains multiple functional units, a single VLIW instruction encodes
multiple operations, each instruction slot is designed to act on a specific
functional unit with specific latencies. The compiler has a fundamental role,
the dependency check does not take place dynamically as in other proces-
sors but is done during compilation. The compiler therefore has the task of
avoiding errors due to data dependencies and providing instructions only to
be executed. The main problem therefore becomes the extreme dependence
of programs on the compiler, a program optimized for a VLIW processor
must almost always be recompiled to work efficiently with future generations.
However, these processors offer excellent performance due to the simplicity
of execution.

3.1 Transport triggered architecture

Transport triggered architecture (TTA) processors are an evolution of the
VLIW ones. The instruction has the task of controlling traffic on the buses,
each slot therefore contains a move instruction for a specific bus. Figure 3.1
shows the generic architecture of a TTA processor. The FU registers can be
normal or triggered, when a datum is moved on the latter the FU is activated.

49

VLIW processor

Figure 3.1. General architecture of a transport triggered architecture [17]

3.2 TTA 3D hybrid system
The TTA architecture is an example where the use of a hybrid system could
be used with benefits. First of all it is possible to replace the registers with
a pNML memory, the latter, using one of the techniques seen, must have
a reading parallelism equal to the number of buses. Replaced the registers
with a pNML memory, it is convenient to separate the writing buses from the
reading ones, this allows to perform writing and reading on it at the same
time.

50

3.2 – TTA 3D hybrid system

Figure 3.2. Reading and writing circuitry

This change is made possible by the fact that, unlike traditional memory,
the reading circuitry is totally separate from the writing one (figure 3.2).
The figure 3.3 shows the architecture of the processor designed to be realized
through a hybrid system. red is associated with pNML technology, green
is MTJ, black is CMOS. Conversion circuits are obviously required. The
instruction will consist of a number of slots equal to the total number of
buses (write + read). The mtj memory can communicate directly with the
pNML memory to write the latter, alternatively, it is possible to use the
standard method using a load / store unit. Since even in the MTJ memory
the read and write paths are separate, these two operations can be performed
simultaneously. It is possible to say that a TTA processor constructed in this
way has less conflict between the instructions, this allows a greater paralyzing
of the instructions. All the advantages related to technology remain (3D,
leakage, area, etc.)

51

VLIW processor

Figure 3.3. TTA made with hybrid system

52

Chapter 4

Move data memory

The idea is to create a memory that allows the movement of the lines through
the techniques seen in chapter two. The purpose of this chapter is to iden-
tify the conditions to be respected to carry out operations on it and how
these can be obtained. First of all, it is necessary to define the structure
that interconnects the lines with each other. Suppose the lines are connected
as shown in figure 4.1 and the aim is therefore to move the lines between
them through a tree structure. It is convenient to have two distinct branches
for downward and upward movements, in this way, it is possible to analyze
the two branches separately. The purpose is to understand given N move
instructions, potentially parallel on the memory, which of these can be exe-
cuted and how to execute them. Let’s analyze to start only the right branch.
Therefore suppose the N movements to descend on the memory, it is nec-
essary to understand if these are possible simultaneously or not. In fact,
each movement occupies lines, another movement is possible only if there is
a free path to take. The first thing to note is that it is always possible to
execute a move instruction if the starting address is greater than the destina-
tion address of the other moves. Complications arise when this condition is
not respected, in that case we speak of overlapping moves. Another thing to
underline is that two overlapping movements can always be performed, this
is true because whichever is the position of the starting or ending addresses it
is always possible to use two separate lines, this concept will become clearer
later.

53

Move data memory

Figure 4.1. Connection of lines

Things get complicated in the case of three movements. By three move-
ments we mean three concurrent movements, that is, those movements in
which the paths overlap. The figure 4.3 shows a first example of three over-
lapping instructions, destination and departure of a generic move are rep-
resented with the same color. In the example the instructions in blue and
yellow are executed but block the instruction marked with red color. These
three movements cannot in any way be executed simultaneously, this happens
because if you want to operate three concurrent instructions, it is necessary
that at least one instruction involves a third outermost line. Note that to en-
sure maximum moves it is necessary to take the most external paths possible,
we will always use this strategy in the following examples.

54

Move data memory

Figure 4.2. Connections for downward movements

Figure 4.3. Three overlapping movements: example 1

The left side of the figure 4.4 shows an example similar to the previous
one, the right side instead shows an example in which the three overlapping

55

Move data memory

Figure 4.4. Three overlapping movements: example 2

instructions can be performed simultaneously. Still in the figure on the left, it
can be seen that the problem is represented by the layout of the departures,
their arrangement does not allow any instruction to take the outermost path
(green or blue) while this is possible in the example on the right. It is now
necessary to introduce the concept of section.

4.1 Section

The figure 4.5 shows an example of a small memory consisting of 9 lines.
The number of lines in a tree structure is always made up of a power of
two plus one. The concept of section must be defined on the basis of the
degree, the degree is associated with the number of instructions that must
be verified can be executed in parallel. Sections of degree one and two are not
considered because, as previously mentioned, two overlapping instructions do
not require any checking.

56

4.2 – Introduction to the general conditions

Figure 4.5. Line addressing

4.1.1 Grade three sections
Three lines belong to the same section of degree three if they share all the bits
starting from the MSB down to the third LSB. If this condition is verified,
the case in which the two remaining LSBs of one of the three addresses are
equal to zero must be excluded. In the latter case, the address in question
is out of the section. Later this condition will be checked for illustrative
purposes in more than one example.

4.1.2 Grade N sections
The concept can be generalized to any degree, N instructions belong to
the same section of degree N if they share all the bits from MSB at least
significant N bit. As before, if the first condition is met, it must be checked
if there is an address with all N LSBs equal to zero.

4.2 Introduction to the general conditions
Through the concept of section it is possible to define the first simple con-
ditions that must be respected in case of overlapping moves. Let’s analyze

57

Move data memory

the simplest case of three statements to begin. From the examples shown
above it is clear that the three destination addresses must not be on the
same section of degree three, the same goes for departures. Otherwise, an
instruction must be postponed. the example below (fig. 4.6) introduces a
further problem, checking the conditions of departure and arrival separately
is not sufficient, it is in fact necessary to check that the arrivals of two in-
structions do not hinder the departure of the third. The general conditions
will be formalized later.

Figure 4.6. Three overlapping movements: example 3

4.3 Ordering of instructions
The graph in figure 4.7 shows an example of random move instructions, the
first fundamental step is to have an orderly arrangement of the instructions.

58

4.3 – Ordering of instructions

Figure 4.7. Move instructions

The best thing is to have the instructions ordered according to the destination
addresses. Ideally, this must be done by the compiler.

Figure 4.8. Ordering of instructions

59

Move data memory

4.4 True overlaps and overlaps at the start
4.4.1 Overlaps at the start
Once the instructions have been ordered, it is possible to calculate the over-
laps at the start, they must be calculated for each instruction. They are
equal to the number of previous instructions that have a destination address
greater than the starting address of the instruction in question, one must also
be added (instruction itself). Previous instructions mean those that have a
lower destination address. Figure 4.9 shows an example consisting of six in-
structions where the value of the overlaps at the start (SO) is shown on the
left.

Figure 4.9. overlaps at the start

4.4.2 True overlaps
The overlaps at the start are, as will be shown shortly, a useful parameter
for verifying the conditions but they must not be considered in a number
equal to the true overlaps. If the true overlaps (O) want to be obtained,
the number of really concurrent instructions, it is necessary to modify the
overlaps at the start. How this is to be done will be analyzed later. With
reference to figure 4.9, note that for the last instruction SO differs from O,

60

4.5 – Example with N = 6

this is due to the fact that the penultimate instruction and the second one
are not overlapping.

4.5 Example with N = 6
the 33-line memory (32+1) shown in figure 4.10 is taken as an example. on
it, the six moves shown in figure 4.11 are intended to be completed.

Figure 4.10. Memory under consideration

61

Move data memory

Figure 4.11. Six move instructions

4.5.1 Calculation of SO and O

The first thing to do is to calculate the values of the true overlaps and those
at the start. Assuming the method for calculating the true overlaps is known,
the result in figure 4.12 is obtained as previously.

Figure 4.12. Values of SO and O

62

4.5 – Example with N = 6

4.5.2 Execution first three instructions
The first three instructions can be safely executed because they have a num-
ber of true overlapping less than or equal to two. The figure below shows the
ideal paths for these instructions.

Figure 4.13. paths for first three instructions

4.5.3 Instruction number 3
Instruction number three requires some conditions to be checked as it has
O = 3 and SO = 3. It is necessary to check the conditions for both the
arrival address and the departure address. The easiest part is to check that
there are no problems with the arrival, the latter must in fact be trivially
compared with the arrival addresses of the two previous instructions. The
conditions are met because 13,15,18 do not belong to the same grade three
section (lower part of figure 4.14).

63

Move data memory

Figure 4.14. Condition check instruction 3

The conditions at the start are slightly more complex, the starting address
of the instruction in question must be compared with both the arrival and
departure addresses of the previous two instructions. There are therefore the
four possible combinations listed below.

Figure 4.15. Conditions at the start O=3 and SO=3

64

4.5 – Example with N = 6

The condition highlighted in red can be eliminated, in fact, if the condition
[SiD(i−1)D(i−2)] is verified, this is implicitly verified. this is true because
D(i−2) is always closer to D(i−1) than P(i−2). In summary, in the case of
an instruction with O = 3 and SO = 3, the following four conditions are
required:

Figure 4.16. General conditions O=3 and SO=3

For illustrative purposes, Figure 4.17 shows an example where the con-
dition [SiD(i−1)D(i−2)] can be tricky. It is even clearer why one of the four
starting conditions was discarded.

Figure 4.17. [SiD(i−1)D(i−2)] example

The four final conditions are therefore those shown in figure 4.16. As
they all meet the conditions on the section, instruction number three can be

65

Move data memory

executed. figure 4.18 shows the paths of instruction number three which, as
expected, has a free path available to be executed. Instruction number four
can certainly be executed as it has O = 2.

Figure 4.18. Paths for instructions 3 and 4

4.5.4 Instruction number 5
Instruction number 5 and instruction number 3 are different. Although they
have an equal number of true overlaps, they differ in the number of overlaps
at the start. This does not affect the conditions on arrival but only on those
on departure. SO can therefore be ignored for conditions on arrival. The
figure 4.19 shows the fact that the first condition is met. On the starting
conditions, things get complicated when an O = 3 corresponds to a SO = 4.
The starting address must be compared with all the possible combinations
formed by the starting addresses and the destination addresses of the three
upper lines. In the case of SO = 3, the two upper lines were enough.

66

4.5 – Example with N = 6

Figure 4.19. Condition on arrival check instruction 5

Figure 4.20. Macro-groups O=3, SO=4

Since there are three addresses to be compared, there are 23 macro-groups
(fig. 4.20), the base two is due to the fact that the instructions have only start
and finish. Each macro-group must then be broken down into elementary
groups of three, each elementary group must contain Si. Each macro-group
is therefore formed by 3 elementary groups. There are therefore 3X8=24
elementary groups in total (fig. 4.21). However, each elementary group is
repeated twice, once with the remaining ’bit’ in S and once with the remaining
’bit’ in D.

67

Move data memory

Figure 4.21. Elementary group O=3, SO=4

Starting from the 24 initial conditions, once the repetitions are eliminated,
the 12 shown in figure 4.22 are obtained.

Figure 4.22. Elementary group O=3, SO=4 without repetitions

As previously done it is possible to eliminate some conditions. In fact,
thinking about the 12 conditions it is possible to pass to 8, those circled in
red can be eliminated. All the conditions that contain D(i−1) can be deleted
because D(i−2) is definitely the closest. A similar argument can be made for
the couple D(i−2) and S(i−3), the latter is always preceded by D(i−3). In the
example under examination, the conditions are met and it is also possible to
execute this instruction in parallel. Figure 4.23 shows the path of this last
move instruction.

68

4.6 – Calculation of true overlaps

Figure 4.23. Paths for instructions 5

4.6 Calculation of true overlaps
It was seen in the previous example that the conditions on arrival depend on
the value of O while those on departure depend on both O and SO. From a
theoretical point of view any O − SO pair is allowed, this is shown in figure
4.24. It now remains to understand how the values of true overlaps can
be calculated. The calculation of the overlaps at the departure is relatively
simple because it is enough to compare the departure with the previous
arrivals, the calculation of O is much more complicated. Four methods have
been identified for the calculation of O:

• Exact method

• Approximate method by excess

69

Move data memory

• Approximate method by semi-weighted excess

• Approximate method by weighted excess

Figure 4.24. Move example

4.6.1 Exact method
If true overlaps are to be calculated precisely, the only working method is
to make a sort of integral superposition. Proceed by creating for each in-
struction a vector of 0 and 1, the value 1 is associated with all the addresses
between the start and the arrival. Once all the vectors have been created, the
sum of all the bits of the previous vectors with the one under examination
must be made, this must be done for each position that contains a 1 in the
instruction under examination. Then proceed as in the figure 4.25, at the end
the maximum value is taken. If this check is done in the compilation phase,
it should be preferred to the others, the following strategies are simpler but
have errors. They are recommended in hardware implementations.

4.6.2 Approximate method by excess
The new value of O is calculated in relation to the value SO and all previous
values of O. The new value of O is simply the minimum between the current
SO and the maximum of the previous values of O increased by 1. It is always
wrong to excess, it is the simplest method.

70

4.6 – Calculation of true overlaps

Figure 4.25. Exact method

4.6.3 Approximate method by semi-weighted excess

The method can be slightly modified by checking not all the previous values
of O but only in a number equal to the value of SO. The methods are almost
equivalent if there aren’t really many instructions.

4.6.4 Approximate method by weighted excess

The approximation method seen above is based on the fact that a new in-
struction cannot in any case add more than one new true overlap than the
worst case. However, the method is overly cautious because it is not neces-
sary to check all the previous values but it is possible to stop earlier. If the
generic pair SO − O is taken, the value of O is associated with a number
of instructions equal to SO. It is therefore possible to proceed in this way:
check the value of SOi to which it is necessary to associate Oi at that mo-
ment, let’s suppose SOi = K. Proceed by adding all the previous SO values
until the condition 1 + SO(i−1) + SO(i−j) => K is satisfied. The greater
value between O(i−1) and O(i−j) is taken plus 1 and the new value of Oi is
the minimum between SOi and the value just found. The figure 4.26 below
shows the results of applying the different methods to the initial example.

71

Move data memory

Figure 4.26. Comparison between methods

4.7 Conditions at the start: general case with
O = 3

It has been seen that the conditions on arrival depend only on O. The
conditions on the start depend on the value of SO and on the value of O.
It has been seen that for the pair (SO = 3, O = 3) there are a maximum of
4 conditions which can be reduced to 3. for (SO = 4, O = 3) there are 12
maximum conditions which become 8. The maximum number of conditions
for any (SO = N,O = 3) pair can be found by a mathematical calculation.
To have the reduced value it is necessary to follow the steps seen in the
example. Given SO = N , the number of macro-groups is given by 2N−1

Each macro-group is composed of N elements, being Si fixed the other N−1
items contain the two remaining places. The number of elementary groups
for each group is therefore given by the binomial coefficient N − 12. The
number of total elementary groups is equal to:

2N−1 ∗N − 12 (4.1)

Since 3 values are always kept fixed, for each elementary group we will
have 2N−3 repetitions, the number of maximum conditions is therefore equal
to:

72

4.8 – Conditions for O > 3

Cmax = 2N−1

2N−3N − 12 (4.2)

from which:

Cmax = 22 (N − 1)!
2 ∗ (N − 3)! (4.3)

The figure below shows the value of Cmax for different values of SO

Figure 4.27. Cmax O=3

4.8 Conditions for O > 3
4.8.1 Conditions on arrival
For O greater than three it is necessary to check the conditions on all the
sections with a grade starting from the value of O down to grade three. taken
O = N it is necessary to check: the grade section N with the destination
address and the previous N − 1 destinations, the grade section N − 1 with
the previous N − 2 destinations. The method proceeds in this way up to the
grade 3 section.

4.8.2 Conditions on the start
Also in this case, it is necessary to check the conditions on all the sections
with grade starting from the value of O down to grade 3. Having taken the
generic pair (SO = N,O = M) it is necessary to verify the conditions for
all pairs (SO = N,O = M), (SO = N,O = M − 1). .. (SO = N,O = 4),
(SO = N,O = 3) where the degree of the section corresponds to the value of

73

Move data memory

O. For the generic pair (SO = N,O = M) it is also possible to calculate the
maximum number of the conditions. The number of macro-groups depends
on the value of SO, so it is equal to 2N−1. Also in this case, each macro-group
is made up of N elements, of which Si is fixed. The size of the elementary
group now depends on O, the remaining N − 1 elements therefore contain
M−1 places. The number of repetitions will be equal to 2N−M . The following
equation is therefore obtained for the pair (SO = N,O = M):

Cmax = 2M−1 (N − 1)!
(M − 1)!(N −M)! (4.4)

Since all the pairs shown must be respected, the total number Cmaxtot
is given by the sum:

Cmaxtot =
M∑

k=3
2K−1 (N − 1)!

(K − 1)!(N −K)! (4.5)

4.9 Algorithm for calculating instructions path
In the previous sections has been studied the methodologies necessary to
understand when several instructions are executable at the same time, once
the executable instructions have been selected it is necessary to identify the
paths for each single instruction.

4.9.1 Ideal path calculation
First of all it is necessary to identify the ideal path to follow for each move
instruction, however it is not always possible to itulize the latter. Let S be the
starting address and D the destination address. The first step is to deprive
the destination address of all 1s with the exception of the most significant
one, D ’is the address thus obtained. Some examples follow.

D D’
010010 010000
001111 001000
001000 001000
000011 000010

Table 4.1. D’ calculation

74

4.9 – Algorithm for calculating instructions path

Figure 4.28. Instruction path

The paths leading from address S to D’ must therefore be found. Starting
from the value of S, the position of the first bit at 1 is identified starting from
LSB. If the position of the bit is position 0 it will be necessary to initially
take the innermost line, proceed by adding 20 to S. If the position of the
first 1 is position 1, proceed by adding 21 and taking the second innermost
line (the one that connects multiple addresses of two). This is done until the
value of D’ is reached. An example follows in which the move 7− > 19 wants
to be executed. (D = 010011, D′ = 010000, S = 000111), with reference to
figure 4.28.

S′ = 000111 + 20(blackline)
S′ = 001000 + 23(bluline) = D′

Table 4.2. S’ calculation (1)

75

Move data memory

Where S’ are all the intermediate addresses between S and D. The last
thing to do is to find the path that leads from D’ to D. D’ must reach the
value D by adding 1 in all positions starting from the most significant of the
ones present in D.

S′ = 010000 + 21(redline)
S′ = 010010 + 20(blakline) = D

Table 4.3. S’ calculation (2)

Using this procedure it is possible to obtain all the intermediate addresses
between the starting one and the destination one, the table below summarizes
all the values of S ’for the previous example, also S and D are included.

S’
000111
001000
010000
010010
010011

Table 4.4. S’ values

The flow diagram in figure 4.29 describes the algorithm to be developed.
The aim is to find all the values of S’ for a move instruction, this strategy
allows to find all intermediate addresses of the ideal path. K is the one-bit
position in D ’.

4.9.2 Non-ideal paths
The method just seen allows to find for each instruction the ideal path that
leads from S to D. If more instructions to be executed want to access the
same line, it is necessary to find an alternative path for an instruction. given
N instructions to be executed in parallel, proceed as follows:

76

4.9 – Algorithm for calculating instructions path

1. The ideal path is found for each instruction, therefore all the values of
S ’are known for each instruction.

2. Obtained the S’ it must be verified that two consecutive values present
in one instruction are not present in any other instruction. If this is true,
ideal paths can be used for all move instruction.

3. If two or more instructions share a pair of consecutive values of S’, it is
necessary to split one of the paths into smaller paths in sub powers of
two.

The table summarizes the values of S ’for two instructions (6 to 20, 5 to
24). it can be seen that both instructions, ideally, would like to use the line
leading from 001000 to 010000.

S1’ S2’
000110 000101
001000 000110
010000 001000
010100 010000

011000

Table 4.5. S1’ and S2’ before division

As previously mentioned it is therefore necessary to divide the path into
smaller paths, the table below summarizes the final values. The subdivision
was made on the values S1’

S1’ S2’
000110 000101
001000 000110
001100 001000
010000 010000
010100 011000

Table 4.6. S1’ and S2’ after division

77

Move data memory

Figure 4.29. Flow diagram S’ calculation

78

Chapter 5

A new processor with
move data memory

The goal is to create a processor that uses move data memory, some memory
lines will have to be designed with additional circuitry capable of performing
operations on the data. From this perspective, it is possible to imagine some
memory lines like functional units. Operations are therefore data moves from
one line to another.

5.1 Role of the compiler

The compiler has a fundamental role, in addition to ensuring that there are
no data dependency errors, its task is to verify if the moves can be done in
parallel and which paths should be used. In this regard, it is possible to use all
the techniques seen in the previous chapter. Once the conditions have been
verified and the paths to be used have been identified, using the algorithm in
figure4.29, it is possible to arrive at instructions such as those in figure 5.1.
The single instruction is composed of several move instructions to be executed
in parallel, each move instruction is composed of the starting address and the
increments from which all the intermediate and final addresses are obtained.
The increments are coded in order to decrease the number of bits of the
single instruction. The value of X is a design parameter, any instruction
that cannot be described by X increments must be divided.

79

A new processor with move data memory

Figure 5.1. Processor instruction and composition of a single move

5.2 General scheme

The general scheme of the processor is visible in figure 5.2, the instruction is
sent in input to a block that generates the control signals for the memory.

Figure 5.2. General scheme of processor

80

5.3 – Hardware architecture of memory

5.3 Hardware architecture of memory

It is necessary to implement a memory architecture that allows the movement
of lines. The architecture must allow the passage between the various ways,
a data that is using the innermost line must be able to pass to the outermost
ones and vice versa. The figure 5.3 shows an implementation on a 9-line
memory. The black colored multiplexers allow data to be scrolled from one
cell to the lower adjacent one. Those colored in red connect all cells with
multiple addresses of two. the green ones connect multiple addresses of four
and so on. The multiplexers in pink are the multiplexers that select the input
of the cell to be written. Finally, those in yellow have the task of moving the
data into more internal or external lanes.

Figure 5.3. Hardware architecture for one direction line movement

81

A new processor with move data memory

5.3.1 Movements in both directions
The architecture seen above allows the lines to scroll only from top to bottom.
If the aim is to have a memory capable of moving the lines in both directions,
it is necessary to build a mirror structure that allows movements in the
opposite direction (fig. 5.4). In this case it is necessary to insert, for each
cell, an additional multiplexer which selects whether the data to be written
(fig. 5.5). Each cell can in fact receive the data from both the upper and the
lower part.

Figure 5.4. Hardware architecture for both directions line movement

82

5.4 – Control signal generator

Figure 5.5. Up/down multiplexer

5.3.2 Memory block scheme
Memory can be seen as a succession of blocks (figure 5.6). The sub-blocks CT
(traffic control) contain the output multiplexers of the cells, these have the
function of choosing between the contents of the cell and the output of the
previous block, in figure 5.3 they are black, red and green. The sub-blocks
ST (traffic switches) have instead the task of moving the data on the different
paths (yellow). Blocks C contain the memory cells and the input multiplexers
(pink). The control signals are therefore: CTsel, STsel , mux_insel and
WE (Write Enable). This last signal enables writing of the memory cell. All
the multiplexers of the sub-blocks CT output the value of the cell when the
selector is set to ’0’.

5.4 Control signal generator
A more internal view of the signal generation block is visible in figure 5.7,
for each move a block is needed that generates the signals for the memory,
the final signals are obtained through an OR block between the signals of
the various moves.

83

A new processor with move data memory

Figure 5.6. Memory block diagram

84

5.4 – Control signal generator

Figure 5.7. Control signal generator

5.4.1 Single move control signal generator
A high-level representation of the block in question is shown in figure 5.8, the
block must take in input a move instruction and generate all the necessary
control signals. There are the following blocks:

• Increments Decoder: Its function is to decode the increments so that
they can be sent to a summing circuit. A value equal to 0 contained in
the generic Ii increment must be associated with the value 0, any other
value other than zero of Ii generates a value equal to 2(Ii−1)

• Last Increments Seeker: Starting from I0 it finds the last increment
different from 0, this block is fundamental for generating the commands
of the input multiplexer of the destination cell. Through the increase it
is in fact possible to obtain the path from which the data to be saved
arrives. This block, depending on how the input multiplexers are made,
may have to be followed by a decoding block.

85

A new processor with move data memory

• Addresses Calculator: It is a block composed of adders, its function
is to generate all the addresses involved in the move. All intermediate
addresses are sent to the STsel and CTsel signal generation block. The
destination address is used to generate the write enable signals.

• Decoder: Is a classic block of line decoders which, given the address,
sets the corresponding signal to ’1’.

• CT and ST Calculator: It generates the two signals starting from
the intermediate addresses and from vector I. Their behavior will be
analyzed in detail below.

• And block: Is a block that generates the vectormux_insel, it is formed
by AND gates in which the vector WE is used as a mask. It must be
designed in such a way that the output signal has the correct number of
bits.

Figure 5.8. Single move control signal generator

86

5.4 – Control signal generator

CT and ST selector Generator

The addresses are sent to decoder blocks, the decoded addresses are used for
the creation of the two signals. The generation of the CTsel vector does not
require the I0 vector.

Figure 5.9. CT and ST selector Generator

CT sel Generator

Its block diagram is shown in figure 5.10. Each "CT sel Calculator" block
has the task of generating the signals that must then be filtered through an
AND block, in the latter the decoded addresses are used as a mask. All "CT
sel Calculator" blocks must have output equal to 0 if the input is equal to 0,
this is necessary because among the last intermediate addresses there may
already be the final one, in these cases the address must be ignored. The
final vector is obtained via an OR gate.

87

A new processor with move data memory

ST sel Generator

Like before, each "CT sel Calculator" block has the task of generating the
signals that must then be filtered through an AND block, in the latter the
decoded addresses are used as a mask. All "ST sel Calculator" receiving two
values (Ii and I(I−1)) as input, Ii provides the path to be taken while I(I−1)
the one from which the information arrives. Like before, blocks must have
output equal to 0 if the input Ii is equal to 0. The final vector is obtained
via an or gate.

Figure 5.10. CT sel Generator

88

5.5 – Pipelining

Figure 5.11. ST sel Generator

5.5 Pipelining
The signal generation block of the analyzed processor can be pipilined as
desired. The critical path, and therefore the operating frequency, depend on
the crossing time of the multiplexers inside the memory.

89

90

Chapter 6

VHDL processor
implementation

In the previous chapter the main blocks to be developed were briefly de-
scribed. In order to verify that such a structured processor can really work,
the circuit has been described in VHDL language. For simplicity, a memory
has been developed that allows only scrolling from top to bottom. Control
circuits can simply be replicated and used to control movements in the oppo-
site direction. The memory cells have been implemented through flip flops,
no lines have been replaced with functional units as the objective was to
verify the correct functioning of the move operations on the memory. Fig-
ure 6.1 shows the circuit created. The two enable signals are used to enable
or disable the WE and mux_insel signals produced by the control signal
generator. An external write enable is added to be able to write the mem-
ory, the external data to be written is contained in the input datain. The
content of datain is sent as input to the input multiplexers of the cells, this
is selected when the selector is 0. The memory structure has been slightly
modified by adding an output multiplexer, the latter has as inputs the value
contained in the last line and the output value of the input multiplexer of
the same line. This multiplexer is necessary to be able to read any memory
line and is controlled by the mux_out signal. First, the memory was created
as a generic entity. The parameters that characterize the latter are: number
of lines, number of columns and number of multiplexer levels. The control
signal generation block has also been created in a generic way in order to set
the number of parallel moves and the value of X.

91

VHDL processor implementation

Figure 6.1. Circuit described in VHDL language

6.1 Addresses calculator
This block has the task of generating all the addresses of interest through
the starting address and the increments. The starting address is formed by
a number of bits equal to l, the number of memory lines is equal to 2l + 1.
In theory, it would take l + 1 bit to address it, however, since line 0 cannot
be a destination in any way, it is possible to maintain a parallelism of l bit.
To do this it is necessary to decrease the addresses by one, in this way, the
address 1 will be associated with the value 0 and so on.

Figure 6.2. Addresses calculator block

92

6.2 – ModelSim Simulation

Figure 6.2 shows the realization of this block, the number of output bits
of the first block must be l + 1 since at this point it is possible to already
have an address pointing to the last line.

6.2 ModelSim Simulation
The circuit in the figure was simulated through ModelSim. In the first sim-
ulation, the following parameters were set:

• number of lines = 9

• number of columns = 8

• multiplexer levels = 3

• parallel moves = 1

• number of increment = 4

The simulation result is shown in figure 6.3. When the simulation starts
the memory contains no data, this is visible in the memory lines array. By set-
ting the External WE input with all bits to one, the contents of the Data_in
input are copied into memory. In this first phase it is necessary to set the
two enable signals to 0 as everything is being controlled from the outside.
The signal generation block is then enabled by setting the enable signals to
′1′, in this phase the external WE signal must be reset to all zeros. Once
the generation block is enabled, the move operation is carried out by copying
line 0 to line 4 (0+2+1+1+0), followed by three other move operations. The
last one is instead a memory reading operation, in order to read the memory
it is necessary to set the inputs as if to move the line to be read on the
last line, however it is necessary to deactivate the enable_WE signal and
set mux_out_sel =′ 1′. The same circuit has been simulated (figure 6.4)
by setting a number of parallel moves equal to 3, in this case the reading
operation involves only the line with destination 8.

93

VHDL processor implementation

Figure 6.3. Single move processor simulation

Figure 6.4. Multiple move processor simulation

6.2.1 Pipelined Architecture
The circuit under examination has been modified by introducing three levels
of pipelining, the circuit obtained is visible in figure 6.5. In order to verify
the correct functioning of the latter circuit too, a new simulation was made,
the simulation results are shown in figure 6.6.

94

6.2 – ModelSim Simulation

Figure 6.5. Pipelined circuit

Figure 6.6. Pipelined single move processor simulation

95

Conclusions

The purpose of this thesis was to develop a Logic in Memory system. The
proposed methodologies and architectures are a good starting point for creat-
ing a memory with good data mobility inside, the control system has proven
to be easy to implement. however, it will be necessary in the future to develop
new architectures and new control strategies to further improve mobility, for
example by introducing mobility between columns. New strategies, such as
the introduction of groups, will have to be studied in order to reduce the dis-
tance between departure and destination addresses. It will also be necessary
to think of intelligent methodologies to create the functional units to put in
the memory lines. In conclusion, the compiler implementation will play a
decisive role.

97

Bibliography

[1] Giulia Santoro, Giovanna Turvani and Mariagrazia Graziano. “New
Logic-In-Memory Paradigms: An Architectural and Technological Per-
spective”., Micromachines 10.6 (May 2019), p. 368. issn: 2072-666X.
doi: 10.3390/mi10060368.

[2] Giulia Santoro. "Exploring New Computing Paradigms for Data-
Intensive Applications", PhD thesis, Politecnico di Torino, June 14,
2019.

[3] Umberto Casale. "Programmable LiM: a modular and reconfigurable ap-
proach to the Logic in Memory", Master’s thesis, university of Illinois
at Chicago, 2020.

[4] E. Deng, Y. Zhang, J. Klein, D. Ravelsona, C. Chappert and W.
Zhao. "Low Power Magnetic Full-Adder Based on Spin Transfer Torque
MRAM", in IEEE Transactions on Magnetics, vol. 49, no. 9, pp. 4982-
4987, Sept. 2013, doi: 10.1109/TMAG.2013.2245911.

[5] W. Zhao, C. Chappert, V. Javerliac and J. Noziere. "High Speed, High
Stability and Low Power Sensing Amplifier for MTJ/CMOS Hybrid
Logic Circuits", in IEEE Transactions on Magnetics, vol. 45, no. 10,
pp. 3784-3787, Oct. 2009, doi: 10.1109/TMAG.2009.2024325.

[6] H. Cai, Y. Wang, L. A. B. Naviner, Zhaohao Wang and W.
Zhao. "Approximate computing in MOS/spintronic non-volatile full-
adder", 2016 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), Beijing, 2016, pp. 203-208, doi:
10.1145/2950067.2950101.

[7] You Wang, Hao Cai, Lirida Alves de Barros Naviner, Yue Zhang, Xi-
aoxuan Zhao, Erya Deng, Jacques-Olivier Klein and Weisheng Zhao.
"Compact Model of Dielectric Breakdown in Spin-Transfer Torque Mag-
netic Tunnel Junction", in IEEE Transactions on Electron Devices, vol.
63, no. 4, pp. 1762-1767, April 2016, doi: 10.1109/TED.2016.2533438.

98

Bibliography

[8] E. Garzón, B. Zambrano, T. Moposita, R. Taco, L. Prócel and L. Troj-
man. "Reconfigurable CMOS/STT-MTJ Non-Volatile Circuit for Logic-
in-Memory Applications", 2020 IEEE 11th Latin American Symposium
on Circuits Systems (LASCAS), San Jose, Costa Rica, 2020, pp. 1-4,
doi: 10.1109/LASCAS45839.2020.9069027.

[9] J. W. Kwak, A. Marshall and H. Stiegler. "28nm STT-MRAM Array
and Sense Amplifier", 2019 8th International Conference on Modern
Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece,
2019, pp. 1-4, doi: 10.1109/MOCAST.2019.8741642.

[10] G. Turvani, F. Riente, E. Plozner, M. Vacca, M. Graziano and
S. B. Gamm. "A pNML Compact Model Enabling the Explo-
ration of Three-Dimensional Architectures", in IEEE Transactions
on Nanotechnology, vol. 16, no. 3, pp. 431-438, May 2017, doi:
10.1109/TNANO.2017.2657822.

[11] Stephan Breitkreutz, Josef Kiermaier, Irina Eichwald, Christian Hild-
brand, Gyorgy Csaba, Doris Schmitt-Landsiedel and Markus Becherer.
"Experimental Demonstration of a 1-Bit Full Adder in Perpendicular
Nanomagnetic Logic", in IEEE Transactions on Magnetics, vol. 49, no.
7, pp. 4464-4467, July 2013, doi: 10.1109/TMAG.2013.2243704.

[12] Stephan Werner Georg Breitkreutz-von Gamm "Perpendicular Nano-
magnetic Logic: Digital Logic Circuits from Field-coupled Magnets",
Doktor-Ingenieurs,Technische Universitat Munchen, 2015.

[13] Fabrizio Riente, Grazvydas Ziemys, Giovanna Turvani, Doris Schmitt-
Landsiedel, Stephan Breitkreutz-v. Gamm and Mariagrazia Graziano
"Towards Logic-In-Memory circuits using 3D-integrated Nanomag-
netic logic", 2016 IEEE International Conference on Reboot-
ing Computing (ICRC), San Diego, CA, 2016, pp. 1-8, doi:
10.1109/ICRC.2016.7738700.

[14] S. B. Gamm et al. "Towards nanomagnetic logic systems: A
programmable arithmetic logic unit for systolic array-based com-
puting (Invited)", 2015 IEEE Nanotechnology Materials and De-
vices Conference (NMDC), Anchorage, AK, 2015, pp. 1-2, doi:
10.1109/NMDC.2015.7439269.

[15] A. Ferrara, U. Garlando, L. Gnoli, G. Santoro and M. Zamboni. "3D
design of a pNML random access memory", 2017 13th Conference on
Ph.D. Research in Microelectronics and Electronics (PRIME), Giardini
Naxos, 2017, pp. 5-8, doi: 10.1109/PRIME.2017.7974093.

[16] L. Chang, Z. Wang, Y. Zhang and W. Zhao. "Multi-Port 1R1W
Transpose Magnetic Random Access Memory by Hierarchical Bit-Line

99

Bibliography

Switching", in IEEE Access, vol. 7, pp. 110463-110471, 2019, doi:
10.1109/ACCESS.2019.2933902.

[17] W. Guo, J. Wei, Y. Yao, Z. Shi and S. Wang. "Design of a Config-
urable and Extensible Tcore Processor Based on Transport Triggered
Architecture", 2009 WRI World Congress on Computer Science and
Information Engineering, Los Angeles, CA, 2009, pp. 536-540, doi:
10.1109/CSIE.2009.233.

100

	List of Tables
	List of Figures
	Introduction
	Logic in Memory
	MTJ technology
	pNML technology
	pNML Random Access Memory

	3D hybrid system
	Transfer from MTJ to pNML
	Transfer with n=m
	Transfer with n>m
	Design choices

	Transfer between pNML cells
	Unidirectional flow
	Bidirectional flow
	Flow with transfer between groups

	pNML memory reading
	Line reading
	Transfer between two groups
	Transfer between more than two groups
	Multiple paths
	Mixed technique
	Critical path
	Methodologies for using transfer between groups

	Logical/Arithmetic plan
	Transfer from the logic plane to the pNML cells
	Writing of MTJ memory

	VLIW processor
	Transport triggered architecture
	TTA 3D hybrid system

	Move data memory
	Section
	Grade three sections
	Grade N sections

	Introduction to the general conditions
	Ordering of instructions
	True overlaps and overlaps at the start
	Overlaps at the start
	True overlaps

	Example with N=6
	Calculation of SO and O
	Execution first three instructions
	Instruction number 3
	Instruction number 5

	Calculation of true overlaps
	Exact method
	Approximate method by excess
	Approximate method by semi-weighted excess
	Approximate method by weighted excess

	Conditions at the start: general case with O=3
	Conditions for O>3
	Conditions on arrival
	Conditions on the start

	Algorithm for calculating instructions path
	Ideal path calculation
	Non-ideal paths

	A new processor with move data memory
	Role of the compiler
	General scheme
	Hardware architecture of memory
	Movements in both directions
	Memory block scheme

	Control signal generator
	Single move control signal generator

	Pipelining

	VHDL processor implementation
	Addresses calculator
	ModelSim Simulation
	Pipelined Architecture

	Conclusions
	Bibliography

