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Abstract

Nowadays, the electronic devices have invaded many different fields becoming
very important for most of the objects that are used every days. The quality of
these electronic devices is directly connected to their dependability. Moreover, the
semiconductor industries are constantly looking for new technologies that allow
big improvements in terms of performance. In the last few years, the channel
length of a transistor is set to few tens of nanometers; this is the principal cause
of the increasing complexity in manufacturing processes, but it allows very high
working frequency and dense designs, leading also more frequent physical defects
and devices die in less time. For these reasons electronic devices have to be tested
deeply and researchers have studied several faults models to represent the behaviour
of faulty circuit, such as the path delay fault model. Moreover, different strategies
for the test exist, each one with advantage and disadvantage. The Software Based
Self Test (SBST) is the methodology adopted in this thesis, it is based on forcing
the processor to execute parts of code saved in memory checking the produced
result to prove the correct behaviour of the device. This testing method is reliable,
can be applied in circuits that are not physically accessible, and can detect faults
that might show up for a short period of time respect to the device life. It can be
applied without external tester, and can be performed keeping the device under
test in its operational environment. This is the main strength of this technique,
as tests can be applied periodically and during the whole life span. Furthermore,
SBST does not cause overtesting phenomenon and can be performed at-speed, that
are two concepts that are suitable for path delay model.

In this context the most challenging problem is to find automatic or systematic
methods to generate software programs able to detect path delay faults for sequential
circuit, because random programs result inefficient. Commercial tools can be used
for this purpose, such as the Automatic Test Patterns Generation (ATPG) that,
having available the hardware description of the device and its fault list, is able to
classify faults and to compute test patterns that detect them. Commercial ATPG
tool are too slow for sequential circuits, but can be used to generate patterns for
the combinational logic, this implies that these patterns have to be translated in
software instructions, which is the most challenging part of the work.

The method described above is obtained by trial and error process built on the
open-source SoC Pulpino, developed by ETH Zurich and Università di Bologna and
configured to use the RI5CY core. The method efficiency and the fault coverage
achieved by this system are compared with programs written using other strategies.
The fault coverage is computed using an innovative sequential fault simulator
written for academic research.
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Chapter 1

Introduction

1.1 The importance to test electronic devices

Over the last few years the request of electronics devices is growing constantly. For
example, in the automotive industry, nowadays the 40% of the cost of a car is due
to its electronic components and will continue to grow in the upcoming years, as it
is shown in Figure 1.1.

Figure 1.1: Cost of Electronics component in a car

As of 2017, the average vehicle has over 50 actuators, like transmission control
unit (TCU), adaptive cruise control (ACC) and many others, typically controlled
by power MOSFETs, micro controllers or other power semiconductor devices. It is
important to test these electronic systems periodically to avoid malfunctions and
to guarantee their dependability.
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Introduction

Furthermore, the semiconductor industries are constantly looking for new tech-
nologies that allow big improvements in terms of performance carrying a very
fast evolution with respect to the past. One important progress concerns the
manufacturing phase of the silicon dies, that are produced towards more complex
and sophisticated processes. Nowadays, the channel length of a transistor is set to
few nanometers. This type of the shrinkage is the principal cause of the increasing
complexity in manufacturing processes, but it allows very high working frequency
and dense designs, leading also more frequent physical defects and devices die in
less time. Indeed, the new generation ICs are more prone to process variations,
manufacturing defects, ageing effects, parasitic effects, electromagnetic interference
and overheating-related issues. The older generation devices were less sensitive to
degrading. All this reasons are modifying the shape of a typical failure rate curve
that is represented in figure 1.2, in recent years many electronic product life cycle
exhibit that curve. Moreover with new technology this become more narrow and
deep, becoming more and more similar to a "U" shaped.

Figure 1.2: Typical failure rate curve, extracted from [4]

Those motivations highlight that testing technique must evolve constantly
following the semiconductor industry improvements. The work of this thesis is
going to be justified by means of some little hints of theory.

1.2 Theory in a nutshell
1.2.1 Fault models
In literature many models of faults exist, one of the most cited is the stuck-at-0/1
model. This model was created to represent the short and open circuit effect in
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Introduction

a devices. Nowadays this model is outdated because the increases in density of
VLSI devices are shifting the focus on other problems: power dissipation, line
resistivity and cross talk. They increase the premature failure or cause temporary
malfunction of the IC. The stuck-at model does not represent correctly this type of
problems, that are depicted better using delay faults model. In literature there are
many types of fault belonging to delay fault model. In this thesis the focus is on
transition delay faults and mainly on path delay faults. Just to introduce them:

1. Transition delay fault: it models a delay defect affecting a single gate, that
results slower or faster than expected. The number of faults grows up linearly
with respect to number of gates, so the fault list can be filled by all the faults
extractable from a whole CPU. To produce efficient test is relatively easy, for
this purpose there exists many adapted strategies from the stuck-at model
(that was studied deeply in the past). There are some studies in literature
that show that there are many cases in which these faults do not individually
cause failure in the device.

2. Path delay fault: it is the evolution of the transition delay fault. It models
a transition that crosses an entire paths, arriving to the end point early or
late respect to what is expected. In this model the number of faults grows up
exponentially with respect to number of gates, so it is impossible to test all the
faults extractable from a device. Moreover, to test these faults is very difficult
because there not exists efficient strategies adaptable from other models, but
it is important because the path delay model represents in the best way what
really happens in a electronic circuit since it is able to catch both lumped and
distributed delay defects [8].

1.2.2 Test type

At-speed tests are needed in order to detect faults belonging to delay model. The
Software Based Self Test, which is the methodology adopted in this thesis is based
on forcing the processor to execute parts of code saved in memory checking the
produced result to prove the correct behaviour of the device. This testing method
is reliable, can be applied in circuits that are not physically accessible, and can
detect faults that might show up for a short period of time respect to the device
life. It can be applied without external tester, and can be performed keeping the
device under test in its operational environment. This is the main strength of
this technique, as tests can be applied periodically and during the whole life span.
Furthermore, SBST does not cause overtesting phenomenon.

3
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1.3 Thesis goal and environment used
State-of-the-art works highlighted that random program are completely inefficient
to detect long path delay faults, so we worked on a systematic method to create
assembly programs able to test long path delay faults in a sequential device using
a SBST technique. The open-source SoC PULPino was used to evaluate the
method. PULPino was developed by ETH Zurich and Università di Bologna and
was configured to use the RI5CY core [2]. It is a 4-stage in-order 32b RISC-V
processor core. The ISA of RI5CY is extended to support multiple additional
instructions including hardware loops, post-increment load and store instructions
and additional ALU instructions that are not part of the standard RISC-V ISA
[6]. It can support different instruction set, for this study only RV32I, RV32C,
RV32M are activated that allow to use integer,compressed and multiplication
instructions. The core is presented in figure 1.3. This device was chosen because is

Figure 1.3: PULPino RI5CY core diagram, extracted from [2]

a real commercial microcontroller device, that is used in other academic research
centers worldwide and its architecture is used by several companies. The proposed
method is evaluated only on the synthesized core without considering all the parts
concerning the peripherals.
The efficiency of the method is also evaluated using a sequential simulator, and the
fault coverage obtained is compared with other results that are obtained in past.
In this thesis we want to explain some theoretical concept to prepare the reader, at
that point the simulator to evaluate the method is showed in deep, and then the
method is presented followed by the results obtained.
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Chapter 2

Theory of Delay test

The concept of Delay test was studied following the birth of sequential circuit.
These types of devices use a clock to synchronize all other signals internal to the
circuit. To make sure that the circuit works correctly, the transitions applied to
the input of the circuit must arrive to the circuit’s output within a specific interval
of time defined by the flip flop. This interval is computed subtracting the clock
period to the hold time and setup time. The hold time is the minimum amount of
time in which the output of a flip flop must be stable after the clock edge. The
setup time is the maximum amount of time within the input data must be stable
such that the data is stored correctly in the flip flop.

Sequential circuits are designed to respect these constraints, but in special cases
it is possible that the delay of a single gate is different from the delay that would
be expected. This problem can cause that the total delay of a single path violates
the setup or the hold time, resulting that the device doesn’t work correctly for a
short period of time or for its entire life. When this happens the circuit is affected
by a delay fault.

Some models have been developed to try and represent what happens in a real
faulty circuit with the purpose of testing and detecting this type of faults. The
objective of this chapter is to provide some theoretical concepts useful to appreciate
the problems of the faulty models analysed and how faults can be tested.

2.1 Delay faults model
To clarify some concepts, it is assumed that a delay can start from any input to
the output for each gate in a sequential circuit. In addition - as it is defined in the
majority of libraries - the delay can be of two types: a fall or a rise delay. There
are several models to represent delay faults in literature as transition fault model,
gate delay fault model, path delay fault model, segment delay fault model and line
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delay fault model [1]. The focus of this thesis will be on transition delay faults and
path delay faults.

2.1.1 Transition Delay Faults
In this model each fault influences a single gate, testing these faults means watching
if a transition is delayed or anticipated in a wire respect to what is expected. For
each input of a gate there can be two type of faults:

• Slow-to-rise (str): this fault happens when the transition applied is due to
a rising edge.

• Slow-to-fall (stf): on the other hand, this fault happens when the triggering
transition is a falling edge.

This is a point of strengths for this model as it means that the number of faults
will grow up linearly respect to the number of gates. Three main assumption can
be established thanks to this model:

• A fault-free system is composed only by a gate with nominal delay.

• A different delay from the nominal one, whether it is positive or negative, is a
fault.

• A delay fault that spreads through a path and reaches an output will surely
provoke a failure, whether it is crossing a short or a long path.

This implies that to detect a transition delay fault it is necessary to apply a pattern
to the input. A pattern is a set of values given to the inputs in a sequence. In
this model a pattern is composed by two vectors, each vector is a set of values
given to the inputs at the same time. The first vector is used to initialise all the
gates under test, the second vector activates and propagates the transition to one
of the outputs. The second one is the same used to test stuck-at fault. For example,
when a stf transition is created, the first vector may set the gate under test to ’1’,
the second vector must be able to detect a stuck-at-1 on that gate and set it to
’0’. If the transition is able to reach an output than the fault is considered to be
detectable by that pattern.
As explained, the stuck-at fault method is easily adaptable to this model to test
this type of fault. This is a big advantage, because testing these faults becomes
relatively easy.

The main problem is that this model does not uncover well defects related
to real timing. So patterns that can detect these types of faults are not very
efficient in testing real faulty devices. For example, this model does not provide any
information on the size of the fault, which is an important factor in this context.
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Figure 2.1: Two differents path crossing the same faulty gate

In the example shown in figure 2.1, there are two test patterns that can detect
the same faults. The first one is propagated by a path that has a nominal slack
of 2 ns (coloured in blue in figure 2.1) and the second one of 5 ns (coloured in
red). The Slack is defined as the maximum extra delay admitted to violate the
setup time of the memory element to which it is connected. This information is
very important because while the first pattern is able to detect a minimum extra
delay of 2 ns on that gate, the second one is only able to detect 5 ns. This is a
big deficiency in this model, because there are three possible situations that can
happen in a real circuit that depend on the extra delay defect present on the gate:

• Value of real delay greater than 5 ns: the fault generates probably a
failure in the system, but the two patterns are able to detect it.

• Value of real delay between 2 and 5 ns: also in this case the fault violates
the setup time of the system because it is certainly greater than the slack of
the critical path (path with the smallest value of slack), that has a slack
that can be minor or equal to 2 ns. However, only the first pattern is able to
detect this faults with a at-speed test.

• Value of real delay smaller than 2 ns: no patterns will detect the fault
and if the critical path through this gate has a slack that is smaller than 2 ns
the fault will probably provoke a failure.

7



Theory of Delay test

This simple example demonstrates that this model is not very efficient, and in-
troduces the concept of path delay model. In this model there is an implicit
information that substitutes the size of the fault, solving this issue.

2.1.2 Path delay faults
The path delay faults can be considered as an evolution of the transition model,
since they can represent both individual and distributed faults.

For this model, a circuit is marked as faulty when the sum of the delays of all
the gates in a path is different from the nominal one. To detect a fault of this type
a pattern must be composed by 2 vectors as for the transition delay faults. The
pattern must be able to launch the transition on the first gate of the path, which is
defined as the start point, than the transition must cross all the gates and arrive
to the output, defined as end point. A path is not only defined as a set of gates,
but also as a set of all possible transitions that can be generated from a set of gates.
This concept is introduced with the assumption that each type of transitions (str
or stf ) can have a different value of delay, and therefore all possible combinations
must be evaluated.

Figure 2.2: Four different delay path in the same topological path

It is visible from the example in figure 2.2 that four different delay paths - where
each of them could have a different total nominal delay - are generated from the
same topological path.

Another example to explain a critical point of this model is taken from the
c6288 study in [12]. The c6288 is a 16x16 multiplier characterized by a symmetric
structure. As shown in figure 2.3, all the squares represented are full adders. On
the top of the figure it is visible that each full adder has 4 topological paths. So
for each path two types of faults can be generated, making it eight in total. On
the bottom of the figure, the 15 different longest paths are highlighted. They are
all potentially equal one another but they probably require different patterns to be
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Figure 2.3: Simplification of each full adder on top and c6288 longest path on
bottom

sensitized. Each path is composed by 30 full adders, so there are 30x15x8 = 3600
different faults in this case.

This demonstrates that the topological paths need to be filtered before being
tested, because they grow exponentially respect to the number of gates of the
circuit. Usually it is important to test the path with a small slack because - in case
of extra delays - this would probably violate the setup time. In some cases it is
also important to detect the shortest paths as, in case of a deficit delay, they can
violate the hold time.

The table 2.1 below summarizes the difference of the two models explained in
this section. Path delay model better reflects the faults that can happen in real
system. While it is very important to test them, it is also very difficult. Classifying
the models according to their testability could help to reduce number of faults on
the fault list.
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Delay fault model
number of
faults w.r.t.

number of gates

faults that
can be tested

size of
detectable faults test generation

transition linear lumped at gate large modified stuck-at ATPG
path exponential distribuited along paths small to large hard

Table 2.1: Comparison of different fault model[1]

2.2 Classifying path delay fault
Path delay model introduces another problem, each fault can be detected with
tests of different quality, and not all paths can be tested with a high quality. For
this reason, it is necessary to classify the path by its sensitization criteria: robust,
non-robust, functional unsensitizable and functional sensitizable.

Figure 2.4: Path faults classification, scheme taken from [1]

By the classification presented in figure 2.4 it is possible to understand that
there are some faults that do not need to be tested. Primitive faults represent
faults that have to be tested in order to guarantee the temporal correctness of the
circuit. Non-primitive faults can never independently affect the performance of the
circuit, so they must not be taken into consideration, as testing them is useless.
Following the tree there is the distinction between single and multiple faults. The
single faults are testable individually, this group of faults is the one that is analysed
in this thesis, because the ATPG of Tetramax provides patterns to detect them
using high quality tests. Multiple faults can create a failure only if there is another
specific fault that puts the circuit in some condition making the device transparent
to the target fault.

Before progressing in this section some definition must be clarified: [1]

• Controlling value (cv): this value is given to an input to control the output,
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the controlling value can determine the output value regardless the value of
other inputs.

• Non controlling value (ncv): it is the complement of the cv. In And-gate
’0’ is a controlling value, because if an input has that value the output is
always ’0’. Then ’1’ is a ncv.

• On-input: It is an input that is directly on the path.

• Off-input: It is an input that can control a gate on the path, but is not an
on-input.

• Sensitizable path: A path P is sensitizable if there exists a pattern that can
propagate a transition on the path.

• Static sensitizable path: A path P is defined static sensitizable if there
exists a pattern such that all off-inputs in P settle at respective non controlling
values under the second vector of the pattern.

• False path: A path that can never propagate a transition to one output. A
false path cannot be sensitized.

• True path: A path that is not a false path.

The following subsections will detail the different types of fault.

2.2.1 Robust testable delay faults
The robust testable path criteria is detected in an independent way respect to
the delays occurring on signals other than the target path. To understand the
definition of this criteria, the definition of robust off-input must be introduced.
Calling f an on-input, the relative off-input g can be define as robust when these
two conditions are respected:

• If on f there is a cv->ncv transition, then g must have a cv->ncv transition or
a stable ncv.

• If on f there is a ncv->cv transition, then g must have a ncv value

As is presented in figure 2.5 the off-path in the example is a robust one, because
the two conditions explained above have been respected. A path is defined robustly
testable if there exists a pattern that guarantees that all the off-input of the path
are robust. This pattern ensures the test is performed with a high quality because
it is not influenced by the presence of other faults and the test can detect the
targeted faults.
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Figure 2.5: Verifying robust off-path condition

2.2.2 Non robust testable delay faults
Non-robust testable path can be tested by patterns, but the quality of this test is
not very high, because any fault tested in this manner can be masked by another
delay fault on the off-input. The condition of non robust off-input is the following:
if there is a cv->ncv transition on the on-input there must also be a transition
ncv->cv on the off-input. If a path is composed by a gate that has at least one non
robust off-input, while all others are robustly testable, that path is still considered
to be a non robust testable path. An example of non-robust testable path is
presented in 2.6.

Figure 2.6: Example of a non robust testable path [7]

Another fault happening at the same time can cause masking of the target fault.
It is explained by the example in figure 2.7. The transition on the ’d’ wire comes
before to the ’c’ one, so they are not synchronized. This means that there is an
interval of time that they are both high, this situation allows the propagation of
the transition from input ’c’ to the output ’e’. The path to be tested is the one
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that passes a-c-e wire. If a fault affects the d wire provoking an extra delay in that
wire, the output will remain fixed to low value. For this reason, this type of fault
needs to be validated. For this scope it is necessary to generate a pattern that is
able to test the transition delay on the d wire and the target path delay, if this
pattern exists, then the fault can be validated.

Figure 2.7: How a non-robust testable path can be masked [1]

2.2.3 Functional sensitizable path
These types of faults require other faults to be detected, these paths are not static
sensitizable, but functional sensitizable. This means that they require others signal
to be delayed for them to be detected. Usually “functional sensitizable off-input”
is defined as that situation in which a ncv->cv is generated on both on and off
inputs. If a path is composed by only robust, non robust and at least one functional
sensitizable off-input, then it is a functional sensitizable path.

Figure 2.8: Example of functional sensitizable path [1]

As shown in figure 2.8 if in a free-fault circuit the transition on ’d’ comes before
the transition on ’c’, then it masks the propagation from ’c’ to ’e’, due to the cv
transition on ’d’. If for some reason the transition in ’d’ is delayed it is possible that
it makes the gate transparent to propagate the transition from ’c’ to ’e’, allowing
to detect the fault on the targeted path.
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This is a low quality type of test for fault detection because it depends on other
extra delays that are random. With the method explained in this thesis they are
not taken in considerations because the ATPG used cannot generate patterns for
this type of testing. In the commercial world there are few algorithms that are able
to do this work [1], because they need to generate patterns that are able to test
the fault in the off-input and at the same time detect the fault on the on-input
(that is valid only if the first fault occurs).

2.2.4 Untestable path and useless path
There is a high number of topological paths that are untestable. If does there is no
pattern that can test a fault, it will be marked as untestable. One of the common
set of paths in this category are the convergent ones, because the convergence
limits the number of input usable to sensityze the path, decreasing the probability
that a test pattern exists. The family of faults crossing a combinational module
that results as false paths are named structural untestable paths. They can be
eliminated from the fault list, because in real devices they cannot occur.

In sequential circuits, especially in circuits with a pipeline, there are many faults
that are useless to be tested. To understand the next concept some definitions
must be introduced. Usually a sequential circuit can be divided in combinational
part and sequential part, as it is presented in figure 2.9. The combinational netlist

Figure 2.9: Huffman model

is composed of only combinational gate, it has a lot of inputs and outputs that can
be subdivided in two big groups:

• Primary inputs (PI): They are the input of the total sequential circuit.
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• Pseudo primary inputs (PPI): They are the input each single combina-
tional part of the circuit, they are connected to the output of a sequential
gate.

• Primary output (PO): They are the output of the total sequential circuit.

• Pseudo primary output (PPO): They are the output of the combinational
part and they are connected to the input of sequential gates.

Obviously, the path crosses only the combinational part of the total circuit.
In a circuit with a pipeline the user can control only the primary input, and so he
can control the PPI by propagating some value on the circuit. It is important to
understand that not all the configuration of PPI can be set by changing the PI
values. These faults are untestable for SBST for example, but in every case they
should be removed, because they will never produce a failure in the system, since
they are not stressable during the functional life of the circuit.

This part underlines the importance to classify the paths and the patterns as if
they were bound together. The scope of the classification must be to create test
patterns with high quality and avoid testing useless paths. The classification of the
path for the scope of this thesis is left to a commercial tool as will be explained
later. The next section will explain how the circuits are physically tested.

2.3 Test application
There are lots of methods to test these types of faults in the real world. This section
will begin by introducing a process based on scan chains that is valid for testing
real circuits. However, as they present some issues, based on the considerations
that will be explained, the functional test (another possible type of test application)
is often the preferable to the scan test.

2.3.1 Scan chain
The scan chains are born to transform the sequential circuit in a combinational one.
This is due to the fact that the automatic test pattern generation tools (ATPG)
have some problems working with sequential netlists. In sequential mode the ATPG
spends a lot of CPU time obtaining an unsatisfactory fault coverage. To solve this
problem scan chain can introduce two operative modes: normal mode and testing
mode. During the normal mode the SoC works normally, during test mode all its
internal memory elements are connected as a chain making them accessible from
the external. In this way, the circuit can be used as a combinational one, because
all PPIs are accessible from the external, making all memory elements as a point
of control and observation.
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Delay testing can be performed by this process, but there are some limitations.
In general, testing a delay fault requires both applying a pattern composed by a
pair of vectors and sampling the outputs at the circuit operating frequency. To
do so, three different solutions can be adopted: launch on capture, launch on shift
and enhanced scan.

Launch on capture

This technique requires 3 phases:

• Load a vector V1 into the scan chain

• After a clock cycle a V2 is generated by the combinational netlist and it is
stored in the chain. In this moment the transition is formed.

• At the end of the combinational gates a third vector V3 is created (that is the
captured one), it is stored on the chain and unloaded from it.

This solution does not allow to have full control of the second vector: the first one
can be chosen by the test designer, the second one is generated by the combinational
part of the circuit. This reduces the efficiency of this method.

Launch on shift

This technique is a little bit different from the previous one presented; it requires
three phases:

• Load a vector V1 into the scan chain

• The combinational result due to V1 is thrown away, the V1 vector is shifted
in the chain generating the V2.

• At the end of the combinational gates a third vector V3 is created (that is the
captured one), it is stored on the chain and unloaded from it.

Also in this case it is difficult to perform tests that find high coverage, because it
is not possible to manage both the two vectors directly.

Enhanced scan

Each memory gate is substituted by a latch and a flip flop, in this way in each
memory element can be stored two bits. This allows to save the two chosen vectors
directly by the test designer. Also in this case it is managed in three phases:

• Load two vector V1 and V2 into the scan chain, and V1 is connected to the
input of combinational netlist.
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• V2 is shifted in the PPI of the circuit generating the transition. The output
obtained by V1 is thrown away.

• At the end of the combinational gates a third vector V3 is created (that is the
captured one), it is stored on the chain and unloaded from it.

The first two methods are not highly efficient because they do not give the possibility
to completely control the two input vectors but only one, on the other hand,
enhanced scan allows to do that. There are some issues bound in this process, the
first one is that to do this type of test the circuit must be prepared by substituting
flip flops with the chain FF (with the necessary connections). The second one is that
this process can potentially generate transitions that are not normally generated
by the operational work, this problem can cause overtesting. A circuit is overtested
when it is marked as faulty, but it is able to work well. Moreover, uploading and
downloading scan chain consumes a lot of time, making this technique very slow.
For these reasons, functional technique is explored.

2.3.2 Functional Test
In this thesis the Functional testing is the chosen test method. This technique
recognises if the device is working well by applying functional inputs to the DUT
and observing the output. This type of test is the opposite of what is introduced
by Design for Testability. The circuit that are tested functionally are designed only
to do what they have to do, there are potentially no hardware internal module
used to test the circuit. So, the idea is to test the circuit controlling the input and
watching if the outputs are correct. It is also different from the structural test,
because a circuit can be potentially tested without knowing its structure.

Nowadays it is commonly used to test many devices as ICs, boards and systems.
The main cause of its utilization is that it can cover some faults that are not covered
by other types of test. Moreover it can be utilized for end of manufacturing tests,
incoming inspection and in-field tests. The last one is the most important one
because it is the strong point of this solution. Potentially there are solutions that
allow the circuit to run autotest during its life to verify other faults that affect the
circuit for a limited period of time. However, the execution of this type of test is
difficult, because there are several constraints on input and output signal.

There is a special functional test that is the Software-based self-test abbreviated
as SBST that is able to test processors and SoC. It is used for end-manufacturing
and for in-field test. A test of this type requires a program, which is compiled
and saved in the instruction memory, before being run. The instructions sequence
of this program generates some patterns in the processor that induces transition
crossing the gates. While the program is in execution, the outputs are observed to
understand if there are some faults.
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This kind of test has a lot of merits:

• It can be performed at-speed.

• Reaches good fault coverage catching a high percentage of defects.

• Manufacturers use it more often as final test.

• Often it can be used as an in-field test.

• It has a relatively low execution cost.

• The DUT has not performance drop due to the test.

However, it requires suitable stimuli and ad hoc mechanisms that allows to access
to the DUT during test.

This type of test can only detect the faults that can really affect a device during
its work. Since the processor usually works with its assembly instruction, it can
detect only real faults that can occur on the operational phase of the processor.
There is no possibility that a non functional fault will be detected, because illegal
patterns cannot be set on the PPI. This also eliminates the possibility of overtesting
the circuit. For example, in scan chain there is the possibility to load in the PPI
some patterns that are not functional, they can detect some faults that might
mark the device as faulty, despite it maybe be working properly. Since those non
functional faults cannot be generated on the normal use of the circuit, they never
cause failure.
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Chapter 3

Functional Simulation flow

This chapter explains how the assembly program can be compiled and simulated in
a sequential circuit in order to compute the total fault coverage. This innovative
functional simulation flow was developed in previous works [5], because there is not
a unique commercial tool that is able to simulate test for sequential circuit using
the path delay fault model and SBST technique. This flow is organized in different
steps that are summarized in the flowchart in figure 3.1, each of them is handled in
this chapter explaining how and why they should be performed. Moreover, each
phase needs a different commercial tool that has to be used in the correct way to
obtain good result.

This tool gives the possibility to run each steps separately, so the user can
execute only one step or a group of steps as he wants. This is a very good point,
because it allows to create script to manage different situation, for example a single
step can be executed more times using loop, this strategy can be applied for path
extraction as it will be explained in next chapters. Moreover, the complete flow is
used to evaluate the assembly program generated by the method (that is the most
important part of this thesis).

3.1 Synthesis
As it is possible to see in the flowchart the first step to do is the synthesis. Having
the rtl-level description, the devices under test can be synthesise, that means
produce a structural description from a behavioural one.

The synthesis process can be done in some steps: infer the logic and state
elements, perform the technology-independent optimization, map the elements
to the target technology library and finally perform the technology dependent
optimization. This process is done by synthesis tools that are able to produce a
gate-level netlist of the DUT. The tool chosen is design_vision that is produced by
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Figure 3.1: Flowchart of the tool from [5]
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Synopsis, it supports VHDL, Verilog and SystemVerilog as description language.
Moreover it can be used with the graphical interface or using the command line
making scripting easier. The technology library used is the Nandgate that is used
a lot in academic research.

The goal of this flow’s step is to generate two different netlist, the .sdf and .sdc
file. The first netlist is composed by all combinational cells of the device under test,
instead the other one is the top level netlist, it contains all the components of the
devices. So on the next steps there is the possibility to work with the combinational
level or with the sequential one as it will be explained. The tool is created so that
the user can manage a lot of parameters, the most important are the names of the
rtl, the output netlist, and the timing and area contraints.

The combinational netlist is very useful for the extracting path, because it is
easy to extract path from PPI and PPO without memory elements. However, in
some cases this step should not be performed because there are some companies
that usually provide the netlist already synthesised to the test designers. Obviously
in that case this step has to be skip, and the tool give the possibility to do that.

3.2 Static timing analysis
This section relates the topological path extraction using a STA, the inputs of this
step are the combinational netlist, the .sdc and .sdf files, whereas the output is
the target path list. For each path two faults are generated, since two possible
transition can be generated on the start point: str or stf. The Static timing Analysis
is a simulation method that is used to compute the expected value of delay in each
node of the netlist. It doesn’t execute a logic simulation, but simply sums the
delay of each gate defined in the library in order to understand if the circuit can
operate at a certain frequency. In this case it is used to classify all the target paths
depending on their slack values.

To execute the STA, Prime Time is chosen, the complete tool provides all the
script needed to extract the path. Some parameters are manageable by the user: he
can choose the combinational netlist, the maximum number of path to extract, the
maximum number of path to extract for each end point. In the first version there
was the possibility to set a maximum slack of the path extraction, then another
parameter is added to impose also the minimum slack. These are two important
variables because they allow to the users to extract pattern in different interval of
slack. Another feature added in newer version allows to exclude some endpoints
from the extraction. So the user can list the PPOs that are not observable in any
way, and the tool doesn’t extract any paths that end with those output, because
they will generate undetectable faults.

21



Functional Simulation flow

Using this step there is not the possibility to study the logic sensitization of the
path, that would have been comfortable for the faults filtering. So the path list has
to be filtered at a later time, because there are lots of topological path that are
extractable using STA but are structurally unsensitizable. This can be resolved by
generating a loop that can extract some paths and reject the useless ones, such
that a clean path list is generated. This step is usually used to obtain one of the
two lists explained below:

• List of sensitizable testable paths that are in a specific interval of low value of
slack. This type of paths in a faulty circuit violate the setup time with an
high probability.

• List of sensitizable testable paths that are in a specific interval of high value
of slack. This type of paths in a faulty circuit violate the hold time with an
high probability.

3.3 Logic simulation
To execute this step it is necessary to have the synthesised netlist, testbench files
and the test program. The latter has to be compiled then the tool reads the netlist
and the testbench and executes the logic simulation returning two .vcde files.

The logic simulation is performed by Questasim that is a HDL simulation
environment that supports different languages as Verilog, SystemVerilog and VHDL.
It has the task to take the compiled program and simulate the logical propagation
of signal imposed by the program. This tool can be launched by GUI or without it,
this allows to the user to watch the internal waves of the circuit that is very useful to
understand how assembly instructions are propagated through the memory elements
of the core. When the DUT is pipelined this task is very important, because the
user must be able to set specific values in internal register to test path faults. He
can directly change only the PIs of the system using the assembly program, so
using the Questasim GUI he can understand how the wave are propagated through
the PPIs and he can have a good control of the entire core. At first glance it is
difficult especially if the netlist read is the synthesised one, because the name of
the PPI are not self-explanatory, an example is presented in figure 3.2

For this thesis the testbench is already provided together with the rtl description
of the core. By the testbench it is possible to manage some features of the logical
simulation as the clock period and the condition in which the simulation is over.
In that moment two .vcde files are created, the acronyms means Extended Value
Change Dump, indeed they are text files in which the users can dump specified
signals. The simulator will save in that file every changing value of those signals
marking also in which instant of time their values are changed. The two .vcde saved
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Figure 3.2: Example of logic simulation, on the left is possible to see the signals
in a hierarchical way, not all signals are self-explanatory

are the dump of the fault-free devices, in the first one the changing of all registers
content are saved, so all the PIs, PPIs, POs and PPOs transitions, differently in the
second one only the changing values of the PIs and POs of the system are stored.
The first .vcde file will be used in the combinational fault simulation because from
that the combinational pattern can be extracted. The second one will be used at
final step in the fault injection.

As it is explained before in some cases the synthesised netlist and the fault lists
are already provided by the device manufacturer, so the fault simulation can start
from this step.

3.4 Combinational level fault simulation
This step often is time consuming because computationally is the most complex.
The tool explained in detail in [5] is able to complete the no-drop combinational fault
simulation using also the fault simulator created by Synopsys, named Tetramax.
The no-drop simulation is based on the principe that if a program pattern is able to
detect a fault, that fault is not deleted from the fault list, because a fault detected
at combinational level, couldn’t be detected at sequential one, as it will be explained
soon.

The input of this step are:

• Combinational gate-level netlist: This is used by Tetramax to create an
internal representation of the fault-free circuit that is used to fault simulate
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the device.

• Full gate-level netlist: In this step is used only to extract primitives and
PO of the top level design, these file will be used in step 5.

• Path list file: In this file there are listed all the path that has to be simulated,
it can arrive from the device manufacturer or from the step 2 of this tool.
Each path of this list has a name that is maintained unaltered, but for each
path two faults are generated, one for each possible transition (str or stf) on
the start point. Tetramax is able to create a fault list itemizing all the name
of path and associating it to the respective transition type, this list is saved
in a appropriate file.

• Combinational ports vcde: From this file Tetramax can extract the pat-
terns provided by the Logic simulation. Moreover it can understand which are
all the correct transitions: for each fault a representation replica is created and
the transitions on the PPO are compared with the one saved in the .vcde, if
there are some difference the fault can be marked as detected at combinational
level.

So, Tetramax takes the four inputs file, creates a replica of the representation of
each possible faulty devices and control if there is one pattern that, considering the
fault, provokes a PPO changing respect to the data saved by the fault-free device.
This implies that Tetramax is able to test only single path delay faults, so it is able
to detect robustly o non-robustly testable path fault, in case of non-robustly it is
not able to validate them. Each fault is classified so:

• Detected : The fault has generated a difference in one PPO of the circuit.
So there is a pattern that was able to sensitize the fault, provoking a delayed
transition on a observation point.

• Not detected : The correct transition was sensitized correctly but this has
not caused a difference from the fault-free circuit behaviour.

• Not controlled : The fault can be observed by some PPOs, but the program
simulated was not able to sensitize the fault. So it is not detected, but
potentially it could be detected by other patterns.

• Undetectable : For structural reason the fault can’t be detected, there are
no way to sensitize the path or propagate the faults to observation points

Obviously if a fault is combinationally undetectable it is also sequentially unde-
tectable. So this phase is important also to filter the faults that are useless to test
sequentially.
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The complete tool provided by [5] is able to execute the no-fault-drop simulation
by execute repeatedly the combinational simulation. This tool is very useful
especially because allows to manage lots of parameters, the most used are:

• Name of clock pin.

• Strobe offset: used to speed up simulation deleting the pattern relative to the
preset of the processor

• Max process: allows to divide the execution of the simulation in different
processes, that in parallel can run different simulations part.

• Max detection: max number of detection allowed for each faults, after that
the fault is dropped

The result of this step is a file that lists all faults detected, and for each faults
there is itemized all patterns that detects the relative fault. Each fault detected in
this phase generates a potential failure in the memory element connected to the
end point of the target fault. If the end point is a Primary output of the device
the fault is also detected at the sequential level, if it is a PPI then the fault has to
be propagated to a PO. This situation is evaluated in the next step.

3.5 Sequential level fault simulation
Generally the tool used nowadays are prepared to simulate sequential circuit using
scan chain. They usually have two operative mode: the basic scan that simulates a
circuit prepared with a scan chain and the fast sequential that once the pattern is
loaded it works in operative mode for a fixed and limited number of clock cycles.
These two mode don’t guarantee that the simulation results are reliable for this
scope. Moreover, Tetramax supports also a full sequential mode, but claims that
the end point of each path is connected to a capture point, i.e. a Primary output or
a scan flip flop. Indeed this mode was created for other model of faults, in transition
delay mode for example after having defined the PIs and POs the simulator can be
run in full sequential mode and it is able to verify the propagation of the delay till
the primary output.

Given the considerations just made, the last step is performed by ZO1X that
is a sequential fault simulator for automotive circuit, but it doesn’t implement
the path delay testing. Anyway, in this type of simulation ZO1X is used only to
propagate faults that are detected at combinational level to a primary output. If
a fault is detected by the previous step means that the test program is able to
propagate a transition till the end point of a path, this implies that in a faulty
device the transition will arrive in late in the memory element, so the memory
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element will store a wrong value. The idea of this tool is to model this situation by
implementing a bit flip on the endpoint of the target fault in the correct moment
and then to simulate the test program in order to understand if this failure is able
to cross sequentially all the pipeline and arrive to a PO.

This type of injection has done one time for each combinational fault detection.
This motivation helps to understand why the sequential simulation are slower than
the combinational one. Indeed it is necessary to speed up the process, so every
time that a fault is sequentially detected is dropped from the fault list. Another
important parameter provided by the tool is zoix_interval: it is a number that
represent the interval of time between two launch of ZO1X, it is expressed in
minute. It is very important because using the correct value it can be used to
speed up the total simulation. Explaining with an example if that value is set to 60
minutes means that the execution of no-drop simulation is interrupted every hours
to do the ZO1X injection. Doing the ZO1X injection too often slows the total
execution due to the Tetramax-ZO1X switching. However every ZO1X injection
allows probably to mark some faults as sequentially detected and so to reduce
the fault list speeding up the combinational simulation. The best compromise is
dependent on the application and so has to be found.

This step concludes this chapter because once completed the fault injections the
simulation is over. The complete tool will save the sequential result on dedicated
files, in which the sequential fault coverage can be read, and all faults are classified
as sequentially detected or not detected.
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Chapter 4

Methodology to generate
assembly code

The first step of the proposed methodology consists in the fault list definition. Since
paths may involve a variable number of gates they must be classified depending
on their slack value. If a path has a little value of slack, a small defect should be
enough to cause failure in the device, so small defects in few gates are enough to
violate the setup time of the system in this type of paths. This group of fault will
be named Long Paths because usually they are composed by a big number of gates.
Initially only these ones are taken in consideration.

Figure 4.1: Simple circuit

Assuming that the five gates represented in figure 4.1 are all characterized by
a delay value of one generic unit of time, and assuming that the five inputs are
PPIs of a sequential circuit and the two outputs are PPOs. This example shows
the concept presented above. Assuming that the clock period is equals to five units
of time, in this circuit there are some paths composed by two gates and others
are composed by four gates. In this simplification these paths have respectively a
slack of three and one units of time. Intuitively, defects of small entity can cause
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the faults on the long path. In the example an extra delay of one unit of time
is not enough to cause the fault on the short paths, but it can damage the long
ones. Moreover, the variations of the circuit can cause a bigger delay values on a
long path respect to a shorter one, so long paths can provoke failures with an high
probability.
The first step of this analysis is to understand how a significant number of path
can be extracted from a synthesised netlist. Then, the systematic method - to
generate programs able to detect the faults - is proposed.

4.1 Extracting Long Paths
The long path extraction needs a Static Time Analizer and an ATPG tool. The
Static Time Analizer must be able to extract all the paths concerning a specific
interval of slack. The idea is to set a slack interval that includes the topological
longest paths, extract and filter them rejecting all paths that can not be tested.
This reject operation is performed by the commercial ATPG tool, but it can be
performed by any tools able to mark faults as testable or untestable. The process
is repeated shifting the interval until a slack limit defined by the user is reached.
Therefore, a possible iterative algorithm that can be used for this scope is presented.

1 Slack_min = 0 ns
2 S lack_inte rva l = 0 .01 ns
3 t e s t ab l e_path_l i s t = empty_list
4 whi le ( t a r g e t s l a c k i s reached )
5 {
6 ( path_l i s t , S l a ck_inte rva l ) = path_extractor ( S lack_interva l ,
7 Slack_min , max_num_of_paths , n_endpoints )
8 testable_path_list_tmp = classify_by_ATPG ( path_l i s t )
9 t e s t ab l e_path_l i s t . append ( testable_path_list_tmp )

10 Slack_min = Slack_min + Slack_inte rva l
11 }

The algorithm’s result is saved in a file that will contain the path list that can be
marked as structural testable in the combinational logic. The two main operator -
the path extractor and fault classifier - are explained in next subsections.

4.1.1 Path extractor
The commercial tool PrimeTime is used to execute the path extraction. This
tool has one parameter that represents the maximum number of path extractable,
this can not exceed 2’000’000, and another parameter used to set the maximum
number of extraction for each endpoints. These parameters could cause some
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problems, because if they are not calibrated correctly, the process will saturate
and the extracted fault list will not include all the long path faults. To solve this
problem a recursive function is written:

1 path_l i s t path_extractor ( S lack_interva l , Slack_min , max_num_of_path ,
n_endpoint )

2 {
3 max_path_per_endpoint = max_num_of_path / n_endpoint
4 path_list_tmp = extract_path ( Slack_min , Slack_min +
5 Slack_interva l , max_path_per_endpoint , max_num_of_path)
6 n = count_max_path_per_end_point ( path_list_tmp )
7 i f ( n == max_path_per_endpoint )
8 path_extractor ( S l ack_inte rva l /2 , Slack_min , num_max_of_path ,
9 n_endpoint )

10 e l s e
11 re turn path_list_tmp
12 }

The algorithm extracts a group of paths, if in this group there exists a set of paths
having the same endpoint with a cardinality that is equal to the maximum number
of paths per endpoint, the interval of slack will be halved and the function restarted
in a recursive way. The "extract_path" function is performed by the STA.

4.1.2 Classifying Faults
In addition to the path extraction, the objective of this section is to filter only the
testable paths from the combinational logic. The other faults are not considered
because they have not logical effect on the circuit behaviour and cannot cause
failures, moreover using this classification is possible to speed up a lot the test
phases. The path list generated by the extractor is analyzed using the ATPG tool
of Tetramax for this purpose.

The ATPG tool classifies faults using four different types, as it possible to read
in [10]:

1. "DT - Detected: The "detected" fault class is comprised of faults which have
been identified as "hard" detected. A hard detection guarantees a detectable
difference between the expected value and the fault effect value. The detection
identification can be performed by simulation or implication analysis."

2. "ND - Not Detected: An ND fault indicates that test generation has not
yet been able to create a pattern that controls or observes the fault."

3. "AU - ATPG Untestable: Include faults which can neither be hard detected
under the current ATPG conditions nor proved redundant."
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4. "UD - Undetectable: The "undetectable" fault classes include faults which
cannot be detected (either hard or possible) under any conditions."

Only the faults that are classified as DT or ND are taken in consideration using
this analysis. Just to compare with the theory presented in previous chapters, the
obtained faults include all the path delay faults that are primitive and single in
figure 2.4. It has to be specified that these faults can be tested in combinational
module, but this does not imply that they are functionally testable, because the
ATPG can use all the PPIs to find test patterns. This means that a sequence of
assembly instructions could not exist, since they could not be functionally tested in
the sequential logic. The strategy studied to execute the translation - from patterns
for the combinational logic to functional patterns - will be presented in the next
section.

4.2 Building strategy to create testing program
The solutions proposed to create test program can be partially automated, but not
completely. The long paths are composed by many gates (some paths are composed
by up to 200 gates), indeed - to propagate a transition throw that path - it has to
control lots of input pins using a single functional pattern. In order to set many
pins at the same time, the sequence of assembly instructions to be used is very
specific for each type of fault. This problem generates some others:

• The pure random program results inefficient. Each test pattern for path delay
is composed of two vectors, that are translated in two assembly instructions.
Each instruction usually is composed by opcodes and operands that can be
"immediate" values or saved into register. In order to test long path faults
almost all bits of the compiled instruction are important and specific to test the
fault. If one single bit is set in the wrong way, the fault could not be detected.
The random program should guess all the bits of the two test instructions and
also the operands to load on the registers to detect the fault. The efficiency of
random programs grows up if it is possible to suggest the correct sequence of
instructions to the assembly generator, so that only the operand are chosen in
a random way.

• The assembly program written for other faults model are highly ineffective.
This is not intuitive, since a common thought could be that an assembly
program that is written to test transition delay faults is also able to detect a
good part of path delay faults. However, this is partially true, these types of
programs are able to detect a good part of short/medium path delay faults,
but they are inefficient for long ones. This probably happens because all the
transitions can be propagated through lots different paths, and it is more
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probable that each transitions is detectable by the shortest one. In general
this type of programs can be included in the random type, so their inefficiency
is connected to the consideration explained above.

• The ATPG tool can not merge many faults generating few patterns that detect
lots of faults. The ATPG tool has to use a big number of pins to cover a
single fault, so there is a limited amount of free pins that allow to detect other
faults using the same pattern. This last point is a strength for the strategy
explained below.

All these considerations were not formally proved, but they were verified heuris-
tically on the device under test

The method that is created to solve these problems is summarized in the scheme
in figure 4.2. It is composed by a loop that usually is solved in two or three cycles
obtaining good results. It is subdivided in steps, the first one simply requires
another path classification.

4.2.1 Path classification by module
This phase takes as input the entire path list extracted by the STA and subdivides
it in different path lists. In each path list there are only paths that cross the same
module. This operation simplifies the interpretation of the ATPG patterns. Usually
the ATPG try to test multiple faults using the same pattern. This is useful if the
merged faults cross the same module, otherwise it is difficult to translate a single
pattern using one single couple of assembly instructions.

The classification can be done simply analyzing the file in which is saved the
path list. In this file it is possible to see the hierarchical structure of each gates,
using this information each path can be connected to the module crossed. For each
module - involved in this context - a custom path list is created.

4.2.2 Generate assembly program
This subsection explains how are performed the steps 2a, 2b and 3 of the flow
presented in figure 4.2. As it will be explained, this process has to be repeated
more times to obtain an effective assembly program.

Build a scheme of instructions using logic simulator

The objective of this step (2a) is to select which instructions are the most efficient
to stress the target module. The logic simulator is used at this scope, the waves
relatives to the module under test has to be added to the Graphical User Interface
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Figure 4.2: The systematic method that allows to generate efficient assembly
programs

of the simulator, and they are analyzed to understand which instructions can
control the input pins of the module. These instructions has to be selected and
saved.
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A typical template, which can be used to translate each combinational pattern,
is the following:

• LD instructions: The goal is to set the value in registers that have to be
used in the test instructions. If the analyzed fault belongs to the decode stage,
the ATPG will indicate which values has to be set in which register, instead
if it belongs to other parts of the pipeline it is necessary to save in registers
the operands of the target unit. For example, if the fault cross the execution
unit, the pattern will indicate which transition has to be applied to the ALU
or MULT operands.

• First test instruction to set the transition: it is the real first instruction
that provokes the transition, each pin is set to the value requested by the first
vector of the pattern. It is important to use the registers where the operands
are saved in the correct order.
This instruction can be extracted from the ISA. For example, if the fault cross
the decode stage, the correct one will be indicate directly by the ATPG, in
other cases it has to be derived from other signals, for example the alu opcode.

• Second test instruction to launch and capture the transition: Using
this instruction the transition is generated and the result is captured in
combinational level. This instruction has to be able to write the correct values
on all PPIs relatives to the second vector of the pattern.
All the consideration of the previous point are valid. If the translation is
done in the correct way, the fault has to be detected by the combinational
simulation after this instruction.

• Store instruction to propagate the result: the goal is to propagate the
fault in the memory. A strategy is to save in memory the endpoint of the
path, in order to save a wrong value in case of failure. In this way, the test
can observe the fault. Another strategy is to execute the store only if the
device is working correctly.

The output of this step is the correct scheme of instructions and also a group of
instructions that probably are more suitable to preset, launch and capture the
correct transition.

Generate combinational patterns

This is the step 2b of the flow and can be execute in parallel respect to the previous
step presented. In the first cycle of the flow only the combinational netlist and the
fault list are given to the ATPG, the latter elaborates them and returns a set of
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patterns to detect all faults. Since all faults are potentially detectable using the
filtering operation explained above, the ATPG effort must be set to a value that
is able to find all the necessary patterns. The ATPG effort is a parameter of the
commercial tools, it is used to set how many attempts are allowed to generate a
test patterns. If the ATPG can not find the pattern using the attempts granted,
the fault will be marked as aborted. So, if the ATPG effort is set to high value the
ATPG can detect many faults, but it requires long time.

The output of this step usually is a .STIL file where there are listed all PPIs
involved and the relative patterns. Since patterns generated are generated for the
combinational logic, indeed these patterns have to be translated in functional ones
using an automatic parser.

Parse patterns in assembly instruction

The scope of this section is to translate the combinational patterns generated by the
ATPG into functional patterns. Using the scheme of instruction previous selected,
it is possible to write a parser that do the translation in an automatic way. The
parser should be able to read the stil file and generate an assembly program, the
resulting assembly program must apply the functional patterns to the device.

This step is the critical one in the flow, because it is really difficult to generate a
parser that is able to summarize each transitions needed on all pins into assembly
instructions. In many cases this is not possible. For example the ATPG may ask
some values on a special refister of the processor, that are not always controllable
by means of assembly instruction, or the ATPG could ask to launch a transition
using an illegal instruction and to capture it by a normal instruction. This is not
possible because the processor will generate an exception between the two test
instructions, which does not allow to execute the second instruction that generates
the transition requested.

To translate the patterns using the instruction scheme presented above have
often produced good results. It is used as a starting point, because it helps to obtain
a coverage that is greater than zero by the first simulation, this is necessary to
evolve the process. Indeed, if the DT faults are analyzed it is possible to understand
which input vectors are translated correctly by the parser. To improve the coverage
and the parser efficiency it is possible to follow one of the three ways presented in
figure 4.2 and thorough in the next subsection.

4.2.3 Enhance fault coverage
This subsection explains the steps 5a, 5b and 5c of the flow presented in figure 4.2.
The step 4 is not thorough because it is the combinational fault simulation that is
already presented in 3.4 and it will not be repeated.

34



Methodology to generate assembly code

Three feedback branches of the flow are proposed to increase the coverage. The
easiest one is performed by changing the the operands or the test instructions (step
5a). It can be performed also in a pseudorandom way, which is very easy to be
applied and returns good results in a short time.

Improve parser ability

Creating a good parser is a complex task because the synthesizer assigns alphanu-
meric acronyms to the circuit nets; this creates some problems in the identification
of which assembly instructions are more suitable then others. Moreover, if a PPI
is useless for the purpose of launching the transition, the ATPG tool marked it
with the "N" letter. This situation causes some issues in the automatic generation
of assembly code because if that letters are not translate correctly is possible to
generate illegal instruction and to manage the illegal instruction can create some
problem to capture and to propagate the transition correctly. In general, the parser
optimization is performed trying to expand his ability in order to translate as many
PPIs as possible.

This optimization alone is not able to obtain good result, because if the ATPG
is unconstrained, it will generate patterns that cannot be translated in assembly
instructions.

Adding ATPG Constraints

The ATPG work can be optimized adding constraints, that means to bind the
values of some PPI to a static value. In this way the ATPG will try to find pattern
changing the values of the PPIs unconstrained.

This strategy is also used to produce patterns that can be now translated by the
parser already generated. Observing the waves in the logic simulation it is possible
to see which PPIs can be constrained. The candidates are the pins that are not
controllable by the assembly instructions in a certain template. It is necessary to
pay attention because in this phase some faults can be marked as ATPG untestable,
this implies that the pin constrained are essential to test these faults. If this
problem occurs, the added constraints have to be eliminated, then it is possible to
try to follow one of the other two branches of the feedback flow. This strategy can
be used together to the previous one.

Modifying the netlist

This is a powerful solution, because it allows to bind PPI values one each others
using specific logic gates or module. Moreover if correctly used it can increase the
efficiency of the parser. In order to maintain the high speed of the process, the
gates or the modules added must be combinational.
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This solution is explained using an example that is applied in the patterns generation
of the test that are reported in the next chapter.

The Nandgate library is used for the core synthesis. The flip-flops in this library
have two output signals, Q and QN, thus one is negated with respect to the other.
So each gate shows two pins that results as PPIs of the combinational module, like
is showed in figure 4.3.

Figure 4.3: Normal Flip Flop

This situation creates some problems because the ATPG tool reads only the
combinational netlist, so it does not know that the two PPIs must have opposite
values, it could decide to find solution applying the same values to the two pins.
To solve this problem, the Flip Flop are modified as is presented in figure 4.4. A
not gate is included in the combinational logic and excluded from the register.
This special netlist is used only for the ATPG and parsing operation, instead the
original netlist is analyzed to perform the simulation.

Figure 4.4: Modified Flip Flop
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In this way the ATPG can only act on the Q wire of the register. While the
other pin will be set to the complementary value. Moreover, the parser will have
less bit to manage, which could simplify his work.

Some hints are provided to generalize this solution: if a decode module is written
before each stage of pipeline, the generation of functional patterns will be much
easier since the ATPG will return directly the instructions, so this could speed up
a lot the automatic process and make the parser much more trivial. However the
human effort will just be moved to the decode modules which would be written
by hand. This would mean that a deep knowing of the processor at the RTL level
is requested. For this two reasons this solution is often rejected. In general, good
results can be reached also using hybrid solution, i.e. trying to increase the fault
coverage using two of the strategies presented.

4.2.4 Sequential fault simulation
Every time that a flow cycle terminates the combinational simulation is performed
to evaluate the efficiency of the program written. If the combinational fault coverage
is sufficiently high, the new challenge becomes to find an instruction that allows to
propagate the faults to the memory or to a PO of the system. Usually this is solved
simply writing a store instruction after each pattern that is able to discriminate
a fault-free device from a faulty one. Then the complete sequential simulation is
done using the tool explained in previous chapter. This is the final step of the
method because it is performed to evaluate the assembly programs written. In
general, it gives very good results that are presented in next chapter.

37



Chapter 5

Experimental results

In this section presents the results obtained according to the method explained
in the previous chapter. Moreover, other assembly programs are evaluated to
understand if there are connections between different models of fault, although the
result obtained are corrupt. All steps of the method are presented in this chapter
to show a practical example.

5.1 Testing long Path delay faults

5.1.1 Extracting path using path extractor
The netlist of the riscv core included in the Pulpino Soc has been synthesised using
a 5.0 ns clock constraint. An in-depth search has been performed scanning the
whole slack range, splitting it into sections of variable width, as it is explained
in chapter 4. For each of these sections, a number of paths has been extracted
and analysed using ATPG techniques with reasonable efforts. After the analysis,
according to the classification performed by the ATPG engine, some faults have
been retained (those that have been detected and the aborted ones) while some
others have been discarded (those marked as structurally undetectable and ATPG
untestable).

The first testable path according to the analysis showed a slack of 1.3 ns. In
order to focus only on a relevant path (timing-wise) it has been decided to take
into account just a portion of the slack range evaluated as:

Range_min = 1.3ns

Range_max = Range_min + (clock_period − Range_min) ∗ 0.3
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This has lead to set a Range_max = 2.5ns.
Other paths ranging in the slack set [ 2.51 ns - 5.0 ns ] have been assessed as

not of interest.
Within this range, a total of 10018 faults belonging to both detected and aborted

classes have been found. They are saved in a fault list, that is ordered by crescent
slack and for each path two faults are generated. For each fault the number of
the gates of the path and the number of the pins needed to propagate the correct
transition on the path is counted. A piece of the result data is reported below.

1 NAME OF PATH N_GATES N_PIN
2 ∗∗ d e f a u l t ∗∗_426 99 106
3 ∗∗ d e f a u l t ∗∗_426 99 84
4 ∗∗ d e f a u l t ∗∗_427 98 68
5 ∗∗ d e f a u l t ∗∗_427 98 98
6 ∗∗ d e f a u l t ∗∗_428 98 68
7 ∗∗ d e f a u l t ∗∗_428 98 98
8 ∗∗ d e f a u l t ∗∗_429 98 68
9 ∗∗ d e f a u l t ∗∗_429 98 98

10 ∗∗ d e f a u l t ∗∗_430 99 196
11 ∗∗ d e f a u l t ∗∗_430 99 74
12 ∗∗ d e f a u l t ∗∗_431 99 196
13 ∗∗ d e f a u l t ∗∗_431 99 74
14 ∗∗ d e f a u l t ∗∗_432 98 143
15 ∗∗ d e f a u l t ∗∗_432 98 73
16 ∗∗ d e f a u l t ∗∗_433 98 68
17 ∗∗ d e f a u l t ∗∗_433 98 98
18 ∗∗ d e f a u l t ∗∗_434 98 68

The means of all values are reported in table 5.1.

Number of faults Number of gates per paths Number of pins per paths
10018 88.59 104.95

Table 5.1: Considering Long path faults, the mean values of the number of gates
per path, and the number of pins needed to be set to detect the faults are reported

The path lists extracted are classified depending on the module crossed, as it
was explained in previous chapter.

5.1.2 Classifying paths by module
The faults were originated in different parts of the circuit. The main targeted
modules are:
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1. ex_stage_i_alu_i_int_div_div_i_add_100
(riscv_ex_stage.sv) : 90 faults.
Adder module belonging to the divisor instantiated in the ALU of the core.

2. load_store_unit_i_add_463_aco
(riscv_load_store_unit.sv) : 158 faults
Adder module that evaluates the data memory address in the case of a store
instruction.

3. load_store_unit_i_mult_add_463_aco
load_store_unit_i_add_463_aco
(riscv_load_store_unit.sv) : 922 faults
The additional multiplier is used to compute the operands to be used in the
address calculation in some special cases like pre-post increment addressing
methods.

4. r1589
(riscv_id_stage.sv) : 8848 faults
Adder module used to compute the instruction memory address used to fetch
the instruction that needs to be executed next.

As it is possible to see, the majority of faults belongs to the r1589 module, that it
is also the most complex to be tested.

5.1.3 Generating ASM codes
First group: the divisor

The division and remainder instructions take between 2 and 32 cycles. The number
of cycles depend on the values of the operands [9]. This can be a problem because
the combinational ATPG process cannot be used in a simple way; for this reason,
the scheme of instructions used is the one explained in section 4.2.2. After some load
instructions used to set pseudo-random operands of the division, a first instruction
is written to pre-set the transition. Observing the wave on the logic simulator,
srl and li are chosen as they have complementary ALU opcode respect to remu,
that is the instruction that completes the transition and captures the faults. Remu
is chosen because partial reminders of the division also affects the total reminder
of the division, so if a faults occurs in the first cycle of the division execution,
probably it is propagated through the other cycles. A final store instruction is used
to propagate faults sequentially.

As shown in table 5.2 the first group does not reach 100% fault coverage due to
limitations introduced by the functional behaviour of the netlist. As previously
explained, these faults originated from the ALU opcode bits and cross the divisor
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until reaching the register used to store the partial result during computation.
In order to generate the required transition, it is necessary to produce a couple
of instructions with the following conditions: the second one must be a remu
instruction while the first can be selected among a certain number of instructions.
To test those paths, it is required to sensitize an internal path of the divisor, but
no instruction exists that can access and stimulate the divisor other than div[u]
and rem[u], which in turn cannot generate a transition on the alu opcode.

This group follows the first feedback strategy explained in the previous chapter,
in fact the operands are chosen in a random way. Considering that the faults were
few, the instruction were written by hand; in other cases a cleverer strategy to
choose operands must be developed.

Second group: Adder in Load Store Unit

All the faults belonging to the second group are paths that pass through an adder
used to either compute the address of a store or load instructions. This group of
faults is easy to test, because all the paths start and end in the Load Store Unit
module, that is a combinational module and it can be easily isolated and managed
by the ATPG tool. Moreover, the faults did not propagate because all the end
points of this group are a Primary Output of the Riscv core, and all start points
are directly an operand of the adder. So, the ATPG process is used to understand
which operands have to be used to detect the faults, then two instructions are
used to launch and capture the transitions: add and p.sw. A parser written in
python has been developed to translate automatically the STIL file generated by
the ATPG to the assembly program.
Using this process all faults are detected.

Third group: Multiplier in Load Store Unit

The third group is very similar to the second one, the paths pass through a multiplier
that is used as a MUX, then pass through the same adder of the second group.
The starting point is an operand bit of the multiplier and the end point is a bit
of the memory address. The two instructions chosen to launch and capture the
transition are the p.sw with post increment and a normal p.sw instruction. Using
this couple of instructions it is possible to test all stf faults, while the str are
all classified as ATPG untestable, and for this reason are not considered in this
analysis. Watching the wave in the simulation it is visible that p.sw with post
increment is performed in two clock cycles if the sum of the operands is not a
multiple of four. This constraint could be a problem because it is necessary to
pre-set the value of the transition in one clock cycle only, to control the process
easily. The idea for solving this issue is to modify the load store unit module so
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that only operands where the sum is a multiple of four can be used. This way p.sw
with post increment takes one clock cycle only, and the same strategy used before
can be performed.

1 a s s i gn alu_operand_b_ex0=alu_operand_a_ex [ 0 ] ;
2 a s s i gn alu_operand_b_ex1=alu_operand_a_ex [ 0 ] ^ alu_operand_a_ex [ 1 ] ;

These two lines are added to the verilog file of the load store module: by binding
the least significant bits of operand b to the least significant bits of operand a it is
possible to obtain a sum that is always a multiple of four. Analysing this module
using the ATPG, all faults are detectable, and so a custom parser was developed
in python to translate the STIL file to the assembly program.
All testable faults are detected.

Fourth group strategy: r1589 module

This type of faults are very difficult to be detected, because they cross the adder
used to update the program counter. This adder, named r1589, as to sum a 32-bit
operand with a 12-bit immediate. Initially, it is isolated and an ATPG process
is launched on this module. This operation highlights that to cover all the faults
is necessary to access to a forbidden part of memory. So to test all these types
of fault the user has to handle an invalid memory access exception. Using the
synthesised netlist it is not possible to manage this type of exception, indeed an
illegal instruction can be managed. So, an illegal instruction is injected from the
extern of the core when the Iram Address points to a forbidden part of memory.
In this way the exception triggers an handler function that simply returns to the
normal flow of execution.

An ATPG process is executed on the combinational part of the processor core,
the reading of the stil file is very difficult due to the high number of pins involved
in the patterns generated. A parser that simplifies the process was written, it
simply associates the name of the pin with the value that the pin must have.
Some constraints are imposed to the ATPG in order to write a code that follows
the same scheme for each pattern, as was explained in chapter 4. This type of
solution has to manage lots of operands that are saved in 4/5 registers using load
instructions. The two test instructions are chosen by the ATPG, the first is a lw
and the second a jalr that allow to execute a jump to absolute address, that is one
of the operand previously cited. Then, a store instruction is written to propagate
the fault sequentially, this instruction is not executed if the circuit is faulty, such
that the tester can notice the fault.

The complexity of these faults required that all the branches of the method are
exploited. An example of a group of instructions written by the automatic parser
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is presented below. All these instructions can reproduce only one combinational
pattern.

1 asm ( " l i x10 , 0 x0 " ) ;
2 asm ( " l i x14 , 0 x0 " ) ;
3 asm ( " l i x15 , 0 x80000002 " ) ;
4 asm ( " l i x5 , 0 xe1aa9355 " ) ;
5 asm ( " l i x6 , 0 xe1aa9355 " ) ;
6 asm ( " add x7 , x5 , x6 " ) ;
7 asm ( " . word 0xc0003 " ) ;
8 asm ( " . word 0 x f f e78267 " ) ;
9 asm ( " sw x15 , 3 2 ( sp ) " ) ;

From eight to twelve instructions are needed for each patterns, furthermore the
ATPG process write 3600 different patterns to test all the faults concerning this
module, so the assembly code - written using this method - is composed by several
lines. Using this strategy, 8858 faults are detected and the remaining 30 faults are
ATPG untestable. So the 100% of fault coverage was reached in the simulation on
combinational module and thanks to the store instruction they are also functionally
detected.

5.1.4 Results and considerations
The approach in general was the same explained in the chapter 4, but it can not
be automatically run. It is human time consuming, because lots of time is used
to study the waves on the logic simulator, but the efficiency is high. This method
generates a set of ASM codes whose characteristics are reported in Table 5.2.

Program Name Fault group # instructions Detected Undetected Total number
of faults

div.S 1 161 50% 50% 90
load_store_unit.S 2 943 100% 0% 158
load_store_unit_mul.S 3 4783 100% 0% 922
main.c + buono_load_tot.c 4 39718 100% 0% 8848

Table 5.2: Test programs and their characteristics

The table shows that the coverage is good for each module. The total coverage
obtained is 99,5 %, and the faults undetected are probably functionally untestable
as was explained in previous section, but there are some problems that need to
be explained. Each section needs a high number of lines of codes requiring a big
memory to store the test programs. This problem is intrinsic in the fault model, i.e.
the high number of input pins used for test only a fault does not allow to generate
a single pattern that can detect more than six faults at the same time, in some
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cases one pattern can also test one fault. So, the ATPG returns a big number of
patterns that has to be translated into ASM instructions.

However, the first three groups can be improved, since the two test instructions
does not change and the registers where the operands and the result are saved are
also fixed. Thanks to these considerations, it is possible to generate a new efficient
pattern just changing the operand saved in the registers, creating a program that
execute these steps:

1. launch and capture the transition by the two test instructions explained before.

2. propagate the faults through the sequential logic.

3. do some operations on operands to change them in a smart way.

4. repeat from the first point.

The code written using this strategy probably could be very short, but the faults
coverage will be reduced and the execution time will increase. A compromise has
to be reached between fault coverage, code size and execution time.
The fourth group is hard to optimize. The two tests instructions are various, indeed
the patterns returned by the ATPG set the operands, the opcode and also the
registers where are stored the operands. So, it is difficult to implement a loop
program as in previous cases. As it is possible to see in the table 5.2 the fourth
group takes up almost 90% of the lines of the total code, so the optimization
explained before are useless in this study.
After these considerations, the fault coverage of these assembly codes is compared
with the results obtained simulating other programs, this study allows to understand
if there are connection between programs written due to test other model of fault,
furthermore it demonstrates that the method is efficient to test long path faults.

5.1.5 Comparison with other model of faults
Six different programs are considered to compare results obtained with different
faults model:

1. Program 1 takes 64502 clock cycles and can be classified as a medium-sized
test program. Each functionality of the core is tested using series of different
macros. Watching the code it is possible to see that the alu, load and store
unit, multiplier are all tested using different macros that are also used to test
branches, compressed instructions and register file. The structure of each
macros is similar, each one is composed by a sequence of normal instruction
followed by some store instructions. There is one specific macro a little bit
different from the others, it is used to test illegal instructions and the relative
handler.
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2. Program 2 is a shorter than previous one, it takes 36500 clock cycles.
It offers a test for principal units and it is characterized by two arithmetic
instructions followed by a store of the result. The operands are principally
written in a random way, therefore there are some operands that are built in a
specific ways, for example some operand are written to generates checkerboard
patterns. The random parts is built by a big loop that changes only the
operands and maintains the same instruction sequence. Moreover also register
file, csr and hardware loops are tested respectively by march algorithms and
custom algorithms.

3. Program 3 is composed by 42970 clock cycles. For each target modules a
different file is written, the alu, multiplier, crs, branch and register file are all
included in this program. In general to test alu and multiplier some operands
are loaded on registers and a group of operations are executed, followed by
some store instruction. This sequence is repeated in small loop, but in general
there is a small variety of instructions: they are part of a small group of the
entire ISA. The other target modules are tested in a very similar way respect
to what viewed in previous program.

4. Program 4 is the longest one, indeed it lasts for 181,370 clock cycles.
The instructions sequence is very similar to the program 2, indeed it is
composed by a couple of operations followed by a store instruction that save
the result in the memory. Differently of other programs at the beginning
of each procedures the register file is reset with some xor operations. This
program stress the core using also vector operations and hardware interrupts.

5. Program 5 is the shortest one, it takes only 17,269 clock cycles to be executed.
It is similar to all the programs already discussed, but it is composed using
a fixed instructions structure: are used two loads to save some operands in
registers that are elaborated by an instruction that is chosen to stress a specific
functionalities and finally a store instruction.

6. Program 6 is written in order to obtain an high coverage in transition delay
faults. The alu is tested parsing the patterns provided thanks to a decoder
that forces the ATPG to find only functional patterns, that are translated by
a parser. For testing the other part of the execution unit was written a script
that can generate two random instructions preceded by load instructions to
load the operands and store to store the results. The script also control if the
group of instructions is helpful in improve coverage otherwise they are rejected.
Also the register file is tested generating strategic transitions in decoders and
encoders connected to it. Internally of the code there are some branches and
hardware loops to test also the fetch and decode stage of the pipeline
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Each program is simulated using three fault models explained in the previous
chapters: stuck-at, transition delay and delay path. The faults of the whole CPU
are included in the fault list to simulate the coverage of the first two models, indeed
the fault list of the path model includes all the long paths explained in previous
sections. In table 5.3 are reported the fault coverage obtained using the simulation
of the 6 programs presented before. Also the result of the totality of the top five
programs is computed because they all are written for the stuck-at model. To
complete the comparison the delay path program presented above is simulated
using all the fault lists.

Program # clock cycles SAF
coverage

TDF
coverage

PDF comb.
coverage

PDF seq.
coverage

SAF program 1 64,502 86.73% 65.01% 0.33% 0.32%
SAF program 2 36,394 81.79% 44.64% 0.27% 0.27%
SAF program 3 42,970 80.43% 61.44% 0.27% 0.22%
SAF program 4 118,098 82.97% 63.83% 0.4% 0.32%
SAF program 5 17,269 81.37% 63.52% 0.09% 0.08%
SAF total 279,233 90.91% 83.98% 0.52% 0.4%
TDF program 6 23,451 80.5% 74.25% 0.27% 0.23%
PDF program 45,605 38.5% 14% 99.5% 99.5%

Table 5.3: Fault coverage of different programs using different fault list and
models: stuck-at, transition delay and long path delay faults

Data are collected in a XY graph to understand if there is a relationship between
the different fault coverage obtained, as is presented in figure 5.1, but the number
of test is not sufficient to draw conclusion. In general seems that there isn’t
relationship between data, they seem not strictly correlated.

Figure 5.1: XY graph to search relationship between coverage obtained using
different fault model

As it is possible to see the coverage obtained is very low considering the path
delay model. A data that amazes is the one related to the sixth program. It was
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expected the best one in path delay coverage respect to the top five programs. The
motivation that hypothetically justifies the bad result is that the program 6 is
written for the whole cpu, indeed the long paths cross only some modules. For the
same reason the program written for the delay path obtains bad result in transition
delay model. To study a better correlation and to confirm this hypothesis the load
store adder module is isolated, such that the workflow is repeated to confirm the
hypothesis only in a small part of the processor. The results of this experiment are
presented in table 5.4.

Program Transition delay
coverage

Path Delay
sequential coverage

SAF program 1 100% 1.01%
SAF program 2 99.75% 0.4%
SAF program 3 98.61% 0.4%
SAF program 4 100% 1.01%
SAF program 5 100% 0.9%
SAF total 100% 1.2%
TDF program 6 100% 0%
PDF program 94.2% 100%

Table 5.4: Fault simulation on Load store adder module

In general, this study confirms that if a certain program is good for transition
delay testing, it should not test long path delay faults. On the contrary, a program
designed for test long path delay faults through a certain module, it is able also
to test transition delay faults. To conclude this section, since there is not a clear
correlation between the different model of faults, it is useless to try to obtain high
coverage adapting the technique used for SAF and TDF models also for long path
delay faults. Probably this approach can be used for short path as explained in
the next section.

5.2 Difference in short Path delay faults
Using the same approach explained in previous chapter, a number of short paths
is extracted. A fault list of 10274 path delay is generated, this number is chosen
because very similar to the long path fault list, in order to make the two study
comparable. An interesting data is the interval of slack obtained in the two cases:
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• Long path interval of extraction: [1.3 ns - 2.5 ns]

• Short path interval of extraction: [4.8 ns - 4.97 ns]
It is interesting to see that a very small part of faults is rejected extracting

topological short path, because the majority are marked as testable by the ATPG
process. Two faults are extracted For each path generating a fault list that is
ordered by decrescent slack. Moreover, the ATPG is used to count how many pins
are needed to detect each fault, a small part of the list is reported below to show
an example.

1 NAME OF PATH N_GATES N_PIN
2 ∗∗ d e f a u l t ∗∗_217 2 10
3 ∗∗ d e f a u l t ∗∗_218 2 20
4 ∗∗ d e f a u l t ∗∗_218 2 19
5 ∗∗ d e f a u l t ∗∗_219 2 20
6 ∗∗ d e f a u l t ∗∗_219 2 19
7 ∗∗ d e f a u l t ∗∗_220 2 19
8 ∗∗ d e f a u l t ∗∗_220 2 20
9 ∗∗ d e f a u l t ∗∗_221 2 6

10 ∗∗ d e f a u l t ∗∗_221 2 5
11 ∗∗ d e f a u l t ∗∗_222 2 6
12 ∗∗ d e f a u l t ∗∗_222 2 5
13 ∗∗ d e f a u l t ∗∗_223 2 7
14 ∗∗ d e f a u l t ∗∗_223 2 7
15 ∗∗ d e f a u l t ∗∗_224 2 8
16 ∗∗ d e f a u l t ∗∗_224 2 7
17 ∗∗ d e f a u l t ∗∗_225 2 20
18 ∗∗ d e f a u l t ∗∗_225 2 10
19 ∗∗ d e f a u l t ∗∗_226 2 20

The table 5.5 summarizes all data of short paths to compare the result respect
to long ones. Obviously there are few gates for each fault in short paths respect
to the long ones, moreover there are few pins that need to be set for the fault
detection in short path respect to long one.

Path Type Faults number Gates number per paths Pins number per paths
Long 10018 88.59 104.95
Short 10274 2.99 6.74

Table 5.5: Considering short and long path faults, the mean values of the gates
number per path and the pins number needed to be set to detect the faults are
reported

The path classification for this type of faults is not performed, because the paths
are so short to cross a module.
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Moreover all the programs - written for the other model of faults - are tested
obtaining the fault coverage presented in 5.6

Program # clock cycles SAF
coverage

TDF
coverage

PDF comb.
coverage

PDF seq.
coverage

SAF program 1 64,502 86.73% 65.01% 71.98% 50.1%
SAF program 2 36,394 81.79% 44.64% 73.76% 58%
SAF program 3 42,970 80.43% 61.44% 74.78% 55.7%
SAF program 4 118,098 82.97% 63.83% 76.51% 67.6%
SAF program 5 17,269 81.37% 63.52% 73.16% 51.25%
SAF total 279,233 90.91% 83.98% 82.75% 74.5%
TDF program 6 23,451 80.5% 74.25% 73.6% 56.7%

Table 5.6: Fault coverage of different programs using different fault lists and
models: stuck-at, transition delay and short path delay faults

As it is possible to see, the fault coverage are higher than the ones computed for
the long paths, each program is able to detect a reasonable part of the fault list.
So, the programs - written in order to detect fault for stuck-at and transition delay
model - reach also good coverage testing short path delay faults. As in previous case,
the data are not sufficient to understand if there is correlation between different
fault model. These results are represented in figure 5.2.

Figure 5.2: XY graph to search relationship between coverage obtained using
different fault model

The short path faults extracted present some difficult to generate systematic
test. These paths are so short that they does not pass in any module and they are
scattered in all the processor, so they can not be classified as long paths. Moreover,
each fault can be tested controlling a little number of PPIs. This means that the
ATPG process can merge lots of faults under the same pattern, complicating the
parsing process. For example, the ATPG tool can merge lots of faults that are in
decode stage with others in execution stages generating one single pattern. This
situation is difficult to be handled, because it implies to create a parser that can
manage different patterns at the same time. Probably this can be solved launching
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an ATPG process for each endpoint, parse the patterns generating a sequence of
assembly instructions and then try to merge the assembly instruction.

An other difference between long and short paths is the simulation time. The
combinational simulation of long path faults takes long time, instead the sequential
simulation is relatively fast using the solution proposed in chapter 3. To explain
better this concept, a no drop simulation is launched, so, all the functional patterns
- that can detected a certain fault - are saved using tetramax, then for each temporal
interval between patterns a bit flip is injected on the end point of the path under
test to verify if the propagation to the PO happened correctly. If the fault is
propagated to a PO by the program then the fault is marked as sequential detected
and dropped for the next simulations and injections. Considering long path, each
combinational simulation takes lots of time, but the number of simulations and
injections are few, so the sequential simulation results relatively fast. In short
path simulation the number of patterns that can detect each fault explodes. This
situation implies that the tool has to manage a big number of fast simulations
and injection. Moreover, there are some faults that can not be propagated to a
PO, so they generate thousands of simulations and injections without ever being
dropped. It is a big problem because the time of total sequential simulation
increases a lot. This is solved by a new parameter that control the max number
of combinational detection of each faults. When the tool has detected that faults
for the maximum number of times it is automatically dropped. Changing that
parameter, the simulation can be speed up, but the coverage obtained using this
strategy are an approximation of the complete simulation. A practical example is
presented in table 5.7.

Program 1 - fault drop limit Simulation time Sequential fault coverage
No limit 160 hours 50.44%
50 25 hours 50.13%

Table 5.7: Table useful to understand how the simulation time changes respect
to the fault drop limit. It reports also the approximation in fault coverage.

This example shows that imposing the maximum number of a combinational
detection per single fault to 50, the simulation time decreases by six times, instead
the sequential fault coverage remains the same. In conclusion, this parameter is
useless to test Long Path delay faults due to their low combinational detection,
instead it is very useful in short path delay testing because speed up remarkably
the total simulation time.
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Chapter 6

Conclusion and future
improvements

The goal of this thesis is to create a systematic method for the generation of
assembly programs used for the in field test of the path delay model. The focus has
shifted only on the long path delay because, as analysed in the literature review, it
is clear that the number of faults grows up exponentially with the increase of the
number of gates, making it impossible to analyse all the extractable faults. Long
path faults are the most important as they often violate the setup time on the flip
flop of the processor pipeline creating failures in the entire system. The results
obtained are satisfactory, since the method created is able to obtain a coverage
very close to 100%, whereas the programs written for others model of faults are
inefficient.

It is important to highlight the experiment done on the load store unit because
it helps appreciate that a program that obtains good coverage testing faults on the
path delay model, will also obtain good results in the transition delay model. If it
is possible to detect a long path in a module using an assembly program, then that
program seems to be valid also for the transition and stuckat model. Probably this
observation cannot be extended to every type of circuit, but there is a possibility
that it is valid for all devices with a schematic structure, as adder and multiplier.
This study is not part of the scope of this thesis; however, future testing should be
made to confirm this possibility. In this case it can be seen that the contrary is
true: a program able to reach high coverage using stuck-at and transition model is
not able to detect long path delay.

This approach can be defined as systematic because it deeply exploits the
ATPG to generate the assembly program. The translation from combinational to
functional patterns is the main obstacle of this project but it is also its warhorse.
Three methods are proposed to increase the fault coverage, in such a way that it
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becomes more and more efficient. Writing a good parser requires a large amount of
time because the test designer must have a good knowledge of the functionalities
and modules of the device. This information is not always available, however, there
are good user guides for RI5CY core that facilitate this work. The method is
written to be generic and so in theory should be suitable for any sequential circuit.
However, the application of this method has been only tested on this processor.
Further research should also consider applying this method to other cores to extend
its validity.

The systematic method adopts a precise flow but many tactical plans have been
produced by hand, looking at the modelsim simulations. The ideal result would be
to change it from a systematic to an automated method. The initial idea was to
allow an evolutionary program the possibility to generate instructions, therefore
launching the fault simulations, checking the results and consequently evolving
and increasing its coverage. This approach was immediately discarded because
each fault simulation required several minutes, this meant that the algorithm
would not converge in an appropriate interval. Moreover there was the problem
that a randomly generated program is not very efficient and for this reason the
evolutionary program would struggle to work. The patterns generation processes on
combinatory modules by means of ATPG are faster. But, by changing perspective,
it might be possible to create an evolutionary program able to generate assembly
instructions and constraints on the pseudo primary inputs for the ATPG. This
should base its evolution on the comparison between the patterns obtained by the
logical simulations of the instructions and the patterns coming from the ATPG.
When it finds some similarities it can push to make the patterns converge by
modifying both constraints and assembly instructions.

Another critical point in this method comes from the assembly programs it
generates. These have too many instructions to allow an in-field test, because they
fill all the space in the Instruction Memory. Unfortunately, it is close to impossible
to think of a solution to reduce the lines of code because the problem is partially
intrinsic in the fault model. In fact, long paths require very specific patterns for
them to be detected, this implicates that it is hard to find patterns able to detect
multiple faults at time. Sometimes only the instruction operands must change
along the program, instead the two test instructions are fixed, this situation allows
to write cyclic program that are probably able to obtain coverage very similar
to that achieved, saving up some lines of code. In other cases the specificity of
patterns - concerning the operands, the registers where to save the operands or
even the opcode of the instructions - nullifies the alternative to run cycles. In case
a software solution cannot be found, it is possible to create a tester with a bigger
memory.

It was tried to extend this method by also applying it to the study of the
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short path delay, but this requires the implementation of some modifications as
previously shown. This is not strictly necessary because - unlike for long paths -
the programs written for other faults model are suitable also for the short paths.
In fact, satisfactory results have been achieved for short paths by simply simulating
programs written either for the transition or stuck-at model (which is equal to
use random programs). As already stated, it is possible to make a classification
for endpoints, this extends the capability of the method used in this project even
for the short path. Moreover, it may be possible to assign the task of writing the
assembly code to an evolutionary program, since the combinational simulation for
short path is faster.

Beyond of all the problems that were generated from this work with their relative
solutions, the goal is considered to be achieved, since a method able to detect faults
with a good efficiency in a systematic way has been found.
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