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Summary

Deep learning has witnessed a huge amount of attention over the last decade.It has
been widely used in the field of medical images, especialy the deep neural networks
for classification, detection and segmentation task. However, when compared with
natural images, medical images are very difficult to label. In most cases, medical
image datasets are not as large as natural image datasets.To address this problem,
the traditional approach is through the use of transfer learning methods, by using
ImageNet pre-trained models. But medical images are often very different from
natural images, in particular, medical images have different intensities, and the
images contain internal structures of the human body that are completely absent
from the natural image data set.

In the field of computer vision, the ImageNet is widely used for pre-training
because it is large enough (more than 14 million tagged images) that 1.2 million
images divided into 1,000 categories are useful for training a general purpose model.
We prefer to pre-train some general-purpose models, like ImageNet, specifically
for downstream medical image processing, so that helps with downstream model
training.

In this thesis, for 21 datasets, we mixed images from different modalities (CT,
X-RAY, MRI) and used a self-supervised learning method during the pre-training
process, applying the pre-trained weights to downstream medical image datasets for
classification task. In this thesis, we transfered this pre-trained weights on LUNA16
dataset and MURA dataset, for the LUNA16 dataset, we perform a false positive
reduction task on the patch level and an image classification task on the image
level for the MRUA dataset. The model is trained with Resnet50 and VGG16
backbone respectively.

This thesis trained three different models, training from scratch, transfer learning
by using self-supervised pre-trained weights, transfer learning by using ImageNet
weights, and analyzing the differences between the three models by comparing the
AUC (Area Under the Curve). We conclude that when using the VGG16 backbone
for the image level classification task on MURA dataset, the AUC of transfer
learning using our pre-trained model can get a similar result as transfer learning
by using ImageNet. In the other three experiments, the AUC was also higher than
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that of the training from scratch through transfer learning of the pre-trained model.
Pre-training using a self-supervised learning approach can improve the accuracy of
downstream model classification tasks.
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Chapter 1

Introduction

In recent years, machine learning and deep learning have been used with great
success in medical imaging. Researchers have used deep learning methods in tasks
such as medical image segmentation, detection, and classification with fairly good
results. Despite the tremendous advantages of using these methods, there are some
drawbacks that need to be addressed. Medical images are difficult to obtain image
labeling information, which requires doctors and radiology staff to label the images.
In addition, there are so many complicated disease categories, with sub-categories
within the larger categories, it is easy to have an imbalance in labeling.

In the past, there were different approaches to deal with this problem, such as
transfer learning, semi-supervised and self-supervised learning, which have also
achieved good results. The use of pre-trained models on ImageNet is one of the
most used, but for medical images, their imaging principles are completely different
from those of natural images, medical images have different intensities, and the
images contain internal structures of the human body that are completely absent
from the natural image data set. Therefore, the effect of transfer learning from
natural images to medical images is not as pronounced as that of transfer learning
between natural images. To address this problem Zhongwei Zhou et al[1]. propose
"Model Genesis", which is a new approach, self-supervised learning to solve the
problem of the lack of a large number of labeling information in medical images, in
their paper, they made some changes on the original image, and then let the model
to restore the original image. In this way, the original image itself becomes a label
for supervised model training, consistent with the original intent of self-supervised
learninglearning features directly from the data.

However,the approach they used was to train on 3D images and to train separate
models for each of the different modalities (CT,X-RAY), the idea in this thesis is
whether the Genesis model can be better realized if all modalities (CT, X-RAY,
MRI) of medical images are mixed together for training? Also the models were
trained in 2D, Maimone Giovanni have also added more pre-text tasks to make the
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Introduction

model more generic.
We pre-trained 21 datasets containing different diseases, different body parts,

and different modalities, and transfer the pre-trained weights to the downstream
LUNA16 dataset and the MURA dataset for classification tasks.l.The experimental
results show that using our pre-trained model for transfer learning yields better
results than a model trained from scratch and the state of the art ImageNet
transfer(MURA using VGG16).

1.1 Thesis structure
1. Chapter 1 : An introduction to the thesis

2. Chapter 2 : Background and Related works,The rest of the document is
structured as follows: a detailed description of the theoretical knowledge of
the techniques used in this thesis, as well as the previous research in the field.

3. Chapter 3 : Materials and methods. In this chapter we provide a detailed
description of the datasets used in the thesis, as well as the preprocessing and
sampling strategies for the datasets, and introduce the two strategies used in
the paper[2]: batch normalization and instance normalization

4. Chapter 4 : Materials and method.In this section, I describe in detail the
pre-training model and the specific implementation of transfer learning on the
LUNA16 dataset.

5. Chapter 5 : Conclusions and future works

2



Chapter 2

Background and Related
works

2.1 Background
Nowadays, deep learning has made great achievements in the field of computer
vision.The use of deep learning(DL) has been increasing rapidly in the medical
imaging field, including computer-aided diagnosis (CAD), radiomics, and medical
image analysis.The following sections will describe in detail the main techniques
used in this thesis.

2.1.1 An introduction to deep learning
Deep learning(DL), a branch of machine learning, is an algorithm that attempts to
perform high-level abstractions of data using multiple layers that contain complex
structures or consist of multiple nonlinear transformations. Deep learning is a
machine learning algorithm based on learning the representation of data, there
are several deep learning frameworks, such as convolutional neural networks and
recurrent neural networks have been used in computer vision, speech recognition,
natural language processing, audio recognition and bioinformatics and other fields
and obtained excellent results.

In this thesis, we primarily use convolutional neural networks as a deep learning
framework.

2.1.1.1 Convolutional neural network(CNN)

Before the advent of convolutional neural networks, image processing was a problem
for Artificial Intelligence for two reasons: 1) the amount of data to be processed
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was too large, resulting in high cost and low efficiency. 2) the problems of computer
version before CNNs were more related to the difficulties in engineering good and
generalizable features that digitization.

The first problem CNNs solve is "simplifying complex problems" by downscaling
a large number of parameters to a small number of parameters and then processing
them. What’s more: in most of our scenarios, dimensionality reduction doesn’t
affect the result. For example, if a 1000-pixel image is reduced to 200 pixels, it
doesn’t affect whether the naked eye recognizes a cat or a dog in the image, and
neither does the machine!

Deep learning is largely inspired by human perception of images. For different
objects, human vision performs cognition by grading layer by layer.

Figure 2.1: Features learned from training on different object classes

At the lowest level features are essentially similar, i.e., various edges, and the
higher you go, the more you can extract some features of such objects (wheels, eyes,
torso, etc.), and at the top level, the different high-level features are eventually
combined into corresponding images that allow humans to accurately distinguish
between different objects.

2.1.1.2 Convolutional layer

The convolution layer is responsible for extracting local features from the image.
The image features are extracted by setting and moving the convolution kernel to
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generate new pixel value, as shown in Figures 2.2. Center element of the kernel is
placed over the source pixel.The source pixel is then replaced with a weighted sum
of itself and nearby pixel.

Figure 2.2: Convolutional layer [3]

2.1.1.3 Pooling layer

The pooling layer can reduce the dimensionality of the data more effectively than
the convolutional layer, which not only reduces the computational effort, but also
avoids overfitting. Figure 2.3 depicts how the pooling layer works.

5
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Figure 2.3: Pooling layer

2.1.1.4 Fully-connected layer

The data processed by the convolutional and pooling layers is fed into the full
connection layer to get the final result. After the convolutional and pooling layer
downsampled data, the full connection layer can "run", otherwise the amount of
data is too large, computationally costly and inefficient. Figure 2.4 depicts how
the fully-connected layer works

6
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Figure 2.4: full connected layer[3]

A typical CNN is not just a 3-layers structure as mentioned above, but a
multi-layers structure, such as LeNet-5, as shown in the Figure 2.5. Convolutional
layer->Pooling layer->Convolutional layer->Pooling layer->Convolutional layer-
>Full connected layer

Figure 2.5: typical CNN structure[4]

2.1.2 Deep learning basic algorithms
In this section, this thesis focus on three common algorithms for deep learning,
and in this thesis mainly focus on the self-supervised method.

1. supervised learning: Supervised learning is a type of machine learning
task. It derives predictive functions from labeled training data. Labeled training
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data means that each training instance includes inputs and desired outputs. In
conclusion: given the data, the prediction labels.

2.unsupervised learning: Unsupervised learning is a type of machine learning
task. It infers conclusions from unlabeled training data. The best example of
unsupervised learning is cluster analysis, which can be used in the exploratory data
analysis phase to discover hidden patterns or to group data. In conclusion: given
the data, look for hidden structures.

3.self-supervised learning: Self-supervised learning is a subset of unsuper-
vised learning methods. Self-supervised learning refers to the learning method in
which ConvNets is explicitly trained with “pseudo” labels,this is called pre-text
task, where features can be transferred to several different computer vision tasks.
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Figure 2.6: The general pipeline of self-supervised learning[5]

As it shows on Figure 2.6, the feature is learned through the pre-defined "pretext
task", and after finish the pre-text task training, there will be downstream supervised
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learning training through a knowledge transfer learning.

Figure 2.7: Categories of pretext tasks for self-supervised feature learning[5]

According to the data attributes used to design pretext tasks, as shown in
Fig. 2.7, we summarize the pretext tasks into four categories: generation-based,
context-based, free semantic label-based, and cross modal-based[5].

2.1.3 Transfer learning
The two features that are important for a deep learning model to be very effective
are data and structure. Structural optimizations can be adjusted by studying the
characteristics of backbone and neck with a lower threshold, but the threshold and
cost of augmenting the model from a data perspective is much higher. In order to
obtain a model that is generalizable and accurate, a large amount of labeled data
is often required, but what can be done when it is not available in a short period
of time? This is the time to use the idea of transfer learning.

One of the common uses of transfer learning is to take a pre-trained image
classification model and transform it into a target detection model or a key point
regression model. The reason for this is that the image classification model can
be trained with the image classification dataset, and it is easier to obtain a large
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number of image classification datasets, such as the Imagenet, while the number of
images in the target detection dataset is much smaller and the number of samples in
the key point regression dataset is even smaller, so if the image classification model
is trained directly with these small number of images without transfer learning,
the effect will not reach the desired accuracy and may cause overfitting.

We want the network to find the right weights for multiple iterations of forward
and backward propagation by using pre-trained models that have been previously
trained on large datasets, we can apply them directly to the problem we are facing,
using the appropriate structure and weights. This is called "transfer learning", i.e.
"transfer" the pre-trained models to the specific problem we are solving.

In transfer learning, these pre-trained weights also show good generalization
performance for images outside the dataset.Since the pre-trained model is already
well trained, we do not modify the weights too much in a short period of time, and
when it is used in transfer learning, we often just fine tune it. Usually we adopt a
lower learning rate than the normal training model.

2.1.3.1 Feature extraction

Using pre-trained models as feature extractors. This is done by removing the
output layer and then treating the entire remaining network as a fixed feature
extractor so that it can be applied to a new data set.

2.1.3.2 Structure using a pre-trained model

Use the structure of a pre-trained model, but first randomize all the weights and
then train based on our own dataset.

2.1.3.3 Train specific layers and freeze other layers

Another way to use a pre-trained model is to partially train it. This is done by
keeping the weights of some of the layers at the beginning of the model unchanged
and retraining the layers that follow to get new weights. In this process, we can
try several times to find the best match between frozen layers and retrained layers
based on the results.
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Figure 2.8: Use of transfer learning in different conditions

Figure 2.8 shows four different conditions when use transfer learning according
to the size of the dataset and the data similarity.

Scenario 1: Small dataset, high data similarity (compared to training
data from pre-trained model): In this case, usually don’t need to retrain the
model because the data is very similar to the training data of the pre-trained
model, just need to change the output layer to match the structure of the problem
situation and use the pre-trained model as a feature extractor.

Scenario 2: Small data set, low data similarity: In this case, the usual
approach is to freeze the front k-layer, train the output layer, and modify the
output layer according to the task.

Scenario 3: Large data sets, low data similarity: In this case, since there
are a large dataset, the training process of the neural network will be more efficient.
However, because there is a big difference between the real data and the training
data from the pre-trained model, using the pre-trained model will not be an efficient
way.

Therefore, the best way is to initialize all the weights in the pre-trained model
and start the training process from scratch.
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Scenario 4: Large data sets, high data similarity: This is the ideal
situation where it becomes very efficient to use a pre-trained model. The best way
to use it is to keep the original structure and initial weights of the model unchanged
and then retrain it on a new data set.

2.2 Related works
Many researchers have made great breakthroughs in computer vision through deep
learning techniques

The first issue is feature selection, which is the basic process of acquiring
and extracting features used to represent the original data. How to learn the
representation of unlabeled data becomes a major consideration. There are many
methods to solve this problem.

In [6], Chuen-Kai Shie et al. use Convolutional Neural Network (CNN) to perform
transfer representation learning, first learning irrelevant images by unsupervised
method, and then modeling relevant data with the learned feature, and finally
obtaining 89.63% accuracy. This work shows that transfer presentation learning
can solve two challenges of medical image analysis - the lack of labeled data and
the lack of domain knowledge. It should be noted that if there are a small number
of labeled data in the process of transfer learning, the best performance can be
achieved by fine-tuning the whole network with these data [7].From this paper, we
know that taking a transfer learning approach can effectively improve the accuracy
of the model.

In [8], M. Chen et al. introduce a method firstly utilizes the original image
patch to learn unsupervised features and utilizes a small amount of labeled data to
fine-tuning. In his paper, Since the image lacks labels, the traditional supervised
learning method is not suitable for this situation, so the authors propose to use
the auto-encoder method. In addition, the author’s training at the patch level also
gave us a lot of inspiration for future training.Compared with other data driven
methods, the advantages of this method are verified by comprehensive experiments.
Moreover, it demonstrates that system performance and feasibility can be affected
by data quality because the role of the expert is ignored. Therefore, he concluded
that he would combine domain knowledge and data-driven feature learning in his
future work.

In [9], Takayasu Moriyaa et al. introduce another method, the main approach
consists of two phases. In the first stage, joint unsupervised learning [5] (JULE)
is used to learn the deep feature representation of the training patch from the
target image. Then, joint unsupervised learning is used to cluster alternately the
representation generated by CNN, and cluster labels are used as supervised signals
to update CNN parameters. Their main contribution is the combination of JULE

13



Background and Related works

and k-means for medical image segmentation. The label is generated with k-means,
and then the labels and patches are combined for parameters update.

Another way to solve the problem of unlabeled data is self-supervised learning,
which the author mainly used in this paper. This is a discriminative approach. The
main principle is to have the data automatically generate labels. How to let the
data generate its own labels? To learn visual features in unlabeled data, a popular
solution is to propose various pretext tasks to be solved for the network and learn
features by learning these pretext tasks. Some different pretext tasks have been
proposed including colorizing grayscale image inpainting [10], image colorization
[11], image jigsaw puzzle[12] etc.

Self-supervised learning has also been well explored in many areas, in [13], Mehdi
Noroozi et al. hope to conduct self-supervised learning through the information of
spatial equal variance, that is, the feature summation obtained after a picture is
divided into several parts should be equal to the direct feature summation of the
whole picture. In practice, if there are no other constraints, such learning method
will surely lead to a trivial solution, that is, all outputs are 0. In order to avoid
such problems, the author also added another negative sample into the objective
function as a constraint, that is, the feature summation of these parts is required
to be as different as possible from the feature representation of an unrelated image
of any sample.

self-supervised learning has also been explored in medical imaging domain,
in [14],this paper applies a self-supervised learning approach to cardiac image
segmentation by predicting anatomical locations.The anatomical position serves
as a supervisory signal and does not require additional manual annotation. Most
previous studies on cardiac MR image segmentation consider the short axis and
long axis images separately, ignoring the relative directions of different images.
However, in this paper, the author proposed that using the relative directions
of short-axis view and long-axis view as well as the anatomical position defined
by the view plane, a pretext task could be developed to train the network in a
self-supervised way and improve the data efficiency.In addition, the author used
three different transfer learning methods and obtained good performance through
comparison.

in [1] Zhongwei Zhou et al.by setting up a mechanism for self-supervised learning,
which can generalize well to multiple tasks. They concluded that self-supervised
learning is not about data collection and professional labeling, but about designing
an effective self-learning mechanism. The proposed approach to self-supervised
learning boils down to making some changes to the original images, and then
letting the model restore the original images. In this way, the original image itself
becomes a label for supervised model training, in line with the original intent of
self-supervised learning, learning features directly from the data. They set up four
pretext tasks for self-supervised learning: non-linear transformation,local-shuffling,
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in painting,out painting.These four different image transformations can be easily
combined to give a given image the ability to undergo one or more transformations
at the same time. Eventually they are all absorbed into one "image recovery" task,
giving the model the ability to learn visual features.

We decided to use ’model gensis’ as the starting point for our thesis because
we found that model genesis yielded results that were ahead of all other methods
of self-supervised learning approach. Moreover, in this paper, the authors train
a separate model for each modality, so we hypothesize that we can train all the
modalities together to achieve real ’model genesis’.
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Chapter 3

Materials and methods

In this chapter, we will provide a detailed description of the dataset used in this
thesis, including an introduction to the dataset, dataset preprocessing, dataset
splitting, and image sampling strategies.

3.1 Materials
3.1.1 The introduction of datasets
The data comes from 21 different datasets containing four different modalities:

1. Radiography (X-ray)

2. Computed tomography (CT)

3. Magnetic Resonance Imaging (MRI)

4. Mammogram

The images in each dataset include information on different diagnosis, different
body parts, different dimensions, etc. Usually CT and MRI images are always
stored in 3D, while X-ray images are usually stored in 2D. In this thesis our pre-
training model is done using 2D images. To maintain the diversity of the data, this
study tried to ensure that the dataset included as many different patients, different
body parts, and different diagnosis as possible, and based on this, I recreated csv
files in a uniform format for this information.

I re-partitioned these datasets into two parts, 17 of which were used for the
pre-training of the model, which is mainly related to self-supervised learning, and
the rest of the dataset will be the training set, which will be used for the transfer
learning of the model. I divided the pre-training datasets into training, testing,
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and validation sets based on different patients, which will be described in more
detail in the following sections.

3.1.2 Datasets
In this section, the use of these datasets are described in more detail, and those
datasets were divided into two parts, one for the pre-training set for self-supervised
learning and the other part of the training set for transfer learning.

3.1.2.1 Pre-training datasets

1. CT Lymph Nodes: This collection consists of Computed Tomography (CT)
images of the mediastinum and abdomen in which lymph node positions are
marked by radiologists at the National Institutes of Health, Clinical Center.
Radiologists at the Imaging Biomarkers and Computer-Aided Diagnosis Lab-
oratory labeled a total of 388 mediastinal lymph nodes in CT images of 90
patients and a total of 595 abdominal lymph nodes in 86 patients.[15]

2. Medical Segmentation Decathlon[16]:

(a) Liver: The modality of the dataset is CT, which contains 201 3D volumes
(131 Training + 70 Testing)

(b) Prostate: The modality of the dataset is Multimodal MR (T2, ADC),
which contains 48 4D volumes (32 Training + 16 Testing), in end use. We
removed the ADC.

(c) Colon: The modality of the dataset is CT, which contains 190 3D volumes
(126 Training + 64 Testing)

(d) Spleen: The modality of the dataset is CT, which contains 61 3D volumes
(41 Training + 20 Testing)

(e) Hepatic Vessel: The modality of the dataset is CT, which contains 443
3D volumes (303 Training + 140 Testing)

(f) Pancreas: The modality of the dataset is CT, which contains 420 3D
volumes (282 Training +139 Testing)

3. CQ500 Dataset: They made the CQ500 dataset of 491 scans with 193,317
slices publicly available so that others can compare and build upon the results
they has achieved in the paper. and provide anonymized dicoms for all the
491 scans and the corresponding radiologists’ reads[17].

4. CHAOS: Two databases are used in the challenge: Abdominal CT and MRI
(T1 and T2 weighted). Each data set in these two databases corresponds to
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a series of DICOM images belonging to a single patient. The data sets are
collected retrospectively and randomly from the PACS of DEU Hospital. There
is no connection between the data sets obtained from CT and MR databases
(i.e. they are acquired from different patients and not registered)[18].

5. Deep Lesion: The National Institutes of Health’s Clinical Center has made
a largescale dataset of CT images publicly available to help the scientific com-
munity improve detection accuracy of lesions. While most publicly available
medical image datasets have less than a thousand lesions, this dataset, named
DeepLesion, has over 32,000 annotated lesions identified on CT images.The
images, which have been thoroughly anonymized, represent 4,400 unique
patients.[19].

6. Mrnet: The MRNet dataset consists of 1,370 knee MRI exams performed
at Stanford University Medical Center. The dataset contains 1,104 (80.6%)
abnormal exams, with 319 (23.3%) acl tears and 508 (37.1%) meniscal tears;
labels were obtained through manual extraction from clinical reports[20].

7. MURA: MURA (musculoskeletal radiographs) is a large dataset of bone
X-rays. Algorithms are tasked with determining whether an X-ray study is
normal or abnormal[21].

8. Cardiac MRI: Cardiac MR images acquired from 33 subjects.Each subject’s
sequence consists of 20 frames and 8-15 slices along the long axis, for a total of
7980 images. The sequence corresponding to each subject x is in a distinct .mat
(MATLAB) file named sol_yxzt_patx.mat. These are the raw, unprocessed
images, that were originally stored as 16-bit DICOM images[22].

9. NIH Chest X-ray Dataset of 14 Common Thorax Disease Cate-
gories: The modality is X-ray, body part is chest, and contains 30,805 unique
patients,112,120 X-ray images.% [23].

10. Brain Tumor dataset: This brain tumor dataset contains 3064 T1-weighted
contrast-inhanced images with three kinds of brain tumor. Detailed informa-
tion of the dataset can be found in readme file [24].

11. OASIS:This set consists of a cross-sectional collection of 416 subjects aged
18 to 96. For each subject, 3 or 4 individual T1-weighted MRI scans obtained
in single scan sessions are included. The subjects are all right-handed and
include both men and women. 100 of the included subjects over the age of
60 have been clinically diagnosed with very mild to moderate Alzheimer’s
disease (AD). Additionally, a reliability data set is included containing 20
nondemented subjects imaged on a subsequent visit within 90 days of their
initial session[25].
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12. IBSR: Eighteen subjects are currently available.For each subject there is:
T1-weighted volumetric images that have been ’positionally normalized’ into
the Talairach orientation (rotation only). Also note that these data have been
processed by the CMA ’autoseg’ biasfield correction routines; unbias-field-
corrected is also available. Segmentation results for ’general segmentation’
of 43 individually labeled principle gray and white matter structures of the
brain[26].

3.1.2.2 Training datasets

The two datasets used for transfer learning are described in detail below:

1. Luna16: The modality is CT scan, the body part is lung, and the dataset
includes 888 patients, 888 images, 551065 patches, 1186 lesions, and 36378
annotations class label (0 for non-nodule and 1 for nodule)can be multiple
candidates per nodule.

2. MURA: MURA (musculoskeletal radiographs) is a large dataset of bone
X-rays. Algorithms are tasked with determining whether an X-ray study is
normal or abnormal[21].

3.1.3 Data sampling and split

3.1.3.1 Data sampling

Fig.3.1 is a summary of these 17 datasets, with a total number of images CT
(452623), X-RAY (148928), and MRI (429290) in the original data set. From the
quantity, it can be seen that the number of X-RAY is too small relative to the
number of images of the other two modalities, because we decided to train the
images of the three modalities, the sample number unbalance may lead to some
problems, for this situation, data sampling is the best solution to address data
unbalance.
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Figure 3.1: summary of the pre-training datasets

As can be seen from Fig.3.1, there are a total of 19 different body parts in 17
different datasets, plus an info not found (deep lesion), deeplesion dataset contains
images from different body parts, but labels are not available.

3.1.4 Explanation of the datasets
During sample, a patient often contains many 2D images(X-ray) or 3D images(CT
and MRI), because we consider training from 2D images, we can split a 3D image
into different 2D images. However, the number of images contained in a patient
varies, and the images are usually down-sampled for each patient, e.g., if a patient
has 600 2D images, 300 of them are taken so that no information on the total
number of slices is missed. Also, during the sampling process, only sampled the
number of images that the patient has and do not sample the number of patients.
In summary, the images of each patient were sampled while maintaining the number
of patients in the data.

The following can be obtained from Fig.3.1.

1. the number of patients: Since the sample is based on patient level, the
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number of patients information is the first point of concern.

2. mean number of images per patient: The number of slices per patient.

3. max value: The number of images that the patient has with the highest
number in the dataset.

4. min value: he number of images that the patient has with the lowest number
in the dataset.

From those parameters it’s easily concluded that the mean of the number of
slices that the patient has, and the difference between the maximum, and thus judge
whether the mean value can be used as the number of samples. If the difference is
too small, sample with the mean value(for example, In dataset MRNET), if the
difference is too large, then cannot sample with the mean(for example in deep
lesion).

Through these, the distribution of the number of slices owned by the patients in
this data set were ealisy to be understood. so that not lose too much information
by oversampling.

3.1.5 Image sampling strategy
There are about a million images in the source dataset in total, the goal is to sample
as many images as possible while avoiding too strong unbalance and removing
images that are strongly correlated with each other.

Since the number of X-RAY in the source dataset is only 140k, the number
of images is small relative to the other two modalities, and for the purpose of
balancing the dataset, we tried to sample images of the other two modalities while
controlling the number of X-RAY.

Another problem is that the body parts of the dataset are very unbalance
distributed, with brain being far too numerous, taking up more than 46% of the
dataset, and prostate being too small.

In the process of analyzing the data, we have separately considered the number of
patients, body parts, modalities, diagnosis, etc. In order to maintain the diversity of
the data, and after the pre-analytical experiments, we have come to the conclusion
that it is not possible that sample based on diagnosis because most of the datasets
lack information about diagnosis, which results in part of the dataset not being
collected during the sampling process.

we are sampling mainly for modalities, body part, and patients. the sampling is
all based on patient, maintaining the balance of modalities, and body part diversity
and balance. For different datasets, this study decided to sample in different ways,
and all were based on patient. The following is an explanation of the sample
method for each dataset:
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1. MRNET: Since more than half of the data during the sample of BRAIN were
removed, resulting in a not particularly large number of MRI, in this thesis
we selected a larger number of images to maintain balance when sampling
MRNET, and from Fig. 3.1, the difference between the mean value and max
values,so selecting the mean value as the sample size for each patient was a
relatively good choice
In the end, I decided to select all the patients (1250 patients), taking 81 slices
per patient

2. COLON: The same strategy as for MRNET, since the differences between
these values are not large, the number that around mean value is chosen as the
number of samples. In the end, I decided to select all patients (126 patients),
80 slices per patient.

3. CARDIAC MRI: Since the mean value is 241, but the maximum is only
300, so instead of sampling based on the mean, and since the number of MRI
is not enough, I chose 200 images per patient. In the end, I decided to select
33 patients, 200 slices per patient.

4. CHEST X-RAY14: Because the number of X-RAY is small in the source
dataset, so a large number of images has to be sampled, where most patients
had only one or two slices and the mean was only 3.6, but the maximum was
184, since more than 20% of patients in the dataset have more than 40 images,
it cannot keep only 2-3 per patient. For these reasons, I decided to choose 20
as the sample value. In the end, I decided to select all patients (30805) with a
sample value of 20, below which the author collected the number of patients
that each patient currently has.

5. DEEP LESION: I decided to keep all the images in this dataset. The reason
is that the dataset was already downsampled by the authors of DEEP LESION
, since it is enriched with lesions. It is also important to keep this dataset
since it contains a lot of tumors, and hence have to expose the network to
both normal and abnormal anatomy.

6. LIVER: Same as what I did in MRNET, those value are close so that the
mean value can be token as the sample size. I decided to keep all patients
(201 patients) with 100 slices per patient.

7. PANCREAS: Same as Liver I decided to keep all patients (281 patients)
with 80 slices per patient.

8. CT LYMPH NODES: Same as liver I decided to keep all patients (176
patients) with 100 slices per patient.
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9. HEPATICVESSEL: Same as PANCREAS I decided to keep patients (303
patients) with 69 slices per patient.

10. CQ500 DATASET: Because this dataset contains images of the brain, but
modality is CT, unlike MRI in BrainTumour, but it is the same body part, so
this thesis sampled the same amount as previously to balance the number in
BrainTumour. I decided to choose all patients (488 patients), 100 slices per
patient.

11. CHAOS: The dataset was too small. I decided to sample it all.

12. SPLEEN: The dataset was too small. I decided to sample it all.

13. PROSTATE: The dataset was too small. I decided to sample it all.

14. BrainTumour: The dataset was too small. I decided to sample it all.

15. IBSR: The dataset was too small. I decided to sample it all.

16. MURA: Although the dataset is large, it contains five different body parts,
and the number of x-rays in the source dataset is small, for these reasons, all
are sampled.and after the above strategy, I ended up with a selection of 450K
images.

17. Oasis: The Oasis datasets contains 3 sub datasets, Oasis1,2,3, and I sample
all patients, each patient with 100 slices.

3.1.6 Analysis of data sampling results

With the analysis in the previous section, we took different strategies, and the
dataset was eventually balanced.
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Figure 3.2: The number of images in each modality

Finally, the number of images in MRI is 167179, the number of images in CT is
155105, and the number of the images in X-RAY is 134720.

Fig.3.2 shows that the number of images in each modality,it can be seen that in
the end modality is balanced.
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Figure 3.3: The number of slices in each modality

As can be seen from Fig.3.3 and Fig.3.4, although the body part is not fully
balanced, the distribution has improved considerably relative to the source dataset.
The body part in the number of brains has dropped from 46% to 20% compare
with the original dataset.

Fig.3.5 shows that the number of slices in each dataset.
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Figure 3.4: The percentage of slices in each dataset

Figure 3.5: The number of slices in each dataset
26



Materials and methods

Fig.3.6 shows that the number of patients in each dataset.

Figure 3.6: The number of patients in each dataset

Fig.3.7 shows that the body part in each modality.

Figure 3.7: the body part in each modality

Finally, there are 1793 patients with modality MRI, 49319 patients with modality
X-RAY, and 4676 patients with modality CT.

3.1.7 Data split
The data set was split according to the patient’s level to ensure that the patients
appearing in the test set and the validation set did not appear in the training set.

For this reason, I decided to select 90% of the images as the training set, 5% of
the images as the test set and 5% of the images as the validation set.
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3.1.8 Pre-processing the images

This section focus on pre-processing for three different modalities, and the goal is to
uniformly plan the pixel value to between 0 and 1 for images with large differences,
in order to facilitate convergence for model training at a later stage.

The main technique we used is normalization, and the pre-processing is done
dynamically for each 2D image for the different modalities images.

3.1.8.1 Pre-processing CT

There are 8 datasets in the dataset that are CT, containing different data formats,
DICOM, nii, png, mhd, and for different data formats, different loading methods
has been taken. The goal is to normalize the pixel value of the input image (-4000
4000) to [0,1] interval.

This procedure is done using the following formula(Fig.3.8):

Figure 3.8

I set the MIN_BOUND to -1000 and MAX_BOUND to 1400.
The current value range is [-1024,2000]. And values arbitrarily greater than

1400 do not need to be considered, since they are all artifacts.
The processing is the same for all other CT datasets, the only difference is that

for the deeplesion dataset, the image format is png, we first converted the .png
image to .nii using the officially provided processing script, the other processing
method for CT in all the same only the loading to read the image is different.

Finally, I decided to perform random clip for images of size 448*448, and resize
these random clippings in the proposed size as input, i.e. 224*224.

And I plotted out the image changes before and after the pre-processing, the
pixel distribution as follows:
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Figure 3.9: comparison before and after preprocessing for CT Lymph
node dataset

Figure 3.10: comparison before and after preprocessing for spleen
dataset
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Figure 3.11: comparison before and after preprocessing for deeplesion
dataset

Figure 3.12: comparison before and after preprocessing for CQ500
dataset
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Figure 3.13: comparison before and after preprocessing for HepaticVes-
sel dataset

Figure 3.14: comparison before and after preprocessing for Pancreas
dataset

31



Materials and methods

Figure 3.15: comparison before and after preprocessing for Luna16
dataset

3.1.9 Pre-processing MRI

Eight of those datasets are MRI and contain a variety of different image formats,
as the models are in 2D image basis for training, so the pre-processing approach I
took was also based on 2D images, and the goal is also normalize to the 0-1 range,
taking the approach of standard normalization between 0 and 1, I first calculate
max pixel value for each 2D image and then divides by this maximum value, thus
pre-processing the image to the 0-1 interval, using the advantage of this method is
that the image can be dynamically pre-processed.

Finally, I performed random clip for images of size 448*448, and resize these
random clippings in the proposed size as input, i.e. 224*224.

And I plotted out the image changes before and after the pre-processing, the
pixel distribution as follows:
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Figure 3.16: comparison before and after preprocessing for chaos dataset

Figure 3.17: comparison before and after preprocessing for Mrnet
dataset
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Figure 3.18: comparison before and after preprocessing for Cardiacmri
dataset

Figure 3.19: comparison before and after preprocessing for Prostate
dataset
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Figure 3.20: comparison before and after preprocessing for BrainTumor
dataset

Figure 3.21: comparison before and after preprocessing for IBSR dataset
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Figure 3.22: comparison before and after preprocessing for OASIS
dataset

3.1.10 Pre-processing X-RAY

The pixel values are integers with values between 0 and 255. it is good practice
to normalize the pixel values so that each pixel value has a value between 0 and
1. This can be achieved by dividing all pixel values by the 255. This runs on all
channels, regardless of from the actual range of pixel values in the image. I convert
the image to ndarray float32 and divide ndarray by 255.0. In this way we have
normalized the image pixel distribution in the [0-1] range.

Finally, I performed random clip for images of size 448*448, and resized these
random clippings in the proposed size as input, i.e. 224*224.

The only different is in MURA, also need a zero padding because of the image
size, because some images do not exceed 224 pixels in length or width.
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Figure 3.23: comparison before and after preprocessing for chest x-ray14
dataset

Figure 3.24: comparison before and after preprocessing for Mura dataset

3.1.11 Batch Normalization VS Instance Normalization

For the difference between batch normalization and instance normalization, see the
following figure.

37



Materials and methods

Figure 3.25: An example of Batch Normalization [27]
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Figure 3.26: An example of Instance Normalization[27]

From this, it is clear that batch normalization means that the same channel of
each of the 6 images is normalized together. Whereas instance normalization is
the normalization operation performed separately for a single channel of a single
image.

Batch normalization is applicable in discriminative models, such as the image
classification model. Because batch normalization focuses on the normalization
of each batch to ensure the consistency of the data distribution, the results of
the discriminant model depend on the overall distribution of the data. However,
batch normalization is sensitive to the size of the batch size, because the mean and
variance are calculated on one batch each time, so if the batch size is too small, the
mean and variance are not enough to represent the whole data distribution; instance
normalization is suitable for generative models, such as image style transfer. Since
the result of image generation mainly depends on an image instance, normalizing
the whole batch is not suitable for image styling, and using instance normalization
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in style transfer can not only speed up model convergence, but also maintain the
independence between each image instance.

In [2], it has been demonstrated in the segmentation task of prostate, pancreas,
and lung nodules. Instance normalization is better than batch normalization, and
this thesis also implements instance normalization.
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Chapter 4

Experiments and results

4.1 Experiments

Medical image analysis and natural image analysis are not much different in terms
of methods, but both use the most popular deep neural networks to do classification,
segmentation, detection, etc. Compared with natural image analysis, medical image
analysis is very difficult to label, and it is often difficult to match the size of natural
image database. When encountering such a small amount of annotation data,
"transfer learning" is a popular method, because the model is not learned from
scratch, but from a large number of pre-trained models in the data set.

4.1.1 Pre-trained model

In fact, in medical imaging processing, transfer learning from ImageNet pre-trained
models has become a standard, and the programming implementation is very
simple.

But there is a problem in transfer pre-trained models from ImageNet to medical
imaging. Medical images are so different from natural images, however, they are
based on a completely different imaging principle than natural images. Therefore,
the effect of transfer learning from natural images to medical images is not as
pronounced as it is for transfer learning between natural images.

The main idea of our pre-training model comes from [1]. In their paper, they
mainly used 3D images for training and trained different models for different
modalities, in this thesis, we mainly trained 2D images and fused different modalities
in the pre-training set, which really realized "model genesis".
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Figure 4.1: Model Genesis: unified self-supervised learning framework[1]

4.1.1.1 pre-text tasks for self-supervised learning

1. Non-Linear: The pixel values in CT are very much related to the structure
of the human body. Consider the Fig.4.2, which reflects the pixel values in
CT, called Hounsfield Units, which correspond to the air, fat, water, bones,
and vital organs in the human body[1].

Figure 4.2: Hounsfield Units in CT [1]

For individual human structures, the equivalent is that we have labels that are
accurate to the pixel level, and the ability to reduce the pixels to the correct
range based on the appearance of this tissue, which gives the model a strong
ability to learn.
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2. Local-Shuffling: Identify a small frame, disrupt the position of the pixels
within the frame, and repeat the process several times to get a transformed im-
age[1], the images were recovered through a self-supervised learning approach.

3. In-/Out-Painting: The out-painting means masking the edges of the original
image, and let the model fill in, the in-painting means to cover some area in
the middle of the original image and let the model fill in[1].

4. Combine: The above introduces four different image transformations, which
can be easily combined to give an input that undergoes multiple transforma-
tions to get an output that is more robust to the model[1].

4.2 Transfer learning

4.2.1 Transfer learning for LUNA16
This section mainly classify the LUNA16 data and train three different models, 1)
training from scratch, 2) training by using our pre-trained weights, 3) training by
using imagenet weights, and compare the AUC of the three models.

In the next section the training results of the three different models will be
describe in detail.

4.2.1.1 Data

Luna16 dataset contains 10 subfolders, 888 patients, each subfolder includes about
88 patients. The slice thickness of the scans ranges between 0.8 and 2.5 mm. The
voxel values of the CT-scans are encoded on the Hounsfield Unit (HU) scale.

4.2.1.2 Patch extraction

I have tried 2 methods to extracted patches, the first method is directly extracted
2-D patches according to the candidates_v2.csv,the csv file I got is from LUNA16
challenge website, the csv file that contains an extended set of candidate locations
for the ‘false positive reduction’ track. Since the coordinates of the candidates
are given in world coordinates, I did a transform from world coordinates to voxel
coordinates. Also I define some normalized planes to extract views from the
candidates. The patches size I extracted is 64 * 64. The training dataset has
extremely high negative to positive ratio (753418 : 1157).

The 2nd method I tried is to extracted 3-D cubes(64*64*64) based on the
candidates_v2.csv, after extracted cubes, I random extracted 2-D patches from
planes of a cube.
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both of this 2 methods get similar result. Here are some examples of patches:
Fig.4.3 are the negative patches, and Fig.4.4 are the positive patches.

Figure 4.3: LUNA16 negative patches
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Figure 4.4: LUNA16 positive patches

4.2.1.3 Data augmentation

The number of categories in the dataset is very unbalanced: negative patches to
positive patches ratio is (753418 :1157). Since the data is very unbalanced and it is
difficult to train a good classifier, I first do a data augmentation on the data for
the positive patches, and down-sample the negative patches, keeping 10% negative
images per folder.

I applied common data augmentations for the positive patches: For each candi-
date, I performed random zooming [0.9,+1.1], random rotation [200 ,+200 ], and
translation [-1 mm,+1 mm], vertical and horizontal flip. Finally increasing 8 times
the positive patches. In the end, the negative to positive ratio is 82:18. Here are
some examples of augmentation:
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Figure 4.5: LUNA16 patches agumentation

4.2.1.4 Data pre-processing

I use the same approach as what I did on pre-training phase, by setting the
MIN_BOUND to -1000 and MAX_BOUND to 1400. The current value range is [-
1024,2000]. And values arbitrarily greater than 1400 do not need to be considered,
by using the formula I pre-processed the image to the 0-1 interval.

Figure 4.6

4.2.1.5 CNN configuration

The main structure of our pre-trained model is:
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Figure 4.7: pre-trained model[1]

4.2.1.6 CNN configuration

After pre-training, a 2D U-Net-like structure is obtained, including encoder and
decoder. Since it is solving a classification problem, this study decided to get the
part of the encoder and use it as a feature extractor for the downstream classification
task, after this encoder we added the GlobalAveragePooling2D, Flatten ,Dense
layer with L2 regularizers and the output Dense layers, and to prevent overfitting,
we add the Dropout layer after the Flatten layer and dense layer and set it to 0.5.

Figure 4.8: CNN configuration of classification model
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4.2.1.7 Training and Testing

In the training and testing of the network, the method used is 5-fold cross validation.
The dataset is divided into 10 subsets of approximately equal size. Within these
subsets, 8 subsets are used to train the network. The remaining 2 subset is then
used to test the results. This process was repeated 5 times.

4.2.2 results by using Unet VGG16 encoder Batch Nor-
malization

In order to find the best hyperparameters, I set the learning rates 0.1, 0.01, 1e-3,
1e-4, 5e-4, and 1e-5 as the initial learning rates, tested the dropout rate at 0.5
and 0.2 respectively, and compared the results with and without the ‘warm up’
mechanism(by using ’warm up’ mechanism, the training is divided into two phases,
the whole point of first training the head separately was to avoid training layers
randomly initialized with layers fine-tuned, using the initial learning rate only train
the output layer, in the 2nd phase, I fine-tuned all the layers).

The best parameters this experiment used are below:

Figure 4.9: different parameters used in the training

I calculate the AUC after each epoch, and I trained 3 models for each model I
trained 5 times.

4.2.2.1 Training from scratch

I plotted the model ROC and Loss after the 5-folder cross-validation.As shown in
the figure below.
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Figure 4.10: model ROC after 5-folder cross-validation
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Figure 4.11: model loss after 5-folder cross-validation

For better visualization, we summarize the results after 5-folder corss-validation
as follows.
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Figure 4.12: A summary of AUC after 5-folder cross validation training
from scratch

4.2.2.2 Transfers by using our pre-trained weights

I plotted the model ROC and Loss after the 5-folder cross-validation.As shown in
the figure below.
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Figure 4.13: model ROC after 5-folder cross-validation
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Figure 4.14: model loss after 5-folder cross-validation

We summarize the results after 5-folder corss-validation as follows.
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Figure 4.15: A summary of AUC after 5-folder cross validation training
by using our pre-trained weights

4.2.2.3 Transfers by using imagenet weights

I plotted the model ROC and Loss after the 5-folder cross-validation.As shown in
the figure below.
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Figure 4.16: model ROC after 5-folder cross-validation
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Figure 4.17: model loss after 5-folder cross-validation

We summarize the results after 5-folder corss-validation as follows.
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Figure 4.18: A summary of AUC after 5-folder cross validation training
by using Imagenet weights

4.2.2.4 Summary of the three models

Figure 4.19: AUC summary of three models I
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Figure 4.20: AUC summary of three models II

4.2.3 results by using Unet Resnet50 encoder Batch Nor-
malization

The way of select the best parameters is same with what I described before. The
best parameters the experiment used are below:

Optimizers: SGD with a initial learning rate 0.001, momentum 0.9, we set
ReduceLROnPlateau factor=0.1, patience=3.

Loss: binary_crossentropy
Epoch: 10
Batch size: 32
input size: 64*64
Calculate the AUC after each epoch.
This thesis trained 3 models and each model trained 5 times.

4.2.3.1 Training from scratch

I plotted the model ROC and Loss after the 5-folder cross-validation.As shown in
the figure below.
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Figure 4.21: model ROC after 5-folder cross-validation
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Figure 4.22: model loss after 5-folder cross-validation

We summarize the results after 5-folder corss-validation as follows.
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Figure 4.23: A summary of AUC after 5-folder cross validation training
from scratch

4.2.3.2 Transfers by using our pre-trained weights

I plotted the model ROC and Loss after the 5-folder cross-validation.As shown in
the figure below.
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Figure 4.24: model ROC after 5-folder cross-validation
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Figure 4.25: model loss after 5-folder cross-validation

We summarize the results after 5-folder corss-validation as follows.

Figure 4.26: A summary of AUC after 5-folder cross validation training
by using our pre-trained weights
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4.2.3.3 Transfers by using imagenet weights

I plotted the model ROC and Loss after the 5-folder cross-validation.As shown in
the figure below.

Figure 4.27: model ROC after 5-folder cross-validation
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Figure 4.28: model loss after 5-folder cross-validation

We summarize the results after 5-folder corss-validation as follows.

Figure 4.29: A summary of AUC after 5-folder cross validation training
by using Imagenet weights
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4.2.3.4 Summary of the three models

Figure 4.30: AUC summary of three models I

Figure 4.31: AUC summary of three models II

4.2.4 Transfer learning for MURA
4.2.4.1 Data

The MURA dataset contains X-ray images of seven different body parts, and
in this experiment mainly used the shoulder dataset. Shoulder dataset contains
positive(4168),Negative(4211) images, and automatically separates the training
and validation sets.
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4.2.4.2 Method and Data augmentation

This experiment was to do image classification on the image level, and the size of the
image was 224*224. Before the image was input to the network, data augmentation
was first performed. The data augmentation this experiment performed is in
the following way: rotation_range: 20, zoom_range: [0.9,+1.1], horizontal_flip:
True ,vertical_flip: True. After data augmentation the data distribution become
Negative 29477 Positive 29176. Some examples after data augmentation:

Figure 4.32: examples after data augmentation

4.2.4.3 Data normalization

Before feed the images into the network, I did data normalization, this can be
achieved by dividing all pixel values by the 255, we have normalized the image
pixel distribution in the [0-1] range, also in this experiment the input size of the
image has changed to (224,224).

4.2.4.4 Training and validation

This experiment used the default validation set as the final validation set, using the
data after data augmentation as the training set, and trained three models (training
from scratch, transfer by using pre-trained weights, transfer by using imagenet
weights), in order to avoid the randomness of the experimental results, for the best
model in the experiment, I trained it 2 times(because of the time-consuming), and
calculate the average of AUC, the evaluation metrics of the experiment is AUC
and accuracy, finally I plot the ROC curve as the final results.
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4.2.5 results by using Unet Resnet50 encoder Batch Nor-
malization

In order to find the best hyperparameters, I set the learning rates 0.1, 0.01, 1e-
3, 1e-4, 5e-4, and 1e-5 as the initial learning rates, tested the dropout rate at
0.5 and 0.2 respectively, and compared the results with and without the ‘warm
up’mechanism(by using ’warm up’ mechanism,the training is divided into two
phases, the whole point of first training the head separately was to avoid training
layers randomly initialized with layers fine-tuned, using the initial learning rate
only train the output layer, in the 2nd phase, fine-tune all the layers).

The best parameters this experiment used are below:

Figure 4.33: different parameters used in the training

4.2.5.1 Training from scratch

The best model’s AUC is 0.7573
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Figure 4.34: training from scratch model ROC and loss

4.2.5.2 Transfer by using pre-trained weights

The best model’s AUC is 0.7791

Figure 4.35: transfer by using pre-trained weights model ROC and loss

4.2.5.3 Transfer by using ImageNet weights

The best model’s AUC is 0.8319
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Figure 4.36: transfer by using ImageNet weights model ROC and loss

4.2.5.4 AUC comparison between 3 models

Figure 4.37: AUC comparison between 3 models
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4.2.6 results by using Unet VGG16 encoder Batch Nor-
malization

How to choose the best hyperparameters is described in the previous section. The
best parameters this experiment used are below:

Figure 4.38: different parameters used in the training

4.2.6.1 Training from scratch

Model loss show bellow, and the final AUC is 0.7897.
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Figure 4.39: training from scratch model loss
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Figure 4.40: training from scratch model ROC

4.2.6.2 Transfer by using pre-trained weights

The final results were obtained by performing two experiments on the best model
and calculating the mean of the AUC. The final AUC(average 0.8291).

Experiment 1:
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Figure 4.41: transfer by using pre-trained weights model ROC and loss

Experiment 2:
Model AUC: 0.8277

Figure 4.42: transfer by using pre-trained weights model ROC and loss

4.2.6.3 Transfer by using ImageNet weights

The final results were obtained by performing two experiments on the best model
and calculating the mean of the AUC. The final AUC(average 0.8287).

Experiment 1:
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Figure 4.43: transfer by using ImageNet weights model ROC and loss

Experiment 2 :

Figure 4.44: transfer by using ImageNet weights model ROC and loss
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4.2.6.4 AUC comparison between 3 models

Figure 4.45: AUC comparison between 3 models
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Chapter 5

Conclusions and future
works

5.1 Conclusions
This thesis exploit a novel deep learning method self-supervised learning by training
on 21 datasets of medical images including different modalities, body parts, and dis-
eases.It then transfer the pre-training weights to downstream tasks for classification
tasks.

The problem of lack of labeling in medical image datasets was well solved by
the self-supervised learning approach, and the transfers of the pre-trained weights
to downstream classification tasks also worked better than the model trained from
scratch. In our experiments, we transfered this pre-trained weights on LUNA16
dataset and MURA dataset to do image classification task. The model is trained
with Resnet50 and VGG16 backbone respectively.

From the four sets of experiments conducted on the above two datasets, we
summarize the results for each of the best parameters. The final results shows on
Fig.5.1. and Fig.5.2.

Figure 5.1: Results of all experiments
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Figure 5.2: Results of all experiments

We conclude that when using the VGG16 backbone for the image level classifi-
cation task on MURA dataset, the AUC of transfer learning using our pre-trained
model can get a similar result as transfer learning by using ImageNet.

Also in the other three conditions, using our pre-trained weights on transfer
learning for classification tasks were more accurate than training the network from
scratch.Although the LUNA16 dataset is not present in the pre-trained dataset,
using transfer learning with the weights of the pre-trained model is still helpful in
the medical image classification task.

However, using our pre-trained network to train a model does not converge
faster than ImageNet transfers. And in all other cases, the AUC of the model is
lower than ImageNet transfers.
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5.2 Future works
From the experiments, we can see that when using the resnet50 backbone for
training, the results are not satisfactory. Although the results are better than the
network trained from scratch, there is still a gap with the state of the art Imagenet
transfers.

Our previous hypothesis was that the tranfer ability of our pre-trained model
would exceed that of ImageNet transfers, because ImageNet contains a very large
variety of images from nature, whereas our pre-trained model contains only three
different modalities of medical images, thus making it more task specific, but we
did not achieve the expected results.

During my experiments, I found that when I do transfer learning with ImageNet,
the loss tends to converge very fast, and I can get a good result with very little
epoch training, while using our pre-trained weights, our loss converges faster than
the training from scratch, but still converges slower than with ImageNet transfers.

I think it’s most likely that we didn’t get a good weights when we did the
pre-training by using self-supervised learning approach, or even that the training
wasn’t completed thoroughly.

In the future, we will review the pre-training network again, and retrain the
transfers with a new pre-trained network, use more datasets(CAD-PE,ChexPert)
for different downstream tasks(segmentation,detection) and achieve real "model
genesis".
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