
POLITECNICO DI TORINO

Dipartimento di Automatica ed Informatica
Corso di Laurea Magistrale in Ingegneria Informatica (Computer Engineering)

Tesi di Laurea Magistrale

Home IoT devices: analysis of the
communication protocols

Supervisors:
Prof. Danilo Giordano
Dr. Francesca Soro

Candidate:
Marco Andrea Greco

262624

December 2020

Contents

1 Introduction and problem description 2
1.1 Overview . 2
1.2 Motivation . 3
1.3 Goals . 4
1.4 Organization of the thesis . 4

2 State of the art 6
2.1 Overview . 6
2.2 Literature . 6

2.2.1 Internet Of Things . 6
IoT Applications . 8

2.2.2 IoT - Application protocol 8
Hypertext Transfer Protocol 8
Constraint Application Protocol 9
Message Queue and Presence Protocol 9
Extensible Messaging and Presence Protocol 10
Data Distribution Service . 10
Advanced Message Queuing Protocol 10

2.2.3 Security . 11
Countermeasures . 13
Cyber-attack detection . 13

2.2.4 Honeypot . 14
Low-interaction Honeypot 15
Medium-interaction Honeypot 16
High-interaction Honeypot 16

I

2.3 IoT-oriented honeypots . 17
2.3.1 Honeyd . 17

HoneyIo4 . 17
IoTPOT . 18
IoTCandyJar . 19

3 Architecture and Deployment 21
3.1 System Architecture . 21

3.1.1 First setup . 22
SONOFF basic R2 & 4CH PRO R2 22
Shelly 1 . 23
Environment setup . 23

3.2 Passive analysis . 27
3.2.1 Traffic monitoring . 27

Wireshark . 27
Traffic capture via monitor mode interface. 29

3.2.2 Automate sniffing with Scapy 30
SSL/TLS encryption . 31

3.3 Active analysis . 31
Port scanning . 32
Nmap analysis . 33
Nmap . 33
Automating port scanning 34

3.4 Laboratory environment . 35
3.4.1 Mon(IoT)r . 35

Network configuration . 35
3.4.2 Devices . 36
3.4.3 Packet inspection . 36

3.5 Data storage and dictionary structure 39
Database: RDBMS, no-SQL 39
MongoDB . 40

4 Case study and results 43
4.1 Overview . 43

II

4.2 Active Analysis . 46
4.3 Passive Analysis . 48
4.4 Data extraction . 50
4.5 Summary . 52

5 Conclusions and future work 53
5.1 Conlcusion . 53
5.2 Future work . 54

6 Appendix A 55
6.1 System setup . 55

6.1.1 Access Point automated setup 55
6.2 Active Analysis . 58

6.2.1 Port scanning automation . 58
6.2.2 Data extraction . 66

6.3 Passive Analysis . 76
6.3.1 Network sniffing automation 76

III

List of Figures

1.1 IoT devices. 3

2.1 Internet Of Things: devices representation. 7
2.2 Portion of the code related to the setup of the credentials used in the

brute-force attack. [1] . 11
2.3 Diagram showing the dependency between elements in the IT security. 14
2.4 Honeyd sample configuration. 18
2.5 IoTPOT implentation design. 19
2.6 IoTCandyJar architecture. 20

3.1 SONOF basic R2, SONOFF 4CH PRO R2, Shelly-1. 23
3.2 Environment setup. 24
3.3 Man-in-the-middle attack performed by C against A and B. The mes-

sage M is captured by C and possibly altered as M*. 24
3.4 Decrypted network traffic, captured in monitor mode. 30
3.5 MITM proxy - HTTPS interception. 32
3.6 Mon(IoT)r laboratory - Imperial College London. 35
3.7 List of devices. 37
3.8 Data extraction stateflow. 38
3.9 MongoDB logo. 40
3.10 Structure of the database. 41

4.1 Testbed sample setup. 43
4.2 Spatial information about the servers contacted during the experiments. 44
4.3 Statistical information on the traffic direction of the network divided

by protocols used by the devices during the experiments. 45

IV

4.4 Statistical information on network traffic direction. 45
4.5 Statistical information on the protocols used by the devices within the

test environment. 46
4.6 Information collected by the automated port scanner. 47
4.7 Part of the information gathered by the port scanner organized in CSV

files. 48
4.8 HTTP stream captured during the experiments. 49
4.9 Another fragment of the HTTP stream captured during the experiments. 49
4.10 List of collections of received/sent messages for each device. 51
4.11 Example of a document part of the IoT dictionary. 51

V

List of Tables

2.1 Return on Investment, and costs related to different types of honeypots. 17

3.1 Devices present in the environment and related interactions tested. . . 37

VI

Abstract

The Internet Of Things is becoming one of the most used technologies today, a trend
that will become more pronounced in the near future. The number of interconnected
devices is growing rapidly, changing the very shape of the Internet. The IoT is al-
ready shown as a pilot of consistent investments for the development of new enabling
technologies. However, numerous recent cyber-attacks have highlighted several crit-
ical issues in the security control of these systems. The implications of these types
of attacks are often unexpected given the heterogeneous and physical nature of these
devices. For this reason, basic resources such as honeypots are important, which allow
to collect information about new attacks based on vulnerabilities not yet known. This
study exposes some general characteristics of IoT devices, analyzing the state of the
art of IoT honeypots. The study also proposes an implementation solution for a testbed
used to collect messages that are exchanged by home IoT devices triggered by different
types of interaction.

1

Chapter 1

Introduction and problem description

1.1 Overview

The Internet of Things (IoT) is a paradigm that is spreading over time in the most
varied application contexts, changing and innovating in various technological sectors.
One of the biggest challenges faced in the development of the IoT is the cyber-security
of these complex, distributed, and pervasive systems. On several occasions, IoT de-
vices have been the subject of various cyber-attacks with dramatically negative im-
plications. The development of new enabling technologies, which suggest a possible
extensive development of this technology (5G is just one example), and the security
problems that often afflict this technology have attracted the attention of the research
community. Attacks conducted against these devices exploit rather simple vulnera-
bilities and misconfigurations, such as weak authentication. In several cases, infected
nodes have become part of botnets, used, and coordinated to conduct attacks such as
DDoS, PDoS, spamming, of great scope. For this reason, in this area, resources that al-
low cyber-security researchers to obtain information on new attacks or even just trends
play a fundamental role in the fight against cyber-threats. In this sense, resources such
as honeypots, which can be used to gather information on new types of attacks on these
technologies, play a fundamental role. A honeypot is a software module or piece of
hardware used to attract malicious traffic for research purposes or as a decoy to detect
an attack attempt. Generally these are isolated nodes of the network, not connected
to any valuable asset. However, for these systems to be attractive enough they need
to be defined as close as possible to the actual devices. The characterization of these

2

devices requires, at the outset, the development of environments, built with the aim of
collecting the personality of these devices.

Figure 1.1: IoT devices.

1.2 Motivation

The aim of this thesis work therefore fits into a larger project carried out by the Smart-
Data research team of the Polytechnic of Turin. The goal is to develop an IoT-oriented
smart Honeypot, which is able to interact as a digital twin of IoT devices by applying
machine learning techniques. However, to develop an implementation, it is necessary
to have a dictionary of possible interactions supported by these devices. The main
objective is therefore to create a scalable research environment, which can be used to
collect fundamental information that are exchanged by different IoT devices (IPcam,
Smart speaker, Smart Plug, etc.) for the characterization of the honeypot’s personality.
This data collection is fundamental for the development of medium/high interaction
honeypots, characterized by more stringent constraints regarding the adherence of the
response compared to the real device. For this reason it is essential to select and gen-
erate an answer as close to the real one rather than a generic one. This type of passive
analysis will be accompanied by an active probing of the ports and active services for
each device, in order to have a more complete definition regarding the interactions

3

available for each device. The possibility of having a dataset of possible interactions
available allows the application of machine-learning algorithms that would allow a
smart honeypot to determine which sequences of messages obtain the best result in
terms of interaction time.

1.3 Goals

The main objective of the thesis is to build a framework that can be used to collect
information relating to the network traffic generated by consumer IoT devices, used
to obtain information related to the interactions supported by these devices. Although
the work conducted during the research period appears to be preliminary for the im-
plementation of a larger project, related to the field of cyber-security rather than to
the data science field, however, during the analyzes conducted in the test environment,
several interesting questions found an answer. The development and implementation
of the proposed research environment made it possible to identify not only the network
traffic generated by some common home IoT devices, but thanks to the data collected it
was possible to determine additional information such as: how much of these messages
were protected by encryption, where the traffic collected is sent and other statistics re-
garding the mode of operation of the different devices.

1.4 Organization of the thesis

This thesis work is organized as follows

• Chapter 2 - State of art: An overview on the existing tools and approach used
for the characterization of the communication in the IoT field.

• Chapter 3 - Architecture: Design choices, description of the architecture of the
test-bed used to collect data.

• Chapter 4 - Results: Overview and analysis of the results collected by the test-
bed.

4

• Chapter 5 - Conclusions: Summary of the results obtained, possible improve-
ments and future work.

5

Chapter 2

State of the art

2.1 Overview

In the following chapter the concept of the Internet Of Things will be introduced,
then some of the application protocols most used by the various devices currently on
the market will be analyzed. The growing diffusion of IoT devices has highlighted
the need for security and privacy, in particular in the following chapter some studies
carried out on the subject by the research community are reported. Finally, honeypot
systems are illustrated and in particular some solutions developed specifically for the
IoT.

2.2 Literature

2.2.1 Internet Of Things

The Internet Of Things (IoT) [2] is an evolving technology that refers to a network of
interconnected objects (”things”). Since it is such a varied, ever-changing topic that
encompasses various heterogeneous technologies and communications systems, it is
actually impossible to formulate a precise definition, the road-map of this technology
changes every year. A ”thing” is a physical device, capable of sensing data from the
environment, and it is also able to communicate with other device or with humans, it
can be a smartphone, a sensor, a ”smart speaker”, RFID device, NFC tag, etc. The

6

IoT is a paradigm, today used in the most disparate application contexts that is fastly
changing the shape of internet itself. The advent of the IoT marked the beginning
of a new era in the digital world, introducing an unparalleled blend of the physical
and digital world [3], proving to be one of the main drivers of modernization in the
telecommunications sector. The extent of innovation is such that it changes the shape
of the Internet itself. [4]

Figure 2.1: Internet Of Things: devices representation.

As analyzed by Perera et al.[5], the advent of the IoT has led to the addition of
everyday devices to the internet, a trend that is becoming stronger over the years. If a
few years ago most of the data generated on the internet were part of human-generated
communications, today the situation is changing. The ubiquity of these devices results
in the generation of a large amount of data, at high speed, with high variety. This
kind of communication can occur between human and ”thing” or between machines
(Machine-to-machine or M2M communication).For this reason, the IoT is becoming
a topic of interest in big data[6][7], since the characteristics of the data that are ex-
changed in such a pervasive, ubiquitous and distributed environment are shown to be
interesting from several points of view. Although there are many efforts in this direc-
tion, nowadays there is no standard for the IoT, the tendency is for each construction

7

company to define and build their own, proprietary architecture. This lack of uni-
formity to a standard increases production costs, funds that could be used for more
in-depth research on the cyber risks to which these devices are exposed. Moreover,
the result is often a complex architecture, which is difficult to secure. Manufacturers
develop devices that use different solutions without following a precise standard. [8]

IoT Applications

As already said this paradigm can be applied to several context using different enabling
technologies. In general it is possible to categorize the various applications in the
following areas.

• Home Automation: Utilities monitoring, remote control over actuators, actuators
automation.

• Environment: Environmental data monitoring, natural disaster forecasting.

• Medical and healthcare: Continuous monitoring of patient health condition, re-
mote diagnostics.

• Automotive: Energy efficient and intelligent vehicle.

• Industry: One of the largest sectors. Also known as IIoT, it includes many dif-
ferent solutions with the common purpose of gaining information and reducing
development time.

• Smart City: Pollution monitoring, buildings corruption state monitoring, smart
traffic management.

• Transportation: Smart fleet management, real time tracking, remote diagnostics.

2.2.2 IoT - Application protocol

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a generic, stateless, textual application
protocol defined in RFC-1945[9] (HTTP/1.0), RFC-2616[10](HTTP/1.1) and then im-
proved with HTTP/2 (RFC-7540[11], the syntax remains unchanged.). It is one of the

8

most widespread application protocols and on which the World-Wide Web is based. It
is a client-server protocol based therefore on requests and responses. The client who
intends to obtain information, formats a request, characterized by an URI[12] (Uniform
Resource Identifier) which allows determining univocally a resource, as well as possi-
bly the message body. The server will respond with a status code, which indicates the
outcome of the request (eg request correctly formatted, resource not accessible, error,
etc.) and possibly the body of the message. The request verb can be one of the follow-
ing: GET, POST, HEAD, PUT, DELETE, OPTIONS, TRACE, PATCH, CONNECT.
The Representation State Transfer (REST) is based on this protocol. An architecture
where the exchange of messages takes place using the HTTP methods. The REST
architecture remains today one of the most widely used solutions in the IoT field al-
though it is a solution based on a generic protocol and which can therefore determine
the exchange of additional overhead information.

Constraint Application Protocol

The Constraint Application Protocol (CoAP, RFC-7272[13]) was created to overcome
some limitations related to the REST architecture and to streamline the amount of
information that is entered into the network. Again this is a request and response based
protocol that uses HTTP. However, unlike the REST architecture, at the transport layer
it uses UDP. Requests are formulated using HTTP verbs and are defined using a URI.
The types of messages used in synchronous/asynchronous requests are the following:

• Confirmable: requires an ACK

• Non-Confirmable: does not require an ACK

• Acknowledgment (ACK)

• Reset (RST)

Message Queue and Presence Protocol

The Message Queue and Presence Protocol (MQTT, Standard ISO/IEC 20922:2016[14])
is a reliable, TCP/IP-based message transport protocol that uses the client/server paradigm.
Born with the aim of satisfying the needs related to the field of Machine-to-machine
(M2M) and IoT communication, the protocol has the following characteristics:

9

• It is based on the publish/subscribe model, according to which a node in the
network that communicates a data (publisher) forwards it to a node responsible
for distributing the messages (broker) to the interested nodes (subscriber).

• The message protocol doesn’t need to be aware of the payload of the message.

• Support different quality of service (QoS) policies.

As highlighted by Karagiannis et al. [15] this approach is more suitable for the Inter-
net Of Things because in this case, not all messages require a response, reducing the
amount of data exchanged in the network improving the power-management perfor-
mances. Compared to a UDP-based protocol, like CoAP, is affected by the exchange
of overhead data related to the TCP-based protocols.

Extensible Messaging and Presence Protocol

Extensible Messaging and Presence Protocol (XMPP, RFC-6120 [16]) is an open and
extensible TCP-based standard for messaging based on the publish/subscribe and re-
quest/response paradigm. Firstly developed by J. Miller in 1998 with a focus on end-
to-end security and later standardized by the Internet Engineering Task Force (IETF).
The architecture of the XMPP networks is decentralized, and the messages exchanged
are in XML format. It support channel encryption through TLS and it is widely used
on the internet and for this reason, it is chosen for some IoT solutions.

Data Distribution Service

The Data Distribution Service[17] is a data-centric API standard and middleware pro-
tocol developed by the Object Management Group for Industrial IoT (IIoT). It is a
protocol based on the publish/subscribe paradigm with quality of service properties
that can be configured for a single entity. The characteristics of this protocol allow
hiding the complexity of data sharing. It is generally used in contexts with real-time
requirements. [18]

Advanced Message Queuing Protocol

The Advanced Message Queuing Protocol (AMQP)[19] is a reliable, extensible, open
messaging protocol designed by a consortium of middleware vendors. It supports the

10

publisher/subscriber paradigm, through communication with a broker and a request/re-
sponse mode of interaction with the messaging infrastructure.

2.2.3 Security

Since this type of technology is so pervasive and often used in critical contexts in-
volving the recording, processing and communication of sensitive data, the security of
these devices is a major challenge. The violation of the security controls of these de-
vices also makes it possible in several cases to tamper with or misuse physical devices.
On October 12, 2016 a distributed denial of service (DDoS) has deprived much of the
east coast of the United States of internet connection. The attack, of nation-state scope
was conducted by the Mirai botnet. It simply scanned big chunks of internet searching
for IoT device, then it performed a TCP SYN scan on telnet ports (23, 2323), if open
it attempted to log in with default credentials by performing a brute-force attack. The
peak was of 600k infection with a volume of 600Gbps. The targets of this massive
attack were Krebs on Security, OVH, and Dyn. [20] Analyzing in detail the function-
ing and the mechanism used by this botnet is not the purpose of this thesis, but it is
certainly necessary to highlight some characteristics. The dictionary used to perform
the brute force attack on the login phase consisted of only 62 pairs of username and
password (fig. 2.2), although it presented some innovative features [20], especially in
the reconnaissance phase, it still belonged to the BASHLITE [21] family of Botnets.

Figure 2.2: Portion of the code related to the setup of the credentials used in the brute-force
attack. [1]

Another point worth dwelling on is the following: analyzing the timeline of secu-

11

rity events related to this malware, it is evident to underline that there was no effective
countermeasure against this attack, although a reboot was enough to clean the devices.
(No corruption of operating system services). This is the perfect example of lack of
by-design security, use of default passwords and in some cases the inability to update
vulnerable devices remotely. The source code of Mirai can be found on several public
repositories, and at the time of writing there are devices vulnerable to this type of at-
tack.

Mirai is not an isolated case. In October 2016, for the first time, a worm similar to
Mirai was identified, which was then named Hajime. The main differences compared
to Mirai are the use of a distributed communication paradigm. Once a new node is
infected, Hajime is able to establish a connection with the attacking node, requesting
malicious code specific for the infected hosting platform.

• ARMv7

• ARMv5

• MIPS, LE

• x86-64

Once infected it uses a P2P connection to retrieve additional malicious code. This kind
of botnet was discover through the use of an honeypot by the SRG researchers. [22]
Also in this case it is important to underline the evolution of the botnet in the short time
that has passed since Mirai’s discovery, and the dedication of the attackers to optimize
the functioning of the software, which as highlighted by Sam Edward et al. was written
by hand. [22]
All this attacks were carried out exploiting ”simple” IoT device, built to performs a
specific task. But this cannot be translated into a smaller attack surface. Of course
countermeasures like blocking useless ports can be part of a good security control,
but what make the attack surface so extended is the complexity of the environment in
which such devices operate. Another botnet, ”BrickerBot”, discovered in April 2017
after infecting an insecure IoT device, conducts a destructive attack against the host
device (Permanent Denial Of Service, PDoS) by wiping the memory and making the
node unable to connect. [23] Attacks on such devices are made more targeted through

12

the use of social engineering. To take an example, in 2017 a scammer broke into the
security systems of a babymonitor to stage a fake kidnapping.[24]
The lack of security in the IoT is a fact, the assets at risk are different, sensitive data
and privacy are some of them, it is important to highlight how possible vulnerabilities
can have a high impact on the physical world. This is due to lack of experience from
manufacturers, lack of security-by-design, out-of-date security measures, extended at-
tack surface.

Malware is developed in an open source environment, evolution of these types of ma-
licious software is not only possible, but probable.

Countermeasures

To protect the CIA triad an efficient security control have to be established with the aim
of avoid, counteract and minimize the the security risks of physical properties, data,
computer systems and other assets. Different cyber-security measures act at different
stages of an event.

• Before the event: Preventive checks - E.g. access control, firewall and/or proxy
configuration, etc.

• During the event: Identify and characterize an ongoing event - Usually per-
formed by an NIDS (Network Intrusion Detection System)

• After the event: Corrective actions to limit the damage. E.g. patches, updates,
NIDS’s signatures update.

Cyber-attack detection

One of the major challenges in the field of IT security is the cyber-attack detection.
Security is not something that can be achieved, rather something that must be contin-
uously researched and improved. A system certainly cannot be declared as safe and
remain so over time. The most clear example is carried out by the DoS attacks. This
kind of attack is one of the oldest attack discovered in the literature of the IT security,
yet today digital giants are still affected by this type of attacks.

13

Figure 2.3: Diagram showing the dependency between elements in the IT security.

The challenge is more complex if the vulnerability on which an exploit is built is
not known to the security community. This kind of attacks are also known as zero-
day attack. Preventing zero-day attack is a real struggle for any security team. These
attacks hard to predict and the relative exploit do not trigger the NIDS, bypassing it.
If a rules for a specif attack it’s not defined in the NIDS the attack is considered a
legitimate request. In order to gain information on this kind of vulnerabilities resource
like the honeypots are widely used. (The source code of Hajime, cited in 2.2.3, was
discovered by using an honeypot).

2.2.4 Honeypot

A honeypot is a security resource used to collect information about cyber attacks. It
is a computer system built and configured with the sole purpose of being attacked or
compromised, eliminating the possibility of damaged valuable assets. A honeypot does

14

not host any production server and does not interact with any other host in the network
unless it is solicited, so it does not receive legitimate traffic, all requests directed to
it are suspicious by design, for this reason the number of false positive/negative is
generally low. [25]
As highlighted by a. Mairh and al. [26] using honeypots as a resource in the reasearch
of zero-day attacks has the following advantages:

• Honeypots targeted only by blackhats, normal users do not interact with this
machines.

• Honeypots are built with to create a log file containing the interaction with other
hosts, there is no need for implement a binary classifier used to differentiate
legitimate and malicious traffic.

• The number of false positive/negative is low.

• Honeypots are presented as a real machine without the risks of being compro-
mised and affect other machines on the network.

Honeypots can be classified as: low interaction honeypots or medium/high interac-
tion honeypots. This classification is related to the availability of the system. Highly
interacting honeypots are able to collect a greater amount of more valuable data, how-
ever they are often difficult to configure. Furthermore, if the system is fully accessible,
it may be used as a vector for other illegal activities, physical devices and other assets
may be damaged. A compromise is often necessary. This resource is also used to at-
tract blackhats to an apparently more vulnerable machine with the aim of identifying
and blocking possible attacks against more valuable assets. From this point of view, it
is clear how building a honeypot that is able to attract attacks directed towards specific
types of devices can be useful to ensure a greater level of security. To do this, it is
necessary to build and model a system that operates as such devices without, however,
the possibility that physical devices are damaged or that other nodes of the network
compromised.

Low-interaction Honeypot

A low interaction honeypot provides low operating system availability, and for this
reason, it is the most robust solution to compromise. They are relatively simple to

15

configure, once the personality is defined, in terms of operating system and active
services they require no further maintenance. However, more experienced blackhats
are able to fingerprint these machines, ceasing the interaction at the reconnaissance
stage. For this reason usually this kind of honeypot are used to attract attackers that
will be added to a blacklist.

Medium-interaction Honeypot

This type of honeypot is characterized by a higher level of interaction with the attacker.
Like low-interaction honeypots, the attacker cannot interact with a full operating sys-
tem, however in this case some services are simulated in a more sophisticated way.
The responses generated by this type of machine are no longer generic, but more re-
alistic. This requires more work during the development phase, however, as far as the
deployment and maintenance phase is concerned, the performance is similar to low
interaction honeypots. The same can be said regarding the level of risk to which these
types of solutions are exposed. However, providing less generic answers makes this
approach more profitable in terms of the interaction time with blackhats, one of the
fundamental metrics in evaluating the overall performance of a honeypot.

High-interaction Honeypot

High-interaction honeypot act as a real production system. These honeypots gather the
greatest amount of valuable information, allowing a deep interaction with attackers.
This type of approach can be achieved by making a physical device available on the
network, or by virtualization so that multiple honeypots can be virtualized on the same
machine. As more operating system features are made available without restriction
these types of machines can be subject to more complex attacks, which increase the
level of risk these systems are exposed to. For this reason and since more complex
infection mechanisms such as service corruption can be implemented, it is necessary to
reinstall the device periodically and/or after each interaction.This determines a strong
increase in costs during the development, deployment, and maintenance phases.

As pointed out by Nawrocki et al.[?], this taxonomy in practice is very difficult to
apply, as in general, it is difficult to classify a honeypot. In fact, software solutions
that simply listen to specific ports are classified as low-interaction honeypots while

16

ROI
Development
cost

Deployment
Cost

Maintenance
cost

Low-interaction + + + +

Medium-interaction ++ ++ + +

High-interaction +++ +++ +++ +++

Table 2.1: Return on Investment, and costs related to different types of honeypots.

solutions that more or less faithfully emulate a specific service are classified as medi-
um/high interaction honeypots.

2.3 IoT-oriented honeypots

2.3.1 Honeyd

Honeyd [27] is one of the most used open source solution for Honeypot. Honeyd
provides a daemon that can be used to virtualize any topology, configuring the avail-
able TCP/UDP services for each host, emulating specific operating systems. When a
host interacts with Honeyd, the software craft a response enriched with some details
related to the personality of the machine. It is not a solution specifically developed
for the IoT environment, but lends itself to extensions. This software can be used
to configure a low-interaction honeypot, but it can be extended with several plugins,
others approaches will use this solution as a base for further additions. Each packet
it’s processed by a central node that checks the correctness and then dispatches it to
the specific handler. Honeyd supports GRE tunneling that can be used to create more
scalable distributed setups.

HoneyIo4

A. Guerra Manzanares [28] propose a platform composed of a Linux based virtual
machine OS. In particular, the author’s goal is to build a software module that allows a
virtualized machine to present itself as one of four different IoT devices for a TCP/IP
fingerprinting analysis. Software such as Nmap support a scan which by sending a
sequence of TCP, UDP and ICMP packets is able, based on the answers provided, to

17

Figure 2.4: Honeyd sample configuration.

determine the target operating system with a percentage of confidence. In particular,
the proposed approach is carried out in the following phases:

• A TCP / IP fingerprinting of a real device is performed, with the aim of capturing
and analyzing the responses provided by the target.

• Analyze the target’s responses to probes sent by the network scanner

• Define, in this case using Scapy, a Python library, the code necessary for the
virtualized machine to respond exactly as the target in the first step.

IoTPOT

The solution proposed by Yin Minn Pa Pa et al. [29] is a honeypot developed for
the purpose of investigating Telnet-based attacks against various IoT devices. The
implementation of IoTPOT consists of several modules as shown in figure 2.5.

• A frontend Responder, whose purpose is to manage the interaction following
different device profiles, which define: the responses sent by the honeypot when

18

the connection is opened, the authentication mode, and the responses sent to the
various commands.

• IoTBOX is a Linux-based environment used to provide a specific response to
a CPU architecture to the frontend responder, who will then forward it to the
client.

• The Profiler component updates device profiles based on interactions managed
by the responder.

• The Downloader component is used to inspect any injected binary malware.

Figure 2.5: IoTPOT implentation design.

IoTCandyJar

T. Luo et al.[30] propose an innovative approach by defining an Intelligent-interaction
Honeypot. In this case, the proposed framework acts at first as a low interaction hon-
eypot, which therefore provides generic answers to the client’s requests. However,
the requests received are then used to investigate the responses provided by real IoT
devices, in order to update the model and insert a more realistic response in the IoT
database, improving overall performance.

19

Figure 2.6: IoTCandyJar architecture.

The proposed approach is very efficient in identifying the messages used before an
attack, during the reconnaissance phase, but clearly cannot forward messages contain-
ing exploits to real IoT devices.

20

Chapter 3

Architecture and Deployment

3.1 System Architecture

The following sections will analyze the architecture of the testbed system. In the first
phase also due to the restrictions related to the Covid-19 epidemic, the system was
tested in an environment consisting of a few devices. Later the same scheme was used
in the IoT laboratory of the SmartData research group of the Politecnico di Torino.
The latest solution allowed us to verify and test different devices, able to interact with
each other, creating a more complex system. In particular, it was noted that some de-
vices communicated directly, within the local network, others, instead, always relied
on a cloud. Moreover, also considering the variety of devices present in the test envi-
ronment, different types of interactions, specific for each product, were tested. (E.g.
smart cam, voice assistant, smart plugs, etc.). The study related to the capture of the
messages exchanged by the devices on the network can be addressed in different ways.
The parameters used as metrics for choosing an implementation solution over another
were the following:

• Coverage: in terms of messages captured by the test environment with respect to
the totality of interactions that take place.

• Scalability: the system have to be designed to be able to operate even after the
addition of new devices, different in terms of application protocols used and/or
quantity and form of information flow generated.

21

• Intrusiveness: The system must operate transparently, minimizing the interfer-
ence with the normal work cycle of the devices within the network.

• Performance: the analysis features must be efficient.

3.1.1 First setup

The system architecture of the testbed will be analyzed in detail below. In a first phase,
the test was conducted on a small number of devices.

• SONOFF basic R2

• SONOFF 4CH PRO R2

• Shelly-1

For these types of devices they were chosen as proof of concept for the testbed since the
documentation provided by the manufacturers was complete and exhaustive regarding
the interactions supported, this was fundamental in the validation phase of the results.
Furthermore, all the devices under examination used the HTTP/HTTPS application
protocol, which made it easier to inspect the captured data. The devices fall within the
scope of consumer IoT devices, they are used for home automation. These devices are
equipped with an actuator that can control a relay. In particular, the devices in question
use RESTful web services to provide the proposed functionalities. Furthermore, both
devices had similar operating modes that will be presented later. These devices, using a
very limited number of commands (ON, OFF, status), have allowed an exhaustive study
of the messages exchanged. The analysis conducted allowed the crafting of messages
recognized as valid by the devices, thus verifying the correctness of the approach. The
use of tools such as Postman [31] was useful for testing and verifying all message
fields inspected and captured by the system.

SONOFF basic R2 & 4CH PRO R2

These devices can operate in two different modes:

• EWeLink mode: In this case the device is connected to the cloud and is con-
trolled by an App. The device will exchange information within the LAN if the

22

Figure 3.1: SONOF basic R2, SONOFF 4CH PRO R2, Shelly-1.

smartphone is connected to the same network, otherwise these will be conveyed
by the cloud.

• DIY mode: In this case the device publishes its own capability services in the
network, which can be reached through the HTTP-based RESTful API.

Shelly 1

This type of device has a function in fact similar to SONOFF products.

• Access Point (AP) mode: Used to perform the first configuration. The device
advertises an HTTP service on port 80 using the mDNS protocol. All requests,
properly formatted, return a JSON-encoded payload. If enabled, all resources
will require HTTP authentication.

• Client Mode (STA mode): The device is connected to the cloud, controlled by
application, similar to the “eWeLink” mode of the previous devices.

Environment setup

This section describes the steps taken to define a first test environment. In this first
phase, the architecture is shown in figure 3.2. A Raspberry Pi 3 Model B is used as an
access point on which an instance of MITM Proxy runs[32].

MITM Proxy[33] is an open-source proxy that can be used to intercept HTTP/1,
HTTP/2, WebSockets, or other protocols protected by SSL/TLS by additional plug-
ins. It can operate as a transparent proxy, thus without altering the traffic that passes
through it, and also supports a mode that allows you to make changes on the messages
that are intercepted. The MITM proxy is used to perform a man-in-the-middle attack.

23

Figure 3.2: Environment setup.

An attack of this type aims to place the attacker in the middle of a communicative
association previously established by two network nodes, with the goal of intercept-
ing, possibly altering, and retransmitting the intercepted traffic. With MITM proxy all
traffic can be viewed in real-time via a web interface.

Figure 3.3: Man-in-the-middle attack performed by C against A and B. The message M is
captured by C and possibly altered as M*.

The Raspberry must therefore be configured to host a WiFi hotspot, this is achieved

24

by using the hostapd service. To ensure internet access to the devices in the test envi-
ronment, a DHCP server must be configured, for this purpose, the dhcpd and isc-dhcp-
server service were used. The first step necessary to configure the DHCP client is the
assignment of a static IP address for the chosen network interface.

1 interface wlan1

2 static ip_address = 192.168.42.1 / 24

3 nohook wpa_supplicant

Listing 3.1: DHCPd configuration file.

As shown in Listing 3.1, in this case, the wlan1 interface was assigned the address
192.168.42.1. Furthermore, the above configuration file prevents the WPA supplicant
service from interfering with DHCP. Another software module is responsible for man-
aging the addresses that will be assigned to the devices connected to the access point:
isc-dhcp-server. Specifically, this is configured as shown in listing 3.2.

1 # If this DHCP server is the official DHCP server for the local

2 # network, the authoritative directive should be uncommented.

3 authoritative;

4 subnet 192.168.42.0 netmask 255.255.255.0 {

5 range 192.168.42.10 192.168.42.250;

6 option broadcast -address 192.168.42.255;

7 option routers 192.168.42.1;

8 option domain-name "local";

9 option domain-name-servers 8.8.8.8, 8.8.4.4;

10 }

Listing 3.2: ISC-DHCP-Server configuration file.

In this specific case, the range of IP addresses that will be used for the assignment
belongs to the range 192.168.42.10 - 192.168.42.250. The router address is the static
one configured for wlan1. At this point, the ISC-DHCPv4 server is configured.

At this point, the hostapd service has been configured as follows there are different
parameters that can be varied among the possible options. The most relevant for this
case study are the following (listing 3.3).

1 interface = wlan1

2 ssid = test-env0

3 macaddr_acl = 0

4 auth_algs = 1

25

5 wpa = 2

6 wpa_passphrase = testenv0pwd2020

7 wpa_key_mgmt = WPA-PSK

8 wpa_pairwise = TKIP

9 rsn_pairwise = CCMP

Listing 3.3: HostAPD configuration parameters.

• interface = wlan1: AP will be available through the wlan1 network interface.

• ssid = test-env0: The SSID of the WLAN.

• macaddr acl = 0: Use blacklisting for Station MAC address-based authentica-
tion.

• auth algs = 1: IEE 802.11 specifies two authentication algorithms, Open Sys-
tem AuthN (to be used with IEEE 802.11X) or Shared Key Authentication, in
this case, the latter is used.

• wpa = 2: Use WPA2 - Wi-Fi Protected Acces 2 (IEE 802.11i).

• wpa passphrase = testenv0pwd2020: The passphrase used by WPA.

• wpa pairwise = TKIP: Pairwise cipher for WPA.

• rsn pairwise = CCMP: Pairwise cipther for RSN/WPA2.

Once the access point is configured it is necessary to set up the MITM proxy. An
example of use is:

1 mitmweb --mode transparent --web-port 9090 --web-host 0.0.0.0

Listing 3.4: Example of use of MITM proxy.

In this case, the version with a web interface available on port 9090 is used, the
proxy operates in transparent mode and can be reached starting from the LAN IP ad-
dress of the device. To use the setup of the MITM proxy in transparent mode, you need
to add new firewall rules, as shown below.

26

1 iptables -A FORWARD -i eth0 -o wlan1 -m state --state RELATED,

ESTABLISHED -j ACCEPT

2 iptables -A FORWARD -i wlan1 -o eth0 -j ACCEPT

3 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

4 iptables -t nat -A PREROUTING -i wlan1 -p tcp -m tcp --dport 80 -j

REDIRECT --to-ports 8080

5 iptables -t nat -A PREROUTING -i wlan1 -p tcp -m tcp --dport 443 -j

6 REDIRECT --to-ports 8080

Listing 3.5: Firewall rules added for transparent proxy configuration.

Specifically, the set of rules shown in listing 3.5 allows you to redirect the packages
that are received from the wireless interface to the wired interface. In this specific case,
only the messages directed to port 80 and 443 are intercepted by the proxy. Finally,
packet forwarding for IPv4 is required.

3.2 Passive analysis

This section analyzes the passive analysis techniques used to capture the traffic of
devices on the network. These types of analysis do not require the direct interaction
with the device. Instead, these techniques are based on access to the communication
channel with the aim of obtaining information about the data exchanged by the devices
that have established a communication association[34].

3.2.1 Traffic monitoring

Wireshark

Wireshark is the most common network protocol analyzer. It can be used to performs
inspection of network protocols with different purposes, debugging or network proto-
cols reverse engineering. It supports the inspection of a different set of protocols in
live capture or offline. Live data can be retrieved from Ethernet, IEE 802.11, Blue-
tooth, PPP, etc. It was used during the first phase of the testbed development to collect
the messages used by different IoT devices to supports different tasks. [35] The re-
quests gathered by this tools were analyzed following a conceptual model as proposed
by Forshaw [36].

27

• Content layer: Related to the conceptual meaning of such request. E.g. turn a
smart relay to the ON state.

• Encoding layer: Related to the way used to perform such request. E.g an HTTP
POST method, as shown in listing 3.7

• Transport layer: Related to how the information is sent on the network. E.g.
by a TCP/IP connection, as shown in listing 3.6

1 0000 00 00 24 00 2f 40 00 a0 20 08 00 00 00 00 00 00

2 0010 4e 07 b1 09 00 00 00 00 10 0b 85 09 a0 00 de 00

3 0020 00 00 de 00 88 41 df 00 20 b0 01 da 15 f1 04 4f

4 0030 4c 6a f7 78 dc 4f 22 93 b9 37 60 83 00 00 ef 49

5 0040 00 20 00 00 00 00 20 08 bf 8e a0 ba 17 c4 a2 2e

6 0050 15 c0 cd c4 d4 6e 91 aa e7 bf 0d b1 65 82 8b 7c

7 0060 dd 35 03 c5 28 9b f4 eb 69 b3 4c 56 91 51 31 69

8 ...

Listing 3.6: Transport layer representation of an HTTP POST request sniffed by Wireshark.

1 POST /zeroconf/switch HTTP/1.1

2 cache-control: no-store

3 accept: application/json

4 Content-Type: application/json;charset=UTF-8

5 Content-Length: 185

6 Host: 192.168.1.50:8081

7 Connection: Keep-Alive

8 Accept-Encoding: gzip

9 User-Agent: okhttp/3.12.1

10

11 {"sequence":"1601224819801","deviceid":"10005f3607","selfApikey

":".................","iv":"MTEwMTExMTA2OTUxMDY1Mw==","encrypt":

true,"data":"c3aa3xzgkg9dwWIXkfk3Ow=="}

Listing 3.7: Enconding layer representation of an HTTP POST request sniffed by Wireshark.

This tool allowed us to verify the possibility of intercepting all the traffic in the
network in question, to verify the loss of packets or the incorrect interpretation of the
same without having to develop specific software in case some critical issues were
detected. The captures made using Wireshark met the required requirements, but the

28

request to automate the capture, analysis, and creation of an archive led to the choice to
use libraries used by the same tool in ad hoc developed scripts. Furthermore, the choice
of using scripts based on libpcap libraries[37] allows you to customize and extend the
information, which will then be collected and stored, based on the experimental needs.
It was also decided to separate the message capture part from the message analysis and
storage part. Thanks to this choice, the system can also be used with communication
systems (E.g. bluetooth, NFC, ZigBee, etc.) other than the one used in this project.
The re-usability of the code was in fact one of the requirements set at the time of
design.

Traffic capture via monitor mode interface.

The approaches tested for passive traffic analysis also include traffic capture via the
wireless network interface in monitor mode. Unlike the capture with the network in-
terface in promiscuous mode in this case it is not necessary that the network card is
connected to the same LAN to which the target devices belong. This approach there-
fore does not interact at all with the operation of the devices and does not in any way
alter the flow of packets that are exchanged within the LAN or sent/received over the
Internet. In particular, each device compliant with the 802.11a/b/g standard can operate
in different modes:

• Managed mode (Client mode): In this case, the device behaves like a client
and is, therefore, able to communicate with other nodes connected to the same
master.

• Master mode: The network cards configured in this way operate as Access
Point, thus providing connectivity to client devices.

• Monitor mode: This mode is only supported by some specific network cards,
and is mainly used for diagnostics. The network interfaces configured in monitor
mode are not able to transmit data but only to receive it.

• Ad-hoc: This mode is used for creating ad-hoc networks. In this case, the topol-
ogy is that of a graph.

To configure a network interface in monitor mode, the Airmon-ng[38] script and
an external WiFi adapter equipped with a chipset supporting monitor mode were used.

29

Figure 3.4: Decrypted network traffic, captured in monitor mode.

With this configuration, it is possible to capture all the wireless traffic in the range of
the adapter, to do this once again the Wireshark software was used. Once the traffic
coming exclusively from the LAN in question has been filtered, Wireshark tools have
been used to decrypt the captured traffic, after that the capture file appear as shown in
3.4 In this case, however, the traffic is burdened by a series of messages necessary for
the functioning of the IEEE 802.11 protocol but not interesting for the purposes of the
project. Furthermore, since the device that performs the capture does not belong to
the LAN, a further step is required in the data processing phase. However, this choice
could be interesting to extend the analysis to devices that use different protocols.

3.2.2 Automate sniffing with Scapy

Several options were available to automate the traffic scanning process, such as writing
a script for bash using the Wireshark command-line interface, tshark, or using libraries
developed specifically for this purpose. In this case, a program developed in Python,
Scapy, was used. Scapy allows you to intercept, create, and inspect network packets
conveyed via TCP, UDP or ICMP. In particular, Scapy acts as a wrapper for the libpcap
library.The choice of this wrapper is related to the fact that this library allows not only
to capture and inspect network traffic but also allows the modification of received pack-
ets and the forging of new ones. Scapy was therefore chosen to leave the possibility
of extending the functionality of the testbed. Scapy also allows for a layered analysis
of captured packets. The considerable flexibility of the chosen library can allow an
in-depth analysis of any attacks on monitored devices, and testing of any exploits.

30

SSL/TLS encryption

Although the first solution appears to be the most practical and apparently complete,
several critical issues emerged during its use. In particular, this solution does not meet
the requirements chosen during the design phase of the testbed. The most severe crit-
icality found is related to HTTPS traffic. In this case, the proxy should recognize the
secure connection established via TLS/SSL, automatically detecting the ClientHello
message. The client then establishes a secure connection with the proxy believing it
is communicating with the remote server. MITM proxy in turn establishes a secure
connection with the server, receiving a certificate, it also generates a fake certificate
that will be sent to the client to perform the authentication. From this moment on, the
two TLS connections are active, between client and proxy, and between the proxy and
remote server. In this procedure, it is therefore essential that the client accepts the cer-
tificate generated by the proxy recognizing it as valid and owned by the remote server.
Unfortunately for almost all tested devices, the certificate validation process failed,
thus preventing the devices from communicating. A possible solution, suggested by
the developers of the tool themselves, could be to install an ad hoc generated certificate
as trusted, thus changing the list of trusted certification authorities (Trusted CAs), but
in the case of IoT devices, this is impractical. However, even if this procedure were
possible this would go against the scalability and intrusiveness requirements defined
in the design phase. In fact, this procedure should be practiced for each new version
of the device firmware and for each new device added to the network. On the basis of
the previous considerations, it was decided not to use the aforementioned proxy but to
automate the traffic capture phase and postpone its analysis to a later, offline phase.

3.3 Active analysis

This section shows the techniques and tools used during the active analysis phase.
In this case, these techniques require interaction with the target node, with the aim of
acquiring information from this. These types of techniques can be carried out manually
or can be automated using specific tools, the tools and the approaches used to automate
the pipeline are described below. The active analysis allows you to collect additional
information and link the results obtained by drawing on any further requests directed to
the monitored devices. These scans also allow us to detect any device firmware updates

31

Figure 3.5: MITM proxy - HTTPS interception.

that change the ports used and their protocols. It should also be noted that active
analysis is fundamental for the characterization of the personalities of a honeypot.
This type of analysis is sufficient to create a low-interaction honeypot.

Port scanning

The analysis of active ports on a host is fundamental in defining the interactions sup-
ported by the device and during the host discovery. For this reason, it is one of the
scans that are carried out by both pentesters and blackhats during the reconnaissance
phase, since the information obtained is the basis for subsequent searches for vulner-
abilities. An example is the aforementioned Mirai botnet, which to determine new
possible targets conducted a scan on large blocks of IP addresses in order to deter-
mine which services were active on that host and if there were any vulnerable ones
among them. In the present study, the analysis of the active ports allows to facilitate
the subsequent traffic analysis, furthermore this analysis is useful for determining the
hosts present on the network and their active ports even if they will not generate traffic
during the experiments.

32

Nmap analysis

Nmap

Nmap is an open-source network mapper. It is used by the network administrator to
perform various tasks, such as monitoring hosts and/or services, host discovery, port
scanning.[39] Nmap supports the creation of various IP packets which can be used to
probe for active services on a specific host or network. Since the purpose of this thesis
is preliminary to the creation of a digital twin of an IoT device, the scanning of active
services and related open ports is a necessary step.
Nmap supports different types of port scanning techniques for TCP and UDP[40], Be-
low are some types of scans carried out during laboratory tests.

• TCP SYN Scan: The device send a SYN packet, as if it is going to open a real
connection. It waits for the SYN/ACK (open port) or RST (closed port, it is the
default option for Nnamp. It is fast, unobtrusive and stealth.

• TCP connect scan The device tries to establish a connection with the target ma-
chine by using the connect system call. Although it is less efficient, less control-
lable (it uses high level API) it is more reliable rather then the TCP SYN Scan.
The request can be logged. Used also by users without raw packet privileges.

• UDP scans UDP scanning is generally more slower and complex than TCP. The
devices send a UDP packet to the target machine. For some well known port a
protocol-specific payload is sent to increase response rate. Empty otherwise.

• TCP NULL, FIN, Xmas scan Useful to differentiate between open and closed
ports.These scans exploit a loophole in the TCP RFC (793). Can be used for
systems compliant with this RFC

In the case study aspects such as request logging or the furtiveness of scans are not
considered fundamental, rather the goal is not to interfere with the correct functioning
of the devices in the test environment.

1 # Nmap 7.80 scan initiated Sun Sep 27 17:20:35 2020 as: nmap -Pn -sS

-oN tcp_syn_scan.txt 192.168.1.126

2 Nmap scan report for shelly1 -12345.lan (192.168.1.126)

3 Host is up (0.016s latency).

33

4 Not shown: 999 closed ports

5 PORT STATE SERVICE

6 80/tcp open http

7 MAC Address: AA:BB:CC:11:22:33 (Espressif)

8 # Nmap done at Sun Sep 27 17:20:40 2020 -- 1 IP address (1 host up)

scanned in 4.44 seconds

Listing 3.8: Example of Nmap scan report.

Automating port scanning

The automatic analysis of hosts on the network and their open ports was done using a
nmap wrapper for python. This choice is consistent with the previous design choices,
and also in this case allows you to easily extend the functionality of the testbed, intro-
ducing further scans and analyzes. In particular, the hosts on the network are identified
by means of a pingsweep on the test network (as shown in listing 3.9), then for each
online host, a scan of the open TCP and UDP ports is performed. To increase script
performance, we have chosen to delegate scanning to a process pool of 1 to 8 processes.
This choice was made on an experimental basis, optimizing the time required for scan-
ning and the computational resources available and used. This type of scan must be
repeated each time the monitored devices are changed.All the information collected is
stored in a no-sql archive, the details of which will be better specified later.

1 nm.scan(hosts=subnet, arguments=’--max-parallelism 100 -sP -PE -PA

21,23,80,3389,8081’)

2 print(’Found %d devices’ % len(nm.all_hosts()))

3

4 for host in nm.all_hosts():

5 print(’[-] Host:\t %s (%s)’ % (host, nm[host].hostname()))

6 print(’[-] State:\t %s’ % nm[host].state())

7 row_list.append([host, nm[host].hostname(), nm[host].state()

])

Listing 3.9: Code used for port scanning automation.

34

3.4 Laboratory environment

The testing of the realized architecture was carried out at the IoT laboratory created
by the SmartData research group of the Politecnico di Torino. In this case, the testing
environment had a greater number of devices than in the previous case, the system
was configured following the approach proposed by Ren et al.[41]. The laboratory
also allowed to test other more complex devices than the one analyzed at first. The
analyzes carried out, extended to such a heterogeneous environment, were fundamental
to validate the previously defined design choices.

3.4.1 Mon(IoT)r

The laboratory configuration follow the architecture presented by J. Ren et al. [41] in
the Imperial College of London. This environment was used by the research team to
conduct a multidimensional analysis of information exposure from different common
IoT devices, highlighting differences related to different to different privacy regulation.

Figure 3.6: Mon(IoT)r laboratory - Imperial College London.

Network configuration

The configuration of the physical network interfaces is the following.

35

• eth0: This interface is used to intercept traffic that is was sent/received from the
Internet. For this reason, the captures conducted on this interface have the pur-
pose of obtaining information relating to the interactions concerning the device
with the cloud.

• switch-vlan10, switch-vlan11, switch-vlan12: These virtual LANs (VLAN10,
VLAN11, VLAN12) represent the three networks in which the IoT devices will
operate, and will be used to collect data exchanged within the LAN.

• mirror-vlan10, mirror-vlan11, mirror-vlan12: Mirroring interfaces for the three
VLANs.

• copy-vlan10, copy-vlan11, copy-vlan12: Used to copy traffic which will then be
analyzed by the system.

• wlan0.1, wlan1.1, wlan2.1: 2.4 GHz WiFi network for traffic from VLAN10

• wlan0.1, wlan1.2, wlan2.2: 5 GHz WiFi network for traffic from VLAN11

• wlan0.3, wlan1.3, wlan2.3: 2.4GHz WiFi network for traffic from VLAN12

3.4.2 Devices

As already pointed out in this case, the devices under examination are 11 as shown
in table 3.1, and they belong to different families of consumer IoT devices. For each
device, the interaction tested inside the testbed is different, for example with regard to
the smart cams during the capture phase motion recording mechanisms were triggered
to start a series of more complex messages exchange (Transfer of images to the cloud
and subsequent transmission to a companion app). For other devices, it was enough
to give voice commands, while for others the only possible interaction was through a
smartphone application.

3.4.3 Packet inspection

Once the traffic of a specific VLAN has been captured, it is analyzed by a python script
whose main purpose is to classify the type of packet based on the transport protocol
used and then extract all the related information. In addition to this function, all HTTP

36

Smart cam
Home
automation

Audio Appliances

Device

- Xiaomi Smart cam
- Netatmo Smart Cam
- Wans Camera
- Xiaomi Security Cam
- Yi Camera

- TPLink bulb
- Hue hub

-Amazon Echodot
- Google home
-Amazon Echospot

-Netatmo weather
station

Interaction

Trigger movement
detection,
interact through
smartphone
companion appliaction

Turn on/off Voice command

Interact through
smartphone
companion
application

Table 3.1: Devices present in the environment and related interactions tested.

Figure 3.7: List of devices.

37

requests/responses are handled separately so that it is possible to reconstruct the dy-
namics of interactions. The steps followed by the software developed to inspect the
data flow is shown in figure 3.8. The analysis at the application level is fundamental

Figure 3.8: Data extraction stateflow.

to determine the messages that will then be received and sent by the honeypot, the ex-

38

haustive collection, at the transport protocol level, will allow the honeypot to compare
the information exchanged in a controlled environment and those exchanged during
a possible attack. Furthermore, the choice made leaves the possibility to update the
testbed in such a way as to extend the inspection of packets at the application level
to the most common protocols for the IoT mentioned in chapter 2.All the information
analyzed and processed as explained above are associated with a device and cataloged
by the product category.

3.5 Data storage and dictionary structure

The design choices related to the storage of the data acquired in the previous analyzes
and therefore the creation of the dictionary that will then be used by the honeypot are
illustrated below.

Database: RDBMS, no-SQL

Also in this case the choice of the DBMS was carried out following the requirements
defined in the design phase. In particular, the particularities of the systems mainly used
for data organization were analyzed. SQL-based DBMSs are aimed at managing and
querying highly structured data, one of the characteristics of SQL databases is related
to data normalization, reaching the normal Boyce-Codd form. This feature involves the
creation of rigid schemes, which are difficult to alter. This characteristic is, perhaps,
the main obstacle in the storage of heterogeneous data processed in the analyzes.

SQL no-SQL

Storage model Tables with fixed structure

Document,
key-value pair,
graph,
multivalues

Schema Fixed Flexible
Joins Required Not always required
Scaling Vertical Horizontal
Time to deployment Medium Fast

39

The reasons that led to the choice of a no-SQL database are mainly the following:

• Flexibility of the data model: fundamental for heterogeneous collections and for
the possibility of adding new information to allow new functions to the scripts
created.In particular, for the case study under examination, the entities to be
modeled were similar but differed from each other for some fields. In the case of
SQL, this solution could be solved by modeling either a different table for each
type of protocol or by creating an all-inclusive table, containing all common and
non-common fields, not always valued.

• Horizontal scaling: allows us to increase the volume of data collected without
requiring major infrastructure updates. [42]

• Quick data query: The data is stored in an optimized way for the query by linking
the necessary information already in the development phase.

• Reduction of the time required during the development and deployment phase.

Among the different types of no-SQL databases, MongoDB[43], a document ori-
ented No-SQL database, was chosen.

MongoDB

Figure 3.9: MongoDB logo.

MongoDB is an open-source NoSQL database management system based on JSON
documents, a text format that is agnostic to programming languages. Released in 2009,
as NoSQL DBMS does not have a fixed schema, it supports several features, listed
below[44]:

• Data query via REST API.

40

• Indexes: Like other RDBMSs, it supports indexing to optimize queries.

• Natively supports aggregations using the map-reduce pattern.

With reference to the system requirements defined during the design phase, Mon-
goDB was chosen for its support for horizontal scalability, which makes it possible to
extend the system to a set of testbeds used as data sources. Furthermore, the built-
in support for aggregation operations is certainly interesting in view of further steps
relating to the data processing phase. Finally, the possibility of significantly reduc-
ing the time required for the development phase was decisive in choosing MongoDB
as a DBMS. It is also worth mentioning the ease of database replication, therefore of
migration of the same from one server to another.

Figure 3.10: Structure of the database.

The database is organized as shown in figure 3.10. Each device constitutes a col-
lection in itself, which in turn contains two collections, one for the messages received
and one for those contained. Each document contains the information that has been ex-
tracted from the python script used for this purpose, in particular, it is possible to define

41

the information from which protocol. Since the captured packets are not necessarily
structured in the same way in terms of the protocols used, different documents may
contain different information. For this reason, the flexible structure of non-relational
databases was the choice adopted in the design phase.

42

Chapter 4

Case study and results

4.1 Overview

In this section are reported the results obtained from the processing of the data collected
by the testbed during the period May 2020 - December 2020. Some elaborations are
used for information purposes, from these it is possible to obtain the spatial localization
of the servers with which the devices communicate, as well as statistical data such as
the protocols used by the devices present in the testbed.

Figure 4.1: Testbed sample setup.

This information will not be used directly for the creation of the message dictio-

43

nary but is mainly used to get a wider view of the captured data, which can be easily
interpreted in this way. Figure 4.2 shows in particular the geographical distribution of
the servers with which the various devices communicate. This is an interesting starting
point for further analysis that aims to investigate some aspects more closely related to
privacy.

Figure 4.2: Spatial information about the servers contacted during the experiments.

The graph shown in figure 4.3 shows on the y-axis the number of packets detected,
while on the x-axis the main transport protocols used are grouped by the direction of
the traffic generated:

• Local

• From the local network to the outside (outgoing traffic)

• From outside to the local network (ingoing traffic)

The graph in figure 4.3 shows that with the exception of UDP traffic, most packets
are exchanged within the local network. In the case of the UDP protocol, a significant
difference can be noted in the direction of the packets sent, this is mainly due to the
audio/video streaming activity of IoT devices such as smart-cam, security-cam, etc.

In the graph in figure 4.4, it is evident how the traffic division based on data direc-
tion is balanced over the three classes.

44

Figure 4.3: Statistical information on the traffic direction of the network divided by protocols
used by the devices during the experiments.

Figure 4.4: Statistical information on network traffic direction.

In the graph in figure 4.5, on the other hand, it can be seen that most of the traffic
captured uses the UDP protocol as the transport protocol. This difference, as high-
lighted above, is due to the considerable volume of data that is transmitted during mul-
timedia streaming, activity due to user interaction via smartphone, cloud, and smart-

45

camera.

Figure 4.5: Statistical information on the protocols used by the devices within the test environ-
ment.

4.2 Active Analysis

The active analysis, as highlighted above, includes a set of techniques that provide
for direct interaction with the various devices connected to the network, with the aim
of obtaining general information regarding the state and behavior of the latter. This
type of analysis is not strictly linked to the realization of the testbed, but provides an
additional tool to the honeypot developers, for example being able to determine the
open and used ports so as to be able to report the same behavior on the honeypot. The
results obtained are also useful for the analysis combined with the data obtained with
the passive analysis, thus being able to verify anomalous traffic (eg traffic directed to
a closed door) but also to determine the specific use for each port (eg port X used for
application data, Y port for updates or messages from/to the cloud). Figure 4.6 shows
an example of the output generated by the software module responsible for scanning
the ports of the devices connected to the network. In particular, in this example, it is
possible to note, for a specific device, the IP address, the status of the ports, and the

46

related listening protocols. In figure 4.7 instead it is possible to see a possible output

Figure 4.6: Information collected by the automated port scanner.

on a CSV file containing the same information that is displayed on the terminal. This
type of analysis is conducted periodically, with the aim of obtaining information from
new devices but also of verifying a change in behavior due, for example, to an update
of the IoT device firmware. The techniques chosen to conduct the active analysis did
not determine a change in the normal operation of the devices, limiting themselves to
performing scans that do not require a high computational load in the reception during
the processing phase. Furthermore, an attempt was made not to congest the traffic
on the local network. Also, in this case, the output obtained, organized in CSV files,
reports the information in a labeled way, thus allowing further processing.

47

Figure 4.7: Part of the information gathered by the port scanner organized in CSV files.

4.3 Passive Analysis

The passive analysis involves the acquisition of network packets passing through the
proxy. The choice of using a transparent passive capture on a proxy is determined by
the need not to alter, in any way, the traffic that is generated by the devices on the
network. As previously highlighted, the implementation of techniques such as the man
in the middle attack has led to the malfunction of many more advanced devices. Such
malfunctions are detected in all secure connections via SSL, due to mechanisms such
as certificate pinning or simply certificate validation, controls present in most devices
on the market. On the other hand, a real-time display of the content of the encrypted
payload would have allowed increasing the size of the dictionary, and for this reason,
this point represents one of the aspects to be developed in the future.

48

The application of more advanced techniques, linked for example to the exploitation
of known vulnerabilities in communication protocols, does not meet the scalability
requirements defined in the design phase. This study was carried out on devices con-
nected via Wi-Fi, an attempt was made to leave the possibility of extending the data
acquisition module to different protocols (e.g. ZigBee, Bluetooth), leaving the cap-
tured data processing module unchanged.

Figure 4.8: HTTP stream captured during the experiments.

Figure 4.9: Another fragment of the HTTP stream captured during the experiments.

Figure 4.8 and 4.9 shows an example of an HTTP stream between a smart cam and
a smartphone. In particular, in the first image, the command sent by the smartphone as
a request on the status of the room is shown in red, the relative response in blue. The
following image shows the video/audio streaming request and the relative response in
red.

49

4.4 Data extraction

This last software module is the core of the testbed and is responsible for processing
the information captured in the previous analyzes, filtering the data by protocol level
or by a specific protocol and by device, labeling the exchanged packets, and finally
storing them in the no-SQL database.
The information is processed starting from the pcap files and configuration files gen-
erated by the previous modules. By means of appropriate parameters of the script, it
is possible to specify individually, from which levels to extract the information that
will subsequently be stored. It is possible to extract information from protocol headers
such as TCP, UDP, ICMP, but also to process higher-level protocol information such
as HTTP/HTTPS.
The module was designed to label the obtained data per device, but this clearly does
not limit the ability to design a honeypot that uses messages from all devices stored in
the database. This module does not need any additional information other than what is
provided by the previous modules. This allows you to start an analysis in an unknown
environment and still get to the formation of the dictionary. This particularity allows
avoiding a detailed and in-depth study of the documentation (when available) of the
various devices present in the test environment. It was possible to verify the consider-
able lack of technical documentation relating to the communication protocol used by
various devices, and often when present not updated. However, when available, the
documentation was used in the results validation phase.
Figure 4.10 shows the list of packet collections divided by device and direction (sen-
t/received).

Figure 4.11 shows a document representing an HTTP response message. In par-
ticular, in this specific case, the information shown is extracted from different levels
(TCP, IP, HTTP). Since different protocols may be present in different packages, it
is possible that the collection is heterogeneous, for this reason, we have chosen to
use non-relational databases. In this specific case it was of interest the messages ex-
changed through HTTP but in general, it is possible to obtain information from all the
exchanged packets, increasing however the amount of information stored.

50

Figure 4.10: List of collections of received/sent messages for each device.

Figure 4.11: Example of a document part of the IoT dictionary.

51

4.5 Summary

In conclusion, taking into consideration three different devices, of growing complexity
in terms of available features and therefore interactions, such as the Shelly-1, the Ne-
tatmo camera and the Alexa Echo Dot assistant, it was found that for simple devices
such as Shelly-1 i messages can be grouped into two categories: action (from ON to
OFF or vice versa) and status request. As for more complex devices such as the Ne-
tatmo camera, audio/video streaming and communications are added that are initiated
from the camera following environmental events (e.g. motion detection). On the other
hand, advanced devices such as Amazon Alexa involve a significant increase in the
ports used, protocols used, hosts contacted, also due to the possibility of interacting
with different devices belonging to the same network. From all this, it is easy to see
that the creation of a dictionary for the first two categories is simpler and more suffi-
cient than in the third case, where the complexity of the interactions makes it necessary
not only a greater number of experiments to detect the greatest number of possible in-
teractions but the use of different techniques for the realization of a honeypot. (E.g.
machine learning).

52

Chapter 5

Conclusions and future work

5.1 Conlcusion

The study conducted therefore proposes a methodology that can be applied with the
aim of obtaining, in an automatic way, a dictionary of messages oriented to a chosen
protocol. The added value of the data, once processed, and the possibility of filter-
ing labeled traffic. In particular, the packet capture section uses techniques and tools
already widely known to the research community, widely tested, in order to maintain
the integrity of the data transmitted and received. Systems and approaches, such as
the already mentioned MITMproxy, have been discarded due to interference with the
devices under examination with the consequent possibility of data loss. However, there
remains a point on which it is possible to improve the proposed model, trying to extract
information on packets protected by encryption. Moreover, in this phase no dedicated
hardware components were used, which would have limited the contexts of use. Over-
all, the system has proven capable of capturing, filtering, and cataloging application
messages exchanged by different IoT devices. It was also possible to use the data
stored by the system to conduct replay attacks, which in most cases were successful.
Furthermore, at the moment the approach has been tested exclusively by intercepting
traffic conveyed via Wi-Fi or wired network, but it is still possible to extend the work
done for devices that use different protocols such as Bluetooth, ZigBee, etc, by modify-
ing the module responsible for capturing network packets. The proposed methodology
can be used in different environments and not necessarily for IoT devices. The final
result is a NoSQL database from which it is possible to obtain not only information

53

about the syntax used for exchanging messages from the various devices but also gen-
eral information relating to the ports, the protocols used, the servers contacted by the
devices. All this information will be necessary for the future development of a medi-
um/high interaction honeypot, starting from a dictionary with all the possible messages
and responses exchanged by the devices.

5.2 Future work

During the development of this thesis work, several ideas emerged that have not been
deepened. These certainly include the possibility of using the information stored in
the dictionary to perform behavioral fingerprinting of devices on the network. This
can be achieved by using unsupervised machine learning algorithms, such as gradient
boosting or k-nearest neighbor. Some studies have already been conducted in this
area and the results are encouraging [45] [46] [47]. This investigation can also be
conducted without the ability to extract information from encrypted traffic. A possible
solution is to use Shannon’s entropy as a feature, defined by the formula below, this
allows to obtain information about the amount of information contained in the message
without necessarily decrypting it. Encrypted or encoded messages will contain more
information than a plain text message.

H = −
X

i

pilogb pi

Similarly, traffic captured under controlled conditions could be used as a sample to
identify variations with respect to the normal behavior of devices, in order to identify
the presence of malicious traffic caused by an attack in progress.Another aspect that
could be further investigated is that linked to privacy and confidentiality, conducting
new statistical analyzes about the servers that are contacted by the devices and the
information that is transmitted, the amount of traffic that is protected by encryption,
authentication, etc. These are just some of the possible insights that could be conducted
once a sufficiently rich dataset of labeled data is available.

54

Chapter 6

Appendix A

6.1 System setup

6.1.1 Access Point automated setup

1 #!/bin/bash

2

3 if [$# != 3]; then

4 echo "[ERROR] Illegal number of parameters."

5 echo "[-] Syntax: recon.sh [interface] [SSID] [PASSPHRASE]"

6 echo ’[-] Example: recon.sh wlan0 my_ssid my_passhphrase ’

7 exit -1

8 fi

9

10 if [[$1 == ’--help’]]; then

11 echo "[-] Syntax: recon.sh [interface] [SSID] [PASSPHRASE]"

12 echo ’[-] Example: recon.sh wlan0 my_ssid my_passhphrase ’

13 exit 0

14 fi

15

16 echo "[INFO] Creating access point through $1"

17

18 # Interface check

19 ip link show $1 > /dev/null 2>&1

20

21 ret_code=$?

55

22

23 if [[$ret_code != 0]]; then

24 echo "[ERROR] Device \"$1\" does not exit. Aborting."

25 exit -1

26 fi

27

28 if [[-d "./tmp"]]; then

29 sudo rm ./tmp/*

30 else

31 mkdir ./tmp

32 fi

33

34 sudo cp ./conf/hostapd ./tmp/hostapd

35 sudo cp ./conf/dnsmasq.conf ./tmp/dnsmasq.conf

36 sudo cp ./conf/dhcpcd.conf ./tmp/dhcpcd.conf

37 sudo cp ./conf/dhcpd.conf ./tmp/dhcpd.conf

38

39 sudo apt-get install -y hostapd

40

41 if [[$? > 0]]

42 then

43 echo "[ERROR] Error during hostapd installation. Aborting."

44 exit

45 else

46 echo "[INFO] hostapd successfully installed."

47 fi

48

49 sudo systemctl unmask hostapd

50 sudo systemctl enable hostapd

51

52

53 sudo apt install -y dnsmasq

54

55 if [[$? > 0]]

56 then

57 echo "[ERROR] Error during dnsmasq installation. Aborting."

58 exit

59 else

60 echo "[INFO] dnsmasq successfully installed."

61 fi

56

62

63 sudo DEBIAN_FRONTEND=noninteractive apt install -y netfilter -

persistent iptables-persistent

64

65 if [[$? > 0]]

66 then

67 echo "[ERROR] Error during iptables/netfilter installation.

Aborting."

68 exit

69 else

70 echo "[INFO] iptables/netfilter successfully installed."

71 fi

72

73

74 echo "interface $1

75 static ip_address=192.168.4.1/24

76 nohook wpa_supplicant" >> ./tmp/dhcpcd.conf

77

78 cp ./tmp/dhcpcd.conf /etc/dhcpcd.conf

79

80

81 sudo iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

82 # Enable ipv4 forwarding

83 sudo sysctl -w net.ipv4.ip_forward=1

84

85 sudo netfilter -persistent save

86

87 sudo mv /etc/dnsmasq.conf /etc/dnsmasq.conf.orig

88

89 echo "

90

91 interface=$1 # Listening interface

92 dhcp-range=192.168.4.2,192.168.4.20,24h

93 # Pool of IP addresses served via DHCP

94 domain=wlan # Local wireless DNS domain

95 address=/gw.wlan/192.168.4.1

96 # Alias for this router

97 " >> tmp/dnsmasq.conf

98

99 sudo cp tmp/dnsmasq.conf /etc/dnsmasq.conf

57

100

101 sudo rfkill unblock wlan

102

103 # Setup hostapd configuration file

104 sudo echo "

105 interface=$1

106 ssid=$2

107 driver=nl80211

108 hw_mode=g

109 channel=7

110 macaddr_acl=0

111 auth_algs=1

112 ignore_broadcast_ssid=0

113 wpa=2

114 wpa_passphrase=$3

115 wpa_key_mgmt=WPA-PSK

116 wpa_pairwise=TKIP

117 rsn_pairwise=CCMP" > tmp/hostapd.conf

118

119 sudo cp ./tmp/hostapd.conf /etc/hostapd/hostapd.conf

120

121 echo "[DONE] Reboot the system to start the AP."

122 echo "[DONE] Run \"sudo sysctl -w net.ipv4.ip_forward=1\" after

reboot."

Listing 6.1: Bash script for Access Point automated setup.

6.2 Active Analysis

6.2.1 Port scanning automation

1 #!/usr/bin/env python

2 import sys

3 import nmap

4 import csv

5 import signal

6 from datetime import datetime

7 from multiprocessing import Pool, Lock

8

58

9 class TimeoutException(Exception):

10 pass

11

12 global filename, s_timeout

13 s_timeout = 3*60 # 3min timeout for each scan

14 filename = ’recon_report_ports_ ’+datetime.now().strftime("%d-%m-%Y_%

H-%M-%S.csv")

15

16

17 def timeout_handler(signum, frame):

18 raise TimeoutException(’Timeout ’)

19

20 def init_worker(l):

21 global lock

22 lock = l

23

24 # Perform pingsweep with DNS resolution

25 # ICMP echo + UDP discovery on port 21,23,80,3389,8081

26 def pingsweep_resolve(subnet):

27 print(’[+] Scan report for pingsweep over:’, subnet)

28

29 row_list = []

30 header = [’IP address’, ’Hostname’, ’State’]

31 row_list.append(header)

32 nm = nmap.PortScanner()

33 nm.scan(hosts=subnet, arguments=’--max-parallelism 100 -sP -PE -

PA 21,23,80,3389,8081’)

34

35 print(’Found %d devices’ % len(nm.all_hosts()))

36

37 for host in nm.all_hosts():

38 print(’___ ’)

39 print(’[-] Host:\t %s (%s)’ % (host, nm[host].hostname()))

40 print(’[-] State:\t %s’ % nm[host].state())

41 row_list.append([host, nm[host].hostname(), nm[host].state()

])

42

43 if len(sys.argv) == 3 and sys.argv[2] == ’-f’: #write output

into .csv

59

44 filename = ’recon_report_ ’+datetime.now().strftime("%d-%m-%

Y_%H-%M-%S.csv")

45

46 with open(filename , ’w’, newline=’’) as file:

47 writer = csv.writer(file)

48 writer.writerows(row_list)

49

50 return nm.all_hosts()

51

52 # Perform pingsweep without DNS resolution

53 # ICMP echo + UDP discovery on port 21,23,80,3389,8081

54 def pingsweep(subnet):

55 print(’[+] Scan report for pingsweep (No DNS resolution) over:’,

subnet)

56

57 nm = nmap.PortScanner()

58 nm.scan(hosts=subnet, arguments=’--max-parallelism 100 -n -sP -

PE -PA 21,23,80,3389,8081’)

59

60 print(’Found %d devices’ % len(nm.all_hosts()))

61

62 for host in nm.all_hosts():

63 print(’___ ’)

64 print(’[-] Host:\t %s’ % (host))

65 print(’[-] State:\t %s’ % nm[host].state())

66 print(’___ ’)

67

68 return nm.all_hosts()

69

70 # Perform custom scan

71 def perform_scan(target, args):

72 nm = nmap.PortScanner()

73 nm.scan(hosts=target, arguments=args)

74

75 return nm

76

77 # Perform a TCP SYN scan on a target

78 def tcp_syn_scan(target):

79 output = ’’

80 retval = 0

60

81 signal.signal(signal.SIGALRM, timeout_handler)

82 signal.alarm(s_timeout)

83

84 try:

85 row_list = []

86 nm = perform_scan(target, ’-Pn -sT’)

87

88 output += ’[+] Scan report for ’ +str(target) +’\n’

89 output += ’[-] Technique: TCP SYN Scan\n’

90

91 for proto in nm[target].all_protocols():

92 output += ’Protocol:\t %s\n’ % proto

93

94 lport = nm[target][proto].keys()

95

96 for port in lport:

97 output += ’[x] Port:\t%s\tState:\t%s\n’ % (port, nm[

target][proto][port][’state ’])

98 row_list.append([target, nm[target].hostname(),

proto, port, nm[target][proto][port][’state ’]])

99

100 if len(sys.argv) == 3 and sys.argv[2] == ’-f’: #write output

into .csv

101 with open(filename , ’a’, newline=’’) as file:

102 writer = csv.writer(file)

103

104 lock.acquire()

105 writer.writerows(row_list)

106 lock.release()

107

108 except TimeoutException:

109 print(’[Error] Scan abort - timeout ’)

110 print(’[Error] TCP SYN Scan - timeout for host:’, target)

111 retval = -1

112 error_line = ’[Error] TCP SYN Scan - timeout for host: ’+

target

113

114 lock.acquire()

115 error_log.write(error_line+’\n’)

116 lock.release()

61

117

118 except Exception as exc:

119 print(exc)

120 retval = -1

121 finally:

122 print(output)

123 signal.alarm(0)

124

125 return retval

126

127 # Perform a TCP connect scan on a target

128 def tcp_connect_scan(target):

129

130 print(’[+] Scan report for ’, target)

131 print(’[-] Technique: TCP Connect Scan’)

132

133 nm = perform_scan(target, ’-Pn -sT’)

134

135 for proto in nm[target].all_protocols():

136 print(’[x] Protocol:\t %s’ % proto)

137

138 lport = nm[target][proto].keys()

139

140 for port in lport:

141 print(’[x] Port:\t%s\tState:\t%s’ % (port, nm[target][

proto][port][’state ’]))

142

143 # Perform a SCTP scan on a target

144 def sctp_connect_scan(target):

145

146 print(’[+] Scan report for ’, target)

147 print(’[-] Technique: SCTP Connect Scan’)

148

149 nm = perform_scan(target, ’-Pn -sY’)

150

151 for proto in nm[target].all_protocols():

152 print(’[x] Protocol:\t %s’ % proto)

153

154 lport = nm[target][proto].keys()

155

62

156 for port in lport:

157 print(’[x] Port:\t%s\tState:\t%s’ % (port, nm[target][

proto][port][’state ’]))

158

159 # Perform an UDP scan on a target

160 def udp_scan(target):

161 output = ’’

162 signal.signal(signal.SIGALRM, timeout_handler)

163 signal.alarm(s_timeout)

164 retval = 0

165

166 try:

167 row_list = []

168 nm = perform_scan(target, ’-Pn -sU’)

169

170 output += ’[+] Scan report for ’ +str(target) +’\n’

171 output += ’[-] Technique: UDP Scan\n’

172

173 for proto in nm[target].all_protocols():

174 output += ’Protocol:\t %s\n’ % proto

175

176 lport = nm[target][proto].keys()

177

178 for port in lport:

179 output += ’[x] Port:\t%s\tState:\t%s\n’ % (port, nm[

target][proto][port][’state ’])

180 row_list.append([target, nm[target].hostname(),

proto, port, nm[target][proto][port][’state ’]])

181

182 if len(sys.argv) == 3 and sys.argv[2] == ’-f’: #write output

into .csv

183 with open(filename , ’a’, newline=’’) as file:

184 writer = csv.writer(file)

185 lock.acquire()

186 writer.writerows(row_list)

187 lock.release()

188

189 except TimeoutException:

190 print(’[Error] Scan abort - timeout ’)

191 print(’[Error] UDP - timeout for host:’, target)

63

192 error_line = ’[Error] TCP SYN Scan - timeout for host: ’+

target

193 lock.acquire()

194 error_log.write(error_line+’\n’)

195 lock.release()

196 retval = -1

197

198 except Exception as exc:

199 print(exc)

200 retval = -1

201 finally:

202 print(output)

203 signal.alarm(0)

204

205 return retval

206

207

208 def standard_scan(subnet):

209 t_start = datetime.now()

210

211 hosts = pingsweep_resolve(subnet)

212 error_log = open(’recon_error_log_ ’+datetime.now().strftime("%d

-%m-%Y_%H-%M-%S.txt"), ’w’)

213

214 global n_scanned_port

215

216 if len(sys.argv) == 3 and sys.argv[2] == ’-f’: #write output

into .csv

217 mkfile()

218

219 print(’[#] Creating a pool of ’+str(min(8, len(hosts)))+’

processes.’)

220 print(’[#] Scanning...’)

221

222 l = Lock()

223 tcp_scan_pool = Pool(initializer=init_worker , initargs=(l,),

processes = min(8, len(hosts))) # Test with 8 processes pool

224 udp_scan_pool = Pool(initializer=init_worker , initargs=(l,),

processes = min(8, len(hosts)))

225

64

226 n_failures = 0

227 n_scanned_prot = 0

228

229 res_tcp = tcp_scan_pool.map(tcp_syn_scan , hosts)

230 res_udp = udp_scan_pool.map(udp_scan, hosts)

231

232 for res in res_tcp:

233 n_scanned_prot+=1

234 if res == -1:

235 n_failures+=1

236

237 for res in res_udp:

238 n_scanned_prot+=1

239 if res == -1:

240 n_failures+=1

241

242 tcp_scan_pool.close()

243 udp_scan_pool.close()

244

245 tcp_scan_pool.join()

246 udp_scan_pool.join()

247

248 error_log.close()

249 t_end = datetime.now()

250 delta = t_end - t_start

251

252 print(’[X] Job completed. Elapsed time: ’ + str(delta.seconds) +

’ seconds.’)

253 print(’[X] Scans:’,n_scanned_prot)

254 print(’[X] Failures:’, n_failures)

255

256 def mkfile():

257 header = [’IP address’, ’hostname’, ’Protocol ’, ’Port’, ’State

’]

258 row_list = []

259 row_list.append(header)

260

261 with open(filename , ’w’, newline=’’) as file:

262 writer = csv.writer(file)

263 writer.writerows(row_list)

65

264

265 def main():

266 if len(sys.argv) != 2 and len(sys.argv) != 3:

267 print(’syntax: python3 recon.py subnet [-f]’)

268 print(’Use -f to save output into files’)

269 print(’Example: python3 recon.py 192.168.1.1/24 -f’)

270 exit(-1)

271

272 standard_scan(sys.argv[1])

273

274 if __name__ == "__main__":

275 main()

Listing 6.2: Python script for host discovery and port scanning automation.

6.2.2 Data extraction

1 import json

2 import pymongo

3 import os.path

4

5 from configparser import ConfigParser

6 from scapy.all import *

7 from scapy.layers.http import HTTPRequest , HTTPResponse

8

9 FIN = 0x01

10 SYN = 0x02

11 RST = 0x04

12 PSH = 0x08

13 ACK = 0x10

14 URG = 0x20

15 ECE = 0x40

16 CWR = 0x80

17

18 layers = []

19

20 myclient = pymongo.MongoClient("mongodb://localhost:27017/")

21 mdb = myclient["iot_dictionary"]

22

23 config_object = ConfigParser(delimiters=(’=’))

66

24

25

26 def extract_data(pkt):

27 db_entry = {}

28 global layers

29 global config_object

30 isInLayers = False

31

32 if len(layers) == 0:

33 layers = ["HTTP", "TCP", "UDP", "ICMP", "AH", "ESP", "TLS",

"HTTP"]

34

35 if IP in pkt:

36 MAC_src = pkt.src

37 MAC_dst = pkt.dst

38

39 ip_src = pkt[IP].src

40 ip_dst = pkt[IP].dst

41

42 ip_v = pkt[IP].version

43 ip_tos = pkt[IP].tos

44 ip_len = pkt[IP].len

45 ip_id = pkt[IP].id

46 ip_frag = pkt[IP].frag

47 ip_ttl = pkt[IP].ttl

48 ip_proto = pkt[IP].proto

49 ip_chksum = pkt[IP].chksum

50 ip_options = pkt[IP].options

51 ip_flags = pkt[IP].flags

52

53 db_entry[’MAC’] = []

54 db_entry[’IP’] = []

55

56 db_entry[’MAC’].append({

57 ’src’: MAC_src,

58 ’dst’: MAC_dst

59 })

60

61 db_entry[’IP’].append({

62 ’version ’: ip_v,

67

63 ’tos’: ip_tos,

64 ’len’: ip_len,

65 ’id’: ip_id,

66 # ’flags ’: ip_flags,

67 ’frag’: ip_frag,

68 ’ttl’: ip_ttl,

69 ’proto’: ip_proto ,

70 ’checksum ’: ip_chksum ,

71 # ’options ’: ip_options

72 })

73

74 if ESP in pkt and layers.__contains__(’ESP’):

75 isInLayers = True

76

77 esp_spi = pkt[ESP].spi

78 esp_seq = pkt[ESP].seq

79 esp_data = pkt[ESP].data

80

81 db_entry[’ESP’] = []

82 db_entry[’ESP’].append({

83 ’spi’: esp_spi,

84 ’seq’: esp_seq,

85 ’data’: str(esp_data)

86 })

87

88 if AH in pkt and layers.__contains__(’AH’):

89 isInLayers = True

90

91 ah_nh = pkt[AH].nh

92 ah_payloadlen = pkt[AH].payloadlen

93 ah_reserved = pkt[AH].reserved

94 ah_spi = pkt[AH].spi

95 ah_icv = pkt[AH].icv

96 ah_padding = pkt[AH].padding

97

98 db_entry[’AH’] = []

99 db_entry[’AH’].append({

100 ’spi’: ah_spi,

101 ’icv’: ah_icv,

102 ’padding ’: ah_padding ,

68

103 ’nh’: ah_nh,

104 ’payload_len ’: ah_payloadlen ,

105 ’reserved ’: ah_reserved

106 })

107

108 if TCP in pkt and layers.__contains__(’TCP’):

109 isInLayers = True

110

111 tcp_seq = pkt[TCP].seq

112 tcp_ack = pkt[TCP].ack

113 tcp_dataofs = pkt[TCP].dataofs

114 tcp_reserved = pkt[TCP].reserved

115 tcp_window = pkt[TCP].window

116 tcp_chksum = pkt[TCP].chksum

117 tcp_flags = pkt[TCP].flags

118 tcp_sport = pkt[TCP].sport

119 tcp_dport = pkt[TCP].dport

120 tcp_urgptr = pkt[TCP].urgptr

121 tcp_options = pkt[TCP].options

122 payload_guess = pkt[TCP].payload_guess

123

124 db_entry[’TCP’] = []

125 db_entry[’TCP’].append({

126 ’seq’: tcp_seq,

127 ’ack’: tcp_ack,

128 ’dataofs ’: tcp_dataofs ,

129 ’reserved ’: tcp_reserved ,

130 ’window ’: tcp_window ,

131 ’checksum ’: tcp_chksum ,

132 ’s_port ’: tcp_sport ,

133 ’d_port ’: tcp_dport ,

134 ’urg_ptr ’: tcp_urgptr ,

135 # ’options ’: tcp_options ,

136 # ’payload_guess ’: payload_guess

137 })

138

139 flags = []

140 if tcp_flags & FIN:

141 flags.append("FIN")

142 if tcp_flags & SYN:

69

143 flags.append("SYN")

144 if tcp_flags & RST:

145 flags.append("RST")

146 if tcp_flags & PSH:

147 flags.append("PSH")

148 if tcp_flags & ACK:

149 flags.append("ACK")

150 if tcp_flags & URG:

151 flags.append("URG")

152 if tcp_flags & ECE:

153 flags.append("ECE")

154 if tcp_flags & CWR:

155 flags.append("CWR")

156 db_entry[’TCP’].append({

157 ’flags’: flags

158 })

159

160 elif UDP in pkt and layers.__contains__(’UDP’):

161 isInLayers = True

162

163 udp_len = pkt[UDP].len

164 udp_chksum = pkt[UDP].len

165 udp_sport = pkt[UDP].sport

166 udp_dport = pkt[UDP].dport

167 payload_guess = pkt[UDP].payload_guess

168

169 db_entry[’UDP’] = []

170 db_entry[’UDP’].append({

171 ’s_port ’: udp_sport ,

172 ’d_port ’: udp_dport ,

173 ’len’: udp_len,

174 ’checksum ’: udp_chksum ,

175 # ’payload_guess ’: payload_guess

176 })

177

178 elif ICMP in pkt and layers.__contains__(’ICMP’):

179 isInLayers = True

180

181 icmp_type = pkt[ICMP].type

182 icmp_code = pkt[ICMP].code

70

183 icmp_chksum = pkt[ICMP].chksum

184 icmp_id = pkt[ICMP].id

185 icmp_seq = pkt[ICMP].seq

186 class_guess = pkt[ICMP].guess_payload_class

187

188 db_entry[’ICMP’] = []

189 db_entry[’ICMP’].append({

190 ’type’: icmp_type ,

191 ’code’: icmp_code ,

192 ’checksum ’: icmp_chksum ,

193 ’id’: icmp_id,

194 ’seq’: icmp_seq ,

195 # ’class_guess ’: class_guess

196 })

197

198 if TLS in pkt and layers.__contains__(’TLS’):

199 isInLayers = True

200

201 tls_type = pkt[TLS].type

202 tls_version = pkt[TLS].version

203 tls_len = pkt[TLS].len

204 tls_iv = pkt[TLS].iv

205 tls_msg = pkt[TLS].msg

206

207 db_entry[’TLS’] = []

208 db_entry[’TLS’].append({

209 ’type’: tls_type ,

210 ’version ’: tls_version ,

211 ’len’: tls_len,

212 ’iv’: str(tls_iv),

213 ’msg’: str(tls_msg),

214 })

215

216 if pkt.haslayer(HTTPRequest) and layers.__contains__(’HTTP’)

:

217 isInLayers = True

218

219 host = pkt[HTTPRequest].Host.decode()

220 path = pkt[HTTPRequest].Path.decode()

221 url = host + path

71

222 method = pkt[HTTPRequest].Method.decode()

223 req_version = pkt[HTTPRequest].Http_Version.decode()

224 user_agent = pkt[HTTPRequest].User_Agent

225 if user_agent != None: user_agent = user_agent.decode()

226

227 accept = pkt[HTTPRequest].Accept

228 if accept != None: accept = accept.decode()

229

230 accept_lang = pkt[HTTPRequest].Accept_Language

231 if accept_lang != None: accept_lang = accept_lang.decode

()

232

233 cookie = pkt[HTTPRequest].Cookie

234 if cookie != None: cookie = cookie.decode()

235

236 conn = pkt[HTTPRequest].Connection

237 if conn != None: conn = conn.decode()

238

239 db_entry[’HTTP_REQUEST ’] = []

240 db_entry[’HTTP_REQUEST ’] = ({

241 ’host’: host,

242 ’path’: path,

243 ’url’: url,

244 ’method ’: method,

245 ’version ’: req_version ,

246 ’user_agent ’: user_agent ,

247 ’accept ’: accept,

248 ’accept_lang ’: accept_lang ,

249 ’cookie ’: cookie,

250 ’conn’: conn

251 })

252

253 if pkt.haslayer(HTTPResponse) and layers.__contains__(’HTTP

’):

254 isInLayers = True

255

256 version = pkt[HTTPResponse].Http_Version.decode()

257 s_code = pkt[HTTPResponse].Status_Code.decode()

258 s_code_s = pkt[HTTPResponse].Reason_Phrase.decode()

259 cont_encod = pkt[HTTPResponse].Content_Encoding

72

260 if cont_encod != None: cont_encod = cont_encod.decode()

261 cont_len = pkt[HTTPResponse].Content_Length

262 if cont_len != None: cont_len = cont_len.decode()

263 cont_type = pkt[HTTPResponse].Content_Type

264 if cont_type != None: cont_type = cont_type.decode()

265

266 db_entry[’HTTP_RESPONSE ’] = []

267 db_entry[’HTTP_RESPONSE ’] = ({

268 ’version ’: version,

269 ’s_code ’: s_code,

270 ’reason_phrase ’: s_code_s ,

271 ’cont_encoding ’: cont_encod ,

272 ’content_len ’: str(cont_len),

273 ’content_type ’: str(cont_type)

274 })

275

276 if pkt.haslayer(Raw):

277 raw = pkt[Raw].load

278 db_entry[’raw’] = []

279

280 if (pkt.haslayer(HTTPResponse) or pkt.haslayer(

HTTPRequest)):

281 try: # Try to decode the payload

282 db_entry[’raw’].append({

283 ’raw’: raw.decode()

284 })

285 except Exception as exc:

286 db_entry[’raw’].append({

287 ’raw’: str(raw)

288 })

289 else:

290 db_entry[’raw’].append({

291 ’raw’: str(raw)

292 })

293

294 if (isInLayers):

295 json_entry = json.dumps(db_entry , indent=4)

296 print(json_entry)

297

298 devices = config_object[’DEVICES ’]

73

299

300 if MAC_src in devices:

301 device_col = mdb[devices[MAC_src]]

302 sent_msg_col = device_col[’sent’]

303 retVal = sent_msg_col.insert_one(db_entry)

304 if MAC_dst in devices:

305 device_col = mdb[devices[MAC_dst]]

306 received_msg_col = device_col["received"]

307 retVal = received_msg_col.insert_one(db_entry)

308

309

310 def sniff_offline(entry, isdir):

311 load_layer(’tls’)

312

313 if (isdir):

314 for filename in os.listdir(entry):

315 if filename.endswith(".pcap"):

316 print("[INFO] Extracting features from: ", filename)

317 sniff(offline=entry + "/" + filename, prn=

extract_data , store=False)

318 print("")

319 else:

320 sniff(offline=entry, prn=extract_data , store=False)

321

322

323 def show_usage():

324 print("PCAP data extractor")

325 print("Usage: python dataExtractor.py pcap_file.pcap [flags]")

326 print("Flags:")

327 print("[-h/--HTTP]\tExtract data from HTTP packets.")

328 print("[-t/--TCP]\tExtract data from TCP packets.")

329 print("[-u/--UDP]\tExtract data from UDP packets.")

330 print("[-i/--ICMP]\tExtract data from ICMP packets.")

331 print("[-a/--ESP]\tExtract data from ESP packets.")

332 print("[-a/--AH]\tExtract data from AH packets.")

333 print("[-s/--TLS]\tExtract data from TLS packets.")

334 print("[--help]\tShow usage and options.")

335

336

337 def main():

74

338 flags = []

339 global layers

340 global config_object

341

342 # Read config.ini file

343 if os.path.isfile("devices.ini"):

344 config_object.read("devices.ini")

345 else:

346 print("File device.ini not present")

347 exit(-1)

348

349 if (len(sys.argv) < 2):

350 show_usage()

351 exit(-1)

352

353 if (len(sys.argv) > 2):

354 for idx in range(2, len(sys.argv)):

355 flags.append(sys.argv[idx])

356

357 if flags.__contains__("--help"):

358 show_usage()

359 exit(0)

360 if flags.__contains__("--HTTP") or flags.__contains__("-h"):

361 layers.append(’HTTP’)

362 if flags.__contains__("--TCP") or flags.__contains__("-t"):

363 layers.append(’TCP’)

364 if flags.__contains__("--UDP") or flags.__contains__("-u"):

365 layers.append(’UDP’)

366 if flags.__contains__("--ICMP") or flags.__contains__("-i"):

367 layers.append(’ICMP’)

368 if flags.__contains__("--ESP") or flags.__contains__("-e"):

369 layers.append(’ESP’)

370 if flags.__contains__("--AH") or flags.__contains__("-a"):

371 layers.append(’AH’)

372 if flags.__contains__("--TLS") or flags.__contains__("-s"):

373 layers.append(’TLS’)

374

375 entry = sys.argv[1]

376

377 try:

75

378 print("[INFO] Start analyzing pcap: ", entry)

379 if (os.path.isdir(entry)):

380 sniff_offline(entry, isdir=True)

381 elif (os.path.isfile(entry)):

382 sniff_offline(entry, isdir=False)

383 else:

384 raise ValueError("Illegal parameter: " + entry)

385 except Exception as exc:

386 print("[ERROR] ", exc)

387 traceback.print_exc()

388

389

390 if __name__ == "__main__":

391 main()

Listing 6.3: Python script for network traffic sniffing with Scapy.

6.3 Passive Analysis

6.3.1 Network sniffing automation

1 #!/usr/bin/python

2

3 from scapy.all import *

4 from datetime import datetime

5 import netifaces

6 import sys

7

8 def analyze_packet(packet):

9 ts = datetime.now()

10 print("\n" * 2)

11 print("_______________________________________")

12 print(ts.strftime("%m/%d/%Y, %H:%M:%S"))

13 packet.show()

14 print("_______________________________________")

15

16 write_packet(packet, sys.argv[2])

17

18 def write_packet(packet, file):

76

19 wrpcap(file, packet, append=True)

20

21 def interface_check(interface):

22 try:

23 addr = netifaces.ifaddresses(interface)

24 except ValueError as val_exc:

25 print(’[Error] Bad interface name (’+interface+’)’)

26 return -1

27 except Exception as exc:

28 print(’[Error] ’+exc)

29 return -1

30 return not netifaces.AF_INET in addr

31

32 def main():

33

34 print(’[INFO] Scapy Sniffer ’)

35 print(’[INFO] Author: Marco A. Greco’)

36 print(’[INFO] Start sniffing on’, sys.argv[1])

37 pck_threshold = 0

38

39 if(len(sys.argv) != 3 and len(sys.argv) != 4):

40 print(’[Error] Wrong syntax.’)

41 print(’[Error] Example: python3 sniffer.py wlan0 output.pcap

[packet_count]’)

42 exit(-1)

43

44 if(len(sys.argv) == 4):

45 if(sys.argv[3].isdecimal()):

46 pck_threshold = int(sys.argv[3])

47 print(’[INFO] Threshold: ’+str(pck_threshold)+’ packages

’)

48

49 if interface_check(sys.argv[1]):

50 print(’[Error] Interface ’+sys.argv[1]+" is not online.")

51 print(’[Error] Aborting.’)

52 exit(-1)

53

54

55 sniff(iface = sys.argv[1], prn=analyze_packet , count=

pck_threshold)

77

56

57 if __name__ == ’__main__ ’:

58 main()

Listing 6.4: Python script for network traffic sniffing with Scapy.

78

Bibliography

[1] Jerry Gamblin. Mirai BotNet - https://github.com/jgamblin/Mirai-Source-Code.

[2] Kevin Ashton et al. That ‘internet of things’ thing. RFID journal, 22(7):97–114,
2009.

[3] Lu Tan and Neng Wang. Future internet: The internet of things. In 2010 3rd in-
ternational conference on advanced computer theory and engineering (ICACTE),
volume 5, pages V5–376. IEEE, 2010.

[4] Feng Xia, Laurence T Yang, Lizhe Wang, and Alexey Vinel. Internet of things.
International journal of communication systems, 25(9):1101, 2012.

[5] Charith Perera, Chi Harold Liu, Srimal Jayawardena, and Min Chen. A survey on
internet of things from industrial market perspective. IEEE Access, 2:1660–1679,
2014.

[6] Awais Ahmad, Murad Khan, Anand Paul, Sadia Din, M Mazhar Rathore, Gwang-
gil Jeon, and Gyu Sang Choi. Toward modeling and optimization of features se-
lection in big data based social internet of things. Future Generation Computer
Systems, 82:715–726, 2018.

[7] Anna Kobusińska, Carson Leung, Ching-Hsien Hsu, S Raghavendra, and Victor
Chang. Emerging trends, issues and challenges in internet of things, big data and
cloud computing, 2018.

[8] Ahmed Banafa. Iot standardization and implementation challenges. IEEE inter-
net of things newsletter, pages 1–10, 2016.

79

[9] T. Berners-Lee, MIT/LCS, R. Fielding, and UC Irvine. Hypertext Transfer Pro-
tocol – HTTP/1.0. RFC 1945, RFC Editor, May 1996.

[10] R. Fielding, UC Irvine, J. Gettys, J. Mogul Compaq/W3C, Compaq, H. Frystyk,
W3C/MIT, L. Masinter, Xerox, P. Leach, Microsoft, and T. Berners-Lee. Hyper-
text Transfer Protocol – HTTP/1.1. RFC 2616, RFC Editor, June 1999.

[11] M. Belshe, BitGo, R. Peon, Google Inc, M. Thomsom Ed., and Mozilla. Hyper-
text Transfer Protocol Version 2 (HTTP/2). RFC 7540, RFC Editor, May 2015.

[12] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource identi-
fier (uri): Generic syntax. Network Working Group: Fremont, CA, USA, 2005.

[13] Z. Shelby, ARM, K. Hartk, C. Bormann, and Universitaet Bremen TZI. The
Constrained Application Protocol (CoAP). RFC 7252, RFC Editor, June 2014.

[14] Message queuing telemetry transport (mqtt). Standard, International Organiza-
tion for Standardization, Geneva, CH, June 2016.

[15] Vasileios Karagiannis, Periklis Chatzimisios, Francisco Vazquez-Gallego, and Je-
sus Alonso-Zarate. A survey on application layer protocols for the internet of
things. Transaction on IoT and Cloud computing, 3(1):11–17, 2015.

[16] CISCO P. Saint-Andre. xtensible Messaging and Presence Protocol (XMPP):
Core. RFC 6120, RFC Editor, March 2011.

[17] MultiMedia LLC. DDS foundation data distribution service.

[18] Paolo Bellavista, Antonio Corradi, Luca Foschini, and Alessandro Pernafini.
Data distribution service (dds): A performance comparison of opensplice and rti
implementations. In 2013 IEEE symposium on computers and communications
(ISCC), pages 000377–000383. IEEE, 2013.

[19] OASIS. Advanced message queuing protocol (amqp) version 1.0, 2012.

[20] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis

80

Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. Understanding
the mirai botnet. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1093–1110, Vancouver, BC, August 2017. USENIX Association.

[21] Tom Spring, K Carpenter, and M Mimoso. Bashlite family of malware infects 1
million iot devices. Threat Post, 2016.

[22] Sam Edwards and Ioannis Profetis. Hajime: Analysis of a decentralized internet
worm for iot devices. Rapidity Networks, 16, 2016.

[23] Zaied Shouran, Ahmad Ashari, and Tri Priyambodo. Internet of things (iot) of
smart home: privacy and security. International Journal of Computer Applica-
tions, 182(39):3–8, 2019.

[24] Amy B Wang. ‘i’m in your baby’s room’: A hacker took over a baby monitor
and broadcast threats, parents say. The Washington Post, Dec 2018.

[25] Iyatiti Mokube and Michele Adams. Honeypots: concepts, approaches, and chal-
lenges. In Proceedings of the 45th annual southeast regional conference, pages
321–326, 2007.

[26] Abhishek Mairh, Debabrat Barik, Kanchan Verma, and Debasish Jena. Honeypot
in network security: a survey. In Proceedings of the 2011 international confer-
ence on communication, computing & security, pages 600–605, 2011.

[27] Niels Provos. Honeyd virtual honeypot - www.honeyd.org.

[28] Alejandro Guerra Manzanares. Honeyio4: the construction of a virtual, low-
interaction iot honeypot. B.S. thesis, Universitat Politècnica de Catalunya, 2017.

[29] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. Iotpot: A novel honeypot for revealing
current iot threats. Journal of Information Processing, 24(3):522–533, 2016.

[30] Tongbo Luo, Zhaoyan Xu, Xing Jin, Yanhui Jia, and Xin Ouyang. Iotcandyjar:
Towards an intelligent-interaction honeypot for iot devices. Black Hat, 2017.

81

[31] The collaboration platform for api development - www.postman.com.

[32] Aldo Cortesi, Maximilian Hils, and Thomas Kriechbaumer. contributors:
mitmproxy: A free and open source interactive https proxy (2010–). URL
https://mitmproxy. org.[Version 3].

[33] Mitm proxy - free and open source interactive https proxy. -
https://mitmproxy.org/.

[34] Sabeel Ansari, SG Rajeev, and HS Chandrashekar. Packet sniffing: a brief intro-
duction. IEEE potentials, 21(5):17–19, 2003.

[35] Pallavi Asrodia and Hemlata Patel. Analysis of various packet sniffing tools for
network monitoring and analysis. International Journal of Electrical, Electronics
and Computer Engineering, 1(1):55–58, 2012.

[36] James Forshaw. Attacking network protocols: a hacker’s guide to capture, anal-
ysis, and exploitation. No Starch Press, 2017.

[37] libpcap, a portable c/c++ library for network traffic capture. -
https://www.tcpdump.org/.

[38] Arimon-ng, monitor mode on wireless interfaces. - https://www.aircrack-
ng.org/doku.php?id=airmon-ng.

[39] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure, 2009.

[40] Marco De Vivo, Eddy Carrasco, Germinal Isern, and Gabriela O de Vivo. A
review of port scanning techniques. ACM SIGCOMM Computer Communication
Review, 29(2):41–48, 1999.

[41] Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. Information Exposure for Consumer IoT Devices:
A Multidimensional, Network-Informed Measurement Approach. In Proc. of the
Internet Measurement Conference (IMC), 2019.

[42] Rick Cattell. Scalable sql and nosql data stores. Acm Sigmod Record, 39(4):12–
27, 2011.

82

[43] Mongodb, a general purpose, document-based, distributed database
built for modern application developers and for the cloud era.-
https://www.mongodb.com/it.

[44] Alexandru Boicea, Florin Radulescu, and Laura Ioana Agapin. Mongodb vs
oracle–database comparison. In 2012 third international conference on emerging
intelligent data and web technologies, pages 330–335. IEEE, 2012.

[45] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi,
Indrakshi Ray, and Indrajit Ray. Behavioral fingerprinting of iot devices. In Pro-
ceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security,
pages 41–50, 2018.

[46] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi,
Indrakshi Ray, and Indrajit Ray. Iotsense: Behavioral fingerprinting of iot de-
vices. arXiv preprint arXiv:1804.03852, 2018.

[47] Bruhadeshwar Bezawada, Indrakshi Ray, and Indrajit Ray. Behavioral finger-
printing of internet-of-things devices. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, page e1337, 2019.

83

	Introduction and problem description
	Overview
	Motivation
	Goals
	Organization of the thesis

	State of the art
	Overview
	Literature
	Internet Of Things
	IoT Applications

	IoT - Application protocol
	Hypertext Transfer Protocol
	Constraint Application Protocol
	Message Queue and Presence Protocol
	Extensible Messaging and Presence Protocol
	Data Distribution Service
	Advanced Message Queuing Protocol

	Security
	Countermeasures
	Cyber-attack detection

	Honeypot
	Low-interaction Honeypot
	Medium-interaction Honeypot
	High-interaction Honeypot

	IoT-oriented honeypots
	Honeyd
	HoneyIo4
	IoTPOT
	IoTCandyJar

	Architecture and Deployment
	System Architecture
	First setup
	SONOFF basic R2 & 4CH PRO R2
	Shelly 1
	Environment setup

	Passive analysis
	Traffic monitoring
	Wireshark
	Traffic capture via monitor mode interface.

	Automate sniffing with Scapy
	SSL/TLS encryption

	Active analysis
	Port scanning
	Nmap analysis
	Nmap
	Automating port scanning

	Laboratory environment
	Mon(IoT)r
	Network configuration

	Devices
	Packet inspection

	Data storage and dictionary structure
	Database: RDBMS, no-SQL
	MongoDB

	Case study and results
	Overview
	Active Analysis
	Passive Analysis
	Data extraction
	Summary

	Conclusions and future work
	Conlcusion
	Future work

	Appendix A
	System setup
	Access Point automated setup

	Active Analysis
	Port scanning automation
	Data extraction

	Passive Analysis
	Network sniffing automation

