
Politecnico di Torino

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Remote Attestation and Integrity
Verification Solution in a Cloud Based

Environment

Supervisors Candidate

Prof. Fulvio Risso Paride D’Angelo

Prof. Thanassis Giannetsos

December 2020

Acknowledgements

A big thank you goes to both my supervisors that allowed me to make this amazing
experience in Denmark working at this Thesis project. This experience has been a
big breakthrough for me because it permitted me to meet incredible and amazing
people along the way that changed myself as a person and contributed to enriching
the final outcome of this work. And so also a thank you to all the friends that I
met in Denmark.

A special gratitude to my family and my relatives that, throughout all of these
academic years, has supported me in all my choices and decisions allowing me to
arrive where I am now.

An important thanks goes to all my colleagues of Politecnico di Torino with
which I have spent all the days, of both the Bachelor’s and the Master’s programs,
following courses and projects together. I think that many goals would have not
been possible without your support and friendship.

A thank you to all my close friends and flat mates with which I have shared a
lot of time and which pushed me in doing better every day.

I think that behind each final result, like for this Thesis work, there is a mix of
experiences and persons that make it possible, some of them directly some others
indirectly; people and events which are not visible but which are all part of the
basement of the big iceberg whose peak is represented by the big reached goal.

i

Contents

1 Introduction 1

1.1 Motivations . 1

1.2 Project objectives . 3

1.3 Structure of the report . 5

2 Related works 7

3 Problem statement 12

3.1 System model . 12

3.2 Threat model . 16

4 Background and technologies 18

4.1 Trusted Platform Module 2.0 (TPM 2.0) 18

4.1.1 Architecture . 20

4.1.2 Hierarchies . 22

4.1.3 Endorsement Key . 24

4.1.4 Attestation Key . 25

4.1.5 Platform Configuration Registers 26

4.1.6 Policy Authorization . 27

4.1.7 Activation of credentials . 28

ii

4.2 TPM Software Stack (TSS) . 32

4.3 Tracing and sampling techniques 35

4.3.1 Overview . 35

4.3.2 Extended Berkeley Packet Filter (eBPF) 38

4.3.3 Intel Processor Tracing (Intel PT) 39

5 Remote attestation protocol architecture and components 43

5.1 Overview . 43

5.2 Phases and components . 43

5.3 Binary extraction process phase . 44

5.4 Integrity verification process phase 48

6 Remote attestation protocol components implementation 53

6.1 Overview . 53

6.2 Attestation by Quote . 55

6.2.1 Creation of AK . 55

6.2.2 Creation of AK sequence diagram in attestation by Quote . 59

6.2.3 Integrity check . 60

6.2.4 Attestation by Quote sequence diagram 64

6.3 Attestation by Proof . 65

6.3.1 Creation of AK . 65

6.3.2 Creation of AK sequence diagram in attestation by Proof . . 71

6.3.3 Integrity check . 73

6.3.4 Attestation by Proof sequence diagram 75

6.4 Integrity verification commands timings 76

6.4.1 Timing measurements approaches 76

6.4.2 Attestation by Quote timings 78

iii

6.4.3 Attestation by Proof timings 79

6.4.4 Command timings evaluation 80

6.5 Loaded binary extractor . 82

6.6 Use of eBPF to trace TSS commands 84

6.7 Intel PT tracing analysis . 89

6.7.1 Overview . 89

6.7.2 Basic tests and analysis . 90

6.7.3 Python program and eBPF tracing tests 96

6.7.4 Timings and memory overhead evaluation 97

7 Discussions and critics 110

8 Conclusions 115

8.1 Conclusion . 115

8.2 Future works . 117

Bibliography 119

A Integrity verification protocols commands 122

A.1 Attestation by Quote commands . 122

A.2 Attestation by Proof commands . 123

iv

Chapter 1

Introduction

1.1 Motivations

Nowadays, Cloud Computing technologies have become increasingly used in many
different fields and applications. Companies are moving their resources and ap-
plications to a Cloud based environment finding it beneficial in terms of lower
cost, higher performance, accessibility, and scalability. Also previous solutions
and architectures, which before where relying just on the hardware capabilities of
a device, now are moving towards a Cloud virtualized environment. At the same
time technology presence has become more and more pervasive generating a big
growth in the number of devices connected over the internet. Therefore networks
and the devices connected to it have changed in the last years bringing to the use
of new types of network schemes and of new kinds of related technologies. The
current trend and direction networks are following is towards the increase of de-
ployment of edge devices and fog computing nodes in order to move the computing
infrastructure as close as possible to the source of data and to the users.

In this kind of context the capabilities of edge devices is increasing, allowing
them to have more computational power and to deliver low latency and responsive
services. The two current technologies that are central in this scenario and that
make this shift possible are the Mobile Edge Computing (MEC) and the Cloud
Computing. The new trend is to use both of these two technologies together in
new kinds of solutions. This new tendency can be identified in Network Function
Virtualization (NFV). The increase of Cloud Computing deployment and use gen-
erates a process of ”softwarization” and virtualization of the remote edge devices:
the remote devices become systems running in a Virtualized environment, allowing

1

Introduction

more flexibility and customization of their applications and functionalities.

The increase of the number of edge nodes, like the IoT devices, connected to
the network and the new kinds of software-cloud solutions and virtualizations
used in the new application solutions make the surface for potential attacks and
the number of potential vulnerabilities grow exponentially. In particular, the use
of Virtualization and Cloud Computing techniques opens new kinds of security
problems related to the verification of the correctness and integrity of remote
edge device systems. For these reasons, new solutions are needed to generate a
verifiable evidence of the correctness and integrity of the software running on a
remote Virtual Machine.

A set of solutions and concepts related to the integrity verification process have
been provided by the Trusted Computing Group[14] under the name of trusted
computing : it refers to technologies, proposals and concepts for resolving computer
security problems through hardware and software enhancements. The two most
important concepts used in this context are boot attestation and remote attestation.
All the solutions proposed by the TCG rely on the use of a so called trusted
anchor which acts as a root of trust to secure and provide trustworthiness of all
the operations during the attestation integrity verification process. The module
proposed as a trust anchor by the TCG, that has also been used in this work, is
the Trusted Platform Module (TPM).

The recent solutions proposed up to now are not able to address all the new
security issues related to containers and Cloud Computing environment in a thor-
ough and complete way. The focus of the main solutions that have been proposed
is on providing integrity verification at boot-time or at most at load-time without
considering possible attacks that might tamper the software program during run-
time, i.e. during its execution. Load-time integrity techniques perform software
measurements computation just before the software program is loaded into main
memory not considering attacks that could happen during run-time. Among the
solutions proposed by the trusted computing group the IMA [3] helps in performing
boot-time and load-time attestation verification.

Although the IMA has many limitations, it has been one of the starting point
for this work providing the basic useful concepts when it comes to remote attes-
tation. The solution proposed here wants to build on top of the IMA capabilities
extending the remote attestation protocol to be executed during run-time and to
be integrated with a Cloud based Environment, also providing a stronger verifiable
evidence of the the Prover’s state.

The other solutions that have been proposed in the past in the remote attestation
branch do not consider the possibility to perform the integrity check in a Cloud

2

Introduction

based Environment. This work, instead, has as central objective to suggest a kind
of attestation solution to be used for containers running on remote devices. The
Cloud based environment is the central context and focus of this remote attestation
work.

In the context described here, comprising multiple edge devices exploiting Cloud
Computing capabilities, there is not only the need of a solution that is able to
execute a successful remote attestation of the VMs but also of a solution that is
scalable in the number of devices that can be attested. This comes from the fact
that the Verifier needs to potentially manage and attest a large number of remote
edge Virtual Machines at the same time. The aim of this work is to provide a very
good solution in terms of scalability in the number of remote device the Verifier
can attest.

The classical remote attestation pattern is the one where the Verifier attests the
state of the edge devices’ system. In fact all the previous proposals focused their
attention on this type of scheme. In this work instead new solution paradigms
have been designed permitting not only Verifier to VM attestation but also the
attestation between two Virtual Machines.

As part of the whole protocol solution proposed, also two different execution
tracer techniques have been used and integrated to enhance the level of security
and tracking of the operations performed during the integrity verification process.
The most crucial and critical phases of the whole integrity verification process are
the run-time extraction of the binary data to be attested and all the communication
process with the TPM. This is the first solution that also proposes a way to secure
and verify these two phases by using two kinds of tracers: the eBPF tracer and
the Intel Processor Tracer. They provide different levels of granularity and details
of logged information performing different levels of execution tracing, enhancing
the security and trustworthiness of the integrity verification steps.

1.2 Project objectives

The scope of this work is to provide a trustworthy and reliable solution to perform
remote attestation integrity verification in order to provide a strong and verifiable
evidence of the Prover’s system running in a virtualized Cloud environment. Each
remote system, that has to be attested, is therefore considered running on a Virtual
Machine. And the whole solution has been designed with this context in mind.

The trust anchor used to guarantee security properties in the protocol solution

3

Introduction

proposed here is the Trusted Platform Module (TPM), following in this way the
guidelines provided by the TCG for performing reliable remote attestation. All
the TCG concepts and directives provided by the TCG group, for what concerns
remote attestation, have been taken and extended to enhance security and to
adapt this kind of solutions to work in a Cloud Computing environment. In fact
the solution in this document makes use of a software TPM running in the Virtual
Machine of the remote device to be attested.

Two different protocols to perform the integrity verification process have been
introduced. Although they follow different approaches and steps, they both rely on
the use of the TPM and both of them are specifically designed based on TPM func-
tionalities. These two protocols are defined into two different kinds of attestation
schemes:

• Attestation by Quote: which is based on the production of a quote attestation
data in order to allow the Prover to be attested. It follows more closely the
guidelines provided by the TCG, being part of the classic scheme of remote
attestation where the Verifier receives from the Prover the measurements,
which reflects Prover’s system state, to attest.

• Attestation by Proof: which is based on the use of TPM policy digest au-
thentication mechanism, which combined to an Attestation Key can provide
a verifiable evidence of Prover’s system state. This protocol makes use of
TPM specific properties to perform remote attestation in a new way.

This proposed solutions focus on providing remote attestation integrity verifica-
tion during run-time, i.e. attestation during the execution of the software running
on the Prover’s system. Therefore providing the possibility for the Verifier to
perform remote attestation at any time and a multiple number of times without
interrupting the attested software’s execution, and so without needing any reboot
of the Prover’s container. In addition to this the Verifier will be able to manage
and attest an arbitrary, potentially high, number N of remote devices at the same
time, making this solution highly scalable.

One of the main objectives here is to also enhance the level of security of the
operations performed during the remote attestation protocol. These include the
steps performed to extract the properties and the binary data to be attested as
well as the communication and the commands exchanged with the TPM. For this
reasons two tracing techniques have been used: the eBPF hooks and the Intel PT.
Their main objective is to trace and verify the correctness of the overall state of
the Virtual Function. The eBPF hooks and the Intel PT are two different tech-
nologies for doing tracing, permitting to reach two different levels of granularity of

4

Introduction

logged information. This aspect is essential in the effectiveness that they, combined
together, can reach in tracing Virtual Machine system.

The objective of this work is to present these two different types of tracers as
techniques to be used combined into a remote attestation solution. The main
objective of these two tracing techniques is to secure and verify the extraction
of the binary data to be attested and to check the correctness of the messages
and commands exchanged with the TPM. In this way the level of security and
trustworthiness of the single steps and phases of the remote attestation process
has been enhanced through these tracers capabilities. The Intel PT in particular
is evaluated and proposed as a technique, not only to trace the execution of a
”normal” program, like the binary extractor, but also to log the execution of a
tracing program like the eBPF hooks. In this way the more high level capabilities
of the eBPF are combined with the Intel PT, which performs the additional low
level check guaranteeing a higher level of security in the overall attestation process.

An additional analysis of their capabilities and differences have been conducted
to show their strengthens and limitations. They have been used also as a way
to conduct a study on Control Flow Integrity and Control Flow Attestation tech-
niques. This kind of techniques allow to detect attacks (like the Return Oriented
Programming attack) which try to divert the execution flow of a software program
without changing its binaries. Specifically the Intel PT has been used for the
purpose of reconstructing the exact execution flow of a program in order to attest
its control flow integrity. A specific analysis has been conducted with the aim of
evaluating the highest level of program tracing complexity that can be managed
efficiently by the Intel PT especially in terms of performance and scalability.

1.3 Structure of the report

Across this document, the solution proposed to deploy a remote attestation in-
tegrity verification protocol is presented. The document introduces, first of all,
the technologies and background that have been used and then the actual ar-
chitecture and implementation of the scheme. The explanation of the solution
proposed follows a top-down approach: at the beginning the high level view and
the big picture of the architecture, as well as the overall system model, are pre-
sented and then, in the following chapters, the single components of the solution
are explained more in detail to better understand how they work and interact to
each other.

In chapter 2 the related works are presented, showing the history of all the

5

Introduction

remote attestation solutions designed in the past that has been taken as reference
of this work. Moreover this chapter highlights the improvements and additions
introduced and carried out by this solution in comparison to the others.

In chapter 3 describes the system and the threat model. The system model
section provide a high level overview of the scheme and the actors present in this
work. The threat model shows the attacker perspective and so what an adversary
can and can not do in such a system.

In chapter 4 all the technologies used and the theoretical backgrounds associ-
ated with them are presented. It reports all the information needed to understand
how the architecture and the implementation work. Moreover the specific tools
used in the implementation, for each technology, have been specified here. In this
way whoever wants to repeat the experiments can know which tools to use.

Chapter 5 presents the overall architecture of the solution stating all the ac-
tors involved as well as their role and why they have been used. This description
provides also the steps and the main phases that comprise the whole remote at-
testation protocol.

In the chapter 6 all the step of the two designed integrity verification protocols
are presented in detail. It shows the measurements and results obtained as well
as all the commands used to implement this solution and all the evaluations and
analysis performed on it. It describes in detail how the solution works showing the
more practical part of work. This chapter also shows in detail how the eBPF and
Intel PT work and all the conducted experiment with them.

Eventually chapter 7 describes the main limitations and problem related to
the solution deployment. Pointing out what can be done next and what can be
improved to extend such a solution.

Eventually chapter 8 contains the final conclusion comment to this document
and the future works section. The future works section suggests what can be
done next and the possible enhancements and problems to address to improve the
current proposed solution, summarizing what was already stated in the chapter 7.

6

Chapter 2

Related works

Before talking about the actual solution and how it has been built it is important
to mention all the previously related works, that have been done in the past,
related to attestation. So lets examine the history of remote attestation solutions
developed and theorized up to now to better understand which were the initial
assumptions of this work and all the improvements and enhancements that have
been brought.

The history of attestation starts from the 2001 when the Trusted Computing
Group released the first Trusted Platform Module documentation in the Trusted
Computing Platform Alliance document [1]. In that document the TPM attesta-
tion was introduced for the first time.

After that, in 2004, some relative researches were published focusing on prop-
erty based attestations mechanisms [2]: attestation not just of a binary data but
directed to attest real properties of the system.

Still in 2004 an other research papers proposed a software-based attestation
solution[4]. This proposal aimed to avoiding hardware changes in order to imple-
ment an attestation solution providing a software alternative based on a series of
checksums operations under determined assumptions.

In 2005 the dynamic root of trust was introduced. One example can be the Intel
TXT [18] which is an hardware technology relying on TPM whose main goal is to
perform attestation of the authenticity of a platform dynamically loading it into
a trusted execution environment protecting it from software-based attacks.

Between 2010 and 2012 the new trend focused on adapting and applying attes-
tation methodologies to embedded systems through minimal trust anchors. The

7

Related works

TPM was not suitable to be integrated into embedded systems due to cost reasons.
One of the researches focused in this direction was SMART [5].

Between 2011 and 2014 some papers like PUFatt [6] focus on authentication
enforcement of the Prover to the Verifier based on a physical and unclonable func-
tion.

Finally the last trend in around 2015 and 2016 was to focus the research on the
attestation of a network of devices [9].

A big contribution towards the integrity verification direction has been given
in 2004 with the standardization and implementation of the TCG-based Integrity
Measurement Architecture (IMA) [3]. It permits to collect system files measure-
ments either at boot-time, or before they are modified or also at load-time (in case
the data to be attested is a software program), so just before the binaries are loaded
into main memory. If available it makes use of a TPM to provide attestation of
the system measurement at boot time or at load time.

Lets now understand the position of this work with respect to the others. The
remote attestation and integrity verification solution proposed here starts and
follows the initial assumptions and guidelines defined by the Trusted Computing
Group initially in 2001 and also later, like for example with the IMA solution.
However the aim of this work is to extend that concepts to provide a more scalable
and secure solution broadening the working context even more.

Some of the cited paper tried to perform remote attestation by experimenting
among different hardware or software solutions [4, 6]. Some of them make use of
additional hardware features, like the Intel TXT [18], to perform the attestation
while some others remove completely hardware components suggesting a solution
that relies completely on software [4]. The solution proposed here instead makes
just use of the TPM as trust anchor module to perform the whole attestation
process. It does not make use of additional hardware to provide verifiable evidence
of the remote Virtual Function but just exploits the security properties of the
TPM as defined by the TCG [14]. Moreover, a software TPM implementation
has been used resulting in not even having the TPM as a hardware component.
However, even though the actual remote attestation procedure has been performed
only by means of the TPM, the Intel Processor Tracing hardware feature [17] has
been used in the final overall solution to enhance the correctness, trustworthiness
and security of the general attestation protocol by tracing the communication
with the TPM and the execution of the eBPF hooks. The assumption that has
been done here is on the requirement of the presence of an Intel processor on
the remote device in order to use its Intel PT feature to perform the Control Flow
Attestation procedure. However the Intel PT is a pseudo-hardware based technique

8

Related works

representing an additional feature of the Intel processor, which nowadays is very
widespread and already present built-in into many devices. Therefore the use of
the Intel PT into the solution proposed here does not imply the use of additional
hardware but it just makes use of an already existing Intel processor’s feature.

All the solutions related to attestation make use of a root of trust which is a com-
ponent trusted by the OS providing security properties, operations and correctness
in the attestation process. The two main trust anchors used in previous projects
are the Trusted Execution Environment (TEE) [16] and the TPM. The TPM pro-
vides a set of cryptographic functionalities, like the secure key management, in
the form of APIs and allows a system to provide an evidence of its integrity. The
TEE is a secure area that allows the execution of arbitrary code within a confined
environment providing tamper-resistant execution to its applications [16]. Even
though they are both valid alternatives the root of trust selected in this work is
the TPM because nowadays it is widely used, there is a growth in the number
of modern devices that already integrates it and it seems to be an increasingly
prominent technology.

As mentioned, in 2004 a first property-based attestation approach was proposed
[2]. Also in this work an integrity verification solution is proposed permitting to
attest some specific properties of the system. In this way it is attested whether the
system fulfills a set of properties without revealing its specific software or hardware
configurations. However the solutions proposed in the past allowed just to use a
specific and unique property configuration to be attested. The solution proposed
here extends this mechanisms providing the possibility to attest multiple different
properties at the same time for different devices. The Proof integrity verification
protocol does that allowing the Verifier to define totally different customized prop-
erties to be attested for each different remote device. This provides a complete
personalization of the attestation process depending on the specific case and ap-
plication generating different levels of attestation granularity. The policy digest
based advanced authentication mechanism of the TPM is used for this purpose.

Some past papers were specifically focused on IoT devices to provide low cost
and efficient attestation solutions [5], and so avoiding to use the TPM. This work
not focuses so much on IoT devices but more on the providing a solution that
works in a Cloud based Environment.

In fact the point where this work wants to stand out, with respect of the other
past research papers, is in the fact of providing a solution that brings the attes-
tation paradigm into a Cloud based Environment. Since Cloud Computing has
become more and more popular in the recent years this work wants to create a so-
lution to implement a remote attestation scheme thought and working in a Cloud

9

Related works

Computing environment. This has been the main focus and context of this work.
The main goal here is to provide a strong verifiable evidence of the Prover’s system
state to the Verifier in a Cloud based Environment. Through the use of the TPM
and its strong security properties the designed protocol assures the Verifier on the
trustworthiness and authenticity of the attestation data produced by the Prover,
which reflects its system state.

Moreover all of these solutions permit to attest Prover’s system only at boot-
time or at most at load-time. They do not make the additional step of providing
integrity verification during run-time. The solution proposed in this paper aims
to fill this security hole in the attestation integrity verification domain. This work
wants to provide a solution, always relying on a TPM module, to permit the Verifier
to attest the Prover also during run-time in a trustworthy and verifiable way. This
is also a consequence of the fact of working in a virtualized context. A container
cannot be restarted every time a new integrity verification is performed, therefore
the only way to do that is by performing attestation during run-time. The main
advantage of that is that the Verifier can perform the attestation procedure at any
time. The TCG IMA [3] implementation documentation, although implementing
and addressing only attestation at load or boot time, had already theorized and the
proposed the possibility and possible enhancement related to run-time tracing and
the Cloud Computing integration. This work builds on top of that and proposes
a solution to fill that left gap.

A deliverable document, belonging to the Future TPM project, called ”Future
Proofing the Connected World” [11], has been used as initial reference for the
design of the quote attestation protocol. It has been the starting point that gave
the idea for repeating a similar scheme, under the name of attestation by Quote
protocol, but working in a virtualized environment and by making use of the Intel
TSS commands. Then in this work that scheme has been additionally extended
by providing a new one called attestation by Proof, but it will be described better
afterwards in this document.

This solution also follows the trend started in 2015 of the attestation of network
of devices. The aim here is to provide a scalable and lightweight solution that
allows the Verifier to attest the system of a multitude of remote edge devices
connected to the network.

Other works that have been used as reference are the C-FLAT [10], the CFPA
[13] and the DIAT [12]. These three recent papers show another type of remote
attestation called Control Flow Attestation consisting in the verification of Control
Flow Integrity of the software running on the Prover side. They make use of
sampling and tracing techniques to trace the execution of the program execution

10

Related works

in order to generate a control flow graph of the instructions executed during run-
time. While those research works make use of software tracing and instrumentation
techniques to record the execution flow, in the work of this document an hardware
feature of the Intel processor, called Intel PT, has been used to log and extract the
control flow graph during program execution. The Intel PT use is proposed here in
the context of Control Flow Integrity verification. Its strengthens and limitations
are showed, after a detailed analysis, in order to understand its properties. The
main goal is to propose it as a valid alternative to other software tracing techniques
used in Control Flow Attestation.

Taking as reference the CFPA [13] an eBPF hook tracer has been used and
adapted to trace and collect information about the TSS commands exchanged
with the TPM. The eBPF has been proposed as a valid software tracer to verify
the correctness of the messages and data incoming and outgoing of the TPM. In
this way a new type of eBPF possible application is showed allowing us to make
an investigation on the capabilities of this technology in a different context.

This two tracers have been combined together in the solution proposed in order
to join their characteristics and properties and to enhance the level of security and
correctness of the integrity verification protocol. For this reason the Intel PT has
been used to trace and verify the eBPF tracer itself guaranteeing its exactness.

11

Chapter 3

Problem statement

3.1 System model

Lets have a look at the basic model and concepts of our system. The remote
attestation is a method used by a system (Prover) to authenticate its hardware or
its software to a remote host (Verifier). This means that the remote device that
acts as a Prover needs to provide a verifiable evidence about the software running
on it to the Verifier. Therefore, the approach used to design a remote attestation
protocol is to first understand how can the Verifier trust the attestation data sent
by the Prover in a reliable way before deciding how the actual data exchanged
should be. The Verifier must be able to identify the remote device in a unique way
and must have a reliable warranty that the attestation data has been produced by
that remote device and that it really reflects its system state.

Remote attestation is meant to verify the integrity of a software running on
the system of the remote device. The security requirement of authenticity of the
attestation data sent by the remote Prover is ensured by means of a so called
trust anchor, which is a trusted component placed on the Prover system. In
this work the trust anchor used is the Trusted Platform Module (TPM). It is a
cryptographic coprocessor that, placed on the remote Prover system, allows it to
execute a series of cryptographic and secure operations useful in the attestation
procedure. Moreover the TPM has been designed and built to ease the remote
attestation process providing all the required attestation functionalities.

In the last years, however, Cloud Computing demand and use has grown a lot
and also its number of applications has broadened. For these reasons the remote
attestation solution proposed has been designed and extended to be deployed in

12

Problem statement

a Cloud environment. The Cloud Computing has been used as central context of
work. That has been realized by making each remote device’s system, that needs
to be attested, running on a Virtual Machine. In fact, the remote devices that
need to be attested will often referred as ”Virtual Machine” or VM in its short
form across the other sections of this document.

Having in mind the Cloud environment as main context of work means finding
a solution that can work and is deployable in a Virtualized environment; and so
also trying a series of tests and analysis, on the technologies and modules intended
to be used, inside a Virtual Machine. For example it has been chosen to use a
software TPM in order to make it working in a Virtual Machine. The alternative
could have been the use of a virtual TPM but at the end the software version was
selected making the container having its own TPM, not shared with other OSs.

The architecture proposed allow the Verifier to attest multiple remote devices.
It is a highly scalable solution, allowing the Verifier to manage, potentially, a high
number of remote devices. The amount of data needed to be stored in the database
of the Verifier is not so much for each remote device. The Verifier can keep a log
of all remote devices’ state to have a reference history of all the past performed
remote attestations for each Prover.

The just described scheme reflects the basic general ideas and context behind
this work. In our specific context a different nomenclature has been used to refer
to the different actors of the remote attestation architecture. Here are the names
used for some of the main actors described up to now:

• The Verifier is referred as Orchestrator in this work’s context

• The Prover is directly referred as Virtual Machine (or VM), due to the
fact that the Prover’s system runs in a Virtualized environment, or in some
cases also just as remote device

Figure 3.1 exhibits the high level view of the model described up to now, showing
its basic actors, i.e. the Orchestrator and the remote Provers devices (Virtual
Machines).

13

Problem statement

Figure 3.1. Remote attestation high level system model

The figure 3.1 shows that there is an Orchestrator connected through the net-
work to N different remote devices, each of them having its own TPM. The Orches-
trator has also a DB to store the reference values and the attestation information
of all the remote devices.

Based on this scheme the Orchestrator can perform the remote attestation of a
i-th (where i ∈ {1, ...N}, with N equal to the number of remote devices) device in
order to assess its system state. The key aspect of the solution proposed here is
that the Orchestrator can start a remote attestation integrity verification process
of a target Virtual Machine at any time t and multiple consequent times during
run-time without the need of system reboot. This procedure will be clear when
talking about the integrity verification protocol. In such a scheme it is always the
Orchestrator that starts the remote attestation protocol sending a command to
the remote device to trigger the whole process.

After receiving the integrity verification initiation message the VM has to extract
the loaded binaries, compute the needed measurements on them and then produce
the attestation data in order to provide a verifiable evidence of the system’s state.
The binary extraction is a potentially critical operation and it is secured by means
of the Intel PT. This tracing mechanism allows to generate the exact control flow
of the execution of the binary extractor in order to verify its correctness and also

14

Problem statement

the exactness of the data extracted.

The measurement and the production of a verifiable evidence includes the use
of the PCRs of the TPM. They are used to store the measurement value that
represents the system state and its extension operation is used to update its content
according to the integrity verification protocol.

The methodology in which the VM provides the verifiable evidence of its state
and the definition of the sequence of operations that must be performed by the
VM and by the Orchestrator is defined by the integrity verification protocol. The
overall protocol and the messages exchanged with the TPM are secured by means
of the eBPF hooks program. Its role is to ensure correctness in the communication
with the TPM.

After attesting the remote Virtual Machine the Orchestrator obtains as result the
status indication of the integrity of the remote device’s system, which may turns
out to be Trusted or Untrusted. Based on the final outcome of the attestation
process the Orchestrator can behave accordingly, taking or not some actions in
response. If the outcome is positive, and so the system has not been changed
and in a good state, the Orchestrator can just let the remote device continue its
normal working; if the outcome is negative, therefore the attested system might
have been tampered by a malicious actor, the Orchestrator should intervene by
taking some decisions and some actions in order to tackle the problem. Based
on the specific application and context in which the remote attestation has been
deployed the actions that can be taken are different. For example if the remote
devices are routers of a network the action that the Orchestrator could take is to
shout down the tampered router and update the routing table in order to divert
and redistribute the network traffic.

When talking about attestation of remote device’s system we refer to the attes-
tation of the integrity of a specific application or software program running on the
VM of that remote device. The integrity and state of that specific critical software
program of interest represents the state of the entire system it belongs to. There-
fore, if that specific running software process is not considered trusted anymore
because has been tampered by an attacker, the whole VM is considered untrusted
by the Orchestrator. The goal of remote attestation is to attest a specific critical
target section, which again is representative of the whole system in our purposes,
instead of attesting the integrity of the entire OS or file system. The attestation
process has to be narrowed to the specific data or software program of interest.

This solution scheme provides a series of security properties to the remote at-
testation protocol. The security properties ensured are: of course integrity of the
VM’s binaries, authentication of the remote VM and of the data that it produces,

15

Problem statement

non repudiation of the attestation data, since it is signed with the Endorsement
Key unique for each TPM, confidentiality and availability of data, accountability
of the data and information about the remote devices.

3.2 Threat model

After talking about the overall model of the system lets have a look at what an
attacker can or can not do in this kind of scheme.

What an adversary would like to do is to tamper the software running on the
remote device without letting the Orchestrator noticing it. Lets analyse how he
might try to do that.

• MITM attack between the Orchestrator and the VM: the attacker might do
a MITM attack between the Orchestrator and the VM. In this way he could
try to manipulate the traffic and messages exchanged. However, apart from
the public nonce and the public policy digest, the attestation and critical
data are always sent through the network signed by the AK belonging to the
TPM and associated to its Endorsement Key, making the falsification of the
data impossible for an attacker.

• Tampering directly the software running on the VM: the attacker may try
to directly tamper the binaries running on the VM without considering the
integrity verification protocol. In this case it is important to examine the
length of time window between two subsequent integrity verification checks
requested, sent by the Orchestrator. After that the attacker takes over he
remote device system the system will still be considered in a trusted state
by the Orchestrator until it will request another integrity verification check.
Therefore, in this kind of situation an attacker has a certain time window
during which he can control the VM system without the Orchestrator know-
ing it. The length of this time window depends on the time intervals at which
the Orchestrator performs the remote attestation requests and so its value
can be decided during implementation. In the best case, i.e. in case the
Orchestrator performs subsequent integrity verification of the remote device
in a row one right after the other, the time window will be very short (in
the order of 0,2-0,3 seconds by considering the TSS Execute interface mea-
surement) as it can be better seen from the tables 6.2, 6.3. In this way the
malicious manipulation can be detected very fast.

• Manipulating the loaded binaries extraction: the attacker could try to fake

16

Problem statement

the binaries extraction process and tamper the loaded binaries. This possi-
bility has been prevented by instantiating the Intel PT to trace and attest
at low level the execution flow of the binary extractor.

• Manipulation of the communication with the TPM: the attacker could try to
manipulate commands and parameters exchanged with the TPM. The eBPF
hooks program is deployed specifically with the purpose of preventing this
by tracing and verifying the correctness of the data sent towards and from
the TPM.

• The eBPF tracer tampering: an attacker could try to manipulate the data
extracted and logged by the eBPF tracer. The Intel PT is used to prevent
this by tracing and recording the sequence of action performed during TSS
commands extraction.

• Corruption of the Intel PT decoding process: if the attacker corrupts the
post-processing program used to reconstruct the control flow graph produced
by the Intel PT it may be a problem in terms of security because he could
tamper the extraction of the loaded binary without letting the Orchestrator
noticing it. The assumption that is made here is that the Intel PT control
flow tracing is considered trusted.

• Reply attack: reply attacks are avoided by means of the use of nonces in the
protocol.

17

Chapter 4

Background and technologies

4.1 Trusted Platform Module 2.0 (TPM 2.0)

The Trusted Platform Module (TPM), also known as the International Standard
ISO/IEC 11889, is a cryptographic coprocessor. It is meant to secure hardware
through its cryptographic capabilities. TPM specifications have been published
by the Trusting Computing Group. Initially, as a first version, the TPM 1.2 was
published and subsequently the new version TPM 2.0 was released adding and
updating functionalities of the TPM. In this work we are going to make use of a
TPM 2.0 and we are going to interact with it through the TSS 2.0 library.

Nowadays the TPM is almost always present as a coprocessor on our PCs or
on server machines. Lately its use and demand is growing very fast thanks to its
standardization and to its certification from government. It also proves to be a
very efficient module capable of supporting security operations effectively.

The TPM 2.0 enables a series of cryptographic functionalities like:

• Keys management

• Hash computation

• Encryption/decryption functionalities

• Sign/verify functionalities

• Hardware random number generator

• Sealing and binding functionalities

18

Background and technologies

Some specific functionalities may be understood better analyzing the single mod-
ules of the TPM architecture. The way the TPM is designed makes it a perfect
candidate to be used for remote attestation and system integrity verification pur-
poses.

It has been designed by TCG having some main goals in mind:

• Identification of a device: before the TPM device were identified through
their MAC or IP address. Some of its unique characteristics like the En-
dorsement Key allow a device to be uniquely identified by a TPM

• Secure generation and storage of keys: management of keys left to the system
may be vulnerable to software attacks and not so secure compared to TPM
key management which relies on an hardware random number generator and
a reliable way of key storing.

• Device remote attestation: the TPM is been though as a way to ensure
system attestation and integrity as a more secure alternative to software
techniques.

Based on the context of deployment the TPM may be implemented either as
hardware device or as a software TPM. Furthermore, it could be either local on a
device or remote communicating through the network to provide its functionalities
to the device. Lets analyse the different possible contexts of use.

In general the TPM is sold as an hardware device by the TPM vendor. It
contains a unique Endorsement Primary Seed (EPS) and an Endorsement Key
and it can be integrated to a machine like a PC or a server as a cryptographic
coprocessor.
When it is needed to use the TPM in a Virtual Machine, or more in general
in a Cloud Environment, it cannot be accessed directly by the guest OS. The
access to the TPM of the platform must be enabled by the Virtual Machine:
therefore it is necessary that the Virtual Machine supports the virtualization of
the hardware TPM module in order to make it also visible to the guest OS. When
the hardware TPM is virtualized by the guest operating system it is called virtual
TPM. An implementation example that follows this approach is the QEMU [22],
which is a TPM TIS hardware interface following the Trusted Computing Group’s
specification.

The other approach that can be used in a Virtualized Environment is to use a
software TPM. The software TPM is implemented following the documentation
of the TPM definition provided by the TCG and so has the same properties and

19

Background and technologies

functionalities of the hardware TPM. It works as a server process listening on
a specific IP address and a specific port number. By default the IP address is
127.0.0.1 (localhost) and the port number is 2321. Once the software TPM is
running it can receive TSS commands and send a response back. It is a flexible
solution and works well in all the platform both virtualized and not. An example
of software TPM is the ibmswtpm [15]

If the TPM is local on the machine that needs to execute secure cryptographic
operations the communication between the system and the TPM happens through
the bus of the machine. However, when the TPM is remote the network is the
means of communication with the TPM. In both case must be considered that data
sent to and received from the TPM is vulnerable to possible changes performed
by an attacker acting like a MITM. A way to secure the communication with
the TPM must be found for sensitive application, ensuring the integrity of the
messages exchanges with the TPM.

In this work a local software TPM running on the Virtual Machine of the remote
device has been used to perform the attestation. This choices were made because
we consider as context of work the Cloud Computing environment. The software
and virtual TPM solutions are both valid alternatives. At the end the software
TPM have been chosen because it is simple to use, because it runs inside the
container, resulting in a software TPM for each container scheme. However, in
case the virtual TPM is used in a multiple containers per virtual function scheme
many problems need to be addressed because the TPM will be shared among all
of the Virtual Machines.

The IBM TPM software implementation has been used (downloaded from https:/
/sourceforge.net/projects/ibmswtpm2/files/latest/download) and all its initial con-
figurations, like the IP address and port number on which the server listen, have
been kept unchanged. The thing to remember when using a software TPM is that
it is necessary to start it up before being able to communicate with it.

4.1.1 Architecture

In figure 4.1 TPM architecture and its main components are reported. As men-
tioned also in the documentation it is necessary that all the components of the
TPM specification are present in an implementation in order to be a trustworthy
and complete standard[25]. There are different parts but they are all connected
to each other to provide TPM functionalities. Lets analyse TPM architecture’s
components in brief and their role:

20

Background and technologies

• I/O buffer: it is the means by which the system can interact and send and
receive data with the TPM. It is basically the link between the system and
the TPM components.

• Hash engine: it performs hashing operations and could be used both directly
by the system and as part of other TPM operations (like as part of the key
derivation function). The algorithm supported are the ones belonging to the
SHA family.

• Asymmetric and symmetric engines: they are used for all the operations that
involve asymmetric and symmetric key like signing, verifying, encrypting and
decrypting.

• Key generation: it allows the generation of a new key. It generates either
an ordinary key by using the Random Number Generator or a primary key
starting its computation from a hierarchy seed. These techniques make use
of a Key Derivation Function which generates a new key starting from an
initial seed.

• RNG: it creates a random number and it could be useful in many situation
like the creation of a key or like the creation of the nonce when needed.

• Authorization Subsystem: it is in charge of performing authorization checks
before allowing the execution of a command.

• Volatile memory (RAM): it holds TPM transient data. So all the data stored
on it will be lost if the power of the TPM is removed. It includes PCR, keys
loaded, current sessions, etc.

• Non-volatile memory: it stores persistent objects and data associated to
the TPM. So it retains data even if the power is removed. This memory
contains Shielded Locations which can be accessed only through Protected
Capabilities. It holds also data inserted by the TPM vendor like seed values
or possible Endorsement Keys. Moreover it has some free memory useful to
make some transient object permanent.

• Power Detection: it handles power states.

21

Background and technologies

Figure 4.1. TPM Architecture

4.1.2 Hierarchies

According to the documentation of the TPM a hierarchy is a collection of entities
that are related and managed as a group[8]. Those entities include permanent
objects (the hierarchy handles), primary objects at the root of a tree, and other
objects such as keys in the tree[8]. It is the way the TPM manages and organizes
its own entities (which in most of the cases they are symmetric or asymmetric
key).

According to the manual the cryptographic root of each hierarchy is called seed :
it is a large random number that is generated inside the TPM at manufacturing
time and it is never exposed outside[8]. Moreover each hierarchy has a proof value
which is derived from the seed and which is used to ensure that a value has been
generated from the TPM itself[8]. It is like a fingerprint of the TPM that it applies

22

Background and technologies

on all the data that has been generated by itself in order to later check the data
authenticity.

There are different types of hierarchies in the TPM, each of them meant for
a different purpose. They can be either be persistent or volatile: the persistent
hierarchies are retained after a reboot while the volatile ones loose their information
after a reboot.

There are three persistent hierarchies:

• Platform Hierarchy

• Storage Hierarchy

• Endorsement Hierarchy

In addition to them there is only one volatile hierarchy, which is the NULL hier-
archy.

The common properties are that each of them has an authorization value and a
policy, each of them has a persistent seed which is used to derive keys and objects
and that each of them can have a primary key from which all the descendant keys
and objects can be created. The primary keys are keys that can be directly created
starting from the seed, which is the cryptographic root of the hierarchy; and then
other keys or objects can be created as a child of the primary key.

- The Platform hierarchy is meant to be used and controlled by the platform
manufacturer, represented by the early boot code inserted in the platform
by the manufacturer (BIOS)[8].

- The Storage hierarchy is meant to be used by the owner of the platform.

- The Endorsement hierarchy is the privacy tree and is meant to be used when
a certain level of privacy must be ensured.

- The NULL hierarchy volatile, its seed isn’t persistent and the proof is regen-
erated with different values on each reboot, the authorization is a password
of length equal to zero and the policy is empty.

Since during the remote attestation integrity verification protocol it is necessary
to ensure privacy and security during the whole process, the hierarchy used in
this context is the Endorsement hierarchy. The Endorsement hierarchy has been

23

Background and technologies

designed for remote attestation and for high security solutions and its properties
make it suitable for our purposes.

The most important aspect of the Endorsement hierarchy is that its tree root
is generated by the TPM manufacturer. The TPM vendor at manufacturing time
select a unique primary seed (which form this time on will characterize the specific
TPM) for the Endorsement hierarchy, generates one or more primary keys obtained
from the seed and eventually generates a certificate for each of them (in general
it is an x.509 key certificate). This property of the Endorsement hierarchy is
necessary when a remote actor has to certify that a key is resident and associated
uniquely to a specific TPM. The whole remote attestation protocol is based on
this Endorsement hierarchy property: the Verifier, when receiving data from the
remote device it is trying to attest, can rely on the Endorsement key and its
certificate (issued by the TPM vendor) to know if that data was really sent by the
target remote device or by another (malicious) actor.

Moreover the Endorsement hierarchy ensures privacy. In the context of the TPM
the privacy property assumes a specific meaning. Privacy in this domain means the
inability of remote parties (potentially malicious) receiving several TPM signatures
to correlate them. Correlate signatures means to cryptographically prove that they
come from the same TPM. The user making use of the TPM would like to use
different keys for different purposes and applications; the attacker could try to
correlate them, i.e. trace these keys back to a single user.

4.1.3 Endorsement Key

The definition of Endorsement Key (EK) according to the manual is: symmetric
key pair consisting of a public and private key stored in a Shielded Location on the
TPM[7]. It is defined as an RSA 2048 bit key. It is a primary key belonging to the
Endorsement hierarchy, therefore derived from the Endorsement seed. Its private
part MUST be kept secret, so it is never exposed outside of the TPM, while its
public part can be read from outside.

As mentioned for the Endorsement hierarchy it is the TPM vendor who gener-
ated and preinstalled the Endorsement seed (Endorsement Primary Seed (EPS))
and one or more Endorsement Keys, as well as a public key certificate associated
to each Endorsement Key (which in general is an x.509 certificate) at manufactur-
ing time. After that the Endorsement Key has been created it is stored inside the
TPM as an object and, any subsequent time, it is referenced by its object han-
dle. The object handle is returned by the TPM every time the Endorsement Key
is loaded. The key handle is initially transient and could be made persistent by

24

Background and technologies

using the command TPM2 EvictControl. The range assigned to the Endorsement
Primary Keys is 81 01 00 00 – 81 01 00 FF [23]. And the existence of a persistent
object could be checked by invoking the tpm2 getcap command.

From manufacturing time on the TPM is uniquely identified by the Endorsement
Primary Seed (EPS), which is created ad installed in the TPM by the TPM vendor.
There can not be two TPM sharing the same Endorsement seed. In security and
cryptographic operations we can rely on the the Endorsement key uniqueness in
order to ensure authentication in critical operations and in communication between
devices.

4.1.4 Attestation Key

The Attestation Key (AK) is a key with the following properties: it is a signing
key and it is restricted. Moreover, also as a consequence, the Attestation Key
must be non migratable. The restricted property means that the key can only
sign a digest created by the TPM. The scope of this is to prevent forgery, i.e the
signing of external data disguised as a valid and genuine attestation data. This
mechanism ensures that the AK does not sign an arbitrary external data because
in general the AK is used to sign data which reflect the TPM and the system state.
In our specific case in remote attestation the AK is used to sign and to certify the
measurements that represent the state of the system that the Verifier wants to
attest.

In the documentation[25] it is explained how the process of signing works for
a restricted signing key like the Attestation Key. Basically the TPM adds a spe-
cial header to every message to be signed it produces: this value is a fixed value
called TPM GENERATED VALUE. When the TPM has to sign an external data
it checks the header of the data verifying that TPM GENERATED VALUE is not
present. The digest operation also produces a ticket when the message that was di-
gested did not start with the TPM GENERATED VALUE. The TPM GENERA-
TED VALUE is equal to 0xff544347, and it differentiates data generated by the
TPM from non-TPM data. At signing time the ticket associated to the message
to be signed is provided in order to prove that the message was not an attempt of
forgery.

While the Endorsement Key certification is simpler because it is the TPM vendor
who provides the the Endorsement Key certificate, the Attestation Key certifica-
tion requires some steps. Its certification is needed in situations, like in remote
attestation, where there is a third party, that act as a Certificate Authority (CA),
that has to provide a certificate for it. The TPM, in order to certify its Attestation

25

Background and technologies

Key must provide an evidence that the key is a TPM-resident key. This kind of
evidence may be provided by a previously created and already certified key. In
our case we are almost forced to used the Endorsement Key to prove the evidence
of key residence.

There are two distinctive ways to achieve AK certification. If the Endorsement
Key is also a signing key it can directly certify that another object like the At-
testation Key is resident on the TPM. The second way is used when the EK is
not a signing key and it is called activation of credential. It involves a number
of steps where the CA challenges the TPM sending to it a credential blob with
a secret inside. The TPM will be able to unseal the secret only if it hosts both
the EK and the AK for which the certification has been requested to the CA.
The TPM can prove that the Attestation Key is a TPM-resident by using the
TPM2 ActivateCredential() command. All the steps will be reported in another
chapter more in detail.

4.1.5 Platform Configuration Registers

The Platform Configuration Registers (PCRs) are a set of specific memory register
banks present in the TPM. They have some unique properties and represent a key
component of the TPM. The PCRs are used to store hash values and their length
depends on the hash algorithm used. The TCG PC Client Platform TPM Pro-
file Specification defines the inclusion of at least one PCR bank with 24 registers.
A complete TPM may include more banks and compliance with more hash algo-
rithms: the hash algorithms allowed are SHA1, SHA256, SHA384 and SHA512.
For each hash algorithm type a bank of 24 registers is provided inside the TPM.

The two operations allowed on PCRs are the reset and the extend operations.
The reset operation simply set the target PCR register to zero. The extend op-
eration is a updating of the target PCR by concatenating a hash value with the
one already present in the PCR register. According to the documentation [25] the
extend is defined as follow:

PCRnew := Halg (PCR old ‖ digest)

The extend operation may be used many consequent times on the same PCR
register resulting in the computation of a cumulative hash, where the final value
is the result of the consecutive extensions of all the preceding ones.

In the context of remote attestation and of integrity verification the hash value
present in a PCR register may be a measurement representing the state of the
system or the state of some data that has to be attested. Moreover, the TPM

26

Background and technologies

allows the generation of policies, which act as a means of authentication for TPM
operations, that are dependent to a specific PCR register value.

The way the PCRs are designed is very effective and secure against manipula-
tions performed by an attacker. Lets consider a scenario in which the PCR value
represents the state of the system to be attested. After the corruption of the sys-
tem the PCR value would result storing a different untrusted value. At this point
an attacker would like to force the the ”system trusted value” into the PCR regis-
ter in order to succeed the attestation process. To do this, the attacker should find
another value whose hash with the current state of the PCR results in the trusted
measurement. According to the properties of a secure hash this is unfeasible.

4.1.6 Policy Authorization

Policies are the way authorizations are managed inside the TPM. These policies
also known as Extended Authorizations (EA) can be used to authorize actions of
a TPM entity. With EA any kind of authorization is possible and may be used
to enforce many different controls on the TPM before making the authorization
succeed. Control that could be done, in order to manage the authorization of an
action inside the TPM, could be:

- Requiring a certain value in a PCR register

- Requiring a certain password

- Requiring a specific value in a NV index

And there are many more other controls that could be done. They can be combined
together in a logical statement by means of OR and AND operators resulting in a
concatenation of controls and in a custom authorization policy. The authorization
of an action is enabled by the TPM only if all the conditions specified by the policy
associated to that action are fulfilled.

The authentication policy, when created, is represented by a unique value called
policy digest or authPolicy and it may be associated to a TPM entity. Associating
a policy digest to an entity means that from now on all the conditions and controls
of the authentication policy must be satisfied in order to perform some action with
that entity.

The policy authentication lifecycle reported on the documentation[8] is com-
posed of these steps:

27

Background and technologies

1. Creation of the policy digest

2. Creation of an entity using and associating the policy digest created before

3. Starting of a policy session

4. Fulfilling of the authentication controls required by the policy digest

5. If the previous step was successful, perform the intended actions

Lets analyse the steps of the authentication policy usage for the case in which
the entity is a key object. In the step 2 the policy digest is used to for the key
creation. In this phase a template structure is constructed and the policy digest
is incorporated in it. Then this template is used for the actual key creation in
order to be included into the key and so also the policy digest. At the key usage
time the TPM is given a sequence of policy commands, like TPM2 PolicyPCR for
policy PCR, that modify the digest of the policy session. After the execution of
these commands the policy session used as an authorization session: if the digest
accumulated in the policy session matches the policy digest of the entity then the
command over the key is authorized [25].

The Extended Authorizations (EA) is an indispensable feature of the TPM
in the remote attestation protocol. The authentication used is the policy PCR:
which performs authentication checks on the value of a specific PCR to allow the
execution of some actions over an entity, which in our case is a signing key. As
will be also explained in the protocol steps specification the value stored in a PCR
will represent, in remote attestation, the state of the system or application we are
trying to attest. Starting from this consideration we may use the value of a PCR
(state of the system) as an authentication parameter in the use of the Attestation
Key. These concepts will be then explored more in depth afterwards during remote
attestation by Proof explanation.

4.1.7 Activation of credentials

The activation of credential is a phase being part of the both the integrity veri-
fication protocol defined. This phase permits to ensure that the Attestation Key
(for which a certificate is requested) and the Endorsement Key (for which the cer-
tificate has been provided by TPM manufacturer) are both resident in the TPM
and that the Attestation Key is the child of the Endorsement Key.

In this phase the CA constructs a structure with a secret inside and encrypts it
with the primary key public key (in our case is the public part of the Endorsement

28

Background and technologies

Key). Only the TPM with the corresponding EK private key can recover the
secret. If the secret is recovered successfully by the TPM it means that the AK
(the one with the name provided as input of the tpm2 makecredential command)
is resident inside the TPM and that it has been created by the TPM itself as a
child of the EK. This is very important for the Orchestrator because it wants to
be sure of the origin and trustworthiness of the Attestation Key.

Before the activation of credentials the Orchestrator could only know that the
Endorsement Key is trusted and resident on the TPM of the VM thanks to the
EK certificate issued by the TPM manufacturer. After this phase the Orchestrator
can also know the origin and trustworthiness of the Attestation Key.

This section could be tricky and difficult. That is why all the steps that need
to be performed are reported. All these following steps and messages are taken
from the manual [8] and they are helpful to better understand how they allow the
Orchestrator to be sure, from a security point of view, that the AK was created
by the TPM of the target VM as a child of its EK. The steps taken from the
manual represent the manual and reported here are the guidelines to a secure
implementation of the credential activation.

All these steps are then implemented by means of the two commands tpm2 mak-
ecredential (called by the Orchestrator) and tpm2 activatecredential (called by
the VM). These two command used together permits to execute this phase called
activation of credential.

The activation is a way by means a credential provider can be assured of the
key attributes it’s certifying.

All the following steps are taken from the book called ”A Practical Guide to
TPM 2.0” [8] and are reported here.

The following happens at the credential provider:

1. The credential provider receives the Key’s public area and a certificate for
an Endorsement Key.

2. The credential provider walks the Endorsement Key certificate chain back
to the issuer’s root.

3. The credential provider examines the Key’s public area and decides whether
to issue a certificate, and what the certificate should say.

4. The requester may have tried to alter the Key’s public area attributes. This
attack won’t be successful. See step 5 in the process that occurs at the TPM.

29

Background and technologies

5. The provider generates a credential for the Key.

6. The provider generates a Secret that is used to protect the credential. Typ-
ically, this is a symmetric encryption key, but it can be a secret used to
generate encryption and integrity keys. The format and use of this secret
aren’t mandated by the TCG.

7. The provider generates a ‘Seed’ to a key derivation function (KDF). If the
Encryption Key is an RSA key, the Seed is simply a random number. If the
Decryption Key is an elliptic curve cryptography (ECC) key, a more complex
procedure using a Diffie-Hellman protocol is required.

8. This Seed is encrypted by the Encryption Key public key. It can later only
be decrypted by the TPM.

9. The Seed is used in a TCG-specified KDF to generate a symmetric encryption
key and an HMAC key. The symmetric key is used to encrypt the Secret,
and the HMAC key provides integrity. Subtle but important is that the KDF
also uses the key’s Name.

10. The encrypted Secret and its integrity value are sent to the TPM in a cre-
dential blob. The encrypted Seed is sent as well.

At the end we obtain the following:

• A credential protected by a Secret

• A Secret encrypted by a key derived from a Seed and the key’s Name

• A Seed encrypted by a TPM Encryption Key

30

Background and technologies

The operations are summarized in the following picture:

Figure 4.2. Verifier’s steps to create the credential

Things that happen at the TPM:

1. The encrypted Seed is applied against the TPM Encryption Key, and the
Seed is recovered. The Seed remains inside the TPM.

2. The TPM computes the loaded key’s Name.

3. The Name and the Seed are combined using the same TCG KDF to produce
a symmetric encryption key and an HMAC key.

4. The two keys are applied to the protected Secret, checking its integrity and
decrypting it.

5. This is where an attack on the key’s public area attributes is detected. If the
attacker presents a key to the credential provider that is different from the
key loaded in the TPM, the Name will differ, and thus the symmetric and
HMAC keys will differ, and this step will fail.

6. The TPM returns the Secret.

The steps just listed are the ones that, according to the documentation, have to
be performed to activate a credential.

31

Background and technologies

Outside the TPM, the Secret is applied to the credential in some agreed upon
way. This can be as simple as using the Secret as a symmetric decryption key to
decrypt the credential[8]. This phase ensures that the credential provider that the
credential can only be recovered if:

• The TPM has the private key associated with the Encryption Key certifi-
cate[8].

• The TPM has a key (the AK) identical to the one presented to the credential
provider[8].

The steps executed by the TPM of the Prover are summarized in the following
picture scheme:

Figure 4.3. Prover’s steps to disclose the secret from the credential blob

4.2 TPM Software Stack (TSS)

The TPM Software Stack (TSS) is a software stack used to drive and manage the
TPM 2.0. It is a stack used to interact with the TPM and it is designed in order to
hide the low level details of interfacing to the TPM to the application programmer.
Designed as a software stack it has multiple layers and APIs at each layer: in this
way allowing a programmer to intercept the stack at high level layer APIs or low
layer APIs depending on the type of application. Any time an application needs

32

Background and technologies

to interact with a TPM the TSS must be included so that a programmer can use
its set of APIs to used the TPM functionalities.

In figure 4.4 TSS stack layers are showed. They go from the application layer
to the TPM in order of abstraction: from the Feature API which is the most high
level to the TPM driver which is the most low level.

Figure 4.4. TSS stack

The TPM Device Driver is the OS driver that manages all the handshaking with
the TPM and the reading and writing of data to the TPM.
The Resource Manager (RM) is responsible of managing resources, entities and
object of the TPM swapping them in and out the TPM as needed, since the TPM
has a limited number of resources. It is not a mandatory module but if not present
it is responsibility of the upper layer to manage resources correctly and efficiently.
The TAB manages multi-process access synchronization to the TPM.

33

Background and technologies

The TPM Command Transmission Interface handles the communication with
the lower layers of the stack. It permits to send and receive commands with the
TPM. It is the central layer in the software stack and it is a communication bridge
between the upper and the lower part.
The System API is the layer that provides a set of APIs to give access to all the
functionalities of the TPM 2.0. It is meant for expert and more specific applica-
tions.
The Enhanced System API is the layer right above the System API and it is meant
to add an additional abstraction in the access to the functionalities of the TPM. It
provides support to various cryptographic operations in a simpler way with respect
to SAPI.
The Feature API is the higher layer in therms of abstraction. It is used to al-
low applications to perform some TPM operations hiding completely the internal
details. It is composed of a set of application APIs.

In addition to those layers there is also the MUAPI. The MUAPI performs
the Marshaling of TPM commands into byte streams and Unmarshaling of the
responses returned from the TPM.

All the aspects analysed up to now about the TSS have been defined in the
documentation of the TSS by the Trusted Computing Group[14, 24]. TCG has
defined all the layers, modules and the overall structure of the TPM software stack.

Following the TCG TSS specifications two different implementation of the TPM
software stack have been proposed: the IBM TSS and the Intel TSS.

In this work it has been used the Intel TSS as software stack to interact with the
TPM 2.0. Its implementation is different from the IBM TSS but they both rely on
the same TCG TSS specifications. More specifically the commands and all the tests
made to experiment the use of the TPM during the remote attestation protocol
have been done by leveraging on tpm2-tools[20]. This is a set of command line
tools, developed on top of the Intel TSS library, which permit to provide access to
the TPM from the shell environment in linux. This is a simple way to interact with
the TPM from the linux shell and it permits to concatenate the shell commands
to test TPM functionalities.

The tpm2-tools code is open source and it can be inspected to understand how
things work internally for each command. TPM commands implemented by tpm2-
tools are almost all mapped one-to-one with TSS APIs of SAPI layer. By the way
there is also a small percentage of tpm2-tools commands which don’t have a direct
pair in the list of TSS SAPI function but are the result of a combination of multiple
TSS commands. The code may be extended and modified to implement some
personalized functionalities upon the already present ones. However, unmodified

34

Background and technologies

tpm2-tools commands have been used during this work: the commands that will
be mentioned will refer to their original implementation.

The tpm2-tools commands also allow to explicitly specify the TCTI configura-
tion to be used. As explained above the TCTI represent the Transmission Inter-
face and so the mechanism to send and receive commands to and from the TPM.
Through the -T option the TCTI can be specified for a tpm2-tools command. If
the option is not specified, the default choice goes to the file /dev/tpm0 which
represent the hardware TPM present of the device. Otherwise we could explicitly
specify the hardware TPM through -T device:/dev/tpm0.

In this work we are going to use a software implementation of the TPM. The
software TPM works as a server active in localhost at a designed port. The TCTI
must be configured, using the following option for each tpm2-tools command, to
be able to send that command to the software TPM:

-T mssim:host=localhost,port=port number

In general the default port number on which the virtual TPM is listening is the
port number 2321 and the the default ip is 127.0.0.1, so localhost.

The other module that could be used to complete the TSS functionalities are the
TPM2 access broker (TAB) and Resource Manager (RM). As mentioned from the
documentation their use is not mandatory but they are very efficient and handy
when deploying an application that interact with the TPM. For this purpose the
tpm2-abrmd[19] could be used: it is a system daemon implementing the TPM2
access broker (TAB) and Resource Manager (RM). If tpm2-abrmd[19] is not used
the management of TPM resources is delegated to the upper layers which are in
charge of handling it explicitly.

4.3 Tracing and sampling techniques

4.3.1 Overview

This section introduces the two tracing techniques adopted in this work: the eBPF
hook tracer and the Intel PT. They have been suggested into this document as
valid and effective tracing techniques and have been used as a way to show two
different types of tracing approaches. In fact they follow two totally different ways
to trace the execution of a software program permitting to achieve two distinct
levels of details and granularity of the logged information.

35

Background and technologies

A separate analysis of their capabilities and characteristics have been conducted
for each of them. In addition to that they have been proposed as part of the final
remote attestation integrity verification solution, to show how effective they can
be in guaranteeing correctness of protocol operations and phases and to show a
practical use case in which they can be adopted.

Before talking about the way they work lets first of all introduce the concept
of tracing. Software tracing means using logging techniques to record information
about the execution of a program. The main reason why tracers are used is for
debugging and monitoring purposes. They allow to debug and verify the operations
taken by program by collecting data and information during its execution.

The main tracing techniques used nowadays can be roughly classified among
software and hardware solutions. The software tracing implementations are gen-
erally based on instrumentation. Instrumentation means adding some additional
code to an application program in order to monitor its behaviour. This kind of
techniques may be performed either statically or dynamically. They basically add
additional monitoring code in strategic points of the code and, every time these
points are traversed, collect useful information on the program execution state.
They do not require additional hardware and are lightweight. However, they add
additional code and so increment the program execution time and require the re-
compilation of code any time that some additional logging instructions are added
to the program.

On the other side there are the hardware tracing solutions. They do not add
additional code to the software program to be traced but they make use of hardware
features of the processor. In general this kind of approach is more lightweight
with respect to software solutions, resulting in less impact on program execution
performances. The software solutions in general are quite precise but permit to
obtain relatively high level information. On the contrary the hardware solutions
can potentially reach the lowest tracing level possible arriving at recording the
single assembly instructions.

In this document the Intel PT and the eBPF hook are presented. The Intel PT
is a hardware technique while the eBPF is a software one.

The eBPF software program exploits hooks to trace the execution of a target
running module. Hooks are pieces of code able to intercept specific events and
function calls in the code invoking a specific C code in response to it in order to
collect execution information. Its implementation makes use again of the instru-
mentation mechanism: the function call, or point to be traced, is instrumented
with the code in charge of logging execution information. It makes use of a Vir-
tual Machine to inject code into the kernel without requiring kernel recompilation

36

Background and technologies

at any time an event is attached.

These two techniques are proposed into this work because they allow to achieve
different levels of granularity of logged data. In such a way they complete them-
selves and combined together they can achieve higher precision and reliability in
the correctness of program executed.

Control Flow Attestation

Another important concept used into this work is Control Flow Attestation [10].
Control Flow Attestation is a scheme that allows a Verifier to attest the control
flow path of a software program running on a remote device, without requiring
the Verifier to have the source code. The goal of this solution is to attest the
correctness of the execution of the software running on the remote device during
run-time. A normal integrity attestation solution just detects attacks that tamper
and modify the software code running on the remote machine by verifying its
integrity. The Control Flow Attestation, instead, is able to detect attacks like
buffer overflow attacks, or ROPs (Return Oriented Programming attacks) which
try to divert the execution flow path of the program without actually modifying
the binaries. However this kind of technique does not cover data-oriented attacks,
attacks that just corrupt data variable executing a valid but unauthorized path in
the code.

Lets analyse in brief how Control Flow Attestation works and which are the
components involved. At th beginning there is an initial set up phase where the
Verifier generates the static Control Flow Graph (CFG) of the software program to
be attested through static analysis. Static analysis comprises a set of techniques
used to statically and syntactically analyse the code of a program in order to
generate its graph representation containing all the logical path that could be
traversed and taken during its execution. Once the Verifier has generated the
CFG of the remote device’s software program it computes a measurement (hash
value) for each of the valid execution path and stores them into a DB.

At this point, every time the software program to be attested is executed on the
remote device, its execution is traced by means of a, relatively low level, tracer.
The scope of the tracer, in this case, is to record the control flow graph of the
program execution during run-time. Here a tracing technique to be used against
the program execution must be selected between the ones available. The more
the tracer is detailed and low level in the log output information it can produce
and the more the Control Flow Attestation will be precise and effective in finding
possible anomalies.

37

Background and technologies

After the extraction of the execution flow path, its measurement is computed
and sent to the Verifier to be checked against the list of valid reference values
stored into the database.

In this work a Control Flow Attestation scheme has been used to verify the
correctness of the binary extraction procedure and of the eBPF tracer program.
In this work we make use of the Intel PT, which is an Intel hardware tracing
feature able to reconstruct the execution flow graph at the assembly level reaching
a high level of precision introducing only a low performance overhead.

An introduction on both eBPF and Intel PT technologies is reported in this
chapter.

4.3.2 Extended Berkeley Packet Filter (eBPF)

The extended Berkeley Packet Filter (eBPF) is an evolution of the original Berkeley
Packet Filter (BPF). Initially the BPF was designed for capturing and filtering
packets from the network. The way it works leverages on a virtual machine and
this makes it a very interesting tool. Basically the packet filtering program runs on
a register-based virtual machine and this is a very interesting aspect that permits
to run user-supplied programs inside of the kernel. BPF was a first good trial in
this direction: the design and the idea were very interesting even though it was
not using in an efficient way the potentials of the new architectures that, at that
time, were moving towards 64-bit registers.

One step ahead was made with the development of the extended BPF, which was
created following the footsteps and the design of the original BPF. The eBPF has
been built having in mind the modern architectures and their hardware ISA. So
now the eBPF is a virtual machine environment which uses 64 bit RISC instruction
set capable of running just-in-time compiled eBPF programs inside the Linux
kernel, reaching very good performances. While its initial purpose was the network
packet filtering, nowadays eBPF is widely used to run user-space code inside the
kernel by means of a virtual machine. It is a powerful tool to inspect and collect
information from the kernel.

The eBPF works like a hook because it is triggered whenever some specific events
in the kernel occur. The eBPF program can be ”attached” to some specific code
paths in the kernel, and whenever one of these kernel sections are traversed the
eBPF program is executed. This specific feature has been used in this project
allowing us to trace and inspect the execution of specific TSS commands from the
kernel. Events that the eBPF program could be attached to could be system calls

38

Background and technologies

or other functions of the kernel. The information obtained, gathered each time
the target event occur and the hook is activated, might be additionally filtered in
order to select only meaningful and useful ones.

Since the eBPF program is able to access kernel data structures it can also be
used to debug and run performance analysis of the kernel. It is worth remarking
that the eBPF allows a developer to execute the eBPF program and to change it
many times without having to recompile the kernel.

In this work bcc has been used to perform all eBPF tests. bcc stands for
BPF Compiler Collection and it is a toolkit useful for creating kernel tracing and
manipulation programs, including several already built-in tools. It makes use of
eBPF and is very useful to make the writing of BPF programs easier.

The structure of the eBPF programs written with bcc is composed of two parts:
the C section and the front-end python section. The python part is the one that
runs at the user level and it is useful to catch, manipulate and show the information
that are gathered from the kernel side and also to manage the kernel functions to
be hooked. On the other side the C section is the one composed of all the functions
that are going to be called whenever their attached kernel section is executed and
that are going to collect information from the kernel.

The bcc reference guide has been used to understand the C and python BPF
functions that could be used to write eBPF programs.

4.3.3 Intel Processor Tracing (Intel PT)

The Intel Processor Trace (Intel PT) is a feature, or better an extension, added
to the recent Intel processor architecture to collect information about software
execution. It can trace the execution of a software program through dedicated
hardware, added to the standard Intel architecture, in a very efficient way, causing
only a minimal additional overhead on software execution. It belongs to the family
of hardware tracing techniques.

The Intel PT can be used to execute control flow tracing of a software running on
the system. During the tracing a variety of data packets are generated: this is the
way Intel PT organizes the data it collects. There are different packet types and
each of them if designed to store a different kind of information about the program
execution and its control flow. Furthermore packets can record timing information
making Intel PT also useful for performance debugging of applications. It has
also filtering capabilities useful to trace only relevant and useful information and
control capabilities to add timings and processor states for debugging purposes.

39

Background and technologies

Lets have a look at the packets generated by the Intel PT during execution of the
program tracing in order to understand what kind of information can be obtained.
Packets may be divided in two categories: the ones which collect information about
program execution and the ones which gather control flow information.

Packets information are taken directly from the Software Developer manual
to precisely understand their purpose[17]. Packets about basic information on
program execution are:

• Packet Stream Boundary (PSB): they are packets generated every 4K trace
packets bytes and are useful as boundaries to facilitate decoder’s work. It is
the first packet the decoder should encounter.

• Paging Information Packet (PIP): it records modification on the CR3 regis-
ter. This information, along with the CR3 value of the process taken from
the OS, permits to associate linear addresses to the correct application.

• Time-Stamp Counter (TSC): it is used to keep track of timing information.

• Core Bus Ratio (CBR): it stores core-bus clock ratio.

• Overflow (OVF) packets: they are recorded whenever the processor experi-
ences an internal buffer overflow.

On the other side there are the control flow packets; they are:

• Taken Not-Taken (TNT) packets:it is generated every time a conditional
branch is encountered in the code. It records ”T” for taken or ”NT” for
untaken depending on the direction of the branch during the execution of
the program.

• Target IP (TIP): they store the target Instruction Pointer of some kind of
event or instruction that causes a jump in the the code. It was noticed that
this kind of packets not present when there is a jump to a deferred IP of the
same section code (the same linear address space) but only when there are
jumps that go to another address section. This happens when the program
traced has some attached libraries: the software code is resident in an address
section while the commands of the external library in another one. So when
jumping between there two sections a TIP packet is generated.

• Flow Update Packets (FUP): they record the source IP for asynchronous
events and all the cases where the source address can not be determined
from the software binary.

40

Background and technologies

• MODE packets: these packets are useful to help the decoder in understanding
the trace log by providing some processor execution information.

We mentioned some times above about the decoder, it is an important element
in Intel PT software execution tracing. The decoder is a software tool used to
process all the data packets generated by the Intel PT during program execution.
It is the real interpreter of all the binary data produced. Actually it works by pro-
cessing both the Intel PT packets and the program binaries in order to reconstruct
the exact execution trace. This whole process is also showed in figure 4.5. It has
to be remarked that the decoder is a post-processing tool that can be used at a
different time than the tracing operation.

Figure 4.5. Intel PT decoding

In the context of this work the packets that we are going to focus our attention
on are the ones that record control flow information. In particular the TNT packets
will allow us to understand the path actually followed by the program in execution
and furthermore to reconstruct the exact sequence of commands. It is a useful tool
for remote attestation even though it has some limitations.

There are many implementations of software utilizing the Intel PT capabili-
ties. The chosen one to conduct the experiments is perf : which is a performance

41

Background and technologies

analysing tool already present in the linux kernel. It is a complete tool offering a
rich set of commands and many functionalities. The most significant ones are:

• record: for executing and profile a program creating perf.data file

• report: read perf.data file and display the profile

• script: read perf.data file and display the trace output

• stat: for executing a program gathering performance counter statistics

42

Chapter 5

Remote attestation protocol
architecture and components

5.1 Overview

In this chapter it is presented the overall remote attestation protocol architecture
that has been designed and that has been used as reference for the entire work.
With remote attestation protocol architecture we mean the high level description
of the entire remote attestation process and of all its components, as well as the
way they interact with each other and why. After defining each of the components
and their role in the remote attestation architecture solution, in the next chapter,
we will dive into each of them describing how they actually work and how they
have been implemented. In this chapter some of the nomenclature that will be
used in the following sections of this document is presented .

5.2 Phases and components

The system model described up to now shows which is the basic remote attestation
integrity verification scheme and which are its main involved actors. Lets now have
a closer look at the specific components involved in the entire process and their
role. All the components and modules involved are interconnected to each other
and depend from each other in composing the final architecture.

The whole procedure may be divided in two big process phases:

43

Remote attestation protocol architecture and components

1. The binary extraction process phase

2. The integrity verification process phase

The components and modules involved in the first process are:

• The loaded binary extractor

• The Intel Processor Tracing to trace loaded binary extractor’s execution

On the other hand, the components involved in the second integrity verification
process are:

• The eBPF tracer to record TSS commands

• The software program implementing the integrity verification process

• The Intel Processor Tracing to trace eBPF tracer’s execution

In both these two main section processes the actors involved are still the Virtual
Machines and the Orchestrator, having as core trusted module the TPM resident
on the remote Prover to be attested. The majority of the components just de-
scribed are resident on the Virtual Machine’s system.

5.3 Binary extraction process phase

Now lets analyse the two processes separately and more in depth to better under-
stand the role of the mentioned components and the way they interact with each
other.

The first phase of the remote attestation process regards the loaded binary ex-
traction. It is used to extract the binary of the software to be attested when loaded
into the main memory. It is loaded as soon as the software program is launched
and its execution is started. The loaded binary extracted during this phase will be
the data whose integrity will be attested through the integrity verification phase.
Its integrity ensures the correctness and trustworthiness of the software running
on the remote device.

The figure 5.1 shows the main components involved in the remote attestation
architecture proposed and highlighting all the interactions that take place during
the first binary extraction phase.

44

Remote attestation protocol architecture and components

Figure 5.1. Binary extraction phase and main components of remote
attestation architecture

45

Remote attestation protocol architecture and components

As it can be seen by figure 5.1 the binary extraction process starts when the
Orchestrator decides to attest the VM of the remote device by sending a message
to it. This message is used to notify the Prover to start the whole attestation
process. The Prover now knows that it has to start the loaded binary extraction
phase. The loaded binary extractor is executed to extract the loaded binary data
from the main memory of the operating system.

During the whole execution of the binary extractor the Intel PT is running
in background with the purpose of tracing its execution. The Intel PT is used
to extract and produce a thorough low level control flow graph of the binary
extractor execution process. In this way the Intel PT produces an execution flow
comprising the exact sequence of commands executed by the binary extractor. The
tracing data obtained is useful to check if the loaded binary extraction operation
was carried out in a correct and safe way following the exact expected flow of
commands.

The execution flow graph obtained by the Intel PT represents the operations
performed by the extractor during binaries reading. Its correctness will ensure to
the Orchestrator that the reading of the binaries has been conducted in a secure
and correct way without any deviation from its normal flow. Then the execution
flow’s measurement (i.e. hash function over the execution flow data) are computed
through the TPM and are sent to the Orchestrator to be checked. The execution
flow measurement is an hash string representing the summary of the entire control
flow data to be checked.

A way to securely send the measurement data to the Orchestrator, ensuring its
integrity and authentication, must be used. As already discussed in the introduc-
tion to the TPM, the Attestation Key associated to it can be used to sign the
measurement data to guaranteeing its authenticity and integrity when sent from
the VM to the Orchestrator. These kind of mechanisms will be then explained
more in details during the Integrity verification process description in which the
TPM of the VM will request a public key certificate to the Orchestrator in order
to register its Attestation Key used to sign the produced attestation data ensur-
ing authentication and integrity. In all this process the Orchestrator has to act
also as a Certification Authority managing and issuing key certificates. This role
may also be assumed by a separated relying party, but in this solution it has been
considered as part of the Orchestrator.

Once the Orchestrator has received the measurement data of the execution flow
of the binary extractor in a secure and reliable way from the VM it checks whether
the measurement value is as expected or not. The assumption here is that the Or-
chestrator must already own the list of valid reference values, against which the

46

Remote attestation protocol architecture and components

execution flow’s measurement value is checked, prior to the remote attestation
protocol execution. The Orchestrator, before starting the actual remote attesta-
tion protocol execution, has to perform a set up phase of offline pre-processing
operations:

1. Generate the Control Flow Graph (CFG) of the software program through
static analysis: this means using a series of static analysis techniques and
tools in order to extract the Control Flow Graph of the software program to
be attested. This CFG is different from the previously mentioned execution
flow of the program. The execution flow graph is extracted by the Intel PT
during run-time and represents the sequence of really executed instructions.
On the other hand the CFG is a graph representing all the possible path and
directions that the program could potentially take; it is the representation
of the software program in a graph form and it is obtained in a static way
through static analysis.

2. Determine all the valid paths, of the CFG of the software program, that
could be taken. Then the Orchestrator computes the measurements of each
of them through an hash function. All these obtained measurements must
be kept by the Orchestrator into a DB. They are the set of all the valid
reference values, each of them representing a correct execution flow of the
binary extractor program.

After receiving the execution flow’s hash measurement from the Prover, the
Orchestrator checks whether it is preset in the set of the valid measurements or
not. If the value is in the reference values set this means that the extraction of
the loaded binary happened correctly and the Orchestrator sends a response to
the Prover, which will then start the execution of the actual integrity verification
process phase.

If the loaded binary extraction results to be incorrect the Orchestrator can decide
whether to repeat again the attestation process sending a new start message to
the remote device or to consider the remote system as in an untrusted state.

In this first binary extraction phase the assumption that has been made is that
the loaded extractor is not trusted, or better that it could be potentially tampered
by a malicious actor, and so the Intel PT tracing is used to verify and attest
its execution correctness. This means just adding an additional level of security,
moving security issues from the binary extractor to the program that implements
the execution flow reconstruction and its subsequent measurement computation.
The assumption here is that the part related to Intel PT and the execution flow
graph extraction and measurements computation is considered trusted. However

47

Remote attestation protocol architecture and components

considering the Intel PT capabilities it is able to obtain a very precise and thorough
control flow graph at assembly level of the execution of the binary extractor,
representing in this way a very reliable and highly secure technique.

5.4 Integrity verification process phase

After the loaded binary extraction phase the actual integrity verification process
is performed. This second phase is used by the remote device to prove to the
Orchestrator the evidence of its system state. As we know the Orchestrator may
request the integrity verification at any time during the execution of the software
program to be attested at Prover’s side.

This section is the core section of the entire work because it is the central process
by which the VM is able, not only to provide the software measurements to the
Orchestrator but more importantly to do it in a reliable and secure way. The
design of this part has been thought by considering the basic principle of remote
attestation but also the specific characteristics and peculiar properties of the TPM
module. Therefore, the proposed integrity verification solutions make sense only
if considered and deployed with a TPM module because they are tightly bound to
TPM’s architecture and properties.

Two different solution have been proposed and tested to implement the remote
attestation integrity verification protocol by means of the TPM:

• Integrity verification by Quote

• Integrity verification by Proof

Since these two solutions constitute the central part of whole the remote attes-
tation process, characterizing its main mechanisms, they give the name to it.

The attestation by Quote reflects a more general and common scheme used in the
context of remote attestation. Its can perhaps be deployed by means of other trust
anchor rather than the TPM because it follows the guidelines of basic approach
used as definition of remote attestation. On the contrary, attestation by Proof is
a totally new remote attestation solution leveraging TPM specific properties and
mechanisms. Although they both permit to reach the same goal offering the same
properties from a security point of view, they have characteristics and mechanisms
slightly different.

48

Remote attestation protocol architecture and components

As an introduction to these two protocols lets describe their main basic principles
and characteristics.

Attestation by Quote protocol: the basic principle behind the attestation by
Quote is that the Prover has to produce a quote to be sent to the Orchestrator
in order to provide an evidence of its system state and in order to be attested.
A quote is basically a digest over a set of PCR values. The digest is computed
as the hash of the concatenation of all of the digest values of the selected PCRs
[27]. The quote is then signed with an Attestation Key used to generate a reliable
evidence of the system’s state. The Attestation Key is resident into the TPM of
the Virtual Machine and its signature proves the authenticity of the measurement
value. After receiving the quote from the VM the Orchestrator can check the
Prover’s state from it.

Attestation by Proof protocol: the attestation by Proof is based on the adop-
tion of an Attestation Key on the TPM of the VM created by using a policy digest
provided by the Orchestrator, used to then sign the attestation data (a nonce).
The Orchestrator, by means of its TPM, can create a policy digest linked to a
specific PCR value representing the correct state of the remote device. Forcing
the Prover to create an Attestation key with the created policy digest means let
it adopt a key that can only be used when the policy is satisfied, so only when
the PCR value is correct and therefore only if the system is in the correct state.
The attestation process starts when the Orchestrator sends a nonce to the remote
device. Now the Prover has to sign that nonce by means of the Attestation Key
previously created. The TPM will allow the AK to be used to sign correctly the
nonce only if the PCR and the system state are correct. After sending the signed
nonce back, the Orchestrator can check it verifying the remote devices state.

As it can be noticed there are some differences and peculiarities among the two
protocols. In both of them, at the end of the whole process, the Orchestrator is able
to know which is the current state of the VM. The integrity verification process
terminates when the Orchestrator makes the required checks over the attestation
data sent by the Prover and finds out which is the Prover’s state, saving it into a DB
to ensure accountability of attestation procedures. At this point the Orchestrator,
based on the outcome of the integrity verification, may decide whether to not do
anything, keeping the VM normally running, or to take some actions in order to
address a possible problem if the remote device results to be in a malicious and
untrusted state. The actions that the Orchestrator might take depend on the
specific application.

49

Remote attestation protocol architecture and components

Before talking about the technical details of the implementation of the two
solutions it is important to understand their main differences and in which context
their characteristics are more suitable.
The differences between them, divided by some properties, are reported here.

• Verification place and context of work (local vs remote):

– Quote: the Quote protocol follows a remote scheme in the sense that
the actual check of the quote produced by the Prover, and the con-
sequent declaration of its state, happens inside the Orchestrator. It
is in the Orchestrator the place where the actual integrity verification
check occurs. This solution is suitable only for a Orchestrator to VM
attestation scheme.

– Proof: the Proof protocol follows a local scheme in the sense that the
actual check of the policy digest authentication and the consequent
nonce signing happens inside the VM. It is in the VM where the actual
integrity verification check occur, i.e. the policy digest check at signing
time, because if that step fails it means that the VM system is compro-
mised and the whole attestation process aborts. This kind of solution
also works in a VM to VM attestation scheme.

• Multiple run-time attestation process mechanisms:

– Quote: the Quote protocol requires the PCR value to be extended each
time a new integrity verification is performed under Orchestrator’s re-
quest. This means that first of all the Orchestrator has to keep track of
the number of times the PCR has been extended (which is equivalent to
the number of times the integrity verification has been requested); we
are going to discuss how it was addressed later in the implementation
chapter. And secondly it means that the integrity verification can be
requested a multiple number of times and at any moment by the Or-
chestrator during run-time, without needing to change the Attestation
Key of the Virtual Machine each time. In fact the VM can use the same
AK for producing the quotes for its entire lifetime.

– Proof: in the Proof protocol the remote attestation can be performed a
multiple number of subsequent times, as well as in the Quote protocol,
but it can be done in two different approaches:

∗ The first one is based on extending the PCR value each time the
integrity verification is performed following the same approach of
the Quote protocol. However, in the Proof protocol if the PCR

50

Remote attestation protocol architecture and components

value to be checked changes a new AK must be created at each time.
The new AK has to be created by using a new policy digest, bound
to the new PCR value, constructed at each new attestation process
by the Orchestrator. This scheme is a little bit worse in terms of
performance because the creation of a new AK at each attestation
time adds more overhead to the protocol execution. Taking into
consideration the time of the whole process and the time added for
the AK creation, and also depending on the specific application, a
performance and feasibility analysis of this solution should be done
before its deployment.

∗ The second one is based on resetting the PCR value at every time a
new integrity verification is performed, before computing the mea-
surements. Therefore, at each time the Orchestrator requests a new
integrity check the VM can reset the value of the PCR, compute
the measurements of the software binary again and then extend
the PCR. In this way there are not subsequent extensions that
make the PCR value changing at any time, but the extension is
performed only once after the PCR reset. The PCR value should
remain always the same and the AK can remain unchanged at any
time.

During the whole integrity verification phase, independently from which one of
the two protocols is used, an eBPF tracer is used to trace and record all the com-
mands and data exchanged with the TPM. Some eBPF hooks are leveraged to
intercept the transit of TSS commands in order to record and log them and their
parameters. This is an additional level of security added to the integrity verifi-
cation protocol. The program that implements the integrity verification process,
which communicates with the TPM by means of a sequence of TSS commands, is
considered untrusted. The role of the eBPF hooks is to verify that the sequence
of TSS commands executed, as well as their parameters, are correct and in the
right order. This additional security mechanism enhances the integrity verification
process reliability and correctness.

The eBPF will allow us to gather TSS commands information like the binary
data sent and received to the TPM, as well as the type of commands and their
latency. However the eBPF tracer execution, used to verify the correctness of the
TSS commands, could be diverted and tampered by an adversary in order to fake
the sequence of TSS commands or their parameters. For this reason the Intel
PT is used as a tracing technique to follow and attest the execution flow of the
eBPF hooks program. It will be an additional highly secure mechanism to assure
that the eBPF program execution is correct and so also the TSS commands that

51

Remote attestation protocol architecture and components

implement the integrity verification phase.

The motivation behind the choice of using the Intel PT to trace and attest
the eBPF tracer is that the Intel PT is a more precise tracing technique able to
reach a lower level of granularity with respect of the eBPF. A eBPF program can
extract more high level information about process execution wile the Intel PT
can be used to obtain the exact assembly execution flow graph. These two kinds
of techniques complete each other in this way, tracing at two different levels of
granularity and producing a complete set of log of records. In this way the integrity
verification process may be considered highly secure providing a verifiable evidence
of its correctness in all its phases to the Orchestrator.

The assumption here is that the Intel PT monitoring and tracing technique as
well as the control flow extraction is considered trusted.

52

Chapter 6

Remote attestation protocol
components implementation

6.1 Overview

In this chapter we are going to discuss about the integrity verification protocols
and all its steps in detail. After the presentation of all the messages that are need
to be exchanged between the Orchestrator and the Prover the actual commands
used to implement and test the effectiveness of the two protocols and their timings
are reported.

53

Remote attestation protocol components implementation

This is the notation that will be used across the protocol specification and
diagrams:

Symbol Description
Orc The Orchestrator
VM The Virtual Machine running on the remote device
T PM The software TPM of the remote Virtual Machine
AK Attestation Key
EK Endorsement Key
KH Key Handle of a loaded key
Cblob Credential blob
sref Reference secret generated from the Orchestrator
scred Secret disclosed from the credential blob
hmeas Measurement of the loaded binaries
href Measurement reference value computed by the Orchestrator
I PCR register indexes
Qattest Quote over a specific set of PCRs
Qattest Signature of the quote data
Pdigest Policy digest
Ipcrs PCR register indexes
T digest Public key template
T Creation ticket
dtempl Key template data
hcreat Hash of the creation data
dticket Ticket data: proof that the digest was generated by the TPM
Snonce Signature of the nonce

Table 6.1. Notation used

It is also worth noticing that the certificate management operations in general
are managed by a relying third party that acts as Certification Authority. The
Certification Authority performs many actions like the issuing of a certificate for
a public key or the storing of certificate data along with their expiration date. In
these two protocols it has been considered, for simplicity, that the CA runs inside
the Orchestrator. Depending on the implementation the CA could run on another
machine different from the one of the Orchestrator. The same consideration can
be done for the DB: the DBMS was considered to be on the same machine of the

54

Remote attestation protocol components implementation

Orchestrator, but depending on the implementation choice it could also be running
on a different remote machine. The type of DBMS and the technology on which
it relies on are not mentioned, it is up to the developer choosing the more suitable
one.

Both attestation by Quote and by Proof protocols are composed of two main
phases:

1. Attestation Key creation phase: it is the phase where a new AK, associated
to the EK of the TPM, is created and then certified by the Orchestrator in
order to be used in the integrity check phase.

2. Integrity check phase: this represents the the actual attestation phase in
which the Prover produces the attestation data for the Orchestrator and in
which the Orchestrator checks it to get to know the remote device’s state.
In this phase the AK previously created is used in the attestation process to
produce the attestation data and to ensure its authentication.

Lets analyse all the single steps in detail in the following sections.

6.2 Attestation by Quote

6.2.1 Creation of AK

1. Loading of the Endorsement Key:

In this step the Endorsement Key of the TPM, that was generated
and injected by the TPM vendor at manufacturing time, is loaded. By
loading the EK its key handle is obtained. The EK used is a 2048 RSA
key.

2. Creation of the AK:

The VM creates an Attestation Key as a child of the EK, previously
loaded in the first step. The command tpm2 createak is used for the
creation of the AK returning the context of the AK, the public part of
AK and the name of the AK. In this solution a RSA 2048 key has been
created.

55

Remote attestation protocol components implementation

In order to generate an Attestation Key as a non-migratable restricted
signing key the attributes fixedtpm, fixedparent, restricted and
sign have to be SET by the tpm2 createak command.

The AK has been created in PEM format. This choice is necessary
because later on the tpm2 checkquote command will need a public key
in PEM format as parameter.

3. Get of AK certificate:

The VM asks the Orchestrator (CA) to issue a certificate for the AK it
generated. The VM, along with the request, sends the EK certificate,
the name of the AK and the public part of the AK created in the
previous step. The EK certificate has been retrieved using the command
tpm2 getekcertificate. It retrieves the Endorsement key Certificate for
the TPM EK from the TPM manufacturer’s endorsement certificate
hosting server[21]. Its argument specifies the URL address for the EK
certificate portal[21]. Moreover this command could also be used in an
offline mode.

The retrieved EK certificate is an X.509 certificate encoded in ASN.1
format containing the public part of the EK.

4. Check of the EK certificate:

The Orchestrator, after receiving the EK certificate, the name and pub-
lic part of the AK created by the VM, verifies the signature of the EK
certificate and the one of all certificates in the chain up to the Root
CA Certificate. In the case of the TPM, the EK certificate is issued
by the TPM Manufacturer which ensures that the Endorsement Key is
resident on a specific TPM. This process consists of checking whether
the EK Certificate was issued by a trusted TPM Manufacturer. This
operations are performed by the CA, and as it was mentioned before
it’s role is played by the Orchestrator.

5. Check if the EK of the VM is in the DB:

The Orchestrator (CA) checks whether the EK certificate of the VM
requesting an AK certificate is associated to a key that was previously
added to the DB by the Network Administrator. In this way the Or-
chestrator (CA), after checking the validity of the EK certificate, also
checks if the certificate is actually associated to the key of the remote
device. This operation prevents any VM from requesting and obtaining
an AK certificate.

56

Remote attestation protocol components implementation

6. Activation of a credential in order to check that the AK is resident on the
TPM and that it is the child of a certified EK:

The Orchestrator, using tpm2 makecredential command, generates a
credential blob, which is created by using a TPM public key to protect
a secret that is used to encrypt the attestation key certificate[21]. The
Orchestrator has to select a secret to be used in the command. This
credential blob is then sent to the VM.

The VM will then use the credential blob as input for the tpm2 activate-
credential command. This command enables the association of a cre-
dential with an object in a way that ensures that the TPM has validated
the parameters of the credentialed object. This guarantees the registrar
that the attestation key belongs to the TPM with a qualified parent key
in the TPM[21], and so ensuring that the Attestation Key, for which
the VM has requested the certificate, is owned by the TPM and that it
is also a child of the Endorsement Key whose certificate was previously
provided by the VM.

If the tpm2 activatecredential execution is successful it produces as out-
put the secret that the Orchestrator used as parameter of the tpm2 mak-
ecredential command.

7. The VM returns back to the Orchestrator the disclosed secret from the cre-
dential blob:

Outside the TPM, the secret could be applied to the credential in some
agreed upon way [8]. This can be as simple as using the secret as a
symmetric decryption key to decrypt the credential [8].

In this solution the VM, after disclosing the secret from the creden-
tial blob sent by the Orchestrator, just returns the secret back to the
Orchestrator. This solution is a simplified version of the one proposed
in the documentation but provides the proof that the VM was able to
disclose the secret and so that the AK and the EK are resident on the
TPM of the VM, where the EK is the parent of the AK for which the
certificate has been requested.

8. The Orchestrator checks the value of the secret:

The Orchestrator, after receiving the secret value from the VM, checks
if it is equal to the value of the secret that it had previously used as
input for the tpm2 makecredential command. If the two values are the

57

Remote attestation protocol components implementation

same it means that the EK and the AK are both resident on the TPM
of the VM.

Otherwise if this check fails the Orchestrator can stop all the certifica-
tion process not issuing the requested AK certificate.

9. The Orchestrator(CA) issues the AK certificate and sends it to the VM:

The AK certificate is created by the Orchestrator(CA) by simply signing
the public part of the AK created by the VM with its asymmetric key.
It then could create a data structure to put together the public portion
of the AK and the signature just created.

This is the basic way to create a certificate for the AK of the VM.
Of course this could be subject to some extensions and addition of
attributes and data about the Attestation Key to then be signed by the
Orchestrator(CA) in order to create the final certificate structure. An
example of additional data could be the key’s name, which moreover can
completely identify the key because its is a digest computed including
the public key and also its attributes [8].

After the creation of the AK certificate the Orchestrator sends it to the
VM.

10. Store of the AK certificate into the DB:

The Orchestrator stores the issued AK certificate in the DB. The list of
the issued AK certificates is used to keep track of the Attestation Keys
of the remote devices. It will then be useful during the actual integrity
verification part.

58

Remote attestation protocol components implementation

6.2.2 Creation of AK sequence diagram in attestation by
Quote

T PM � VM � Orc
PCR, EK EK pub

KHEK = LoadEK

AKpriv, AKpub = CreateKey(KHEK)

VerifyEKCert(EKcert)

Cblob = TPM MakeCredential(EKpub, AKname, sref)

scred = TPM ActivateCredential

keystate = VerifySecret(scred, sref)

keystate=True =⇒
AKcert = AKCreateCertificate(AKpub, AKname)

SaveKeyCertificateDB(VMi, AKcert)

LoadEK

KHEK

TPM Create(KHEK)

AKpub, AKname

EKcert, AKpub, AKname

Cblob

TPM ActivateCredential(KHEK, KHAK, Cblob)

scred

scred

AKcert

Figure 6.1. Attestation Key creation in Attestation by Quote

59

Remote attestation protocol components implementation

6.2.3 Integrity check

1. The Orchestrator sends the integrity verification request message to the VM:

The Orchestrator simply sends a message to the VM as a request for
an integrity verification. In this way the Orchestrator can trigger the
starting of the actual integrity check process.

This message could be of any type. In the actual implementation of the
protocol it could be realized in many ways. It is up to the developer
deciding how this message should be. It is just a trigger message with
the purpose of making the integrity verification process start.

Together with the message a random nonce is sent to the Prover to be
used during the production of the quote. It is needed to avoid reply
attacks and to give freshness to the attestation data produced.

2. The VM computes the necessary system measurements and extends the PCR
bank:

The VM computes all the necessary measurements of the loaded soft-
ware binaries on the Virtual Machine. A measurement consists basically
on computing a digest on data of which we want to attest the integrity
(computation of the hash). These data could be like the firmware, the
OS, or , as in our case, the loaded binary of an application running on
the system. In our scope the data attested is the loaded binary of a soft-
ware program running. The loaded binary extractor read the binaries
and then its digest is computed.

Once the VM has computed the final measurement it uses that value
to extend a PCR register.

Prior to this step the VM should have depicted a PCR bank to be used
for the entire integrity verification process. At the beginning of the
integrity verification process the selected PCR register must be reset.

3. The VM produces the TPM quote using the AK:

The VM uses the tpm2 quote command which produces a quote and a
signature for a given list of PCRs in a given algorithm/banks[21]. The
command produces also a signature over the quote data. This signature
must be created by using the AK previously certified and the random
nonce received from the Orchestrator. Using the AK ensures that the

60

Remote attestation protocol components implementation

quote was produced by the TPM of the VM to be attested and the use
of the nonce ensure freshness over the attestation data produced.

The quote represents the current state of the PCR, which reflects the
current state of the system because it is extended with the computed
measurements over the data to be attested.

After that the VM produces the quote and its signature they are sent
to the Orchestrator.

4. Check if the AK certificate of the VM is present in the DB:

The Orchestrator checks if there is a AK certificate for the VM sending
the quote. If the AK certificate is present inside the DB the VM has
already a valid Attestation Key and a valid certificate for it.

If the AK certificate is not present into the DB it could mean that the
VM has not performed the first phase for requesting a certificate for its
AK, maybe that the AK certification phase was not successful or maybe
that the AK certificate is expired. If the AK certificate is not present in
the DB the Orchestrator should stop the integrity verification process.

5. Check if the quote has been signed with the AK associated to the VM:

If the TPM of the VM has a valid AK associated to an AK certificate
(previous step) the Orchestrator checks whether the quote was actually
signed by that Attestation Key making use of the previously sent ran-
dom nonce. In the verification process the command tpm2 checkquote
is used. It uses the public portion of the provided key to validate a
quote generated by a TPM; This will validate the signature against the
quote message[21]. The provided key to validate the quote of course is
the public part of the AK of the VM and it must be in PEM format.

This is a crucial part in the integrity check phase because if the quote
signature verification fails it means that the quote data was not pro-
duced by the TPM of the VM or maybe that it was modified by some
attacker. In both cases the Orchestrator should take some actions: it
could start again another integrity verification process to be sure about
the VM state, before considering it untrusted. After some assessments,
if the verification of the signature over the quote fails, the Orchestrator
must take a decision over the VM state.

6. Verify the measurements and the TPM quote value:

61

Remote attestation protocol components implementation

The Orchestrator verifies the measurements and TPM quote sent by
the VM. To validate an attestation quote, a remote Orchestrator can
use a PCR to recalculate the digest value[25]. After the recomputation
of the integrity measurements and after recalculating the quote the
Orchestrator could compare it with the quote value provided by the
VM: if they are equal the integrity verification succeeds and the VM is
in a trusted and good state.

Another way to check the quote is by checking directly the PCRs value.
This can be done because the tpm2 checkquote returns to the standard
output the value of the PCRs on which it computed the quote. It is
also returned the PCR bank number used and so also the length and
type of hash algorithm used to compute the quote. The Orchestrator
could read this PCR value and compare it with the expected one. If
they match it means that the VM is in a trusted state.

This is the final and most important step of the integrity verification.
It is the actual step where the integrity measurements are checked to
verify VM’s state

If this step fails it means that the VM is not in a trusted state and maybe
its software has been tampered by an attacker. The Orchestrator has
to perform some actions to address a possible VM system attack. The
action of the Orchestrator depends on the context and on the specific
application in which this protocol is applied.

7. The Orchestrator stores the integrity verification result:

The result of the VM integrity verification process is stored by the
Orchestrator in the DB. The Orchestrator should keep a log of all the
integrity verification outcomes in order to maintain an the history the
VMs states.

The log is very important because it is a way by means the Orchestrator
can keep track of the VMs state. The history data could also be useful,
in the future, for forensics reasons.

An additional consideration must be done about the step 6 of the integrity check.
This step is regarding the actual check of the measurement value provided by the
VM. In this Quote scheme the integrity verification can be requested from the
Orchestrator a multiple number of subsequent times. Each time a new integrity
process is started a new measurement of the VM system is computed, and subse-
quently the PCR register is extended with the new measurement every time. So at

62

Remote attestation protocol components implementation

the end, after many subsequent integrity verification processes, the value stored in
the PCR register is equal to the result of many subsequent extensions performed
by using the values of the measurement computed at each different integrity check
procedure. Therefore, the PCR value is changing each time a new attestation is
performed.

The Orchestrator, in order to correctly check the quote, has to keep track of the
number of times the extension operation has been performed over the PCR register
and so the number of times it has started a new VM integrity verification. For this
reason a counter is needed at the Orchestrator side to keep track of the number of
past performed integrity checks. When the Orchestrator has to verify the quote
value sent by the Prover it has to take into account the number of cumulative
extensions to be executed before getting the right value to be matched with the
quote.

63

Remote attestation protocol components implementation

6.2.4 Attestation by Quote sequence diagram

T PM � VM � Orc
PCR, EK EK pub

hmeas = Measurements comput()

KHEK = LoadEK

AK, KHAK

Qattest = {hmeas, I}

Sattest = sign(Qattest, KHEK)

VerifySignature(Qattest, Sattest, AKpub)

∧ CheckQuote(Qattest, href, nonce)

=⇒ VMi state=Trusted

SaveStateDB(VMi, VMi state)

Attestation request, nonce

LoadEK

KHEK

TPM Load(AK, KHEK)

KHAK

TPM PCR Extend(I, hmeas)

TPM Quote(KHAK, I, nonce)

Qattest, Sattest

Qattest, Sattest

Figure 6.2. Attestation by Quote

64

Remote attestation protocol components implementation

6.3 Attestation by Proof

6.3.1 Creation of AK

1. The Orchestrator creates a policy digest associated to the correct expected
value of the PCR:

The Orchestrator first of all starts a new policy session by calling
tpm2 startauthsession command. Then it calls tpm2 policypcr com-
mand declaring an expected PCR value in order to create a policy di-
gest: it is called PCR policy. The PCR policy is a policy digest which
is bound to specific PCRs value.

The policy can then be used to create a key. A key created with the
use of a PCR policy is bound to a certain PCR value. This means that
the key can be used until the PCR remains in a state compliant with
the policy digest. If the key is used for any operation while the PCR is
not in the right state, so storing an incorrect value, the TPM will rise
an error about the policy check.

2. The Orchestrator sends the policy digest to the VM asking the VM to create
a new AK with it:

The Orchestrator simply send the policy digest created in the previous
step and sends it to the VM asking it to create a new Attestation Key
by using the provided PCR policy. The implementation of the message
used to convey the policy digest is not specified here and it is up to the
developer choosing how this message should be.

3. The VM creates the AK using the policy digest received by the Orchestrator:

The VM, after receiving the policy digest, uses it for the creation of an
Attestation Key. However first of all the VM has to load the Endorse-
ment Key generated by the TPM manufacturer in order to get its key
handle. The EK used is a 2048 RSA key. After that the EK has been
loaded on the TPM it can be used as a parent for the creation of the
AK.

The VM has to use the policy digest, received from the Orchestrator,
for the creation of the AK. The policy digest is simply included into the
key object at creation time [25]. The first step is to create a template
structure for the object of type TPM2B PUBLIC with the policy digest

65

Remote attestation protocol components implementation

inside. Then the caller provides this template at AK creation time for
its association with the policy digest.

Different from the Quote protocol, where the tpm2 createak command
was used for the AK creation, in the Proof protocol the command used is
tpm2 create. This choice is necessary because the tpm2 createak does
not allow the use of a policy digest during the key creation. On the
other hand the tpm2 create command allows the use of more options
and personalization over the creation key parameters and attributes.

In order to generate an Attestation Key that is non-migratable re-
stricted signing key the attributes fixedtpm, fixedparent, restricted
and sign have been SET through the options of the tpm2 create com-
mand. The AK created is an RSA 2048 key.

After that the key has been created it has to be loaded on the TPM.
Another thing to remember is that, after loading the key on the TPM, it
must be made persistent by means of the command tpm2 evictcontrol.
If it is not made persistent on the TPM there will be problems after-
wards during the next commands execution. The Attestation Key must
be made persistent in order to be able to make all the protocol working.

4. Get of AK certificate:

The VM asks the Orchestrator(CA) to issue a certificate for the AK it
generated. The VM, along with the request, sends the EK certificate,
which contains the public part of the EK, and the name and public
part of the Attestation Key for which it wants to request the certificate.
The EK certificate is retrieved by using the tpm2 getekcertificate which
requires as argument the URL address for the EK certificate portal. It
can also be used in an offline mode.

5. Check of the EK certificate:

The Orchestrator, after receiving the EK certificate, the name and pub-
lic part of the AK created by the VM, verifies the signature of the EK
certificate and the one of all the certificates in the chain up to the Root
CA Certificate. The EK certificate is issued by the TPM Manufac-
turer who ensures that the Endorsement Key is resident on the selected
TPM. This step is used checking whether the EK Certificate was issued
by a trusted TPM Manufacturer. This certificates operations are per-
formed by the CA, which is a reliable third party whose role, as it was
mentioned before, is also played by the Orchestrator in this solution.

66

Remote attestation protocol components implementation

6. Check if the EK of the VM is in the DB:

The Orchestrator (CA) checks whether the EK certificate of the VM
requesting an AK certificate is associated to a key that was previously
added to the DB by the Network Administrator. In this way the Or-
chestrator (CA), after checking the validity of the EK certificate, also
checks if the certificate is actually associated to the key of the remote
device whose integrity we want to attest. This prevents any VM from
requesting and obtaining an AK certificate.

7. Activation of a credential in order to check that the AK is resident on the
TPM and that it is the child of a certified EK:

This activation credential phase is the same as the Quote one.

The Orchestrator, using tpm2 makecredential command, generates a
credential blob, which is created by using a TPM public key to protect
a secret that is used to encrypt the attestation key certificate[21]. The
Orchestrator has to select a secret to be used in the command. This
credential blob is then sent to the VM.

The VM will then use the credential blob as input for the tpm2 activate-
credential command. This command enables the association of a cre-
dential with an object in a way that ensures that the TPM has validated
the parameters of the credentialed object. In an attestation scheme this
guarantees the registrar that the attestation key belongs to the TPM
with a qualified parent key in the TPM[21], and so that the Attesta-
tion Key, for which the VM has requested the certificate, is owned by
the TPM and that it is also a child of the Endorsement Key whose
certificate was previously provided by the VM.

If the tpm2 activatecredential execution is successful it produces as out-
put the secret that the Orchestrator used in the tpm2 makecredential
command.

8. The VM returns back to the Orchestrator the secret disclosed from the cre-
dential blob:

Outside of the TPM, the disclosed secret could be applied to the cre-
dential in some agreed upon way [8]. This can be as simple as using the
secret as a symmetric decryption key to decrypt the credential [8].

In this solution the VM, after disclosing the secret from the creden-
tial blob sent by the Orchestrator, just returns the secret back to the

67

Remote attestation protocol components implementation

Orchestrator. This solution is a simplified version of the one proposed
in the documentation but provides the proof that the VM was able to
disclose the secret and so that the AK and the EK are resident on the
TPM of the VM, where the EK is the parent of the AK for which the
certificate has been requested.

9. The Orchestrator checks the value of the secret:

The Orchestrator, after receiving the secret value from the VM, checks
if it is equal to the value of the secret that it had previously used as
input for the tpm2 makecredential command. If the two values are the
same it means that the EK and the AK are both resident on the TPM
of the VM.

Otherwise if this check fails the Orchestrator can stop all the certifica-
tion process not issuing the requested AK certificate.

10. The VM creates the attestation data for the AK:

The VM creates the attestation data of the AK using the tpm2 certifyc-
reation command. This command attests the association between a
loaded public area (in our case the AK) and the provided hash of the
creation data[21]. The creation data and the creation ticket are needed
to be used as input of the command and they are produced during the
key object creation.

As a result of tpm2 certifycreation execution we obtain the attestation
data and its signature. Since the Endorsement Key is only a decryption
key and not a signing key it can not be used to sign the attestation data.
Therefore it has been decided to use the AK, signing in this way its own
attestation data. This can be done because the Orchestrator, after the
activation of credential phase, already knows that the AK is resident
on the TPM of the VM and that it is the child of the EK for which it
has a valid certificate.

The attestation data contains the ”magic” number, which is the proof
that the AK was created by the TPM, and also contains the ”attested”
field containing the ”objectName” and the ”creationHash”.

The attestation data represent a proof that the AK was created by the
TPM itself and a link between the AK and its creation data.

11. The VM sends the attestation data and the template of the AK to the
Orchestrator:

68

Remote attestation protocol components implementation

The VM sends the attestation data, created in the previous step, and the
template data, obtained during the AK creation, to the Orchestrator.
Sending these two data to the Orchestrator is needed for the purpose of
making the Orchestrator check if the AK was created in a correct way.

12. The Orchestrator verifies that the attestation data was signed by the AK of
the VM:

The Orchestrator verifies the signature of the attestation data with the
public part of the AK. This step ensure that the attestation data was
produced by the TPM of the target VM and not by any TPM.

13. The Orchestrator checks from the template data and attestation data that
the AK was correctly created:

The Orchestrator now checks whether the AK was created in a good
way.

First of all it checks the ”magic” field in the attestation data to be sure
that the AK was created from a TPM. The ”magic” field should always
be equal to TPM GENERATED VALUE (i.e. ”magic” value equal to
0xff544347). Then it checks the ”objectName” and the ”creationHash”
fields in the attestation data. The name of a key is computed as the
digest over the public part of the key and its attributes so it completely
identifies the key.

Then the Orchestrator could also additionally check the template data,
which is of type TPM2B PUBLIC. It contains the attributes used for
the key creation: this permits to check whether the key was created as
a non-migratable restricted signing key. The template contains also the
value ”authPolicy” for the authentication policy only when the policy
digest is used during key creation: this could be also another important
check to do because it permits to know if the policy digest was really
used for the AK creation.

If all the checks in this step are successful the Orchestrator can be sure
that the AK creation phase was correct and it can proceed to issue the
AK certificate.

14. The Orchestrator (CA) issues the AK certificate and sends it to the VM:

The AK certificate is created by the Orchestrator (CA) by simply sign-
ing the public part of the AK created by the VM with its asymmetric

69

Remote attestation protocol components implementation

key. It then could create a data structure to put together the public
portion of the AK and the signature just created.

This is the basic way to create a certificate for the AK of the VM.
Of course this could be subject to some extensions and addition of
attributes and data about the Attestation Key to then be signed by the
Orchestrator (CA) in order to create the final certificate structure. An
example of additional data could be the key’s name, which moreover can
completely identify the key because its is a digest computed including
the public key and also its attributes [8].

After the creation of the AK certificate the Orchestrator sends it to the
VM.

15. Store of the AK certificate into the DB:

The Orchestrator stores the issued AK certificate into the DB. The list
of the issued AK certificates is used to keep track of the Attestation
Keys of the remote devices. It will then be useful during the actual
integrity verification part.

70

Remote attestation protocol components implementation

6.3.2 Creation of AK sequence diagram in attestation by
Proof

T PM � VM � Orc
PCR, EK EK pub

Pdigest = Halg(CC PolicyPCR‖Ipcrs‖digestTPM)

KHEK = LoadEK

T digest = CreateTemplate(Pdigest)

AKpriv, AKpub = CreateKey(KHEK, T digest)

VerifyEKCert(EKcert)

Cblob = TPM MakeCredential(EKpub, AKname, sref)

scred = TPM ActivateCredential

keystate’ = VerifySecret(scred, sref)

Ipcrs,Pdigest

LoadEK

KHEK

TPM Create(KHEK, T digest)

AKpub, AKname, T, dtempl, hcreat

EKcert, AKpub, AKname

Cblob

TPM ActivateCredential(KHEK, KHAK, Cblob)

scred

scred

71

Remote attestation protocol components implementation

AKattestData, SAKAttData

keystate” = CheckAKCreat(dtempl, AKattestData, SAKAttData)

keystate’ ∧ keystate” =⇒ keystate = True

keystate=True =⇒
AKcert = AKCreateCertificate(AKpub, AKname)

SaveKeyCertificateDB(VMi, AKcert)

TPM CertifyCreation(KHAK, KHEK, T, hcreat)

AKattestData, SAKAttData

dtempl, AKattestData, SAKAttData

AKcert

Figure 6.3. Attestation Key creation in Attestation by Proof

72

Remote attestation protocol components implementation

6.3.3 Integrity check

1. The Orchestrator sends a nonce to the VM:

The Orchestrator creates a random nonce and sends it to the VM by
means of a message. This is the first message that triggers the starting
of the real integrity check phase.

2. The VM signs the nonce using the previously created AK:

Now that the AK has been certified by the Orchestrator it can be used
in the integrity verification phase. The VM uses the AK to sign the
nonce received from the Orchestrator.

This is the most important step of the Proof integrity verification pro-
tocol. The AK has been created by the VM using the policy digest
provided by the Orchestrator. This means that the use of the Attesta-
tion Key is conditioned by the state of the PCR. If the PCR is in the
correct state, the one declared in the PCR policy, the VM can use the
key otherwise the use of the key will raise a TPM error.

In our case the VM is able to sign the random nonce using the AK only
if the PCR is in a good state. If the VM is not able to sign the nonce
with the AK it means that the PCR is not in a good state and so the
system has been modified or tampered.

If the VM is not able to sign the nonce with the AK the integrity verifi-
cation protocol stops and the VM system is considered in an untrusted
state.

The VM uses the tmp2 sign command to sign the nonce. Since the AK
is a restricted key this command needs a ticket parameter to be able to
work correctly. The ticket must be the hash value of the data that we
want to sign with the AK: in this case the ticket is the hash value of
the nonce. This ticket is produced by TPM2 Hash when the message
that was digested did not start with TPM GENERATED VALUE[26].
This ticket is used to indicate that a digest of external data is safe to
sign using a restricted signing key[25]. A restricted signing key may
only sign a digest that was produced by the TPM[25]. If the digest was
produced from externally provided data, there needs to be an indication
that the data did not start with the same first octets as are used for
data that is generated within the TPM[25].

3. The VM sends back the signed nonce to the Orchestrator:

73

Remote attestation protocol components implementation

The VM sends the signed nonce back to the Orchestrator. The signed
nonce, if correctly signed, represent the proof of VM system integrity.

4. The Orchestrator verifies the signature:

The Orchestrator verifies that the nonce was signed by the AK of the
TPM. To do this first of all the tpm2 loadexternal command is used to
load the public part of the AK into the TPM of the Orchestrator. And
then the tpm2 verifysignature command is used to actually verify the
signed nonce.

If the signature succeeds it means that the nonce was correctly signed
by the TPM of the VM and it proves that the VM system is in a trusted
state.

5. The Orchestrator stores the result of the integrity verification check:

The result of the VM integrity verification process is stored by the
Orchestrator in the DB. The Orchestrator should keep a log of all the
integrity verification outcomes in order to maintain the history the VMs
state.

The log is very important because it is a way the Orchestrator can keep
track of the VMs state and it could also be useful in the future for
forensics reasons.

74

Remote attestation protocol components implementation

6.3.4 Attestation by Proof sequence diagram

T PM � VM � Orc
PCR, EK EK pub

KHEK = LoadEK

AK, KHAK

dticket := HMAC(proof, (ST HASHCHECK ‖ digest)

Pdigest = GetPolicy(KHAK)

Pdigest = Satisfied =⇒
Snonce = Sign(KHAK, nonce)

rv = TPM VerifySignature(AKpub, nonce, Snonce)

rv = True =⇒ VMi state = Trusted

SaveStateDB(VMi, VMi state)

nonce

LoadEK

KHEK

TPM Load(AK, KHEK)

KHAK

TPM Hash(nonce)

dticket

TPM Sign(KHAK, nonce, dticket)

Snonce

Snonce

Figure 6.4. Attestation by Proof

75

Remote attestation protocol components implementation

6.4 Integrity verification commands timings

6.4.1 Timing measurements approaches

Part of the analysis conducted on the integrity verification protocol is regarding
the time needed for commands execution. It allows us to understand how much
time a single command takes to be executed and also to estimate the time required
for the entire attestation process to be executed. Having a rough idea of the time
necessary to attest the remote device can be necessary for the evaluation of the
feasibility of such a solution and for the estimation of the overhead brought by the
deploying of such attestation protocol. Knowing the total time required for the
whole process is also necessary to make a threat modeling evaluation.

Different approaches have been used to measure the time required by the tpm2-
tools commands to be executed. The tables 6.2, 6.3 show the timings that have
been taken. As can be seen, timings have been measured both for Quote and for
Proof integrity verification protocol processes.

Three different approaches have been used to measure the time required for each
command’s execution. The three approaches are:

• The time bash command: the time command is a common linux tool used
to perform timing measurements of a bash command. It provides the real
time, the user time and the system time measures of a command’s execution.
For each tpm2-tools command the execution time has been taken as the sum
of the user time (CPU time spent in user-mode code) and the system time
(CPU time spent in the kernel).

• The TSS Execute interface: TSS Execute is an interface belonging to the
TSS library. It is contained in the file called Tss2 Sys Execute.c. It is called
every time a new TSS command is invoked and every time a TSS command
terminates its execution. The function accessed at TSS command’s calling
is Tss2 Sys ExecuteAsync while the function invoked at TSS command’s
termination is Tss2 Sys ExecuteFinish. Taking the absolute value of the
difference between the time at which the Tss2 Sys ExecuteAsync is invoked
and the time at which the Tss2 Sys ExecuteFinish function is executed
permits to obtain the time measurement of the command. It is worth noticing
that the time measured include also the marshalling and unmarshalling of
the executed command. The advantage of this kind of time computation is
that it provides the exact time spent inside the TPM for the execution of the

76

Remote attestation protocol components implementation

TSS command. Discarding and not considering the execution time required
by operations outside of the TPM.

• The eBPF tracing time: this time measurement has been taken by means
of the eBPF tracer that has been used to log TSS commands and data
exchanged with the TPM. Exploiting the eBPF program used capabilities
to understand when a TSS commands is sent to the TPM and when its
response is returned back from the TPM permits to measure TSS timings.
Computing the absolute value of the difference between the time at which
a TSS command is traced by the eBPF program and the time at which the
response is caught make us obtain the time measurement. The time value
obtained in this way represents the time measured from the eBPF tracer
point of view. It is the time required by the eBPF hook program to trace
the total execution of a TSS commands and with a good approximation can
represent the time required by the command to be executed.

Down below in the tables 6.2, 6.3 all the timings obtained are reported both for
Quote and Proof integrity verification protocols.

77

Remote attestation protocol components implementation

6.4.2 Attestation by Quote timings

Timings of Quote commands:

TPM 2.0 Command
TPM 2.0
Timings

(sys+usr)

TPM 2.0
Timings

(TSS Execute)

TPM 2.0
Timings

(tpm hook)
Quote AK creation 0.09s 0.2488s 0.0843s

tpm2 createek 0.009s 0.0820s 0.0207s

tpm2 createak(rsa2048) 0.011s 0.1608s 0.0333s

tpm2 makecredential 0.046s / /

tpm2 startauthsession 0.006s 0.0006s 0.0029s

tpm2 policysecret 0.008s 0.0012s 0.0107s

tpm2 activatecredential 0.010s 0.0042s 0.0167s

Quote integrity check 0.022s 0.00629s 0.01254s

tpm2 pcrextend 0.006s 0.00025s 0.00165s

tpm2 quote 0.011s 0.00604s 0.01089s

tpm2 checkquote 0.005s / /

Table 6.2. Quote commands timings

78

Remote attestation protocol components implementation

6.4.3 Attestation by Proof timings

Timings of Proof commands:

TPM 2.0 Command
TPM 2.0
Timings

(sys+usr)

TPM 2.0
Timings

(TSS Execute)

TPM 2.0
Timings

(tpm hook)
Proof AK creation 0.174s 0.29687s 0.19915s

tpm2 pcrread 0.008s 0.00053s 0.00290s

tpm2 startauthsession 0.006s 0.00046s 0.00358s

tpm2 policypcr 0.008s 0.00103s 0.00713s

tpm2 createek 0.010s 0.05027s 0.02089s

tpm2 policysecret 0.010s 0.00170s 0.01275s

tpm2 create 0.012s 0.18183s 0.05911s

tpm2 load 0.010s 0.04385s 0.02647s

tpm2 evictcontrol 0.009s 0.00096s 0.00980s

tpm2 makecredential 0.062s / /

tpm2 activatecredential 0.011s 0.00340s 0.02235s

tpm2 certifycreation 0.012s 0.01167s 0.02239s

tpm2 loadexternal 0.008s 0.00062s 0.00754s

tpm2 verifysignature 0.008s 0.00055s 0.00424s

Proof integrity check 0.026s 0.00527s 0.02098s

tpm2 hash 0.009s 0.00033s 0.00121s

tpm2 sign 0.009s 0.00391s 0.01392s

tpm2 verifysignature 0.008s 0.00103s 0.00585s

Table 6.3. Proof commands timings

79

Remote attestation protocol components implementation

6.4.4 Command timings evaluation

The command timings, both for the Quote and the Proof protocol, have been
collected and are useful to perform an evaluation on the feasibility and additional
performance overhead of the deployment of this kind of integrity verification so-
lution. The tables 6.2, 6.3 show the overall sequence of commands for the two
protocols and the corresponding recorded timings measured for each of them. The
timings are measured in three different approaches to make a complete analysis of
the required time for integrity verification protocol execution. In this way the dif-
ferent obtained measurements can be compared and taken as reference depending
on the context.

In the tables 6.2, 6.3 the execution time required for each single command is
reported as well as the overall final time spent to execute each complete protocol
phase: for the key creation phase and for the actual integrity check phase. Those
time measurements allow to make an evaluation on the impact, in terms of per-
formance, that such an integrity verification solution has when used in a specific
application.

The collected measurements show that the time overhead added by the deploy-
ment of one of these two integrity verification solutions is very low. Both the Quote
and the Proof protocols are lightweight and do not impact so much in terms of
performance.

The AK creation phase is the more time consuming even though still does not
require so much time to execute. The AK creation duration for the Quote protocol
is almost 0,25 seconds while for the Proof protocol is almost 0,3 seconds, according
to the measurement taken through the TSS Execute interface. This phase is of
course longer in the attestation by Proof because it includes more steps.

On the other hand the actual integrity verification phase duration is incredibly
fast and lightweight. For the Quote protocol it is around 0,006 seconds while for
the Proof one it is around 0,005 seconds (taking as reference the measurements
collected through the TSS Execute interface). The low time required to execute
a complete integrity verification allow the Orchestrator to attest many different
devices at the same time in a very fast and light way making this kind of solution
highly scalable.

The collected measurements give us also an idea about the length of the time
window between two subsequent remote attestation processes. Considering the
case in which an adversary launch an attack on one of the remote devices the time
window between two subsequent integrity checks represent the maximum time

80

Remote attestation protocol components implementation

window in which that VM was considered trusted by an attacker even though
its system was actually tampered. Having the execution time of the integrity
verification process very short means that if the Orchestrator performs multiple
subsequent attestations the remote machine’s tampered state is detected immedi-
ately. The worst case scenario is represented by the use of the Proof protocol by
creating a new AK at every time a new integrity verification is requested by the
Orchestrator. In this case the overall attestation process lasts around 0,3 seconds.
This time window is still very short and, in case the remote device was tampered,
allows to detect a possible tampering attack right after it is launched.

81

Remote attestation protocol components implementation

6.5 Loaded binary extractor

In this remote attestation protocol, the attestation of the software program run-
ning on the Virtual Machine of the remove device is performed through the in-
tegrity check of the program’s loaded binaries. Lets understand why the program
binary should be extracted and all the ways it can be extracted from the linux
environment.

When a software program is executed on a machine a new process starts. Then
the program executable is loaded into the main memory in the address space
assigned to the process, which enters the ”waiting” state. As soon as a context
switch loads the process into the CPU, the process enters the ”running” state and
the execution of the program actually starts. In general the loaded executable is
in ELF format.

During load time, or even after that the executable has started running, an
attacker could try to tamper and modify the loaded binary. These are attacks
that happen during run-time, so during software execution. If an adversary is able
to do that, the software running on the Virtual Machine would not be trusted
anymore because it could divert from its normal expected execution flow or even
change radically its behaviour. Therefore the loaded binary, which represents the
software code that is actually running on the remote device, must be attested by
the Orchestrator in order to check its integrity. It is important that the loaded
binary code, running on the remote device, remains unchanged and safe: for this
reason the remote attestation and integrity verification protocol is deployed to
ensure integrity of the remote device.

The first thing to do is to understand how the loaded binary could be extracted
from the linux operating system. Whenever a process starts in the linux environ-
ment a PID is assigned to it and a new folder, containing all the run-time data
associated with that process, is created in the file system. That folder can be
found at:

/proc/PID /

With PID equal the PID of the running process that has to be attested. Inside
this folder we can find the loaded binary that we need. There are two places where
the binary can be found inside this folder:

1. In the file named exe

2. In the file named mem, but it can only be accessed by reading first the location
of the code section from maps file

82

Remote attestation protocol components implementation

With the first approach it is just necessary to write a program that reads the
content of the exe file and sends it to the module that will compute the measures
on it. This is the approach that has been chosen: it was written a C program that
simply opens and reads the exe file saving its content, i.e. the loaded binary.

The second approach is also valid but require two subsequent steps: reading first
the maps file and the mem file to read the actually loaded binary. Reading directly
the mem, which contains the memory mapped the same way as in the process, will
result in an error due to the fact that its first part is not mapped in the process.
The way to read it is to read fist the maps file, which contains the addresses (offsets)
of the various sections of the process, in order to know at which address the code
section is. An then, with this information, a seek operation to the code section in
the mem file can be performed to read the binary.

About the language, it was chosen the C language due to its better integration
with the Intel PT. As will be described in the chapter about Intel PT analysis, it
resulted easier and more intuitive the tracing of a C program rather than a python
script. The lack of direct mapping between the python instructions and the Intel
PT log make the control flow graph of a python program difficult to reconstruct,
but this will be discussed in the Intel PT chapter. All of this because the Intel
PT will be used to trace the execution of the loaded binary extractor. This is an
additional secure control useful to verify if the extraction was performed correctly
without any modification on the binary.

Once the binary has been extracted its measure is computed (in general by an
hash operation) and it is used to extend a PCR register which will represent the
state of the system. Than, as we already discussed, the PCR register value will be
used in the integrity verification check to attest the remote device’s state.

Another possible way to extract the loaded binaries of the software program
is through an eBPF hooks program. By using ”uprobe” capabilities an ad hoc
eBPF program can be written to actually trace and extract the loaded binaries of
a specific software program by reading the correct memory maps of the running
process. Basically, through ”uprobe”, a user level function belonging to the pro-
gram in execution can be used as hook to attach and execute a C eBPF function
that will collect and record the memory maps allocated to that process during
run-time.

This kind of eBPF program is a valid and efficient alternative to the previously
described C program used to read process memory from the linux file system.
However, in this work, the C loaded binary extractor approach has been preferred
to the eBPF one due to integration reasons with the Intel PT. As will be explained
in the Intel PT tracing chapter, there are some Intel PT limitations related to the

83

Remote attestation protocol components implementation

extraction of the control flow of the eBPF program execution. On the other hand
the Intel PT tracing output of C programs results to be easier to interpret and
understand.

6.6 Use of eBPF to trace TSS commands

In this section it is presented the use of eBPF hook and so its capabilities and the
way it has been exploited in the remote attestation protocol.

The eBPF, as already described, permits to run some user-provided code in
a virtual machine inside the linux kernel. Moreover it can act as hook of some
specific kernel events: it can be ”attached” to a kernel code path and whenever that
section is executed the eBPF is triggered to collect useful information. Due to its
lightweight capabilities it can run in the kernel gathering data without impacting
too much in terms of performances. For this reason it can also be used for profiling
and tracing of software execution.

In the defined remote attestation architecture, the process implementing the
integrity verification protocol needs to interact directly with the TPM. In fact, as
we saw, both the attestation by Proof and by Quote are composed of a sequence of
TSS commands that needs to be sent to the TPM in order to perform the integrity
verification. The operations of sending data to and receiving data from the TPM
are potentially critical because an attacker could try to tamper the communication
between the system and the TPM. An attacker could try to modify the commands
and/or the parameters sent to the TPM or change the binary response received
from the TPM.

Depending on the locality of the TPM there are different approaches that could
be adopted. If the TPM is local a malicious actor could try to interfere in the
operating system potentially in the system bus. While if the TPM is remote the
attacker has a wider surface for the attack because it could perform a MITM attack
on the network that connects the device with the TPM.

In this work the TPM is a software one resident on the Virtual Machine of the
remote device and so it was only considered the case in which the TPM was local
on the system. For this reason the eBPF has been used as a hook to log all the
TSS commands that are sent to the software TPM and the response in order to
check if they are as expected. Additionally the filtering capabilities of the eBPF
were used to select only the useful data to produce a meaningful output.

Using the eBPF as hook means attaching the eBPF program to a specific set of

84

Remote attestation protocol components implementation

kernel functions. It is necessary to select a set of kernale functions that allow us
to trace and log TSS commands and data exchanged with the TPM, which is our
purpose. Therefore the two kernel system calls that have been selected as hook
functions are:

• vfs read (or vfs read for older versions of linux kernel)

• vfs write (or vfs write for older versions of linux kernel)

The functions used to bind the eBPF program to the vfs read and the vfs write
are the attach kprobe and the attach kretprobe called over a BPF object in
the python section of the code.

Taking as example the vfs read hook,
attach kprobe(event=" vfs read", fn name="trace read entry")

is used to instrument the vfs read kernel function, by using kernel dynamic trac-
ing of the function entry, to attach it to the BPF defined trace read entry function
written in C language. From now on, whenever vfs read is called the BPF func-
tion trace read entry is called.

On the other hand,
attach kretprobe(event=" vfs read", fn name="trace read return")

is used to instrument the vfs read kernel function, by using kernel dynamic trac-
ing of the function return, to attach it to the BPF function trace read return de-
fined in C language. From now on, whenever vfs read returns the BPF function
trace read entry is called.

Therefore these two functions will act like a hook for vfs read and vfs write
triggering the BPF defined C function that will gather all the needed information
and data. For our purpose of tracing and logging the TSS commands exchanged
between the system and the TPM the following information have been collected:

• Absolute time

• Process name (command name)

• Thread identifier (TID)

• Type of operation: write (W) or read (R)

• Size of data exchanged in bytes

• Latency(ms): difference between return time and call time

85

Remote attestation protocol components implementation

• Device type: it is CHAR FILE for the hardware TPM and SOCK in the case
of software TPM: it istpm0 for hardware TPM while it is TCP for software
TPM

• Name of the file on which the operation is performed

• Data read or written

The vfs read and vfs write are the two basic functions called every time some
data is written or read in the system. Since they are so general and since the most
of the operations of the system can be reduced to reads and writes these two
functions are called constantly in each instant a multiple number of times. This
introduces the need for eBPF filtering capabilities. It is important to filter all the
amount of data collected by the eBPF to keep and show only the meaningful ones.

The filtering parameters that has been used could be:

• The process name: that should correspond to the command sent to the TPM;
it can be used to filter a single command to be analysed.

• The name of the file on which the operation is performed: the value to
be filtered for this parameter depends on whether the TPM is hardware or
software; if the TPM is hardware the OS sees it a file in the file system,
which could be read or write; in linux the hardware TPM is represented by
/dev/tpm0; if the TPM is software the file to be filtered is TCP because the
commands are sent to the TPM as a tcp connection to the port 2321.

• The PID: it can be filtered based on a specific PID of the process running
the commands.

• The operation type: it can be filtered selecting a specific operation, read or
write, based on which of the two we want to verify.

Lets make a test to understand which could be like a possible output of the
used eBPF program. The test has been performed by calling the command
tpm2 getrandom --hex 4 while the eBPF program was running in the meantime
hooking vfs read and vfs write. The eBPF program was launched so that it could
filter the command tpm2 getrandom. Down below it is shown the output obtained
from this test:

TIME(s) COMM TID MODE BYTES LAT(ms) DEVICE TYPE FILENAME DATA

--

6.621 tpm2_getrandom 29037 W 22 of 22 0.02 SOCK TCP \x80\x01\x00\x00\x00\x16\x00\x00\x01

z\x00\x00\x00\x06\x00\x00\x01\x00\x0

86

Remote attestation protocol components implementation

0\x00\x00\x7f

[i] MANAGED TO PARSE COMMAND SEND TO TPM!!

{’Command Header’: {u’command_code’: {u’tpm_cc’: u’TPM_CC_GetCapability’},

u’command_size’: 22,

u’tpmi_st_command_tag’: u’TPM_ST_NO_SESSIONS’},

’Parsed Command’: {u’cap_property’: 256,

u’capability’: {u’tpm_cap’: u’TPM_CAP_TPM_PROPERTIES’},

u’property_count’: 127}}

6.623 tpm2_getrandom 29037 R 4 of 4 5.62 SOCK TCP \x00\x00\x00\x00

6.624 tpm2_getrandom 29037 R 387 of 387 0.00 SOCK TCP \x00\x00\x00\x00\x01\x83\x00\x00\x00

\x00\x00\x00\x00\x00\x06\x00\x00\x00

.\x00\x00\x01\x002.0\x00\x00\x00\x01

\x01\x00\x00\x00\x00\x00\x00\x01\x02

\x00\x00\x00\x9f\x00\x00\x01\x03\x00

\x00\x018\x00\x00\x01\x04\x00\x00\x0

7\xe3\x00\x00\x01\x05IBM \x00\x00\x0

1\x06SW \x00\x00\x01\x07 TPM\x00\x0

0\x01\x08\x00\x00\x00\x00\x00\x00\x0

1\t\x00\x00\x00\x00\x00\x00\x01\n\x0

0\x00\x00\x01\x00\x00\x01\x0b \x19\x

10#\x00\x00\x01\x0c\x00\x1666\x00\x0

0\x01\r\x00\x00\x04\x00\x00\x00\x01\

x0e\x00\x00\x00\x03\x00\x00\x01\x0f\

x00\x00\x00\x02\x00\x00\x01\x10\x00\

x00\x00\x03\x00\x00\x01\x11\x00\x00\

x00@\x00\x00\x01\x12\x00\x00\x00\x18

\x00\x00\x01\x13\x00\x00\x00\x03\x00

\x00\x01\x14\x00\x00\xff\xff\x00\x00

\x01\x16\x00\x00\x00\x00\x00\x00\x01

\x17\x00\x00\x08\x00\x00\x00\x01\x18

\x00\x00\x00\x06\x00\x00\x01\x19\x00

\x00\x10\x00\x00\x00\x01\x1a\x00\x00

\x00\r\x00\x00\x01\x1b\x00\x00\x00\x

06\x00\x00\x01\x1c\x00\x00\x01\x00\x

00\x00\x01\x1d\x00\x00\x00\xff\x00\x

00\x01\x1e\x00\x00\x10\x00\x00\x00\x

01\x1f\x00\x00\x10\x00\x00\x00\x01 \

x00\x00\x00@\x00\x00\x01!\x00\x00\x0

7\xc4\x00\x00\x01"\x00\x00\x01\x94\x

00\x00\x01#2.0\x00\x00\x00\x01$\x00\

x00\x00\x00\x00\x00\x01%\x00\x00\x00

\x9f\x00\x00\x01&\x00\x00\x018\x00\x

00\x01\’\x00\x00\x07\xe3\x00\x00\x01

(\x00\x00\x00\x80\x00\x00\x01)\x00\x

00\x00s\x00\x00\x01*\x00\x00\x00o\x0

0\x00\x01+\x00\x00\x00\x04\x00\x00\x

01,\x00\x00\x04\x00\x00\x00\x01-\x00

\x00\x00\x01\x00\x00\x01.\x00\x00\x0

4\x00

[i] MANAGED TO PARSE COMMAND RECEIVED FROM TPM!!

{’Command Header’: {u’response_code’: u’TPM_RC_SUCCESS’,

u’response_size’: 387,

u’tag’: {u’tpm_st’: u’0x0’}}}

Execution time of the command : 0.00311994552612

--

6.631 tpm2_getrandom 29037 R 4 of 4 0.00 SOCK TCP \x00\x00\x00\x00

--

6.635 tpm2_getrandom 29037 W 39 of 39 0.02 CHAR DEVICE 20 Time taken by command is : 0.005836427\n

--

6.636 tpm2_getrandom 29037 W 9 of 9 0.05 SOCK TCP \x00\x00\x00\x08\x00\x00\x00\x00\x0c

--

6.636 tpm2_getrandom 29037 W 12 of 12 0.07 SOCK TCP \x80\x01\x00\x00\x00\x0c\x00\x00\x01{

\x00\x04

[i] MANAGED TO PARSE COMMAND SEND TO TPM!!

{’Command Header’: {u’command_code’: {u’tpm_cc’: u’TPM_CC_GetRandom’},

u’command_size’: 12,

u’tpmi_st_command_tag’: u’TPM_ST_NO_SESSIONS’},

’Parsed Command’: {u’bytes_requested’: 4}}

--

6.637 tpm2_getrandom 29037 R 4 of 4 0.00 SOCK TCP \x00\x00\x00\x00

--

6.640 tpm2_getrandom 29037 R 16 of 16 0.00 SOCK TCP \x00\x00\x00\x00\x00\x10\x00\x00\x00\

x00\x00\x04T\x0b\’\xf2

[i] MANAGED TO PARSE COMMAND RECEIVED FROM TPM!!

{’Command Header’: {u’response_code’: u’TPM_RC_SUCCESS’,

u’response_size’: 16,

u’tag’: {u’tpm_st’: u’0x0’}}}

Execution time of the command : 0.00396203994751

--

6.641 tpm2_getrandom 29037 R 4 of 4 0.00 SOCK TCP \x00\x00\x00\x00

--

87

Remote attestation protocol components implementation

6.643 tpm2_getrandom 29037 W 39 of 39 0.01 CHAR DEVICE 20 Time taken by command is : 0.000215223\n

--

6.643 tpm2_getrandom 29037 W 8 of 8 0.01 CHAR DEVICE 20 540b27f2

--

This result obtained shows the single TSS commands sent and received. It
can be noticed that the tpm2-tools command tpm2 getrandom makes two TSS
command invocations: TPM CC GetCapability and TPM CC GetRandom TSS
commands. Looking at the output, first of all it can be easily checked if the
sequence of commands sent and received is as expected. The ordered sequence of
TSS commands can be compared to a reference list in order to notice any kind
of anomaly or deviation. In addition to this control there is the check of the
parameters. For each command its parameters could be checked, again, to verify
that they are as expected.

Specifically from that test we can see that the GetRandom parameter for the
number of requested bytes is 4: it reflects the real parameter passed to the com-
mand. And as value returned by the TPM we obtain the random string ”540b27f2”.

The data logged for each message exchanged is binary data, in the example it is
represented as hexadecimal data. A comfortable way to analyse and understand
the data exchanged is by using a custom parser which interpret the data exchanged
and represents it in a human readable form. Therefore a python parser has been
used to understand which commands where sent to the TPM. From the showed
output the parser is able to detect and report the commands exchanged and their
parameter in an organized way.

Moreover, since that eBPF program is able to understand when a command is
sent to the TPM and when the response is received from it, it has also been used to
compute the time required for the execution of each TSS command. The execution
time has been computed as the difference between the time at which the response
is received minus the time at which the command is detected being sent to the
TPM. For this purpose the parser has been used as a signaler of the start of stop
of the time computation. Whenever the python parser detect a command sent to
the TPM the start time is taken and then, when the parser catches its response,
the end time is taken and the difference is computed. The time required by each
TSS command is then reported as eBPF program output.

As already pointed out the remote attestation solution is meant to be working
in a Cloud Computing environment. Therefore these tests have been performed
on a Virtual Machine in order to assess that the eBPF works well in a virtualized
environment. Based on the result obtained the eBPF program used behave cor-
rectly on a Virtual Machine logging and reporting all the TSS commands that has
been invoked and all the responses sent back from the TPM. The important thing

88

Remote attestation protocol components implementation

to do is to filter in a proper way in order to obtain a good output containing only
with the required information.

The one thing to keep in mind while deploying the eBPF tracer is the maxac-
tive value defined in bcc as a field in the kretprobe struct. This value specifies
the maximum number of instances of a specified function that can be probed si-
multaneously. This means that there is an upper threshold that limits the number
of kernel functions that can be hooked at the same time. Therefore in TSS com-
mands tracing it can limit the number of messages that can be traced if they are
exchanged very close in time to each other. The maxactive value is defined until
up to double the number of available cpus on the system. This is a well known
limitation of bcc and must be taken into account. In a virtualized environment it is
necessary to configure the number of cpus made available to the Virtual Machine,
configuring in this way the maxactive value.

The tests conducted show that configuring the Virtual Machine with only one
cpu results in problems in tracing TSS commands: not all the messages will be
caught and showed by the eBPF tracer. Increasing the number of cpu made
available to the Virtual Machine to four cpus ensures that all the exchanged TSS
commands and data messages are traced.

6.7 Intel PT tracing analysis

6.7.1 Overview

The Intel Processor Tracing, as already mentioned, has been used to trace the ex-
ecution of the loaded binary extractor, in order to verify and check the correctness
of the binary read process, and to log the execution of the eBPF tracer while inter-
cepting the TSS commands. Intel PT’s capabilities allow to trace the execution of
a software program producing a series of binary packets. These packets are then
processed by a decoder to reconstruct the real execution flow of the program and
so the actual sequence of commands performed by the program.

This tracing technique has been used as the loaded binary tracer in the context of
this work in order to try to insert it into a specific practical use case. Additionally, a
more in depth tests, analysis and evaluation on its capabilities have been performed
to understand better its properties. This additional analysis highlights Intel PT
strengths and weaknesses allowing to make an assessment of feasibility in deploying
such a tracer in an application.

89

Remote attestation protocol components implementation

However, it must be kept in mind that the Intel PT is a tracing technique which
is bound and tight to a specific hardware module. The use of such a tracing tool
requires the presence and the use of a recent Intel processor with Intel PT hard-
ware capability. This could be a limitation that must be kept into consideration
when deploying it. However most of the common machines and devices nowadays
have, already built on board, an Intel processor of late generation with the Intel
PT feature. The Intel PT has been chosen in this work also for this reason: be-
cause Intel processors use is very common and widespread nowadays, making its
requirement not a so strict assumption.

The following section will describe all the tests and analysis that have been
conducted to evaluate Intel PT capabilities and properties.

6.7.2 Basic tests and analysis

The first part of the analysis that has been conducted focus on understanding the
Intel PT capabilities: which kind of information can be obtained as output of the
Intel PT and how the software decoder works.

The first test has been performed on a simple C ”Hello World” program. The
command used to launch the program tracing is:

perf record -e intel pt//u ./helloworld

This is the basic command used to perform intel pt sampling with perf tool. It
makes the execution of the ”helloworld” program start and then trace the program
execution collecting all the information. The //u parameter is used to trace only
userspace commands. As result of the perf record command execution the file
perf.data is generated. It contains all the tracing information in a binary packets
format.

The perf.data file, containing all the output information of the Intel PT trac-
ing of the ”helloworld” program, can be used as input to a post-processing tool
to produce a more human readable output. There are different ways for extract-
ing meaningful information from the perf.data file obtaining different levels of
granularity in the output. The software program used for this purpose is the de-
coder which makes use of Intel PT packets and program binaries to reconstruct
the control flow of the software execution.

Having a look at the Intel PT binary packets produced it can be noticed that
they have no meaning just by themselves. They are just an ordered sequence of
information with apparently no connection to any code. It is duty of the decoder

90

Remote attestation protocol components implementation

to parse the perf.data file and also the program binaries to connect the dots and
merge them in order to generate meaningful information. Especially for recon-
struction of control flow of the software execution, the binary packets have sense
only if associated to the program binaries. The decoder pass across all the packets
in order from the beginning to the end and at the same time pass through the
program binaries instruction in sequence to understand the association packets-
commands. For example when it encounters a TNT packet the decoder can link it
with the corresponding instruction in the program binary showing which specific
branch was taken or not.

Two main commands have been used to decode and extract meaningful infor-
mation from the perf.data file:

• perf script -D: it displays a verbose dump of the trace data. From this
dump the single packets information can be seen in a readable form and
the virtual addresses assigned during execution time to the program file and
its external libraries are shown. Still this representation is very rough and
difficult to read in order to reconstruct the control flow of program execution
but allow to know some basic information.

• perf script --itrace=bi0: this decoder, processing Intel PT packets and
program’s binaries, reconstructs the execution flow and the exact sequence
of instructions for the software program traced. This command shows the
sequence of all the instructions executed as well as the branches taken by
the program. Moreover, the --insn-trace --xed options can be used to
additionally disassemble the instructions: the result will be a sequence of
instruction and branches with the corresponding assembly code associated.

By using perf script --itrace=bi0 a little section of the whole output that
is obtained can be something like this:

helloworld 10057 [000] 16538.852347: 1 instructions:u: 7f50298340a9 __libc_start_main+0xe9 (/usr/lib/x86_64-linux-gnu/libc-2.31.so)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 7f50298340ac __libc_start_main+0xec (/usr/lib/x86_64-linux-gnu/libc-2.31.so)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 7f50298340b1 __libc_start_main+0xf1 (/usr/lib/x86_64-linux-gnu/libc-2.31.so)

helloworld 10057 [000] 16538.852347: 1 branches:u: 7f50298340b1 __libc_start_main+0xf1 (/usr/lib/x86_64-linux-gnu/libc-2.31.so)

=> 55d2b0f7a149 main+0x0 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a149 main+0x0 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a14c main+0x3 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a14d main+0x4 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a14e main+0x5 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a151 main+0x8 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a158 main+0xf (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 branches:u: 55d2b0f7a158 main+0xf (/home/helloworld)

=> 55d2b0f7a050 _init+0x50 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a050 _init+0x50 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a053 _init+0x53 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 instructions:u: 55d2b0f7a054 _init+0x54 (/home/helloworld)

helloworld 10057 [000] 16538.852347: 1 branches:u: 55d2b0f7a054 _init+0x54 (/home/helloworld)

=> 7f50298945a0 _IO_puts+0x0 (/usr/lib/x86_64-linux-gnu/libc-2.31.so)

91

Remote attestation protocol components implementation

The output shows the data that the decoder permits to extract from the binary
packets. The attributes shown are: the process name, the PID, the absolute time,
the record type (instructions or branches), the virtual address and the symbolic
name of the instruction. Moreover, the taken branches are represented by the
addresses of the source and destination separated by a ”=>” symbol. Additionally,
if the xed (X86 Encoder Decoder) is enabled the assembly instructions are also
decoded from raw bytes and shown at the output.

Every single line of the output obtained represent a single assembly instruction
or branches of the traced program. This prove that the Intel PT is actually ca-
pable of tracing every single instruction in a very detailed way. This could led
us to the possibility of generating the exact control flow of a program execution
not only by logging the main operation but the exact sequence of assembly com-
mands. It is a level of details that other techniques, like the ones based on software
instrumentation or based on hooking are not able to achieve.

The next simple test that has been done is the tracing of a slightly more complex
program composed of different path that could be taken during its execution. What
we are trying to understand is if the Intel PT is capable of tracing the path/branch
was actually taken during run-time. And so also, if the information obtained from
the decoder are enough to detect the executed path and possible variation from
the expected one.

This second test has been performed over this very simple C program:

92

Remote attestation protocol components implementation

1 #include <stdio.h>

2 int main(){

3 int a, b;

4 scanf("%d %d", &a, &b);

5 if(a == 1){

6 if(b == 1)

7 printf("Double 1\n");

8 else

9 printf("1 and 0\n");

10 }

11 else{

12 if(b == 1)

13 printf("0 and 1\n");

14 else

15 printf("Double 0\n");

16 }

17 return 0;

18 }

Figure 6.5. If-else with 4 possible paths basic C program for test

In the above program depending on the inserted input the walked through path
changes. The experiment conducted show that the Intel PT is capable of tracing
and detecting the actual path taken during run-time.

As we saw earlier the output of the decoder consists of an ordered sequence of
assembly instruction and branches. It is very detailed and precise but could be a
little bit disorienting for the amount of information and level of detail it can be
obtained. A way to produce a personalized and more simple output is to build an
information filter/parser to extract just the necessary and meaningful data for our
purpose.

For these reasons a python parser program has been developed to produce a
more clear output from the one generated by the decoder. This filter takes as
input two files:

1. A file containing the assembly code of the C program to be traced

2. A file containing the output data produced by the Intel PT decoder

The first file can be generated by disassembling the program binary by means
of GDB tool or in a more simple way by using the objdump tool. They produce
the assembly sequence of commands starting from the program binary. Next to

93

Remote attestation protocol components implementation

each instruction it is also represented its offset with respect to the beginning of
the main function (something like <main+0x1c>): this will simplify the work of
our python parser. The second file is just obtained by saving the output produced
by the perf script --itrace=bi0 command execution.

The main objective of the python parser built is to merge the information con-
tained in the two files. It first of all collects in a list all the assembly instructions
from the file containing the disassembly of the program. And then it parses the
whole decoder’s output file marking, in an ordered way, each time one of the pro-
gram commands was found and all the branches between them. At the end of this
process we end up with a more high level control flow graph made by just by the
user level assembly instructions that directly map the C commands used.

Tracing the execution of the simple C program reported in figure 6.5 providing
as input ”1 0” and then using the above mentioned python parser produces the
following output result result:

0- (node n.0) -- main+0x0 endbr64 endbr64 (instruction)

1- (node n.1) -- main+0x4 push %rbp (instruction)

2- (node n.2) -- main+0x5 mov %rsp,%rbp (instruction)

3- (node n.3) -- main+0x8 sub $0x10,%rsp (instruction)

4- (node n.4) -- main+0x12 mov %fs:0x28,%rax (instruction)

5- (node n.5) -- main+0x21 mov %rax,-0x8(%rbp) (instruction)

6- (node n.6) -- main+0x25 xor %eax,%eax (instruction)

7- (node n.7) -- main+0x27 lea -0xc(%rbp),%rdx (instruction)

8- (node n.8) -- main+0x31 lea -0x10(%rbp),%rax (instruction)

9- (node n.9) -- main+0x35 mov %rax,%rsi (instruction)

10- (node n.10) -- main+0x38 lea 0x555555556004 (instruction)

11- (node n.11) -- main+0x45 mov $0x0,%eax (instruction)

12- (node n.12) -- main+0x50 callq <__isoc99_scanf@plt> (branch)

13- (node n.13) -- main+0x55 mov -0x10(%rbp),%eax (instruction)

14- (node n.14) -- main+0x58 cmp $0x1,%eax (instruction)

15- (node n.15) -- main+0x61 jne <main+99> (instruction)

16- (node n.16) -- main+0x63 mov -0xc(%rbp),%eax (instruction)

17- (node n.17) -- main+0x66 cmp $0x1,%eax (instruction)

18- (node n.18) -- main+0x69 jne <main+85> (branch)

|

|--->19- (node n.22) -- main+0x85 lea 0x555555556013 (instruction)

20- (node n.23) -- main+0x92 callq <puts@plt> (branch)

21- (node n.24) -- main+0x97 jmp <main+133> (branch)

|

|----->22- (node n.33) -- main+0x133 mov $0x0,%eax (instruction)

23- (node n.34) -- main+0x138 mov -0x8(%rbp),%rcx (instruction)

24- (node n.35) -- main+0x142 xor %fs:0x28,%rcx (instruction)

25- (node n.36) -- main+0x151 je <main+158> (branch)

|

|------>26- (node n.38) -- main+0x158 leaveq leaveq (instruction)

27- (node n.39) -- main+0x159 retq retq (branch)

--

(node n. 0) - main+0x0 endbr64 endbr64 (executed)

(node n. 1) - main+0x4 push %rbp (executed)

(node n. 2) - main+0x5 mov %rsp,%rbp (executed)

(node n. 3) - main+0x8 sub $0x10,%rsp (executed)

(node n. 4) - main+0x12 mov %fs:0x28,%rax (executed)

(node n. 5) - main+0x21 mov %rax,-0x8(%rbp) (executed)

(node n. 6) - main+0x25 xor %eax,%eax (executed)

(node n. 7) - main+0x27 lea -0xc(%rbp),%rdx (executed)

(node n. 8) - main+0x31 lea -0x10(%rbp),%rax (executed)

(node n. 9) - main+0x35 mov %rax,%rsi (executed)

(node n. 10) - main+0x38 lea 0x555555556004 (executed)

(node n. 11) - main+0x45 mov $0x0,%eax (executed)

(node n. 12) - main+0x50 callq <__isoc99_scanf@plt> (executed)

(node n. 13) - main+0x55 mov -0x10(%rbp),%eax (executed)

(node n. 14) - main+0x58 cmp $0x1,%eax (executed)

(node n. 15) - main+0x61 jne <main+99> (executed)

(node n. 16) - main+0x63 mov -0xc(%rbp),%eax (executed)

(node n. 17) - main+0x66 cmp $0x1,%eax (executed)

(node n. 18) - main+0x69 jne <main+85> (executed)

(node n. 19) - main+0x71 lea 0x55555555600a

94

Remote attestation protocol components implementation

(node n. 20) - main+0x78 callq <puts@plt>

(node n. 21) - main+0x83 jmp <main+133>

(node n. 22) - main+0x85 lea 0x555555556013 (executed)

(node n. 23) - main+0x92 callq <puts@plt> (executed)

(node n. 24) - main+0x97 jmp <main+133> (executed)

(node n. 25) - main+0x99 mov -0xc(%rbp),%eax

(node n. 26) - main+0x102 cmp $0x1,%eax

(node n. 27) - main+0x105 jne <main+121>

(node n. 28) - main+0x107 lea 0x55555555601b

(node n. 29) - main+0x114 callq <puts@plt>

(node n. 30) - main+0x119 jmp <main+133>

(node n. 31) - main+0x121 lea 0x555555556023

(node n. 32) - main+0x128 callq <puts@plt>

(node n. 33) - main+0x133 mov $0x0,%eax (executed)

(node n. 34) - main+0x138 mov -0x8(%rbp),%rcx (executed)

(node n. 35) - main+0x142 xor %fs:0x28,%rcx (executed)

(node n. 36) - main+0x151 je <main+158> (executed)

(node n. 37) - main+0x153 callq <__stack_chk_fail@plt>

(node n. 38) - main+0x158 leaveq leaveq (executed)

(node n. 39) - main+0x159 retq retq (executed)

The above displayed output shows:

1. On the bottom section, the assembly instructions of the program. At each
of them a node number is assigned and a label is reported for those of them
that have been executed.

2. On the top, the control flow graph of the execution of the program. It
reports the ordered sequences of node numbers, making reference to the
bottom assigned enumeration, and the branches executed inside the code
represented as arrows between two instructions.

As it can be seen it traces and reports correctly the branches taken pointing out
the executed portion of code based on the input provided. The same correctness
has been obtained by testing other types of test C codes: a program with a switch-
case statement, a program with 2 for loops and a program with 2 for nested loops.
In all the tests done the Intel PT has always traced all the commands and branches
taken is a precise and correct way following the right path executed during run-
time based on the input inserted. This basic tests can give us the certainty of
the correctness of that the Intel PT in providing a precise control flow graph of
program execution.

The experiments conducted show how the post-processing of tracing informa-
tion is important and potentially costly in terms of performance in the context of
Intel PT. After that the Intel PT tracing has produced the binary data packets the
decoder (the first post processing tool) must be used to extract human readable
information from them producing the entire control flow sequence of commands
and/or branches. After that, an additional post processing tool or parser is re-
quired to filter and extract only important and useful information manipulating
them based on the specific application of use and purposes.

95

Remote attestation protocol components implementation

6.7.3 Python program and eBPF tracing tests

Another part of the analysis regards how well the Intel PT can trace the execution
of other types of program languages like python program and eventually of the
eBPF hook program, described before for TSS command tracing.

As seen before, the basic experiments conducted on the Intel PT over simple C
programs permitted to report and produce the exact execution flow graph of the
program execution in a correct way. The key point of C program tracing by means
of the Intel PT is the availability of a direct mapping between the C assembly
commands and the logged traced sequence of executed instructions. By using
disassembly tools like objdump or GDB the assembly sequence of commands of the
C program can be obtained and can be stored as static reference. Subsequently,
when inspecting the decoded packet information, the reference and direct mapping
to that C program commands can be found in the run-time traced sequence of
instructions. As we saw before this reference to the C program binary is clearly
reported in the form <main+offset >. This mapping was also used by the coded
python parser to reconstruct the C code level control flow graph of the program
execution.

Some tests have also been performed over very simple python programs to un-
derstand which is the output tracing obtained through the Intel PT. The python
program used was characterized by a basic if-else statement whose path direction
can be decide through program input parameter. The goal of this test was to ver-
ify whether the decoded packets of the execution tracing could allow us to detect
which control path was actually taken during run-time. After analysing the tracing
output produced by the Intel PT decoder it has not been possible to reconstruct
the real execution flow graph in a direct way.

Due to python language’s nature, which exploits an interpreter to execute a
program, its code is never compiled before execution. Thus it has not been found
a way to extract the sequence of assembly commands of a python program in a
static way. It is for this reason that the tracing output of the python program
produced by Intel PT, after being parsed by the decoder, will not be able to
provide a reference of the position and of the mapping of the instruction traced
with the python program file executed. The Intel PT tracing of a python program
results in an undefined sequence of assembly commands without any reference and
so without a clear and direct clue of how the program was actually executed.

The same result obtained with the python program has been found tracing
the execution of the eBPF program described in the previous sections. There
is no direct mapping between the instructions traced by the Intel PT and an

96

Remote attestation protocol components implementation

hypothetical sequence of reference commands that comprise the eBPF program.
Moreover the number of data packets produced is very huge also just after a
couple of seconds of program execution making the execution flow graph analysis
potentially expensive and difficult.

The unavailability of direct mapping of python program tracing with respect
to C program make the analysis and understanding of the output obtained quite
difficult. A way to obtain meaningful information about the program execution,
in order to understand the actual sequence of commands that was executed in a
clean and readable way when it comes to python and other interpreted language,
is outside of the scope of this work and have not been inspected.

The positive result is that the Intel PT is able to trace the program execution and
consequently producing the actual sequence of assembly commands. With these
information, the way to extract meaningful information to reconstruct the control
flow graph at a higher level, understanding which branch of the code was taken,
is up to a post processing tool analysing the tracing data. The reconstruction of
the execution flow graph should be the result of a reverse engineering operation
and process starting from the assembly sequence obtained and the python code.
A solution to this problem could be quite complex and expensive in terms of time
required to reconstruct the control flow graph. Even though the execution flow
could be reconstructed in a good way - some experiments must be carried out
on different python program complexities - a tool to do reverse engineering of
the traced assembly could be unfeasible in term of time overhead required when
implemented in a solution.

6.7.4 Timings and memory overhead evaluation

Part of the analysis on Intel PT capabilities is focused on understanding which
could be the memory and performance overhead added by it when deployed to
trace the execution of a program. The goal here is to try to use the Intel PT to
trace the execution of a set of several C programs of different levels of complexity.
These C programs should be more and more complex, in an increasing way allow-
ing to understand how the Intel PT behave with programs of different orders of
complexity and which is the upper limit of complexity that the Intel PT can still
manage in a feasible and efficient way.

The approach used here to test the Intel PT properties and to measure the ad-
ditional time and performance overhead that it introduces is incremental: an Intel
PT evaluation analysis has been performed by means of software programs of dif-
ferent orders of complexity in order to see how it behaves and responds. Therefore,

97

Remote attestation protocol components implementation

the tests executed have been done by trying to collect timing and memory mea-
surements while using the Intel PT to trace different C programs of incremental
orders of complexity. Starting from the very simple ”Hello World” program, the
complexity of the program traced has been increased by fist adding more instruc-
tion or ”printf”s and then by adding a bigger number of cycle iterations in order
to increment the number of instruction executed and the time spent for program
execution.

The scope of this section is to find out and monitor how the Intel PT behave
in tracing C programs of higher levels of complexity and eventually which is the
maximum handled program complexity by the Intel PT without incurring in a too
high time and space additional overhead.

First of all a set of C programs of increasing complexity has been picked to
be used with the Intel PT in order to perform this performance and feasibility
analysis. The idea here is to start from the very simple ”Hello World” program,
which represents the first lowest level of complexity, and then to add some addi-
tional complexity by trying to introduce and try other statements or loops. The
second level of complexity is represented by a switch-case statement program or
an if-else statement program where the value of a variable makes the execution
select one of the multiple possible paths. The third level of complexity is repre-
sented by a program with two or three for loops. The forth level of complexity
includes nested loops programs. A fifth level could potentially comprise recursive
programs but they have not been examined in this analysis.

The Intel PT performance and feasibility analysis has been performed on all
these kinds of programs with the goal of understanding how it behaves when
tracing different programs of different orders of complexity.

98

Remote attestation protocol components implementation

The following table 6.4 shows and summarizes all the C programs that have
been used as case studies to conduct this Intel PT analysis:

Name Program description
helloworld The basic Hello World program
switchcase A switch-case statement with 8 choices
ifelse A double if-else statement with four possible direction paths
500for-ifelse A for loop of 500 cycles with a double if-else statement inside
1000forprintfs A for loop of 1000 cycles with a printf in the loop
5000forprintfs A for loop of 5000 cycles with a printf in the loop
for(8000000) A for loop of 8000000 cycles with a sum in the loop
2*for(8000000) Two for loops of 8000000 cycles with a sum inside each loop
3*for(8000000) Three for loops of 8000000 cycles with a sum inside each loop
nested-0.15s A nested for loop program with a sum in both loops that

lasts 0,15 seconds
nested-0.3s A nested for loop program with a sum in both loops that

lasts 0,3 seconds
nested-0.5s A nested for loop program with a sum in both loops that

lasts 0,5 seconds
nested-1.5s A nested for loop program with a sum in both loops that

lasts 1,5 seconds
nested-2s A nested for loop program with a sum in both loops that

lasts 2 seconds
nested-3s A nested for loop program with a sum in both loops that

lasts 3 seconds
nested-4s A nested for loop program with a sum in both loops that

lasts 4 seconds
nested-6s A nested for loop program with a sum in both loops that

lasts 6 seconds
nested-10s A nested for loop program with a sum in both loops that

lasts 10 seconds
nested-20s A nested fforor loop program with a sum in both loops that

lasts 20 seconds
nested-30s A nested for loop program with a sum in both loops that

lasts 30 seconds

Table 6.4. Programs used for the Intel PT analysis

Lets now have a look at how these C programs have been used to collect the
Intel PT timings measurements first and the memory measurements later and lets

99

Remote attestation protocol components implementation

see which are the obtained results.

Timings analysis and measurements

The set of C programs, belonging to different increasing levels of complexity, pre-
sented in the table 6.4 have been used to collect Intel PT tracing timing measure-
ments. The approach that has been followed is to first measure the time required
by a program for its normal execution (without being traced) and then taking the
time necessitate for its execution while traced by the Intel PT. These two mea-
surements are used to compute the timing performance overhead introduced by
the use of the Intel PT to trace its execution.

The program execution time has been taken by the command:

time ./program

On the other hand, the execution time of the program while traced by the Intel
PT has been measured by the following command:

time perf record -e intel pt//u ./program

This second time measurement includes the execution time of the program along
with the time added by the Intel PT to trace it and so also the subsequent creation
and writing of the perf.data file with the binary data packets.

100

Remote attestation protocol components implementation

The timings obtained from the measurement computation and the calculated
performance overhead are reported in the table 6.5 down below:

Program Execution time (s)
Intel PT

tracing time (s)
Time overhead (%)

helloworld 0,003 0,143 4666,67
switchcase 0,003 0,138 4500,00
ifelse 0,003 0,120 3900,00
500for-ifelse 0,003 0,130 4233,33
1000forprintfs 0,006 0,150 2400,00
5000forprintfs 0,014 0,162 1057,14
for(8000000) 0,036 0,148 311,11
2*for(8000000) 0,053 0,168 216,98
3*for(8000000) 0,067 0,192 186,57
nested-0.15s 0,146 0,286 95,89
nested-0.3s 0,318 0,522 64,15
nested-0.5s 0,510 0,620 21,57
nested-1.5s 1,585 1,860 17,35
nested-2s 2,005 2,282 13,82
nested-3s 3,027 3,417 12,88
nested-4s 4,073 4,679 14,88
nested-6s 6,088 6,925 13,75
nested-10s 10,059 11,459 13,92
nested-20s 20,074 23,386 16,50
nested-30s 29,982 33,731 12,50

Table 6.5. Intel PT timings

To have a more clear idea on the level of overhead and its correlation to the
average program execution time it is better to represent the data of the table 6.5
in a graphical form. Figure 6.6 shows the relation between the execution time of
the program (on the horizontal axis) and the overhead percentage (on the vertical
axis). It exhibits the overall curve trend of the data also highlighting the single
points corresponding to the single table 6.5 measurement entries.

101

Remote attestation protocol components implementation

Figure 6.6. Relationship between program time and overhead percentage

Lets discuss the obtained results shown in the figure 6.6. The chart shows a huge
level of time overhead for fast programs (programs having a very short execution
time) and a stabilization of the curve for programs with a longer execution time.
It seems that there is a point where this change of tendency happens and it can
be found at around 0.5s. All the programs that have a shorter execution time
suffer a higher time overhead when traced with the Intel PT while programs from
0,5 upwards tend to have an almost steady performance degradation resulting to
a convergence to a specific value. At the end the curve converges to a value of
performance overhead that is around the 13 %.

The convergence and stabilization of the curve to this value for all the tested
programs having an execution time grater than 0,5 seconds (in our case they were
all nested for loops) leads us to select the value of 13 % as the average obtained
time overhead percentage introduced by the Intel PT when tracing the execution
of a program with a comparable complexity of a nested for loop program. This
overhead percentage value could be different for other types of programs. But
according to the tests executed the tracing of the nested for loop programs return
a value of about 13 % of performance degradation.

Considering the experiments conducted the time overhead obtained is relatively
low and does not affect program’s execution so much. A 13 % of performance
degradation on a program execution is acceptable. However, when deploying the

102

Remote attestation protocol components implementation

Intel PT tracing in a specific application this additional introduced overhead per-
centage must be kept into consideration.

For programs having an execution time lower than 0,5 seconds the overhead
seems very high in percentage with respect to the normal execution time. However,
from the table 6.5 it can also be noticed that for all these fast programs their Intel
PT tracing timings are steady, all around the range between 0.140 and 0.200
seconds more or less. This means that the Intel PT requires a fixed amount of
time to dumb the processor’s states and to write that data in packet format in
perf.data file which seems to be around 0.140 and 0.200 seconds plus a variable
delta time that depends on the program duration. When the program duration is
very short this fixed writing and operational time is huge compared to the normal
execution time and therefore it results to be much higher, resulting in a high
time percentage overhead; while when the program execution requires more time
than 0.140 and 0.200 seconds the fixed Intel PT time component results to be
very low in percentage compared to the normal execution time and prevails the
delta component which is low and almost stable in percentage to the program’s
duration. For the tested for loop programs the delta component of the additional
time overhead added by the Intel PT resulted to be around 13 % of the program’s
duration.

The generation of the binary packets is just the first step towards the reconstruc-
tion of the final control flow graph. The next step is to use the decoder to extract
information from the binary data in order to transform and represent them in a
human readable and comprehensible form. In fact the complete reconstruction of
the control flow graph of the program execution is the result of the two subsequent
steps of tracing and than decoding. The goal of the conducted analysis is also to
understand how much time the reconstruction of the whole execution flow takes in
order to understand the performance and effectiveness impact that the Intel PT
has when used in a control flow attestation solution.

Therefore lets measure also the time required by the decoder to generate the
whole control flow graph starting from the binary tracer. The objective of these
measurements is to understand how much time is required in the whole process
from the tracing until having the final execution flow graph generated.

The table 6.6 reports all the obtained time measurements for the decoding phase.
It contains also the dimension of the perf.data file for each program in order to try
to reveal a possible relationship or pattern between the amount of binary packets
generated and the required time to decode it.

The decode time measurements have been taken in two different ways:

103

Remote attestation protocol components implementation

1. By using time perf script --itrace=bi0 > tmp: it takes the time of the
generation of the whole detailed control flow sequence containing both the
single instructions and the taken branches. Including all the information it
will end up being quite huge in terms of dimension.

2. By using time perf script --itrace=b > tmp: it measure the time re-
quired for generating a execution flow graph containing just the taken branches,
without reporting all the instruction. This way of decoding produces less
data but will result in being more lightweight.

This table 6.6 below shows the list of all the time measurements obtained dur-
ing the decoding phase by using the two decoding commands, the dimensions of
the perf.data file along with the ratio in percentage between the two different
decoding timings:

Program
perf.data
dimension

itrace=bi0 time
measure (s)

itrace=b time
measure (s)

b/bi0 (%)

helloworld 18876 0,485 0,142 29,27
switchcase 18732 0,484 0,183 37,81
ifelse 18772 0,535 0,133 24,86
500for-ifelse 27612 0,565 0,160 28,32
1000forprintfs 251668 4,842 0,812 16,76
5000forprintfs 1385388 25,938 3,448 13,29
for(8000000) 1489452 83,781 17,453 20,83
2*for(8000000) 2976620 174,069 39,548 22,71
3*for(8000000) 4438404 236,287 58,083 24,58
nested-0.15s 13084556 694,048 176,661 25,45
nested-0.3s 26727468 1611,069 407,650 25,30
nested-0.5s 44591252 / 676,186 /

Table 6.6. Intel PT decode timings

As it can be seen from the table 6.6 as the dimension of the binary data produced
by the tracing increases the time to then decode it grows accordingly. The figure 6.7
helps to better understand and visualize the relationship between the perf.data

dimension in bytes and the required time to decode it.

104

Remote attestation protocol components implementation

Figure 6.7. Relationship between binary data dimension and required decoding time

As it can be noticed from the image 6.7 there is a linear relationship between
the perf.data dimension and the decode time required by using the itrace=bi0

option in perf script command. The relationship with the decoding time by
making use of the itrace=b is not reported to avoid redundancy but follows the
exact same linear trend of the plot in figure 6.7.

This type of analysis let us understand how much time the decoding procedure
lasts based on complexity of the software program. The decoding phase time
is surprisingly high as it can be seen from the table 6.6. Putting in place the
complete decoding technique used to obtain the exact sequence of both instruction
and branches executed the time required to decode the binary packets results to
be acceptable but still high for very simple and small programs while it increases
very much, even though linearly, for more complex programs.

Lets take as example the case of the for(8000000) loop program. Its normal
execution time is quite low, equal to 0,036 seconds, while its decoding time, used
to obtain a complete instruction plus branches control flow graph, corresponds
to 83,781 seconds, which seems to be too much high. This results highlight the
weakness in terms of scalability of the Intel PT usage.

A way to reduce this decoding time is to decide to decode and filter just the
branch instructions, reporting in this way just the control flow information by
using the itrace=b option. This approach can perfectly fit the scopes presented

105

Remote attestation protocol components implementation

in this work of using the Intel PT as Control Flow tracing technique. So lets see
how much the decoding time can be reduced in this way, still obtaining a complete
and clear output that allows to reconstruct the execution flow of the program. As
shown in the table 6.6 the time to decode just the control flow data is around
20-25% of the time required to produce a complete output, resulting in a gain of
75-80% in terms of performance over the decoding phase.

By decoding just the control flow information and so only the branch instructions
the time overhead is lower and so the level of Intel PT’s manageable complexity of
the traced program can be increased without incurring in a too high performance
degradation. However, despite this branch filter is beneficial it just moves the
upper handled complexity threshold a little bit further, but it does not solve Intel
PT’s scalability problems completely. At the end the upper handled complexity
limit is still present as well as the decoding limitations in terms of performance. Of
course the additional time overhead evaluation depends on the specific application,
but when the decoding time is in the order of minutes, for programs having a
normal execution time equal to 0,067, the performance degradation seems too
high.

The decoding time must be summed up with the additional time overhead re-
quired by the Intel PT for tracing the program’s execution in order to obtain the
entire duration time from program execution to the time at which its execution
flow graph is ready and available. Furthermore, sometimes an additional parser or
post-processing tool is needed to extract and manipulate the output information
produced by the decoder to generate useful control path information, addition-
ally increasing in this way the post-processing time duration. For example also in
the solution proposed in this document a python parser has been used to extract
just the essentially useful data from the decoder’s output in order to attest the
execution of the loaded binary extractor.

Memory analysis and measurements

The other analysis that has been conducted, in parallel to the time performance
evaluation, is on the amount of data produced by the Intel PT. This evaluation
helps to understand which should be the memory capabilities of a device imple-
menting a solution making use of the Intel PT to trace the execution of a program.

The table 6.7 below shows, for each tested program the dimension of the perf.data
produced, the amount of data produced as output of the full decoding and the
amount of data produced by the decoding of just the control flow data.

106

Remote attestation protocol components implementation

Program
perf.data
dimension

itrace=bi0 data
dimension

(bytes)

itrace=b data
dimension

(bytes)
b/bi0 (%)

helloworld 18 876 29 193 613 3 848 603 13,18
switchcase 18 732 29 074 077 3 836 260 13,19
ifelse 18 772 29 068 201 3 836 591 13,20
500for-ifelse 27 612 37 971 561 4 957 355 13,06
1000forprintfs 251 668 333 187 949 52 095 234 15,64
5000forprintfs 1 385 388 1 823 477 040 288 589 952 15,83
for(8000000) 1 489 452 6 178 863 666 1 634 481 078 26,45
2*for(8000000) 2 976 620 12 354 953 168 3 274 534 884 26,50
3*for(8000000) 4 438 404 18 242 916 458 4 914 508 946 26,94
nested-0.15s 13 084 556 56 307 629 920 15 347 738 764 27,26
nested-0.3s 26 727 468 1,14552E+11 31 173 195 158 27,21
nested-0.5s 44 591 252 / 53 488 551 359 /

Table 6.7. Intel PT decode data dimension

Lets focus our attention on the amount of data generated during the Intel PT
tracing and decoding processes. In the first tracing phase the data are produced, in
the more condensed form of binary packets. On the other hand the second decoding
phase generates the execution flow graph of the program’s execution, starting from
the binary packets, in a human readable form in a more thorough and extensive
way resulting in the generation of a larger amount of data. By looking at the table
6.7, the dimension of the perf.data file seems to remain quite small in the order
or Megabytes, when increasing the complexity of the traced program.

On the contrary the dimension of the data produced as a result of the post-
processing decoder results to be very high, even for relatively small programs.
Taking as example the for(8000000) program, the amount of data produced
as result of the entire and complete decoding is close to 6 Gigabytes; while the
dimension of the output data obtained from the decoding by filtering only the
control flow information is around 1,5 Gigabytes. This amount of data produced
is also related and proportional to the time required to produce it. It increases in
a linear way but it reaches values extremely high.

Another example, which shows how the amount of data produced by the decoder
can grow as the complexity of the traced program increases just a little bit, is
the nested-0.5s nested loop program. It has a normal execution time of 0.5
seconds and the amount of data produced from the branch filtered decoding phase
is around 53 Gigabytes, extremely high. This results show how the post-processing

107

Remote attestation protocol components implementation

phase of the Intel PT could result to be a big cumbersome in terms of memory
management and space and also in terms of time required to eventually additionally
post-processing it.

For less complex programs, on the contrary, the dimension of the data produced
seems to be in the order of some Megabytes. This amount of data produced by the
decoder result to be manageable in terms of space required to store them. Taking
as example the 500for-ifelse program, the amount of data generated by the
perf decoder when extracting and reporting only the branches information is just
almost 5 Mega Bytes. It is still a manageable and small amount of data.

Time and memory overhead final considerations

After reporting all the measurement results obtained in terms of time and data
dimension when trying to extract the control flow graph of the execution of a
program by means of the Intel PT, some consideration must be done on them.

As seen from the results, the Intel PT sampling during program execution seems
to not affect so much its overall performance. On the contrary it emerged that the
post-processing decoding operation could represent a potential cumbersome both
in terms of time and memory space required. Although they increase linearly as
the complexity of the program grow their increase result to be too much higher
than expected.

In fact despite the post-processing time seems to be very high for more complex
programs, it must be said that the Intel PT time overhead during run-time is
quite low and acceptable, allowing the application to execute without a too high
performance degradation. We can conclude that, based on the obtained results,
the Intel PT tracing during run-time just adds a small additional time overhead to
the program execution. In the case of the nested for loop programs (the maximum
level of complexity measured) the additional time overhead was about 13 % of the
normal execution time. Taking as reference this value the Intel PT tracing phase
is very efficient, generating a very low performance degradation. This is a good
result because it means that the program can run without being slowed down too
much during its execution. On the other hand the post-processing decoding phase
represents the bottle neck of the execution flow extraction procedure due to its
high processing time and amount of data generated. The decoding phase, even
when filtering and extracting just the control flow packet information, requires a
too much time for its execution, resulting in a big cumbersome when it comes to
more complex programs.

108

Remote attestation protocol components implementation

Therefore, even though the Intel PT usage, in order to reconstruct the exact
sequence of executed commands, is feasible in tracing the execution of a program,
its decoding phase has big limitation and it can be unfeasible when it comes to
more complex programs. In the experiments conducted the program that seems
to represent the pivot of shift between the still manageable complexity and the
non-manageable one is the for(8000000) loop program. For the programs less
complex than it the time and memory space required seem to be feasible and
manageable, while for the more complex programs the computational resources
required start to become unsustainable.

This let us conclude that the Intel PT is practical and feasible just for programs
of low complexity. It must be remarked that this Intel PT scalability issue does not
refer to its tracing during program execution, which is very lightweight, but it refers
to the subsequent decoding process of the binary packets. The results obtained
from the analysis show that there is an upper limit of program complexity that can
be decoded in a feasible and efficient way. However, despite these limitations the
set of less complex programs with which the Intel PT can be used in an effective
ways includes a high number of applications and cases.

In the specific context of the binary extractor of this work the Intel PT has
resulted to be a perfect tracing technique to monitor its execution. The C binary
extractor is a very simple program and the Intel PT does a good work in extracting
its execution flow graph, in a highly detailed way, allowing to verify if the binary
extraction process was executed correctly.

Time and space limitations of the Intel PT decoding must be kept into consid-
eration when using it into a solution, evaluating its impact based on the specific
application.

109

Chapter 7

Discussions and critics

In this work good results have been achieved in the design of the integrity ver-
ification protocol solution. However there are some main limitations and points
of improvement associated with it. This section reports the main limitations and
problems encountered during the solution design and during the analysis con-
ducted.

Multiple containers management As said at the beginning, this solution is
designed and meant to attest the integrity of a container running on a virtual func-
tion. It focuses on attesting a single container without considering the possibility
to attest multiple containers or Virtual Machines running on the same device. A
next possible improvement could be to work in this direction trying to find ways
and adding adaptations to this solution to make it working also for the attestation
of multiple containers per virtual function scheme.

There are many issues and limitation that must be still solved when it comes
to attestation of multiple containers on the same machine, especially when a vir-
tual TPM is used. The first problem is basically related to the fixed and limited
number of CPR register banks which sets an upper limit to the number of mea-
surements that the TPM can store at the same time and consequently the number
to containers that it could potentially manage.
The second problem is related to the new kinds of security issues that this new
type of scheme opens. Having a TPM, that could be hardware of software, as-
sociated to the machine but shared between all the virtual machines, opens new
security issues. Since the TPM is shared, in this scheme the PCRs value measure-
ments associated to a container could be potentially read and modified by another
container having in this way access to sensible information of the other VMs and

110

Discussions and critics

interfering on the final protocol outcome.

Intel PT limitations The other limitation encountered in this work is related
to the Intel PT capabilities. Although it results to be a very precise and detailed
tracing technique being able to produce the exact control flow graph of program
execution at the assembly level, it has a series of limitations related to scalability.

The use of the Intel PT for the purpose of reconstructing the execution flow
is feasible only for less complex programs. The tracing of a very simple program
with such a technique is very efficient and does not add to much overhead in
terms of performance and data space required. On the other side the tracing
of more complex programs resulted to be inefficient and unfeasible in terms of
time required for control flow extraction and amount of data produced by the
decoder. These kinds of problems put an upper limit to the maximum complexity
manageable by an Intel PT tracing solution. It must be made clear that these kinds
of scalability limitations do not refer to the Intel PT tracing phase during run-time,
which resulted to be lightweight and efficient, but refer to the subsequent post-
processing decoding phase which, according to the results obtained, is a potential
cumbersome and is costly and unfeasible in terms of time and space when it comes
to complex programs.

For the purpose of this work the Intel PT appears to be very effective in tracing
the C loaded binary extractor program because it is very simple. However, the use
of Intel PT in tracing eBPF programs resulted to be a cumbersome and the tracing
of a binary extractor based on eBPF hook seems to be highly inefficient due to the
lack of direct mapping of instructions and due to the big amount of data generated.
This shows another limitation of such techniques in reconstructing the execution
flow graph of interpreted, python-like, programs where the direct mapping between
the program instructions and the ones recorded by the Intel PT is not possible.
This could be solved by an additional process of reverse engineering of the Intel
PT recorded log instructions; however this additional post-processing operation
increases even more the time required to reconstruct the final execution flow path
and so its use should be evaluated both in terms of feasibility, correctness and
precision.

The other aspect to consider, related to the Intel PT tracing, is that it is a
pseudo-hardware based technique. This means that the assumption that is made
here is on the presence of an Intel processor of last generation on the remote device.
This assumption must be kept into consideration. However Intel PT tracing has
been chosen because nowadays Intel processors are highly common and widespread
in all devices. From this perspective no other additional hardware is required.

111

Discussions and critics

Considering the Intel PT deployed in a Control Flow Attestation solution con-
text a possible problem could be arisen by compiler optimizations. The Intel PT
is able to follow and trace a program with and without compilation optimizations.
However if some kind of code optimization are applied to the program whose exe-
cution has to be attested, like loop-unrolling, the control flow graph representation
of the program changes and so also the final computed measurement. When using
such a solution the program version at the Orchestrator and the one at the remote
device to be attested must be exactly the same for the integrity verification to
succeed; otherwise if some optimizations are applied, and maybe there is a little
discrepancy between the two code optimization versions, the remote attestation
procedure will fail, even though the path executed is correct.

The last critic that must be done about Intel PT is that, potentially, it can
be used in a Virtual Machine, but in the current available implementation it is
not supported. Maybe with some adjustments and specific options, in virtual
environments ”linux kvm”, Intel PT virtualization can be enabled in order to make
it visible to perf tool. An additional effort should be done by Virtual Machine /
containers developers in this direction to enlarge and strengthen the integration of
Intel PT feature in virtualized environments.

A discussion should be done about the Control Flow Attestation procedures
that might be chosen in an attestation scheme and the one that has been picked
in the solution proposed here. There are two possible Control Flow Attestation
schemes:

1. Hash check based

2. Graph traversal based

The first one, the hash check based, is the one used in this document, as also
described earlier in the previous chapters. It this type of scheme the Orchestrator
keeps stored all the valid hash measurement in the database, each of them corre-
sponding to a valid control flow path of the program running on the remote device
that has to be attested. Whenever the VM’s software program is attested the
remote device provides a measurement of the executed flow to the Orchestrator in
order to be checked against the list of valid measurements stored in the DB. This
kind of solution allows the Orchestrator to attest the execution of the remote pro-
gram without having to access or store the binaries of that program. However, as
it can be imagined the number of valid and possible paths increases exponentially
as the complexity of the program grows. This means that the number of valid hash
values of a program tend to be very high even for small programs. Additionally,
if the number of remote VMs to be attested is big the amount of data that the

112

Discussions and critics

Orchestrator has to store into the database is huge and potentially unfeasible to
manage. This kind of hash check based scheme is not a scalable solution at all.

On the other hand the graph traversal based Control Flow Attestation could be a
new kind of technique that may try to solve the scalability issues of the hash check
based one. In fact it does not require the Orchestrator to store an hash value for
each possible valid path of the program. In this type of scheme whenever the VM
is asked to attest the execution of its software running program it does not provide
the hash measurement of the flow path executed, but furnishes to the Orchestrator
the complete control flow graph, and so the exact sequence of executed commands.
The AK of the TPM could be used to authenticate the control flow data generated
through the Intel PT. At the Orchestrator side the sequence of commands received
from the VM are used to traverse a Control Flow Tree, a tree representation of
the software program, in order to check if its execution has followed a correct
and valid path or not. The kind of tree that can be used for this purpose is
the Merkle Tree, a hash based binary tree data structure used for efficient data
verification. Following the sequence of commands traced by the Intel PT against
the Merkle Tree of the target software program the attestation is performed by
the Orchestrator. Since the Merkle Tree is a binary tree its traversal is efficient
because at each step only one of the two path is taken, according to the tracing
information, and the other one is completely excluded and so also all its subtrees.
This type of scheme requires the Orchestrator to keep stored the binaries of the
software program to be attested in order to be able to extract its Merkle Tree. In
this scheme the Orchestrator does not have to keep stored all the single valid hash
measurements, whose number could be potentially huge and impossible to manage,
but it has just to keep track of the binaries and of the Merkle Tree, or another
graph data structure, for each remote VM. The Merkle Tree is used as reference
for the Control Flow Integrity of the remote program. This scheme requires a very
less amount of data to be stored with respect to the hash check based solution. A
possible way to do this is to use the xed (X86 Encoder Decoder) on the VM during
decoding phase to directly reconstruct the exact sequence of assembly instructions
to be sent to the Orchestrator. Since the assembly instruction reconstruction
during decoding is highly expensive, a possible alternative is to just send the
binary packets or the decode output to the Orchestrator and then let the Verifier
perform the xed reconstruction of the assembly instructions to be than checked
against the Control Flow Tree. This way is more efficient because the Orchestrator
enhanced computing capabilities are leveraged resulting in a performance gain.

This second type of techniques to perform the Control Flow Attestation based
on the graph traversal has not been used in the solution of this document but it
could represent a better and more scalable alternative to the hash check based

113

Discussions and critics

one. The design of a scheme that goes in this direction could represent a possible
enhancement to this type of context and to this solution.

114

Chapter 8

Conclusions

8.1 Conclusion

In this report we have focused our attention on remote attestation and integrity
verification in a Cloud based Environment. As nowadays network schemes and
architectures have changed following new trends, like Network Function Virtual-
ization, and moving towards the predominance of new kinds of technologies, like
the Mobile Edge Computing and the Cloud Computing, new kinds security issues
come out. It has been made clear the urgent need of new solutions that are capable
of addressing the new kinds of security problems, that Cloud and virtualization
technologies open, related to the integrity and correctness of the remote edge sys-
tems connected to the network. This has been the initial starting consideration
for this work.

The remote attestation schemes were used in the past to allow a device, acting
as Verifier, to check the integrity of multiple remote edge systems. However, the
past proposed solutions had many limitations in terms of security and did not
consider the possibility of attesting remote virtualized containers. The previous
remote attestation proposals just considered integrity verification during boot-
time, or at most during load-time, leaving a big security hole not considering all
the possible attacks that could happen during run-time. The other limitation of
those solution is that they were not meant and could not work in a Cloud based
Environment. The remote attestation solution proposed here has been presented
to solve all the new kinds of security problems related to the attestation of Cloud
based Environments. It has been designed with the scope of not only providing
an attestation scheme working in a virtualized environment but also of assuring

115

Conclusions

strong security and correctness properties during the whole process.

The solution proposed in this report is able to provide a strong and verifiable
evidence of the state and integrity of the remote Virtual Machine to the Orchestra-
tor during run-time. As demonstrated the Orchestrator is able to ask the VM to
provide an evidence of its system state, in order to verify its integrity, at any time
and a multiple number of times during run-time without requiring the reboot of
the container. The protocol solution proposed made use of a TPM module as trust
anchor to enforce and ensure reliability and trustworthiness of the whole integrity
verification procedure.

Two different types of protocols to achieve integrity verification have been pre-
sented in this document: the attestation by Quote and the attestation by Proof.
The attestation by Quote follows the more classic remote attestation scheme where
the Prover has to generate a quote data, over the PCRs storing the measurements
reflecting the system state, and then send it to the Verifier in order to be attested.
On the other side the Proof protocol follows a new type of scheme leveraging the
TPM specific properties. It make use of the TPM authentication policy digest
mechanism which permitted to have a more flexible property based attestation:
the Orchestrator was able to attest different sets of properties for each VM in a
customizable way by means of different policy digests.

Apart from the TPM security properties, used to cryptographically secure the
overall protocol, ensuring authentication of the attestation data and strong cryp-
tographic evidence of the Prover state, also the correctness and reliability of all the
other steps of the overall attestation process have been assured. For this purpose
the eBPF hooks tracer and the Intel PT tracing techniques have been used. These
two different tracing techniques have been used to log and verify the correctness
of the loaded binary extraction phase during run-time and the whole communi-
cation between the process implementing the integrity verification protocol with
the TPM. Good results have been obtained from the use of these two kinds of
techniques. They permitted to efficiently trace information at different levels of
granularity: the eBPF gathering more high level data while the Intel PT legging
very low level ones (at the assembly level).

A more detailed study has been conducted for the Intel PT. It has been used
both for tracing the execution of the loaded binary tracer and the eBPF hooks pro-
gram itself. In this way the two tracers capabilities have been combined together
adding an additional level of security to the verification of the communication with
the TPM. A separate analysis has been conducted on the Intel PT capabilities in
the context of Control Flow Attestation. The experiments on the Intel PT have

116

Conclusions

been performed by using it to trace the execution of multiple C programs of in-
creasing level of complexity in order to see how the Intel PT behave in terms of
performance and scalability and to understand which is the highest level of com-
plexity still manageable by such a technique. The Intel PT tracing phase resulted
to be very efficient because it just added a small percentage of performance degra-
dation during program execution. On the other hand, however, the subsequent
decoding phase, required to reconstruct the control flow graph and the exact se-
quence of executed instructions, resulted to be highly inefficient and unfeasible
when it comes to more complex programs. The Intel PT allowed to put in place
an hash check based Control Flow Attestation scheme to perform the Control Flow
Integrity check of the execution of a remote running software.

Overall these two tracing techniques resulted to be very effective and precise in
the specific context of this work.

8.2 Future works

There are still some problems or point of improvement that have remained opened
in the proposed solution.

As also stated in the previous chapter this solution has been developed and
designed to attest multiple devices (or VMs) with a single container per virtual
function. It has not been adapted to work with multiple containers per virtual
function and so multiple virtual machines per devices. In case a virtual TPM is
used a number of issues must be addressed. The PCR registers in a TPM are
limited and this set an upper limit to the number of containers that could possibly
be attested on the same machine. Moreover if the TPM is shared among multiple
containers there are many problems related to privacy and confidentiality due to
the fact that they all have access to the same TPM and so also to information
of the other Virtual Machines. Some work should be done to extend the solution
proposed to be working efficiently and reliably into a multiple container per virtual
function scheme.

The other problem that should be solved regards the Intel PT decoding phase.
As it came out from the tests conducted over the Intel PT the decoding opera-
tion of the binary packets, used to reconstruct the execution flow graph and the
exact sequence of instructions of the executed program, is a cumbersome when it
comes to more complex programs both in terms of time performance and of space
required. The Intel PT tracing operation per se is very efficient and do not add
too much overhead, on the contrary the decoder produces too much data and its

117

Conclusions

time duration is too high. Some more developments should be done on the decoder
in order to reduce the time required to reconstruct the control flow graph of the
program execution. The decoder should be enhanced by maybe adding some more
filters to it that allow to select and drain only the information strictly useful in
the context of Control Flow Attestation. More efficient and lightweight ways to
decode the binary packets produced by the Intel PT must be found.

Another consideration regards the difficulty to integrate the Intel PT into Virtual
Machines. More effort should be put in this direction in order to make the Intel
PT more easily integrated into modern well-known Virtual Machines allowing the
linux guest OS to interact and exploit the Intel PT feature of the processor.

The last improvement that can be added to this work is related to the Control
Flow Attestation scheme. In the solution of this report the hash check based Con-
trol Flow Attestation scheme has been selected. However as already stated before
this kind of approach has many limitations in terms of scalability. The Orchestra-
tor has to keep stored, for all the multiple VMs, all the hash value measurements
corresponding to the all the valid flow paths; the number of valid flow paths is very
huge and increases exponentially even for low complexity programs. Another type
of scheme that could overcome the hash check based Control Flow Attestation is
the graph traversal one. This new kind of scheme allow the Orchestrator to just
store a single tree representation for each VM’s software program reducing both
the space required to be stored and the time needed for the Control Flow Integrity
check. A good data structure candidate suitable for this kind of solution is the
Merkle Tree. A way to enhance this scheme even more is to have the Prover send-
ing to the Orchestrator just the binary packets or the decode output and letting
the Orchestrator, which has more computational power, reconstruct the actual
sequence of assembly instructions through xed tool. Working and developing in
this direction could allow to improve the solution proposed in this report arriving
at a more scalable remote Control Flow Attestation scheme.

118

Bibliography

[1] Trusted Computing Group. Trusted Computing Platform Alliance (TCPA).
2001.

[2] Ahmad-Reza Sadeghi and Christian Stüble. �Property-based attestation for
computing platforms: caring about properties, not mechanisms�. In: Jan.
2004.

[3] Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L. Design and Implementation
of a TCG-basedIntegrity Measurement Architecture. 2004.

[4] A. Seshadri et al. �SWATT: softWare-based attestation for embedded de-
vices�. In: IEEE Symposium on Security and Privacy, 2004. Proceedings.
2004. 2004.

[5] Karim Eldefrawy et al. �SMART: Secure and Minimal Architecture for (Es-
tablishing a Dynamic) Root of Trust�. In: NDSS 2012, 19th Annual Network
and Distributed System Security Symposium, February 5-8, San Diego, USA.
San Diego, UNITED STATES, Feb. 2012. url: http://www.eurecom.fr/
publication/3536.

[6] Joonho Kong et al. �PUFatt: Embedded Platform Attestation Based on-
Novel Processor-Based PUFs�. In: 2014.

[7] Trusted Computing Group. TCG EK Credential Profile For TPM Family
2.0; Level 0. TCG, 2014. url: https://trustedcomputinggroup.org/

resource/tcg-ek-credential-profile-for-tpm-family-2-0/.

[8] Will Arthur and David Challener With Kenneth Goldman. A Practical Guide
to TPM 2.0. Apress, 2015. url: https://trustedcomputinggroup.org/
resource/a-practical-guide-to-tpm-2-0/.

[9] Moreno Ambrosin et al. �SANA: Secure and Scalable Aggregate Network
Attestation�. In: 2016.

[10] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman,
Andrew Paverd, Ahmad-Reza Sadeghi, Gene Tsudik. C-FLAT: Control-Flow
Attestation for Embedded Systems Software. 2016.

119

http://www.eurecom.fr/publication/3536
http://www.eurecom.fr/publication/3536
https://trustedcomputinggroup.org/resource/tcg-ek-credential-profile-for-tpm-family-2-0/
https://trustedcomputinggroup.org/resource/tcg-ek-credential-profile-for-tpm-family-2-0/
https://trustedcomputinggroup.org/resource/a-practical-guide-to-tpm-2-0/
https://trustedcomputinggroup.org/resource/a-practical-guide-to-tpm-2-0/

BIBLIOGRAPHY

[11] Sofianna Menesidou and Thanassis Giannetsos. �Future Proofing the Con-
nected World: A Quantum-Resistant Trusted Platform Module�. In: 2018.

[12] Tigist Abera et al. �DIAT: Data Integrity Attestationfor Resilient Collabo-
ration of Autonomous Systems�. In: 2019.

[13] Nikos Koutroumpouchos et al. �Secure Edge Computing with LightweightControl-
Flow Property-based Attestation�. In: 2019.

[14] url: https://trustedcomputinggroup.org/.

[15] IBM’s Software Trusted Platform Module. url: http://ibmswtpm.sourceforge.
net/.

[16] IEEE. Trusted Execution Environment: What It is, and What It is Not. url:
https://ieeexplore.ieee.org/document/7345265.

[17] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3. url: https://www.intel.com/content/www/us/en/architecture-
and - technology / 64 - ia - 32 - architectures - software - developer -

system-programming-manual-325384.html.

[18] Intel. �Intel Trusted Execution Technology (Intel TXT): Enabling Guide�.
In: url: https://software.intel.com/content/www/us/en/develop/
articles/intel-trusted-execution-technology-intel-txt-enabling-

guide.html.

[19] Linux TPM2 & TSS2 Software. tpm2-abrmd. url: https://github.com/
tpm2-software/tpm2-abrmd. Open source code.

[20] Linux TPM2 & TSS2 Software. tpm2-tools. url: https://github.com/
tpm2-software/tpm2-tools. Open source code.

[21] Linux TPM2 & TSS2 Software - Developer community. tpm2-software/tpm2-
tools. url: https://github.com/tpm2- software/tpm2- tools/tree/

master/man. Open source code.

[22] QEMU TPM Device. url: https://www.qemu.org/docs/master/specs/
tpm.html.

[23] Registry of Reserved TPM 2.0 Handles and Localities. url: http://www.
trustedcomputinggroup.org/resources/registry.

[24] Trusted Computing Group. TCG TSS2.0Overview and Common Structures
Specification. url: https://trustedcomputinggroup.org/wp-content/
uploads/TCG_TSS_Overview_Common_Structures_v0.9_r03_published.

pdf.

[25] Trusted Computing Group. Trusted Platform Module Library Part 1: Ar-
chitecture. url: https : / / trustedcomputinggroup . org / wp - content /

uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf.

120

https://trustedcomputinggroup.org/
http://ibmswtpm.sourceforge.net/
http://ibmswtpm.sourceforge.net/
https://ieeexplore.ieee.org/document/7345265
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trusted-execution-technology-intel-txt-enabling-guide.html
https://github.com/tpm2-software/tpm2-abrmd
https://github.com/tpm2-software/tpm2-abrmd
https://github.com/tpm2-software/tpm2-tools
https://github.com/tpm2-software/tpm2-tools
https://github.com/tpm2-software/tpm2-tools/tree/master/man
https://github.com/tpm2-software/tpm2-tools/tree/master/man
https://www.qemu.org/docs/master/specs/tpm.html
https://www.qemu.org/docs/master/specs/tpm.html
http://www.trustedcomputinggroup.org/resources/registry
http://www.trustedcomputinggroup.org/resources/registry
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Overview_Common_Structures_v0.9_r03_published.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Overview_Common_Structures_v0.9_r03_published.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TSS_Overview_Common_Structures_v0.9_r03_published.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf

BIBLIOGRAPHY

[26] Trusted Computing Group. Trusted Platform Module Library Part 2: Struc-
tures. url: https://trustedcomputinggroup.org/wp-content/uploads/
TCG_TPM2_r1p59_Part2_Structures_pub.pdf.

[27] Trusted Computing Group. Trusted Platform Module Library Part 3: Com-
mands. url: https://trustedcomputinggroup.org/wp-content/uploads/
TCG_TPM2_r1p59_Part3_Commands_pub.pdf.

121

https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part2_Structures_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf

Appendix A

Integrity verification protocols
commands

In this appendix section all the actual tpm2-tools commands, used for the im-
plementation of both the Quote and Proof integrity verification protocols, are
reported. Each command is labeled with the actor in charge of its invocation. The
list of reported commands here follow exactly the sequence of steps described into
the chapter presenting the implementation of the two protocol solutions (chapter
6). They can be used to try, verify and test the integrity verification protocols
presented in this document.
It is important to remark that the following option must be added to each com-
mand in order to be sent to the software TPM:

-T mssim:host=localhost,port=port number

A.1 Attestation by Quote commands

This is the exact sequence of commands used to perform the integrity verification
by Quote protocol:

#AK creation

VM: tpm2_createek -c ek.ctx -G rsa -u ek.pub

VM: tpm2_createak -C ek.ctx -c ak.ctx -u ak.pub \

-n ak.name -G rsa -f pem

122

Integrity verification protocols commands

Orch: echo "secret" > secret.data

Orch: file_size=‘stat --printf="%s" ak.name‘

Orch: loaded_key_name=‘cat ak.name | xxd -p -c $file_size‘

Orch: tpm2_makecredential -e ek.pub -s secret.data \

-n $loaded_key_name -o mkcred.out -T none

VM: tpm2_startauthsession --policy-session -S session.ctx

VM: tpm2_policysecret -S session.ctx -c 0x4000000B

VM: tpm2_activatecredential -C ek.ctx -c ak.ctx \

-i mkcred.out -o actcred.out -P"session:session.ctx"

#Integrity verification

Orch: echo "nonce" > nonce.data

VM: tpm2_hash -g sha1 --hex file -o file_out # measurement computation

VM: read hvar < file_out

VM: tpm2_pcrextend 16:sha1=${hvar}

VM: tpm2_quote -c ak.ctx -l sha1:16 -m quote.out \

-s sig.out -o pcrs.out -g sha256 -q nonce.data

Orch: tpm2_checkquote -u ak.pub -m quote.out -s sig.out \

-f pcrs.out -g sha256 -q nonce.data

A.2 Attestation by Proof commands

This is the exact sequence of commands that has been used to perform the integrity
verification by Proof protocol:

#Policy digest creation

Orch: tpm2_pcrread -o pcr.dat "sha1:16"

123

Integrity verification protocols commands

Orch: tpm2_startauthsession --policy-session -S session.ctx

Orch: tpm2_policypcr -S session.ctx -l "sha1:16" -f pcr.dat \

-L policy.dat

#AK creation

VM: tpm2_createek -c ek.ctx -G rsa -u ek.pub

VM: tpm2_startauthsession --policy-session -S session.ctx

VM: tpm2_policysecret -S session.ctx -c 0x4000000B

VM: tpm2_create -C ek.ctx -P "session:session.ctx" -Grsa:rsassa:null \

-u key.pub -r key.priv -L policy.dat -t ticket.key -d createdig.key \

--creation-data=creation.data --template-data=template.data \

-a "fixedtpm|fixedparent|sensitivedataorigin|restricted|sign"

VM: tpm2_policysecret -S session.ctx -c 0x4000000B

VM: tpm2_load -C ek.ctx -P "session:session.ctx" -u key.pub \

-r key.priv -c key.ctx -n key.name

VM: tpm2_evictcontrol -C o -c key.ctx 0x81010002 #If the object

is not permanent

cannot be used for

activate credentials

VM: echo "secret" > secret.data

VM: file_size=‘stat --printf="%s" key.name‘

VM: loaded_key_name=‘cat key.name | xxd -p -c $file_size‘

VM: tpm2_policysecret -S session.ctx -c 0x4000000B

Orch: tpm2_makecredential -e ek.pub -s secret.data -n $loaded_key_name \

-o mkcred.out -T none

VM: tpm2_startauthsession --policy-session -S session.ctx

VM: tpm2_policysecret -S session.ctx -c 0x4000000B

124

Integrity verification protocols commands

VM: tpm2_activatecredential -c 0x81010002 -C ek.ctx -i mkcred.out \

-o actcred.out -P "session:session.ctx"

VM: tpm2_policysecret -S session.ctx -c 0x4000000B

VM: tpm2_certifycreation -C 0x81010002 -c 0x81010002 -d createdig.key \

-t ticket.key -g sha256 -o sig.nature --attestation attestat.ion \

-f plain -s rsassa -P "pcr:sha1:16" -q policy.dat

Orch: tpm2_loadexternal -C o -u key.pub -c vm.key.ctx -n extname

Orch: tpm2_verifysignature -c vm.key.ctx -g sha256 -m attestat.ion \

-s sig.nature -t ticket.key -f rsassa

#Integrity verification

Orch: openssl rand -hex 6 > nonce.plain

VM: tpm2_hash -C e -g sha256 -o hash.bin -t ticket.bin nonce.plain

#The ticket is required during the sign

VM: tpm2_sign -c 0x81010002 -g sha256 -o sig.rssa nonce.plain \

-t ticket.bin -p "pcr:sha1:16"

Orch: tpm2_verifysignature -c vm.key.ctx -g sha256 \

-m nonce.plain -s sig.rssa

125

	Introduction
	Motivations
	Project objectives
	Structure of the report

	Related works
	Problem statement
	System model
	Threat model

	Background and technologies
	Trusted Platform Module 2.0 (TPM 2.0)
	Architecture
	Hierarchies
	Endorsement Key
	Attestation Key
	Platform Configuration Registers
	Policy Authorization
	Activation of credentials

	TPM Software Stack (TSS)
	Tracing and sampling techniques
	Overview
	Extended Berkeley Packet Filter (eBPF)
	Intel Processor Tracing (Intel PT)

	Remote attestation protocol architecture and components
	Overview
	Phases and components
	Binary extraction process phase
	Integrity verification process phase

	Remote attestation protocol components implementation
	Overview
	Attestation by Quote
	Creation of AK
	Creation of AK sequence diagram in attestation by Quote
	Integrity check
	Attestation by Quote sequence diagram

	Attestation by Proof
	Creation of AK
	Creation of AK sequence diagram in attestation by Proof
	Integrity check
	Attestation by Proof sequence diagram

	Integrity verification commands timings
	Timing measurements approaches
	Attestation by Quote timings
	Attestation by Proof timings
	Command timings evaluation

	Loaded binary extractor
	Use of eBPF to trace TSS commands
	Intel PT tracing analysis
	Overview
	Basic tests and analysis
	Python program and eBPF tracing tests
	Timings and memory overhead evaluation

	Discussions and critics
	Conclusions
	Conclusion
	Future works

	Bibliography
	Integrity verification protocols commands
	Attestation by Quote commands
	Attestation by Proof commands

