
POLITECNICO DI TORINO

MASTER DEGREE COURSE IN COMPUTER ENGINEERING

Master Degree Thesis

Software Delivery in
Multi-Cloud Architecture

Supervisors
prof. Fulvio Risso

Candidates

Amir Boroufar
matricola: 258015

Internship Tutor

Pasquale Lepera

Academic Year 2019-2020

Dedicate to
my family

2

Abstract

Two of the most popular trends in technical school nowadays are mi-
croservices and multi-cloud, and if you’ve attended a technical school
conference recently, you’ve seen some sessions dedicated to them. The
microservices adoption will be increased by the day as developers look
to use smaller, modular services to increase application functionality.
Another parameter accelerating the move to microservices by enter-
prises is that several organizations have returned to benefit from com-
ponentized software systems in development and preparation. For ex-
ample, within the cloud, componentization will bring organizations many
benefits, such as resiliency and support for horizontal scaling. How-
ever, the risk of service accessibility failure within a single cloud has
decreased the popularity of single cloud suppliers amongst the users
of the cloud. As a result, a new trend is beginning to emerge, which
could be a movement towards multi-clouds. One of the most important
challenges of a multi-cloud approach is that completely different cloud
solutions run in various software system platforms. Nowadays, organi-
zations need to make applications that may simply move across a large
vary of those environments while not making integration difficulties.
The ultimate goal of this thesis is to tackle the mentioned challenges
by design a multi-layer architecture to employ DevOps techniques for
software delivery in multi-cloud environments. To achieve the desired
result we used different technologies and solutions ranging from Open-
VPN to Istio to handle available challenges such as software delivery
across a distributed infrastructure on clouds and traffic management
between microservices. Finally, we measured the functionality of the
proposed architecture by deploying a real microservice-based applica-
tion on AWS and Azure infrastructure through CI/CD pipelines and con-
trol traffic distribution between microservices by Istio.

3

Contents

1 Introduction 7
1.1 Microservices and Multi-Cloud 7
1.2 The Rise of Multi-Cloud . 8
1.3 Multi-Cloud Enablers . 9

1.3.1 Containers . 9
1.3.2 Service Mesh . 10
1.3.3 DevOps . 11

1.4 Benefits of a Multi-Cloud Architecture 11

2 Background 13
2.1 Multi-Cloud Networking . 13

2.1.1 Site-to-Site VPN . 14
2.2 Infrastructure as Code . 14

2.2.1 Terraform . 15
2.2.2 Ansible . 15

2.3 Kubernetes . 15
2.3.1 Kubernetes Components 16
2.3.2 Kubernetes Workloads 17

2.4 Rancher . 18
2.5 Helm chart . 20

2.5.1 Helm Components and Terminology 21
2.6 Service-Mesh . 22

2.6.1 Istio . 22
2.6.2 Istio at a Glance . 23

2.7 DevOps . 25
2.7.1 Key focus area in DevOps 26
2.7.2 Devops for Multi-Cloud 27
2.7.3 CI/CD pipeline . 27

4

3 Network Infrastructure Architecture 29
3.1 Introduction to OpenVPN 29
3.2 Advantages and Disadvantages 30
3.3 OpenVPN Packages . 30

3.3.1 The Open Source Version 30
3.4 OpenVPN Components . 30

3.4.1 The Tun/Tap Driver 30
3.4.2 The Control and Data Channels 32

3.5 Deployment Models . 32
3.5.1 Point-to-Point Mode 32
3.5.2 Client-Server Mode 32

3.6 Setting up the Public Key Infrastructure 33
3.7 Config files against the Command line 34

3.7.1 Server Configuration 34
3.7.2 Client Configuration 35
3.7.3 Client-specific Configuration – CCD files 36

3.8 Our Topology . 36
3.8.1 How to set up our VPN topology on AWS 37

4 Service Mesh Architecture 41
4.1 Traffic Management in Istio 42

4.1.1 Understanding How Traffic Flows in Istio 42
4.1.2 Understanding Istio’s Networking APIs 43

4.2 Canary Deployment . 46
4.3 Multiple-Cluster Meshes . 47

4.3.1 Istio Multicluster (single mesh) 48
4.3.2 Istio Multicluster (mesh federation) 49
4.3.3 Pros and cons of each approach 50

4.4 Our Architecture . 50
4.4.1 How to Set up our Service Mesh 50

5 CI/CD Pipeline Architecture 55
5.1 Why Gitlab CI/CD? . 55

5.1.1 How GitLab Enables Multi-Cloud 56
5.1.2 Gitlab Pipelines . 56

5.2 Our Architecture . 58
5.3 How to set up our DevOps pipelines 59
5.4 Real scenario on AWS and Azure 62

5

6 Conclusion 64

Bibliography 67

6

Chapter 1

Introduction

1.1 Microservices and Multi-Cloud

In tech, today microservices and multi-cloud are two of the hottest
trends, and if you’ve attended a tech conference recently, you’ve likely
seen at least a couple of sessions dedicated to them. The use of mi-
croservices increases by the day as developers look to use smaller,
modular services that work in tandem to enable larger, application-wide
functionality.

Microservices architecture 1.1 provide us with an alternative to de-
veloping a traditional, ‘monolithic’ application all in one go.

The main idea behind the microservices is breaking applications into
smaller pieces make it easier for us to build and maintain them.

Compared to monoliths, microservices are easier to understand, test,
and maintain over the life cycle the application. By helping us achieve
greater agility in development, microservices significantly reduce the
time needed to get working improvements to production [24].

Another factor accelerating the move to microservices by enterprises’
reason is that many organizations have come to recognize the benefits
of componentized software in development and deployment. For exam-
ple, in the cloud, componentization can bring organizations many ad-
vantages, including resiliency and support for horizontal scaling. With
microservices, these benefits can be magnified considerably [26].

When it comes to the cloud, we’ve all heard of public cloud, private
cloud, and hybrid cloud, but a relatively new term for is multi-cloud: the

7

Introduction

Figure 1.1: A microservices architecture.

use of more than a single public cloud. The multi-cloud usage pattern
came about as a result of organizations wanting to avoid dependence
on a single public cloud provider. With multi-cloud, organizations can
choose specific services from each public cloud to get the best of avail-
able options.

Microservices can make it easier to deploy and use a multi-cloud
environment but ensuring this needs a lot more technologies to set up
and support this concept; The structures required to implement the
multi-cloud infrastructure fit to a microservice architecture is discussed
is this thesis.

1.2 The Rise of Multi-Cloud

The risk of service availability failure and the possibility of malicious
insiders in the single cloud are predicted to decrease the popularity of
single cloud providers amongst the users of the cloud. As a result, a
new trend is starting to emerge, which is a movement towards multi-
clouds [3].

Many say that multi-cloud is the future of information technology.
While that is true, multi-cloud is also IT’s present reality. In fact, over
80% of the organizations already have a multi-cloud strategy [2].

8

Introduction

Following is a multi-cloud diagram 1.2 depicting an overview of a
multi-cloud environment:

Figure 1.2: An example of a typical secure multi-cloud environment.

1.3 Multi-Cloud Enablers

1.3.1 Containers

Among the biggest challenges of a multi-cloud approach is that differ-
ent cloud platforms run in various software environments. At the same
time, organizations want to build applications that can easily move
across a wide range of these environments without creating integra-
tion difficulties. Since they isolate software from the underlying envi-
ronment, containers can be ideal here. This enables developers to build
applications that can be deployed virtually anywhere.

There are many benefits to using containers. First, DevOps teams
benefit greatly due to the more efficient approach to software develop-
ment.

Containers bring agility for developers by reducing wasted resources
and improving teams to build and share code more rapidly in the con-
text of microservices.

On top of this, containerization improves scalability through a more
lightweight and resource-efficient approach. This improved scalability,
coupled with the improvements in development efficiency and velocity,
results in greater time and cost efficiencies [1].

9

Introduction

As we adopt a microservices architecture, it’s also important to fig-
ure out how to monitor across the different services. This is where
Kubernetes and its growing ecosystem of tools come into the picture.

As a result, the decision to use Kubernetes is not solely based on
which container orchestration tool to use to further an organization’s
microservices strategy. What organizations are considering is also what
the complementary ecosystem of tools looks like. The Kubernetes ecosys-
tem offers all the building blocks for everything we need to leverage
containers to build out a rock-solid microservices architecture [19].

1.3.2 Service Mesh

A service mesh is one of the hottest topics in technology right now good
reason. Service mesh represents the next innovative leap in transition-
ing from centralized architectures to decentralized architectures.

These tools have made it easy to decouple services and have helped
us to stop thinking in terms of monoliths. With them, we can separate
out the execution of our services and keep their isolation consistent. In
essence, Docker and Kubernetes provide the tooling needed to enable
mainstream adoption. While some companies like Netflix and Amazon
transitioned without these tools, their process of decoupling monoliths
was more challenging.

Service mesh offers us the same subset of traditional use cases for
north-south traffic deployed in a way that better handles the increased
east-west traffic generated by a microservices architecture [4]. Our
service mesh proxy can collect telemetry, handle routing and error han-
dling, and limit access to our services in the same way that traditional
gateways have handled north-south traffic for years. In this thesis,
we’re using the same technology and features to handle east-west traf-
fic generated by a microservices architecture across a multi-cloud in-
frastructure.

Service mesh represents future innovative jump in transitioning from
centralized architectures to decentralized architectures.

10

Introduction

1.3.3 DevOps

Flexibility and shorter cycles are the main reasons to pursue a microser-
vices architecture. However, without continuous integration and con-
tinuous delivery (CI/CD) procedure can keep your team from reaching
the highest level of agility that’s necessary to support microservices
development and delivery. This thesis describes a variety of challenges
and provides an architecture to mixing CI/CD with microservices appli-
cation development.

1.4 Benefits of a Multi-Cloud Architecture

There are several factors that make a multi-cloud approach important
for enterprises and the IT sector. The top reasons for enterprises and
IT to enable a multi-cloud environment are as follows.

Figure 1.3: The benefits of a multi-cloud architecture [16].

• High Availability Redundancy for an organization’s services against
security and outages is supplied by a multi-cloud architecture. In a
multi-cloud environment we have the lowest level of unavailability,
even if one cloud is not accessible to run applications, other ones
will be replaced..

• Flexibility In a multi-cloud environment, we are able to have the
choice and flexibility of selecting the best of each cloud provider
to meet our business goals. Typically, organizations can manage
their data, infrastructure, and applications using several different
clouds.

11

Introduction

• Cost Effectiveness With a multi-cloud strategy, enterprises can
control operational expenditures by taking advantage of the com-
petitive market on price.

• Lowered Risk With the growth in cloud deployments, the likeli-
hood of DDoS attacks is decreasing and multi-cloud architecture
can provide a higher level of resiliency not possible with a single
provider.

The main goal of this research is to integrate solutions and technolo-
gies in various layers for software delivery in multi-cloud environments
through DevOps pipelines, but as a result of this approach many ad-
vantages will result in business layer in the long term that all will be
very interesting for the market. We will discuss different aspects of
each solution from infrastructure to the application layer in an incre-
mental approach to finally reach a mature multi-cloud architecture for
software delivery.

12

Chapter 2

Background

In order to give basic comprehension of the context of work of this
thesis, this the chapter provides a brief description of technologies that
were used in this thesis.

2.1 Multi-Cloud Networking

Companies are relying more and more on multiple public cloud providers.
The reasons for multi-cloud environments range from different inter-
nal teams preferring to use specific services available from different
providers, to reducing reliance or “lock-in” when using only one cloud
provider. Setting up and maintaining the connectivity between cloud
providers is difficult. Each provider offers different network services
with varied constraints and performance. Also, the cloud providers are
not highly incentivized to make it easy to connect different clouds to-
gether [6].

In this thesis, we employed OpenVPN solution to simplifies multi-
cloud networking by providing an IaC solution for connectivity between
the major cloud providers – including AWS, Azure, and Google cloud
through IPSEC tunnel connections.

Figure 2.1 shows a graphic representation of secure multi-cloud peer-
ing betwwen different public cloud providers:

13

Background

Figure 2.1: A secure multi-cloud peering diagram [6].

2.1.1 Site-to-Site VPN

A site-to-site VPN is to connect two or more isolated networks together
through a VPN tunnel. Devices located in one network can reach de-
vices in the other network, and vice versa. OpenVPN solution can cre-
ate a bridge between two networks that works transparently for all
devices in the two networks to be reachable across the networks.

2.2 Infrastructure as Code

Infrastructure as Code, or IaC for short, is an infrastructure manage-
ment approach that allows you to save the entire infrastructure in a file,
and deploy it in an automated fashion when needed. IaC also makes it
possible to complete multiple repeatable deployments promptly. You
get your code, deploy it, and that’s that. If you wish to introduce
changes for future deployments, it’s also easy. Change whatever you
need, save modifications, and you’re done. In this thesis, we used
Terafform to provision, deploy, and destroy infrastructure resources on
the clouds and employed Ansible to configure our multi-cloud network-
ing solution in a way to supports building our infrastructure from the
ground up.

14

Background

2.2.1 Terraform

Terraform is an open source tool to provision your infrastructure as
code on various cloud providers (including AWS, Azure, Google Cloud)
through a simple declarative programming language using a few com-
mands. For instance, in this research we employed Terraform v0.12 to
have an automatic solution for deploying AWS resources such as EC2,
instead of manually clicking around a webpage, here is all we need to
configure a server on AWS:

Listing 2.1: Example of EC2 Instance Creation using Terraform

1 resource "aws_EC2_instance" "example" {
2 ami = data.aws_ami.example.id
3 instance_type = "t3.micro"
4 }

2.2.2 Ansible

Ansible is the fastest growing open source IT automation tool that can
be used to configure or manage systems, applications, and infrastruc-
ture on many cloud platforms. Ansible is not only limited to managing
servers but it also manages whole cloud infrastructure. Ansible has a
unit of codes named module to executes on the remote target node like
AWS, GCP, VMWare, and Microsoft Azure, and collects return values.

In this thesis, we used Ansible v2.9.14 as a configuration manage-
ment tool to have our OpenVPN solution as a code that prepares a
full-mesh VPN topology across different cloud providers. Figure 2.2
shows a graphic representation of Ansible to manage AWS EC2 in-
stances ready for OpenVPN servers:

2.3 Kubernetes

Kubernetes, or k8s for short, is an open-source container orchestrator.
Originally developed by the engineers at Google, Kubernetes solves
many problems involved with running a microservice architecture in
production [18]. Kubernetes is responsible to automatically handle
load-balancing, scaling, rolling updates, and other tasks that used to be

15

Background

Figure 2.2: Use Ansible to manage AWS infrastructure.

done manually by DevOps engineers. Kubernetes cluster consists of one
or more masters and multiple worker nodes that master nodes orches-
trate the applications running on nodes, and monitor them constantly
to ensure that they are in the desired state defined by programmer.

2.3.1 Kubernetes Components

Master Components

Kubernetes cluster will be monitored by master components to handle
cluster events such as scheduling or restarting unhealthy pods. There
are five components on the master node as follows:

• Kube-apiserver serves as the frontend for the Kubernetes control
plane. The API server exposes an HTTP API that lets end-users, dif-
ferent parts of your cluster, and external components communicate
with one another.

• Etcd is a consistent and highly-available key-value store used as
Kubernetes’ backing store for all cluster data.

• Kube-scheduler watches new workloads/pods and selects a node
for them to run on.

• Kube-controller-manager central controller to reduce complex-
ity by watching the Node controller, replication controller, services,

16

Background

and service accounts.

• Cloud-controller-manager interacts with the remote cloud provider
to check and manage resources.

Node Components

Responsible for cluster running environment, run on every worker node,
and maintaining running pods.

• Kubelet an agent that runs on each node in the cluster to moni-
tor the container health and report to the master, also handle the
received commands from the kube-apiserver.

• Kube-proxy maintains the network rules to allow pod’s communi-
cation from inside to outside of the cluster and vice versa.

• Container runtime is the software that is responsible for running
containers.

Figure 2.3 shows a graphic representation of Kubernetes architec-
ture and components.

Figure 2.3: Kubernetes architecture and components [17].

2.3.2 Kubernetes Workloads

Kubernetes workloads are divided into two main components: pods and
controllers.

17

Background

• Pods The pod is the smallest and the simplest unit in Kubernetes
architecture, it can be compared with what a container is for Docker,
a single instance of an application. A Pod encapsulates one or more
containers as well as storage resources, an IP address, and rules
on how the container(s) should run, as can be seen from Figure 2.4.

Figure 2.4: pods.

Pods are the atomic unit on the Kubernetes platform to host only
an application instance at the same time.

• Controllers As mentioned earlier, Pods are usually deployed indi-
rectly via Controllers. There are different types of controllers as
following:

– ReplicaSet A ReplicaSet’s purpose is to deploy the specified
replicas of the Pods running to guarantee the existence of a
specified number of Pods.

– Deployments Deployments allow for rolling updates and easy
rollbacks on top of ReplicaSets, you can define the desired state
in the Deployment model, including scaling, rolling updates in
canary or blue/ green fashion and Deployment will take care of
it for you [18].

2.4 Rancher

Rancher is a container management platform built for organizations
that deploy containers in production. Rancher makes it easy to run
Kubernetes everywhere, meet IT requirements, and empower DevOps
teams. Rancher supports centralized authentication, access control,

18

Background

and monitoring for all Kubernetes clusters under its control. In this the-
sis, we employed Rancher as a complete container management plat-
form for Kubernetes to successfully run Kubernetes on different public
cloud providers [21].

In this research, we employed Rancher as a solution to deploy and
maintain Kubernetes clusters distributed on different public cloud providers,
here AWS and Azure.

The below diagram 2.5 shows how the cluster controllers, cluster
agents, and node agents allow Rancher to control downstream clusters.

Figure 2.5: Rancher communication with Kubernetes clusters [21].

The following descriptions correspond to the numbers in the diagram
2.5:

1. The Authentication Proxy Forwards all Kubernetes API calls to
downstream clusters.

19

Background

2. Cluster Controllers and Cluster Agents Each downstream user
cluster has a cluster agent, which opens a tunnel to the correspond-
ing cluster controller within the Rancher server.

(a) Watches for resource changes in the downstream cluster

(b) Brings the current state of the downstream cluster to the de-
sired state

(c) Configures access control policies to clusters and projects

(d) Provisions clusters by calling the required Docker machine drivers
and Kubernetes engines, such as RKE and GKE

3. Node Agents If the cluster agent is not available, one of the node
agents creates a tunnel to the cluster controller to communicate
with Rancher.

4. Authorized Cluster Endpoint An authorized cluster endpoint al-
lows users to connect to the Kubernetes API server of a down-
stream cluster without having to route their requests through the
Rancher authentication proxy.

2.5 Helm chart

When deploying an application on Kubernetes, it is required to define
and manage several Kubernetes resources such as pods, services, de-
ployments, and replica sets in YAML format.

It becomes a difficult task to maintain several manifest files in the
context of complex application deployment. If we could have a template-
based approach able to separate the manifest files and configuration
parameters, it will allow us to customize the deployments and have ver-
sion control factors as well. This is where Helm plays a crucial role in
automating the process of installing, configuring, and upgrading com-
plex Kubernetes applications.

Helm is a package manager for Kubernetes. It allows developers to
easily configure, package, and deploy applications on Kubernetes clus-
ters. With Helm, configuration settings are isolated from manifest files.
This allows to the template and customizes settings without changing

20

Background

the entire manifest file [25] .

In this thesis, We benefit from Helm charts v2 for Kubernetes pack-
age management to deploy microservices and Istio configurations on
destination clusters.

2.5.1 Helm Components and Terminology

Helm v2 has two elements, a client (helm) and a server (Tiller). The
server element runs inside a Kubernetes cluster and manages the in-
stallation of charts. This diagram 2.6 shows how Helm components are
related to each other:

Figure 2.6: Helm v2 components [12].

Helm A command-line interface (CLI) that installs charts into Kuber-
netes, creating a release for each installation. To find new charts, you
search Helm chart repositories.

• Chart A chart is an application package that describes Kubernetes
resources by a collection of files necessary to run the application.

21

Background

The chart includes a values file that describes how to configure the
resources.

• Repository Storage for Helm charts.

• Release An instance of a chart that is running in a Kubernetes
cluster. You can install the same chart multiple times to create
many releases.

• Tiller The Helm server-side engine, which runs in a pod in a Ku-
bernetes cluster. Tiller processes a chart to generate Kubernetes
resource manifests, which are YAML-formatted files that describe
a resource.

2.6 Service-Mesh

A service mesh is used to describe the network of microservices that
shape applications and the communication between them. Service meshes
architecture provides a policy-based, network service to manage the
workloads between microservices through enforcing policies of the net-
work.

As a service mesh grows in size and complexity, it can become harder
to understand and manage. Its requirements can include discovery,
load balancing, failure recovery, metrics, and monitoring. A service
mesh also often has more complex operational requirements such as
canary deployment. Istio provides behavioral insights and operational
control over the service mesh as a whole, offering a complete solution
to satisfy the diverse requirements of microservice applications. [13].

2.6.1 Istio

Istio is an open-source implementation of a service mesh, in the cloud-
native ecosystem, it’s second in the scope of objectives to Kubernetes.

Istio helps you add resiliency and observability to your services archi-
tecture in a transparent way to intercepts and handles network traffic
on behalf of the application. So, an Istio-based service mesh can also be
deployed across platforms like OpenShift, Mesos, as well as traditional
deployment environments like VMs and bare-metal servers [7].

22

Background

Figure 2.7: Service-mesh architecture [7].

In this research, we chose Istio v1.4.2 as the best available service
mesh solution in the market to interconnect Kubernetes clusters across
the Internet and also handle traffic flow between microservices on a
multi-cloud architecture.

2.6.2 Istio at a Glance

Istio service mesh is logically divided into a control plane and a data
plane. The data plane is composed of a set of intelligent proxies de-
ployed as sidecars. These proxies control all network communication
between microservices. They also collect and report telemetry on all
mesh traffic. The control plane manages and configures the proxies to
route traffic.

The following diagram 2.8 shows the different components that make
up each plane:

Control Plane Components

In the Istio version 1.5 and above, the control plane is shipped as a
single binary Istiod and comprises of three parts: Pilot, Citadel, and
Galley.

• Pilot Is the central controller of the service mesh and is responsible

23

Background

Figure 2.8: Istio architecture [13].

for communicating with the Envoy sidecars using the Envoy API.
They parse the high-level rules defined in the Istio manifests and
convert that to Envoy configuration.

• Citadel Identity and access management between your services
is the central feature of Istio. It helps you allow secure commu-
nication between your Kubernetes pods. What that means is that
while your developer has designed components with insecure TCP,
the Envoy proxy would ensure communication between pods is en-
crypted.

• Galley Is responsible for providing configuration validation, inges-
tion, processing, and distribution for your service mesh. It’s the
interface for the underlying APIs with which the Istio control plane
interacts.

24

Background

Data Plane Components (Envoy proxy)

• Traffic control Helps in controlling how traffic moves through
your service mesh, such as providing routing rules for HTTP, TCP,
WebSocket, and gRPC traffic.

• Security and authentication Enforce identity and access man-
agement over the pods so that only the right pods can interact with
another. They also implement mutual TLS and traffic encryption
to prevent man-in-the-middle attacks. They provide rate limiting,
which prevents runaway cost and denial of service attacks.

• Network Resiliency They help provide network resiliency features
such as retries, failover, circuit breaking, and fault injection.

The following diagram 2.9 shows the relation between each compo-
nent across the mesh:

Figure 2.9: How components interact with each other [9].

2.7 DevOps

Organizations are primarily focussing on cloud transformation and in
this journey trying to improve their operational efficiency and want to
minimize their IT expenditure overall. DevOps is normally referred as
a set of industry operational practices that mainly focus on collabora-
tion and communication of both software developers and information

25

Background

technology (IT) professionals in order to automate the process of soft-
ware delivery and infrastructure changes [14]. It aims at providing a
platform and establishing a culture in making the environment where
building, testing, and releasing software can happen rapidly, frequently,
and more reliably. DevOps brings improvement and standardization in
both development and operational process brings these two together
and making room for collaboration and communication between them.

2.7.1 Key focus area in DevOps

DevOps consists of key functional areas. We would like to introduce
those key concepts in the following section:

• Continuous Integration (CI) It is the development practice that
developers integrate the code into the shared repository continu-
ously multiple times in a day. Each integration can then be verified
by an automated build, allowing teams to detect problems early.

• Continuous Deployment (CD) It is a strategy closely related to
Continuous Integration for software releases when any commit that
passes the automated testing phase will automatically released to
a production environment.

• Orchestration In any multiple environment management, lots of
tasks are performed at different places and need to be coordi-
nated, collaborated, communicated with different workflows and
needs to be managed effectively. Hence a good orchestration the
mechanism is essential to co-ordinate, manages, executed as a sin-
gle task across the different environment by managing dependency,
and does proper notification [14].

• Configuration as a code It is the discipline of thinking of configu-
ration elements of a software system as you would think of code. It
allows the entire configuration to store as a source code. It enables
us to collaborate with operations on the application environments
to ensure that they have correct configurations. It allows continu-
ous deployment and prevents continuous drifts [14].

26

Background

2.7.2 Devops for Multi-Cloud

Containers, microservices, and orchestration tools like Kubernetes play
an important role in automation, organizations need to optimize cloud
infrastructure. Kubernetes has helped companies turn the idea of multi-
cloud into a reality.

Businesses want to choose cloud providers for their inherent value
and use the services that best meet their needs. A multi-cloud future
gives organizations the flexibility to deploy anywhere and run work-
loads across multiple clouds.

In this thesis we use Gitlab v13.2.4 as a complete DevOps platform,
delivered as a single application, ensuring visibility across the entire
SDLC 2.10.

Operations teams can work concurrently in a single application as
the result of concurrent DevOps cycles and higher efficiency across all
stages of the software development lifecycle. There’s no need to inte-
grate and synchronize tools. Everyone interacts to a single platform,
instead of managing multiple disparate DevOps tools.

Figure 2.10: Systems development life cycle.

2.7.3 CI/CD pipeline

A CI/CD pipeline 2.11 is a series of steps that must be performed in
order to deliver a new version of the software. Continuous integra-
tion/continuous delivery (CI/CD) pipelines are a practice focused on
improving software delivery using either a DevOps or site reliability
engineering (SRE) approach [22].

27

Background

A CI/CD pipeline introduces monitoring and automation to improve
the process of application development, particularly at the integration
and testing phases, as well as during delivery and deployment. Al-
though it is possible to manually execute each of the steps of a CI/CD
pipeline, the true value of CI/CD pipelines is realized through automa-
tion.

Figure 2.11: Sample CI/CD pipeline [11].

28

Chapter 3

Network Infrastructure
Architecture

3.1 Introduction to OpenVPN

OpenVPN provides flexible VPN solutions to secure your data communi-
cations, whether it’s for Internet privacy, remote access for employees,
securing IoT, or for networking Cloud data centers. Our VPN Server
software solution can be deployed on-premises using standard servers
or virtual appliances, or on the cloud [20].

OpenVPN offers strong features such as SSL/TLS protocols which
are not typical for other VPN solutions, it is an SSL-based VPN solution
to secure the connections. It can be configured to use pre-shared keys
as well as X.509 certificates. OpenVPN also uses a hashing algorithm
for ensuring the integrity of the packets delivered.

OpenVPN is compatible with any operating system that supports a
virtual network adapter. OpenVPN uses this virtual network adapter (a
tun or tap device) as a communication channel between the user-level
and the operating system.

OpenVPN has the notion of a control channel and a data channel,
both of which are encrypted and secured differently. However, all traffic
passes over a single UDP or TCP connection. The control channel is
encrypted and secured using SSL/TLS, the data channel is encrypted
using a custom encryption protocol [8].

29

Network Infrastructure Architecture

3.2 Advantages and Disadvantages

OpenVPN is easy to deploy and configure even on restricted network
topologies, including NAT’ted networks. Also, OpenVPN includes strong
security features as IPSec-based solutions and support for different
user authentication mechanisms. Lack of scalability and its depen-
dence on the installation of client-side software can be considered as
disadvantages of OpenVPN solution. Incompatibility between the tap
interface driver and some version of Windows often caused deployment
issues.

3.3 OpenVPN Packages

There are several OpenVPN packages available on the Internet:

• The open-source or community version of OpenVPN

• Commercial version offering by OpenVPN Inc

3.3.1 The Open Source Version

Open-source versions of OpenVPN are made available for multiple plat-
forms, including both 32-bit and 64-bit Windows clients. The commu-
nity version of OpenVPN can act both as a VPN server and as a VPN
client. There is no separate client-only version.

In this thesis, we employed the open-source v2.4.8 to shape our ar-
chitecture.

3.4 OpenVPN Components

3.4.1 The Tun/Tap Driver

One of the crucial elements of OpenVPN is the tun/tap driver. The con-
cept comes from the Unix/Linux world and it is often embedded in the
operating system. This virtual network adapter communicates by the
OS as either a point-to-point adapter (tun-style) for IP-only traffic or as

30

Network Infrastructure Architecture

a full virtual Ethernet adapter for all types of traffic (tap-style). Open-
VPN as a backend application is responsible to process incoming and
outgoing traffic.

Figure 3.1: openvpn-tun-drive [8] .

The flow of traffic from a user application via OpenVPN is depicted
in the diagram 3.1. In the diagram, the application is sending traffic to
an address that is reachable via the OpenVPN tunnel. The steps are as
follows:

1. The application delivers the packet to the OS.

2. If the traffic needs to be routed by VPN, the operating system for-
wards packets to the kernel tun device.

3. The kernel tun device forwards the packets to the OpenVPN pro-
cess

4. The OpenVPN apply required actions like encryption and fragmen-
tation, if necessary, and then deliver it to the kernel again.

31

Network Infrastructure Architecture

5. The kernel picks up the encrypted packet and forwards it to the
remote VPN endpoint.

It can also be seen in this diagram that the performance of OpenVPN
will always be less than that of a regular network connection. For most
applications, the performance loss is minimal and/or acceptable. How-
ever, for speeds greater than 1GBps, there is a performance bottleneck,
both in terms of bandwidth and latency [8].

3.4.2 The Control and Data Channels

OpenVPN uses two virtual channels to communicate between the client
and server:

• A control channel to exchange information and materials between
the client and server such as configuration, cipher material and
encrypted keys.

• A data channel is to exchange the encrypted payload

3.5 Deployment Models

3.5.1 Point-to-Point Mode

The pre-shared keys are the only available option in point-to-point mode
when using OpenVPN, in this mode, only a single endpoint can connect
to a server instance at a time. The client is responsible to initiate the
connection, the other endpoint is considered as the server, here both
endpoints are more or less equal when it comes to functionality.

3.5.2 Client-Server Mode

Point-to-point topology is an excellent way to connect a small number
of sites. In large scale scenarios when there are many endpoints to
interconnect, it is better to employe client/server mode.

The client/server mode was first introduced with OpenVPN 2.0. In
this mode, the server is a single OpenVPN process to which multiple

32

Network Infrastructure Architecture

clients can connect. Each authenticated and authorized client is as-
signed an IP address from a pool of IP addresses that the OpenVPN
server manages. Clients cannot communicate directly with one another.
All traffic flows via the server, which has both advantages and disadvan-
tages [8].

Pros and cons of the Client-Server Mode

The advantages are as follows:

• By default, clients are not allowed to communicate directly, but the
administrator is able to control the traffic by using the OpenVPN
client-to-client option to allow clients to communicate with each
other.

• Easier to ensure connectivity of many clients through one single
server that can be reached by many different clients.

The disadvantages are as follows:

• As all traffic is passing from client to server and vice versa, the
topology can be considered as a single point of failure in large scale
scenarios.

• The performance of the network is lower compare to direct client-
to-client connectivity because all traffic between two clients must
be routed by the server as the midpoint of the communication.

3.6 Setting up the Public Key Infrastructure

Before we can set up a client-server VPN, we must set up a Public Key
Infrastructure. In the client-server model, OpenVPN using a PKI with
X.509 certificates and private keys.

Also, we need to generate a Diffie-Hellman parameter file that is
required for VPN session keys, the session keys are temporary keys
and are generated at the first set up.

33

Network Infrastructure Architecture

3.7 Config files against the Command line

It is also possible to use configuration files for both server and client-
side to apply options used to setup the OpenVPN.

3.7.1 Server Configuration

The server configuration file contains the following lines:

• proto udp This is the default protocol, TCP is another candidate.

• port 1194 This is the default local port that OpenVPN will listen
to, but any valid and available port number can be used.

• dev tun This specifies the name of the tun device that will be used
for the server.

• server <network> The network specify the subnet and mask to
use for the VPN server and clients.

• keepalive This is used to make sure that the VPN connection re-
mains up, even if there is no traffic flowing over the tunnel.

• dh <path to Diffie Hellman file> This specifies the path to the
DH file that is required for the OpenVPN server.

• ca <path to CA file> This specifies the path to the CA file.

• cert <path to X.509 certificate file> This specifies the path to
the server X.509 public certificate file.

• key <path to private key file> This specifies the path to the
server private key file.

• client-config-dir determine whether a CCD file is located.

• route <network> The route entries that sould be routed over the
vpn, these routes also will be added on the clients, telling them to
route those networks over the vpn.

34

Network Infrastructure Architecture

• client-to-client OpenVPN also allows you to set up client-to-client
traffic. By default, the VPN clients are not allowed to communicate
directly with each other.

Listing 3.1: Example OpenVPN 2.0 config file for server

1 port 1194
2 proto udp
3 dev tun
4 ca ca.crt
5 cert server.crt
6 key server.key
7 dh dh2048.pem
8 server 10.8.0.0 255.255.255.0
9 client-config-dir /etc/openvpn/ccd

10 client-to-client
11 keepalive 10 120

3.7.2 Client Configuration

• client This puts OpenVPN into client mode.

• proto udp This specifies the protocol to use.

• remote openvpnserver.example.com This specifies the name of
the VPN server to connect to.

• port 1194 This is the port that the OpenVPN client will use to
connect to the server.

• dev tun This specifies the name of the tun device that will be used
for the server.

• ca <path to CA file> This specifies the path to the CA file.

• cert <path to X.509 certificate file> This specifies the path to
the server X.509 public certificate file.

• key <path to private key file> This specifies the path to the
server’s private key file.

35

Network Infrastructure Architecture

Listing 3.2: Example OpenVPN 2.0 config file for client

1 client
2 proto udp
3 dev tun
4 remote openvpn03 1193
5 ca ca.crt
6 cert server.crt
7 key server.key

3.7.3 Client-specific Configuration – CCD files

If we need to define VPN options per client or may overwrite global
server options, client-config-dir is very useful for this. This option is
also vital if you want to route a subnet from the client-side to the server-
side.

• push This is useful for pushing DNS and WINS servers, routes, and
so on to the client.

• iroute This is useful for routing IPv4 client subnets to the server.

• ifconfig-push This is useful for assigning a specific IPv4 address
to a client (tunnel-IP).

Listing 3.3: Example OpenVPN 2.0 config file for CCD

1 ifconfig-push 10.8.0.20 255.255.255.0
2 iroute 10.3.1.0 255.255.255.0
3 push "route 10.2.1.0 255.255.255.0"

3.8 Our Topology

In this thesis, we employed Client/Server Mode with tap Devices to
establish a full mesh flat network able to guarantee end-to-end commu-
nication between distributed Kubernetes clusters on different public
cloud providers, here AWS, Azure, and Google.

36

Network Infrastructure Architecture

In order to achieve the goal, our topology consists of three server
instances (Ubuntu 16.04) each one located on different cloud providers.
To shape a redundant mesh network each instance plays both server
and client roles at the same time. Meanwhile, one server is responsible
for certificate management and play the role of the CA server.

Figure 3.2 shows a graphic representation of a full mesh OpenVPN
site-to-site topology:

Figure 3.2: An OpenVPN site-to-site topology

3.8.1 How to set up our VPN topology on AWS

1. Create and configure three VPC on three AWS regions

(a) configure subnets and route tables

i. A VPC is a virtual network specific within AWS for you to
hold all your AWS services. It is a logical data center in AWS
and will have gateways, route tables, network access control
lists (ACL), subnets, and security groups.

2. Launch three new EC2 Instances on each AWS region.

37

Network Infrastructure Architecture

(a) An EC2 instance is a virtual server in Amazon’s Elastic Compute
Cloud (EC2) for running applications on the Amazon Web Ser-
vices (AWS) infrastructure. We use Ubuntu OS because that’s
easy to configure and its scripts are easily available.

(b) Amazon EC2 is hosted in multiple locations worldwide. These
locations are composed of Regions, Availability Zones, Local
Zones, and Wavelength Zones. Each Region is a separate ge-
ographic area. Each Amazon EC2 Region is designed to be iso-
lated from the other Amazon EC2 Regions.

3. Configure the Instance’s Security Groups to only allowed traffic has
to access the VPN server.

4. Create an Elastic IP for each instance

(a) Upon launching an EC2 instance, a Public IP address is as-
signed so that that instance is available. As soon as the in-
stance is shut down, a new public IP gets assigned for the same
instance. This means if we set up the VPN server with the de-
fault IP, we won’t be able to access the VPN if the instance is
shut down. Elastic IP solves this issue and assigns a permanent
IP address.

5. Setup remote OpenVPN servers using Ansible playbook 3.3.

Figure 3.3 shows a graphic representation of our Ansible playbook
structure, employed to deploy OpenVPN servers..

38

Network Infrastructure Architecture

Figure 3.3: Ansible playbook structure

Figure 3.4 shows a graphic representation of our OpenVPN topology
on AWS.

As can be seen from Figure 3.4 we tried to simulate the final Open-
VPN topology by three isolated servers in different AWS regions, to
have an end-to-end communication between three completely separated
infrastructure. Here each server is responsible to advertise its local
networks to the neighbors and also route external networks across a
local AWS router toward the responsible destination server. All the

39

Network Infrastructure Architecture

Figure 3.4: End-to-end connectivity between three AWS region through
OpenVPN

traffic will be route inside secure transparent tunnels.
The code is consists of three major parts, certificate management,

client-side configuration, and server-side configuration, we tried to keep
the highest level of modularity for future developments. Here in order
to reduce the overhead of certificate management among clients and
servers in different regions, one of the OpenVPN servers plays the role
of CA server to sign and dispatch all required certificates required for
the implementation.

40

Chapter 4

Service Mesh
Architecture

A service mesh is a dedicated infrastructure layer that adds features
to a network between services. It allows to control traffic and gain in-
sights throughout the system. A service mesh does not require code
changes. Instead, it adds a layer of additional containers that imple-
ment the features reliably and agnostic to technology or programming
language. [5]

Although service meshes have no impact on the code, but they change
operations procedures and require knowledge of new concepts and
technology. Choosing the most flexible service mesh with the most fea-
tures seems logical at first.

There are many reasons to love Istio among all available solution
in the market 4.1, but among all of them there are few highlighted
features such as:

• Being a free solution to run

• Has a large community of following

• Excellent routing and networking features

• Support multi-cluster implementation

41

Service Mesh Architecture

Figure 4.1: Available top service-mesh solutons in market.

4.1 Traffic Management in Istio

Traffic management is among the main capabilities of all service meshes.
With Istio’s networking APIs traffic management become easier and
under control, enabling the ability to do things like canary new deploy-
ments.

4.1.1 Understanding How Traffic Flows in Istio

At the first step, it is crucial to know how Istio’s network flows traf-
fics across mesh through available components in Istio topology, Istio
networking configurations, and the mesh’s service proxies.

As the data-plane service proxy, Envoy intercepts all incoming and
outgoing requests at runtime (as traffic flows through the service mesh).
This interception is done transparently via iptables rules or a Berkeley
Packet Filter (BPF) program that routes all network traffic, in and out
through Envoy [7].

42

Service Mesh Architecture

4.1.2 Understanding Istio’s Networking APIs

Consequently, Istio’s network configuration has adopted a name-centric
model, in which:

• Gateways expose names

• VirtualServices configure and route names

• DestinationRules describes how to communicate with the work-
loads behind a name

• ServiceEntrys enable the creation of new names

Application requests initiate with the call to the service’s name, as
shown in Figure 4.2.

Figure 4.2: Istio core networking concepts implicated as traffic flows
through the system [7].

• ServiceEntry enables adding additional entries into Istio’s inter-
nal service registry so that auto-discovered services in the mesh
can access/route to these manually specified services. Entries in
the service registry can receive traffic by name and be targeted by
other Istio configurations.

Listing 4.1: Example of an Istio ServiceEntry

43

Service Mesh Architecture

1

2 apiVersion: networking.istio.io/v1alpha3
3 kind: ServiceEntry
4 metadata:
5 name: http-server
6 spec:
7 hosts:
8 - altran.domain.com
9 ports:

10 - number: 80
11 name: http
12 protocol: http
13 resolution: STATIC
14 endpoints:
15 - address: 4.4.4.4

Given the ServiceEntry in Example 4.1, service proxies in the mesh
will forward requests to altran.domain.com to the IP address 4.4.4.4.

• DestinationRule They allow a service operator to describe how
a client in the mesh should call their service. With Destination-
Rules, we can configure a low-level connection pool settings like
the number of TCP connections allowed to each destination host,
the maximum number of outstanding HTTP1, HTTP2, or gRPC re-
quests allowed to each destination host, and the maximum number
of retries that can be outstanding across all of the destination’s
endpoints [7].

The Example 4.2 shows a DestinationRule that allows a maximum
of ten TCP connections per destination endpoint and a maximum of
1,00 concurrent HTTP2 requests over those four TCP connections.

44

Service Mesh Architecture

Listing 4.2: Example destinationRule configuring low-level connection
poo

1

2 apiVersion: networking.istio.io/v1alpha3
3 kind: DestinationRule
4 metadata:
5 name: cloud.altran
6 spec:
7 host: "cloud.altran.svc.cluster.local"
8 trafficPolicy:
9 tcp:

10 maxConnections: 10
11 http:
12 http2MaxRequests: 100

• VirtualService A VirtualService defines a set of traffic routing rules
to apply when a host is addressed. Each routing rule defines match-
ing criteria for traffic of a specific protocol, as shown in Example
4.3.

Listing 4.3: Example of an Istio VirtualService

1

2 apiVersion: networking.istio.io/v1alpha3
3 kind: VirtualService
4 metadata:
5 name: cloud-department
6 spec:
7 hosts:
8 - cloud.altran.svc.cluster.local
9 http:

10 - route:
11 - destination:
12 host: cloud.altran.svc.cluster.local

The VirtualService in Example 4.3 forwards traffic addressed to
cloud.altran to the destination cloud-altran.svc.cluster.local.

• Gateway describes a load balancer operating at the edge of the

45

Service Mesh Architecture

mesh receiving incoming or outgoing HTTP/TCP connections. The
specification describes a set of ports that should be exposed, the
type of protocol to use, etc.

Suppose that you have a webserver.altran.svc.cluster.local service
deployed in your mesh that serves your website, altran.com. You
can expose that webserver to the public internet using a Gateway to
map from your internal name, webserver.altran.svc.cluster.local, to
your public name, altran.com. You also need to know on what port
to expose the public name and the protocol with which to expose it,
as shown in Example 4.4.

Listing 4.4: Example Gateway definition, exposing HTTP/80:

1

2 apiVersion: networking.istio.io/v1alpha3
3 kind: Gateway
4 metadata:
5 name: altran-gateway
6 spec:
7 selector:
8 app: gateway-workloads
9 servers:

10 - hosts:
11 - altran.com
12 port:
13 number: 80
14 name: http
15 protocol: HTTP

4.2 Canary Deployment

Canary deployment is the practice of sending a small portion of traffic to
newly deployed workloads, gradually ramping up until all traffic flows
the new workloads. The goal is to verify that a new workload is healthy
(up, running, and not returning errors) before sending all traffic to it
[7].

the simplest canary deployment is a percentage-based traffic split.

46

Service Mesh Architecture

We can start by sending 10% of traffic to the new version, gradually
pushing new VirtualService configurations, ramping traffic up to 100%
to the new version, as shown in Example 4.5.

Listing 4.5: Example canary deployment using traffic shifting

1 apiVersion: networking.istio.io/v1alpha3
2 kind: VirtualService
3 metadata:
4 name: cloud-canary-virtual-service
5 spec:
6 hosts:
7 - cloud.altran.svc.cluster.local
8 tcp:
9 - route:

10 - destination:
11 host: cloud.altran.svc.cluster.local
12 subset: v2
13 weight: 10
14 - destination:
15 host: cloud.altran.svc.cluster.local
16 subset: v1
17 weight: 90

In this thesis, we apply such describe methods and concepts as des-
tinatioRule, virtualService, and Canary deployment to shape the traffic
across the mesh.

4.3 Multiple-Cluster Meshes

Single-cluster service mesh deployments might be enough in some en-
vironments. But there are other scenarios that need multiple clusters
service mesh deployments.

The communication between distributed Kubernetes clusters on sep-
arated service meshes can be provided through Istio multi-control plane
deployment to unify Kubernetes clusters.

47

Service Mesh Architecture

4.3.1 Istio Multicluster (single mesh)

Shared or single control planes 4.3 is a centralized approach for con-
necting service meshes into a single service mesh. Here we have a
cluster that serves as the master cluster, and other clusters play the
role of remote cluster. Here, there is one control plane entire of the
mesh, to dispatch the routing policies to remote data planes. A single-
control plane Istio deployment can span across the clusters as long as
there is network connectivity between them and no IP address range
overlap.

Figure 4.3: The Istio multicluster approach: a single-control-plane Is-
tio deployment with direct connection (flat networking) across clus-
ters [15].

In this scenario, as can be seen from Figure 4.3, multiple Kubernetes
API servers and Istio components in each cluster need to see each other
for integration. Once connected, Envoy communicates with a single
control plane and forms a mesh network across multiple clusters.

To guarantee cross-cluster communications, here there are also two
different approaches for implementation:

• In the first approach, the remote clusters are able to have direct
communication with the master cluster as the result of having a
flat network topology across the clusters. This is the method we
employed in our implementation.

48

Service Mesh Architecture

• Also in multi-network environments that we are not able to es-
tablish a flat network topology without overlap, here connectivity
across the clusters can be handled and managed through ingress
Istio gateways.

4.3.2 Istio Multicluster (mesh federation)

Replicated control plane 4.4 it is decentralized approach to unifying
meshes. This approach is useful for the scenario that we have rela-
tively different configurations per service mesh under different admin-
istrative domains running in different regions.

Figure 4.4: The Istio multicluster approach: a multi-control-plane Istio
deployment [15].

There are three crucial elements in this architecture as following:

• For multi-cloud networks without VPN connectivity or with over-
lapping IP ranges, Istio replicated control planes can be used to
connect services across the clusters. Instead of using a shared Is-
tio control plane to manage the mesh, in this approach each cluster
has its own Istio control plane installation, each managing its own
endpoints. The IP address of the Istio ingress gateway service in
each cluster must be accessible from every other cluster, ideally
using L4 network load balancers (NLBs).

49

Service Mesh Architecture

• Here for each service in a given cluster that needs to be accessed
from a different remote cluster requires a ServiceEntry configura-
tion in the remote cluster.

• Each cluster has its own DNS domain to be resolved through the
CoreDNS component, installed with Istio.

4.3.3 Pros and cons of each approach

Through Table 4.1, we are trying to demonstrate the advantages and
disadvantages of each approaches to manage a Multi-Cluster Mesh.

Pros and Cons Mesh Federation Single Mesh
Complexity in implementation Higher Lower
Monitoring, Trouble shooting Per site Centralized

Level of availability Higher Lower
Isolation in configuration Per site Master controller

Logical view Per site Single view
Administrative domain Per site Single domain
Single point of failure Master controller

Table 4.1: Pros and cons of each approach in multi-cluster Istio man-
agement

4.4 Our Architecture

As can be seen from the depicted Figure 4.5 in this thesis We employed
a combination of technologies and services such as OpenVPN, Rancher,
Istio, AWS to implement a shared control plane service mesh scenario
able to handle traffic management across the mesh between distributed
microservices on various public cloud provider.

4.4.1 How to Set up our Service Mesh

1. Deploy Kubernetes clusters on different public cloud providers, here
AWS and Azure by Rancher.

50

Service Mesh Architecture

(a) Individual cluster Pod CIDR ranges and service CIDR ranges
must be unique across the multi-cluster environment and may
not overlap

(b) All pod CIDRs in every cluster must be routable to each other

(c) All Kubernetes control plane API servers must be routable to
each other

2. Deploy master Istio Control Plane

(a) This installation guide uses the istioctl command-line tool to
provide rich customization of the Istio control plane and of the
sidecars for the Istio data plane.

(b) The simplest option is to install the default Istio configuration
profile, default enables components according to the default
settings of the IstioControlPlane API

Listing 4.6: Istio master controlplane config

1

2 istioctl --context master manifest apply \
3 --set values.prometheus.enabled=true \
4 --set values.grafana.enabled=true \
5 --set values.kiali.enabled=true \
6 --set values.kiali.createDemoSecret=true

3. Deploy remote Istio Control Plane

(a) Use the following command on the remote cluster to install the
Istio control plane service endpoints.

(b) Before you install Istio on the remote cluster, you need to get
the Pilot Pod IP address and the Policy and Telemetry Pod IP
addresses from the master cluster. These IP addresses are con-
figured in the remote cluster, which connects back to a shared
Istio control plane.

Listing 4.7: Istio remote controlplane config

1

51

Service Mesh Architecture

2 istioctl --context remote manifest apply \
3 --set profile=remote \
4 --set values.global.controlPlaneSecurityEnabled=false \
5 --set values.global.createRemoteSvcEndpoints=true \
6 --set values.global.remotePilotCreateSvcEndpoint=true \
7 --set values.global.remotePilotAddress=${PILOT_POD_IP} \
8 --set values.global.remotePolicyAddress=${POLICY_POD_IP} \
9 --set values.global.remoteTelemetryAddress=${TELEMETRY_POD_IP} \

10 --set gateways.enabled=false \
11 --set autoInjection.enabled=true

4. Configure cross-cluster service registries

(a) To enable cross-cluster load balancing, the Istio control plane
requires access to all clusters in the mesh to discover services,
endpoints, and pod attributes. To configure access, create a se-
cret for each remote cluster with credentials to access the re-
mote cluster’s kube-apiserver and install it in the primary clus-
ter. This secret uses the credentials of the istio-reader-service-
account in the remote cluster

(b) Set the environment variables needed to build the kubeconfig
file for the istio-reader-service-account service account

(c) Create a kubeconfig file in the working directory for the istio-
reader-service-account service account with the following com-
mand

(d) Create a secret and label it properly for each remote cluster on
the the master

Listing 4.8: Set the environment variables to build the kubeconfig file
1
2 export WORK_DIR=$(pwd)
3 CLUSTER_NAME=$(kubectl config view --minify=true -o jsonpath=’{.clusters[].name}’)
4 export KUBECFG_FILE=${WORK_DIR}/${CLUSTER_NAME}
5 SERVER=$(kubectl config view --minify=true -o jsonpath=’{.clusters[].cluster.server}’)
6 NAMESPACE=istio-system
7 SERVICE_ACCOUNT=istio-reader-service-account
8 SECRET_NAME=$(kubectl get sa ${SERVICE_ACCOUNT} -n ${NAMESPACE} -o jsonpath=’{.secrets[].name}’)
9 CA_DATA=$(kubectl get secret ${SECRET_NAME} -n ${NAMESPACE} -o jsonpath="{.data[’ca\.crt’]}")

10 TOKEN=$(kubectl get secret ${SECRET_NAME} -n ${NAMESPACE} -o jsonpath="{.data[’token’]}" | base64 --decode)

52

Service Mesh Architecture

Listing 4.9: Create a kubeconfig file

1 cat <<EOF > ${KUBECFG_FILE}
2 apiVersion: v1
3 clusters:
4 - cluster:
5 certificate-authority-data: ${CA_DATA}
6 server: ${SERVER}
7 name: ${CLUSTER_NAME}
8 contexts:
9 - context:

10 cluster: ${CLUSTER_NAME}
11 user: ${CLUSTER_NAME}
12 name: ${CLUSTER_NAME}
13 current-context: ${CLUSTER_NAME}
14 kind: Config
15 preferences: {}
16 users:
17 - name: ${CLUSTER_NAME}
18 user:
19 token: ${TOKEN}
20 EOF

Listing 4.10: Create a secret and label for each remote cluster
1
2 kubectl create secret generic ${CLUSTER_NAME} --from-file ${KUBECFG_FILE} -n ${NAMESPACE}
3 kubectl label secret ${CLUSTER_NAME} istio/multiCluster=true -n ${NAMESPACE}

53

Service Mesh Architecture

5. Finally, we span a shared control plane scenario across the clusters
that is accessible through an AWS load balancer from outside.

Figure 4.5 shows a graphic representation of our multi-cloud service
mesh architecture.

Figure 4.5: Multiple Kubernetes clusters running on AWS, integerated
with a shared Istio control plane using OpenVPN.

54

Chapter 5

CI/CD Pipeline
Architecture

As the result of previous phases and described technologies, we are
now able to have access to a wonderful integrated multi-cloud infras-
tructure between AWS and Azure with the ability of traffic manage-
ment, so its time to think about workflow portability.

Workflow portability is what makes deploying anywhere possible.
Instead of having to tailor certain workflows to certain clouds, develop-
ers can have one workflow with cloud-independent DevOps processes
and frameworks for making deployment decisions [10].

In this thesis, we employed GITLAB as a professional solution for
code repository and DevOps pipelines. There are two other technolo-
gies that We used in this section, Helm chart and Docker hub to deliver
Kubernetes resources to destination clusters and hosting docker im-
ages respectively.

5.1 Why Gitlab CI/CD?

In order to have a mature CI/CD with all the required fundamentals,
many DevOps platforms are dependent on other tools to satisfy require-
ments. Many organizations have to maintain complicated and costly
toolchains to take advantage of CI/CD capabilities. Undoubtedly, main-
taining a separate source code management like GitHub connected to
a separate testing tool, that connects to their CI tool, which connects

55

CI/CD Pipeline Architecture

to a deployment tool like Puppet, that also connects to various security
and monitoring tools is challengable and complex. Instead of focusing
on building and development, organizations have to waste their time to
maintain and manage a complicated toolchain.

GitLab is a single platform for the entire DevOps lifecycle, meaning it
supplies all the fundamentals for CI/CD in one integrated environment.

5.1.1 How GitLab Enables Multi-Cloud

GitLab CI/CD is a very powerful platform to support CI/CD with a lot of
various features. But still, we need to know what a pipeline is, and how
to see a branch deployed to an environment. In this section I will try
to cover necessary concepts and features as possible, highlighting how
the end users can apply them:

Anytime developers apply a change in code they save their modifica-
tions in the format of a commit in Gitlab, then the other developers are
able to review the code. If GitLab CI/CD has been configured, GitLab
will also perform some tasks on that commit. This work is executed
by a runner. We can consider a runner as a server that executes in-
structions listed in the .gitlab-ci.yml file and reports the result back to
GitLab itself, which will show it in his graphical interface.

5.1.2 Gitlab Pipelines

Every commit that is pushed to GitLab generates a pipeline attached to
that commit. A pipeline is a collection of jobs split into different stages.
All the jobs in the same stage run concurrently (if there are enough
runners) and the next stage begins only if all the jobs from the previous
stage have finished with success [23]. A pipeline can be failed as soon
as a job fails. There is an exception for this, if a job type is manual, then
a failure will not cause the pipeline to fail.

Each job belongs to a single stage. All jobs in a single stage run
in parallel. Execution of the next stage depends on the result of the
previous stage if all jobs from the previous stage complete successfully.

Figure 5.1 shows a graphic representation of a Gitlab pipeline and
its stages.

56

CI/CD Pipeline Architecture

Figure 5.1: The Information about stages and stages’ status [23]

Example 5.1 shows a sample Gitlab pipeline configuration script with
three stages.

Listing 5.1: Sample Gitlab pipeline configuration script
1
2 stages:
3 - build
4 - test
5 - deploy
6
7 build website:
8 stage: build
9 script:

10 - npm install
11 - npm install -g gatsby-cli
12 - gatsby build
13 artifacts:
14 paths:
15 - ./public
16
17 test artifact:
18 image: alpine
19 stage: test
20 script:
21 - grep -q "Gatsby" ./public/index.html
22
23 test website:
24 stage: test
25 script:
26 - npm install
27 - npm install -g gatsby-cli
28 - gatsby serve &
29 - sleep 3
30 - curl "http://localhost:9000" | tac | tac | grep -q "Gatsby"
31
32 deploy to surge:
33 stage: deploy
34 script:
35 - npm install --global surge
36 - surge --project ./public --domain instazone.surge.sh

57

CI/CD Pipeline Architecture

Types of pipelines

1. Basic Pipelines This is the simplest pipeline in GitLab that runs
everything in each stage concurrently, followed by the next stage.

2. Parent-child pipelines Splitting complex pipelines into multiple
pipelines with a parent-child relationship can improve performance
by allowing child pipelines to run concurrently.

3. Pipelines for Merge Requests In a basic configuration, GitLab
runs a pipeline each time changes are pushed to a branch (per
commit). If you want the pipeline rather than for every commit,
run jobs only on commits that are associated with a merge request,
you can use pipelines for merge requests.

(a) Job is the smallest unit to run in GitLab CI/CD, a collection
of instructions that a runner has to execute. A single job can
contain multiple commands (scripts) to run.

A job can be automatic, so it starts automatically when a com-
mit is pushed, or manual. A manual job has to be triggered by
someone manually. This can be useful, for example, to auto-
mate a deploy, but still to deploy only when someone manually
approves it. A job can also build artifacts that users can down-
load them.

i. Artifacts As we said, a job can create an artifact that users
can download to test. It can be anything, like an application
for Windows, an image generated by a PC. Every pipeline
collects all the artifacts from all the jobs, and every job can
have multiple artifacts.

5.2 Our Architecture

The ultimate goal of this thesis is to design an architecture to facilitate
software delivery in a multi-cloud infrastructure with the highest level
of availability, agility, and scalability. Until now, we could construct a
stable infrastructure able to supply our requirements, but in order to
complete this chain, we need to also have a professional DevOps solu-
tion in application layer to handle CI/CD stages. we chose Gitlab for this

58

CI/CD Pipeline Architecture

step. Although it is equipped with the necessary features required for
multi-cloud environments, we need to tailor them perfectly to support
the desired goals.

5.3 How to set up our DevOps pipelines

1. Desing the high-level workflow 5.2 of DevOps pipeline, including
the relation between pipelines, jobs, and stages

(a) At can be seen from the depicted picture, we handle CI/CD
through three different branches, Master, Development, and
Deployment branch. In this project we used a combination of
methods to achieve the desired result, we used different types
of pipelines and jobs to create the workflow and handle CI/CD
stages.

Figure 5.2: An overview of Gitlab pipeline architecture

2. Integrate Gilab with distributed Kubernetes clusters on cloud providers,
here AWS and Azure

3. Create Gitlab project and required branches

(a) Here Master is the main and default branch which is responsi-
ble to define the parent pipeline at the beginning to share with
other branches.

59

CI/CD Pipeline Architecture

(b) Development branch is responsible to maintain microservices
code and also handle CI tasks.

(c) Deployment branch is responsible for software delivery in a
multi-cloud environment, here AWS, Azure and also controlling
traffic distribution through Istio canary deployment.

4. Prepare required resource for each defined stage per pipeline, in-
cluding Helm charts and YAML files.

(a) Development branch includes microservices code and profiles,
Docker file and certificates.

Figure 5.3 shows a graphic representation of Development branch.

Figure 5.3: Development branch

(b) Deployment branch includes kubernetes manifest file, Istio vir-
tualService, and destinationRule in Helm chart format.

Figure 5.4 shows a graphic representation of Deployment branch.

60

CI/CD Pipeline Architecture

Figure 5.4: Development branch

5. Create pipelines for each branch according to pre-defined stages
and the designed workflow.

(a) Development pipeline 5.5 is responsible to compile the code
and create artifacts, build docker images and tests, push docker
images on Docker Hub. The main role of the second stage in the
parent pipeline is to trigger the remote pipeline in the Deploy-
ment branch for continuous deployment.

Figure 5.5: Development pipeline

(b) Deployment pipeline 5.6 has four stages, the first two will be ex-
ecute automatically to deploy Kubernetes applications on stage
environment to confirm application functionalities, after that
we have two other stages to deploy Kubernetes applications on
production environments through Helm charts and control traf-
fic distribution by canary deployment method, these stages will
be executed manually by DevOps engineers.

(c) Both Deployment and Development branches have their own
child pipeline plus to the inherited parent pipeline from the

61

CI/CD Pipeline Architecture

Figure 5.6: Deployment pipeline

Master branch. The Parent pipelines are triggered by merge
request.

5.4 Real scenario on AWS and Azure

After a deep analysis of the proposed multi-cluster architecture to show
the result of our job, we carried out a real scenario to deploy a mi-
croservice based application on different public cloud providers, here
AWS and Azure through DevOps pipelines.

Figure 5.7: Service diagram of a microservice based application

As can be seen from Figure 5.7 this application consists of 6 mi-
croservices, each one has its own responsibility to track vehicles on the
roads and show the vehicle’s telemetries. For instance, the web app
module is the front end of the application, and staff-service highlighted
with yellow color shows driver’s information such as picture and full
name. We deployed all microservices except for staff-service on AWS

62

CI/CD Pipeline Architecture

as the master cluster, next in order to check the performance and func-
tionality of the Istio shared control plane, we created different versions
of the staff-service module through CI pipeline and try to deliver on
different remote Kubernetes clusters located on AWS and Azure by CD
pipeline. Regardless of the cluster, as new microservices are added,
they were automatically discovered and added to the mesh. At the next
step, we also used Istio canary deployment to control traffic distribution
between two different versions of the application (staff-service) located
on AWS and Azure.

63

Chapter 6

Conclusion

This section is trying to show you the most important technologies and
solutions we employed in different steps of this research to overcome
challenges and finally accomplish each step.

Figure 6.1: The technologies and solutions are employed in different
levels.

As can be seen from Figure 6.1 our project is divided into three dif-
ferent layers that each one is responsible to supply the required re-
quirements for the next step.

At the bottom as the first level, we had some challenges regarding
network infrastructure, in order to have an end-to-end communication

64

Conclusion

across a distributed infrastructure among various public providers such
as AWS, Azure, we use OpenVPN solution to have a flat network con-
nectivity among different public cloud providers. As a result of this
phase Kubernetes clusters are able to communicate with each other for
service delivery and shaping the service mesh.

Next in the second phase we employed Rancher for provisioning and
managing multiple Kubernetes clusters across the Internet. Then chose
Istio service mesh solution for traffic management, for the sake of the
excellent routing and networking features and supporting multi-cluster
implementation. This architecture supports us to have Istio canary de-
ployment method for software delivery in the last phase.

Finally, it turns to the application layer, as the result of previous
phases and described technologies, we are now able to have access
to a wonderful integrated multi-cloud infrastructure between AWS and
Microsoft Azure with the ability of traffic management, so its time to
think about software delivery. At this phase, we employed GITLAB as
a professional solution for code repository and also handling DevOps
pipelines. There are two other technologies that we employed in this
level, Helm chart and docker hub, we used the Helm chart to deliver
Kubernetes resources on the remote clusters and the Docker hub for
hosting docker images.

In the end we measured the functionality of the proposed architec-
ture by deploying a real microservice-based application on AWS and
Azure infrastructure through CI/CD pipelines and control traffic distri-
bution between microservices by Istio canary deployment. The demo
application was fully functional and running across two Kubernetes
clusters in two environments. The flat network connectivity allows for
the flexibility of having multiple clusters while accommodating the ease
of governing all microservices through a shared control plane.

65

Conclusion

Acknowledgements

Lascio le ultime righe di questa tesi in italiano per ringraziare chi mi
ha sostenuto durante il lungo viaggio che mi ha condotto a questa meta.

Il ringraziamento principale va al mio supervisore, il professor Fulvio
Risso che si è sempre fidato di me, lasciandomi la giusta autonomia per
lavorare al meglio sotto la sua supervisione.

Ringrazio Tito Petronio e Pasquale Lepera che mi hanno accompag-
nato in questo percorso, per il loro costante supporto che mi ha per-
messo di ampliare e consolidare il mio bagaglio di conoscenze e com-
pletare questa tesi.

Infine, ringrazio l’azienda Altran per avermi dato l’opportunità di re-
alizzare questo progetto.

Amir Boroufar Fulvio Risso Pasquale Lepera Tito Petronio

66

Bibliography

[1] Ruslan Synytsky. Unleashing the Full Potential of Container-
ization for DevOps, and Avoiding First-Time Pitfalls. https:
//jelastic.com/blog/containerization-devops/. Online; ac-
cessed 17 September 2020.

[2] Alison DeNisco Rayome. How enterprises employ a multi
cloud strategy? https://www.techrepublic.com/article/
why-86-of-enterprisesemploy-a-multi-cloud-strategy-and-how-it-impacts-business.
Online; accessed 17 September 2020.

[3] M. A. AlZain, E. Pardede, B. Soh, and J. A. Thom. Cloud comput-
ing security: From single to multi-clouds. In 2012 45th Hawaii
International Conference on System Sciences, pages 5490–5499,
2012.

[4] Aneel Kumar, Badri Narayan RD and Ram Ramalingam.
Shifting your appliance to a cloud native architec-
ture. https://www.accenture.com/_acnmedia/PDF-104/
Accenture-Great-Migration-Shifting-appliance-to-cloud-native-architecture.
pdf. Online; accessed 17 September 2020.

[5] Anja Kammer, Christine Koppelt. Service Mesh Comparison.
https://servicemesh.es/. Online; accessed 18 September 2020.

[6] Aviatrix Systems. Networking is Complex in Multicloud
Environments. https://a.aviatrix.com/solutions/
multicloud-peering.php. Online; accessed 17 September
2020.

[7] L Calcote and Z Butcher. Istio: Up and running: Using a service
mesh to connect, secure, control, and observe. page 254. O’Reilly
Media, 2019.

[8] E.F. Crist and J.J. Keijser. Mastering OpenVPN. Community expe-
rience distilled. Packt Publishing, 2015.

67

https://jelastic.com/blog/containerization-devops/
https://jelastic.com/blog/containerization-devops/
https://www.techrepublic.com/article/why-86-of-enterprisesemploy-a-multi-cloud-strategy-and-how-it-impacts-business
https://www.techrepublic.com/article/why-86-of-enterprisesemploy-a-multi-cloud-strategy-and-how-it-impacts-business
https://www.accenture.com/_acnmedia/PDF-104/Accenture-Great-Migration-Shifting-appliance-to-cloud-native-architecture.pdf
https://www.accenture.com/_acnmedia/PDF-104/Accenture-Great-Migration-Shifting-appliance-to-cloud-native-architecture.pdf
https://www.accenture.com/_acnmedia/PDF-104/Accenture-Great-Migration-Shifting-appliance-to-cloud-native-architecture.pdf
https://servicemesh.es/
https://a.aviatrix.com/solutions/multicloud-peering.php
https://a.aviatrix.com/solutions/multicloud-peering.php

Bibliography

[9] Gaurav Agarwal. How Istio Works Behind the Scenes on
Kubernetes. https://medium.com/better-programming/
how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5.
Online; accessed 17 September 2020.

[10] Gitlab. How to navigate the multi-cloud future. https://about.
gitlab.com/resources/. Online; accessed 18 September 2020.

[11] GitLab. Introduction to CI/CD with GitLab. https://docs.
gitlab.com/ee/. Online; accessed 18 September 2020.

[12] IBM. Get started with Helm to configure and manage Ku-
bernetes charts. https://www.ibm.com/cloud/architecture/
content/course/helm-fundamentals/helm-def/. Online; ac-
cessed 17 September 2020.

[13] Istio. Istio Architecture. https://istio.io/latest/docs/ops/
deployment/architecture/. Online; accessed 17 September
2020.

[14] Baskaran Jambunathan and Dr Kalpana. Design of devops solution
for managing multi cloud distributed environment. International
Journal of Engineering and Technology, 7:637, June 2018.

[15] Karthik Ramamoorthy. Kubernetes and Multicloud. https://
www.cloudtp.com/doppler/kubernetes-and-multicloud/. On-
line; accessed 18 September 2020.

[16] Kong. Microservices and Multi-Cloud: Building
Cross-Cloud Harmony. https://konghq.com/ebooks/
microservices-multi-cloud/. Online; accessed 17 Septem-
ber 2020.

[17] Kubernetes community. Kubernetes Components. https://
kubernetes.io/docs/concepts/overview/components/. Online;
accessed 18 September 2020.

[18] Leverege. An Introduction to Kubernetes. https://www.
leverege.com/ebooks/kubernetes-ebook. Online; accessed 17
September 2020.

[19] Marco Palladino. How Kubernetes Is Modernizing the
Microservices Architecture. https://konghq.com/blog/
kubernetes-where-are-we-going/. Online; accessed 17 Septem-
ber 2020.

[20] Openvpn. Site-To-Site VPN Routing Explained In De-
tail. https://openvpn.net/vpn-server-resources/

68

https://medium.com/better-programming/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5
https://medium.com/better-programming/how-istio-works-behind-the-scenes-on-kubernetes-aeb8003f2cb5
https://about.gitlab.com/resources/
https://about.gitlab.com/resources/
https://docs.gitlab.com/ee/
https://docs.gitlab.com/ee/
https://www.ibm.com/cloud/architecture/content/course/helm-fundamentals/helm-def/
https://www.ibm.com/cloud/architecture/content/course/helm-fundamentals/helm-def/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://www.cloudtp.com/doppler/kubernetes-and-multicloud/
https://www.cloudtp.com/doppler/kubernetes-and-multicloud/
https://konghq.com/ebooks/microservices-multi-cloud/
https://konghq.com/ebooks/microservices-multi-cloud/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://www.leverege.com/ebooks/kubernetes-ebook
https://www.leverege.com/ebooks/kubernetes-ebook
https://konghq.com/blog/kubernetes-where-are-we-going/
https://konghq.com/blog/kubernetes-where-are-we-going/
https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/
https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/

Bibliography

site-to-site-routing-explained-in-detail/. Online; ac-
cessed 17 September 2020.

[21] Rancher. Rancher Server Architecture. https://rancher.com/
docs/rancher/v2.x/en/overview/architecture/. Online; ac-
cessed 17 September 2020.

[22] Redhat. What is CI/CD?. https://www.redhat.com/en/topics/
devops/what-is-ci-cd. Online; accessed 18 September 2020.

[23] Riccardo Padovani. A beginner’s guide to continuous in-
tegration. https://about.gitlab.com/blog/2018/01/22/
a-beginners-guide-to-continuous-integration/. Online;
accessed 18 September 2020.

[24] Romana Gnatyk. Microservices vs Monolith: which architecture
is the best choice for your business? https://www.n-ix.com/
microservices-vs-monolith-which-architecture-best-choice-your-business.
Online; accessed 17 September 2020.

[25] Sathya Bandara. An Introduction to Helm
Charts. https://medium.com/@technospace/
an-introduction-to-helm-charts-41be1544370c. Online;
accessed 19 September 2020.

[26] F. John Roberts Tell. The Modern Firm: Organizational Design for
Performance and Growth. J Manage Governance, 10(4):455 – 458,
11 2006.

69

https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/
https://openvpn.net/vpn-server-resources/site-to-site-routing-explained-in-detail/
https://rancher.com/docs/rancher/v2.x/en/overview/architecture/
https://rancher.com/docs/rancher/v2.x/en/overview/architecture/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://about.gitlab.com/blog/2018/01/22/a-beginners-guide-to-continuous-integration/
https://about.gitlab.com/blog/2018/01/22/a-beginners-guide-to-continuous-integration/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business
https://medium.com/@technospace/an-introduction-to-helm-charts-41be1544370c
https://medium.com/@technospace/an-introduction-to-helm-charts-41be1544370c

	Introduction
	Microservices and Multi-Cloud
	The Rise of Multi-Cloud
	Multi-Cloud Enablers
	Containers
	Service Mesh
	DevOps

	Benefits of a Multi-Cloud Architecture

	Background
	Multi-Cloud Networking
	Site-to-Site VPN

	Infrastructure as Code
	Terraform
	Ansible

	Kubernetes
	Kubernetes Components
	Kubernetes Workloads

	Rancher
	Helm chart
	Helm Components and Terminology

	Service-Mesh
	Istio
	Istio at a Glance

	DevOps
	Key focus area in DevOps
	Devops for Multi-Cloud
	CI/CD pipeline

	Network Infrastructure Architecture
	Introduction to OpenVPN
	Advantages and Disadvantages
	OpenVPN Packages
	The Open Source Version

	OpenVPN Components
	The Tun/Tap Driver
	The Control and Data Channels

	Deployment Models
	Point-to-Point Mode
	Client-Server Mode

	Setting up the Public Key Infrastructure
	Config files against the Command line
	Server Configuration
	Client Configuration
	Client-specific Configuration – CCD files

	Our Topology
	How to set up our VPN topology on AWS

	Service Mesh Architecture
	Traffic Management in Istio
	Understanding How Traffic Flows in Istio
	Understanding Istio’s Networking APIs

	Canary Deployment
	Multiple-Cluster Meshes
	Istio Multicluster (single mesh)
	Istio Multicluster (mesh federation)
	Pros and cons of each approach

	Our Architecture
	How to Set up our Service Mesh

	CI/CD Pipeline Architecture
	Why Gitlab CI/CD?
	How GitLab Enables Multi-Cloud
	Gitlab Pipelines

	Our Architecture
	How to set up our DevOps pipelines
	Real scenario on AWS and Azure

	Conclusion
	Bibliography

