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Summary

Single-cell RNA sequencing analysis is part of Next Generation Sequencing (NGS)
and allows investigating the gene expression profile of thousands of cells simultane-
ously. Through this experiment, one can study the cellular heterogeneity and try to
find new rare cell types. Cellular heterogeneity analysis and cell-type identification
are open challenges in this context because the current bioinformatic analyses focus
on a machine learning approach to process transcriptomic data, which lacks in the
reliability of the results, mainly due to the impossibility of a strong validation. In
this work, we propose a computational approach for investigating cellular hetero-
geneity based on the study of multiple biological information simultaneously. The
fundamental idea is that looking at various levels other than gene expression can
help to have a broader view of the whole biological mechanism that identifies the
cell. In this regard, we found a recent technique called SNARE-sequencing, which,
from the same sample of cells, provides not only scRNA-seq but also single-cell
ATAC sequencing. ScATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing) is an epigenetic analysis technique to assess genome-wide chro-
matin accessibility i.e. allows studying the chromatin state and the accessibility
of the genes. The two pieces of information describe different biological cellular
mechanisms but are complementary, thus the general hypothesis is that the joint
analysis of transcriptomic and epigenetic data can help the cellular heterogeneity
study.
We utilized the dataset provided by the SNARE-seq to work. It consists of a
collection of 10309 cells from samples of adult mice brain cortex. To process the
dataset, we employed two well-known pipelines, Monocle and Seurat. The first
step consists of performing the analysis of the gene expression separately. Using
firstly Seurat, and then Monocle, we elaborated the data to obtain a classification
based on unsupervised clustering machine learning algorithms. This describes the
usual analysis performed for a scRNA-seq experiment and represents what we want
to improve or at least validate through epigenetic data. Using what the SNARE
researchers found during their studies as a reference, we obtained a total of 21
clusters. These are what the algorithm suggests to be different cell types, even
if, at this point, there is no information about biological cell type. As a common
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proceeding, we performed a differential analysis of the gene expression, meaning
finding which genes present different expression patterns between clusters. These
genes are what characterize a group of cells and, more precisely, a cell type.
Next, we followed the same processing with the accessibility data through Cicero
and Signac, companion packages of the previous ones. This step aims to understand
how one can manage epigenetic data and use them to study cellular heterogeneity.
While the clustering process appears to be informative and with results similar
to the previous one, the differential analysis is not effective. In particular, the
function struggles to find features that are differentially accessible and reliably
identify one cluster. Besides the similar studies done for the expression data,
Cicero provides the possibility to estimate the co-accessibility score of the data
and to find cis-regulatory networks (CCAN) that can be important to understand
regulatory mechanisms like enhancer-promoter. The co-accessibility describes how
peaks relate to each other, meaning it identifies the peaks that are accessible with
the same patterns. It will allow focusing on the regulatory network that controls
the expression inside the cell. Signac, instead, provides tools for motif analysis and
especially ways to integrate scATAC-seq data with scRNA-seq.
Before proceeding to the joint analysis, it was necessary to establish a reference
classification of the cells, to compare the unsupervised cluster partitions, and make
sure that the algorithms were recognizing cellular heterogeneity and not some
other features. We performed an independent classification of each cell through
the exploration of the expression of known markers. To do so, we assessed the
expression level of sets of genes we derived, firstly, by the gene suggest by the
SNARE researchers, then from a study of literature marker through the DropViz
platform. The results showed how the final classification makes clear that the
unsupervised clustering is identifying cellular heterogeneity, and we have been able
to label the clusters with cell types. To evaluate the consistency with the clustering
results, we calculated the Normalized Mutual Information, which gives a value
between 0 and 1, indicating how close the classifications are.
After the separate analyses, the study focused on the correlation between the
results, trying to understand the relations between expression and accessibility of
notable genes, like cluster markers. The first approach starts from the overlap of the
classifications derived from the separate dataset to find the sensible differences in
the cluster partition. In this way, one can label cells with the cluster results of one
of the two datasets while visualizing using UMAP dimensional reduction based on
the other. This showed how the overall classifications agreed, with some differences
in some subdivisions. In particular, epigenetic data appear to not properly divide
subtypes within specific groups, like Oligodendrocytes or Inhibitory neurons. It
means that accessibility data recognize cellular heterogeneity at a more general
level than gene expression.
The second approach has been to create a gene activity matrix from the accessibility
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data. There are two approaches to generate the latter. The first is based on the
assessment of the accessibility of promoter regions of the genes. The second takes
into account also the accessibility of co-accessible peaks through what we previ-
ously obtained with Cicero. The gene activity matrix allows studying the overall
accessibility of a gene, and therefore link the epigenetic data directly to genes,
instead of looking only at peaks. Through this analysis, we have been able to show
how gene expression and accessibility are related, but, specifically, we determined
that some features characterize the same groups of cells both at the transcriptional
and epigenetic levels. The latter is not a trivial statement and proves how the
joint analysis can help to validate the results of the clustering process of the gene
expression through epigenetic data. This is a starting point for future works that
could aim to study cell type markers not only at a transcriptional level but also at
an epigenetic one.
In conclusion, multimodal sequencing is promising for cellular heterogeneity studies,
in particular, we showed how the joint analysis of scRNA-seq and scATAC-seq can
help in this field.
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Chapter 1

Introduction

Next-generation sequencing (NGS), or massively parallel sequencing, is a term
to indicate various sequencing technologies, which have revolutionized genomic
research, thanks to their increase in throughput and accuracy. These technologies
allow the sequencing even of the entire genome of an organism within a single
day, with high accuracy. Moreover, in this last decade, there has been the rise of
single-cell experiments, which implement the NGS technologies at a cell resolution,
meaning, for example, one can obtain from a tissue sample sequences reads from
each cell. The NGS techs are not only used to sequence DNA but also RNA. Single-
cell RNA sequencing is becoming the central point of interest of many biological
and bioinformatic studies, which aims to investigate the cellular transcriptomic
profiles, to improve the understanding of cellular regulation, cell differentiation,
but also cancer characterization and neuronal diseases[1]. Cellular heterogeneity
analysis and cell-type identification are open challenges in this context because the
current bioinformatic analyses focus on a machine learning approach to process
transcriptomic data, which lacks in reliability of the results, mainly due to the
impossibility of a strong validation. In this work, we propose a computational
approach for investigating cellular heterogeneity based on the study of multiple
biological information simultaneously. The fundamental idea is that looking at
various levels other than gene expression can help to have a broader view of the
whole biological regulatory state that identifies the cell. The epigenetics of the
cell could bring a different view on the gene expression and regulation. Thus the
general hypothesis is that the joint analysis of transcriptomic and epigenetic data
can help the cellular heterogeneity study. To validate this key assumption, we
worked on the first SNARE-seq dataset, which provides a set of cells with both
the sequencing analysis. With that, the experimental design consisted of both
separate studies of the datasets, but also the comparison and the joint analysis
of the two, to understand if they come to the same results and therefore validate
each other. In particular, we wanted to know if differentially expressed genes were
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Introduction

also differentially accessible in the same group of cells, validating, therefore, the
classification.

The single-cell analyses are the starting point and a central element of this
thesis. In particular, the work revolved around the bioinformatic analysis of the
data produced by single-cell experiments. The informatic part helps to elaborate on
these large datasets, and analyze the actual differences between cells’ transcriptomic
profiles, to study the cellular heterogeneity through machine learning algorithms.
The work started questioning how to interpret the results of the elaborated data.
In particular, there was a question about the ability to recognize cellular types
reliably, given the results of the unsupervised clustering algorithms. In this regard,
we investigated the field of multimodal single-cell experiments. The idea was to
study the cellular heterogeneity, looking not only at the transcriptomic profile but
also at some other cellular information. In particular, we employed epigenetic
data. The underlying idea was to investigate the cellular heterogeneity on different
biological levels in the hope of incrementing the biological information, and therefore
improving the heterogeneity analysis. The main goal of this thesis has been to
understand if the joint analysis of transcriptomic and epigenetic data can help
the cellular heterogeneity study. To do so, it has been firstly processed the data
separately to observe the unrelated results.In this way, the results are what one
obtains during a typical scRNA-seq analysis, that is what we want to improve or
validate through the multimodal study. The separate analysis of scATAC-seq data
instead aims to look at what epigenetic data alone can say about the dataset. Then
the idea has been to compare them directly on a qualitative level, meaning if the
division of the cells performed through unsupervised clustering on the two datasets,
separated them in the same way or at least similarly. This helped to assess whether
the different data types recognize the same heterogeneity, and therefore validate on
a general level the clustering process. Afterward, we looked for shared features to
try to cross-validate the clustering classification. Since the epigenetic data work
on peak and not through genes, we implemented something called gene activity
matrix that allows studying directly the overall accessibility of a gene. Thanks to
that, it has been possible to assess if groups of cells were identified by both the
differential expression of a gene and also by its differential accessibility. In this way,
one can validate a cluster through the accessibility of its differentially expressed
genes. The results showed that the scATAC data can validate the gene expression
results, increasing reliability, and posing a more solid base for future and more
specific cell-type analysis.
But before starting with the proper core of the thesis is significant to establish
a background. Therefore in this introductory chapter, it will be discussed the
experimental context, the biological theory, the dataset research, and the study of
state of the art. It will follow a summary of the chapter to better navigate through
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the work.

1.1 Biological background
Everyday biology researchers come across complex biological organisms, which are
composed of an incredible ensemble of highly specialized tissues. Biology teaches
us that different tissues are formed of very different cells that perform a great
variety of functions. These cells are divide into types, like neurons or blood cells,
and present distinct structures, so it is easy to divide them apart. However, within
these general cell types, the cells appear to be highly differentiated to perform
specific functions inside the tissue. But unfortunately, to identify and classify these
different sub-types is challenging because they do not present sensible phenotypical
variations. The cellular heterogeneity studies aim indeed to find ways to discover
new cell types and better understand the ones already known. But what makes
cells different?
Given an organism, all the cells inside it possess the same genome, meaning that
they share the DNA sequences. The difference is which parts of it are effectively
used by the cell. Said in a better way, part of the long DNA sequence is composed
of the so-called genes. Genes are particular sequences of nucleotides that encode for
the synthesis of genomic products like proteins, but also structural RNA. The flow
of information from DNA to the products follow the important Central Dogma of
Biology. Given the gene sequence stored in the long DNA molecule in the nucleus,
it is transcripted, and a molecule of messenger RNA (mRNA) is synthesized. The
mRNA is then taken out of the nucleus and is translated into proteins through
the ribosomes. The proteins are the final product and are important because
they carry out the functions of the cells. So to summarize, what differentiates the
cells is their functions, which are carried out by the proteins that derive from the
mRNA molecules which are transcriptions of the genes inside the DNA. Therefore
a way to study cellular heterogeneity is to investigate the content of all mRNA
molecules inside cells.This means to study the gene expression since different types
will express (i.e. transcribe into mRNA) different sets of genes and also in varying
quantities. However, this type of analysis it is not trivial since gene expression is
a highly regulated process with a various complex biological mechanism. First of
all, at the DNA level, there are epigenetic processes that control the accessibility
of DNA regions. Other than that, there is an incredible network of regulatory
proteins that can enhance or block the transcription of genes. Moreover, the RNA
molecules outsides the nucleus are not translated into proteins in 1:1 manners, but
from one RNA molecule the cell can synthesize several copies of the protein. So in
conclusion the gene expression is a key factor in cellular heterogeneity. For this
reason, access the information about the gene expression profile is fundamental to

3



Introduction

advance in this field. Therefore the technological advancements in the RNA-seq
have been crucial to the development of this biology branch. For this reason, it is
useful to review the technical aspect of the scRNA-seq.

1.2 ScRNA sequencing
The RNA sequencing indicates the techniques with which the mRNA molecules
are collected and sequenced. The first step is the preparation of the sample.
For single-cell investigations, the chosen tissue is separated into its constituent
cells allowing, therefore, the high resolution at the cellular level distinctive of the
technique. This can be done following different methodologies, including mechanical
and micromanipulation through pipette or nanotube. But lately, it has gained
popularity the microfluidic technology that enables high-throughput single-cell
profiling of even tens of thousands of cells, with high capture efficiency and a
reduced cost. With this method, cells are separated through microfluid droplet
manipulation and matched with microbeads, which are then employed to identify
cells uniquely[2]. After the separation, cells must be first of all lysed, allowing the
capture of the RNA fragments that were present inside them. The mRNA sequences
must then reverse-transcribed into first-strands of cDNA (complementary DNA),
a step which is necessary since DNA molecules are much more biologically stable
and resistant to degradation. The resulting cDNA undergoes the preparation for
sequencing, meaning fragmentation and barcoding, so one can trace back the cell
the fragments came from, and subsequently, they are amplified through PCR or in
vitro transcription, and finally, specialized adapters are ligated to the ends of each
piece. The barcoding is done through the so-called unique molecular identifiers
(UMI) short sequences that tag the fragments and help to reduced errors and biases
due to amplification[2]. The sequencing process is carried out by specific platforms
like Illumina[3]. The result is a large dataset of short reads that needs to be
mapped to its appropriate location on a reference genome, a process called sequence
alignment. The file can be left in this raw version, or it can be processed to obtain
a matrix format, where genes constitute rows, cells constitute columns, and values
within the matrix are read counts representing the expression of a particular gene
in a cell. This final product is the starting point for the bioinformatic analysis.
The latter review is a brief explanation of the experiment that can be performed
using several commercially-available protocols, like Chromium from 10x Genomic[4],
which allows obtaining large scRNA-seq datasets. The latter is one of the most
used and provides also the processed file in a format that can be directly and easily
input in the pipelines.
The central point of this study, however, is the bioinformatic analysis of the
output[5]. This includes all the data elaborations to interpret the biological
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information resulting from the experiments. The usual points are:

• Low dimensionality visualization: the gene expression matrix can be seen as a
set of M points in an N-dimensional space, where M is the number of cells (i.e.
number of rows) and N is the number of genes (i.e. number of columns). One
can visualize these points in a 2-dimensional representation, through the use
of appropriate algorithms, such as t-SNE and UMAP.

• Clustering: the clustering process aims to separate the cells into groups based
on differential gen expression. This should represent the partition of the
cellular heterogeneity.

• Differential expression: after the clustering, one can find which are genes
differentially expressed between clusters and then define the markers that
characterize each of them.

During this work two very well-known pipelines, Monocle 3 and Seurat, were
mainly used, offering a wide range of useful functions, to perform such analyses.
They are not the only ones available but are the most complete and widely adopted
in this field. There is no one better than the other since they allow for different
investigations of the data, meaning it is helpful to work with both and try also to
identify possible differences.

1.3 Datasets
Even if it may seem superfluous, the analysis of the available Dataset landscape is
quite important because from it one can choose which direction to take based on
the quantity and quality of the accessible data. Therefore it was really useful to
group various Datasets and categorize them according to certain criteria:

• Organism: ScRNA experiments are performed on a wide range of more or
less complex organisms. The choice must be made thinking about the fact
that it is better to consider a well researched and known organism, so one can
compare possible results with the literature already present.

• Tissue: this is relevant especially for more complex organisms like vertebrates
where different tissues mean different cell types. One can find also some
large datasets which include different tissues but when researching cellular
heterogeneity is better to focus only on one.

• Age/time point: it mainly differentiates between adult organisms i.e. fully
developed, and embryonic stages. The latter is useful to study the pluripotent
cells and their evolution using the pseudotime analysis.
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• Temporal points: linked to the previous point, it indicates the multiple
temporal points at which samples were obtained. They can be connected to
embryonic stages or to times after artificial manipulation of some cell culture.

• Number of cells: self-explanatory, it is helpful to choose datasets with a great
number of cells.

• File type: each dataset is available in different formats, mainly divided into
RAW and processed formats. The first ones are the raw outputs of the
experiments (that needs pre-elaboratation before using them in the pipelines),
while the second ones are different formats of expression matrices derived by
the RAW data.

• Project/study: it is helpful to connect the data to the projects or studies which
implemented them, so one can compare with their results and also understand
the limitation of their analysis.

As far as search is concerned one can follow mainly two strategies.
The first is to use databases and platforms that provide various datasets. One
example is the platform PanglaoDB[6] a database that makes available datasets
already organized by species (mainly Homo Sapiens and Mus Musculus), tissue,
and the number of cells. One problem with the latter is the dimensions, in terms
of the number of cells of the data listed, in the sense that only a small number
of these exceed a thousand cells and therefore are suboptimal for broad cellular
heterogeneity analysis. Another helpful tool is the webpage of the Brain Atlas
project of the Allen Institute[7]. This project aims to investigate the taxonomy of
mouse and human cell type at a deeper level, using not only transcriptomic data
but also morphological and electrophysiological ones and therefore obtain a more
extensive view of the cellular heterogeneity. In an ideal scenario, one would like to
have both the transcriptomic and the morphological data of the same cell in such a
way to pre-assign a cellular type on a phenotypical base and afterward analyze the
gene expression, but this is still not possible and there are only separate datasets.
Anyway, the Allen Institute provides a good number of different datasets which
include samples from several neuroanatomical areas. Generally speaking, the brain
samples data are interesting because they contain a great variety of cell types that
may differ in functionality based on position or area of the brain. Moreover, they
are used in the study of some neurodegenerative diseases through the study of the
gene expression profile of particular cells. The Allen Institute works closely with the
NIH’s BRAIN Initiative Cell Census Network (BICCN) whose goal is to "generate
comprehensive 3D common reference brain cell atlases that will integrate molecular,
anatomical, and functional data for describing cell types in mouse, human, and
non-human primate brains"[8]. The latter also provides several transcriptomics,
epigenomics datasets, morphology, and connectivity data of mouse, human, and
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primate brain, that one could also easily use in addition to the previous ones.
Therefore, in general, is useful to look for projects and researches that focus on a
precise area and provides several data not only on gene expression but also other
analysis that ideally could then help in some cross-validation.
The second strategy is to look for published articles about the topic and look at the
availability of the data used in that study; except for rare cases (especially in the
case of brand-new papers), these are always obtainable. In the most common case,
the article will provide under the heading "Data availability" the number or the
link to the Gene Expression Omnibus database (GEO)[9]. The latter is part of the
National Center for Biotechnology Information (NCBI)[10] which provides access
to biomedical and genomic documents, libraries, data, projects, and researches.
The GEO section is a public functional genomics data repository that archives
next-generation sequencing data submitted by the research community. One can
browse directly the repository, but it is not recommended due to a lack of convenient
filters enabling searches based on the parameters previously listed. As mentioned
the best thing to do is, while one is studying the state of art, take the accession
numbers of various papers and find directly through it on the GEO database. On
the page of a dataset, one can find useful information from the experiment type to
a summary of the work done and its overall design. The most important part is
the data section; here one can find the sections:

• Samples: usually there is not only one experiment, but there are several that
differ for example for the time point of the sample or different conditions.

• SRA run: the link to the Sequence Read Archive (SRA) where one can down-
load the unprocessed data i.e. the sequence reads, output of the experiment.

• Supplementary file: all the processed files given by the researchers, like
expression matrices or metadata files, in different formats with the explanation
of how they were been obtained. Because which supplementary files are
available it is up to who published the data, one can find a great variety
especially about the formats and the type.

The raw data are always available but they can not be used directly, they need to
be processed. However, this step, even if one can do it using suitable packages, can
be long and time-consuming, so it is better to use the already processed data.
Now let’s spend some words on what we found. As previously mentioned a good
portion of found datasets arrive from the Allen Brain Atlas; they derive from
different portions of the human and mouse brain and are sampled from different
time points, that makes it a good collection to use for different analysis. It is worth
mentioning the fact that the experiments from which the data derive, follow a new
approach that involves only the nuclei of the sample cells, instead of the whole
cell. This is part of new techniques that aim to improve the single cell sequence
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analysis and will be discussed in more detail later. Other datasets were collected
from the publications of the already mentioned pipelines Monocle and Seurat.
These are available on the respective sites. For the first one, the publications
concern mainly the pseudotime analysis and trajectories construction, and use as
the primary dataset a sample of primary human myoblast "as a model system of
cell differentiation to investigate whether ordering cells by progress revealed new
regulators of the process"[11]. This is a collection of hundreds of cells taken at
different moments of a serum-induced differentiation, and it is the base dataset for
all the pseudotime publications. In addition to this, they also employed datasets of
mouse lung epithelial cells at 4 different embryonal stages and one adult stage. It
is also worth mentioning the latest paper from the Monocle platform that includes
a huge dataset of several mouse embryos staged during the so-called organogenesis,
when the three germ layers formed from gastrulation differentiate in the different
organs of the mouse, providing in this way a ‘mouse organogenesis cell atlas’
(MOCA) allowing the study of this developmental processes at a transcriptional
level[12]. These datasets focus on the pseudotemporal analysis and could be used
for similar studies.
To conclude, one can obtain a huge variety of datasets with different characteristics.
The choice depends on the typology of study one wants to perform.

1.4 State of the Art
Before starting with any type of study it is really important to understand the
related problems and limitations, the current state of research, and the possible
innovation in the field. Therefore it is important to do a careful study of the State
of the Art, focusing on the newest advancements.

One open question is related to the reliability of the cellular classification
performed by the algorithms. In particular how one can ensure that the clustering
process is truly recognizing cellular types and not something else, and how can
one cross-validate this categorization. The principal issue is the lack of datasets
that provides not only the transcriptional data but also a classification based on
other analyses like for example morphological ones[13]. This would incredibly help
the study because with a base classification one could ensure the quality of the
clustering algorithms, at least of the major cell types, and consequentially focus on
the identification of rare and unknown cellular types. However such pre-classified
datasets are not available mainly due to technical difficulties. While the technologies
for the gene expression experiments, as previously mentioned, allows working with
several thousands of cells, morphological analysis can not keep up with such high-
throughput experiments due to the necessity of user inspection. Nevertheless, there
are alternatives, one can use datasets with classification based on known markers.
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However, this brings out other issues because those markers are considered at the
protein level, and could not match the gene expression. Unfortunately, as already
explained in section 1.1, the connection between transcription and translation
is not a direct 1 to 1 correlation, meaning that one can not simply think every
mRNA molecule is translated into one protein, and therefore it is complicated to
establish a relation between the abundance of protein molecules and the effective
gene expression levels. This is the reason why classification based on proteins is not
completely reliable because it is based on the preknowledge of some markers (i.e.
genes/proteins that from previous literature that can be used to identify some cell
types) of certain cell types, and the presence of those markers is enough to give an
identity without further inspection, even if as we said the gene expression-protein
relation is not trivial, and could lead to misleading classification.
Summarizing one would like to have datasets with a classification based on other
characteristics, which however is not always possible, and even when there is one it
may not always be reliable, so one has to find other solutions to cross-validate or
at least define a ground point to measure the quality of the analysis.
The field of all the Next Generation Sequencing (NGS) which includes all the
sequencing at single-cell resolution, is incredibly dynamic and keeps improving and
changing every day. Therefore it is useful to find and understand which are the
very latest innovations, and figure out if there are possible solutions to the current
problems or different approaches not taken into account yet. Fortunately, the
Satija Lab[14], the portal which provides the Surat pipeline, works closely with the
different aspects of the NGS and offers every year a little conference called "Single
Cell Genomics Day" that recaps all the latest and most interesting innovations and
researches. It focuses mainly on the newest and most promising researches of the
year, most of which are not published yet. Below there is a review of all the studies
discussed, with a commentary on what caught the attention and fueled this thesis
work.
Let’s start with "Multiplexed human genetic studies". One might want to understand
human genetic variation and to do so has to use samples from various individuals,
but how one can recognize from which individual the cells come from. The first
approach is to look for a single nucleotide variant to distinguish the original genotype
and use it as a second barcode. The main disadvantage is the need to previously
genotyping all the individuals to identify the variants and this could be costly. New
approaches overcome this problem, like "Vireo"[15] that enables the identification of
different genotype without the pre-analysis of them, reducing time and cost of the
analysis. Similar to the latter, other examples are "souporcell"[16] and "scSplit"[17]
which autonomously identity candidate variants, and create statistical models to
then uniquely identify all the cell genotypes. One can see its application to a fetus
sample where these pipelines successfully recognize the mother cells as different
genotypes.
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The next one is a "Statistical model for scRNA-seq data" and analyze the presence
of zeros in the gene expression matrix. Due to the nature of the experiment, the
matrix is extremely sparse with a lot of elements that are zeros, and the study
"Droplet scRNA-seq is not zero-inflated"[18] shows how the number of zeros for
gene closely fit a negative binomial distribution, that allows to better understand
and statistically analyze the expression matrix, for example implementing tailored
PCA (as in the case of the GLM-PCA) that take in consideration this aspect,
minimizing the technical bias.
There are also innovations in the experimental sensitivity, meaning new techniques
that improve the detection of mRNA molecules, but it is strictly related to the
technical side, so will not be explained further.
Another interesting study is the one related to "Cross-species alignment of single-
cell data"[19], that through the comparison of scRNA-seq experiments of related
species try to infer new cell types and understand how certain cell changes between
different species. One related work[20], explore the different neuron population of
mouse and marmoset and is able to identify an interneuron subtype only present
in the marmoset cortex.
Interesting is the research on "Predicting cellular interactions" that try to infer from
the gene expression how the cells interact with each other through the analysis
of the expression of the genes that encode for ligand/receptor proteins. The
"cellphoneDB"[21] is a related project that identifies cases where both receptor
and ligand are cell-type-specific and use a statistical framework supported with
ligand/target known links to predict interactions and cellular communication
network.
The last research that has been taken into consideration is the one which then has
been taken as a start for this work. Before talking about it, it is helpful to explain
one thing; it has been profoundly discussed the scRNA-seq, but the latter it is
only one of the NGS techniques, that is the one that targets the RNA molecules,
however, one can also sequence the DNA and the whole genome, or analyze the
epigenetic of the cell. Epigenetics is the study of heritable phenotype changes that
do involve alterations in the DNA sequence, or in other words the changes in the
chromatin state that influence the gene accessibility and therefore have a role in the
gene activity and expression. Hence is fair to say that one could use the information
in one methodology to improve the analysis and interpretation of the other, taking
into consideration that the two processes work on very different time scales. This is
the focal point of the last work presented at the "Single Cell Genomics Day" which
proposes a massively parallel, simultaneous, multi-omics sequence analysis under
the name of SNARE-seq[22]. The latter is a high-throughput experiment that
enables the joint capture of DNA and RNA molecules with shared barcodes so that
one can obtain double information from the same cell. In detail, the SNARE-seq is a
single-cell high-throughput experiment, combination of scRNA-seq and scATAC-seq.
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The scATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) is
an NGS technique whose tack is to assess the accessibility of the chromatin of all the
genome. It is a faster and more sensitive epigenetic analysis than similar methods
like DNAse-seq. The process makes use of hyperactive mutant Tn5 Transposase
which insert sequencing adapters into open regions of the chromatin probing all
the genome. The DNA fragments that are tagged are then purified and amplified
through PCR, from which one identifies the features which will form the count
matrix, that in this case are called peaks. The process that defines the features is
called peak calling and does not simply call all the fragment regions, but take into
account all cells, align all the fragments to the genome, and identifies the regions
with a high number of fragments through pipelines like MACS2[23]. Therefore the
final result is a matrix similar to the gene expression matrix, where the columns
are the cells and the rows are the peaks which are usually written in the form
chN:pos1-pos2 where chN indicates the N-th chromosome and pos1-pos2 are the
starting and ending base pair position inside the chromosome. This matrix can
be treated similarly to the gene expression one, through appropriate pipelines like
Cicero and Signac, which are, respectively, portions of Monocle and Seurat.
The multimodal technique here presented has great potential, because allows having
both gene expression measures and gene accessibility from the same set of cells, so
one can directly see how the analysis of the two information could give different
results. One could study the cellular heterogeneity obtained from the two and
analyze how they are related, in particular, how the accessibility of a gene influences
its expression.
In conclusion, after studying the state of art and the issues with the validation of
classification, it has been decided to focus on the SNARE-seq a new multimodal
technique that provides a dataset of cells with both scRNA-seq and scATAC-seq
data thus giving a wider sight on the biological processes the occur inside the cells.
This work will aim to separately analyze the data, overlap the results, compare
them with a classification based on literature markers, and try to infer the relations
of expression and accessibility. It will be used the dataset provided by the paper
related to the SNARE-seq, which consists of 10309 of cells from adult mouse cortex
samples.

1.5 Chapters summary
After laying the foundations with this introduction is time to describe the work done.

In chapter 2 we started with the transcriptomic data analysis. We processed
the data with both Monocle and Seurat. This reflects the commons work done
on scRNA-seq datasets. In this way, we obtained the first division in clusters and
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performed the differential analysis.

In chapter 3 we followed the same workflow to study the scATAC-seq data. In
this case, the features are the peaks, small regions of the genome. This part aims
to try to cluster the cells independently from the expression information, to then
try to understand how the accessibility data influence the cellular heterogeneity
alone. However, when we tried a differential analysis of the accessibility, the peaks
features seemed not to effectively describe the differences between the unsupervised
clusters.

In chapter 4 we performed an independent cell-type classification of the dataset.
The goal was to obtain a ground reference to compare the clusterings and to have
a first biological ground to then make a hypothesis on cell types. We employed two
methodologies. One analyzing literature markers, two with transfer label technique
from a previously classified dataset.

In chapter 5 we considered all the previous analyses together. The main goal
is to understand if the clustering made with the different datasets are consistent
with each other, meaning if the cells are clustered in the same ways despite the
different information provided. This first step allows validating the expression
results with accessibility data. However, the peaks accessibility is not trivial to
study differentially, so we implemented the gene activity matrix. With it, it was
possible to analyze the activity (i.e. the overall accessibility) and compared it
to the expression of marker genes and differentially expressed genes (DE). This
because one wants to find if DE genes for a cluster are also differentially active,
and thus validate, on an epigenetic level, the cluster identity.

Now, after the introduction, it is time to start with the explanation of the work.
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Chapter 2

Gene Expression Analysis

After the study of the state of art, it is time to start to work with the data. In
this chapter, the focus will be on the gene expression analysis, so it will include
an explanation of the usual workflow previously mentioned. Here we present the
process to obtain a 2-dimensional visualization of the cells clustered together. This
represents the usual work done during a typical scRNA-seq analysis, and it is what
this work wants to improve on. As already said the two pipelines mainly used
are Monocle and Seurat, where there is no one better than the other, since they
work differently and have different strengths, like for example, Monocle provides
pseudotemporal analysis[24][25] while Seurat has better differential analysis and
QC metrics functions. The dataset used comes from mouse cortex samples; in
particular, there are available two datasets, one from an adult mouse (2 months)
and one from a mouse just after the birth (postnatal day 0, P0). Since for the time
being, there is no particular interest in a pseudotemporal analysis, we adopted
the adult mouse sample. The latter consists of a collection of 10309 cells, where
RNA libraries were prepared for sequencing using standard Dropseq protocol[26].
All the necessary material is available on the GEO database with the accession
code GSE126074, where are provided three files, the sparse matrix with expression
counts values, and two tab-delimited text files showing barcodes and gene names.
These are the starting point of the work and will be the input of the pipelines. The
chapter is divided according to the pipeline used, so will start with Seurat and then
Monocle. It is worth mentioning that Seurat has been recently updated, improving
some of its aspects and, therefore, will be proposed the results with both versions.

2.1 Gene expression analysis using Seurat pipeline
Seurat is a package for R, developed and updated by the Satija lab [27][28], which
offers a great variety of functions for the exploration of single-cell RNA-seq data,
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in particular, helps to interpret the cellular heterogeneity based on gene expression
and offers ways to integrate with other types of single-cell data. It moreover
provides a variety of tutorials aimed to learn the basics and the most relevant
functions that are used for the expression analysis. One of these tutorials was
initially taken into account mainly to understand how to set the values of some
function’s parameters. Now let’s talk about the actual workflow. First of all,
one needs to load the data; as previously mentioned the dataset is provided with
three files, the matrix content in a sparse format and two separate text files which
represent the barcodes, i.e. the cells, that identify the columns of the matrix, and
the gene names that, instead, identify the rows. Given the high sparsity of the
gene expression matrix, the latter is often given in a sparse format to save memory
space, but it is necessary to transform it in a dense format. It is very simple to
do so with Seurat, which provides the function "Read10X" that takes as input the
three files and returns a unique molecular identified (UMI) count matrix. The
elements of the resulting matrix are predominantly zeros and the values represent
the number of molecules for each detected gene. With the count matrix, one can
create the Seurat object through the function "CreateSeuratObject" which take as
an input the latter and some optional parameters, like "min.cells" (Include features
detected in at least this many cells) and "min.features" (Include cells where at least
this many features are detected). The Seurat Object is the fundamental element
of the pipeline and contains both the data and all the analysis results. In this
way, one can easily store every different operation outcome did on the data and
access them directly through the subparts of the Seurat Object. Once the SO
is created, one can start the pre-processing workflow which includes the quality
control (QC) and the normalization and scaling of the data. The QC metrics are
used to ensure that the data do not have low-quality elements that can negatively
affect the analysis[29]. The common metrics are:

• The number of unique genes per cell: cell with few detected genes are usually
low-quality, but also a number too high may suggest an incorrect detection.

• The total molecules count per cell: as the previous point, a too high or too
low count is not good.

• The percentage of reads of mitochondrial genome: extensive mitochondrial
contamination usually indicates a dying cell.

The first two are automatically calculated at the creation of the Seurat Object,
while the last one can be easily derived with the function "PercentageFeatureSet".
The latter need a pattern to recognize, which in this case is "MT-" that identifies
the mitochondrial genes. The dataset provided has been already purified of very
low-quality detections, but it is always helpful to check anyways. As one can see
from the Figure 2.1, each black point represents a cell, and there are no points
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with too high or too low features (usually are considered too high if exceed 2500
features and too low if do not reach 200). The third graph shows how there are not

Figure 2.1: Violin plot of QC metrics for the RNA dataset

detected mitochondrial genes, showing the good quality of the dataset. It is whort
mentioning that on the horizontal axis the elements called Identity are none other
than the batches of the experiment. The next step after the controls on the data
quality is to normalize them. Normalization is necessary "to remove cell-specific
bias, which can affect downstream applications"[5].The function "NormalizeData"
allow performing the normalization, which by default use a "LogNormalize" method,
that takes the features counts for each cell, divides them by the total count for that
cell, multiplies for the scale factor that is given as an input to the function, and
finally log-transforms them. As an input one can set the normalization method
and the scale factor that is usually set to 10000 as suggested by the Seurat tutorial.
After that, the Seurat vignette explains how focusing on the high variable genes
can improve the analysis of biological signals in single-cell datasets[30], therefore it
is helpful to calculate and create a subset of features that highly variate between
cells. To do so one can directly model the mean-variance relationship, using the
"FindVariableFeatures" function[31], which takes as an input the method for the
selection ("vst" is the default, but one can use also "mean.var.plot" or "dispersion")
and how many features to return, which in this case was set to 2000, that is about a
tenth of the total features. These selected features will be later used, especially for
the dimensional reduction operation like PCA. Before moving to the dimensional
reduction analysis, one has yet to scale the data (remember that before performing
PCA one always must scale the data). The "ScaleData" function can do this, and
performs two operations, first shift the expression of every gene so that the mean
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value across cells is 0, and then changes it so that the variance is equal to 1. This
process is important but can take a long time, so instead of rescaling on all the
features, one can do so only on the subset derived from the previous step. After
scaling the data it is time to perform the dimensional reduction. We performed
the PCA where only the subset of variable features defined in the previous passage
are taken into account, however, this is not mandatory but can be used any set of
features by just defining the features argument of the "RunPCA" function. The
latter function computes the first 50 principal components, but not all of them
are very informative, and it is better to choose how many of them it is helpful to
include. To do so, one can use a heuristic method that is an Elbow plot (with the
"ElbowPlot" function), which plots the standard deviation of each PC (Fig.2.2).
Once plotted one can see how the higher number of PC corresponds to a lower
standard deviation until, between 20 and 30 components, this does not change
much more. Taking the standard deviation as a measure of informativeness, it

Figure 2.2: Elbow Plot of PCA components

makes sense to consider for the downstream operation, a number between 20 and 30
PCs. For the next steps, concerning clustering and low-dimensional visualization,
where the functions require setting the number of dimensions to consider (i.e. the
principal components), both the value (20-30) have been used showing how the
differences, especially in the visualization, are minimal. If, on the other hand,we
would have chosen a lower value, the results would be most affected.
As said, next is the clustering process. The Seurat v3 is based on the graph
clustering approach[32][33]. The first step is to use the "FindNeighbors" which
construct a K-NearestNeighbors embedding all the cells, using the distances in the
PCA space, so that cells with similar expression are linked with edges. After the
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creation of the graph, the function partitions the cells to optimize the standard
modularity function, using the Louvain algorithm or SLM[34]. The "FindClusters"
function performe that, and takes as an input the resolution parameter which
influences the granularity of the resulting clustering[35]. The resolution greatly
changes the results, in particular, a higher resolution will result in a higher number
of clusters. Choosing the optimal value for this parameter is not trivial. The Seurat
guidelines suggest that resolution "between 0.4-1.2 typically returns good results
for single-cell datasets of around 3K cells. Optimal resolution often increases for
larger datasets."[28]. In this case, where the dataset is composed of about 10K
cells, it is then better to choose a higher resolution, but instead of considering
only the result with one chosen resolution value, it has been instead repeatedly
performed the clustering process with different values. The resolutions and the
relative number of total clusters obtained are reported in the Table 2.1. From
the paper concerning the SNARE-seq, one can see how the researchers identified
on the same dataset a total of 21 clusters, so the resolution that gets closer is
1.3. For this reason, we considered the classification made with the latter value

Resolution 0.4 0.5 0.8 1.2 1.3
Number of clusters 12 13 19 20 21

Table 2.1: Number of clusters returning with different resolutions

as a reference, however, the other ones, have not been discarded but will be later
compared with Monocle’s results and with the classification made in the next
chapter. Until now all the calculations have not produced visual outcomes, but one
can try to plot the cells as points on a graph. After all, the gene expression matrix
can be viewed as M points in N-dimensional space (M cells, N features), but first
is necessary to reduce the dimensionality to plot them on a flat graph. To do so
one has to run non-linear dimensional reduction such as UMAP or tSNE. The goal
of this operation is not just plotting all the cells on a 2-DIM space, but do so in a
meaningful way so that cells with similar expression profiles are grouped. In this
way, the clusters determined above with the graph-based algorithms will localize
near one another. Seurat provides different non-linear reduction methods, and
the most used are UMAP (Uniform Manifold Approximation and Projection) and
tSNE (t-distributed stochastic neighbor embedding)[36]. Even if both alternatives
have good performances, lately UMAP method is increasingly common, due to
the fact it is faster and better visualize the differences between clusters for RNA-
seq datasets then tSNE[37]. In figure 2.3 one can see the two, with the relative
cluster assignment. As previously mentioned we plotted the results with 20 and
30 dimensions, and one can see there are no great differences (the one with 20
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dimensions is just flipped). It is useful to report also the case where all the previous
functions have taken as input only 10 dimensions, where one can see noticeable
changes (Fig. 2.5). There are a bunch of observations that can be done at a
qualitative level.

Figure 2.3: Seurat plot with both UMAP (left) and t-SNE (right), considering
30 PCA components

Figure 2.4: Seurat plot with both UMAP (left) and t-SNE (right), considering
20 PCA components

First of all, from the general notion of brain sample composition, it is expected
to observe a major population of neurons, plus some smaller populations of non-
neuronal cells such as astrocytes or oligodendrocytes. Looking at Fig. 2.3 one can
make some hypotheses; the biggest portion of cells are togeher in this large cluster,
which in turn is partitioned in different clusters, and other cells are well-separated
in smaller groups. So is reasonable to assume that the large one will comprise the
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Figure 2.5: Seurat plot with both UMAP (left) and t-SNE (right), considering
10 PCA components

various neuron types, while the smaller ones will be some non-neuronal populations.
From the same figure, it can be noticed how the different dimensions applied
for the non-linear dimensionality reduction influence the result. Qualitatively,
one can see how the cases with 20 and 30 dimensions seem pretty similar, the
main difference it is the separation of the smaller groups, while in the case of 10
dimensions, there are less well-separated clusters. This is a consequence of the
fact that more principal components (from the PCA step) can bring up relevant
sources of heterogeneity, which translates into more diversity when clustering and
performing UMAP. Therefore one might be inclined to include more PCs, but it has
two limitations. First, too many PCs, when performing calculations, considerably
increase the time of the operations, and second, can be a source of overfitting,
meaning that the results are too linked to the dataset and are not able to generalize.
So it is recommended to choose this parameter after some analysis, like the heuristic
one previously mentioned, and, when in doubt, prefer the higher value. Therefore
it has been taken as a reference, the results with 30 PCs.
Once the cells are partitioned and visualized, it is useful to understand what makes
the clusters different from each other. The clustering algorithm works in such a way
that divides the cells based on their expression profile, or in other words, whatever
different genes are expressed or not between them. Seurat provides an easy way
to perform differential expression test, through the functions "FindMarkers" and
"FindAllMarkers". The first receives in input one or two identities generally clusters
ID and identifies all markers (positive and negative) of the first argument compared
with the second, or with all the other cells if no second argument is passed. The
function returns a table with the following columns:

• Gene name.
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• p_ val: the unadjusted p-value.

• avg_ logFC: log fold-change of the average expression between clusters taken
into consideration. It can assume positive and negative values and indicates
how much more the gene is expressed in the first cluster (negative values
indicates the opposite).

• pct.1: the percentage of cells where the gene is expressed for the first cluster.

• pct.2: the percentage of cells where the gene is expressed for the second cluster.

• p-val-adj: Adjusted p-value with bonferroni correction.

When looking for good markers of one cluster compared to all the remaining cells,
the negative values of avg_logFC are not relevant, so it is better to consider only
positive ones by setting the "only.pos" argument of the "FindMarkers" to TRUE. It
is worth to mention that looking only at high-valued avg_logFC genes it is not
optimal, but it is better to take into account also the pct.1 and pct.2 values. A
gene is a good marker when it is expressed in the majority of cells of the cluster
considered and in a few other cells not belonging to it, meaning a high pct.1 value
and a low pct.2. The "FindAllMarkers" perform the same calculation but automate
the process for all the clusters. We run the latter on the dataset and the result is a
list of 2770 possible markers for the 21 clusters. From them, it is easy to select
the top 2 genes for each cluster for avg_logFC value. The best markers, as said
before, are the ones with high avg_logFC value, high pct.1, and low pct.2. Below
are reported the feature plot (through "FeaturePlot") and violin plot (through
"Vlnplot") of some of them. Looking at them one can do some observations. First
of all, consider the plot of the genes Scl1a3 (Fig. 2.6) and Plp1 (Fig. 2.7), which
are, respectively, markers of clusters 8 and 12. These are some of the stand-alone
groups that were supposed to represent populations of non-neuronal cells. These
markers besides having high avg_logFC values respect the other conditions, and
one can see from the feature plot how they well represent the origin cluster. This
is a consequence of being clusters already well separated from the others, and
therefore it is easier finding what makes them so different, or in other words, the
optimal markers. Now let’s focus on the Rorb gene, which is listed as a marker of
cluster 1 (Fig. 2.8). The latter is part of the big agglomerate that we supposed to
represent the big population of neurons. Therefore, defining rigorously the subtypes
of this population becomes challenging. As one can see, especially from the violin
plot, the Rorb gene is expressed in cluster 1 (exactly in 70% of its population), but
also in a lot of cells of nearby clusters. Since these clusters have cells with similar
expression profiles, it is hard for the algorithm to distinctly separate all the cells,
and, therefore, it is challenging to find optimal markers. The last gene is Fam19a1
(Fig. 2.9), which shows how the "FindMarkers" function is not perfect. This gene
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is listed as a marker of both the cluster 0 and 10, and one can already understand
how this is not optimal. From both feature and violin plot, it is clear how Fam19a1
it is highly expressed in both these clusters, but also a lot of other cells. For this
reason, this gene it is not defining the cluster, despite its high avg_logFC value.
This also explains the need for a low pct.2. The last plot is the HeatMap of the top
4 genes for each cluster (Fig. 2.10), showing their expression abroad all of them. It
is quite clear how the genes considered are highly expressed in its origin cluster,
and not so much in the others.

Figure 2.6: Feature plot and violin plot of Slc1a3

Figure 2.7: Feature plot and violin plot of Plp1

In conclusion, the differential expression analysis can help to find suitable markers
for clusters of smaller populations but gives no clear results for similar subtypes,
or even fails to find optimal ones. This shows how the correlation between cellular
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Figure 2.8: Feature plot and violin plot of Rorb

Figure 2.9: Feature plot and violin plot of Fam19a1

heterogeneity and gene expression is not trivial, and finding optimal markers for
future classification of other dataset is challenging. It is useful now to perform the
same analysis with the Monocle pipeline and see if some differences appear.

2.2 Gene expression analysis
using Monocle pipeline

The Monocle[38], similarly to Seurat, is an R package that provides a toolkit
for analyzing single-cell gene expression experiments, to study complex biological
processes. As always, the first step is loading in the data, but differently from
Seurat, Monocle requires to load the three files separately. It is helpful to use the
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Figure 2.10: Heatmap of the top 4 genes for each cluster

"Matrix" package[39], which lets easily read and load the matrix file in a sparse
format, transforming it into the dense format. There is also a need to load the
cell and gene files. In this case, both files contain only the cell’s barcodes and the
gene’s names, but Monocle accepts in input also files where besides these, there are
also other metadata, such as cell type, culture condition, day captured for the cells,
biotype,and gc content for genes. All the optional metadata will be stored in the
same object and can be easily called. Like for the Seurat pipeline, Monocle makes
use of a fundamental object to store all the data and calculation results. The object
belongs to the cell data set class, derived from the class SingleCellExperiment of
Bioconductor. One creates the class through the function "new_cell_data_set"
which requires the input of the three files already mentioned, creating the starting
point of the analysis. Before going on with the proper analysis, it is useful to
use the function "detect_genes" which counts how many cells express each gene
over a given threshold and, for each cell, counts how many genes are expressed.
The two results are added to the cds as metadata for both cells and genes. This
will be helpful for later operations. Unlike Seurat, Monocle does not encourage to
perform quality control calculations, but it is not a problem because we already
made them previously. The next step is to preprocess the data or, in other words,
to normalize, scale, and perform dimensionality reduction. The pipeline perform all
these operations by one Monocle function "preprocess_cds", which is a substantial
difference from Seurat. This can be an advantage, given the faster processing
time of Monocle, but also a disadvantage because one loses the possibility to
fine-tune all the parameters. About the dimensionality reduction, Monocle provides
the common PCA, but also offers the Latent Semantic Indexing (LSI), which
transforms the expression matrix into a tf-idf matrix and performs SVD (Singular
Value Decomposition). We performed the calculation with both methods but,
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since with Seurat there was a focus on PCA, now the reference method will be
LSI. Next to the preprocess, it is the visualization of the data. Monocle 3 uses
UMAP by default the function "reduce_dimension" which also takes as input the
preprocess method used. The "plot_cells" function plots the results. At this point,
the graph is still a collection of grey points because there are no assigned cluster
identities to the cells. In this regard, Monocle offers the function "cluster_cells"
which uses the Louvain/Leiden community detection technique[40][41] and stores
cluster assignments in the CDS. Now, once the "plot_cells" is called, it colors the
cell based on these identities. In addition to clusters, the function returns the
partition assignment, where partitions are well-separated supercluster, found using
a statistical kNN method introduced in the PAGA algorithm[42].One has to set
also the resolution parameter. Monocle does not explain how to properly chose
it, so it has initially followed a vignette where they used the value 1e−5. With
that, the function can identify only 10 clusters, which are the already divided
populations. That few clusters are not enough if one wants to study the cellular
heterogeneity at a deeper level. So it has tried with 1e−4 but, again, the result
is a 12 cluster classification. We, thus, set the parameter to 1e−3, where, finally,
there is the identification of 21 clusters, in line with the expectations (Fig. 2.11).
After one obtained the cluster division is again helpful to find what genes make the

Figure 2.11: Monocle UMAP visualization of the cells, divided in 21 clusters

cluster different from one another, through differential expression analysis. Monocle
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provides the function "top_markers" which identifies most specifically expressed
genes between clusters, but also between other possible classifications defined in
the cell metadata. It returns a table with the following columns:

• Gene_id.

• Cell_group.

• Marker_score: a general value between 0 and 1, which describes reliability as
a marker for that cluster.

• Mean_expression: the mean expression value of the gene of the cells inside
the cluster.

• Fraction_expressing: the portion of cells that express the gene in the cluster,
and it is similar to the pct.1 value.

• Specificity: a value between 0 and 1, which describes how much specific is the
marker for the cluster.

• Pseudo_R2.

• Marker_test_p_value: p-value.

• Marker_test_q_value: q-value.

In this case, the function returns 525 possible markers. Again it is useful to
look for the top markers for each cluster based on the pseudo R2 value or the
marker score. We selected the top 2 genes, according to both parameters, filtering
the markers with fraction_expressing > 0.1 and specificity > 0.15. The filtering
mirrors the same selection based on the values pct.1 and pct.2, used for Seurat.
Through the "plot_genes_by_group" one can visulalize the expression value of the
top 1 marker throughout all the clusters (Fig. 2.12).

Between the results, one can notice similar genes as the Seurat analysis, like
Adarb2.The latter has both a high marker score and pseudo R2, and also a
good specificity making it a possible optimal marker for that cluster. In an
upcoming chapter, the dataset will be classified through literature markers, and
after identifying the corresponding cell type, one can propose it as a possible marker.
However, also with Monocle, there is the problem of genes, like Fam19a1, that
correspond to multiple clusters, and therefore they can not differentiate between
them. An explanation could be that the clustering process had recognized different
clusters that in reality are the same cell type, or had mispositioned some cells
through them. Again the problem comes from the big population of cells where
clusters are not well-separated and rigorously diving them becomes challenging.
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Figure 2.12: Expression of identified markers, based on Marker score (left) and
pseudo R2 (right)

In conclusion, one can see how the results from the two pipelines agree with
each other in both the clustering and the differential analysis. It is possible to
visualize the two cluster partitions on the other plot. This is possible with the
simple operation:

cds_rna@clusters@listData[[”UMAP”]][[”clusters”]] < −ad.m.rna@active.ident
(2.1)

This takes the labels of each cell found with the Seurat clustering process (right-
hand side) and replaces the label of the Monocle cds (left-hand side) with them.
One can also do the opposite with:

ad.m.rna@active.ident < −cds_rna@clusters@listData[[”UMAP”]][[”clusters”]]
(2.2)

Fig. 2.13 shows the results. The main difference is again on the big population
where the two pipelines both find eight different clusters, but the divison is not the
same. The smaller well-separated populations instead agree with each other, apart
from the two clusters on the left side of the Monocle visualization (10 and 20) that
Seurat identifies as one. There is no a priori better clustering between them, but
later analysis could confirm one of the two.
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Figure 2.13: Monocle with Seurat labels (bottom left), Seurat with Monocle
labels (bottom right)
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Chapter 3

ATAC Analysis

The scRNA analysis is just the start of the work. The dataset, as previously
said, provides, also, the scATAC-seq data. This part aims to use similar analyses
performed for the expression data on the epigenetic data and separately study the
results to understand the power of only peaks analysis. ATAC stands for Assay for
Transposase-Accessible Chromatin using sequencing and is a technique to probe
the DNA to assess the chromatin accessibility of all the genome[43]. The DNA
inside the nucleus of a cell is mostly packed into the compact structure that is the
chromatin. Not all the DNA is always packed, but some regions are accessible to
let the transcription of the genes. The accessibility is a necessary but not sufficient
condition for the expression of the gene because even if the gene appears to be
accessible, this gives no information on its effective expression. Moreover, the two
biological mechanisms are not static, but dynamically change with different time
scales[44]. For these reasons, the correlation between these two mechanisms, and
even more between the experimental data, is far from trivial. So before trying to
understand the links between them, it is helpful to analyze separately the ATAC
data[45]. To study this type of data there are appropriate packages, extensions of
the now well-known Monocle and Seurat, called Cicero[46] (companion R package
of Monocle) and Signac[47] (extension of Seurat). The ATAC analysis consists of
similar steps to the RNA one, with the addition of further calculations. Cicero and
Signac provide different types of operations, so again we elaborated the dataset
with both. Cicero provides co-accessibility and cis-regulatory network calculation,
while Signac allows to manipulate multiple epigenetic information simultaneously
like motif enrichment analysis and useful fragment visualization.
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3.1 ATAC analysis using Cicero pipeline
Cicero is an R package, design to work with Monocle. Its main function is to
examine the co-accessibility of the genome from single-cell chromatin accessibility
data to predict cis-regulatory networks[46][48]. Cicero makes use of the CDS object,
but with some modification to hold this type of data. First of all, instead of the
genes, now the features are the peaks. The peaks are small regions of the genome,
identified during the ATAC experiment. The actual length of a peak can vary a
lot, but it is always much smaller than the general gene length. These features are
composed of the chromosome number, the starting position, and the ending one,
like chr1_10390134_10391134. Therefore, the matrix has the peaks as rows, the
barcodes, the same as for the expression matrix, as columns, and all the reads per
cell per peak as elements. Because of the sparsity of ATAC data, it is not expected
more than 1 read per cell per peak, and so Cicero suggests to binarize the matrix
switching to an "on-off" model, stating that can give clearer results. We performed
this binarization step only with Cicero, while we used the original matrix with
Signac. After loading data, the CDS goes through the same steps as the previous
chapter.

cds_atac <- detect_genes(cds_atac)
cds_atac <- estimate_size_factors(cds_atac)
cds_atac <- preprocess_cds(cds_atac, method = "LSI")
cds_atac <- reduce_dimension(cds_atac, reduction_method = ’UMAP’, pre-

process_method = "LSI")
When working with the accessibility data, it is strongly recommended to use LSI

as the preprocessing method due to better performance rather than PCA. One can,
at this point, run the clustering function to obtain a classification based only on
the accessibility data. There will be a later comparison with the previous one. The
resolution parameter was initially set to 1e−3 as in the RNA case, but it returned
only 16. For this reason, it was increased to 1.6e−3, giving 19 clusters. Even if it is
still less than what we obtained during the RNA analysis, this is the value chosen
for the time being. The reason is that one can further increase the resolution,
obtaining how many cluster one wants, but does not imply a better classification.
The difference in the cluster identified, can be a consequence of the dissimilar
type of data, and the study of this difference could be informative. Anyways, in
this case, the cells are again grouped in a big population, plus some other smaller
well-separated groups, but it is early to make suppositions on parallelisms (Fig. 3.1)
Once one obtained the clustering division, it would be helpful to understand what
makes the cluster different, similarly to the differential gene expression. However,
using the "top_markers" function on the ATAC data does not give a clear result
as for the expression analysis. First of all, the computation time is much longer,
probably due to the increased number of features to consider. Moreover, the results
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Figure 3.1: Clustering results of ATAC data with resolution 1e−3 and 1.6e−3

are not what one would want. All the reported features have both a really low
marker score and pseudo R2 and are not discriminative of the cluster. Twelve
clusters have the same peak (chr13_9011697_9011890) found by the function, and
one can see from Fig 3.2 how it is accessible through all the clusters. Some other

Figure 3.2: Accessibility of peaks from differential analysis

peaks, instead, appear to be accessible only in one particular cluster, and even if
they show low marker score value, have good specificity. In general, the differential
analysis performed on this type of data does not give optimal results. This is due
to the nature of the ATAC data and the binarization of the matrix performed at
the start. For this reason, these results are not further investigated, at least for the
time being.
Fortunately, the analysis does not stop here, but with Cicero, one can perform
additional calculations. The first thing is the calculation of co-accessibility scores
between peaks. The score is a value between -1 and 1 between pairs of accessible
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peaks within a certain distance set by the user. The co-accessibility defines how
two peaks are correlated, meaning if there is a relation such that when one is
accessible also the other is, and the other way round. So pairs with high values
might identify regions belonging to correlation mechanisms like enhancer-promoter.
Because the data are extremely sparse, to estimate the co-accessibility, one needs
to modify the original CDS. In particular, it requires aggregating similar cells to
obtain denser data. To do so, Cicero provides the "make_cicero_cds" function.
The latter uses a k-nearest-neighbors method to create sets of overlapping cells,
which are constructed starting from the coordinate of a reduced dimensionality
map, in this case, UMAP. The function takes as input the original CDS and the
UMAP coordinates and returns a new CDS with only 2914 cells left, and the same
number of features.

After we obtained the cicero_cds, we proceed to the calculation. The process is
quite complicated and computationally heavy and consists of three steps. Cicero
gives the possibility to run the three parts separately or to use the function
"run_cicero" which performs all the calculations with default parameters. The
separated functions are:

• estimate_distance_parameter: calculates the distance parameter given ran-
dom windows on the genome.

• generate_cicero_models: using the parameter found at the previous step
and through the graphical LASSO, calculates the co-accessibility score of
overlapping windows.

• assemble_connections: creates the final list of co-accessibility scores through
the output of the previous function.

Calling the functions separately, give more flexibility and control on all the
middle parameters, which need to be changed especially depending on the organism
considered. The default settings are optimal for human and mouse organisms, so
in this case, it is not necessary to run separately. Anyways, before performing the
calculation one needs also a genome coordinates file containing the lengths of each
of the chromosomes, that must match the same genome coordinates used during
the peak calling step of the creation of the ATAC data. The genome reference used
for this data is the build GRCm38 (Genome Reference Consortium Mouse Build
38), also called mm10. Cicero already provides in the package the gene annotation
of the mouse but the build mm9. This is not a problem, because one can find all
the genome references on the already mentioned NCBI portal, in the "Assembly"
section. It is worth mentioning that due to the heavy computational work required,
the calculation takes a very long time, so it is advisable to make sure that all the
inputs and parameters are correct to run it the minimum times. Indeed the result
is a table with three columns, the two peaks, and the co-access value, and has a
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total of 23640402 elements, that are couples of peaks. Cicero provides a very useful
plotting function to visualize interestingly the co-accessibility. Before this, however,
the gene annotation file must be loaded. The annotation has all the information
for each gene, but in particular,the following are important:

• Start and end: the starting and ending point of the gene.

• Strand: the DNA strand on which it is (+ or -).

• Gene_name.

• Transcript_ID.

• Gene_biotype: the type of the gene like protein-coding or snRNA.

• Chromosome.

For the plotting are necessary only these columns, so it is useful to create a
smaller file composed only of these. One needs to also rename the columns to match
the requirements of the plotting function. Then one can use the "plot_connections"
function, which takes as input the chromosome, the extremes of the region one
wants to plot, the annotation file, and a lower cutoff for the co-accessibility score.
The resulting figure shows, in the lower part, all the genes and peaks present in
the region given as input, and a series of lines connecting the peaks, that identify
the connection and their "strength".
In addition to the pairwise accessibility, it is possible also to estimate cis-regulatory
networks that are groups of peaks that are highly co-accessible with each other.
In a similar way to the clustering process, the function "generate_ccans" uses the
Louvain community detection algorithm[40] to find sites that appear to tend to be
co-accessible and group them. The function takes as input the connection table
resulted from the previous calculation. These results are not completely useful
alone but are necessary for the creation of the Cicero gene activity matrix. The
latter is a new count matrix where the features are no more the peaks but are
again the genes, and the matrix elements do not describe the expression but the
accessibility of the gene, based on the accessibility of peaks at promoters and of
the ones highly co-accessible to them. In this way, one obtains an object that can
help to estimate the accessibility of the genes themselves and not the various peaks
that do not accurately match the genes’ body. This topic, however, will be the
central part in a later chapter with the joint analysis of scRNA and scATAC.

In conclusion, Cicero gives useful tools to estimate the relation between peaks,
other than the possibility to process scATAC data in a similar way to scRNA data.
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3.2 ATAC analysis using Signac pipeline
After Cicero, we processed the data with Seurat and the additional package Signac.
At first, Seurat recommended using the same workflow, already discussed, to work
with scATAC data. Therefore we set the parameters of the functions like in the
scRNA case. The only difference is that, instead of performing PCA, we performed
LSI, running the TF-IDF normalization and SVD separately. Unfortunately, the
results were not excellent. Fig.3.3 shows the final clustering, where one can see
something different from previous results. First of all, setting the resolution to
1.3, it returns only 14 clusters. One needs to increase the value to 3 to obtain
19 clusters, but it is an arbitrary choice that does not bring reliable information.
Moreover, the cells visualized are not well organized in well-separated clusters
and form strange and unexpected structures. One could argue that it is just a
matter of visualization and they retain the information, but, if one labels the cells
with the gene expression classification, one can clearly see how they disagree with
each other (Fig. 3.3). This means that there are problems within the workflow
that do not allow a correct elaboration of the data.The critical point rise from
the intrinsical dynamics of the data. The accessibility of genomic regions does
not vary as much as the expression between cells, and, therefore, it is hard to find
the optimal variable features to base the following calculations. For this reason,
the "FindVariableFeatures" function is unable to correctly identify the features to
use in the following steps, in particular during the UMAP reduction, resulting in
the unusual visualization of the cells. Fortunately, recently Seurat updated the

Figure 3.3: scATAC data analysis with the older version of Seurat

Signac package, with new tools specially designed for the epigenetic data. In the
following,we reviewed the new Signac workflow, focusing on the differences and new
features. First of all, the object to contains the data is still a SeuratObject, but,
the chromatin data, are stored through a ChormatinAssay. The latter is a custom
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assay which adds several slots for additional data helpful for ATAC-seq analysis:

• Ranges: a "GRanges" object which contains the coordinates ranges of each
peak inside the count matrix.

• Motif: a "Motif" object, that can be obtained starting from the count matrix.

• Fragments: A "Fragment" object, a list of all fragments inside all single cells.

• Seqinfo: a "Seqinfo" object which contains information about the genome from
which the data were mapped, in particular, the length of chromosomes.

• Annotation: a "GRanges" object for the annotation of the genes.

• Links: a "GRanges" object for links between peaks, like the connections
estimated by Cicero.

So the first step is to create this Assay through the function "CreateChromatinAs-
say". As input, other than the count matrix, it takes a genome reference, in this
case, the mm10 genomic build, which must be the same genome used to create the
data. It is really useful also to load the fragment file, which contains the unique
fragment reads for all cells. This is a very large file that can be slow to work
with, but has the advantage to include all the fragments and not only the ones
mapped to peaks. The fragment file for the SNARE-seq dataset is not publicly
available, but it can be obtained from the raw data, through the help of the Sinto
package[49]. Fortunately, the Satijalab has already processed the raw data and
provides directly the fragments file. Then the newly created assay is taken as input
for the creation of the actual SeuratObject. Signac, unlike Cicero, provides tools
for Quality Controls, specifically for chromatin data. First is the nucleosome signal,
which calculates approximately the ratio of mononucleosomal to nucleosome-free
fragments, which describes the relationship between the length of peaks and the
length of DNA wrapped around a single nucleosome that must not be high (not
more than 4) for a good quality experiment. The second is the transcriptional
start site (TSS) enrichment score[50] which defines the ratio of fragments that are
centered on TSS or flanking regions. Low values of enrichment (values less than 2)
usually mean poor quality experiments. Fig. 3.4 shows how the results respect the
limits.
After that, it is time to normalize and reduce the dimensionality of the data. As
previously said, the nature of ATAC data makes it hard to find variable features,
so instead, it is better to use the "FindTopFeatures" function to identify the top n%
features to consider in the following calculation. To reduce the dimensionality it is
again adopted the LSI method[51]. It can often happen that the first component
from LSI correlates to sequencing depth instead of biological variation[52], and so it
is better to not consider that, for the downstream calculations. To assess this there
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Figure 3.4: QC mterics for epigenetic data

Figure 3.5: Correlation of the LSI components

is the "DepthCor" function, and the plot in Fig. 3.5 shows the results. As one can
see the first component has a stronger correlation so we performed the following
calculation without it. The next step is, as always, clustering and visualization.
Here things do not change much, we implemented UMAP non-linear dimensional
reduction, and the clustering method is the same. We set the resolution to 1.3 like
in other clustering processes, and 17 clusters resulted. However, two clusters (15
and 16) have a really small population (cells each), so they are not informative.
This time, at least, the visualization makes more sense, the cells are not anymore
in those strange patterns like before (Fig. 3.6). Again there is a big population of
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cells divided into subclusters, with other separated smaller populations, similar to
what we previously found.
Even if with Cicero, the differential analysis did not been completely successful,

Figure 3.6: Signac final clustering

we performed it also with Signac. The function to use is the same as for the scRNA
analysis, which resulted in a total of 4834 differentially accessible peaks. This time
around, the features have high values of avg_logFC (which represents how much
differentially accessible are for that cluster) but the fraction of cells that access
that peak is very low. One can see from some violin plots and feature plots how
some peaks are accessible only in a few cells overall, even if they identify some
particular clusters. This is an improvement of the previous differential analysis
done with Cicero but, still, it is not sufficient to find peaks that can be treated as
epigenetic "markers", like the genes markers.
The ATAC analysis presents some criticalities. First of all, besides the new Signac
tools, the workflow to process epigenetic data is the same for the gene expres-
sion, even though the dynamics of these biological mechanisms are different. For
example, the ATAC count matrix has entries that are mainly ones, apart from
zeros due to the sparsity of this type of experiment. So the peaks accessibility is
treated as an on/off mechanism, rather than having different levels like the gene
expression. Whereby the analysis, which tries to find the differences between the
cell’s accessibility profiles, becomes challenging. Moreover, the features of the
dataset are the peaks, which have the problem of not being unique like the genes.
While genes, given the reference genome, are the same between experiments, this
is not true for peaks, which depend on the peak calling process of the experiment.
Therefore it is hard to find results that can be generalized, like with the gene
markers. It is better, therefore, to study the relation within peaks (for example,
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with the co-accessibility), instead of considering them alone, and even more, relate
them with the gene expression. This will be just the work of the last chapter,
where we compared the epigenetic results with the gene expression. But first, it is
helpful to classify the cells in some way to have a reference, to evaluate the results
obtained up to this point.
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Dataset classification

In this chapter, we work to obtain an independent classification of biological cell
types of the cells. It will allow validating the fact the unsupervised clustering is
recognizing cellular heterogeneity and will give us a biological reference to make
hypotheses. Until now, the work focused on the separate analysis of expression
and accessibility data. We separated the cell into clusters based on them, and
there was a good agreement between the results of the pipelines. But none of the
partitions has been identified as known cell types, they are just groups of cells
that the unsupervised algorithm found to be similar, and none other information
relates to them. During the scRNA, we made some assumptions looking at the 2-
dimensional visualization and the unsupervised clustering. The clustering separated
the cells into a big population plus some well-separated, smaller groups. On the
general knowledge of the cellular composition of the brain, one can therefore assume
that the big group is probably composed of neuronal cells (which make up the
majority of the brain) while the small ones can be non-neuronal cell types like
astrocytes[53][54]. However, without an inspection of the expression profile of the
cells, one can not assign cell types to cluster or even be sure that the clusters are
truly identifying cell types. For this reason, it is helpful to implement some sort of
unrelated classification to understand two things. One, if the algorithm is working
properly and the clusters represent the cellular heterogeneity. Two, creating a
classification to use as a reference to compare the various results obtained and
understand which perform better. In this chapter, we implemented two strategies
to do so. First, the classification is based on the expression of literature gene
markers[55]. Then we performed a label transfer technique to classify cells based
on an unrelated dataset with cell labels already present. They have different
advantages and disadvantages, and most importantly none of them is completely
correct, but they are only approximations.
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4.1 Literature markers analysis

The first approach to give the cells a cell type identity start from the expression of
distinct genes considered to be specific for a precise cell and are called markers.
They derive from various biological works that propose what they have found
studying some particular cells. Here the first problem emerges; some of them
originate from protein analyses rather than from RNA expression. While it is
true that there is a direct relationship between gene and protein, the same thing
cannot be said for the expression of a gene and its translation to protein. Indeed,
the mechanisms inside a cell are such that from a single mRNA molecule can
be synthesized a large number of proteins. Not to mention also that not all the
RNA fragments are translated, but can be degraded before that. For this reason,
comparing expression and protein levels can be misleading. Unfortunately, even
if there are a lot of known optimal marker genes for different cell types, it is still
challenging to obtain a reliable set of markers to classify a general dataset. Even if
this method is an approximation and it is not completely optimal and stable, it
can at least give an idea of the cellular heterogeneity of the dataset used until now.
To do this it has been worked with the older version of Monocle for R version 3.4.3,
which provides some useful functions to tag each cell directly through the assessment
of their expression profile. The annotation is produced based on a simple set of
functions manually provided. These functions are generally simple comparison
operation which accepts as input the expression values of the gene for a cell and
returns TRUE to tell that the cell matches the imposed criteria. The idea is to
construct a series of functions for each cell type one wants to identify, which detect
whether one or more genes are expressed over a given level. An example could be
to label a cell if the expression of a certain gene X is > 0, meaning the expression
is active. Instead of zero, one could set that to a higher value to identify the cells
where that gene is highly expressed to not mislabel cell where that is expressed but
only in low values. Besides, multiple genes can be compared for one class, through
a logical operation like OR, AND, etc. One stores all the functions in a small
structure called "CellTypeHierarchy" (CTH). The creation of this object is the first
step, through the function "newCellTypeHierarchy". After one needs to load all
the gating functions, one for each cell type of interest, employing "addCellType"
which takes as input the CTH, the name of the type, and the operation to identify
it. Once all of them are ready in the data structure, it is time to classify all the
cells in the dataset. The function "ClassifyCells" applies each gating function of
the CTH to each cell in the provided CDS to which it adds a new column to the
pDATA table with the results. It is important to mention that besides the types
manually defined, there are two more labels: "Unknown" and "Ambiguous". The
first is assigned when the cell matches no criteria specified in the CTH, while when
it satisfies multiple criteria is marked as Ambiguous. Once all cells are labeled it is
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easy to count how many cells there are for each type and visualize them on a pie
chart so one can have a first impression of the quality of the classification.

We implemented three different classifications, with varying labeling rules based
on different sets of markers. The first uses the same markers proposed by the
researchers of the SNARE technique for annotating clusters, the second originates
from the portal DropViz[54], and the third is a mixture of the two. For all of them,
the workflow is:

• Choice of the markers and function for each cell type.

• Run of the classification on the expression dataset.

• Visualization of the labels on the plotted cells.

• Evaluation of the results compared to unsupervised clustering

• Annotation of the clusters based on the most frequently occurring labels.

4.1.1 First Run
We implemented the first run of classification through the assessment of the
expression of the same markers used for the SNARE publication[22]. They provide
a list of cell types with one or two genes to label them. Because there is no more
information about them (like how highly expressed they are in the clusters), the
classification functions are very simple. We chose one gene, which identifies one
type if it is expressed in a cell i.e. if the gene expression is >0. The Table 4.1
report all the functions, with the corresponding category name. The categorization
proposed includes ten varieties of Excitatory Neurons (Ex), four Inhibitory Neurons
(In), plus six non-Neuronal cell types. Excitatory Neurons are subdivided based on
the spatial layer of the cortex to which they belong, so for example EX-L5 means
neurons coming from the fifth layer one of the most internal. The non-Neuronal
cells are Astrocytes, Oligodendrocytes, their progenitors (OPC), Microglia, and
Claustrum cells. Besides all these classes, the classifying algorithm also returns the
Ambiguous and Unknown cells. The number of labeled cells that received a cellular
identity is 3460. The remaining 6849 cells are divided into 4512 Ambiguous and
2337 Unknown. One can already see how only a rough third of the total number
is actually labeled, with the majority of cells being uncertain. This is due to the
classification functions, which look for the absolute presence of a marker gene. The
majority of the genes, even if one considers them to be a marker of cell type, can be
also expressed in minimal quantity in other ones, so the algorithm can not uniquely
give them an identity. This becomes even worst between the Excitatory neurons
since they are very similar between layers and tend to express similar genes. It
is useful to represent the labels on the plots previously obtained. In Fig.4.1 we
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Figure 4.1: Monocle UMAP visualization with the labels from the first marker
classification

present all the cells, except for the Ambiguous and Unknown, on the Monocle
representation. On the plot, the names of the cell types are positioned on the
centroid of all the cells with that identity. One can see how some cell types match
with known clusters like In-1, In-2, while others seem not to be well-identified like
Oli-1. One can look at the number of labeled cells per cluster. As expected, the big
population is composed of various Excitatory Neurons showing, however, how there
is not a clear distinction between them. For some of them, there is a clear and
unique match with the cell types, like for the first cluster composed mainly of Ex-L6
cells. Some cell types, like Ex L2/3, represent multiple clusters meaning that the
unsupervised algorithm could have found subtypes or the resolution it is too high
and the differentiation is meaningless. After a qualitative analysis, it is better to
perform some statistical metrics calculation to understand at a mathematical level
the similarity between two classifications. In this regard, it has been implemented
standard clustering comparison measures[56][57], in particular, Rand Index and
Mutual Information. The Rand index is a measure of the similarity between two
clustering classifications and is related to the accuracy. It has a value between
0 and 1, where 0 means no classification pairs agree while 1 indicates a perfect
match. Mutual Information is a measure of the mutual dependence between the
two variables and is linked to the concept of the entropy of a random variable.
Mutual Information measures the information that two sets share and can be used
to evaluate how close are two classifications. But these two have some problems
related to the dimensions of the sets, and the possible different number of partitions
between the two. So it is better to calculate their modified versions, in particular,
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the Adjusted Rand Index (ARI) and the Normalized Mutual Information (NMI).
To do so we adopted the R package "aricode" which provides easy functions to
calculate these values. So we evaluated, with these metrics, the concordance of the
first run of classification with the unsupervised clustering, taking into account only
the cells labeled with cell types (not Ambiguous and Unknown),
RI = 0.8429034
ARI = 0.1970836
MI = 0.6585482
NMI = 0.2519598
The NMI is what we mainly taken into account, because it is the best to fix for the
different number of partitions between the two classifications. The value of 0.25 for
it can seem quite low but it is not a bad result considering the generality of the
function employed for the first classification. The main problem is related to the
high number of Ambiguous cells due to the gating functions that do not take into
account the expression levels, and the few markers considered. So we implemented
a second run.

4.1.2 Second Run
The second run focused more on trying to improve the previous one, especially to
reduce the Ambiguous classification that inflated the other. To do so, we changed
the set of marker genes, the gating functions, and the set of cell types. Instead
of using the set of genes provided by SNARE research, it has been studied the
literature for constructing a possibly new collection. In particular, we used the
platform "DropViz"[54]. This platform provides tools to explore the mouse brain
cellular heterogeneity, through the exploration of cell expression profiles of hundreds
of thousands of cells. These cells come from nine regions of the adult mouse brain,
which are explorable separately. Then for each region are identified several cell
types, which one can explores one at a time or can compares them one another.
The platform is really helpful because provides both canonical markers for each cell
type and markers derived from differential expression. Moreover, one can explore
the expression levels of a given gene throughout the cell types, giving information
about the possible level to use to identify the types. DropViz has everything one
needs for this work. It has data for the adult mouse brain and one can focus
only on the cortex, which is the same sample used for this study dataset, and
gives reliable markers and a way to explore their expression levels. Therefore we
created a new set of markers and relative gating functions, shown in Table 4.2.
There are some differences from the previous one. First of all, the number of cell
types is only 17, because the platform does not give a clear classification of all
the Excitatory Neurons like before, so here there are only 7 of the 10 different cell
types related to them. On the other hand, the cell types chosen are better defined.
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The other fundamental difference is that this time around, we considered multiple
genes for the identification. When this happens, the identification functions become
a bit more complex, each gene-level is evaluated separately, and they are linked
with some logical operator. For example, for the identification of the Astrocytes,
we considered the genes "Slc1a3" and "Apoe", combined with the operator OR,
meaning that the cell is labeled when one of the two conditions is met. In an
attempt to reduce the inflation of the Ambiguous cells, we chose the expression
levels of the markers greater than zero.To avoid the possibility of becoming too
strict in the classification, the values are relatively low, but always consistent with
the DropViz information. After setting the classification rules, one can procide
with the classification. It resulted in the labelling of 4098 cells, 2486 Ambiguous,
and 3725 Unknown cells. There is an increase in labeled cells and a decrease of
Ambiguous ones, as desired, but at the cost of a lot more Unknown ones. The
increase of Unknown cells is due to the new levels set, which makes it unable
to identify cells with lower expressions, especially between Excitatory Neurons.
However, about the non-Neuronal cells, there is an improvement. All the cell types
of this kind have the number of the labeled population increased. This is because
more strict rules on the genes guarantee that cells of rarer type, which can exhibit
the expression in small quantities of some Excitatory Neurons, are not mislabelled
or become Ambiguous. In Fig.4.2 one can see the cells with their identity. Again

Figure 4.2: Monocle UMAP visualization with the labels from the second marker
classification

the cell type tags are placed in the centroids of each group, and some of them seem
not well-placed, like Oli-1. If one looks at the populations for each cluster, one can
find which cell type better represents that, and results are similar to the previous
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classification. This means that despite the variations, the two rounds agree with
each other, but also with the unsupervised partition, giving the first hint that
the algorithm used is finding cellular heterogeneity. However, before assigning the
identities to the clusters, we performed one last round of classification that aims to
combine the best of both. Before that, it is useful to evaluate again the results of
the labeling against the clusters labels, with the already mentioned metrics. The
results are:
RI = 0.852115
ARI = 0.2779283
MI = 0.8705825
NMI = 0.3296452
There is an increase in all the values, probably related to the greater number of
labeled cells between the smaller population. The last round of classification aims
to reduce even more the Ambiguous cell, mixing the information of the previous
two sets.

4.1.3 Third Run
We performed one last classification round. The first one focused more on all the
Excitatory Neurons types at the cost of more ambiguity while the second gave
more information for the identifications of non-neuronal cell types. Therefore,
we attempted to implement an analysis that took into account both. A good
classification does not necessarily require that most of the cells are labeled, but the
rules to identify them must be the most univocal as possible, meaning the lowest
possible ambiguity. In this way, the labeled cells are more reliable and become
an optimal reference set. The summary of all the cell types and relative gating
functions is reported in Table 4.3. First of all, the types of Excitatory Neurons have
been increased to eight types (RGS Neurons are the same as Layer 5/6), a middle
ground between the two. The set of chosen marker genes did not change, but the
expression levels did. In particular, some genes appear to be markers when they are
highly expressed, so the thresholds for some cell types now have higher value that
the second run. After setting all the parameters we performed the classification.
This resulted in a total of 3918 cells labeled, 1946 Ambiguous and 4445 Unknown
(Fig. 4.3). The labeled ones decreased in comparison to the second round, but
the same is for the Ambiguous cells as desired. The inconvenience is that was
not possible to identify a lot more cells, but as previously explained is better to
have fewer but more reliable. With this result, one can finally attempt to give an
identity to the unsupervised clusters. It can be accomplished mainly in two simple
ways. One, if in a cluster there is a considerable majority of one cell type respect
the others, it is reasonable to label the group with that. Two, if one cell type is
present in only one particular cluster which is not predominated by others, it also
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Figure 4.3: Monocle UMAP visualization with the labels from the third marker
classification

makes sense to link the two. The second method is usually less reliable because it
involves a smaller number of cells. For example, the In-1 cells are included only
in cluster 12, even if the latter has multiple types related to it. Therefore, from
looking at Table 4.4, conclusions we labeled the clusters, and plotted them in Fig.
4.5
Some observations are useful. Some clusters are easy to associate, like cluster 1,

Figure 4.4: Number of classified cells per cluster
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where there is an insurmountable majority of Ex-L6 neurons, but unfortunately, it is
not the case for all of them. Clusters like 2, 3, and 4 have predominant populations,
but also include a not indifferent number of each other cells. The reason is that
these cell types are neuron from adjacent layers, so their difference is not well
defined, and, therefore, the classification, both from markers and unsupervised
clustering, can not be completely precise, but this is not a big problem. It is
interesting the case of clusters 5, 6, 7, and 8, which are all identified with Ex-L2/3
Neurons. It means that the unsupervised algorithm has maybe recognized some
subtypes of these neurons. This could also explain why during the differential
expression analysis, they showed similar marker genes. The cluster 1 includes a
small population of Ex-L5/6 cells, meaning that it could be a subtype that was
not identfied by the algorithm. Also, as expected, the classification recognizes the
different Non-Neuronal types as the smaller groups found in the previous chapters.
A bit more problematic are the Inhibitory Neurons, which one can label only
through the second method mentioned. It is the case of the already mentioned
cluster 12, which has pretty similar populations of Ex-Neurons and In-1, so it
would not be clear which label to assign. However, one can notice how the In-1
cells are barely included in other clusters, so it is reasonable to assign it to the
mentioned cluster. Regarding again the Inhibitory Neurons, it is noticeable cluster
13 which has two different cell types in it (In-3 and In-4). This means that the
clustering algorithm failed to identify the difference in the cellular heterogeneity
of that group. Cluster 11 was the only cluster we were unable to consistently
label with the classification, since there are no prominent populations or cell types
related only to it.
In this way, we achieved a ground reference classification for the dataset, and all
the clusters have been identified with cell types. Therefore, from now on, one can
start formulating biological hypotheses and not only supposition when performing
analysis. As the last thing, we calculated the values of the statistical metrics giving
as results:
RI = 0.834823
ARI = 0.3124383
MI = 0.9600847
NMI = 0.3672774
There is an overall but slight increase in the metrics, showing how the two partitions
of the cells agree with each other, demonstrating that the unsupervised algorithm
is recognizing the cellular heterogeneity.
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Figure 4.5: Monocle unsupervised clusters labeled after the classification analysis

4.2 Label transfer classification
For completeness, we performed the classification of the cells through a second
method. It consists of Integration and Label Transfer[31] of two separate datasets.
The method aims to first identify anchors, which represent couples of individual
cells coming from the two datasets that are likely to be from the same biological
state, that are then used to transfer information from one dataset to another.
In this way, one can take one dataset already processed, where the cells have
been identified, and use it to classify a distinct dataset. Using this method one
obtains complete labeling of all the cells, which are derived from an analysis of all
the expression profiles and not only some chosen markers. The drawback is that
obviously, one can not be sure of the quality of the classification of the processed
dataset, which is still a challenging step, but one can assume it can be better than
the analysis made on few marker genes. The Seurat pipeline provides some helpful
functions to proceed in this calculation.
First of all, we loaded the scRNA dataset to employ as the reference for the
classification of the cells. we chose an Allen dataset of the mouse brain, precisely
from the Primary Visual Cortex (Visp)[58].Satija Lab already processed the dataset,
and one can directly access its SeuratObject counterpart. The first step is to identify
the possible anchors between the two. The function "FindTransferAnchors" performs
exactly this step, and takes as input the reference dataset, the query dataset (the
one to be labeled), and a reduction method that can be CCA or PCA (recommended
for scRNA experiments). The function returns a list of anchors that on can then
use to transfer the labels. This is done through the function "TransferData",
which takes as input the previous results and returns a list of identities for all the
cells. The Seurat Object stores the cell type identities as new metadata (through
"AddMetaData"). Since the method is based on the Seurat pipeline, firstly we
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plotted the labels on the Seurat plot (Fig.4.6). With this classification, there are

Figure 4.6: Monocle UMAP visualization with the labels from the Allen transfer
label method

only 16 identities. Seven of them are Excitatory Neurons, which include the already
well-known types based on layers (L4), some more specific cell types (L6IT, L6CT),
NP neurons that are related to previously mentioned RGS neurons, and Meis2
that is a general classification of neurons based on the marker Meis2. Instead, for
Non-Neuronal cell type, the labels are similar, apart from Oligodendrocytes that are
not divided into multiple subtypes apart from VLMC cells (vascular leptomeningeal
cells). To be consistent with what previously done, we plotted the predicted labels
on the Monocle plot. From it, one can notice that the cluster previously labeled as
Claustrum cells, has no separate identity, but contains mainly L6b cells. It makes
sense because the claustrum is a small part of the brain near the inner layers, so it
can be misrecognized as L6 neurons. Cluster 9 with the previous classification had
a small population of L5 neurons but was too small to confidently label the whole
group. However, now the L5PT type identifies the same cluster, so it validates the
previous hypothesis. For the remaining cells, the two classifications agree with each
other, at least for the general clusters’ identities. In the same way as before, the
predicted labels one can compare to the unsupervised clusters with the metrics:
RI = 0.8439087
ARI = 0.3038634
MI = 1.351484
NMI = 0.5097729
One can notice an increase, especially in Mutual Information. This could be a
consequence of the lower number of partition in the predicted labels, and also the
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more uniform classification than the previous one.
In conclusion, the transferring label method leads to a complete classification
of the dataset based on a pre-processed dataset. It is helpful since, even if its
classification could have the same limitation as the marker strategy, it is probably
more complete than what we implemented previously. The problem is that it is
an indirect analysis since it is the result of integration calculations, that insert
multiple points of uncertainty. However, it is useful to try to validate the direct
marker analysis with an uncorrelated classification. In the end, what wen obtained
are two classifications to evaluate the clustering algorithms and to identify the
clusters, so one can perform a joint analysis of expression and accessibility based
also on biological knowledge, instead of only unsupervised algorithm results.
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Cell type name Acronym Marker Genes Function Number of labeled cells
Excitatory Neurons
Layer 2/3

Ex-L2/3 Rasgrf2 Rasgrf2 > 0 644 cells

Excitatory Neurons
Layer 3/4

Ex-L3/4 Rorb Rorb > 0 754 cells

Excitatory Neurons
Layer 3/4b

Ex-L3/4-2 Rmst Rmst > 0 117 cells

Excitatory Neurons
Layer 4/5

Ex-L4/5 Thsd7a Thsd7a > 0 260 cells

Excitatory Neurons
Layer 4/5b

Ex-L4/5-2 Il1rapl2 Il1rapl2 > 0 587 cells

Excitatory Neurons
Layer 5

Ex-L5 Galnt14 Galnt14 > 0 168 cells

Excitatory Neurons
Layer 5b

Ex-L5-2 Parm1 Parm1 > 0 77 cells

Excitatory Neurons
Layer 5/6

Ex-L5/6 Tshz2 Tshz2 > 0 118 cells

Excitatory Neurons
Layer 5/6b

Ex-L5/6-2 Sulf1 Sulf1 > 0 80 cells

Excitatory Neurons
Layer 6

Ex-L6 Tle4 Tle4 > 0 228 cells

Claustrum cells claust Nr4a2 Nr4a2 > 0 44 cells
Inhibitory Neurons
1° type

In-1 Pvalb Pvalb > 0 10 cells

Inhibitory Neurons
2° type

In-2 Sst Sst > 0 17 cells

Inhibitory Neurons
3° type

In-3 Npy Npy > 0 23 cells

Inhibitory Neurons
4° type

In-4 Vip Vip > 0 13 cells

Astrocytes Astr Slc1a3 Slc1a3 > 0 150 cells
Oligodendrocytes 1°
type

Oli-1 Itpr2 Itpr2 > 0 50 cells

Oligodendrocytes 2°
type

Oli-2 Mal Mal > 0 47 cells

Oligodendrocytes
progenitors

OPC Vcan Vcan > 0 53 cells

Microglia Mic Apbb1ip Apbb1ip > 0 20 cells

Table 4.1: Cell types with their markers and results of the first run
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Cell type name Acronym Marker Genes Function Number of labeled cells
Excitatory Neurons
Layer 2/3

Ex-L2/3 Rasgrf2 Rasgrf2 > 0.75 1021 cells

Excitatory Neurons
Layer 3/4

Ex-L3/4 Rorb Rorb > 1 587 cells

Excitatory Neurons
Layer 4/5

Ex-L4/5 Il1rapl2 Il1rapl2 > 1 503 cells

Excitatory Neurons
Layer 5

Ex-L5 Parm1, Bcl11b Parm1 > 0 AND
Bcl11b > 0

16 cells

Excitatory Neurons
Layer 5/6

Ex-L5/6 Sulf1, Hs3st2 Sulf1 > 0.25 AND
Hs3st2 > 0.3

26 cells

Excitatory Neurons
Layer 6

Ex-L6 Foxp2, Syt6 Foxp2 > 0.5 OR
Syt6 > 0.5

644 cells

RGS Neurons RGS Tshz2 Tshz2 > 0.5 207 cells
Claustrum cells claust Nr4a2, Col11a1 Nr4a2 > 0.5 OR

Col11a1 > 0.8
259 cells

Inhibitory Neurons
1° type

In-1 Pvalb Pvalb > 0 24 cells

Inhibitory Neurons
2° type

In-2 Sst Sst > 0 42 cells

Inhibitory Neurons
3° type

In-3 Npy Npy > 0 34 cells

Inhibitory Neurons
4° type

In-4 Vip Vip > 0 27 cells

Astrocytes Astr Slc1a3, Apoe Slc1a3 > 0.5 OR
Apoe > 0.5

426 cells

Oligodendrocytes 1°
type

Oli-1 Itpr2, Tcf7l2 Itpr2 > 0.5 OR
Tcf7l2 > 0.5

91 cells

Oligodendrocytes 2°
type

Oli-2 Mal, Mog Mal > 0.6 OR
Mog > 0.6

145 cells

Oligodendrocytes
progenitors

OPC Vcan, Sox6 Vcan > 0.5 AND
Sox6 > 0.8

207 cells

Microglia Mic Siglech Siglech > 0.5 28 cells

Table 4.2: Cell types with their markers and results of the second run
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Cell type name Acronym Marker Genes Function Number of labeled cells
Excitatory Neurons
Layer 2/3

Ex-L2/3 Rasgrf2 Rasgrf2 > 0 1221 cells

Excitatory Neurons
Layer 3/4

Ex-L3/4 Rorb Rorb > 1 595 cells

Excitatory Neurons
Layer 4/5

Ex-L4/5 Il1rapl2 Il1rapl2 > 1 465 cells

Excitatory Neurons
Layer 4/5b

Ex-L4/5-2 Cntn5 Cntn5 > 4 298 cells

Excitatory Neurons
Layer 5

Ex-L5 Parm1, Bcl11b Parm1 > 1 OR
Bcl6 > 1.5

28 cells

Excitatory Neurons
Layer 5/6

Ex-L5/6 Sulf1, Hs3st2 Sulf1 > 1 AND
Hs3st2 > 0.3

11 cells

Excitatory Neurons
Layer 6

Ex-L6 Foxp2, Syt6 Foxp2 > 0.5 OR
Syt6 > 0.5

773 cells

RGS Neurons RGS Tshz2 Tshz2 > 2 50 cells
Claustrum cells claust Nr4a2, Col11a1 Nr4a2 > 1.5 OR

Col11a1 > 2
53 cells

Inhibitory Neurons
1° type

In-1 Pvalb Pvalb > 0 22 cells

Inhibitory Neurons
2° type

In-2 Sst Sst > 0 50 cells

Inhibitory Neurons
3° type

In-3 Npy Npy > 0 38 cells

Inhibitory Neurons
4° type

In-4 Vip Vip > 0 29 cells

Astrocytes Astr Slc1a3, Apoe Slc1a3 > 1 OR
Apoe > 1

176 cells

Oligodendrocytes 1°
type

Oli-1 Itpr2, Tcf7l2 Itpr2 > 1 OR
Tcf7l2 > 1

9 cells

Oligodendrocytes 2°
type

Oli-2 Mal, Mog Mal > 1 OR Mog
> 1

52 cells

Oligodendrocytes
progenitors

OPC Vcan, Sox6 Vcan > 0.5 AND
Sox6 > 0.8

32 cells

Microglia Mic Siglech Siglech > 1.5 16 cells

Table 4.3: Cell types with their markers and results of the third run
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Chapter 5

Joint Analysis

The last part of this work focus on the joint analysis of the scRNA and scATAC[59][60].
The main goal is to understand if the clustering made with the different datasets
are consistent with each other. In particular, we worked with the idea that if a
gene identifies the same group of cells both at the transcriptional and epigenetic
level, it is probably a sign of consistency, and one can more reliably say that the
unsupervised cluster is identifying a cell type.
Until now, the datasets have been studied separately, but, as pointed out, the real
strength of SNARE-seq is the double information coming from the same set of
cells. For this reason,one can study the correlation of accessibility and expression
directly without the need for further hypothesis and integration of two separate
datasets. However, it is not that simple, since the biological processes that control
the epigenetic mechanisms and transcription events are complex and intricate.We
briefly reviewed the biological aspect in the first chapter, but here it is useful
to go further on that, especially on the epigenetic part. When one talks about
epigenetics is referring to all the process that, without altering the DNA sequence,
produce heritable phenotype changes. It includes a great variety of mechanisms
like DNA methylation or histone modification, and most of them directly affect
gene activity and expression. This because the DNA is structurally packed into a
chromatin state, which includes the so-called nucleosome, DNA wrapped around
a protein complex called histones. If a region coding for a gene is packed in this
structure, it is not accessible and the transcription can not happen. Therefore,
there must be a modification in the chromatin state to allow these processes. In
eukaryotes organisms, the epigenetic changes are a key factor to cellular differenti-
ation where, during morphogenesis, stem cells become pluripotent cells and then
fully differentiated cells. During the differentiation, there are a lot of epigenetic
changes, but in an adult fully developed organism, these occur to a lesser extent
especially for the normal cell regulation but are more frequently linked to different
types of diseases. Hence, unlike gene expression that is constantly regulated and
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therefore has a fast dynamic, the accessibility is more settled or at least works on
larger time scales than expression changes. One must remember that the single-cell
experiments can be viewed as snapshots in time of the cells state, so it is likely to
see greater differences between expression profiles rather than between epigenetic
profiles, making it even more challenging to properly study the relation between
the two. One can understand that the task is not trivial, but this section aims to
elaborate, with different approaches, the data, making great use of the property of
the SNARE-seq, and trying to answer some questions:

• Is the clustering process partitioning the cells in the same way in both the
datasets, or there are sensitive differences?

• Are differently accessible peaks also differently expressed?

• Are there direct relations between marker genes and their accessibility?

But also more in-depth:

• Is the gene activity matrix analysis informative?

Through different tools provided both by Signac and Cicero packages, it has been
elaborated the data and results are reported in the following sections.

5.1 Clustering superposition
From chapters 3 and 4,the clustering process divided the 10309 cells of the datasets
into multiple clusters. At first, based on the gene expression profiles and then on the
accessibility. We performed it with both the already well-known pipelines providing
different but qualitatively similar results, but without investigating more in-depth,
this is just a superficial consideration. Therefore in this section, we compare all
the clustering results, with each other and with the cell type classifications, to
understand the differences and find the right resolution values.
The first thing to do is to transfer the labels directly. We already implemented
something similar in chapter 2 with the gene expression clusters between the results
of Monocle and Seurat (Fig. 2.13). Now the same operation has been performed
between the results of expression and accessibility. Remember that during the
clustering of ATAC data with Cicero, we adopted two resolutions, which had found
a different number of clusters. Fig. 5.1 reports both of them with also the RNA
cluster labels.
Before looking at them, however, is helpful to think about what one could expect
from this type of analysis, or in other words, how could the clusters of the two
datasets be linked:

• Clusters are coupled in a 1:1 manner.
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Figure 5.1: Epigenetic data processed with Cicero, with Monocle labels

• Some distinct expression clusters are together for the accessibility data.

• Some clusters in the transcriptomic data are divided in the epigenetic data.

These three cases summarize what can happen in general with a multimodal analysis.
It can occur that the two modes are recognizing the same features (first case),
or one of the two is finding more sources of heterogeneity (cases two and three).
Now, looking at Fig. 5.1, the results are interesting. First of all, the population
of Excitatory Neurons found with RNA data superposes well with the big group
of cells plotted, even if the division into clusters inside it, it is not well-defined.
This is caused by the fact that, especially for the case with higher resolution, there
are more clusters identified with the ATAC data. Cell groups like the Claustrum
cells have a clear counterpart in the epigenetic data, meaning they are well-defined
for both biological aspects. Instead, the family of Oligodendrocytes appears as a
unique cluster, meaning that probably their differences rise from the expression
profiles only. The most intriguing case is the cluster of EX-L6 cells, which the
ATAC data identifies as two separate groups. This is interesting because one can
remember that from the marker classification, there was a small population of cells,
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not belonging to L6 and not belonging to any other cluster. So the ATAC clustering
may have found some heterogeneity, not appreciable with the transcriptomic data
only. The problem is that with the lower resolution some differences in smaller
clusters are not present (like for Inhibitory Neurons), but the higher one appears to
overly partition the Excitatory Neurons. Therefore it is useful to apply the metrics
used in the previous chapter to the two clustering resolutions to understand which
better agrees. We calculated the Normalized Mutual Information between the two
clustering results and the Monocle cluster results, the marker classification, and
the transfer label classification. The Table 5.1 reports them. As one can notice the

Resolution 1 Resolution 1.6
Monocle clustering 0.614105 0.5829951
Marker classification 0.3397086 0.3135536

Transfer label classification 0.4578342 0.424748
Table 5.1: Normalized Mutual Information of ATAC clustering

lower resolution gives better results with all three. So it is fair to assume that as
the reference for the ATAC clustering. Nevertheless, the peculiarity of the Ex-L6
cells cluster, which emerged with the higher resolution, will be not discarded.
We qualitatively analyzed the result of Monocle and Cicero and we started the joint
analysis of transcriptomic and epigenetic. But during this work, we also profoundly
utilized the Seurat pipeline, and therefore it is helpful to review its clustering
results and compared them with the previous ones. Again the first thing has been
to transfer the labels from Seurat to Signac (Fig.5.2 ). The results are similar, again
the groups of Oligodendrocytes are grouped, also like the Inhibitory Neurons. This
confirms that accessibility can identify cell types on a higher level. Unfortunately,
there is no more additional information from this visualization, but it is useful to
compare the NMI of the various partitions. One can see from the Table 5.2 two
things. Cluster partitions from the same biological data have higher concordance
(higher NMI values), which one can expect because they derive from the same
dataset. Second, the marker classification and the transfer label classification
agrees better with the transcriptomic data, also expected since they derive from an
expression analysis. However, overall, there is a good agreement between all the cell
partitions meaning that the data from the two biological processes are recognizing
similar heterogeneities between the cells. But this is only an initial qualitative
observation, and therefore is better to study what are the similar features that the
different analyses are commonly finding. To do so we implemented the so-called
gene activity matrix to assess the accessibility of the genes.
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Figure 5.2: Epigenetic data processed with Signac, with Seurat labels

Seurat RNA Seurat ATAC
Seurat clustering RNA // 0.5636672
Monocle clustering RNA 0.676613 0.5846018
Cicero clustering ATAC 0.5898904 0.6890831
Marker classification 0.3788516 0.3396632

Transfer label classification 0.5288887 0.4474821
Table 5.2: Normalized Mutual Information of different classifications.

5.2 Gene Activity Matrix
After this first more qualitative analysis, it is time to attempt to evaluate the
correlation of expression and accessibility. The first approach is something cited
already in section 3.1. With the Cicero pipeline, we employed its functions to
calculate the Cicero connections. The latter are couples of peaks that show co-
accessibility, i.e. they have similar patterns of accessibility between cells. This is
useful because one must remember that peaks do not uniquely identify genes. First
of all, the order of magnitude of their length is much smaller than the genes. Peaks
are small regions that can be contained within the coding gene lengths, but not
necessarily. Some of them mark DNA regions that are not protein-coding but are
relevant as well. For this reason, looking for a relationship between genes and peaks
is not trivial. Difficulties arise from the gene regulation process, which includes
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a wide range of mechanisms that can increase or decrease the transcription of a
specific gene. Some mechanism involves some specific proteins (like Transcriptional
Factors or Repressor) which bind to specific regions of DNA and interact with
the RNA polymerase complex inhibiting or allowing the start of the transcription.
These regions to which the proteins bind can be near the promoter but can also be
very far away. For this reason, to evaluate the general accessibility of a gene, one
needs to look at three things:

• The accessibility of the promoter region: this is the most important since
the promoter is the region where the RNA polymerase binds and starts the
transcription.

• The accessibility of peaks inside the gene body: these are less important but
can also contribute to the overall accessibility.

• The accessibility of binding regions: as explained above, these are regions that
directly regulate the transcription, so their accessibility is relevant.

The last point is the most problematic since the networks of transcriptional factors
can be complex, and knowing all their binding regions becomes difficult to analyze.
Therefore, instead of looking at all the possible peaks that could be binding sites, we
employed the results of the co-accessibility calculations. The underlying hypothesis
is that co-accessible peaks define regulatory correlations, in particular, the ones
that are co-accessible to the promoter regions are likely to be binding sites to
regulatory complexes. With this information, one can try to create the so-called
gene activity matrix, which is a matrix, similar to the count matrices for expression,
that has the cells as column names, the genes as rows, and the element of the
matrix are the gene activity scores. The scores are related to the three aspects
mentioned above. With the help of Cicero tools, one can create a gene activity
matrix that takes into account all of them, using the co-accessibility evaluated
by the same pipeline. The workflow to do so is the following. The first thing to
do is to identify the peaks that are promoters and annotate them. To do so, one
needs to use an annotation file, which contains all the coordinates and various
information for each gene. From it, one takes into consideration the first exon
of each transcript, and annotate it as a one base coordinate to indicate the start
of the gene sequence. With the function "annotate_cds_by_site", that for each
peak indicates the gene if it is its promoter or NA otherwise, one can store the
promoter annotations is then stored in the ATAC CDS . After this, there are two
steps. First, the function "build_gene_activity_matrix", which takes as input the
ATAC CDS and the connection file generated from co-accessibility, and generates
an unnormalized gene activity matrix. For a quality check, it is useful to eliminate
every row or column with 0 entries. Second is the normalization of the matrix
through the function "normalize_gene_activities", which takes as input the list
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of the number of accessible sites per cell (can be easily found in the pData of the
CDS, called "num_genes_expressed"). The result is a matrix with 15430 rows
(genes promoters) and 10309 columns (same number of cells). The first thing that
jumps out is that the number of features is less than half of the number of genes in
the expression count matrix that was 33160. This means that more than half of
the genes did not have peaks on promoters. The cause can be due to experimental
errors or biological reasons. The first is related to the peak calling step of the
experiment, which could not have been able to correctly identify some peaks, due to
too low fragment number. The biological reason is that the experimental "snapshot"
of the cells, could have been done in a time of changes in chromatin accessibility,
but with some RNA molecules still present. A third possibility is that some of
the genes detected in the RNA experiments were present only for few cells and
their accessibility signals were not strong enough to call a peak. Anyways, once we
obtained this matrix, the idea has been to process it as a count matrix with the
Monocle pipeline. The results are interesting. As always,we clustered the data with
the unsupervised algorithm and visualized using UMAP dimensional reduction(Fig.
5.3). What is obtained is something different from the plots until now. Almost all

Figure 5.3: Cicero gene activity matix clustering and marker classfification

the cells are plotted in this big group, with only a small population of cells a bit
detached. To understand, instead of looking at the clustering, we labeled the cells
with the marker classification. In this way, one can understand the composition of
the groups. The rightmost cluster identifies the Astrocytes, and the cluster near it
is composed of all the cell type of the Oligodendrocytes family. All the remaining
neuronal cells are all together but keeping a certain separation within the large
group. In particular, the Inhibitor neuron cells are localized all together near the
top edge. It is a bit clearer what is happening with the activity matrix. Unlike
previous analyses, here the data are differentiating the cells on a more structural
level. Instead of recognizing possible subtypes, it is acknowledging the general cell
types, meaning it is dividing all the neurons (divided into excitatory, inhibitory,
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etc.) from the Oligodendrocytes family and also the Astrocytes. It might appear
as a downgrade from what we studied until now, but it is not completely true.
We performed the differential analysis as before and the results are interesting.
The top markers of the two right clusters appear to be mostly genes that encode
for proteins that are Transcriptional Factors and Promoter. In particular, using
the platform Uniprot[61] to learn about protein functionality,one can see that the
markers of the Oligodendrocityes family (namely Olig1, Olig2, Sox1) are important
proteins for the formation and maturation of oligodendrocytes. This is important
because it is a cross-validation of the classification made. At first,we identified a
small group of cells by the unsupervised algorithm, then we labeled it with the
literature markers classification, and now with another type of information, there
is the confirmation that they are oligodendrocytes. For the Astrocytes, the top
markers do not show particular specificity with that cell type, but the majority
of them seem to be related to cell-fate determination, neuronal development, and
adult nervous system postnatal development[62]. Unfortunately, a similar analysis
for the neuronal cells does not bring much to the table. Instead of performing
differential analysis between the unsupervised cluster, we performed it also between
the cell types, hoping to find more information. Unfortunately, the results are not
better; the ones related to the already mentioned cell types agree, but concerning
other cell types did not help more. The functional analysis should be done with
more biological knowledge background to find possible relations between these
"active" genes and their cell types[63].
The latter results come from the analysis of the gene activity matrix obtained
with Cicero, which takes into account the co-accessibility values and, therefore, is
applying a complex model. One could argue that maybe the connection calculation
is not reliable enough, but it is better to look only at promoter accessibility. Thus,
we implemented also this version of the gene activity matrix using Signac. the
pipeline provides the function "GeneActivity" which similarly creates the matrix,
but only investigating the gene body and promoter regions[64]. This is a simpler
model, but not necessarily less valid. The first evident difference is that now the
number of features increased (21991 genes). As said also before, the reasons are
not clear, maybe, in this case, a simpler model identifies more active genes.
Anyway, again we processed the matrix as previously. We clustered and visualized
it, and then we labeled the cells with the marker classification. The results are
shown in Fig. 5.4. Again the cells appear to be less well separated, but one can
notice that the Inhibitory Neurons are more distinct from other neurons and are
also identified with a cluster. However, the clustering algorithm has distinguished a
lot of small clusters between the neuron cells, which are probably not so informative.
It has also not been able to separate the Astrocytes from the Oligodendrocytes. So,
overall, there are some differences from Cicero. It is useful, therefore, to perform a
differential analysis, right away between the cell types, to understand if the two gene
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activity matrices agree with each other. However, if one tries to look for the same
active genes that we found for the Oligodendrocytes, they are not present between
the list provided by the Seurat differential analysis. Another way to attempt to
detect informative differentially active genes is to perform the differential analysis
between the cluster obtained from the epigenetic data. In this way, the cells are
partitioned in slightly different ways, and most importantly the total number of
cells is higher. For example, all the Inhibitor Neurons are in one cluster and are
taken into account all the cells and not only the ones that were labeled with the
marker classification. Even if the results do not change that much, it is worth
mentioning that between the active genes for the Inhibitor Neurons, we identified
the genes GAD1 and GAD2 which are strictly related to this type of cells, meaning,
once more, that the gene activity is cross-validating the expression results.
In general, the gene activity matrix obtained with Signac could appear less reliable

Figure 5.4: Signac gene activity matix clustering and marker classfification

but, in reality, further examinations show interesting results. The following section
reports these additional studies, where we tried to combine all the results obtained
until now, as a conclusion to the work.

5.3 Comparative analysis of differentially
expressed genes, accessible peaks, and active
genes

The aim of this last section is to look for the accessibility of marker genes and
differentially expressed genes to understand if epigenetic data can validate the
expression results.
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Summarizing what we have done until now, it all started with the gene expression
analysis, which produced a clustering division that was hypothesized to represent
cellular heterogeneity. Between these clusters, we identified differentially expressed
genes which identify the differences between them based on the data. Next, we
studied the epigenetic data, which contain information about the accessibility of
genomic regions. Again we performed independently clustering and differential
analysis, obtaining information about which peaks were significant for each cluster.
After that, we implemented a classification of the cells based on the expression of
literature markers. This helped to provide a biological background to the dataset.
So in this last chapter,we compared the different clusterings and classifications
with each other, showing strong similarities. However, this kind of comparison is a
qualitative analysis, and it is better to study it more technically. In particular, it
is interesting to understand the correlation between differentially accessible peaks
and expressed genes inside clusters. To do so we analyzed the features linked
to accessible peaks and their expression, and vice versa. The goal is to see if a
difference in accessibility leads to a difference in expression so one can understand if
the features that characterized one cluster are the same in both transcriptomic and
epigenetic data, and therefore the two information agree on the classification. We
started with the observation of the accessible peaks resulted from the differential
analysis. To link them to a gene, Signac provides the function "ClosestFeature". It
takes a list of genomic regions and employing the annotation file, finds the closest
gene to it. Through the list of differentially expressed genes one can search for the
obatined genes, hoping to find a match. Unfortunately, this does not happen. This
methodology is too simplistic since it assumes that peaks and genes are directly
related in a 1:1 manner, but we already explained this is not precise. This proves
that epigenetic data must be studied in a connected way instead of as solitary
features like expression data. Fortunately, we already described the concept of gene
activity matrix, which is the center of this last analysis. The workflow has been
like this:

• One starts considering the two gene activity matrices separately, starting with
the Signac one.

• We performed the differential analysis of the gene activity, considering five
different partitions, Monocle (MG) and Seurat (SG) gene expression clusters,
Cicero (CA) and Signac (SA) epigenetic clusters, and the marker classification
(Type).

• From the resulting lists of genes, we looked for the presence of a list of genes
that includes markers and differentially expressed genes.

• Tables 5.4 and 5.3 report all the results.
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The Tables have inside them the number or name of the clusters in which the
gene is differentially expressed. The column Agree indicates if the cluster in which
the gene is differentially active is in agreement with the cluster that the gene is
originally liked to. The X means that no classification detected the gene. Yes
means that at least one classification detected it and the results agree with at least
half of them. No goes accordingly. The idea is to find some genes that are relevant
for the classification at a transcriptional level and an epigenetic level.
Starting from the Signac gene activity matrix, looking at table 5.4, one can see that
a good number of genes from the list are differentially active. In particular, the set
of markers that we used to identify the Excitatory Neurons appear to be relevant
for the differential analysis regardless of the cell partition considered. What does it
mean? Take, for example, the gene Rorb, which is the marker of the Ex-L3/4, and
was also between the differentially expressed genes of chapter 2. It appears to be
differentially active in some clusters that for each classification identify the exact
cell type of the marker. So this means no matter the pipeline used, no matter the
biological level observed, Rorb identifies the same group of cells, and therefore it is
an optimal marker, and one can label those cells confidently with that specific cell
type. A different situation is for the markers of the Inhibitor Neurons. They do
not appear at any level. This is warring because they seem to not be good markers,
even if they were used in the classification. However, two differentially expressed
genes, Adarb2 and Erbb4, identify the clusters assigned with the Inhibitor labels
and appear to be also differentially active in the same group of cells. Therefore,
they are good candidates to be markers of these cell types. The same reasoning
can be done for the gene Slc1a2 that appears to be a better marker, at least at an
epigenetic level, than Scl1a3, which is strongly related to Astrocytes. Are worth
mentioning also the genes Sox6 and Hs3st2. The first is the marker for OPC cells
and the function identify it in the correct cluster for the expression clusterings
(MG, SG), but when one considers the ATAC clusterings, the analysis identify it
as differentially accessible for the Inhibitors Neurons clusters. This could explain
the ambiguity between the two families of cell types, found during the marker
classification. The second instead is a marker for the Ex-L5/6 cells, but it appears
to be differentially active for clusters identified as Ex-L5. The ambiguity arises
probably from the fact that cells from close layers are more difficult to distinguish.
However, this could be the reason behind the fact that Ex-L5/6 cells were only
small number, since the chosen marker appear to be ambiguous at an epigenetic
level. The last gene to be mentioned is Fam19a1. It has been discussed also during
the differential expression analysis since it appeared to identify multiple clusters.
The same uncertainty emerged from the activity investigation, meaning that, even
if it is not a good marker for a single cell type, it is strongly differentiated for these
various groups of cells both at the transcriptomic and epigenetic level. Thus the
consistency between expression and activity helps to validate the first. Looking
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instead to the Cicero gene activity matrix, things are different. Here the great
majority of the genes on the list do not appear to be differentially active. We found
just four of them, reported in table 5.3. Vip gene appear only between the In-4
cells of the marker classification, and no others, so it is not enough to make more
hypothesis. The genes Bcas1 and Erbb4, instead, agree with before, in particular,
Erbb4 confirms the reliability as a marker for the Inhibitory Neuron cell types (it
is also in agreement with other studies[65]). The last one is the Apoe gene, which
interestingly enough, was not in previously list. We used it as an Astrocytes marker
and appears to be differentially active for exactly the clusters that are labeled as
Astrocytes. The Cicero gene activity matrix, as previously explained, derives from
the study of the various connection between accessible peaks and it is probably the
cause of the discrepancy in the active genes found.
In conclusion to answer the questions posed in the introduction of this chapter:

• Is the clustering process partitioning the cells in the same way in both the
datasets, or there are sensitive differences?
Yes, the unsupervised clustering processes implemented on the datasets agree
if each other, meaning that the classification is consistent throughout the
different biological levels.

• Are differently accessible peaks also differently expressed?
No, the accessibility of peaks alone does not show correspondence with the
expression of the nearest gene.

• Are there direct relations between marker genes and their accessibility?
Yes, we found relations between some marker genes and their accessibility
inside different clusters.

• Is the gene activity matrix analysis informative?
Yes, the gene activity matrix appears to be informative, not only to identify
accessibility of the known genes but also to find the accessibility of new
characterizing genes at a functional level (like Oligo1).

In general, the epigenetic analysis has brought to the confirmation of transcrip-
tomic analysis. In particular, the ATAC data, even if the study of accessibility
alone does not add much, showed how for the same groups of cells, the genes that
are differentially expressed are also differentially accessible. The latter is not a
trivial statement, as the biological mechanisms that regulate gene expression can
be complicated and hide direct relations like that. Therefore, it is fair to say that
the joint analysis of epigenetic and transcriptomic data helps to improve the study
of cellular heterogeneity, for two reasons. First, genes that identify a group of cells
at both biological levels make it strongly consistent, confirming that those cells

64



Joint Analysis

probably belong to the same biological type. This could help the identification of
new cell types that maybe are identified by unsupervised clustering algorithms and
can be validated by a gene activity investigation. Second, the gene accessibility
analysis could bring to the identification of epigenetic markers. Therefore, one
could try to classify cells, like what we done in chapter 4, looking simultaneously
at marker expression and marker accessibility.

Gene MG SG CA SA Type Agree
Apoe 10 8 10 X Astr Yes
Bcas1 21 20 X X X Yes
Erbb4 12 11 X X X Yes
Vip X X X x In-4 Yes

Table 5.3: Differentially active genes for Cicero activity matrix of different
classifications.

65



Joint Analysis

Gene MG SG CA SA Type Agree
Rasgrf 5/6/7 0 4/7/9 2/4/9 Ex-L2/3 Yes
Rorb 3 1/7 0/2 1 Ex-L3/4 Yes

Il1Rapl2 X 5 4/7 8 X No
Cntnt5 4 6 2 3 Ex-L4/5b Yes
Parm1 X X X X X X
Bcl6 X X X X X X
Sulf1 X X X X Ex-L5/6 No
Hs3st2 9 10 12 13 X No
Foxp2 1 2 1 X Ex-L6 Yes
Syt6 X X X X X X
Tshz2 17 16 13 X RGS Yes
Nr4a2 16 15 14 16 X Yes
Col11a1 X X X X X X
Pvalb X X X X X X
Sst X X X X X X
Vip X X X X X X
Npy X X X X X X
Slc1a3 X X X X X X
Apoe X X X X X X
Itpr2 14/19 14/18 X 11 X Yes
Tcf7l2 21 20 X X Oli-1 Yes
Mal X X X X X X
Mog X X X X X X
Vcan X X X X X X
Sox6 21/19 18/20 6 10/15 In-1, In-2 No
Siglech X X X X X X
Bcas1 21 20 X X Oli-1 Yes
Otof X X X X X X
Plp1 X X X X X X
Grin3a X X X X In-2 X
Adarb2 13 13 14 10 In-3, In-4 Yes
Erbb4 12/13 11/13 6 10 In-1,In-3 Yes
Atp1a2 X X X X X X
Lhfpl X X 10 X X X
Slc1a2 10 8 X 12 Astr Yes

Camk2n1 X X X X X X
Rbm25 X X X X X X
Fam16a1 5/6/7/9 0/3/9/10 !2/4/7/9 2/9/13/14 Ex-L2/3 Yes

Table 5.4: Differentially active genes for Signac activity matrix of different
classifications.
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Chapter 6

Conclusions and future
works

With this thesis work, we wanted to understand if the joint analysis of transcriptomic
and epigenenomic data could help the cellular heterogeneity study. It started with
a common scRNA-seq analysis that is what we want to improve or at least validate
with the addition of epigenetic data. We obtained a first division of the cells in
clusters based on the transcriptomic data, and the differential analysis produced a
list of differentially expressed genes. From here we tried to answer four questions:

• To which results does the epigenetic data analysis alone lead?

• What are the cell types identified by the gene expression clustering?

• Do the transcriptomic results agree with the epigenetic ones?

• Are there features that characterize clusters on both biological levels?

For the first one, we proceeded to study the epigenetic data with the same
workflow. From it, one can see how one can also use the accessibility data to cluster
the cells in a way that appears to be similar to the RNA data, meaning that it is
informative for the cellular heterogeneity studies. However, the differential acces-
sibility analysis seems difficult to perform and does not bring much information.
We classified the cells in the dataset with a marker expression investigation that
allowed us to identify cell types and label the cluster at a biological level. This
showed that the expression data clustering was recognizing particular brain cell
types. In particular, we identified eight Excitatory neuron types, four Inhibitory
neuron types, and various Glia cells like Astrocytes and Oligodendrocytes. We
compared the different subdivisions, showing that epigenetic and transcriptomic
data agree with each other, and also their clusters are quite well identifiable with
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the cell types just discussed. However, it appears that accessibility data do not
completely distinguish between certain subtypes but are only able to recognize more
general types, like the Inhibitory neurons and the Oligodendrocytes. Through the
implementation of the gene activity matrix we have been able to link the expression
and the accessibility of some genes. In this way, we demonstrated how groups of
cells are identified by certain genes at both levels, meaning that the epigenetic
data can validate the results of the expression data. In this way, we have been
able to validate the initial hypothesis, that is the joint analysis of epigenetic and
transcriptomic data can help the validation of pipelines’ results and, therefore,
improve cellular heterogeneity studies.
Moreover, this is just the starting point. We want to suggest some possible contin-
uations of this work. First of all, one can study the activity and the expression
of all the features of the dataset. In this way, one could find more genes that are
specific for a cell type at both levels, making them good marker candidates for
future works. Second, since we saw how the epigenetic information is identifying
cell types at a more general level, one could try to reliably identify macro families
of cells with accessibility analysis and focus on them with the expression analysis to
find possible subtypes. One last possible continuation could be based on the Cicero
activity matrix. We noticed how, through it, one can find interesting features
strongly related to certain cell types, despite they were not particularly relevant at
the expression level. Also, more in general, this could be the starting point for a
more deep analysis of the activity of genes as the accessibility of all factors involved
in the transcription process. In particular, it seems that the research in this field is
sleeping on the possibilities of the Cicero gene activity and its informative power.

Anyway, this field is incredibly active and increasingly promising, thanks to
more technological advances for the experiments and different ways to approach
the data, and I hope my work might, even minimally, help future researches.
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