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Summary

The number of Internet of Things (IoT) devices deployed around the world is growing at incredible
speed. The primary goal of their design is optimizing their size, cost and usability, while their
security is underestimated. As a consequence, they often present serious vulnerabilities, posing
security threats to both individual users and organizations. For this reason, delivering software
updates to these devices to patch their vulnerabilities is crucial. In this context, manufacturers
face three main challenges. Firstly, the integrity of new updates must be strictly enforced to
avoid the installation of malicious software, which would create more threats than it mitigates.
Secondly, only efficient and lightweight protocols can be adopted, to account for the limited hard-
ware and software resources characterizing IoT smart objects. And thirdly, one crucial issue is
scalability: software patches are currently delivered by means of traditional client-server architec-
tures, which is not a sustainable approach considering the number of devices involved. Motived
by these limitations, we propose CrowdPatching , a decentralized protocol leveraging blockchain
technologies and zero-knowledge proofs, where IoT manufacturers delegate the delivery of software
updates to self-interested distributors in exchange for cryptocurrency. Manufacturers announce
new updates by deploying a smart contract, which in turn will issue cryptocurrency payments to
any distributor who provides an unforgeable proof-of-delivery. The latter consists in a signature
provided by IoT devices when they receive a valid zero-knowledge proof from the distributor.

Compared with related work, the CrowdPatching protocol offers three main advantages. First,
the number of distributors can scale indefinitely. The update is initially shared by the manufac-
turer with a finite set of distributors. Other proposals do not allow this set to grow at a later
time. Instead, we introduce a mechanism through which distributors can share the update with
others in exchange for a cryptocurrency payment. Furthermore, we leverage the recent common
integration of Hub (or gateway) devices in IoT deployments, by letting them perform the most
demanding actions of the protocol. As a consequence, the protocol is feasible even for the more
constraint IoT objets. Finally, we propose a score system for distributors, which records their
trustworthiness on the blockchain and rewards honest behavior. We provide an informal security
analysis of the CrowdPatching protocol, analyzing possible attacks, as well as the corresponding
protections and mitigations. And we also provide a formal security analysis, which was performed
by means of the Tamarin Prover, a state-of-the-art protocol analysis tool allowing to verify se-
curity properties in the symbolic model. What is more, we present a prototype implementation,
enabling the execution of all protocol steps. In particular, we focus on the implementation of
(i) the blockchain smart contracts and (ii) the zero-knowledge proving system. The former is
based on Ethereum, the second most popular blockchain platform after Bitcoin. While the latter
is based on the zk-SNARKs proving system, and exploits the most advanced cryptographic library
available in this context, called libsnark.
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Chapter 1

Introduction

The number of Internet of Things (IoT) devices deployed worldwide is growing at an incredible
speed, projected to reach more than 75 billion by 2025 [1]. Security is often an afterthought
for the manufacturers of these devices, with their primary concern being cost, size, and usability.
Hence, IoT devices often present vulnerabilities that attackers can exploit, posing serious threats to
organizations and individuals in terms of security and privacy. As a consequence, regular software
updates are fundamental in securing vulnerable IoT devices. In this context, manufacturers face
a number of key challenges [2, 3, 4, 5]. One of the most important requirements is integrity of the
updates. It is fundamental that updates are not tampered with, otherwise the patching process
would create more threats than it mitigates, leading to malicious code being executed. Secondly,
IoT objects are usually characterized by restricted hardware and software resources. Hence,
the need for efficient and lightweight cryptographic primitives and protocols. Thirdly, given the
number of devices involved, another crucial aspect is scalability. Manufacturers currently deliver
updates by means of traditional client-server architectures. However, this approach is clearly
not sustainable when we consider the number of devices, different versions of the same devices,
iteration of updates and requirement to support legacy devices.

In this thesis, we propose CrowdPatching, a protocol allowing manufacturers to deliver updates
to IoT devices in a decentralized manner, leveraging blockchain technologies and zero-knowledge
proofs. In this system, the manufacturer delegates the delivery of new updates to self-interested
agents, called distributors, who undertake this task in exchange for cryptocurrency payments.
First of all, we assume to have a permissionless blockchain as an underlying infrastructure, natively
supporting cryptocurrency and smart contracts. Manufacturers announce a new update release by
deploying a smart contract, which in turn will issue cryptocurrency payments to any distributor
who provides a proof-of-delivery. The latter is a signature generated by an IoT device. It works as
an unforgeable digital commitment through which an IoT device is authorizing the smart contract
to issue a payment to a certain distributor. For this reason, this important signature is produced
by an IoT device only if specific conditions are met. In particular, a distributor is required to
provide an encrypted version of the update, along with the hash value of the symmetric key
employed. What is more, a distributor needs to produce evidence that this encrypted file was
indeed derived from the official update, using a key with the provided hash value. In this context,
the use of a zero-knowledge tool, called zk-SNARKs, is fundamentally important. Before a proof-
of-delivery can be issued, a distributor is expected to provide a zk-SNARKs proof about the
provided encrypted update, mathematically proving that (i) it was indeed obtained encrypting
the update file authorized by the manufacturer and (ii) the employed key has indeed the provided
hash value. Most importantly, this zero-knowledge proof does not reveal anything else beyond
those facts: the unencrypted update and the key remain secret. If the proof is valid, then the
proof-of-delivery signature is generated by the IoT device, and sent to the smart contract by the
distributor along with the encryption key. Before issuing the payment, the contract checks that
the signature is valid, and that the key matches the hash value. Along with the payment, the
smart contract publishes the key on the blockchain. The latter can be now used to decrypt the
file, and the update is finally obtained by the IoT device.

Compared to similar proposals [6, 7, 8, 9] discussed in Chapter 3, our design presents several
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Introduction

novelties and optimizations. In particular, we addressed a number of issues in the work of Leiba et
al. [9], which constitutes the main inspiration for our proposal. First of all, our design allows the
number of distributors to fully scale with the number of IoT devices. Indeed, any distributor who
could not obtain the update file from the manufacturer, can acquire it from other distributors in
exchange for a cryptocurrency payment. This is in contrast with the proposal of Leiba et al. where
distributors can obtain the update file only in an initial phase, and new distributors willing to
participate at a later moment cannot do so in any way. We argue that this limitation significantly
hinders the scalability of their system, as it does not allow the number of distributors to grow
indefinitely. Furthermore, we drastically reduce the requirements necessary for IoT objects to par-
ticipate in the protocol, to account for their limited resources. We achieve this by means of a new
participant, called hub, which functions as a trusted gateway for IoT devices in their local net-
works, performing the most demanding protocol steps in place of them. In particular, differently
from related works, IoT devices are not required to participate in the blockchain network in any
way, and can avoid verifying any zk-SNARKs proof. Finally, we introduce a simple mechanism
allowing to judge the trustworthiness of distributors, leveraging a data structure automatically
maintained by the smart contract. This mechanism is particularly important in a context where
literally anyone can act as a distributor, and no other trust-related assumption can be made about
these entities. What is more, we exploit the only reliable information a distributor is required
to provide: the public key used as recipient for the cryptocurrency payments. We achieve this
through a key-value database stored on the blockchain, associating each distributor’s public key
with the number of successful deliveries performed through time. In other words, when a certain
distributor delivers an update file for the first time ever, a new entry is added to this database
associating its public key with the integer value 1. After each subsequent successful delivery, this
value is incremented. In this way, other participants of the protocol, especially hubs, can access
the blockchain to read this value when choosing a distributor to interact with, selecting the one
with the highest score. This mechanism encourages distributors to behave honestly, keeping a
secure and unforgeable record of successful deliveries.

We produced an informal security analysis of the proposed protocol, discussing known attacks
and evaluating possible vulnerabilities. The results suggest that the protocol is highly resistant
to the most crucial threats, and presents well-balanced mitigations for other non-critical attack
vectors. What is more, we performed a formal analysis by means of the Tamarin Prover, a state-
of-the-art protocol analysis tool allowing to verify security properties in the symbolic model. We
first developed a model representing all steps of the protocol, which must be defined as a collection
of multiset rewriting rules. This included the execution of all the cryptographic functions involved.
Additionally, since Tamarin does not have native support for the zero-knowledge proving system
we employed, we had to provide custom definitions for the corresponding functions. We then
demonstrated the executability of the protocol, which is to obtain mathematical assurance about
the well-formedness of all its steps. Finally, we were able to prove three important security
properties, defined as mathematical formulas over the rules composing the model. Indeed, the
validity of these properties gave us tangible confidence about the security and fairness of the
protocol. One property in particular allowed us to discover a serious vulnerability, capable of
disrupting the security of the protocol and also applicable to a related research work. We were
then able to fix the vulnerability so that the property was eventually satisfied.

Finally, we developed a prototype implementation of the CrowdPatching protocol, enabling
the execution of all its steps. In particular, we focused on the implementation of (i) the smart
contracts and (ii) the zero-knowledge proving system. The former is based on Ethereum, the
second most popular blockchain platform after Bitcoin, and includes three smart contracts. While
the latter is based on the zk-SNARKs proving system, a novel construction allowing to generate
non-interactive proofs, and exploits an advanced cryptographic library called libsnark.

We start this thesis by providing the necessary background in Chapter 2. We continue in
Chapter 3 by discussing the challenges associated with the issue of IoT software updates, and
analyzing the corresponding related works. In Chapter 4, we illustrate the details of our proposal,
discussing all protocols steps in depth. We then present both the informal and formal security
analysis of the protocol in Chapter 5. Subsequently, we illustrate our prototype implementation
in Chapter 6. Finally, we discuss conclusions and future work in Chapter 7.
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Chapter 2

Background

The purpose of this chapter is to provide the necessary background to understand the proposed
protocol, as well its analysis and the related research studies. We provide a brief overview of
blockchain technologies in Section 2.1, and a presentation of its most famous implementation,
Bitcoin. We continue describing another important instance in the evolution of blockchain in
Section 2.2. That is, the Ethereum platform. Here we also discuss smart contracts, the main
novelty introduced by Ethereum. Finally, Section 2.3 provides an overview of zero-knowledge
proof systems, focusing on a specific zero-knowledge tool called zk-SNARKs.

2.1 Blockchain and Bitcoin

The term blockchain can be simply used to refer to a certain type of data structure. That is,
an immutable chain, or sequence, of blocks. Each block within this structure contains (1) a
payload and (2) the hash value of the previous block in the same chain. As a consequence of
this configuration, the chain presents an important property: immutability. It is impossible for
an attacker to tamper with any of the blocks constituting the chain. Any modification would
break the chain of hash values, provoking a mismatch at some point in the chain. What is more,
tampering with the blockchain becomes more difficult as the sequence grows longer. Indeed,
an attacker intentioned to modify a transaction on a certain block would have to modify all
subsequent blocks in the chain. However, the term blockchain most commonly refers to a much
broader set of concepts, introduced along with Bitcoin in a white paper anonymously authored
under the pseudonym of Satoshi Nakamoto [10]. Bitcoin, as described by the title of the paper, is
a peer-to-peer electronic cash system where users can exchange a digital currency, often referred
to as cryptocyrrency. In this context, the blockchain can be described as a distributed database
storing a record of transactions in a permanent and tamper-proof manner. This record, often
referred to as a public ledger, is fully decentralized: an entire copy of the database is maintained
by each node participating in the peer-to-peer network.

The Bitcoin network allows two types of participants: passive nodes, which can only read from
the blockchain, and active nodes, which can also write into the blockchain and are called miners.
Miners play a fundamental role in the system, attaching new blocks to the blockchain. In practice,
a miner performs the following steps. First of all, it gathers new transactions from other users, who
broadcast them in the peer-to-peer network. Once the miner has received enough transactions to
form a block, it can proceed verifying the validity of such transactions. This verification includes
the analysis of previous transaction forming the current blockchain, which must be compatible
with the new transactions. If the new transactions are valid, the miner continues initiating the
consensus protocol. That is, a procedure allowing all participants of the peer-to-peer network to
agree on the validity of the new block. This is done in a distributed fashion, without the need
for a trusted third party. Different consensus protocols are employed in different cryptocurrency
systems. In Bitcoin, the Proof-of-Work algorithm is used. Here, the miner must generate the
solution for a mathematical puzzle based on the specific block. In general, these puzzles are very
difficult to solve, but their solution is easy to verify. Once the solution is computed, the miner
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Background

attaches it to the new block, which can now be broadcasted to the network. Other peers will
accept it as a valid block upon verification of the puzzle solution. If the majority of the peers of
the Bitcoin network accept it, the block is added to the blockchain. As a consequence, all peers
update their downloaded copy of the blockchain. An important detail hidden in the previous
steps is the following. According to the Bitcoin protocol, a miner adds a specific transaction to
the block, before computing the corresponding puzzle solution. That is, a transaction where new
cryptocurrency is created and sent to the miner itself as a reward. This constitutes the only
way in which new currency is injected into the network. The identities of participant nodes are
managed through public key cryptography. Any account must posses a private key, which is kept
secret, and the corresponding public key. What is more, transactions can be considered valid only
if they are presented with a signature, generated by the sending party by means of its private
key. In other words, if a transaction represents a cryptocurrency transfer from public key pubA

to pubB , it must be accompanied by a signature made by A on the transaction itself, by means
of its private key prvA. A signature by the receiving end B is not required.

In general, blockchains can be permissionless or permissioned. In the first case, anyone is
allowed to access the blockchain. More precisely, any node can read the blockchain or generate
transactions, or even act as a miner, without any need for authentication. The Bitcoin blockchain
falls in this category. On the other hand, permissioned blockchains can be accessed by authorized
nodes only. Most importantly, only a selected number of actors can participate in the consensus
protocol to approve the validity of new blocks.

2.2 Ethereum and Smart Contracts

After Bitcoin, new alternative blockchain systems were introduced. Many of these systems are
analogous to Bitcoin in most of their features. However, others presented applications far be-
yond the mere exchange of digital cash among participant nodes. One of those applications are
smart contracts. The term was coined by Szabo in a 1997 paper [11], long before the invention
of Bitcoin. Here the author explains the idea through an example, where smart contracts are
compared to vending machines. Any entity in possession of coins can interact with a vending
machine, which will react automatically providing products (and change) according to the price
tag. What is more, security mechanisms are in place, and cost of breaking them is higher than the
benefits for a potential malicious user. However, the first practical applications of such concept
were proposed years later, exploiting distributed ledgers and their consensus algorithms. In this
context, smart contracts can be defined as computer code deployed on the blockchain, executed
securely and automatically in a distributed fashion when certain conditions are met. Similarly to
blockchain systems supporting solely cryptocurrency exchanges, the operation of a smart contract
are triggered by valid transactions performed by nodes on the network, and the results are also
recorded in the distributed ledger.

The most important platform with support for smart contracts is Ethereum, a blockchain sys-
tem introduced by Buterin in 2014 [12], currently the second most widely adopted blockchain plat-
form supporting cryptocurrency exchanges, after Bitcoin. Ethereum supports externally owned
accounts, owned by users of the network, and smart contract accounts. External accounts are
controlled by regular users holding private keys, while smart contract accounts are automatically
managed by their own code. Users can create a new contract by sending a transaction to a specific
fixed address, called the zero-account. Furthermore, they need to attach the code of the smart
contract itself, as well as the needed parameters and an arbitrary amount of cryptocurrency. As a
consequence of these action, the smart contract is deployed to the blockchain, and is represented
by a new contract account. The parameters sent by the creator constitute the initial state of the
contract, while the cryptocurrency forms its initial fund. From this point on, any user can send
transactions to the address belonging to the contract account. This would trigger the execution
of the contract code. Depending on the conditions, many actions can be performed, such us
changing the state of the contract by writing in its storage on the blockchain, or automatically
issuing transactions to other accounts, which in turn can be users or other other smart contracts.
To avoid malicious actors exploiting the automatic nature of code execution, all Ethereum opera-
tions requiring computational effort have an associated fee, which is measured with a special unit
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called gas. As in Bitcoin, users can also exchange cryptocurrency between each others, without
interacting with smart contracts at all.

2.3 Zero Knowledge Proofs and zk-SNARKs

A zero knowledge proof is a cryptographic tool allowing one party, the prover, to convince another
party, the verifier, of the validity of a certain statement, without revealing anything more than
the validity itself. The concept was first introduced in a paper by Goldwasser, Micali and Rackoff
[13]. Here, authors define zero-knowledge proofs as proofs that reveal no additional knowledge
other than the correctness of the statement in question. More precisely, zero knowledge proofs
must satisfy three properties:

• Completeness: a honest verifier, i.e. properly following the protocol, will always accept the
proof generated by an honest prover if the statement is indeed true.

• Soundness: no dishonest prover can ever convince a verifier that a false statement is true.

• Zero-knowledge: there is no action which can be performed by a dishonest verifier to extract
any knowledge from a prover beyond the validity of the statement.

Zero-knowledge proofs of knowledge are a specialization of zero-knowledge proofs. Here, the
prover aims at proving its knowledge of a certain secret value belonging to a statement, the validity
of which is also proved. This secret value is called witness, and the verifier is convinced of its
knowledge without learning anything about the value itself. For example, a prover P could prove
the knowledge of a secret witness xsecret satisfying the statement y = H(x) when x = xsecret and
y = ypublic. In other words, P can produce a zero-knowledge proof of knowledge to convince a
verifier V about the knowledge of a secret value xsecret, which is the hash pre-image of a non-secret
value ypublic. Traditionally, zero-knowledge proof of knowledge protocols require the two parties
to have an interactive communication composed of several successive steps.

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs) are a novel
zero-knowledge proof of knowledge system [14, 15, 16, 17] introducing several optimizations.
Among them, the fact that they are non-interactive, allowing the prover to generate proofs asyn-
chronously with respect to the verifier. In other words, given a certain statement, a proof of
knowledge for a certain witness is generated once and for all, and can be verified at any later
moment by the verifier. Furthermore, they are succinct, meaning that (i) the verification process
is not computationally expensive and (ii) the proofs are limited in size. The zk-SNARKs system
is composed of three algorithms, Setup, Prove and Verify, informally defined as follows:

1. The Setup is performed by a trusted third party who knows the structure of the statement
S that needs to be proved (meaning the size of its variables and the algorithms in use) but
not the assigned values. In other words, the trusted third party does not need to know a
witness for the statement, nor its public (non-secret) values. Using that structure as input,
the proving key pk and the verifying key vk are generated by the trusted party. Referring
to the example mentioned before, S could be defined as y = H(x), and to generate the keys
the third party would have to know the size of y and x, e.g. in terms of bytes, as well as
the hashing algorithm H in use, e.g. the SHA256 algorithm. The proving key must then
be used by any prover who wants to generate a proof for the statement S to a verifier who
is employing the corresponding verifying key. It is worth noting that the trust placed into
the third party is crucial. Indeed, having performed the Setup, this actor has the potential
to generate fake proofs that would be accepted as valid by a verifier.

2. Before proceeding, P selects valid values for the variables in S. Continuing the example, P
selects xsecret and ypublic such that ypublic = H(xsecret). The Prove algorithm takes as input
the assigned values, along with the key pk, and generates the proof π.
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3. The Verify algorithm takes π and vk as inputs, along with the non-secret values, i.e. ypublic
in the example. If the proof is valid, the output of Verify is successful, and V is convinced
about two facts: (i) the statement with assigned values, xsecret and ypublic in the example,
is indeed satisfied; (ii) P knows the witness, i.e. the value xsecret. It is important to note
how the secret value (ypublic) remains unknown to V . Due to the zero-knowledge property,
V is not able to extract this information in any way from P .
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Chapter 3

IoT Software Updates

The goal of this Chapter is threefold. It begins illustrating, in Section 3.1, the importance of
software updates for the Internet of Things, and the challenges associated with this non-trivial
task. Among those challenges, we later focus on the main motivation for this thesis work: the
issue of scalability in an ever-growing IoT market. In Section 3.2, several related research studies
are presented, proposing solutions for delivering IoT updates. Finally, Section 3.3 is entirely
dedicated to one of those related works, as it constitutes the central inspiration for our work.

3.1 Challenges for IoT Software Updates

As we argued in Chapter 1, the number of IoT devices deployed around the world is growing
at incredible speed. These devices often present serious vulnerabilities that can be exploited by
attackers, with significant damage. A situation which represents a threat not only for the users
of the devices themselves (e.g. in terms of privacy) but also for other entities participating in the
same network (e.g. DDoS attacks targeting servers on the Internet and exploiting IoT objects
as zombie-agents). For this reasons, it becomes fundamentally important to regularly deliver
software updates to these devices to patch their vulnerabilities, to protect their users and the
network as a whole. Several studies in the literature have identified this problem as one of the
main challenges faced by the Internet of Things at present times, but most importantly in the
future when the number of devices will increase overwhelmingly.

A paper by Lin and Bergmann [2] investigates the challenges faced by IoT Smart Home
environments in terms of privacy and security. The authors identify the issue of software updates
as one of the two most critical problem for the future of those systems. They argue that while
desktop operating systems and smartphones regularly receive software patches, things are different
for IoT devices. Updating personal computers and general purpose mobile devices is feasible
because the number of deployed devices is acceptable, still in the millions. On the other hand,
IoT objects amount to several billions, and the number is growing rapidly. Furthermore, they are
not homogeneous devices. For this reasons, they do not receive the same treatment, and regular
patches provided by the manufacturer are not common. Additionally, manufacturers often fail to
provide Smart Homes with adequate technical support. Consequently, the authors advocate for
a mechanism capable of automatically deploying software and firmware updates to IoT devices.
This mechanism, they argue, should require minimum user intervention, and could be easily
undertaken by the home gateway.

The work of Kimani et al. [3] focuses on IoT devices that are employed as components for
smart grid networks, i.e. smart electricity grids where IoT sensors and actuators can be controlled
through the internet to create an intelligent eco-system, capable of providing optimized (and
greener) services to users. The authors recognize the huge advantages of such intelligent systems,
but they also identify the security issue as one of the most critical challenges, especially considering
the specific consequences in this context. Indeed, a successful attack on a smart grid would mean
significant economic loss. But most importantly, it could result in electricity shortages which
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could, in turn, produce catastrophic effects for environments such as hospitals or care homes, as
well as many others. The paper goes on noting that one of the main obstacles for the security
of these IoT devices is the lack of a possibility to update their software once they are deployed.
Currently, most manufacturers do not plan for future upgrades, even though security patches
would constitute a very effective instrument to mitigate potential threats. For all this reasons,
the authors underline the need for innovative approaches capable of deploying software patches
effectively and sustainably.

An article authored by Ray et al. [18] focuses entirely on IoT hardware patching and arrives
to similar conclusions: IoT objects are becoming so pervasive that their security is undoubt-
edly critical, especially for certain infrastructures such as hospitals, power grids or water supplies.
Even though the article is advocating for hardware updates, it draws many parallels with software
patches and offers meaningful insights that are applicable to both fields. For example, it high-
lights how IoT devices cannot benefit from the short life-cycle that characterizes other products.
In fact, traditional computing systems such as desktop devices and smartphones are frequently
replaced with new models, thus avoiding the need to fix vulnerabilities presented by old versions.
Instead, IoT devices are often expected to last for decades, making it impossible to exploit device
replacement as an easy alternative to fixing old vulnerable models.

Authors of [4] make similar observations in an article dedicated to the future of software
updates for the Internet of Things. IoT devices, they note, are often deployed with a fixed
firmware, without any plan to upgrade it in the future. This trend is expected to change in the
coming years, when hardware-independent IoT software will naturally and increasingly spread.
Furthermore, the authors underline the discrepancy between (i) the tendency of vendors to provide
updates just until the end of the warranty period and (ii) the long life-expectancy of many IoT
objects such as smart washing machines. Hence the need for protocols and platforms allowing
manufacturers to easily provide software updates without incurring in the high costs that usually
hinder this deployment for longer periods.

Having recognized the importance of keeping IoT devices updated in an efficient and secure
way, the task itself remains a very difficult one. Indeed, the challenges are numerous and diverse.

The work of Hernandez-Ramos et al. [5] aims exactly at enumerating and analyzing those
challenges, as well as describing some potential solutions. The authors acknowledge the same
premise that was presented so far: IoT devices are becoming more and more ubiquitous and
therefore very attractive targets for attackers, and patching them is an essential part of the
necessary protection. Among the many heterogeneous issues identified by the authors, we will
present the ones we focused on throughout this thesis. Those are also among the set of challenges
we addressed in our proposed protocol.

One of the most important issues is integrity. It is fundamental that any update installed by
an IoT device has not been tampered with, otherwise the patching process would create more
threats than it mitigates, as it could lead to malicious code being executed.

Another challenge is identified in the problem of trust. That is, IoT devices must be able
to trust software providers, to avoid illegitimate software being released from unauthorized enti-
ties. In particular, this can be achieved through the use of proper cryptographic tools and key
management algorithms.

Furthermore, the authors point out how the restricted resources that usually characterize IoT
objects should also be considered. Cryptographic primitives and protocols should be efficient and
lightweight, requiring the minimum amount of computing power for IoT entities and using small
overheads in their messages to avoid overloading the network.

Finally, the paper underlines an issue that we embraced as one of the main motivations for
our work. That is, the issue of scalability and the consequent need to transition from current
centralized approaches to decentralized solutions. The authors note how, nowadays, the majority
of manufacturers deliver updates using traditional client-server architectures. However, given the
rate at which the number of IoT devices is growing at globally, this approach is not sustainable
for the future. IoT manufacturers would be required to maintain ever-growing data centers to
distribute software patches to billions of devices, incurring in incredible costs. Several studies in
the literature recognize this problem as a crucial one, and propose different solutions. In section
3.2, we will describe and analyze those proposals.
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3.2 Related Work

Boudguiga et al. [6] propose the use of a blockchain infrastructure to deliver updates to IoT
devices belonging to different manufacturers. The authors do not provide one single solution, but
many alternative approaches that can be employed to increase the availability and the integrity
of updates. In practice, they suggest two main strategies.

The first is for the manufacturer to sign a certain update that has to be delivered, and upload
it directly on the blockchain. This approach would provide a very important advantage: persis-
tency. That is, to ensure, thanks to the built-in properties of the blockchain, that once an update
file is uploaded it will remain there forever and unaltered. What is more, the blockchain would
also provide more resistance to common availability threats, such as Denial of Service (DoS) at-
tacks, compared to traditional client-server infrastructures. Finally, it could solve the scalability
problem, given the decentralized nature of blockchain technologies and protocols. However, the
paper itself recognizes the limits of this strategy: uploading the whole update file would easily
become unfeasible due to the blockchain size, which would have to be downloaded by all partic-
ipants in its entirety. This is especially true in the context of IoT, where the number of devices
is so significant and their nature is also very heterogeneous. What is more, IoT devices are often
limited in terms of hardware and software capabilities, including storage.

For this reasons, they also propose a second strategy, where the blockchain is limited to
ensuring what they call update innocuousness. That is, the ability to provide all the information
needed to verify the integrity of an update without storing the update file itself, which is the most
inconvenient element in terms of size. Additionally, as part of this second strategy, the authors
propose to exploit peer-to-peer (P2P) technologies to distribute the actual update file, in parallel
to the blockchain framework. In this context, IoT devices would behave as nodes in the P2P
network and share the file with other peers that need the same update.

We argue that the first strategy, as the authors themselves acknowledge, can too easily be-
come inapplicable. Uploading the actual patches to the blockchain would increase its size at an
unsustainable rate. On the other hand, we consider the second strategy to be very effective, as it
solves the scalability issue exploiting P2P file sharing.

However, this approach presents two main issues. First of all, it suffers from the same problem
that usually affects P2P file sharing protocols such as BitTorrent. That is, the tendency to only
download from other peers without ever uploading, leading to low availability for files. Hence, the
need for a mechanism able to stimulate users to actively participate in the network, committing
their resources and sharing files. In traditional P2P file sharing settings such as BitTorrent, this
mechanism is known as chocking. That is, a punishment for users that do not behave correctly:
when other peers notice their misbehavior, they stop uploading data to them. But this solution is
not applicable in this context where IoT devices are interested in downloading just one particular
update file in a given time window. Indeed, once a device has obtained the update file, it has
no interest in uploading it to others. And the disincentive of bandwidth-choking would not work
because this device has no interest in downloading anything else until the next update is released.

Secondly, we argue that the framework proposed by Boudguiga et al. is not taking the IoT
resource constraints into consideration. In their solution, IoT devices are expected to actively
participate as full nodes in both the blockchain network and the P2P network. While this task
is arguably trivial for traditional devices such as desktops or even smartphones, the same is not
true for IoT objects, which are often battery-powered and need to preserve as much energy as
possible by limiting their computational efforts.

Another work by He et al. [7] also tries to exploit the benefits of blockchain technologies,
focusing on Over-The-Air (OTA) firmware updates for IoT. They design a mechanism that allows
IoT devices to validate new firmware releases securely. Manufacturers are required to deploy
a new transaction to the blockchain whenever a new update is released, containing important
information that can be consulted by an interested IoT device later. The next step is for the
manufacturer to send the update itself to the IoT device, along with the transaction ID that will
indicate where to look in the blockchain. In this way, the IoT device can check the integrity and
the authenticity of the update before installing it.
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We believe this approach to be very effective in terms of validation. Blockchain does indeed
provide the perfect characteristics for this purpose, successfully eliminating any possibility of
tampering with the firmware update file. However, the solution proposed by the paper does not
address the scalability problem we identified earlier. Despite having recognized the importance of
not uploading the update file directly to the blockchain, the authors do not propose an alternative
approach, implicitly suggesting the use of traditional centralized mechanisms to deliver the actual
update file that will be later validated by means of the proposed algorithms.

The next solution proposed by Lee [8] presents several improvements, compared to the previous
studies. The paper identifies the scalability issue, and the consequent need for new decentralized
update delivery systems, as the main motivation for its contribution. The proposal consists in
a new decentralized framework capable of incentivizing untrusted third parties to participate in
the delivery of updates, with the security requirements being enforced through blockchain and
smart contracts. This solution has three main participants. The provider corresponds to the
manufacturer, the entity whose objective is to deliver a certain software update to a specific
set of IoT targets called recipients. And then, an intermediary third-party entity is introduced,
called transporter. Transporters take care of (i) obtaining the update files from the provider (or
providers) and (ii) delivering them to the recipients. The basic idea is that a transporter will
get a reward, in the form of cryptocurrency, for every update package delivered to each recipient.
The fairness of this process is enforced through the blockchain (and the smart contracts deployed
on it) and through other traditional cryptographic mechanisms.

An instance of the protocol can be divided in four steps:

1. First of all, a provider (wanting to deliver an update to a set of recipients) encrypts the
update file U with a key s that is known only by the provider itself and the recipients.
Then, another round of encryption is applied to the update, this time with a different key
ki, obtaining Uk. Afterwards, the provider prepares an update package containing many
elements, including the key ki and Uk. It is important to note that the provider creates a
different package for each recipient, i.e. for each different target IoT device. In other words,
if the provider wants to deliver the update to a number n of devices, it will have to create
n different packages, each with a different key ki corresponding to a certain recipient device
Di. The package also contains some metadata, such as the hash of the key H(ki). Finally,
it includes a keyed hash that will allow the recipient to verify the integrity of the elements.
A keyed hash is generated by hashing a concatenation of (i) various elements that need to
be validated and (ii) a specific secret key known only to the other party who will perform
the validation. In this case the secret key is s and the elements are the ones that will be
sent to the recipient, including Uk and H(ki).

2. At this point the transporters receive the packages. Each package, different from the others
because of a different key ki, can be used to deliver the update to a specific device Di. Once
a device has been found, the transporter can send the package after having (i) removed the
key ki and (ii) added its own blockchain address. The latter will be used to set up the
payment of the cryptocurrency reward. This modified package will be then validated by the
recipient by means of the keyed hash mentioned before.

3. If the modified package is successfully validated, it means that the hash of the key H(ki)
and encrypted file Uk are indeed authorized by the provider by means of the keyed hash. In
this case, the recipient can generate the receipt, which consists in a smart contract deployed
to the blockchain. The smart contract code will perform two main actions: (i) receive
the decryption key ki from the transporter and check its validity, mainly checking if its
hash value corresponds to the hash value that was received in the modified package by the
recipient; (ii) send the reward to the transporter and publish the key ki, so the recipient can
decrypt Uk. The reward is sent (and the key is revealed) only if the validation is successful.

4. Finally, the transporter can send the key ki to the smart contract. If the key is valid, the
contract code will securely and atomically (i) send the cryptocurrency reward to the address
that was specified by the recipient at contract creation and (ii) publish the key for anyone
to read. The recipient will then be able to decrypt the update file.
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The solution proposed by this paper constitutes a very fine proposal for a decentralized update
delivery system, which has many aspects in common with our own work. The manufacturer can
do away with expensive client-server architectures and can delegate this task to (untrusted) third
parties, incentivizing them through micropayments in the form of cryptocurrency. What is more,
the fairness of the protocol for both the recipients of the service (IoT devices) and the transporters
is automatically enforced by means of the blockchain and the smart contracts deployed on it. And
the same goes for the security of the framework: assuming that the provider is behaving honestly,
there is no way for the other entities to perpetuate malicious attacks. However, we identified some
flaws in this design.

First of all, IoT devices are required to perform many different actions, which are often com-
putationally expensive. This is especially true if you consider the constraints on IoT resources,
both in terms of hardware and energy consumption. The most significant example is the need to
function as full blockchain nodes. That is, the need to be able to monitor the blockchain, commit
transactions and deploy smart contracts. The latter also includes attaching a certain amount of
cryptocurrency as a fund for the contract itself, which means that IoT objects are responsible for
managing a cryptocurrency wallet, adding even more complexity. For this reasons, we argue that
this framework could not be suitable for many IoT devices.

Secondly, the protocol is designed so that every IoT device receiving an update file will have
to deploy a new smart contract. This entails a computational burden, as we already mentioned,
but also a cost in terms of cryptocurrency. Each new deployment will require a new fee, and given
the high number of devices, the cost could easily become overwhelming.

Finally, the paper presents a major issue related to one of its main objectives. That is,
scalability. Even though the proposed framework successfully manages to delegate the delivery
of updates to third-party transporters in a fully decentralized way, there is a structural problem
preventing the system from scaling in practice. The protocol is constructed in a way that requires
the manufacturer to produce a different package for each recipient. In other words, the number
of packages that need to be prepared and sent out is equivalent to the total amount of target
IoT devices. The number of transporters could be much lower. It could even amount to just
one transporter, delivering the update to all targets. However, the manufacturer would still have
to send n different updates packages for n devices. We argue that, in this way, the purpose
of avoiding a client-server architecture for distributing the update is defeated. Indeed, sending
the update n times to a set of intermediate third-parties would be even more costly than the
traditional centralized approach.

The next related research is also the last of this kind that we present in this thesis. Compared
to the previous proposal, it brings many novelties and optimizations, and comes a step closer to
the main objective we set for ourselves: designing an update delivery system capable of scaling
with the rising number of IoT devices being deployed around the world. Furthermore, this next
paper constitutes the main inspiration for our own design. For all this reasons, we will illustrate
it separately in the next section.

3.3 Our Case Study

This section is entirely dedicated to illustrating the work of Leiba et al. [9]. Their design of an
Incentivized Delivery Network of IoT Software Updates Based on Trustless Proof-of-Distribution
can be regarded as the basis for our contribution.

In few words, their proposal consists in a highly decentralized framework that allows any
manufacturer to delegate the burden of delivering IoT software updates to self-interested third-
parties. The honest behavior of these parties, called distributors, is enforced through (i) the
use of smart contracts deployed on a blockchain and (ii) a powerful zero-knowledge tool called
zk-SNARKs. Both tools were discussed in Chapter 2.

We will first outline the entities participating in this framework, in Section 3.3.1. Afterwards,
in Section 3.3.2, we will illustrate the steps of the protocol. In Section 3.3.3 we will finally
underline a set of issues we identified in this work, as well as the corresponding modifications and
improvements we are proposing.
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3.3.1 Framework Entities

First of all, the framework requires the existence of two important underlying infrastructures:
the blockchain network and a peer-to-peer (P2P) file sharing network. The blockchain network
must support smart contracts and digital currency. And it must be permissionless, meaning that
any interested party can read and post messages. The authors believe Ethereum to be the best
real-world example of a blockchain network fitting all those requirements. From now on, we will
implicitly refer to the Ethereum implementation when discussing blockchain-related mechanisms.
As of the P2P network, it must be accessible to anyone, allowing files to be consumed and served
by means of a peer discovery scheme such as a distributed hash table (DHT).

Another important entity is the vendor, i.e. the manufacturer who initiates any instance of
the protocol by releasing a new update. It must be able to participate both in the blockchain
network and in the P2P network. In particular, it must be a full blockchain node, capable of
maintaining a wallet and initiating transactions. Furthermore, any manufacturer m must possess
an asymmetric key pair, i.e. a private key prvm and a public key pubm derived from prvm.

Each vendor m is the manufacturer of a specific set of IoT objects and manages their updates.
For this purpose, the vendor stores a list of public keys pubom,i each belonging to a device om,i.
In addition to its public key, each IoT object is also in possession of the corresponding private
key prvom,i , as well as the private key of the manufacturer. IoT objects have less requirements,
compared to vendors, when it comes to the participation in the blockchain network. That is, they
are not expected to store an entire copy of the blockchain data structure, to avoid incompatibility
with certain resource-constrained IoT devices. The authors argue that this lightweight approach
can be achieved in various ways, such as relying on a trusted blockchain node or employing the
Ethereum light client modality that is currently under development. The situation is similar for
IoT devices participating in the P2P network: they are only required to be able to download files
from other peers, while they are not required to upload anything.

Finally, the remaining entity involved in this framework is the distributor. Distributors are
third-party untrusted agents that are interested in delivering the update file to the IoT objects
in exchange for a cryptocurrency reward. They are required to be full participants in both the
blockchain network and the P2P network. Literally anyone can act as a distributor as long as
they meet those two requirements. Each distributor dj also needs to posses a private key prvdj

and the corresponding public key pubdj .

3.3.2 Protocol Steps

We illustrate the steps needed to successfully terminate an instance of the protocol in which a
single manufacturer m is intentioned to release an update file U destined to a set of IoT objects
om,1, om,2, . . . , om,n.

Update Release

Manufacturer m is about to release an update file U and performs the following steps:

1. Computes the hash of the update Uh := H(U) which will serve as an ID for the file.

2. Generates the zk-SNARKs keys: the proving key pk and the verifying key vk.

3. Prepares the update package P containing the update itself and other useful information.

Formally, the package is defined as P := {U, vk, pk, sigm} where sigm is a signature made by
the manufacturerm on the concatenation of U and vk, using the private key prvm to generate
the signature itself. To be precise, the signature is defined as sigm = Signprvm(Uh||vk).

4. Computes the hash of the package Ph := H(U).
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5. Decides the duration ∆ of the time-window in which the update can be delivered.

The purpose of this value will be clear later. In short, it defines a time-window, the purpose
of which is twofold: (i) a distributor can claim a reward only within this time and (ii) the
manufacturer is not allowed to withdraw the funds committed in the smart contract be-
fore this window expires. This is used to enforce fair conditions for both distributors and
vendors. For the latter, it allows to set a deadline after which the funds committed to the
smart contract can be withdrawn, e.g. in case a subset of IoT devices is unreachable and
the corresponding rewards cannot be claimed by anyone. For the distributors, it avoids
a situation in which they deliver the update but cannot obtain the corresponding reward
because the vendor withdrawn the funds from the contract.

6. Finally, the manufacturer deploys a smart contract to the blockchain.

This is a smart contract corresponding to this specific update release for the selected list of
IoT devices. In other words, the manufacturer would need to deploy a new smart contract
for any new update, or for the same update but with a different set of devices.

The vendor m needs to provide several elements to deploy a well-formed smart contract.
First of all, it needs to send an amount f of cryptocurrency as a deposit. This deposit will
constitute the smart contract funds and will be used to pay the single rewards to distributors.
As mentioned before, this fund cannot be withdrawn by m until an amount ∆ of time has
passed. This amount is also provided to the contract at creation time. Other elements
needed for its deployment are: the update hash Uh, the package hash Ph and the list of
public keys pubom,1 , pubom,2 , . . . , pubom,n belonging to the target IoT objects manufactured
by m. All these elements are public, readable by anyone who can access the blockchain.

When creating a new smart contract, the manufacturer also needs to provide its code, i.e. the
logic of the smart contract itself, which will be securely executed by the blockchain network
through the distributed mechanism described in Section 2.1. The authors define this logic
by means of a pseudo-code fragment. In simple terms, it results in the following algorithm.
For each public key pubom,i in the provided list, if any distributor with public key pubdj is
able to present a proof-of-delivery sigom,i

before the expiration of ∆, then a payment will

be sent to that public key pubdj , using the deposit f as a source of cryptocurrency to fund
the payment. The nature of the proof-of-delivery sigom,i

will be explained later.

Initial Seeding

At this point, distributors become aware of the new release, as they are regularly monitoring the
blockchain. The manufacturer enters a temporary phase in which the update package P is sent,
via the P2P network, to any distributor who requests it. In particular, the request is performed
using the hash value Ph readable from the smart contract. This phase is meant to last a limited
amount of time to avoid high costs for the vendor in terms of bandwidth. After its end, a certain
amount of distributors will have obtained the update package P . It is worth nothing that from
this moment on, there is no way for any additional distributor to participate in the distribution
of this particular update release taking place in this instance of the protocol.

Upon obtaining the package P , any distributor performs two checks. First, it computes the
hash of the package P and compares it to the hash value Ph readable from the blockchain to check
its integrity. Secondly, it checks the validity of the signature contained in the package using the
public key of the manufacturer.

Update Delivery

After the initial seeding phase has come to an end, distributors are ready to deliver the update.
They announce its possession on the P2P network by enlisting its hash value Uh. At the same
time, IoT objects, who are also regularly monitoring the blockchain, become aware of the new
release. They turn to the P2P network and request the update using its hash value Uh retrievable
from the smart contract.
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Let us analyze the steps performed in this phase by a distributor d who has received a request
for the update from an IoT object om. This object belongs to the set of many IoT devices
manufactured by m and its public key is included in the list stored by the smart contract. At the
end of the following steps, the distributor will have obtained the proof-of-distribution required
to claim the cryptocurrency reward. On the other hand, the IoT device will have obtained the
encrypted version of the update. The key to decrypt it will be sent by the distributor to the smart
contract to unlock the reward payment, and the smart contract will publish it for anyone to read.
As we will see, the fairness of the protocol is enforced through zk-SNARKs and the contract code.

1. Distributor d sends an identification challenge c to object om.

2. Device om performs a signature on c and sends the tuple (idsigom , pubom).

Formally, the signature is defined as idsigom := Signprvom (c)

3. Distributor d performs a series of sub-steps:

(a) Verifies that pubom belongs to the list in the smart contract.

(b) Verifies the signature idsigom .

(c) Securely generates a random key t.

(d) Computes the value r = H(pubd||t).
(e) Computes the value s = H(r).

(f) Obtains Ue = Enc(U, r) by applying symmetric encryption to U with r as key.

(g) Generates the zk-SNARKs proof π for the following statement S using pk:

s = H(r) ∧ Uh = H(U) ∧ Ue = Enc(U, r)

As explained in Section 2.3, the generated proof π works as follows. It is produced by
a prover, in this case d, with the objective of proving the validity of a statement, in
this case S, without revealing all the elements constituting the statement itself. The
elements that are revealed are referred to as public values, the others are called secret
values. In this context, the secret values are U and r, while the public values are Uh,
Ue and s. To generate the proof, a specific zk-SNARKs function needs to be used.
This proving function takes as input both the secret values and the public values, and
the proving key pk. The latter must be produced by a trusted third-party. In this
scenario, pk was produced by the manufacturer along with the verifying key vk, both
included in the package P . The verifying key vk is later used by the verifier as input
for the verifying function, along with the public values and the proof π.

(h) Finally sends a message to om containing: the public values Uh, Ue and s; the zk-
SNARKs proof π; the signature sigm that was included in the package P .

4. Object om receives the message from d and performs the following sub-steps:

(a) Verifies the signature sigm to authenticate the values Uh and vk.

(b) Verifies the zk-SNARKs proof π of the statement S.

If the proof is valid, om will be convinced about the validity of the statement S. In
other words, there will be mathematical assurance about two important facts. (1) The
encrypted update Ue received from d was effectively obtained encrypting an update file
U with hash value Uh using a key r. It is important to remember that the hash value
Uh was authenticated by the vendor by means of the signature sigm, and that the key
r remains unknown to om for the time being. (2) The received hash value s was indeed
obtained computing the hash of the key r. As we already said, the value r is proven
to be the key used to encrypt U and obtain Ue.

(c) Sends the proof-of-delivery deliverysigom to d

This proof-of-delivery is simply obtained as a signature on the concatenation of two
values, Uh and s, i.e. deliverysigom = Signprvom (Uh||s). On the other hand, the im-
portance of this signature for the protocol is quite remarkable. It can be seen as a
formal commitment made by the IoT device, a digital token capable of unlocking the
cryptocurrency reward for d. This will be clear in the next steps, when the distributor
will send the proof-of-delivery to the smart contract.
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Reward Claim and Key Publication

Let us continue to follow the actions of the IoT object om and the distributor d. The latter is
now ready to claim the cryptocurrency reward as a payment for its delivery efforts. When the
following steps are successfully executed, two events are triggered atomically: (i) a payment is
issued by the smart contract to the distributor and (ii) the key is published on the blockchain,
allowing the IoT device to finally decrypt the update file which is already in its possession.

1. Distributor d verifies the signature deliverysigom

2. Now d can post a transaction to the smart contract on the blockchain, attaching various
elements: its own public key pubd; the public key pubom of the IoT object; the values t, r
and s; the proof-of-delivery deliverysigom .

The smart contract code takes care of validating this transaction in a secure and fair manner,
checking that all those values were produced correctly. The transaction is successful only
if the following conditions are satisfied: (i) the time-window is not expired; (ii) the public
key of the IoT object belongs to the list provided by the vendor at creation time; (iii) the
update has not yet been delivered to this specific object; (iv) the values t, r and s have
valid mathematical relationships as in the statement S; (v) the value deliverysigom sent by
d is indeed a valid signature.

If the transaction is considered valid by the smart contract, a payment will be automatically
issued to d, and the key r will be published to the blockchain.

3. IoT object om retrieves the key r from the blockchain and decrypts U = Dec(Ue, r).

3.3.3 Discussion

Compared to the last related work discussed in Section 3.2 [8], this paper presents several signif-
icant improvements. We outline them in the following.

First of all, there are less requirements for IoT objects to fully participate in the protocol.
IoT devices are not supposed to maintain a cryptocurrency wallet, for example, since the deposit
made by the manufacturer is used by the smart contract to issue reward-payments instead. Also,
they are not required to store the entire blockchain data structure locally: it is enough for them
to rely on a trusted gateway or to act as light nodes. Another major optimization is the number
of smart contracts generated per instance of the protocol. Instead of producing as many contracts
as the number of target IoT devices for each update release, only one contract is deployed for any
single release, independently of the number of devices.

Furthermore, there is a significant improvement in terms of scalability. The manufacturer is
not required to distribute as many update packages as the number of IoT objects. Instead, there
is only one package per update release. This means that, hypothetically, the vendor could send
just one package to only one distributor. And that distributor could bring the update file to the
entire set of target IoT devices. In this case, the vendor’s bandwidth efforts would be incredibly
minimized. Despite being an extreme and improbable scenario, it is indeed theoretically possible
given the design of the protocol. The same cannot be said for the other framework.

However, we identified a series of issues in this design, which will be illustrated in the following.
As a consequence to these findings, we conceived several important modifications, which constitute
the contributions of this thesis. These enhancements will be mentioned here and then discussed
in depth in Chapter 4. They concern different aspects of the framework, including its scalability,
its security and its efficiency.

First of all, during the initial seeding phase, only a finite number of distributors will obtain
the update file from the manufacturer. That is because any given distributor has no interest in
sharing the file with others, since it would lessen its possibility to obtain a reward. We argue that
this limitation does not allow the framework to adequately fulfill the goal of improved scalability
compared to current centralized approaches. Indeed, the number of distributors can only grow
linearly with the size of the time-window in which the manufacturer seeds the file. To solve this
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issue, we introduce the possibility for distributors to share the update file with new distributors
in exchange for a direct payment in the form of cryptocurrency. We argue that this improvement
will effectively boost scalability, as it allows the set of distributors to grow exponentially.

Another issue is that, even if the requirements for IoT devices are indeed quite reduced com-
pared to other works, they are still significant for such resource-constrained entities. For example,
in terms of their involvement with the blockchain network. Even if they can avoid storing the
entire blockchain data structure, they are still expected to monitor and access it. This results in
the need to implement a whole application layer to understand and interact with the blockchain,
which is quite a burden in terms of software complexity. A similar reasoning is applicable to the
P2P network. Despite the fact that IoT objects are not required to share any file to other peers,
significantly reducing their requirements compared to traditional peer-to-peer file sharing environ-
ments, they are nevertheless required to interact with distributors through the P2P network. This
adds an unnecessary layer of complexity to them, especially compared to traditional client-server
architectures in which a device simply establishes a direct communication link with its vendor
to download an update. Lastly, IoT objects are also required to verify zk-SNARKs proofs. This
operation is much less complex than generating such proofs, but still very demanding for this
type of devices. To overcome this problem, we introduce a new participant to the protocol: the
hub. That is, a gateway device managing a heterogeneous set of IoT devices all connected to the
same local network. In general, many studies show the importance of the hub in the IoT context,
including from a security perspective. Cirani et al. [19] propose the use of a hub as a way of man-
aging heterogeneous IoT devices. Another example is RES-Hub, a solution proposed by Doan
et al. [20] in which the goal of the hub is to bring resilience to the IoT ecosystem by providing
functionalities when the cloud is unavailable. Authors in [21] propose PLAR, a PLuggable And
Reprogrammable software architecture aiming at securing IoT devices, in which a hub plays a
key role for achieving this goal. Finally, the solution proposed by Simpson et al. [22] employs a
hub as a central security manager. Furthermore, many current real-world IoT ecosystems employ
this entity: devices are usually not directly connected to the Internet, but instead managed by
an intermediate hub or gateway which is a more capable device in terms of computational power,
storage and bandwidth [23]. Examples are the Apple HomeKit1 or the Samsung SmartThings
hub2. In our protocol, hubs are responsible for performing the majority of the steps necessary
to exchange the update file for a proof-of-delivery. On the other hand, we also allow the case in
which an IoT device is capable enough to perform these steps by itself without the aid of a hub.
Additionally, to incentivize the participation of this entity in our framework we introduce another
type of reward meant only for hubs.

Moreover, we identified a potential vulnerability in the framework. That is, the lack of a coun-
termeasure for malicious distributors pretending to possess the update file to waste the resources
of an IoT device. Despite the incentive of the cryptocurrency reward, which should encourage
distributors to behave honestly in most cases, we argue that this attack could still be performed to
prevent specific IoT targets from obtaining the update. Therefore, we designed a protection mech-
anism: a simple database deployed on the blockchain, recording which distributors are behaving
honestly. This is implemented with integer values associated with the public keys belonging to
distributors. These values are recorded in the blockchain automatically by the smart contract,
making the database secure against any tampering. In this way, an hub or an IoT device can
consider these scores to choose the most trustworthy among a set of available distributors.

Finally, while performing the formal analysis of our protocol, we discovered an important vul-
nerability that is also applicable to this design. That is, the challenge c sent by the distributor to
the IoT device for identification purposes (see Section 3.3.2). This challenge can be constructed
in a way such that the IoT device will directly produce the proof-of-delivery needed for the dis-
tributor to get the reward. In other words, by simply choosing the right value for c, a distributor
can obtain the cryptocurrency payment without actually delivering the update, effectively break-
ing the security of the protocol. For more information, see Section 5.2.3 where we discuss the
corresponding segment of the formal analysis of our protocol.

1https://support.apple.com/en-us/HT207057

2https://www.smartthings.com/gb/products/smartthings-hub
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Chapter 4

Proposed Protocol

In this thesis we propose CrowdPatching , a secure protocol allowing manufacturers to do away
with expensive centralized infrastructures in order to deliver software updates to their IoT devices.
Instead, CrowdPatching consists in a fully decentralized system in which the distribution of IoT
updates is fully decentralized, being delegated to a scalable set of self-interested agents. These
actors, called distributors, are rewarded through cryptocurrency micro-payments for each single
IoT device they are able to deliver an update to. The cryptocurrency payment-system, although
funded directly by the manufacturer, is managed automatically through the use of blockchain
smart contracts to ensure fairness for all the parties involved.

4.1 Participating Entities

4.1.1 Blockchain Platform

The protocol requires the presence of an underlying blockchain platform with specific features.
First of all, it must be permissionless. As explained in Section 2.1, this refers to the possibility for
anyone to access the blockchain freely. More precisely, there are three main modalities to access
the blockchain. The first is to simply read the data on the public ledger, without interacting with
it in any other way. This can be done by any node connected to the blockchain network, without
any other requirement. A second access mode is to act as a passive node, posting transactions
to the blockchain network without taking care of mining new blocks. The only requirement to
perform this type of action is the possession of a public-private key pair. The identity of a node is
represented by its public key, and any transaction posted by this node must be accompanied by a
signature on the transaction itself, generated with its private key. Finally, nodes can participate
as active nodes, called miners, gathering transactions from other peers and validating them. In
the proposed protocol, participating entities are not expected to act as miners. Instead, they only
read from the blockchain or, at most, post transactions to the network.

The blockchain structure must also have native support for cryptocurrency. In fact, after
Bitcoin was introduced, many alternative blockchain implementations were proposed that did not
provide support for digital currency exchanges. However, this feature is extremely important for
this protocol. Indeed, some participant nodes are required to post transactions to the blockchain
network which involve cryptocurrency payments.

Another required feature is for the blockchain to support smart contracts, as described in
Section 2.2. That is, it must support the deployment of computer code to the blockchain, which
is executed automatically in a distributed fashion by the network and can be triggered by specific
transactions or events. What is more, smart contracts need to have the ability to generate new
smart contracts. In other words, it must be possible for a user in the blockchain network to
structure the code of a smart contract in such a way that, when certain conditions are met, this
will automatically deploy new contracts to the same blockchain network, without any aid from
the original creator, i.e. the user who programmed the first contract.
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A real-world platform implementing all these features is the Ethereum blockchain. Throughout
the rest of this chapter, we will implicitly refer to the Ethereum implementation when discussing
blockchain-related mechanisms of the proposed protocol.

4.1.2 Peer-to-peer file sharing

A subset of the participating entities of our protocol make use of a peer-to-peer network [24] to
share files, i.e. a peer-to-peer file sharing network. More precisely, this network is decentralized
and must be accessible to anyone. What is more, it must provide a peer-discovery scheme based on
a distributed hash table (DHT). That is, a distributed data structure providing a lookup service
in the form of a table, with key-value pairs as entries. In this system, any user can lookup the
address of other peers holding of a certain file f by means of its hash value fh = H(f). In order
to be found, these peers must announce their possession of the file to the network, which results
in the addition of the mentioned entry in the DHT. This type of network, with the indicated
peer-discovery scheme, provides a number of benefits. These include (i) fault-tolerance, as the
system is strongly decentralized and does not present a single-point-of-failure, and (ii) scalability,
as it allows the participation of huge numbers of nodes simultaneously. The details of such peer-
to-peer network are out of scope for this thesis. However, several real-world implementations are
available, such as the BitTorrent protocol1.

4.1.3 Manufacturers and IoT Objects

The key objective of our proposed protocol is to allow manufacturers to deliver software updates
to their IoT devices. As we will explain in a later section of this chapter, any instance of the
protocol begins with a manufacturer node releasing a new update, targeting a specific set of IoT
objects as recipients of such update. In this regard, it is worth noting that the protocol allows an
arbitrary number of different manufacturers to simultaneously release a new update independently
from each other, targeting different sets of IoT devices.

Any manufacturer node is required to maintain a private-public key pair, as well as the list
of public keys belonging to all IoT devices that might be targeted by an update release in the
future. Furthermore, manufacturers are expected to participate both in the blockchain network
and the peer-to-peer file sharing network. In the blockchain network, manufacturers need to
be able to post transactions and deploy smart contracts. In the peer-to-peer network, they are
required to upload data to other peers. Manufacturers must also be able to perform various types
of computations. (i) They must be able to apply symmetric encryption to files with different
sizes. (ii) They need to execute the Setup algorithm of the zk-SNARKs system to generate a
proving key and a verifying key. (iii) And they are required to compute hash values and digital
signatures. Among these requirements, the most demanding is the execution of the zk-SNARKs
Setup algorithm, which is quite computationally expensive. However, this algorithm is executed
only once per update release. In other words, it is performed only once in order to deliver the
update to a large number of devices.

IoT nodes have fewer requirements. They are still expected to securely maintain a private-
public key pair. Also, they need to be capable of computing digital signatures and hash values.
However, they have no other requirement. In particular, they are not required to interact with the
blockchain in any way. Also, they can avoid to verify zk-SNARK proofs, as well as to participate
in the peer-to-peer file sharing network. These reduced requirements are crucial for the feasibility
of our protocol. As we discussed in Section 3.1, IoT devices often present restricted resources in
terms of both software and hardware capabilities, therefore requiring lightweight protocols with
minimum computing power demand. What is more, these devices are usually battery-powered,
thus requiring low computational efforts to preserve as much energy as possible. In our protocol, it
is indeed possible to avoid the computational burdens listed above, thanks to the entity described
in the next Section. That is, a gateway device managing various IoT devices. These gateway
devices are in charge of performing the mentioned actions on behalf of IoT objects.

1https://www.bittorrent.org/
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4.1.4 Hubs

As discussed in Section 3.3.3, the proposed CrowdPatching protocol includes a new entity with
respect to related research works. That is, the hub, a gateway device managing a set of devices
deployed in a local network. A set of devices which can potentially be heterogeneous, meaning
that managed devices could belong to different manufacturers and therefore different software
updates providers. As we argued, the usefulness of hubs in the IoT context is well documented
by several academic studies, including for security reasons.

We assume hubs to be trusted by the corresponding IoT devices. In other words, the IoT
objects managed by a hub are expected to trust the hub itself. That is because we assume
these gateway devices to be manually configured by the same user who is also the owner, or
supervisor, of the IoT objects. For example, let us consider a smart home environment with a
few deployed IoT devices. The owner of such home, can deploy an additional gateway device, or
hub, and configure it to act as a manager of the IoT devices connected to the same local network.
However, manufacturers cannot share the same trust. As shown later in the detailed protocol
steps, manufacturers make no security assumptions whatsoever about hubs. This is reflected in a
specific feature of our protocol: a cryptocurrency incentive encouraging hubs to behave honestly.
This mechanism is explained in Section 4.2.5.

The main requirements for hubs are as follows. First of all, they need to possess a private-
public key pair. They also need to be able to read data from the blockchain, as well as to post
transactions on such platform. Participation in the peer-to-peer file sharing network is expected
as well. They need to be able to verify zk-SNARKs proofs. And finally they must be capable
of decrypting a file that was obtained through symmetric encryption. Other minor requirements
include signature verification and hashing.

4.1.5 Distributors

Finally, a key role in the protocol is played by the last entity: distributors. These are self-
interested agents whose objective is to obtain cryptocurrency payments in exchange for delivering
software updates to IoT devices. By self-interested, we mean that they are not affiliated with
manufacturers in any way. Instead, their actions are purely motivated by the prospect of obtaining
the cryptocurrency payments. These payments, which can be seen as rewards, are provided by
the manufacturers. As we will see later, a reward is offered for each IoT device who is targeted by
a new update release. Consequently, each of these payments is automatically issued to the first
distributor who is able to prove to have successfully delivered the update to the corresponding
device. This mechanism is made possible by smart contracts.

Distributors are further divided in two sub-categories, depending on the modality in which
they obtain the update before distributing it. This is because in the CrowdPatching protocol
distributors have two possibilities in this regard, for each new update release. First, they can
download the update directly from the manufacturer, which is the most desirable option for
them. Distributors belonging to this category are called first-hand distributors. However, for
reasons that will be explained later, it is possible for a distributor to be unable to pursue this
option. The alternative is to acquire the update from a first-hand distributor in exchange for a
cryptocurrency payment. Distributors following this alternative are referred to as second-hand
distributors. Once they acquire the update, second-hand distributors become effectively identical
to first-hand distributors.

As far as the security assumptions are concerned, distributors of both kinds are completely
untrusted by all the other participating entities. As suggested by the name of the CrowdPatching
protocol itself, its goal is to essentially crowd-source the delivery of IoT updates. For this reasons,
literally anyone is allowed to act as a distributor. Which is why they are treated as potentially
malicious actors in all protocol steps. Several cryptographic tools are used to enforce their honest
behavior, as well as native protections offered by the blockchain platform.

While the protocol theoretically allows anyone to act as a distributor, this is not completely
accurate in practice because of the requirements they have. Indeed, they need to be able to
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perform several actions, often computationally demanding. They need to participate in the peer-
to-peer file sharing network, as well as in the blockchain network. In the latter, they not only need
to monitor its events, but also to post transactions. They also need to maintain a private-public
key pair. Most importantly, they are expected to generate zk-SNARKs proofs.

4.2 Protocol Steps

The CrowdPatching protocol allows an arbitrary number of manufacturers to manage the delivery
of software updates to their IoT devices simultaneously and independently. In other words, the
steps illustrated in this section can be performed by any manufacturer at any time, without
considering the actions of others. For this reason, in the following we will consider a single
manufacturer m, to set an example that is valid for any manufacturer. An overview of all steps
(with few omissions) described here is presented in Figure 4.1 at the very end of this section.

4.2.1 Super Smart Contract

Before any update can be released, the manufacturer m is first required to perform a preliminary
step and deploy what we call a Super Smart Contract (SSC). That is, a smart contract which is
capable of generating new smart contracts with a specific template. The generation of these derived
smart contracts is triggered when specific transactions are sent to the SSC. This preliminary step
is performed only once for each manufacturer.

The SSC has an additional purpose: it stores an integer score associated with any distributor.
More precisely, an SSC maintains a data structure in the blockchain keeping track of successful
deliveries accomplished by distributors, by means of an integer value associated with their public
keys. Given a certain manufacturer, if a distributor performs its first delivery of an update to
an IoT device, its score is instantiated with value 1. For any subsequent delivery, its score is
incremented. This value, stored on the blockchain and accessible by anyone, can be used by
other participants to judge the relative trustworthiness of any distributor compared to others.
Additionally, the score of a distributor is periodically reset to 0 by the SSC, with a frequency
that is decided by the manufacturer at the time of SSC deployment. This last mechanism avoids
a situation in which certain distributors accumulate very high scores, making it very difficult for
new distributors (starting with score 0) to be trusted by other participants.

Once the SSC is deployed, the manufacturer can proceed. In the rest of this chapter, we will
focus on the actions performed by the following actors:

• The manufacturer m who is about to release a new update file U

• An IoT device om, one of the many manufactured by m and targeted by the release of U

• The hub h managing om, i.e. connected to the same local network

• A first-hand distributor df and a second-hand distributor ds

The result of the steps described above will be threefold. (i) The IoT object om will have
received the update file U . (ii) The distributor responsible for the delivery of the update to om
will have received a cryptocurrency payment as a reward. (iii) And finally, the hub h will have
received a cryptocurrency reward as well.

4.2.2 Update Release

The next step is for the manufacturer m to prepare a series of elements. Firstly, a pair of zk-
SNARKs keys, the proving key pkD and the verifying key vkD. These are generated based on the
following statement SD, where the secret variables are U and r:

s = H(r) ∧ Uh = H(U) ∧ Ue = Enc(U, r)

28



Proposed Protocol

In this statement, U is the new update to be released by m; Uh is its hash value, obtained applying
the hashing algorithm H; Ue is an encrypted version of the update, obtained applying a symmetric
encryption algorithm Enc and employing a key r; and finally s is the hash value of the key r. The
manufacturer also needs to generate a second pair of zk-SNARKs keys, pkE and vkE , this time
for the statement SE with secret variables P and r:

s = H(r) ∧ Ph = H(P ) ∧ Pe = Enc(P, r)

This other statement SE is almost identical to SD, except for the variable U replaced by P . The
latter refers to another file, a package containing several elements which will be prepared by m in
the very next steps. The purpose of these key pairs will be illustrated in Sections 4.2.3 and 4.2.4
respectively. To produce them, as explained in Section 2.3, m needs to have knowledge about
two aspects of each variable in the statements: their size (not their actual values) and the specific
algorithms used. For example, r could be a 256 bits key, and the manufacturer would not need to
know its actual binary value. And the hash function H could be implemented with the SHA256
algorithm. SD has almost the same structure as SE except for the size of U compared to P : this
is the reason why two different key pairs are needed.

Another element that m needs to prepare is the package P , the actual file that was referenced
by the homonym variable in statement SE . This package is constructed by m to contain (i) the
update file U , (ii) the proving key pkD, (iii) the verifying key vkD and (iv) a signature generated
by the manufacturer m upon the update hash value Uh, formally defined as sigm := Signprvm(Uh).
This is the package that will be sent to distributors in the next stage of the protocol. Each internal
element has its purpose. The one of the update U is obvious: this is the file that needs to be
distributed to the target IoT devices. The zk-SNARKs keys will be used to generate and verify
proofs throughout the protocol. And the signature sigm is used by each IoT device to validate the
update file in the very last steps of the protocol, avoiding the risk of accepting malicious updates.

Now the manufacturer m is ready to send a transaction to the SSC to trigger the creation of
a new SC. In general, the SSC is able to generate two kind of derivate smart contracts, delivery
smart contracts (DSCs) and exchange smart contracts (ESCs), depending on which SSC function
is addressed by the triggering transaction. We will discuss ESCs in 4.2.3. Instead, in this case
the manufacturer m generates a new DSC. In few words, this is the smart contract that will
take care of issuing cryptocurrency rewards to distributors who are able to provide evidence that
they delivered the update to the target IoT device. To deploy it, m needs to attach an arbitrary
amount of cryptocurrency as a deposit and several other parameters. The deposit will serve as a
source for the cryptocurrency rewards. The parameters are needed to initialize the state of the
new DSC. It is worth noting that m is not required to attach the contract code, which would be
necessary with traditional contract creation. Instead, the code is attached by m only once when
the SSC is created, and then used as a template for new DSCs. This is convenient for m. But
most importantly for other participants, as they can avoid expensive security checks on each new
contract code. It is enough for them to concentrate on the security of a single SSC, to be assured
that any DSC derived from it is secure as a consequence. The same reasoning is valid for ESCs.
The parameters sent by m are the following:

• An integer value te indicating the time interval (e.g. measured in weeks) after which the
DSC is considered to be expired.

• The hash values Uh := H(U), Ph := H(P ), vkDh := H(vkD), pkEh := H(pkE) and vkEh :=
H(vkE). These values will be part of the contract state, and therefore they will all be
published on the blockchain. They can be used for integrity checks, exploiting the security
features of the blockchain itself. That is, these values will be immutable and authenticated
by the contract creator, which is the manufacturer. As a consequence, anyone can check
the authenticity of a certain file by computing its hash value and comparing it with the
corresponding value in the blockchain.

• The list Lm of PKs belonging to the target IoT objects. Among the others, this list contains
the key pubom belonging to the IoT object we are focusing on in this illustration.

• The values ad and ah representing the amounts of cryptocurrency to be sent for each reward,
for distributors and hubs respectively.
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When triggered for the creation of a new DSC, the SSC performs one single check on the
received elements: the selected amounts ad and ah must be compatible with (i) the cryptocurrency
deposit and (ii) the number of target IoT objects in the list Lm. This check is needed to avoid the
case in which the DSC has not enough cryptocurrency balance to fund all the payments, which
would not be fair to distributors who make an effort to deliver the update.

If this check is successful, a new DSC is deployed with a code that translates to the following
algorithm. If any distributor with public key pubd is able to present a valid proof-of-delivery
(PoD) for any of the IoT targets in Lm, and no previous PoD was presented for that target
before, then a cryptocurrency payment (of amount ad) is sent to pubd. Furthermore, if any hub
with public key pubh provides a valid proof-of-final-delivery (PoFD) for any of the targets, and no
previous PoFD was previously presented for that target, a cryptocurrency payment (of amount
ah) is sent to pubh. The previous actions can only be performed if the DSC is not expired, i.e. if
the amount of time passed since its creation is still less than te. The nature of PoDs and PoFDs
will be explained while illustrating the next steps. In short, they are signatures generated by IoT
targets on specific values, and they are able to securely prove that a certain step of the protocol
was performed for the benefit of the corresponding IoT device. The DSC can easily verify these
signatures using the public keys listed in Lm.

4.2.3 Initial Seed and Additional Sharing

At this point, the protocol expects distributors to be regularly monitoring the blockchain network.
In this way, when the manufacturer m triggers the creation of a new DSC, they become aware of
the new update release. The next step is for distributors to request the package P via the peer-
to-peer file sharing network. This is possible because the manufacturer has previously announced
the availability of the package through its hash value Ph. So distributors can request the package
using the same hash value, which can be retrieved from the DSC on the blockchain.

Distributor-Distributor Exchange

The initial seeding phase, where the manufacturer shares the update file with distributors, lasts
for a limited amount of time. At the end of this temporary stage, a finite number of distributors
has obtained the package P . As explained in Section 4.2.2, we refer to these kind of distributors
as first-hand distributors (FHDs). Now, these FHDs compete against each other, trying to be
the first to deliver the update to as many IoT devices as possible. Hence, they have no interest
in sharing the package P with any new distributor willing to participate in the protocol. We
call these new distributors second-hand distributors (SHDs). To allow them to participate, we
introduced a fundamental feature to the CrowdPatching protocol. That is, a way for a SHD to
obtain P from a FHD, in exchange for a cryptocurrency payment. Let us follow the actions taken
by a SHD ds to perform such exchange, with a FHD df who is in possession of P . In general, we
refer to this interaction as a distributor-distributor exchange (DDE).

The SHD ds sends a request for P on the P2P network, and df replies with an identification

challenge c. To prove its identity, ds sends back its public key pubds along with a signature
sigds

:= Signprvds (c). Once the signature is verified, df can check the score of ds on the blockchain
and decide whether to proceed with this interaction. This last steps is important for df to avoid
wasting its resources. Indeed, the following steps include a zk-SNARKs proof generation and are
therefore quite expensive in computational terms. We argue that, if the score associated with ds
is reasonably high, df can be quite confident about its intentions. In case df decides to trust ds,
the next step is to generate a zk-SNARK proof for the statement SE illustrated in Section 4.2.2:

s = H(r) ∧ Ph = H(P ) ∧ Pe = Enc(P, r)

Before doing so, df computes the following: (i) a fresh and random key t; (ii) the hash values

r := H(t k pubdf ) and s := H(r); (iii) the encrypted version of the package Pe = Enc(P, r). Now
the proof π can be generated using both the secret values and the public values for SE as inputs,
along with pkE . The secret values are P and r. The non-secret values are Ph, Pe and s. This
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proof is sent to ds along with the public values that are not yet known to ds itself, which are Pe

and s. What is more, df also sends the keys pkE and vkE .

The keys can be verified by ds using their hash values on the blockchain. Afterwards, ds
verifies the proof π using the public values Ph (retrieved from the blockchain), Pe and s, as well
as vkE . If the proof is valid, ds is mathematically convinced about two important facts: (i) Pe was
effectively obtained encrypting a package P with hash value Ph using a key r; (ii) s was indeed
obtained computing the hash of r. In other words, ds can now be sure to be in possession of
an encrypted file Pe, which is the encryption of the exact package validated by the manufacturer
through its hash value Ph on the blockchain. What is more, this encrypted file can be decrypted
through a certain key r, which is still secret but has a non-secret hash value s. As a consequence,
ds only needs the hash pre-image of s to unlock the plaintext package.

At this point, ds can send a transaction to the SSC to deploy a new ESC, the second kind of
smart contract that can be generated. An arbitrary amount of cryptocurrency must be attached
as a deposit. The code for an ESC can be summarized as follows. If the ESC is not expired, a
cryptocurrency payment will be issued to any sender with public key pubdf who is able to provide
the values t and r so that r = H(t k pubdf ) and s = H(r). When these conditions are met, the key
r will also be published on the blockchain. Once the ESC is deployed, df can send a transaction
attaching t and r, which would trigger the cryptocurrency payment to df itself. The key r can
then be used by ds to decrypt Pe and obtain P . From this moment on, there is no difference
between df and ds, they both have all necessary elements to deliver the update to IoT targets

and obtain rewards. What is more, since ds also received the proving key pkE from df , it can also
perform exchanges with new SHDs who want to acquire the update.

It is important to note how the possibility for DHE exchanges impacts the scalability of
the CrowdPatching protocol. In the work of Leiba et al [9], there is no such option. In their
protocol, there is no way for new distributors to join after the initial seeding phase has ended.
As a consequence, the number of distributors is severely limited by that particular time window.
Instead, in CrowdPatching the number of distributors can grow indefinitely. Furthermore, it can
grow at any point in the course of a given instance of the protocol. In other words, DDE exchanges
can take place at any time, as they are not tied with any specific step of the protocol.

4.2.4 Update Delivery

Let us continue with the actions of a distributor d, which can be either df or ds, or in general
anyone in possession of the package P . The hub h, responsible for the IoT object om, discovers
about a new update by looking at the blockchain. As a consequence, h sends a request through
the peer-to-peer network, requesting U though its hash value Uh, which can be found on the
blockchain. Through this mechanism, the hub h can find any node who announced the possession
of the same file by enlisting its hash value. Additionally, h sends a fresh nonce n1 to the selected
distributor. The request is received by d, which sends back its public key pubd, a signature
sigd := Signprvd(n1) and an identification challenge c.

At this point, h can verify if the signature sigd was indeed generated using the received
public key pubd. If valid, h checks the integer score corresponding to pubd on the blockchain.
If the latter is not satisfying, h can search for a more trustworthy distributor. Otherwise, c
is forwarded through the local network to the managed IoT object om. The latter now must
generate a fresh nonce n2, and subsequently generate a signature sigIDom = Signprvom (c ||n2). This
signature, along with n2, is sent back to h. The use of the additional nonce n2 is crucial for the
security of the protocol. In the system proposed by Leiba et al. [9], the IoT object generates a
signature on the challenge c directly, without first combining it with a fresh nonce. However, as
we discovered during the formal analysis of this protocol described in Section 5.2, this constitutes
a critical vulnerability. Indeed, the challenge c can be constructed in a way that the IoT device
will generate a signature that effectively unlocks the cryptocurrency payment for the distributor.
Instead, the simple concatenation of a fresh nonce in our protocol solves the problem. The details
of this vulnerability and the corresponding solution are illustrated in Section 5.2.3.

Now the hub h can forward the signature sigIDom to d, along with the nonce n2 and the public

key of the object pubom . The distributor d verifies that (i) the signature sigIDom was effectively
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generated using the private key corresponding to the public key pubom and (ii) the public key
itself belongs to the list Lm on the blockchain. Afterwards, d can prepare for the generation of a
zk-SNARK proof for the statement SD introduced in Section 4.2.2:

s = H(r) ∧ Uh = H(U) ∧ Ue = Enc(U, r)

A series of elements needs to be computed for this purpose: (i) a random key t; (ii) the hash values
r := H(t || pubom || pubd) and s := H(r); (iii) the encryption of the update file Ue := Enc(U, r).
The proof π can then be obtained employing both the secret values (U and r) and the public
values for the statement SD as inputs, along with the proving key pkD. Finally, d can send π to
the hub h, along with Ue, s, vkD and the signature sigm.

The hub verifies the zk-SNARKs proof π using the public values of SD and the verifying key
vkD. If valid, h is mathematically convinced that: (i) Ue was indeed obtained encrypting a file U
with hash value Uh using a key r; (ii) the hash value of the key r is s. At this point, the situation
is very similar to the one described in Section 4.2.3 where a second-hand distributor has verified
the zk-SNARKs proof received from a first-hand distributor. In an analogous way, in this case
the hub h can now be certain to have received an encrypted file Ue which is the encryption of
the exact update file that was authorized by the manufacturer through its hash value Uh on the
blockchain. Furthermore, the hub is convinced that this encrypted file can be decrypted using a
key r, which is still secret but has a known hash value s.

Consequently, h can proceed and request a proof-of-delivery (PoD) to the IoT object om.
Along with this request, the hub forwards the values Uh, s and sigm. The latter was published
with the DSC on the blockchain. In turn, om verifies sigm. In this way, the IoT device is assured
that its manufacturer has indeed authorized the update file corresponding to the hash value signed
in sigm. If the signature is valid, om sends back another signature to h. That is, a signature that
constitutes the PoD, defined as sigPoD

om
:= Signprvom (Uh k s). This PoD signature is fundamental

and powerful. It is a way to formally declare to have received the encrypted update with hash
value Uh, which can be decrypted with a key that has hash value s. This formal declaration in
the shape of a signature can then be used by the distributor to claim the reward. Once received
by h, the signature sigPoD

om is forwarded to d.

4.2.5 Key Publication and Final Delivery

The distributor d first verifies the signature sigPoD
om against the public key pubom received before.

If valid, d can post a transaction to the DSC, attaching various elements: (i) the public key of
the targeted object pubom ; (ii) the values t, r and s; (iii) the PoD signature sigPoD

om . If the DSC is
expired, it simply ignores the transaction. If not expired, it checks the validity of the submitted
values by testing a series of conditions in the following order:

1. The public key pubom must be present the list Lm, and was not already served by another
distributor. This can be enforced through a simple flag.

2. The equality r = H(t || pubom || pubsender) must be satisfied. This ensures that the key r was
created by the sender of the transaction.

3. The equality s = H(r) must be satisfied. This ensures that the submitted value s is indeed
the result of hashing the submitted key r.

4. The signature sigPoD
om must match the concatenation of the update hash Uh and submitted

value s, and must have been generated through the private key corresponding to pubom .

If all these conditions are met, a cryptocurrency payment of amount ad is issued to pubsender,
which is pubd in this case, and the key r is published on the blockchain.

At this point, two other important actions are performed by the DSC. First of all, it sets
the flag mentioned before, to store the information that this IoT object has already received
the update. In this way, all other attempts from other distributors to obtain the reward for the
same IoT device will be blocked. The second action is to increment the score of distributor d,
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incrementing the integer value associated with its public key on the blockchain. This is done
automatically, sending a transaction to the parent contract, i.e. the SSC. The latter checks if this
is the first delivery for this specific distributor: if yes, it creates a new entry for it, with value
1. Otherwise, it checks if the reset period is expired: in this case the score is reset to 1 for the
existing entry. Finally, in the third case, the score is incremented. The integrity and security
of these operations is enforced through internal blockchain mechanisms, as well as through the
well-formedness of the code of both contracts.

Now the hub h can retrieve the key r from the blockchain and decrypt Ue to obtain U . The
update file is finally sent to the IoT device om. The latter checks the integrity of the file by
generating its hash value and comparing it with the hash value received before, which was also
signed by the manufacturer. If no errors occur, the object om sends back a signature to the hub,
formally defined as sigPoFD

om := Signprvom (Uh || pubh). This is the proof-of-final-delivery (PoFD),
a signature which can be used the hub to claim a cryptocurrency reward. Indeed, the hub can
send this signature to the DSC. The smart contract checks the following:

1. The public key pubom is in the list Lm and was not yet served by another hub. Again, this
is achieved through a simple flag on the contract state.

2. The signature sigPoFD
om must be valid. That is, it must match the concatenation of the

update hash and the sender’s public key, which is pubh in this case.

If no errors occur, the DSC issues a payment to the hub through its public key. What is more, the
contract updates the corresponding flag, to reflect the fact that the object om has been already
served by a hub for the update with hash value Uh.
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Figure 4.1. Overview of the protocol omitting the distributor-distributor exchange (DDE)
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Chapter 5

Security Analysis

In this chapter, we present the security analysis of our protocol. We first provide an informal
discussion of known attacks and vulnerabilities in Section 5.1. Subsequently, we illustrate the
formal analysis we performed on the CrowdPatching protocol, by means of a state-of-the-art
automated analysis tool called Tamarin. In particular, we introduce the Tamarin Prover in
Section 5.2.1. We then continue in Section 5.2.2 illustrating the specific Tamarin model we
designed, concluding with the security properties we successfully verified in Section 5.2.3.

5.1 Informal Analysis

5.1.1 Impersonation Attacks

We consider several scenarios in which an attacker attempts to impersonate legitimate entities of
the protocol, in order to achieve malicious goals. We begin considering the case of an adversary
masquerading as a manufacturer. The goal of the attacker could be to first deploy an SSC smart
contract, and to subsequently trigger the SSC to deploy a DSC smart contract, which in turn would
convince distributors to deliver a malicious update. In other words, the ultimate objective of the
adversary would be to trick a number of IoT devices into accepting a malicious update. However,
this is not possible for many reasons. First of all, the attacker would need to provide a reasonably
conspicuous amount of cryptocurrency to fund the DSC, in order to incentivize distributors and
hubs. We argue that this limitation alone would be enough to discourage this kind of attacks. On
the other hand, an attacker could be motivated enough and decide to invest the needed amount
of cryptocurrency to achieve this malicious objective. Even better, the adversary could decide to
impersonate distributors at the same time, in order to partially obtain back the cryptocurrency
rewards. Still, this attack would be unsuccessful for two main reasons. The first is that it would
be impossible to deploy an SSC that would be trusted by hubs or honest distributors to be owned
by a legitimate manufacturer. Indeed, we assume that the public key of any manufacturer is
securely announced, and therefore known to hubs and honest distributors. Additionally, any
transaction on the blockchain must be authenticated by a digital signature. As a consequence,
there is no way for an attacker to deploy such an SSC on the blockchain without the knowledge of
the manufacturer’s private key. The second reason is even more assuring. The protocol requires
an IoT device to first authenticate the hash value of any new update, as described at the end of
Section 4.2.4. This authentication is achieved through a signature, which must be generated by
a manufacturer through its private key. IoT devices can then verify this signature because they
are in possession of the corresponding manufacturer’s public key. What is more, at very end of
the protocol (Section 4.2.5) an IoT device is required to verify the actual update file. That is, to
compute its hash and compare it with the hash value authenticated before. As a consequence,
there is no way for an IoT device to accept a malicious update which was not authorized by the
manufacturer. The only viable option for an attacker in this case, would be to gain knowledge
of the manufacturer’s private key. In this case, a mechanism of key revocation should be put in
place. However, the design of such mechanism is out of scope for this thesis.
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We continue analyzing the case of an attacker impersonating one or more distributors. This
can be easily achieved. However, the protocol is intentionally designed to allow this possibility,
i.e. to allow literally anyone to participate as a distributor. For this reason, the protocol makes
no security assumptions whatsoever about distributors. Several protections are implemented as a
consequence, and in Section 5.1.3 we will consider how they function against malicious distributors.

It is instead impossible for an adversary to masquerade as a hub. We assume these entities
to be manually selected by the owner of a set of IoT devices. They are assumed to be installed
in a local network through a secure user configuration. Indeed, hubs have access to a special
communication channel to interact with the managed IoT devices. The details of such channel are
out of scope for this work. However, it is reasonable to assume that it would be easily established,
and that it would be extremely difficult for an attacker to gain access to it. As a consequence,
an attacker could never impersonate a hub while engaging with an honest distributor. The latter
would request a response to the identification challenge, as illustrated in Section 4.2.4, which
must be generated by an IoT device with its private key. Without access to the local network, the
attacker would not be able to obtain such response from an IoT object, and the distributor would
drop the communication. For the same reasons, the attacker would not be able to masquerade as
a hub to communicate with an IoT device, at any moment.

Finally, it is impossible for an attacker to impersonate an IoT device without knowing its
private key. The latter is embedded in each device by the manufacturer.

5.1.2 Interception of the PoD Submission

We consider the case of an attacker intercepting the submission of a proof-of-delivery (PoD) to
the DSC on the blockchain, i.e. the smart contract issuing cryptocurrency payments as rewards
for distributors and hubs. This submission is performed by a distributor in order to obtain the
cryptocurrency reward, as explained in Section 4.2.5. In particular, a distributor can proceed
with this submission if it successfully delivered the encrypted update to an IoT device om, which
in turn generated the PoD signature sigPoD

om
:= Signprvom (Uh k s). Consequently, the elements sent

by the distributor to the SSC include the signature sigPoD
om itself, as well as the values and pubom .

Now, an attacker can easily intercept all these values due to the nature of the blockchain
network. Any blockchain node issuing a new transaction is expected to broadcast the transaction
itself, which includes all internal values in plaintext, to other nodes in the network. The transac-
tion is then spread further in the network, so that it can reach miners. As explained in Section
2.1, these are special nodes gathering new transactions, and validating them to form new blocks
that will be added to the main blockchain data structure. In this specific case, the distributor
issues a new transaction addressing the DSC smart contract, and its internal values can then be
eavesdropped by an adversary. The latter could attempt to block or replay these values to the
DSC, in order to obtain the cryptocurrency reward in place of the honest distributor.

However, the protocol is well protected against this threat. Before issuing the payment, the
DSC checks two equations to be satisfied, r = H(t k pubom k pubsender) and s = H(r). In the first
equation, pubsender is the public key of the blockchain node issuing the transaction, which is a
malicious node in this case. It is indeed trivial for the adversary to generate a new value for t, and
then craft r and s in such a way that the equations would hold. But the attack would be stopped
by a consequent verification performed by the DSC. That is, the validity of the signature sigPoD

om .
Given its definition above, the purpose of this signature is exactly to witness the authorization,
made by the IoT device om, upon the value s. And this authorization is automatically extended
to the value r, which must be the hash preimage of s, and to the value t, which must be the hash
preimage of r. If we assume digital signatures to be cryptographically secure, an attacker can
never manage to forge a PoD submission in its own favor.

Finally, an adversary who managed to intercept a PoD submission sent by an honest distributor
d could try to replay its values exactly as they are. More precisely, it could try to submit the
PoD to the DSC before the distributor, in order to claim the reward in advance. However,
both the blockchain network internal mechanisms and the logic of the DSC would make this
attack impossible. Indeed, the attacker would be forced to generate a signature on the submitted
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transaction before issuing it. And the public key used to generate that signature would be seen
by the smart contract as the pubsender. However, the first of the two equations mentioned above
would then be violated, because the value r was constructed by d to account for its public key
pubd and not the attacker’s public key, formally as r := H(t || pubom || pubd).

5.1.3 Malicious Distributors

We consider the case of an attacker initially acting as a honest distributor, obtaining the update
file from the manufacturer. The attacker could then interact with hubs with malicious intentions.
In particular, the malicious distributor could waste the resources of a hub, producing a valid zk-
SNARKs proof and then intentionally avoiding to submit the PoD to the DSC. As a consequence,
the hub would not be able to decrypt the update file received along with the zk-SNARKs proof,
and it would hopelessly wait for the distributor to send the decryption key to the DSC.

This threat is mitigated in two two ways. Firstly, the attacker would be strongly encouraged
to submit the decryption key, because of the cryptocurrency payment that would immediately
follow. Generating zk-SNARKs proofs is quite expensive in computational terms, which makes
this attack quite disadvantageous if compared with the advantages of behaving honestly.

The other mitigation is the possibility for hubs to consult the score of any distributor. As
described at the beginning of Section 4.2.4, a distributor is required to produce a signature on
a nonce value (generated by the hub) at the beginning of its interaction with the hub. What is
more, the distributor must send its public key. If the signature is valid, the hub can then retrieve
the integer value corresponding to the received public key, which can be found on the blockchain
as part of the DSC state variables. If the score is too low, the hub can simply drop the connection
and look for more trustworthy distributors in the peer-to-peer file sharing network. We argue
that this mechanism allows hubs to easily recognize malicious distributors, which would present
very low scores. Most importantly, this second mitigation works as an incentive as well. That
is, it encourages distributors to always complete their deliveries, because they will be reflected in
their score on the blockchain.

Another possibility for an attacker acting as a distributor might be to attempt to generate a
zk-SNARKs proof for a fake update. The goal of such an attacker would be to trick a hub, and its
managed IoT device, into generating a PoD signature without having to deliver the real update
file. The motivation could be that the attacker was not able to obtain the update file from the
manufacturer in the initial phase, but still wants to get the cryptocurrency rewards for it without
having to acquire it from other distributors. To achieve this, the attacker would need to generate
a valid zk-SNARKs proof for the following statement, where F is an arbitrary file:

s = H(r) ∧ Fh = H(F ) ∧ Fe = Enc(F, r)

In this statement, the secret values would be the file F and the key r, while the public values
would be Fh, Fe and s. It would indeed be trivial for the attacker to generate a valid proof for this
statement: it just needs to choose the arbitrary file F and the key r, compute the other values
accordingly and then execute the zk-SNARKs Prove algorithm. However, the proof would not be
accepted by the hub for two reasons.

First, if the attacker was not able to get the update from the manufacturer, then it was not
able to obtain the update package, which also contains the proving key pkD and the verifying
key vkD generated by the manufacturer. Without these keys, the attacker could think about
generating a new pair of keys for the statement. Then it could send the fake verifying key to the
hub along with the zk-SNARKs proof, as instructed by the protocol. But this key would not be
accepted by the hub. As illustrated in Section 4.2.2, among the many values published by the
manufacturer in the DSC smart contract, there the hash value of the verifying key, vkDh . After
receiving the verifying key from the distributor, the hub is supposed to compute its hash and
compare it with the value on the blockchain. For this reason, the fake key would be rejected.

Secondly, let us consider the case in which the attacker did obtain the update package, but
still wants to generate a zk-SNARKs proof for an arbitrary file F . Along with this proof, the
attacker sends the real verifying key vkD and the public values Fe and s. This proof would still
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be considered invalid by the hub. That is because the protocol does not instruct a distributor
to send the third public value for the statement, in this case Fh. Instead, this public value is
retrieved by the hub from the DSC on the blockchain. As a consequence, the Verify algorithm
executed by the hub will judge the proof as invalid.

5.1.4 Update Integrity

We consider the case in which an attacker attempts to deliver a modified update, with the goal of
inducing an IoT device to execute malicious code. One of them was discussed in Section 5.1.3: the
attacker would need to generate a zk-SNARKs proof, which will be considered valid only if the
encrypted value matches the hash value published on the blockchain by the manufacturer. The
only other way for the adversary to successfully deliver a malicious update is to compromise a
hub gateway. However, in this case the protocol remains secure. Before signing the identification
challenge, an IoT device must verify a signature made by the manufacturer on the hash value of
the update. Later in the very last step of the protocol, upon receiving the update file, the IoT
device will check if the file matches the authenticated hash value. In this way, it is impossible for
such devices to accept a malicious update unless (i) the device itself is compromised or (ii) the
private key of the manufacturer was stolen by the attacker and used to generate a fake signature
on the malicious file hash value.

5.1.5 Old Update Delivery

As explained in Section 5.1.4, there is no scenario in which an IoT device could accept a malicious
update file. However, an attacker could attempt to deliver an old update. That is, an update that
is not malicious per se, but can contain vulnerabilities that were fixed with newer updates. We
consider two cases. In the first, we assume honest hubs. These gateway devices have access to the
blockchain and they can see if a distributor is employing old values corresponding to an old update
release. As a consequence, even if the values would be cryptographically acceptable, they would
be rejected by a hub for chronological reasons. Indeed, the blockchain stores an immutable record
of past releases, providing hubs with the perfect protection mechanism for this type of attack. In
the second scenario, let us consider a compromised hub attempting to deliver an old update to
the managed IoT device. This can be easily mitigated by the IoT device by keeping a record of
previously received updates, e.g. storing their hash values. When a new update is received from
the hub, the record is checked. If the update corresponds to any entry, it is rejected.

5.2 Formal Analysis

5.2.1 The Tamarin Prover

In this section we provide an introduction to the Tamarin Prover. That is, a protocol verification
tool supporting the automated analysis of cryptographic protocols in the symbolic model [25, 26].
First of all, the Tamarin model of any protocol is defined in a specific file called theory file, with
extension .spthy, which contains the entire definition of the symbolic protocol model as well as
its security properties. The Tamarin Prover will then take this theory file as input, and run its
automated analysis to verify the defined properties.� �
1 theory TheoryName

2 begin

3 builtins: hashing, asymmetric-encryption, symmetric-encryption, signing

4 ...

5 end� �
Listing 5.1. Structure of a Tamarin theory file
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In general, a theory file has the structure reported in Listing 5.1. The theory keyword is used
to declare the name of the protocol model, while all the remaining code is entirely included in a
begin ... end construct. One can also optionally declare the usage of a subset of built-in theories.
In other words, it is possible to employ default keywords that represent typical cryptographic tools.
This is done through the builtins keyword placed right after the begin keyword. For example,
in Listing 5.1, we imported the built-in theory definitions for hashing and signing algorithms,
as well as for asymmetric and symmetric encryption. In the following, we provide a description
of the main elements composing a Tamarin theory file within the begin ... end construct. In
particular, we focus on the elements that are relevant to the model of our proposed protocol, which
is presented in Section 5.2.2. What is more, we explain how a theory file is actually processed by
Tamarin to prove, or disprove, its security properties. We refer to the Tamarin Official Manual
[27] for more details on how to build theory files and prove their security properties.

Terms

In the symbolic model employed by Tamarin, messages are represented by terms. For example,
a plain-text message and a cryptographic key could be represented by the simple variables m and
k. Additionally, terms can correspond to constants or functions. An example of a function could
be the built-in function for symmetric encryption. The expression enc(m, k) would be a term
indicating the encryption of a message variable m, encrypted with the key k.

Cryptographic properties

The properties of the cryptographic functions are defined through equations over terms. For
example, the built-in symmetric encryption algorithms are defined through the functions enc and
dec. Their properties are defined through a single equation: dec(enc(m,k),k) = m, where m is the
plaintext and k is the encryption key. This means that cryptographic primitives are effectively
specified with a black-box approach. In other words, there is no need to indicate the inner workings
of complex cryptographic algorithms. Instead, it is enough to specify their inputs and outputs,
and the mathematical relationships between the various functions.

Many built-in cryptographic primitives are provided in the Tamarin language by default. They
can be imported at the beginning of a theory file, as we mentioned when describing Listing 5.1.
However, Tamarin also allows the user to create custom definitions.

Rules

A protocol model in Tamarin is defined through a labelled transition system, which in turn is
defined by a collection of multiset rewriting rules. These rules have a specific structure, as shown
in Listing 5.2. They have a left-hand side and a right-hand side, linked by an arrow that goes from
left to right. Both sides are composed of an arbitrary number of facts. Optionally, a special set
of facts called action facts can be indicated inside the arrow of the rule. In short, facts are used
to model all the possible components of the system states, while rules describe the transitions
between those states.� �
1 rule exampleRule:

2 [ LeftFactX(term1, term2, ...), LeftFactY(...) ]

3 --[ ActionFactX(...), ... ]->

4 [ RightFactX(...), ..., LeftFactY(...) ]� �
Listing 5.2. Structure of a Tamarin rule

The facts contained in the left-hand side and in the right-hand side are also called state facts,
because they represent the state of the system before and after the state transition corresponding
to the rule. At any moment during an instance of the protocol, the state of the system is
represented by a collection of facts. A rule is triggered when the current state of the system
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includes the facts that are indicated in the left-hand side of the rule itself. If this happens, the
execution of the rule will consume this subset of facts, eliminating them from the state of the
system. In turn, the right-hand side facts will be added to the state. Furthermore, if the rule
contains action facts, they will be added to the execution trace. That is, a record of all the events
triggered by all the rules executed in an instance of the protocol.

Facts

In general, a fact has a specific structure: Fact(t1, t2, ... , tN). The fact symbol identifying
the fact itself is Fact, while the symbols ti are the terms defining the fact. And the number of
terms belonging to a certain fact is fixed, which means that the same fact must always appear
with the same number of terms. A fact declared as above is defined as a linear fact by default.
Linear facts are consumed by rules, when they are present in the left-hand side. As a consequence,
if a linear fact appears in the left-hand side of a rule, the only way to maintain that fact in the
state of the system when the rule is executed is to place it in the right-hand side too. For example,
in the rule illustrated in Listing 5.2, all state facts are linear. When this rule is executed, the
fact LeftFactX is eliminated from the state of the system. However, the fact LeftFactY is not
consumed, because it appears in both the left-hand and right-hand sides.

Another type of fact exists, called persistent fact. A linear fact becomes a persistent fact if
an exclamation point is added at its beginning: !Fact(t1, t2, ... , tN). Persistent facts are
never removed from the state of the system, even if they appear in the left-hand side of a rule
that is executed while they are absent from the right-hand side. For example, referring the rule
in Listing 5.2, if the fact LeftFactX(...) were to be defined as !LeftFactX(...) instead, then it
would not be consumed by the execution of the rule.

In Tamarin, network communications are modeled with two special facts: the In fact and the
Out fact. The former can be placed in the left-hand side of a rule and represents the reception of
a message from the network. The latter can be placed in the right-hand side and represents the
act of sending out a message to the network.

Another special fact is used to generate fresh and random values. That is, the Fr fact, allowing
for example to generate a fresh nonce n by writing Fr(~n). This special fact Fr can only be placed
in the left-hand side of a rule. In general, the symbol ~ is a prefix indicating the fresh nature of
the subsequent variable, and can also be used outside of the Fr fact.

Adversary Model

By default, Tamarin models the attacker as a Dolev-Yao adversary [28]. This type of attacker
controls the entire network, but at the same time it is incapable of breaking cryptographic func-
tions. As a consequence, it can manipulate messages sent in the network in any possible way, for
example intercepting them or modifying them. However, given that cryptographic functions are
assumed to be secure, the attacker cannot, for example, decrypt a message without the knowledge
if the secret key used to encrypt it. And this knowledge can only be obtained if a message con-
taining the key is sent through the attacker-controlled network. On the other hand, the attacker
is allowed to execute all possible functions, such as the encryption built-in function.

Restrictions

Restrictions are used to limit the number of traces analyzed by Tamarin. As we will explain later,
Tamarin verifies the properties of a protocol by executing all its possible instantiations, trying to
find a protocol instance where the property is violated. However, the number of possible traces
could easily become overwhelming even for simple protocols. For this reasons, there is a way to
restrict this number: defining restrictions. These are special properties that must be valid for all
traces. They are defined over action facts, i.e. facts that are indicated inside the arrow of a rule.

A typical example of a restriction is the Equality restriction, as shown in Listing 5.3. Here we
also defined a rule where the linear facts LeftFact1(x1) and LeftFact2(x2) are consumed, while
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the fact RightFact(...) is generated in the new state of the system. The rule presents an action
fact Eq(x1, x2) that will be addressed by the restriction. The latter is defined as a mathematical
property and essentially says the following: whenever a rule embedding an action fact Eq(x, y)

is executed, it must be that x equals y. As a consequence, this restriction will apply to the above
rule, which will be considered and executed by the Tamarin Prover only if the terms x1 and x2

included in the Eq fact are equal.� �
1 rule anotherExampleRule:

2 [ LeftFact1(x1), LeftFact2(x2) ]

3 --[ Eq(x1, x2), EventActionFact(x1, x2, r) ]->

4 [ RightFact(r) ]

5

6 restriction Equality:

7 " All x y #i . Eq(x,y) @ #i ==> x = y "� �
Listing 5.3. Tamarin restriction example

Lemmas

Once all protocol rules and restrictions are defined, one can proceed to the specification of the
security properties that Tamarin will attempt to prove. These properties are called lemmas. They
are defined similarly to restrictions, but there is an important difference: the fact that lemmas
are not enforced in a protocol execution. Instead, a property represented by a lemma needs to be
explicitly verified, and can either be proved or disproved.

There are two types of lemmas. One is marked by the exists-trace keyword as in Listing 5.4
where the lemma executabilityLemma is defined. In general, this type of lemma is used to define
executability properties. This is the kind of property that should be verified first for any given
protocol model, as it makes sure that the protocol itself is executable in its entirety. Otherwise,
if a protocol is not executable, other security properties could be falsely verified just because the
steps of the protocol that would disprove them are not taking place. The executabilityLemma in
Listing 5.4, if combined with the rule in Listing 5.3, applies this principle. More specifically, it
makes sure that there exists a trace of the protocol in which the action fact EventActionFact is
executed, proving the executability of this toy protocol made up of a single rule.� �
1 lemma executabilityLemma:

2 exists-trace

3 " Ex x1 x2 r #i . EventActionFact(x1, x2, r) @i "� �
Listing 5.4. Tamarin exists-trace lemma example

The second type of lemmas is indicated with the all-traces keyword. However, this keyword
can be omitted, because lemmas that do not indicate any of such keywords are considered as
all-traces lemmas by default. The important difference with respect to exists-trace lemmas
is that all-traces lemmas are verified only if the corresponding property holds for all possible
traces of the protocol. For example, let as consider the lemma in Listing 5.5, which is identical
to the one in Listing 5.4 except for the all-traces keyword in place of exists-trace. This means
that if the allTracesLemma is verified, a much stronger property holds. That is, the fact that in
all possible traces of the protocol the action fact EventActionFact is executed.� �
1 lemma allTracesLemma:

2 all-traces

3 " Ex x1 x2 r #i . EventActionFact(x1, x2, r) @i "� �
Listing 5.5. Tamarin all-traces lemma example
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Properties Verification

Finally, once a theory file is complete, the Tamarin Prover can be executed on the file itself. At
this point, the user can explicitly verify the validity of any lemma. To do this, Tamarin explores
all the possible protocol instances, analyzing all rules in a backward order.

There are two possible approaches depending on the type of lemma. For exists-trace lemmas,
Tamarin will look for any instance of the protocol in which the property is verified. Three outcomes
can result from this process. (i) If such instance is found, the process terminates and the proof
witnessing the validity of the property is presented to the user. (ii) On the other hand, if all
traces are explored without finding any instance in which the property is verified, then the lemma
is considered to be disproven, i.e. the specified property does not hold. (iii) It can also happen
that the process never terminates, if there is an infinite number of scenarios to be analyzed.

For all-traces lemmas, the approach is analogous and yet different. The mathematical ex-
pression defining an all-traces lemma is negated. Afterwards, the Tamarin Prover will explore
all possible protocol traces to find an instance in which the negated property holds. In this way,
if such a trace is found, the lemma will be considered to be disproven. This means that Tamarin
was able to find an attack that violates the security property, and the proof of this vulnerability is
displayed for the benefit of the user. Otherwise, if no such trace is found, the lemma is considered
to be valid, meaning that the security property holds for all possible instances of the protocol.
Similarly to what happens with exists-trace lemmas, this process can also never terminate.

5.2.2 CrowdPatching Protocol Rules

We present here the symbolic model for the CrowdPatching protocol. The corresponding theory
file is located in the tamarin folder of our repository [29] with name crowdpatching.spthy. It
starts with the usual theory keyword for specifying the name of the protocol, followed by the
begin ... end construct. Additionally, as shown in listing 5.6, within this construct we import
the built-in cryptographic primitives that will be used throughout the model:

• The hashing built-in function is simply a function h accepting one element as input. By
default, unary functions like this one are defined as one-way functions, which is exactly the
property characterizing cryptographic hash functions. In other words, it is not possible to
retrieve the hash preimage given its hash value.

• The asymmetric-encryption built-ins are the functions aenc and adec, both accepting two
terms as arguments (a message and a key) and implementing encryption and decryption
respectively. A function pk is used to compute the public key from the private key.

• Analogously, the simmetric-encryption functions are senc and sdec, but there is no equiva-
lent to the third additional function in this case.

• Finally, digital signatures primitives are imported with the signing keywords. The function
sign accepts a message and a private key as inputs, and outputs the corresponding signature.
The verify function takes a signature, a message and a public key as input and outputs
the built-in value true if the signature is valid. A built-in equation is used to enforce this
behavior: verify(sign(m, sk), m, pk(sk)) = true.

� �
1 theory CrowdPatching

2 begin

3 builtins: hashing, asymmetric-encryption, symmetric-encryption, signing

4 ...

5 end� �
Listing 5.6. CrowdPatching theory file

Continuing with the content of our theory file, we introduce our custom definitions for the
zk-SNARKs proving system. The Tamarin Prover does not provide these primitives by default,
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so we had to design them. In general, Tamarin allows for the definition of arbitrary functions and
equations through the functions and equations keywords, as shown in Listing 5.7. We defined
the zk-SNARKs Tamarin model to account for the SD statement only. That is, the zk-SNARKs
statement illustrated in Section 4.2.2 that is used by distributors to generate zk-SNARKs proofs
for hubs. On the other hand, we did not model the second statement SE . This is because, as
explained later in this section, we modeled a simplified version of the CrowdPatching protocol.
As a consequence, the protocol steps in which the statement SE is involved are not modeled.

Functions are defined indicating their name and their arity, i.e. the number of arguments
accepted as input. We firstly define two constant functions, GenProvKey and GenVerifKey, which
model the proving key and the verifying key. A constant function is essentially just a constant,
and is declared as a function with arity 0. Additionally, we defined these functions as private.
This option allows to define functions that cannot be executed by the attacker, whereas all other
functions can be freely exploited by the adversary. This was done to reflect the fact that, in
the CrowdPatching protocol, these keys are securely generated by the manufacturer when the
attacker cannot interfere. We also define the zkProve and zkVerify functions, with arities 2 and
3 respectively. The former represents the zk-SNARKs Prove algorithm, which takes secret and
public values and the proving key. The latter models the Verify algorithm, with the proof, the
non-secret values and the verifying key as inputs. Note that in both functions, public values and
secret values are each treated as single terms. This is possible through a special syntax tool in
Tamarin: you can have several elements (e.g. a, b and c) and enclose them between angle brackets
(<a, b, c>) to treat them as a single term. Finally, we defined another constant called ver, which
simply represents the output of the Verify algorithm when the processed proof is valid.� �
1 functions:

2 GenProvKey/0 [private], GenVerifKey/0 [private],

3 zkProve/2, zkVerify/3, ver/0

4

5 equations:

6 zkVerify( GenVerifKey, <h(U), senc(U, r), h(r)>,

7 zkProve( GenProvKey, << h(U), senc(U, r), h(r) >, <U, r>> ) ) = ver� �
Listing 5.7. Custom cryptographic functions for zk-SNARKs

In addition to these function, we defined a single equation to define their behavior and relation-
ships with each other. As explained in Section 5.2.1, this is a black-box approach. Consequently,
there is no need to specify the inner workings of the zk-SNARKs functions. Instead, it is enough
to specify their possible outputs according to their inputs. In this case, we simply provided a
definition of the scenario in which the zkVerify function accepts a zk-SNARKs proof as valid.
More specifically, we built an equation. On the right side we have the ver constant, representing
a successful output for zkVerify function. On the left side we have an instance of the zkVerify

function with the following arguments as input:

1. The verifying key, i.e. the constant function GenVerifKey

2. The public (non-secret) values enclosed in angle brackets:

2.1. The hash of the update file h(U)

2.2. The encryption of the update file senc(U, r)

2.3. The hash of the encryption key h(r)

3. An instance of the zkProve function with the following arguments:

3.1. The same public values as before: <h(U), senc(U, r), h(r)>

3.2. The secret values enclosed in angle brackets:

3.2.1. The update file U

3.2.2. The encryption key r
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Another important element of our model is the public-key infrastructure (PKI). That is, a
system able to provide all entities with their private-public key pairs. To achieve this, we followed
the guidelines of the official Tamarin Manual, as shown in Listing 5.8. A single rule allows any
entity to generate a fresh private key ~ltk (line 2), which is then linked to a public identity variable
$X (line 4). Additionally, the public key is derived from the private key and linked to the same
identity (line 5). Finally, the public key is sent out to the network (line 6). There are no action
facts in this rule, which is why the arrow is empty (line 3).� �
1 rule publicKeyInfrastructure:

2 [ Fr(~ltk) ]

3 --[ ]->

4 [ !Ltk($X, ~ltk)

5 , !Pk( $X, pk(~ltk) )

6 , Out( pk(~ltk) ) ]� �
Listing 5.8. Public-key infrastructure (PKI) model

Protocol Model Setup

We designed a model of a simplified version of the CrowdPatching protocol with a limited number
of entities. The reason why we opted for this approach is the fact that a Tamarin model can
easily have an overwhelming complexity, which would lead to the Tamarin verification engine
to never terminate. As a consequence, we realized it would have been unfeasible to consider a
realistic scenario with respect to the number of IoT devices. Instead, we designed a model in
which a single manufacturer releases a single update targeting three IoT devices, along with other
simplifications. In the theory file, this simplified model is initialized through a setup rule. That
is, a Tamarin rule which does not correspond to any step of the protocol, with the sole purpose
of instantiating all entities with their initial state. This essential rule is shown in Listing 5.9. We
describe it in the following, along with the simplifications it reflects:

• We exploit the let ... in construct. That is, a way of defining macros that are valid in
the current rule scope. We define five macros (lines 4-8). For example, as a consequence of
this construct, the keyword Uh will always be replace by the expression h(U) in this rule.

• A single manufacturer M releases a single update, targeting three IoT devices IoT1, IoT2

and IoT3. Two of this devices are managed by a certain hub, H1, while the other object is
managed by a second hub H2. The number of distributors is limited to three: D1, D2 and D3.
The private keys of all these entities are initialized in the left-hand side of the setup rule
(lines 11-15). The only other action performed in this side of the rule is to generate a fresh
value U representing the update file (line 11).

• We avoid modeling the SSC smart contract, and we directly generate the DSC instead. In
other words, we start our model assuming that the manufacturer has already deployed a
DSC, the contract that takes care of issuing cryptocurrency payments to distributors and
hubs as rewards. This is modeled through a series of facts (lines 19-33):

◦ The permanent fact !DSC_Info allows any entity of the protocol to consult the public
information associated with the DSC on the blockchain: the update hash, the signature
by the manufacturer on the update hash, and the hash of the verifying key. All these
elements are also sent out in the public network, to model the fact that anyone can
access them, including the Tamarin adversary.

◦ Three linear facts represent three independent initial states for the DSC, one for each
IoT device. These facts have the same name, St_DSC_0, but different terms.

◦ Three permanent facts with name !DSC_Info_IoT, one for each IoT device, represent the
information about each device on the blockchain, to reflect the immutability property
of this data structure.
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◦ Three Out facts are used to send out the same information to the network, to model
the fact that anyone can access it on the blockchain.

• All remaining facts in the right-hand side of the rule represent the initial states of all entities.
They all have the same structure, as they all represent the state of an entity, which is the
state with index 0 in this case. In general, we use the following notation. The name of a fact
representing the state i of an entity X is St_X_i, where X can be IoT, H or D. Its terms are two:
the string identifying the specific instance of the entity, e.g. ’IoT1’ for the object IoT1; the
elements composing the state enclosed in angle brackets, e.g. <a, b, c>. The actual state
facts for the setup rule are as follows:

◦ Three facts with the same name, St_IoT_0 represent the initial state of the three IoT
device. Each of this facts presents three state-components: (i) the private key of the
object; (ii) the public key of the manufacturer; (iii) the identity of the associated hub.
These facts have the same name for a specific reason. This allowed us to define the
subsequent rules in a universal way, independent of the specific instance the IoT entity
that will execute the rule itself. In other words, other rules in this model are designed
for IoT devices regardless of the specific device, e.g. IoT1 or IoT2.

◦ The subsequent three facts with name St_H_0 represent the initial state of the two hubs.
They all have the same name, for analogous reasons as above. On the other hand, two
of them have identity H1, the other H2. This is because H1 manages two IoT objects,
while H1 only one. Each of them has two state-components: (i) the private key of the
corresponding hub and (ii) the identity of the managed IoT object.

◦ Finally, nine facts with name St_D_0 initialize the state of three distributors. There
are three facts for each distributor D1, D2 and D3. This was done to model the fact that
each distributor is independently interested in delivering the update to all three IoT
devices, competing with the others. The state-components are: (i) the private key of
the corresponding distributor; (ii) the package P, defined in the let ... in construct;
(iii) the identity of the target IoT object. The state of each distributor contains the
package P because we are omitting the initial seeding phase of the protocol. That
is, we assume distributors to be have already obtained the update package from the
manufacturer without modeling this passage.

• We also omit hub rewards: we assume hubs to behave honestly.

When this setup is executed, all facts in the right-hand side of the rule are added to the
current state of the system. The action fact UpdatePublished is not relevant in this context. It
is referenced by lemmas in order to define security properties relating to this rule. On the other
hand, the Setup action fact is used within a restriction to make sure this rule is executed only
once in every instance of the protocol.

Protocol Steps

After the setup rule, the theory file contains a long series of rules describing all steps of the
protocol. Out of all possible approaches, we decided to embrace the following. We designed a
rule for each step of each protocol role, where a role can be either the IoT role, the hub role or
the distributor role. In other words, regardless of the specific identity that will take on a role
(e.g. IoT1) we define a single rule for each protocol step corresponding to that role (e.g. IoT). The
alternative could have been to mix different protocol roles in a single rule, but we avoided this
option to make the theory file more readable. We could have also opted for as many rules as the
number of identities for each step, but this would have brought no benefits to the design.

Furthermore, the rules are listed chronologically in the theory file. Rules for different roles are
intertwined with each other, so that consequent rules in the theory file correspond to consequent
steps of the protocol. The alternative would have been to group all rules related to the same role.
This is not relevant for the Tamarin syntax: rules can be placed in any order as long as they are
contained in the begin ... end construct.
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� �
1 rule setup:

2

3 let

4 Uh = h(~U)

5 PK = GenProvKey

6 VK = GenVerifKey

7 P = <~U, PK, VK>

8 sigByM = sign(Uh, ~ltkM)

9 in

10

11 [ !Ltk(’M’, ~ltkM), Fr(~U)

12

13 , !Ltk(’IoT1’, ~ltkIoT1) , !Ltk(’IoT2’, ~ltkIoT2), !Ltk(’IoT3’, ~ltkIoT3)

14 , !Ltk(’D1’, ~ltkD1), !Ltk(’D2’, ~ltkD2), !Ltk(’D3’, ~ltkD3)

15 , !Ltk(’H1’, ~ltkH1), !Ltk(’H2’, ~ltkH2) ]

16

17 --[ Setup(), UpdatePublished(~U) ]->

18

19 [ !DSC_Info( Uh, sigByM, h(VK) )

20

21 , Out( <pk(~ltkM), Uh, sigByM, h(VK)> )

22

23 , St_DSC_0( ’DSC’, <’IoT1’, pk(~ltkIoT1)> )

24 , St_DSC_0( ’DSC’, <’IoT2’, pk(~ltkIoT2)> )

25 , St_DSC_0( ’DSC’, <’IoT3’, pk(~ltkIoT3)> )

26

27 , !DSC_Info_IoT( ’IoT1’, pk(~ltkIoT1) )

28 , !DSC_Info_IoT( ’IoT2’, pk(~ltkIoT2) )

29 , !DSC_Info_IoT( ’IoT3’, pk(~ltkIoT3) )

30

31 , Out( <’IoT1’, pk(~ltkIoT1)> )

32 , Out( <’IoT2’, pk(~ltkIoT2)> )

33 , Out( <’IoT3’, pk(~ltkIoT3)> )

34

35 , St_IoT_0( ’IoT1’, <~ltkIoT1, pk(~ltkM), ’H1’> )

36 , St_IoT_0( ’IoT2’, <~ltkIoT2, pk(~ltkM), ’H1’> )

37 , St_IoT_0( ’IoT3’, <~ltkIoT3, pk(~ltkM), ’H2’> )

38

39 , St_H_0( ’H1’, <~ltkH1, ’IoT1’> )

40 , St_H_0( ’H1’, <~ltkH1, ’IoT2’> )

41 , St_H_0( ’H2’, <~ltkH2, ’IoT3’> )

42

43 , St_D_0( ’D1’, <~ltkD1, P, ’IoT1’> )

44 , St_D_0( ’D1’, <~ltkD1, P, ’IoT2’> )

45 , St_D_0( ’D1’, <~ltkD1, P, ’IoT3’> )

46

47 , St_D_0( ’D2’, <~ltkD2, P, ’IoT1’> )

48 , St_D_0( ’D2’, <~ltkD2, P, ’IoT2’> )

49 , St_D_0( ’D2’, <~ltkD2, P, ’IoT3’> )

50

51 , St_D_0( ’D3’, <~ltkD3, P, ’IoT1’> )

52 , St_D_0( ’D3’, <~ltkD3, P, ’IoT2’> )

53 , St_D_0( ’D3’, <~ltkD3, P, ’IoT3’> ) ]� �
Listing 5.9. Setup rule for the CrowdPatching model
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In the remaining of our theory file, there is a conspicuous number of rules describing all
protocol steps. However, it would be unfeasible to report each one of them. Instead, we will
present the most significant rules, corresponding to the most crucial steps of the protocol. The
entire theory file can be found in our public repository online [29].

It is relevant to show the first rule after the setup. That is, the rule H_1 modeling a hub
requesting the update file through the network, as shown in Listing 5.10. In general, we name a
rule as X_i when it models the transition of an entity X from state i−1 to state i. In this case, the
hub entity is transitioning from state 0 to state 1. The former is represented by the fact St_H_0

in the left-hand side, the latter by St_H_1 on the right-hand side. This rule is triggered when
the state of the system contains (i.e. includes) the facts St_H_0 and !DSC_Info in the left-hand
side. As a consequence, this rule is triggered right after the setup rule, which generates exactly
those facts in the right-hand side and adds them (among many others) to the state. However,
the fact St_H_0 has different terms in the rule H_1 compared to the setup rule: in this case they
are variables that can assume different values depending on the actual entity that is executing
this rule. For example, the first term of St_H_0 is the variable $H. This can correspond to either
’H1’ or ’H2’. Similar reasoning applies to the other terms. As a consequence, the fact St_H_0 can
match any of the three facts with the same name generated by the setup rule.� �
1 rule H_1:

2 [ St_H_0($H, <~ltkH, $IoT>)
3 , !DSC_Info(Uh, sigByM, VKh) ]

4 --[ ]->

5 [ Out(<’UpdateRequest’, $IoT, $H>)
6 , St_H_1($H, <~ltkH, $IoT, Uh, sigByM, VKh>) ]� �

Listing 5.10. Hub requesting the update (Tamarin rule)

Once the H_1 rule is triggered, the left-hand side facts are consumed, meaning that they are
eliminated from the state of the system. However, the fact !DSC_Info is persistent, so it will not
be deleted. It was placed here to account for the fact that the hub discovers about a new update
release by monitoring the blockchain, waiting for a new DSC. Subsequently, the right-hand facts
are added to the state. The new fact-state of the hub St_H_1 has the same state-components plus
the terms recovered from !DSC_Info. Most importantly, the Out fact sends out the update request
to the network. It will be received by a distributor in a rule with the In fact in the left-hand side.� �
1 rule IoT_1:

2

3 let

4 result = verify(sigByM, Uh, pkM)

5 sigOnChallengeNonceByIoT = sign( <c, ~nonce>, ~ltkIoT )

6 in

7

8 [ St_IoT_0( $IoT, <~ltkIoT, pkM, $H> )

9 , LocalChannel( $H, $IoT, <’IdChallenge’, c, Uh, sigByM> )

10 , Fr(~nonce) ]

11

12 --[ Eq( result, true ) ]->

13

14 [ LocalChannel( $IoT, $H, <’IdReply’, sigOnChallengeNonceByIoT, ~nonce> )

15 , St_IoT_1( $IoT, <~ltkIoT, pkM, $H, Uh> ) ]� �
Listing 5.11. IoT signing the ID challenge (Tamarin rule)

We omit the subsequent two rules. They model (i) a distributor receiving the update request
and replying with an identification challenge and (ii) the hub receiving the challenge and forward-
ing it to the managed IoT object. The next step is modeled in the IoT_1 rule, shown in Listing
5.11. Here an IoT object transitions from state 0 to state 1. In the left-hand side, the IoT device
receives the ID challenge in the local channel established with the hub. The latter is represented
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by a linear fact that was generated by the hub in the previous rule. In this way, the attacker
cannot interfere as it could have done if the Out and In facts were used instead. Additionally, a
fresh nonce is generated.

In the rule arrow we find an important action fact. That is, the Eq action fact enforcing the
equality of the two terms included as arguments. The term result is defined in the let ... in

binding as the result of the signature verification executed on the signature by the manufacturer.
The true constant is built-in and indicates a successful outcome of any signature verification. In
other words, we are imposing that this rule can be executed only if the signature is valid. However,
the action fact is not enough to actually enforce this behavior. As explained in Section 5.2.1, it
needs to be coupled with a specific restriction, shown in Listing 5.12. This restriction applies to
any Eq action fact that is employed throughout the entire theory file.� �
1 restriction Equality:

2 " All x y #i. Eq(x,y) @i ==> x = y "� �
Listing 5.12. Equality restriction

In the right-hand side of the IoT_1 rule, the IoT device generates a signature on the con-
catenation of the challenge and the fresh nonce. This is embedded in the definition of the
sigOnChallengeNonceByIoT macro. The resulting signature is sent back to the hub through another
LocalChannel fact. The new state-fact St_IoT_1 is also instantiated, containing the new value Uh,
which is the hash value that was just authenticated by the signature sigByM.

We omit the subsequent rule, where the hub simply forwards the sigOnChallengeNonceByIoT

signature to the distributor through the attacker controlled network. We present the rule in which
this signature is received by the distributor, shown in Listing 5.13 and called D_2.� �
1 rule D_2:

2

3 let

4 P = <U, PK, VK>

5 result1 = verify(sigOnChallengeNonceByIoT, <~c, nonce>, pkIoT)

6 r = h(<~t, pkIoT, pk(~ltkD)>)

7 Uenc = senc(U, r)

8 s = h(r)

9 sec = <U, r>

10 pub = <h(U), Uenc, s>

11 pi = zkProve(PK, <pub, sec>)

12 result2 = zkVerify(VK, pub, pi)

13 in

14

15 [ St_D_1( $D, <~ltkD, P, $IoT, pkIoT, $H, ~c> )

16 , In( <’IdReply’, $H, $D, $IoT, sigOnChallengeNonceByIoT, nonce> )

17 , Fr(~t) ]

18

19 --[ Eq(result1, true), Eq(result2, ver)

20 , GenProof(pk(~ltkD), $IoT, U) ]->

21

22 [ Out( <’zkSNARKsProof’, $D, $H, $IoT, pi, Uenc, s, VK> )

23 , St_D_2( $D, <~ltkD, P, $IoT, pkIoT, $H, ~t, r, s> ) ]� �
Listing 5.13. Distributor generates zk-SNARKs proof (Tamarin rule)

In the left-hand side of the rule, the signature is indeed received through the In fact. Thanks
to the Eq(result1, true) action fact, the distributor executing this rule will not proceed unless
the signature is verified. If that is the case, a fresh key ~t is also generated in the left-hand side
to be used in the right-hand side. This key is used to prepare the zk-SNARKs proof, a process
which is mostly reflected in the let ... in construct. The key r is computed as the hash h(<~t,

pkIoT, pk(~ltkD)>). The update file is encrypted to obtain Uenc and the key r is hashed to obtain
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s. And finally the zk-SNARKs proof pi is generated by executing the function corresponding to
the Prove algorithm: zkProve(PK, <pub, sec>). The generated proof is sent through the attacker-
controlled network, directed to the hub who had requested the update. Other values are attached:
the encrypted update Uenc, the key hash s and the verifying key VK. The action fact GenProof is
used to record the generation of the zk-SNARKs proof when this rule is executed.

We omit the subsequent rules in which (i) the hub verifies the zk-SNARKs proof pi and
forwards the value s to the IoT object; (ii) the IoT object generates the proof-of-delivery (PoD)
signature and sends it to the hub; (iii) the latter is forwarded by the hub to the distributor
through the network; (iv) the distributor submits the PoD to the smart contract.

At this point, the first and only rule modeling the DSC smart contract can be executed. That
is, the DSC_1 rule shown in Listing 5.14. Here the submission is received through the attacker-
controlled network by means of the In fact. Defined in the let ... in construct, it contains all
necessary values that are verified by the DSC with three equality action facts:

• Eq(r, h(<t, pkIoT, pkD>)) verifies that the key r was obtained in Section 4.2.4

• Eq(s, h(r)) verifies that s is the hash of r

• Eq(verify(deliveryProof, <s, Uh>, pkIoT), true) verifies that the PoD signature is valid

If these equalities are satisfied, the reward cryptocurrency payment is issued in the form of an
action fact called PaymentToD. The latter serves as a record that the payment has been issued to
the distributor with public key pkD, and can be addressed by lemmas to define security proper-
ties. Finally, the DSC publishes the decryption key on the blockchain. This is done by means
of a permanent fact called !DSC_Info_UpdateDecryptionKey, which associates the identity of the
involved IoT object with the key r.� �
1 rule DSC_1:

2

3 let

4 submission = <pkD, $IoT, t, r, s, deliveryProof>

5 in

6

7 [ St_DSC_0(’DSC’, <$IoT, pkIoT>)

8 , !DSC_Info(Uh, sigByM, VKh)

9 , In(<’DeliveryProofSubmission’, submission>) ]

10

11 --[ Eq(r, h(<t, pkIoT, pkD>)), Eq(s, h(r))

12 , Eq(verify(deliveryProof, <s, Uh>, pkIoT), true)

13 , PaymentToD(pkD, $IoT) ]->

14

15 [ !DSC_Info_UpdateDecryptionKey($IoT, <Uh, r>) ]� �
Listing 5.14. PoD validation by the DSC (Tamarin rule)

The final rule in Listing 5.15 models the actions of a hub retrieving the key r from the
blockchain. This is done by placing the !SC_Info_UpdateDecryptionKey permanent fact in the
left-hand side. By means of two equality action facts, this rule also checks that the key is indeed
the hash pre-image of the value s, and that the hash of the decrypted update corresponds to the
hash value obtained before from the blockchain. An action fact called UpdateReadyForIoT has the
simple purpose of recording this event, associating it with the $IoT identity. This action fact will
be referenced by lemmas to enforce specific security properties.

We avoided the construction of an additional rule that would simply model the hub sending
the decrypted update to the managed IoT device. This is because, as mentioned at the beginning
of this section, we do not model hub rewards in Tamarin. As a consequence, such an additional
rule would be completely pointless, because it would only contain a communication through the
IoT-hub local channel, which is secure by definition in this model.
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� �
1 rule H_6:

2

3 let

4 Udec = sdec(Uenc, r)

5 in

6

7 [ St_H_5($H, <~ltkH, $IoT, Uh, Uenc, s>)

8 , !SC_Info_UpdateDecryptionKey($IoT, <Uh, r>) ]

9

10 --[ Eq(s, h(r)), Eq(Uh, h(Udec))

11 , UpdateReadyForIoT($IoT, Udec) ]->

12

13 [ St_H_6($H, <~ltkH, $IoT, Uh, pub>) ]� �
Listing 5.15. Update decryption by hub (Tamarin rule)

5.2.3 CrowdPatching Security Properties

We present here the security properties that have been successfully verified by the Tamarin Prover.
More precisely, as explained in Section 5.2.1, the Tamarin software has the capability of injecting
a theory file, analyzing its protocol rules and allowing the user to explicitly launch the verifica-
tion of any lemma. This verification can be fully automated by the Tamarin engine, leveraging
deduction, equational reasoning and heuristics. We verified all the following lemmas by means of
this automated modality. However, it is worth noting that, in case the verification of a lemma
leads to non-termination, Tamarin allows for other non-automated modalities.

Protocol Executability

Before verifying any protocol security property, it is fundamental to ensure that the model is
executable. That is, to ensure that all its rules are well-formed and allow the entirety of the
protocol steps to be executed. This is done through the exist-trace lemma shown in Listing
5.16, which is generally referred to as an executability lemma. The exists-trace keywords means
that, when this lemma is processed by the Tamarin engine, it is considered to be verified if there
exists a trace in which the property holds.� �
1 lemma ExecutabilityAllIoTGetUpdate: exists-trace

2 "

3 Ex #t0 #t1 #t2 #t3 U

4 . UpdateReadyForIoT(’IoT1’, U) @t1

5 & UpdateReadyForIoT(’IoT2’, U) @t2

6 & UpdateReadyForIoT(’IoT3’, U) @t3

7 & UpdatePublished(U) @t0

8 & t0 < t1 & t0 < t2 & t0 < t3

9 "� �
Listing 5.16. Executability lemma for the CrowdPatching model

As for any lemma, the property is defined through a mathematical formula enclosed in double
quotes. Traditional math symbols can be used. The symbol ∃ is represented by the Ex keyword,
while the All keywords is used in place of the symbol ∀. Timepoints are indicated with the symbol
# as a prefix when they are declared, whereas the symbol @ is used when they are referred to after
their declaration. The symbol @ can also be omitted in some cases. A simple full stop symbol
represents the “so that” mathematical symbol. Finally, the symbol & is used to put different
conditions in logical conjunction with each other.

In this case, the formula associated with the ExecutabilityAllIoTGetUpdate lemma ensures
that there exist four time points (t0, t1, t2, t3) and an update variable U so that all the following
conditions apply: (i) the update is ready for each IoT device at independent timepoints (t1, t2,
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t3); (ii) the update received by all devices is the same that was published (in the setup) at another
timepoint (t0); (iii) the update was published at a previous timepoint compared to all timepoints
in which the update was ready for the IoT devices. This lemma was indeed verified when it was
processed by the Tamarin Prover, meaning that a protocol trace exists where all the protocol
rules can be executed as described by the formula. In other words, the validity of this lemma
proves that all rules can be successfully executed until, including the very last rule reported in
Listing 5.15. What is more, since this is an exists-trace lemma, when Tamarin finds a valid trace
it also generates a graphic representation reporting the whole execution of the protocol. Each
rule is represented by a rectangle with three rows, one for the left-hand side, one for the action
facts inside the arrow and one for the right-hand side. These rectangles are linked with arrows
that draw a complicated flow of rules connecting with each others. The graphic representation
generated for the ExecutabilityAllIoTGetUpdate lemma can be found in our online repository [29].

Protocol Fairness for IoT Objects

Once the executability of the protocol is verified, one can proceed with the verification of specific
security properties. In our case, the first of these is encoded in the PaymentOnlyIfGenerateProof

lemma shown in Listing 5.17. Differently from the executability lemma, this one employs the
all-traces keyword. As a consequence, it can be considered valid only if the corresponding
mathematical formula holds for all possible traces of the protocol.� �
1 lemma PaymentOnlyIfGenerateProof:

2 all-traces

3 "

4 All #j pkD IoT

5 . PaymentToD(pkD, IoT) @j

6

7 ==> Ex #i U

8 . GenProof(pkD, IoT, U) @i

9 & i < j

10 "� �
Listing 5.17. CrowdPatching security lemma: protocol fairness for IoT objects

This lemma ensures that (in each trace of the protocol) whenever a PaymentToD(pkD, IoT)

action fact is generated at a certain timepoint j, then it must be that a GenProof action fact
referring to the same public key pkD and IoT device was generated at an earlier timepoint i. In
other words, we are enforcing that whenever a cryptocurrency payment is issued (event recorded
with the action fact PaymentToD) to a certain distributor (identified by its public key) then it must
be that the same distributor generated a zk-SNARKs proof for the same IoT object associated
with the reward. As a consequence, this ensures that a payment is issued only if a distributor has
previously delivered the encrypted update to the IoT device.

The verification of this lemma allowed us to discover a vulnerability affecting an old version of
our protocol. That is, a version in which the protocol steps illustrated in Section 4.2.4 were slightly
different. In particular, in the old version the IoT device would reply to the ID challenge with a
signature generated directly on the challenge c provided by the distributor. When verifying this
lemma on the old model, the Tamarin Prover found a specific attack that would crucially break
the security of the old protocol. Indeed, the attacker could act as a distributor, interface with an
IoT object om targeted by an update release and craft the challenge c0 as the concatenation of Uh

and s0, where s0 satisfies the following properties:

• The value s0 is the hash value of a value r0

• The value r0 was computed as r0 := H(t0 || pubom || pubattacker)

• The value t0 is simply a random value
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As a consequence, the attacker would obtain a signature by the IoT object defined as sigID’
om

:=
Signprvom (c0) = Signprvom (Uh k s0), where s0 has the properties above. It is easy to see how

sigID’
om corresponds to a proof-of-delivery signature (PoD) identical to the one that needs to be

submitted by distributors to the DSC in order to obtain a cryptocurrency reward, as illustrated
in Section 4.2.5. As a consequence, the attacker can effectively use this method to obtain a PoD
without having to actually deliver the update, and later use this PoD to deceitfully obtain the
cryptocurrency reward. This vulnerability also applies to the protocol designed by Leiba et al
[9], where they have the same exploitable challenge response. After changing this step of the
protocol, requiring the IoT device to generate a fresh nonce to be combined with the challenge,
Tamarin could not find the same vulnerability anymore, and the security property encoded in the
PaymentOnlyIfGenerateProof lemma was successfully verified.

Protocol Fairness for Distributors

The second security property that we formally proved is represented by the lemma in Listing
5.18. Here we are ensuring that any given distributor always receives the cryptocurrency reward
if the update is successfully decrypted by the hub that requested it. More specifically, the formula
defined in this lemma enforces that whenever the UpdateReadyForIoT(IoT, U) action fact is present
in a protocol trace, then it must be that in the same trace (i) a certain distributor generated a
zk-SNARKs proof for the same IoT device IoT and (ii) that distributor was referenced by an
action fact PaymentToD which represents cryptocurrency payments. What is more this must be
valid for all traces, which is indicated by the all-traces keyword.� �
1 lemma AlwaysPaidIfUpdateReady:

2 all-traces

3 "

4 All #k IoT U

5 . UpdateReadyForIoT(IoT, U) @k

6

7 ==> Ex #i #j pkD

8 . PaymentToD(pkD, IoT) @i

9 & GenProof(pkD, IoT, U) @j

10 "� �
Listing 5.18. CrowdPatching security lemma: protocol fairness for distributors

Protection Against Double Rewards

Finally, we demonstrated the impossibility for malicious distributor to deliver the update to
a single IoT object and then obtain two rewards. This security property is reflected in the
MaxOnePaymentForOneIoT lemma shown in Listing 5.19.� �
1 lemma MaxOnePaymentForOneIoT:

2 all-traces

3 "

4 All #i #j IoT pkD1 pkD2

5 . PaymentToD(pkD1, IoT) @i

6 & PaymentToD(pkD2, IoT) @j

7

8 ==>

9

10 #i = #j & pkD1 = pkD2

11 "� �
Listing 5.19. CrowdPatching security lemma: protection against double rewards
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Implementation

In this chapter, we present our prototype implementation of the CrowdPatching protocol steps.
This includes two main modules: the Ethereum module, described in Section 6.1, and the zk-
SNARKs module, highlighted in Section 6.2. The former corresponds to an implementation of
the three types of smart contracts employed in our protocol, namely the Super Smart Contract
(SSC), the Delivery Smart Contract (DSC) and the Exchange Smart Contract (ESC). The latter
consists in an implementation of the algorithms that generate and verify zk-SNARKs proofs
for the specific purposes of the CrowdPatching protocol. Finally, in Section 6.3 we highlight
two additional pieces of publicly available software, which were exploited to support the main
modules and implement other features of the protocol. The complete collection of our source files,
including its dependencies, can be consulted via the CrowdPatching repository [29].

6.1 Ethereum Smart Contracts

6.1.1 Solidity

There are several available programming languages which can be employed to develop Ethereum
smart contracts [30]. Among these, we selected Solidity, more specifically employing its v0.5.16
version [31]. The Solidity programming language is the most commonly used language to build
Ethereum smart contracts. It is an object-oriented high-level language influenced by C++, Python
and Javascript. Furthermore, it belongs to the category of statically typed languages, meaning
that the type of any variable is known at compile time as opposed to run-time.

Solidity is designed to target the Ethereum virtual machine. Indeed, Ethereum smart contracts
are written in a low-level bytecode language [12]. This byte code is then executed in a a virtual
machine called Ethereum Virtual Machine (EVM). As a consequence, Solidity smart contracts are
translated into bytecode compatible with the EVM before they can be deployed to the Ethereum
blockchain. This virtual machine can be seen as a global 256-bit computer where all Ethereum
transactions are executed in synchrony. It constitutes the runtime environment for smart contracts
in Ethereum. Anyone can access the EVM as long as they can run an Ethereum node.

6.1.2 Super Smart Contract (SSC)

We present here the code for the Super Smart Contract (SSC), i.e. the SSC.sol source file in the
ethereum/contracts path. That is, the smart contract that needs to be deployed by a manufacturer
before any new update can be released, as explained in Section 4.2.1. The implementation of the
SSC presents the general structure of any Solidity smart contract, as shown in Listing 6.1. In
the first line we find the pragma solidity instruction, which selects the specific Solidity version
in use. In this case, as mentioned in Section 6.1.1, we select the 0.5.16 version. Subsequently,
two external source files are imported. More specifically, we import the Solidity code for the DSC
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smart contract (described in Section 6.1.3) and the ESC smart contract (described in Section
6.1.4). This is necessary because the main purpose of the SSC is to generate new DSC and ESC
smart contracts, and the imported source files are used as templates to achieve this goal. Finally,
all the remaining code lines are enclosed in a specific scope, i.e. inside the brackets of the contract

SSC{ ... } construct. We continue the illustration of the SSC source file by describing the most
significant elements contained in this scope.� �
1 pragma solidity = 0.5.16;

2

3 import "./DSC.sol";

4 import "./ESC.sol";

5

6 contract SSC

7 {

8 ...

9 }� �
Listing 6.1. Overall structure of the SSC source file

State Variables

We declare a series of state variables, as shown in Listing 6.2 starting from line 7. They constitute
the state of the smart contract, storing values on the blockchain. The first of these is the owner

variable, which represents the address of the owner of the SSC. Storing the address of the owner
is a common practice for Ethereum smart contracts, as it allows to limit the execution of certain
actions to the owner only.� �
1 struct distributorStruct

2 {

3 uint256 score; // set to 0 by default

4 uint lastReset; // set to 0 by default

5 }

6

7 address public owner;

8 mapping (address => bool) private childrenMap;

9 mapping (address => distributorStruct) private distributorsMap;

10 uint public distributorResetPeriod;� �
Listing 6.2. SSC state variables

The next two variables are both of type mapping, which is a data structure storing key-value
pairs, i.e. a map. The first of these maps, called childrenMap, associates Boolean values to the
corresponding address key. It is used by the SSC smart contract remember the address of all the
DSCs and ESCs that it deploys on the blockchain. This information is fundamental to allow the
SSC to receive secure commands (in the form of transactions) from its child contracts.

The second map is used to save the score of any distributor participating in the CrowdPatching
protocol. The keys are simple addresses. It is worth noting that Ethereum addresses are directly
derived from the public key of the corresponding Ethereum account. Each of these address-keys is
associated with an instance of the custom struct declared at line 1. The latter contains the integer
value representing the score for the distributor, as well as an additional integer value recording
the last time the score was reset.

Finally, the integer variable distributorResetPeriod indicates the time interval after which
the score of distributors is reset by the SSC. This variable is declared as public, as the owner

variable is. This does not mean that anyone can modify these variables while they are stored
on the blockchain. Instead, it is an indication for the Solidity compiler to create default getter
functions for the corresponding variables. On the other hand, the private keyword employed
for the remaining two variables does not make them invisible in any way. Its only effect is to
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instruct the Solidity compiler to not create default getters. However, any Ethereum node can still
manually access the blockchain to read those values.

Constructor

Solidity smart contracts have a constructor function, resembling many other object oriented pro-
gramming languages. Indicated by the constructor keyword, the SSC constructor is shown in
Listing 6.3. This special function is addressed by transaction that deploys the smart contract on
the blockchain. The sender of such transaction is set to be the owner of the contract. This is
achieved by simply assigning the address of the sender to the owner variable.

This constructor also accepts additional arguments, which must be attached to the transaction
deploying the contract. In the context of CrowdPatching protocol, the creator corresponds to the
manufacturer, which must decide a time interval (measured in number of weeks and days) after
which score of distributors is to be reset periodically. This value is translated in an integer value
and saved in the 5distributorResetWeeks state variable.� �
1 constructor (uint distributorResetWeeks, uint distributorResetDays) public

2 {

3 owner = msg.sender;

4 distributorResetPeriod =

5 distributorResetWeeks * 1 weeks + distributorResetDays * 1 days;

6 }� �
Listing 6.3. SSC constructor

Deployment of DSCs and ESCs

The main purpose of an SSC is to allow its owner, a manufacturer, to deploy new Delivery Smart
Contracts (DSCs), as described in Section 4.2.2. Another is to allow any second-hand distributors
(SHDs) to deploy Exchange Smart Contracts (ESCs), according to the modality illustrated in
Section 4.2.3. The SSC provides this possibilities by means of two functions.

The first of these functions is called deployDSC, and can be found in Listing 6.4. The manufac-
turer can issue a new transaction addressing this function, attaching a certain amount of Ethereum
cryptocurrency and the required arguments. The cryptocurrency is used for the deposit of the
new DSC, while the arguments are used to initialize its state through its constructor (see Section
6.1.3). The payable keyword indicates that this function can indeed receive cryptocurrency.

First of all, the deployDSC function enforces that the sender of the transaction corresponds
to the address stored in the owner variable. If this is not the case, the function returns without
doing anything else, thus protecting itself from any malicious interaction. Indeed, Ethereum
transactions are protected with signatures, so that only the real owner can identify itself as such.

The next action performed by the function is to check if the cryptocurrency sent by the
manufacturer is compatible with the selected rewards. In other words, the function verifies if the
deposit is enough to fund all cryptocurrency rewards, both for distributors and hubs. This is
done in lines 10-12. If the cryptocurrency is not enough, the expiration time for the contract is
set to 0 in line 13. In this case, the DSC deployed in the subsequent lines will not be usable by
anyone, because it was created as already expired. This is done for two reasons. It avoids the
possibility to create malicious contracts with unfair features for distributors and hubs. And it
allows the creator to easily retrieve the deposit from a faulty DSC. Indeed, the DSC provides a
function allowing its owner to withdraw funds when the contract is expired (see Section 6.1.3).

The function goes on creating a new DSC instance in line 15. This corresponds to the SSC
calling the constructor of the DSC. The same arguments that were received from the function
are inserted here. Additionally, the cryptocurrency value that was implicitly received is attached
through the .value(msg.value) instruction. As a consequence, the actual digital currency is passed
on to the new DSC contract. Finally, there are two other extra arguments. The address of the
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sender, which is equivalent to the address of the owner. And the address of the SSC contract.
The former is set as the owner of the DSC in its constructor. The latter is stored, in the DSC, as
the address of its parent contract.

Lastly, the childrenMap entry corresponding to the address of the newly deployed DSC is
flagged as true, and a new event is emitted. Depending on the condition checked at the beginning,
the latter can be either an event announcing success, called NewDSC, or an event signaling a
malformed DSC. In general, events are very useful in the Ethereum environment as they allow
parties to listen and be notified when new events are emitted. In this case, the NewDSC event is
especially useful as it allows distributors and hubs to discover about new update releases.� �
1 function deployDSC(uint _expWeeks, uint _expDays, bytes32 updateHash,

2 address[] memory objectsAddresses, bytes32 pkgHash, bytes32 vkHash,

3 uint256 singleRewardAmount, uint256 singleFinalRewardAmount) public payable

4 {

5 if (msg.sender != owner)

6 return;

7

8 uint expWeeks = _expWeeks; uint expDays = _expDays;

9

10 bool badDSC =

11 (singleRewardAmount + singleFinalRewardAmount) *

12 objectsAddresses.length > address(this).balance;

13 if (badDSC) { expWeeks = 0; expDays = 0; }

14

15 DSC db = (new DSC).value(msg.value)(msg.sender, address(this), expWeeks,

16 expDays, updateHash, objectsAddresses, pkgHash, vkHash,

17 singleRewardAmount, singleFinalRewardAmount);

18

19 childrenMap[address(db)] = true;

20

21 if (badDSC) emit BadDSC(address(db), msg.sender);

22 else emit NewDSC(address(db));

23

24 }� �
Listing 6.4. SSC function for deploying DSCs

The second function, allowing SHDs to deploy ESCs, presents fewer instructions. Presented in
Listing 6.5, the function is called deployESC. Here there is no need to test any condition, because
anyone is allowed to to deploy an ESC. Indeed, an ESC basically consists in an offer made by
a SHD to acquire the update package from a FHD, and the SHD is free to decide an arbitrary
amount of cryptocurrency to offer. For an ESC to be deployed, this function only needs to receive
the hash pre-image s, the expiration time and, of course, the currency to be used as an offer.� �
1 function deployESC(bytes32 s, uint expWeeks, uint expDays) public payable

2 {

3 ESC eb = (new ESC).value(msg.value)(msg.sender, address(this),

4 s, expWeeks, expDays);

5

6 emit NewESC(address(eb));

7 }� �
Listing 6.5. SSC function for deploying ESCs

Managing the Score of Distributors

There are three functions related to the score of distributors in the SSC. One of these is called
updateDistributorPeriod, and can be executed only by the owner. It allows the manufacturer
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to change the period after which the score of any distributor is reset to 0. Another is the
getDistributorScore function, which simply allows any Ethereum node to retrieve the score of a
distributor given its address.

But the most important is the third function, called incrementDistributorScore and shown in
Listing 6.6. As reflected in the first if statement, this can function can be executed only by a
DSC child-contract that was previously created through the deployDSC function. Indeed, of the
address calling the function is not flagged as true in the childrenMap, the function returns without
executing any other instruction. Otherwise, it continues with two conditional actions:

• If the score of this distributor is not 0, and if the reset time period has passed since the
last reset timestamp for this specific distributor, then the score is set to 0 and the reset
timestamp is updated with the current time.

• If the last reset timestamp for this distributor is still 0, meaning that this is its first successful
delivery ever, then the timestamp itself is updated with the current value.

Finally, in any case, the score is incremented. This is done regardless of any other condition
because, by construction, the incrementDistributorScore function is called by a DSC only if the
distributor has really delivered an update to an IoT device. See Section 6.1.3 for more details on
how this behavior is enforced through the code of a DSC contract.� �
1 function incrementDistributorScore(address distributorAddress) public

2 {

3 if (childrenMap[msg.sender] == false)

4 return;

5

6 if ( distributorsMap[distributorAddress].score != 0 &&

7 ( block.timestamp - distributorsMap[distributorAddress].lastReset >

8 distributorResetPeriod ) )

9 {

10 distributorsMap[distributorAddress].score = 0;

11 distributorsMap[distributorAddress].lastReset = block.timestamp;

12 }

13

14 if ( distributorsMap[distributorAddress].lastReset == 0 )

15 {

16 distributorsMap[distributorAddress].lastReset = block.timestamp;

17 }

18

19 distributorsMap[distributorAddress].score++;

20 }� �
Listing 6.6. SSC function for incrementing the score of distributors

6.1.3 Delivery Smart Contract (DSC)

Delivery Smart Contracts (DSCs) are the most important and complex smart contracts in our sys-
tem. Deployed by manufacturers, they take care of issuing cryptocurrency rewards to distributors
and hubs if certain rigorous conditions are met. The source file DSC.sol, in the ethereum/contracts

path, has the same overall structure illustrated for the SSC in Listing 6.1, having its constructor
and its functions included inside a contract DSC{ ... } construct. The only instruction outside
this construct is one that imports the source file of the SSC. This is necessary because the DSC
needs to call a function of the SSC. On the other hand, the elements inside the construct are
significantly different from the SSC, and we describe them in the following.

State Variables

The DSC presents a conspicuous number of state variables, as shown in Listing 6.7. Starting from
line 9, the first three variables simply represent the addresses of the owner and the parent SSC
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contract, and the expiration time associated with the DSC. Subsequently, there are two variables
representing the amounts of cryptocurrency that will be sent out as rewards, one for distributors
and one for hubs. Three hash values follow, corresponding to the update file, the update package
and the zk-SNARKs verifying key.

The last state variable is the most complex. A map data structure called objectsMap, it
employs addresses as key values. Its purpose is to store information about each IoT object that is
targeted by the update release embodied by this DSC. In other words, this is the data structure
corresponding to the list Lm described in Section 4.2.2. Each address is mapped to a special
structure, declared at line 1. That is, the struct objectStruct containing four variables that are
used throughout the rest of the contract.� �
1 struct objectStruct

2 {

3 bool isMember; // set to false by default

4 bytes32 r;

5 bool rSet; // set to false by default

6 bool finalDelivery;

7 }

8

9 address public owner; // owner’s address (manufacturer’s)

10 address public parentContract; // address of parent contract (SSC)

11 uint public expiration;

12 uint256 public singleRewardAmount;

13 uint256 public singleFinalRewardAmount;

14 bytes32 public updateHash;

15 bytes32 public pkgHash;

16 bytes32 public vkHash;

17 mapping (address => objectStruct) private objectsMap;� �
Listing 6.7. DSC state variables

Constructor

The constructor for the DSC is shown in Listing 6.8. In lines 6-9, the values received as arguments
are simply assigned to the corresponding state variables. These values are always forwarded by
the SSC, as explained in Section 4.2.1.� �
1 constructor (address _owner, address _parentContract, uint expWeeks, uint expDays,

2 bytes32 _updateHash, address[] memory objectsAddresses, bytes32 _pkgHash,

3 bytes32 _vkHash, uint256 _singleRewardAmount, uint256 _singleFinalRewardAmount)

4 public payable

5 {

6 owner = _owner; parentContract = _parentContract;

7 updateHash = _updateHash; pkgHash = _pkgHash; vkHash = _vkHash;

8 singleRewardAmount = _singleRewardAmount;

9 singleFinalRewardAmount = _singleFinalRewardAmount;

10

11 if ( expWeeks + expDays == 0 )

12 expiration = 0;

13 else

14 expiration = now + expWeeks * 1 weeks + expDays * 1 days;

15

16 uint numObjects = objectsAddresses.length;

17 for (uint i = 0; i < numObjects; i++)

18 objectsMap[objectsAddresses[uint(i)]].isMember = true;

19 }� �
Listing 6.8. DSC constructor
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Subsequently, the expiration of the DSC is set, derived from the number of weeks and days
received as arguments. If these numbers are both 0, it means that the DSC is being created in an
already expired state by the SSC. As a consequence, the expiration timepoint is set to 0 as well,
so that the DSC is not usable and the owner can withdraw its funds right away. Otherwise, the
expiration timepoint is as calculated as the sum of the current timestamp (built-in variable now)
and the number of weeks and days converted in seconds. The result is saved in the expiration

state variable, and essentially indicates a timepoint in the future with respect to the current time,
i.e. the timestamp of the blockchain transaction that addressed this constructor.

Finally, the list of target IoT objects is processed. The list is received by the constructor in
the form of an array. For each of the addresses contained in this array, a new key-value entry is
inserted in the objectsMap. More precisely, this is achieved by setting to true the value of the
Boolean variable isMember, which is part of the objectStruct shown in Listing 6.7.

Proof-of-Delivery (PoD) Validation

The main purpose of a DSC is to accept proof-of-delivery (PoD) submissions from distributors,
in order to issue cryptocurrency payments in case the submitted values are all valid. This is
achieved through the validateDelivery function shown in Listing 6.9. This function can be
called by any Ethereum node. The necessary arguments correspond to the values listed at the
beginning of Section 4.2.5. These are (i) the address of the target IoT object that generated the
PoD signature, (ii) the random integer value t, (iii) the encryption key r, (iv) the hash of the
encryption key s and finally (v) the PoD signature itself.

The validateDelivery function starts exactly by validating all the received values. This is
done through a series of if statements. If any of these fail, the function returns an error and does
not proceed to issue the cryptocurrency reward to the distributor. The conditions are equivalent
to the ones described in Section 4.2.5:

1. The DSC must not be expired. For this condition to be satisfied, the expiration variable
must be greater than the now variable, i.e. the built-in variable indicating the current time.

2. The address of the IoT object submitted by the distributor must be included in the list of
targets. This is done by means of the checkObjectExistence function (omitted here) which
simply takes an address as argument and returns a Boolean value indicating presence or
absence of the address in the objectsMap.

3. The target IoT object must not have already received the update file. In other words, the
decryption key must not have been already published for this IoT device. The Boolean
value rSet inside the objectStruct has exactly this purpose. The struct is retrieved from
the map using the address as index, and if rSet is true it means that the key was already
revealed for this object. In this case, the contract returns.

4. The key r must have been obtained hashing the concatenation of the value t, the address
of the target object and the address of the sender, i.e. the account submitting the PoD to
this very function. More specifically, we employ the SHA256 algorithm, which is natively
supported in Ethereum through the sha256 function.

5. Similarly, the value s must have been obtained hashing the key r.

6. The PoD signature must indeed be a valid signature that was generated by the address
of the target object, i.e. objectAddress. This condition is checked through the following
sub-steps, corresponding to lines 19-31:

6.1. The length of the signature is checked against a known value for Ethereum signatures

6.2. The signature is split into three values through a portion of code written in assembly
and embedded in the splitSignature function (omitted here)

6.3. The message, i.e. the value upon which the signature was generated, is computed as
the hash of the concatenation of the update hash and the value s, through the function
keccak256. The latter applies a different hashing algorithm compared to SHA256.
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6.4. The address of the signer, i.e. the address that generated this signature, can then be
retrieved with the function ecrecover.

6.5. Finally, the condition can be actually checked: if the resulting address does not corre-
spond to the address of the object, the contract returns an error.

� �
1 function validateDelivery(address objectAddress, bytes16 t, bytes32 r, bytes32 s,

2 bytes memory sig) public returns (string memory)

3 {

4 if (now > expiration)

5 return "DSC expired";

6

7 if (checkObjectExistence(objectAddress) == false)

8 return "Object not in the list";

9

10 if (objectsMap[objectAddress].rSet == true)

11 return "Update already delivered to this object";

12

13 if ( r != sha256(abi.encodePacked(t, objectAddress, msg.sender)) )

14 return "Invalid r: must be SHA256(t || objectAddress || msg.sender)";

15

16 if ( s != sha256(abi.encodePacked(r)) )

17 return "Invalid s: must be SHA256(r)";

18

19 if ( sig.length != 65 )

20 return "Invalid signature length";

21

22 uint8 vSig;

23 bytes32 rSig;

24 bytes32 sSig;

25 (vSig, rSig, sSig) = splitSignature(sig);

26

27 bytes32 message = keccak256(abi.encodePacked(updateHash, s));

28 address signerAddress = ecrecover(message, vSig, rSig, sSig);

29

30 if (signerAddress != objectAddress)

31 return "Invalid signature";

32

33 msg.sender.transfer(singleRewardAmount);

34

35 objectsMap[objectAddress].r = r;

36 objectsMap[objectAddress].rSet = true;

37

38 SSC ssc = SSC(parentContract);

39 ssc.incrementDistributorScore(msg.sender);

40

41 emit KeyRevealed(objectAddress, r);

42

43 return "Delivery was successfully validated";

44 }� �
Listing 6.9. DSC proof-of-delivery (PoD) validation

At this point, if the contract did not return an error, it means that the overall PoD submission
is indeed valid. As a consequence, the contract proceeds as follows:

1. A cryptocurrency payment is issued to the sender, i.e. the distributor, as a reward. In
Solidity, this can be simply achieved through the transfer function, as shown in line 33.
The cryptocurrency amount is indicated with the integer variable singleRewardAmount. The
actual currency is taken from the deposit of the contract, which was funded by the manu-
facturer when calling the deployDSC function of the SSC (see Section 4.2.1).
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2. Subsequently, the key r is stored on the blockchain, saved in the entry of objectsMap corre-
sponding to the address of the target IoT device. In the same entry the value rSet is set to
true, to mark the fact that the key has been revealed for this device.

3. Afterwards, the DSC communicates with its parent SSC contract. This is done to incre-
ment the score of the distributor, to account for the successful delivery at hand. The
code for this action, which is not conceptually trivial, consists in two simple instructions
at lines 38 and 39. The first retrieves the source code of the SSC. The second calls the
incrementDistributorScore function providing the address of the sender as argument.

4. Finally, the DSC emits an event signaling the publication of the key for the target object.
This is useful for the hub waiting for the decryption key, which is now notified.

Final-Proof-of-Delivery (PoFD) Validation

The DSC is also in charge of issuing cryptocurrency payments as reward for hubs, when they
deliver a valid proof-of-final-delivery (PoFD) as described in Section 4.2.5. We omit to show the
function taking care of this task in a listing. Similarly to the validateDelivery function presented
in Listing 6.9, the following actions are performed:

• A series of conditions are enforced to make sure the PoFD submission is valid

• The cryptocurrency amount indicated by the singleFinalRewardAmount variable is trans-
ferred from the DSC deposit to the address of the sender

• A flag is set to true for the DSC to remember that this final delivery already happened

Withdrawing Funds

Another important function of the DSC is to allow the manufacturer to retrieve back the cryp-
tocurrency from the DSC itself when it expired. This is encoded in the withdrawFunds shown in
Listing 6.10. Two important conditions are checked. First, the DSC must indeed be expired. This
can be checked through the expiration variable. It avoids the case of a dishonest manufacturer
withdrawing the funds before time. Second, the address requesting this action, i.e. the sender of
the transaction, must be the owner. If those criteria are met, the totality of the cryptocurrency
balance is transferred to the sender.� �
1 function withdrawFunds() public

2 {

3 if (now < expiration)

4 return;

5

6 if (msg.sender != owner)

7 return;

8

9 msg.sender.transfer(address(this).balance);

10

11 return;

12 }� �
Listing 6.10. Withrdawing funds from the DSC

6.1.4 Exchange Smart Contract (ESC)

The code of an Exchange Smart Contract (ESC) is very much analogous the one of a DSC.
For this reason, we avoid to show the content of the corresponding source file. It reflects the
behavior described in Section 4.2.3. The corresponding ESC.sol source file can be found in the
ethereum/contracts path in our repository.
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6.1.5 Deployment on the Blockchain

We deployed and tested our Solidity smart contracts by means of a simulated local blockchain.
This was made possible by two popular Ethereum development tools, part of the same suite
of tools. One is Truffle [32], which is a development environment and testing framework for
Ethereum. The other is Ganache, [33], providing a personal and local blockchain for deploying
Ethereum smart contracts. For information on how we employed these tools, we refer to the
Solidity Developer Manual in Appendix A.

6.2 zk-SNARKs Proving System

The goal of this section is to present our implementation of the zk-SNARKs proving system for
the CrowdPatching protocol. In short, this proving system leverages two fundamental open-source
libraries, called libsnark and jsnark and builds itself upon them. We first provide an overview
of these libraries in Sections 6.2.1 and 6.2.2. Subsequently, in Section 6.2.3, we illustrate the
modifications we applied to the employed libraries, and the source files we added, to obtain the
specific implementation of the algorithms needed for our proposed protocol.

6.2.1 The libsnark library

To implement the zk-SNARKs system necessary for our protocol, we opted for the open-source
library presented by Virza in [34] and hosted in an online repository [35]. That is, a cryp-
tographic library called libsnark, written in C++ and providing an efficient implementation of
zero-knowledge proof constructions. As claimed by the author, this is probably the fastest and
most comprehensive suite of zero-knowledge proofs currently available.

As explained in the documentation [35], the libsnark library is a pre-processing zk-SNARK
system. This means that, before proofs can be generated by a prover and verified by a verifier, one
needs to select a size, circuit or system representing the NP statement that needs to be proved.
Let us refer to the size, circuit or system as the structure of the NP statement, while the NP
statement itself is just a mathematical statement as the ones we illustrated in Section 4.2.2. Once
the structure of the statement is known, one can proceed running the zk-SNARKs algorithms we
described in Section 2. In other words, in order to use the libsnark library to prove and verify a
certain statement, one must execute the following overall steps:

1. Express the structure of the statement as one of the mathematical languages supported by
libsnark. Examples of these languages are (i) the NP-complete language called Rank-1 Con-
straint Systems (R1CS) or (ii) the language of arithmetic circuits called Bilinear Arithmetic
Circuit Satisfiability (BACS). Several others are supported.

2. Execute the zk-SNARKs Setup algorithm implemented in libsnark, using the statement
obtained in the previous step, to create the proving key and the verifying key.

3. Execute the zk-SNARKs Prove algorithm implemented in libsnark, using the statement as
input plus the secret and public values, to generate proofs of true statements.

4. Execute the zk-SNARKs Verify algorithm implemented in libsnark, using the statement as
input plus the public values, to verify proofs.

Referring to the first high-level step among the ones we just highlighted, we initially decided
to express our zk-SNARKs statements using the R1CS intermediate language, because it is very
well supported by libsnark. Indeed, a gadget library is provided, allowing to construct R1CS
instances out of modular classes. In other words, this gadget library allows to exploit existing
R1CS modules and to combine them in order to obtain the target statement without having to
design the full R1CS system from scratch. Many gadgets are provided, including for the SHA256
hashing algorithm or for dealing with Merkle trees.
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However, libsnark does not provide any gadgets for symmetric encryption algorithms, which
is crucial for the CrowdPatching zk-SNARKs statements illustrated in Section 4.2.2. For this
reason, we turned to another library called jsnark, which is built on top of libsnark and provides
an alternative way to express the structure of a statement that needs to be proved.

6.2.2 The jsnark library

The jsnark library [36] is an open-source project providing an alternative way of expressing the
structure of an NP-statement, which can then be processed using the zk-SNARKs algorithms
implemented by libsnark. In other words, it provides an alternative to the first libsnark high-level
step described in Section 6.2.1. More specifically, the jsnark code consists of two main modules.
The first, written in Java, is the JsnarkCircuitBuilder. It allows to express a statement in the
form of arithmetic circuits, which is one of the languages supported by libsnark. And it does
so by means of several gadgets, which can be combined to construct complex statements. Most
importantly, these gadgets support more cryptographic primitives compared to libsnark. For the
CrowdPatching protocol, we need a statement which includes symmetric encryption and hashing,
and both of these are included in the jsnark gadget library.

The second module composing jsnark is an interface to the libsnark library. This is coded
in C++ and allows to run the libsnark Setup, Prove and Verify algorithms using a statement
generated with the JsnarkCircuitBuilder module. In other words, its purpose is to connect the
two libraries together to form a complete zk-SNARKs proving system that includes all the high
level steps described in Section 6.2.1.

6.2.3 Our proving system

Here we illustrate how we employed the jsnark and libsnark libraries to obtain the zk-SNARKs
proving system that supports all related steps of the CrowdPatching protocol. The corresponding
files are located in the zksnarks folder of our repository.

The CrowdPatching Circuit Generator in jsnark

The first step to code a custom zk-SNARKs proving system in jsnark is to create what is called a
circuit generator. That is, a Java class that will ultimately generate the arithmetic circuit which
can then be used by libsnark to prove and verify a certain statement. To create such a class,
one has to extend the CircuitGenerator class provided by jsnark, override some of its methods
and add a main where several methods of the CircuitGenerator class can be invoked. Our specific
circuit generator class, located in the zksnarks/JsnarkCircuitBuilder/src/examples/generators

path with name CrowdPatchingCircuitGenerator.java has the structure shown in Listing 6.11.� �
1 ... // Packages and imports

2

3 public class CrowdPatchingCircuitGenerator extends CircuitGenerator

4 {

5 ... // Member variables

6

7 // Constructor

8 public CrowdPatchingCircuitGenerator() { ... }

9

10 @Override protected void buildCircuit() { ... }

11 @Override public void generateSampleInput(CircuitEvaluator evaluator) { ... }

12

13 public static void main(String[] args) { ... }

14 }� �
Listing 6.11. Overall structure of the CrowdPatching Circuit Generator
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The most significant elements of the CrowdPatching circuit generator are the buildCircuit and
generateSampleInput methods. These are the methods we had to customize, with respect to the
original CircuitGenerator abstract class, to obtain our statement-specific circuit implementation.
As explained in the jsnark documentation [36], the purpose of the buildCircuit method is to is
to identify the inputs of the circuit (differentiating the secret inputs from the public inputs) as
well as dictating its structure by combining or connecting different gadgets. Whereas the goal of
the generateSampleInput method is to specify the actual values of the secret and public inputs.

We start describing our buildCircuit method. But before doing so, it is important to remem-
ber which specific statement we are implementing. In Section 4.2.2, we introduced two different
statements, almost identical expect for the size one element. The first, used by first-hand dis-
tributors to prove their possession of the update package to second-hand distributors (see Section
4.2.3), is referred to as SE and composed as follows:

s = H(r) ∧ Ph = H(P ) ∧ Pe = Enc(P, r)

The other, leveraged by distributors to prove they possess the update file to hubs (see Section
4.2.4), is indeed very similar and we refer to it as SD:

s = H(r) ∧ Uh = H(U) ∧ Ue = Enc(U, r)

We only implemented this last statement. However, the implementation can be trivially adapted
for the first statement, by changing the size of of the update file accordingly. As a matter of fact,
different update releases would naturally have update files with different sizes, which means that
the size of the file would have to be adjusted in any case. This is why there was no need for two
implementations for these two statements.

Another crucial premise must be done. That is, to illustrate which jsnark gadgets we employed.
This choice depended on the specific statement we aimed at implementing, which is SD. According
to the statement we needed support for (i) one hashing algorithm H capable of hashing files with
arbitrary size and (ii) one symmetric encryption algorithm Enc capable of encrypting files with
arbitrary size. What is more, the encryption algorithm would have had to use a key with the
same size as the output of the hashing algorithm, because the protocol has been designed in a
way that the key r needs to be computed as the hash of t concatenated with other values (see
Section 4.2.4). All these gadgets were indeed available, provided in the form of Java classes. For
the hashing algorithm, we used the SHA256Gadget gadget. Whereas for the encryption algorithm
we used the Speck128CipherGadget. The Speck-128 block cipher is part of a family of lightweight
block ciphers [37] designed for the Internet of Things by the National Security Agency (NSA).
We selected this encryption method because it is the only one with support for the CBC mode
of operation within jsnark. That is, a textbook approach for using a block cipher (capable of
encrypting or decrypting blocks with fixed size only) to deal with files with arbitrary size. As
shown in the following, to implement this approach we took inspiration from an existing jsnark
gadget, called SymmetricEncryptionCBCGadget.

We divide the buildCircuit method in three parts. The first is shown in Listing 6.12. Here
we set up the size of the variables composing the statement SD. In jsnark, these variables have
a specific type called Wire, which can also be used to declare arrays with the syntax Wire[]. We
declared them as class members (see Listing 6.11, this part was omitted) but we do not initialize
them right away. As a consequence, they need to be initialized here in buildCircuit. The first
variable to be initialized in line 4 is filePlaintextWitness8bitsWires, an array of type Wire[]. This
represents the variable U in the statement SD, i.e. the plaintext of the update file. As indicated
by its name, we consider each wire composing the array to have a size of 8 bits. What is more,
this variable represents a secret input of the statement. Secret inputs are referred to as witnesses
in jsnark, hence the presence of this word in the name of the variable. The actual initialization
is applied through the createProverWitnessWireArray function, which must be used to initialize
any secret input. As an argument, one must provide the number of wires. We compute this as
the number of hexadecimal digits composing the file divided by 2. The variable fileNumHexDigits

will be initialized in the main before the execution of the buildCircuit function.

Continuing with the description of Listing 6.12, subsequent variables are initialized in similar
ways. Few peculiar aspects are worth noting in this context:
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• For non-secret inputs, the createInputWireArray function is used in place of the previous
one (createProverWitnessWireArray). An example is the variable representing the value Uh

for the statement SD, called fileExpectedDigest32bitsWires and initialized in line 11.

• The number of wires, i.e. the size, of each wire-array depends not only on the actual size of
the represented value but also on the number of bits that each wire contains. For example,
in the rWitness8bitsWires array each wire contains 8 bits. As a consequence, the number of
wires is computed as the total number of bits (256) divided by the number of bits per wire
(resulting in 32 wires). Other variables have a different number of bits per wire and thus
the number of wires is calculated accordingly.

• There are two variables for the plaintext update file. This is because this file is both hashed
and encrypted in the statement. As a consequence, two different inputs are needed for the
different gadgets, and they also differ in the number of bits per wire. The same applies to
the encryption key r, of which there are two instances.

• As mentioned before, we are using the Speck128 block cipher gadget for symmetric encryp-
tion. What is more, we are using it in combination with a CBC mode of operation to be
able to encrypt arbitrary long files. As a consequence, to encrypt any file we need both a
128 bits key and a 128 bits initialization vector (IV). This is achieved by splitting the key
r (256 bits) in two parts (128 bits each) that will form the Speck key and IV.

� �
1 @Override protected void buildCircuit()

2 {

3 // (fileNumHexDigits is initialized in the constructor)

4 filePlaintextWitness8bitsWires =

5 createProverWitnessWireArray(fileNumHexDigits / 2);

6

7 // Key r is 256 bits: 256 / 8 = 32 bytes

8 rWitness8bitsWires = createProverWitnessWireArray(32);

9

10 // Number of 32-bits words in a SHA256 digest: 256 / 32 = 8

11 fileExpectedDigest32bitsWires = createInputWireArray(8);

12 rExpectedDigest32bitsWires = createInputWireArray(8);

13

14 // Different wire array for the plaintext (for encryption, other is for hashing)

15 filePlaintextWitness64bitsWires =

16 createProverWitnessWireArray(fileNumHexDigits / numHexDigitsIn64bits);

17

18 // Key r (256 bits) divided into two parts (128 bits each) to obtain key and IV

19 keyWitness64bitsWires = createProverWitnessWireArray(2);

20 ivWitness64bitsWires = createProverWitnessWireArray(2);

21

22 // (numHexDigitsIn64bits is a constant with value 64/4)

23 fileExpectedCiphertext64bitsWires =

24 createInputWireArray(fileNumHexDigits / numHexDigitsIn64bits);

25

26 ... // Second part

27

28 ... // Third part

29

30 }� �
Listing 6.12. buildCircuit method part one: variables initialization

The second part of the buildCircuit method is shown in Listing 6.13, which is exclusively
dedicated to the conditions in statement SD involving the hashing algorithm. There are expressed
by the equations s = H(r) and Uh = H(U), and the purpose of the code in this Listing is
exactly to enforce those equations. We create two instances of the SHA256Gadget indicating the
corresponding input wire-arrays, the number of bits per wire (8) and their length. We create
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two new wire-arrays to contain the result of the hashing computation, which is done through the
getOutputWires method of the gadget. And finally we enforce the equality between the resulting
hash values and the expected hash values. This is done by enforcing independent equality assertions
(addEqualityAssertion method) to each couple of wires.� �
1 @Override protected void buildCircuit()

2 {

3 ... // First part

4

5 // Create instances of the SHA256 gadget

6 SHA256Gadget fileSHA256Gadget1 = new SHA256Gadget(filePlaintextWitness8bitsWires,

7 8, filePlaintextWitness8bitsWires.length, false, true, "");

8 SHA256Gadget rSHA256Gadget2 = new SHA256Gadget(rWitness8bitsWires,

9 8, rWitness8bitsWires.length, false, true, "");

10

11 // Method getOutputWires() returns digest as a 32-bits wire-array

12 Wire[] fileDigest32bitsWires = fileSHA256Gadget1.getOutputWires();

13 Wire[] rDigest32bitsWires = rSHA256Gadget2.getOutputWires();

14

15 // Enforce the resulting digests and expected digests to be identical

16 for (int i = 0; i < num32bitsWordsInDigest; i++)

17 {

18 addEqualityAssertion(fileDigest32bitsWires[i], fileExpectedDigest32bitsWires[i]);

19 addEqualityAssertion(rDigest32bitsWires[i], rExpectedDigest32bitsWires[i]);

20 }

21

22 ... // Third part

23

24 }� �
Listing 6.13. buildCircuit method part two: hash pre-image verifications

Lastly, in the third and final part of the buildCircuit method shown in Listing 6.14, we enforce
the symmetric encryption equality in the statement, i.e. the relation expressed with the equation
Ue = Enc(U, r). In particular, we employ the Speck128 block cipher gadget in CBC mode. CBC
stands for cipher block chaining, and refers to a method for encrypting arbitrary long files with
a block cipher, which would otherwise be capable of encrypting block-size files only. To achieve
this, we adapted the code of an existing jsnark gadget, called SymmetricEncryptionCBCGadget.

We start this third part by declaring a new wire array that will gradually contain the result
of the encryption. We apply the CBC mode of operation to this variable, which is completed at
the end of the first for loop. At this point, we simply apply an equality assertion to each couple
of wires belonging to the expected ciphertext and the resulting ciphertext, thus enforcing the
equation mentioned above. As for the hashing verification, we employ the addEqualityAssertion

provided by jsnark exactly for this purpose.

It is worth noting how, throughout the entire buildCircuit method, we did not assign any
actual value to the involved variables. Indeed, at this stage we are only designing the structure of
the statement we want to prove and verify, without having to select any valid values that satisfy
the statement itself. This is why the variables are called wires: they are associated with the wires
of a circuit, which can be connected and combined to obtain a certain topology regardless of the
values which will flow inside them.

In the jsnark context, the actual values are assigned to the various wires in the other important
method of the CircuitGenerator class, called generateSampleInput. However, assigning these
values is not necessary for the party generating the zk-SNARKs proving and verifying key. This
party, in the CrowdPatching protocol, is the manufacturer. In our jsnark code, we refer to it as
the generator. Indeed, the generator only needs the structure of the statement, which can be
used as input for the zk-SNARKs Setup algorithm explained in Section 2.3. As a consequence,
the generator does not employ the generateSampleInput method we are about to illustrate. This
difference is made explicit in the main function, which will be shown in Listing 6.16 later.
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� �
1 @Override protected void buildCircuit()

2 {

3 ... // First part

4

5 ... // Second part

6

7 // Variable that will gradually become the result of the encryption

8 Wire[] fileCiphertext64bitsWires = new Wire[0];

9

10 // Implementation of the Cipher Block Chaining (CBC) mode of operation

11 Wire[] expandedKey = Speck128CipherGadget.expandKey(keyWitness64bitsWires);

12 Wire[] prevCipher = new Wire[2];

13 prevCipher[0] = ivWitness64bitsWires[0];

14 prevCipher[1] = ivWitness64bitsWires[1];

15 for( int i = 0; i < filePlaintextWitness64bitsWires.length-2+1; i+= 2 )

16 {

17 Wire[] xored = new Wire[2];

18 xored[0] = filePlaintextWitness64bitsWires[i].xorBitwise(prevCipher[0], 64);

19 xored[1] = filePlaintextWitness64bitsWires[i+1].xorBitwise(prevCipher[1], 64);

20

21 prevCipher = new Speck128CipherGadget(xored, expandedKey).getOutputWires();

22

23 fileCiphertext64bitsWires = Util.concat(fileCiphertext64bitsWires, prevCipher);

24 }

25

26 for (int i = 0; i < fileCiphertext64bitsWires.length; i++)

27 {

28 addEqualityAssertion(fileCiphertext64bitsWires[i],

29 fileExpectedCiphertext64bitsWires[i]);

30 }

31 }� �
Listing 6.14. buildCircuit method part three: encryption verification

The generateSampleInput method of the CrowdPatchingCircuitGenerator is partially shown in
Listing 6.15. In this method we repeat a very similar operation for all input and witness wires
present in the buildCircuit method. That is, we assign valid values to all these wires, in order to
prepare them for the zk-SNARKs Prove algorithm.� �
1 @Override public void generateSampleInput(CircuitEvaluator evaluator)

2 {

3 String subStr; int wireIndex; BigInteger b; String hexString128bits;

4

5 // Fill the wires of the file plaintext used by the SHA256 gadget

6 wireIndex = 0;

7 for (int i = 0; i < filePlaintextHexString.length() - numHexDigitsIn8bits+1;

8 i += numHexDigitsIn8bits)

9 {

10 subStr = filePlaintextHexString.substring(i, i+numHexDigitsIn8bits);

11 b = new BigInteger(subStr, 16);

12 evaluator.setWireValue(filePlaintextWitness8bitsWires[wireIndex], b);

13 wireIndex++;

14 }

15

16 ... // Fill all other wires

17 }� �
Listing 6.15. Main function of the CrowdPatching Circuit Generator

In Listing 6.15, we only show the assignment of the first wire array, which is the variable
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filePlaintextWitness8bitsWires representing the update file in the statement. More precisely, it
represents such update file for the hashing verification part only. We omit all other assignments
because the operation is very much analogous for all of them. We start by initializing an integer
index that is used to select a specific wire inside the array. Afterwards, we enter a for cycle
to iterate on the filePlaintextHexString. This is a simple string encoding the hexadecimal
characters of the update file, which must be passed by the main function to the constructor of
the circuit generator as an argument. The for loop is constructed in a way that, in the iteration
of this string, at each cycle we are advancing of a special number of characters. That is, the
number of hexadecimal digits composing 8 bits, given by the numHexDigitsIn8bits constant which
has value 2 and was initialized as a class variable. Inside the loop we do as follows: (i) we retrieve
a sub-string corresponding to the two hexadecimal digits we are isolating in the current cycle;
(ii) we create a new BigInteger Java object, which allows us to easily convert a substring with
hexadecimal digits to an integer value; (iii) and we eventually set this value in the wire selected
by the index-variable, which is now incremented for the next cycle.

We finally present the main function in Listing 6.16, omitting few unimportant portions. This
is the function executed when the CrowdPatchingCircuitGenerator class is run, and coordinates
the execution of various other function towards the final goal of generating the structure of the
statement at hand as described at the beginning of this section.� �
1 public static void main(String[] args)

2 {

3 ... // Enforce the correct number and format for command line arguments

4

5 boolean prover;

6 if (args[0].charAt(0) == ’p’) prover = true;

7 else prover = false;

8

9 // Plaintext size = 64 bytes * 4 = 256 bytes = 512 hex digits = 2048 bits

10 plaintextCharString = "AJDSFAHDVKJSMN...";

11 filePlaintextHexString = Util.stringToHex(plaintextCharString);

12 String rHexString =

13 "d4c6ecb0035d57a13e59135d29c2d4c59c26393e3032af5461f181b91e6176e4";

14 String fileExpectedDigestHexString =

15 "8457612244c5f5b7b2147b42ddbf859d68a78560d3f35ae4d411690cadd9a794";

16 String rExpectedDigestHexString =

17 "ac9e59b4e3ca66a4cb1cfb633183de3f6b6cf244b5c70da45fda3228ce71a814";

18 String fileExpectedCiphertextHexString = "a52e5f3ab41c..."

19 int fileNumHexDigits = filePlaintextHexString.length();

20

21 CrowdPatchingCircuitGenerator circuitGenerator;

22 if(prover)

23 {

24 circuitGenerator = new CrowdPatchingCircuitGenerator("my_prover",

25 filePlaintextHexString, rHexString, fileExpectedDigestHexString,

26 rExpectedDigestHexString, fileExpectedCiphertextHexString);

27 } else

28 {

29 circuitGenerator =

30 new CrowdPatchingCircuitGenerator("my_generator", fileNumHexDigits);

31 }

32

33 circuitGenerator.generateCircuit();

34 if (prover)

35 {

36 circuitGenerator.evalCircuit(); circuitGenerator.prepFiles();

37 } else

38 circuitGenerator.writeCircuitFile();

39 }� �
Listing 6.16. Main function of the CrowdPatching Circuit Generator
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More specifically, the main can be executed in two different modalities: as the generator of
the proving and verifying keys, which is the manufacturer in our protocol; or as the prover. Let
us call the generator modality G-mode, and the other P-mode. Either modality can be selected
through different command line arguments, as shown in lines 5-7. As a consequence, the operations
executed by the main depend on the corresponding Boolean variable.

Continuing with the content of the main function, we simply assign the secret and public
values to the corresponding variables, which are hard-coded for simplicity. For example, the
update plaintext file is hard-coded as a 256 bytes string in the variable plaintextCharString,
which is then converted into hexadecimal digits. However, these variables (lines 9-18) are only
needed in P-mode. Instead, the only value necessary for G-mode is the number of hexadecimal
digits in the plaintext file (line 19). This difference is reflected in the following lines, where
a new instance of the CrowdPatchingCircuitGenerator class is created. A different constructor
(with different arguments) is used depending on the mode. We omit to show these two different
constructors, but they simply assign the received values to the corresponding class variables.

Finally, we invoke some crucial jsnark methods. If we are in G-mode, which means we just
want to create the proving and verifying key, we call the writeCircuitFile method. This is a
method of the original CircuitGenerator abstract class which we did not override. What it does
is to generate a description of the circuit representing the statement, and it exports it in the form
of a file with extension .arith. This file can then be used by the jsnark-libsnark interface to
generate the proving and verifying keys. Instead, if we are in P-mode, two methods are invoked,
both provided by the original CircuitGenerator class. The first is the evalCircuit method, which
internally calls our generateSampleInput shown in Listing 6.15. This is done to fill the wires with
the actual values for all the elements of the statement, which is why the method is not called in
G-mode. The second is the prepFiles method. This internally calls (i) the writeCircuitFile,
producing the same effect as in G-mode, and (ii) the writeInputFile method. The latter generates
a second file with .in extension. Its purpose is, in combination with the .arith file, to allow the
jsnark-libsnark interface to act as the prover, which needs both the structure of the statement
and the values to be assigned to all variables, secret and non-secret.

It is worth noting how there is no mention of the verifier in all the code above. This is because
the verifier is implemented with the libsnark library only, i.e. without employing jsnark nor its
interface with libsnark. See the next section for further details.

The zk-SNARKs Algorithms in libsnark

In the previous section we explained the jsnark code for the generator and the prover. The
output of the former is a file with .arith extension representing the structure of the statement
at hand, i.e. SD. The latter has the same output, with the addition of a file with .in extension
which describes the secret and public inputs to the statement. In this section, we illustrate the
jsnark-libsnark interface that elaborates on those files. What is more, we are going to show the
libsnark functions implementing the three zk-SNARKs entities: the generator, the prover and
the verifier. The C++ source files described here are located in the zksnarks\libsnark\libsnark

\jsnark_interface\ directory path of our repository [29].

The code for the generator, which corresponds to the generator.cpp source file, is partially
shown in Listing 6.17. First of all, this program accepts the .arith file generated by jsnark as
in the previous section by the CrowdPatchingCircuitGenerator in G-mode. Afterwards, in lines
11-13, we initialize a specific libsnark variable called the protoboard, which is used by libsnark to
encode the structure of a statement.

At this point we can create a new CircuitReader object, providing the .arith file and the
protoboard as arguments. The CircuitReader class is the actual interface provided by jsnark,
implemented in the CircuitReader.hpp and CircuitReader.cpp files. In this case, the interface is
able to read the .arith file and to write the equivalent circuit in the protoboard, in a language
that is compatible with the libsnark inner mechanisms.

We continue by obtaining the R1CS (see Section 6.2.1) constraint system from the protoboard.
The constraint system is then used as an argument for the libsnark function generating the proving
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key and the verifying key, now stored together in the keypair variable. Finally, we export these
keys in the form of files in the last lines, so that they can be used by the prover and the verifier.� �
1 #include "CircuitReader.hpp"

2

3 ...

4

5 using namespace std;

6

7 int main(int argc, char **argv)

8 {

9 ...

10

11 gadgetlib2::initPublicParamsFromDefaultPp();

12 gadgetlib2::GadgetLibAdapter::resetVariableIndex();

13 ProtoboardPtr pb = gadgetlib2::Protoboard::create(gadgetlib2::R1P);

14

15 CircuitReader reader(argv[1], pb);

16

17 r1cs_constraint_system<FieldT> cs = get_constraint_system_from_gadgetlib2(*pb);

18 r1cs_ppzksnark_keypair<libsnark::default_r1cs_ppzksnark_pp> keypair =

19 r1cs_ppzksnark_generator<libsnark::default_r1cs_ppzksnark_pp>(cs);

20

21 ofstream pkfile;

22 pkfile.open ("PK_export");

23 pkfile << keypair.pk;

24 pkfile.close();

25

26 ofstream vkfile;

27 vkfile.open ("VK_export");

28 vkfile << keypair.vk;

29 vkfile.close();

30

31 return 0;

32 }� �
Listing 6.17. File generator.cpp implementing the Setup zk-SNARKs algorithm

We show the code for the prover in Listing 6.18, where we omit few non-relevant lines. Similarly
to the generator, the program corresponding to this prover.cpp source file accepts the .arith file
as a command line argument. In addition, the .in file describing the secret and public inputs
must be provided as a second argument. What is more, the protoboard variable is created and
initialized in the same way in lines 11-13. Afterwards, a keypair variable variable is declared in
line 15. Differently from the generator, this time the key pair is not computed. Instead, in the
subsequent lines until line 18, the proving key is imported from the file that was created by the
generator, and stored in the corresponding component of the keypair object.

Subsequently, an instance of the CircuitReader is created. Differently from what is done in
the generator, three arguments are passed: the .arith file, the .in file and the protoboard. In
this way the CircuitReader, in addition to writing the structure of the circuit into the protoboard,
it also writes the actual values for the secret inputs and the public inputs. In the context of the
libsnark library, the secret inputs are referred to as the primary input, while the public values
are referred to as auxiliary input. Exploiting the CircuitReader instance that was just created,
these inputs are stored in two different variables called primary_input and auxiliary_input, in a
process extending from line 22 to line 31.

Having obtained the primary input and the auxiliary input, the proof can finally be generated
through the appropriate libsnark procedure in lines 33-36. More specifically, we employ the
r1cs_ppzksnark_prover, which accepts as arguments the proving key, the secret (primary) inputs
and the public inputs (auxiliary). The result, stored in the proof variable, is then exported into
a file in the subsequent lines. In this way, it can be read by the verifier program.
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� �
1 #include "CircuitReader.hpp"

2

3 ...

4

5 using namespace std;

6

7 int main(int argc, char **argv)

8 {

9 ...

10

11 gadgetlib2::initPublicParamsFromDefaultPp();

12 gadgetlib2::GadgetLibAdapter::resetVariableIndex();

13 ProtoboardPtr pb = gadgetlib2::Protoboard::create(gadgetlib2::R1P);

14

15 r1cs_ppzksnark_keypair<libsnark::default_r1cs_ppzksnark_pp> keypair;

16 ifstream in("PK_export");

17 in >> keypair.pk;

18 in.close();

19

20 CircuitReader reader(argv[1], argv[2], pb);

21

22 r1cs_constraint_system<FieldT> cs = get_constraint_system_from_gadgetlib2(*pb);

23 const r1cs_variable_assignment<FieldT> full_assignment =

24 get_variable_assignment_from_gadgetlib2(*pb);

25 cs.primary_input_size = reader.getNumInputs() + reader.getNumOutputs();

26 cs.auxiliary_input_size = full_assignment.size() - cs.num_inputs();

27

28 const r1cs_primary_input<FieldT> primary_input( full_assignment.begin(),

29 full_assignment.begin() + cs.num_inputs() );

30 const r1cs_auxiliary_input<FieldT> auxiliary_input(

31 full_assignment.begin() + cs.num_inputs(), full_assignment.end() );

32

33 r1cs_example<FieldT> example(cs, primary_input, auxiliary_input);

34 r1cs_ppzksnark_proof<libsnark::default_r1cs_ppzksnark_pp> proof =

35 r1cs_ppzksnark_prover<libsnark::default_r1cs_ppzksnark_pp>(keypair.pk,

36 example.primary_input, example.auxiliary_input);

37

38 ofstream prooffile;

39 prooffile.open("proof_export");

40 prooffile << proof;

41 prooffile.close();

42

43 return 0;

44 }� �
Listing 6.18. File prover.cpp implementing the Prove zk-SNARKs algorithm

Lastly, we illustrate the verifier program corresponding to the verifier.cpp source file. Par-
tially shown in Listing 6.19, there are two first important differences from the previous two files:
the CircuitReader.hpp header is not included in this case and there are no command line argu-
ments. This is because the verifier program does not use jsnark at all, nor the jsnark-libsnark
interface. Instead, as explained in the following, there is only a C++ implementation, and the
input values (secret and public) are hard-coded in the program. This is why the jsnark Crowd-
Patching circuit builder only had a G-mode and a P-mode, and not a V-mode.

The first operation in this source file is to initialize the protoboard (omitted here) exactly as
in previous Listings (e.g. see Listing 6.18, lines 11-13). Afterwards, the verifying key and the
proof are imported from the corresponding files. Subsequently, the public inputs are assigned
(hard-coded) to the appropriate string variables in lines 16-20. Indeed, the secret values are not
known to the verifier, and the whole objective of this zero-knowledge proof system is that they
remain unknown even when the proof is successfully validate.
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� �
1 ...

2

3 using namespace std;

4

5 int main( )

6 {

7 ...

8

9 std::ifstream in("VK_export");

10 r1cs_ppzksnark_keypair<libsnark::default_r1cs_ppzksnark_pp> keypair;

11 in >> keypair.vk; in.close();

12 ifstream proofFile("proof_export");

13 r1cs_ppzksnark_proof<libsnark::default_r1cs_ppzksnark_pp> proof;

14 proofFile >> proof; proofFile.close();

15

16 string fileExpectedDigestHexString =

17 "8457612244c5f5b7b2147b42ddbf859d68a78560d3f35ae4d411690cadd9a794";

18 string rExpectedDigestHexString =

19 "ac9e59b4e3ca66a4cb1cfb633183de3f6b6cf244b5c70da45fda3228ce71a814";

20 string fileExpectedCiphertextHexString = "a52e5f3ab41c9...";

21

22 int numHexDigitsInDigest = 256 / 4;

23 int numHexDigitsInDigestInputVariable = 8;

24 int numHexDigitsInCiphertext = fileExpectedCiphertextHexString.length();

25 int numHexDigitsInCiphertextInputVariable = 16;

26 const int numInputs =

27 1 + (numHexDigitsInDigest / numHexDigitsInDigestInputVariable) * 2 +

28 numHexDigitsInCiphertext / numHexDigitsInCiphertextInputVariable;

29 int i; string subStr; string subStr1; string subStr2; int inputIndex = 1;

30

31 VariableArray input(numInputs, "input");

32 pb->val(input[0]) = readFieldElementFromHex("1");

33

34 for (i = 0; i < numHexDigitsInDigest-numHexDigitsInDigestInputVariable+1;

35 i += numHexDigitsInDigestInputVariable)

36 {

37 subStr =

38 fileExpectedDigestHexString.substr(i, numHexDigitsInDigestInputVariable);

39 char *cstr = new char[subStr.length() + 1];

40 strcpy(cstr, subStr.c_str());

41 pb->val(input[inputIndex]) = readFieldElementFromHex(cstr);

42 delete [] cstr; inputIndex++;

43 }

44

45 ... // Loops for rExpectedDigestHexString and fileExpectedCiphertextHexString

46

47 const r1cs_variable_assignment<FieldT> full_assignment =

48 get_variable_assignment_from_gadgetlib2(*pb);

49 const r1cs_primary_input<FieldT> primary_input(full_assignment.begin(),

50 full_assignment.begin() + numInputs);

51

52 const bool ans =

53 r1cs_ppzksnark_verifier_strong_IC<libsnark::default_r1cs_ppzksnark_pp>(

54 keypair.vk, primary_input, proof);

55 printf("* The verification result is: %s\n", (ans ? "PASS" : "FAIL"));

56

57 return 0;

58 }� �
Listing 6.19. File verifier.cpp implementing the Verify zk-SNARKs algorithm
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However, these hard-coded values are not enough to proceed with the libsnark verifying algo-
rithm. They need to be written inside the protoboard. To achieve this, various helper variables
are computed in lines 22-29. Subsequently, three for loops are executed, one for each of the three
hard-coded variables: one for the file expected digest, one for the expected digest for the key r
and one for the file expected ciphertext. Because these for loops are very similar, we only show
the first one and omit the other two. The key operation performed in these loops is to assign the
correct values to the protoboard, through its internal pb->val function.

At this point we can finally verify the proof. Towards this goal, we first retrieve the primary
input (non-secret values of the statement) from the protoboard in lines 47-50. The result is
provided as an argument, along with the verifying key and the proof, to the libsnark function
implementing the Verify algorithm. If the proof is valid, the return value is true, false otherwise.

Execution Time

In the previous portion of this section, we have illustrated the code for the three zk-SNARKs
algorithms applied to our specific statement. In particular, the generator G and the prover P
have both a jsnark-side program (written in Java) and a libsnark-side program (written in C++).
Instead, the verifier has only a libsnark-side program. For instructions on how to actually execute
these programs, we refer to Appendix B, where we provide a brief guide on how to run an entire
zk-SNARKs example. More specifically, we outline instructions for (i) generating the proving key
and the verifying key, (ii) generating a zk-SNARKs proof and (iii) verifying the same proof.

Having said that, we now provide some statistics about the execution time of each zk-SNARKs
algorithm: the generator G, the prover P and the verifier V. Each algorithm is executed by a
specific protocol entity, as indicated by our design in Section 4. The generator G corresponds to
the manufacturer, who generates the proving key and the verifying key for a new update release.
The prover P can be any distributor who is trying to convince a hub about the validity of the
statement. And the hub, in turn, is acting as the verifier V. This means that none of these
operations is executed by an IoT device. As a consequence, in order to measure the execution
time, we always employed a non-constrained machine, i.e. a machine that does not present the
same software and hardware limits that characterize an IoT device. Indeed, we employed a
machine running Ubuntu 20.04, with an Intel i7 CPU and 8GB of RAM. One could argue that
hubs, who act as the verifier V, can easily present more limited resources in terms of hardware
and software. However, as shown by the experiments below, the verifier V requires very low
computational effort, both relatively to the other algorithms and in absolute terms, which gives
us high assurance about the fact that it could be executed with limited resources.

As explained at the beginning of this section, our zk-SNARKs programs apply to the following
mathematical statement, where F is the secret file, r is the secret key used to encrypt it, Fe is
the encrypted file and finally Fh and s are the hash digests of F and r respectively:

s = H(r) ∧ Fh = H(F ) ∧ Fe = Enc(F, r)

In this statement, the only factor that could provoke different execution times is the size of
its elements. Indeed, their content would not have any effect on how they are processed by
the involved algorithms (the hashing function H and the symmetric encryption Enc), and the
algorithms themselves are fixed. What is more, among all the elements of the statement, only
three can change in size. Indeed, the output of our chosen hashing algorithm (SHA256) has a fixed
length of 256 bits, which means that Fh and s have fixed size regardless of their hash pre-images.
And the key r has also a fixed size of 128 bits, as it is employed by a block cipher with a specific
key length (Speck128). The remaining elements, F and Fe, can vary in their size. However, Fe

is the result of symmetric encryption applied to F , which means that they have the same size.
In conclusion, the only parameter that can influence the execution time of the three algorithms
is the size of the file F , and we obtained the consequent statistics according to this conclusion.
We applied each zk-SNARKs algorithm, i.e. the generator G, the prover P and the verifier V, to
four files with different sizes: (i) 0.5 kilobytes; (ii) 2 kilobytes; (iii) 5 kilobytes; (iv) 10 kilobytes.
They are listed in Table 6.2.3 along with their names: F1, F2, F3 and F4. More specifically, for
each algorithm we first executed its jsnark-side program, if present, and then its libsnark-side
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File Size

F1 0.5 KB

F2 2 KB

F3 5 KB

F4 10 KB

Table 6.1. Files with variable size used for the time measurements

program. We measured the execution time of both programs, using seconds as a unit, and then
calculated the total with a simple addition. We employed seconds as unit because we believe it
would not be meaningful to consider smaller amounts of time. For the same reason, whenever a
measure goes below one second, we indicate it as “Below 1 s” for simplicity.

We show the results for the generator G in Table 6.2.3. The first observation is that the time
measure is mostly influenced by the libsnark-side of the program. This was expected, and it also
applies to the prover P (while the verifier V does not have a jsnark implementation). The reason
is implicitly illustrated in Sections 6.2.1 and 6.2.2. That is, the fact that the jsnark library takes
care of designing the structure of the statement that needs to be proved, without applying the
actual zk-SNARKs algorithms, which are left to libsnark. The second and most important finding
is that the total time significantly increases with the size of the file Fi.

File File size Time for jsnark Time for libsnark Total time

F1 0.5 KB 1 s 46 s 47 s

F2 2 KB 4 s 167 s 171 s

F3 5 KB 11 s 440 s 451 s

F4 10 KB 19 s 979 s 998 s

Table 6.2. Execution time measurements for the generator G

A similar set of results was obtained for the prover P, as shown in Table 6.2.3. In this case, the
time measurements are slightly higher, but the pattern is analogous. Indeed, for the file F4, the
total execution time culminates with the value of 1823 seconds, i.e. 30 minutes. As a consequence,
we expect these execution times to grow considerably with larger files.

File File size Time for jsnark Time for libsnark Total time

F1 0.5 KB 1 s 50 s 51 s

F2 2 KB 5 s 213 s 218 s

F3 5 KB 12 s 523 s 535 s

F4 10 KB 33 s 1790 s 1823 s

Table 6.3. Execution time measurements for the prover P

These results, relative to the generator G and the prover P, suggest that the execution of
their implementation could be unfeasible with large files. To overcome this issue, we would have
to apply significant optimizations to the design of our zk-SNARKs proving system, introducing
complex modifications in our libsnark and jsnark implementations. However, this is out of scope
for this thesis, where an optimized system was not the objective. Instead, our goal was to produce
a proof-of-concept prototype, with the purpose of demonstrating that it is indeed possible to use
these libraries to to design a proving system for the statement on which our protocol is based.

Finally, we show the time measurements for the verifier V in Table 6.2.3. In this case, the
result present a very different pattern, where the execution time is independent of the file size.
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File File size Time for jsnark Time for libsnark Total time

F1 0.5 KB - Below 1 s Below 1 s

F2 2 KB - Below 1 s Below 1 s

F3 5 KB - Below 1 s Below 1 s

F4 10 KB - Below 1 s Below 1 s

Table 6.4. Execution time measurements for the verifier V

For this reason, as we argued above, this implementation for the verifier V can be executed by
devices with more limited software and hardware resources compared to the machine we employed
for these experiments. This can be the case for hub (or gateway) devices, who are responsible for
executing the verifier algorithm in our protocol.

6.3 Additional Software

In the previous sections we presented the implementation of two key components of our system:
the Ethereum smart contracts and the zk-SNARKs proving system. Together, they allow the
execution of the most important steps of the CrowdPatching protocol. However, few operations
are not supported by these modules: (i) generating and verifying signatures offline; (ii) encrypting
and decrypting files with the same Speck128 block cipher (in CBC mode) that is used by the
zk-SNARKs proving system. These operations are reasonably trivial, and we were able to find
existing implementations to exploit. We briefly highlight them in the following sections.

6.3.1 Digital Signatures

To generate and verify digital signatures we use the eth-crypto library [38]. Through simple
Javascript programs it allows to create new identities, sign any arbitrary message and verify
signatures. What is more, it is compatible with the Ethereum signature system. An example
script can be found in our online repository [29] in the signatures folder.

6.3.2 Block Cipher in CBC Mode

For file encryption with the Speck128 cipher we use a Python implementation [39]. Indeed, this
library offers a pure Python implementation of both the Simon and Speck ciphers designed by
the NSA [37]. Easily installed and executed, there is also support for the CBC mode of operation
through a series of primitives. Exploiting these primitives we constructed an example script which
can either encrypt or decrypt a file. It can be found in our online repository [29] in the speckcipher

folder: the script is called my_speck_cbc.py.
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Conclusions and Future Work

In this thesis, we proposed a blockchain-based decentralized protocol, allowing manufacturers to
delegate the delivery of software updates to self-interested distributors in exchange for cryptocur-
rency payments. We introduced significant improvements with respect to the most recent research
proposals in the literature, addressing key limitations with respect to the issues of scalability and
practicality. We then informally analyzed the most significant threats applicable to our protocol.
Furthermore, we performed a formal analysis by means of the Tamarin Prover, which provided
reliant assurance on the security of the protocol, as well as on its correctness. Finally, we de-
veloped a prototype implementation, allowing to execute all steps of the protocol. This gave us
further assurance about its feasibility in practice.

In our future work, we plan to refine this prototype implementation, perfecting both its inner
mechanisms and its user interface. In other words, we intend to curate its performance and its
usability. What is more, another possible future work is to extend our formal analysis. This
can be achieved through the design of a more exhaustive model representing the protocol more
accurately, as well as through the definition of new security properties to be verified.
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Appendix A

Solidity Developer Manual

We describe the development environment we employed to compile, deploy and test our Solidity
smart contracts described in Section 6.1. In particular, we opted for a simulated local blockchain
environment, made possible by two popular Ethereum development tools, which are part of the
same suite. The first is Truffle [32], which is a development environment and testing framework
for Ethereum, allowing to easily compile Solidity smart contracts. The other is Ganache [33],
providing a personal and local blockchain for deploying Ethereum smart contracts.

A.1 Installation Instructions

We provide instruction for installing our development environment on Ubuntu. More precisely,
we assume that our online repository [29] was first cloned on a local directory. The next step is to
open this directory in a terminal window, and to enter the ethereum folder. Now we can proceed
installing all needed requirements:

• Install Node.js:

curl -sL https://deb.nodesource.com/setup_12.x | sudo -E bash -

sudo apt-get install -y nodejs

• Install Truffle

npm install -g truffle

In particular, we tested the following Truffle version:

$ truffle version

Truffle v5.1.48 (core: 5.1.48)

Solidity v0.5.16 (solc-js)

Node v12.19.0

Web3.js v1.2.1

To install that specific version:

$ npm install -g truffle@v5.1.48

• Download Ganache: Instead of downloading the program from the main website [33], go to
the official repository to download a specific version of the program from the assets. This
implementation was tested with version 2.4.0.

A.2 Build and Deploy Smart Contracts

At this point, it possible to compile, deploy and execute the smart contracts contained in the
contracts directory. We provide a brief guide on how to achieve this goal.
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A.2.1 Run Ganache (Ethereum Local Blockchain)

We first need to run the Ganache blockchain in the background:

• Open a new terminal in the directory where the Ganache AppImage was downloaded earlier

• Execute the chmod +x command on the .AppImage file

• Execute the .AppImage file itself

• Select the QUICKSTART option

A.2.2 Configure Truffle and Ganache

Now we need to configure both Truffle and Ganache to work in coordination with each other:

• Our repository includes a Truffle configuration file in the ethereum/truffle-config.js path,
as well as a migration configuration files (no modifications needed)

• Solidity smart contracts in this repository use compiler version 0.5.16

• As a consequence, we select the same version in the Truffle configuration file:

compilers: {

solc: {

version: "0.5.16",

}

}

• Change the port used by Ganache (from the GUI) to match the one used in ethereum/truffle

-config.js for the development network, which is the default network used by Truffle

A.2.3 Deploy the SSC smart contract

Finally, we deploy the SSC smart contract on the local blockchain. As per protocol design, DSCs
and ESCs smart contracts can then be created by triggering the SSC to do so.

• Open a new terminal in the ethereum directory

• Execute the following command, which compiles the smart contracts (in this case only one,
the SSC) before deploying them on the local blockchain provided by Ganache:

$ truffle migrate

A.2.4 Interact with the SCC to deploy DSCs and ESCs (and more)

We provide a Truffle script which will execute several tests, including creating new DSCs and
ESCs by triggering the SSC through the proper transactions:

$ truffle execute truffle-executable-script.js

Alternatively this script can be simply modified or replaced.
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zk-SNARKs User Manual

In this Appendix, we provide a brief guide explaining how to run an entire zk-SNARKs example by
means of our implementation, illustrated in Section 6.2. More specifically, we outline instructions
for (i) generating the proving key and the verifying key, (ii) generating a zk-SNARKs proof and
(iii) verifying the same proof.

B.1 Prerequisites

First of all, the required software for the libsnark [35] and jsnark [36] libraries must be installed.
We assume the OS to be Linux. In particular, the following was tested on Ubuntu 20.04:

• Install the packages required for libsnark through the following commands:

$ sudo apt-get install build-essential cmake git libgmp3-dev libprocps-dev

$ sudo apt-get install python-markdown libboost-all-dev libssl-dev

• Install the requirements for jsnark:

◦ Install JDK8:

$ sudo apt install openjdk-8-jdk

◦ Install Junit4

$ sudo apt-get install junit4

◦ The jsnark library also requires BouncyCastle: the corresponding file bcprov-jdk15on

-159.jar is already included in this repository; it is assumed to be placed in the
JsnarkCircuitBuilder directory. Make it executable with the following command:

$ chmod +x bcprov-jdk15on-159.jar

B.2 Compiling Instructions

We now explain how to compile the source files provided in our repository [29], in the zksnarks

folder. We assume that a terminal windows was opened in the same folder, before the following
instructions can be executed:

• Compile libsnark:

◦ Enter the libsnark folder and create a build directory

81



zk-SNARKs User Manual

$ cd libsnark

$ mkdir build

$ cd build

◦ Compile all libsnark source files:

$ cmake .. -DWITH_PROCPS=OFF

$ make

• Compile jsnark:

◦ Enter the circuits folder and create a new bin directory

$ cd ../../JsnarkCircuitBuilder

$ mkdir bin

◦ Compile all jsnark source files:

$ javac -d bin -cp /usr/share/java/junit4.jar:bcprov-jdk15on-159.jar $(find
./src/* | grep ".java$")

B.3 Execute the zk-SNARKs Algorithms

Finally, the instructions on how to run the three zk-SNARKs algorithms.

B.3.1 Setup: Generate the Proving and Verifying Keys

• Run the jsnark-side program for the generator G:

$ java -cp bin examples.generators.CrowdPatchingCircuitGenerator g

This will produce the keys PK and VK (exported into files with hard-coded names) and the
.arith file, which represents the arithmetic circuit for the statement at hand. The latter
will be used by the libsnark-side program for the generator G.

• Indeed, a new file called crowdpatching_generator.arith has been created in the current
directory. Now we can run the libsnark-side program for the generator G, providing the
.arith file as a command line argument:

$ ~/<REPOSITORY PATH>/crowdpatching/zksnarks/libsnark/build/libsnark/

jsnark_interface/generator crowdpatching_generator.arith

This will generate the proving key PK and the verifying key VK. They are exported into
files with hard-coded names, PK_export and VK_export, in the current directory.

B.3.2 Prove: Generate the Proof File

• Run the jsnark-side program for the prover P:

$ java -cp bin examples.generators.CrowdPatchingCircuitGenerator p

This will create two new files. One is another .arith file, with a different name to distinguish
it: crowdpatching_prover.arith. It is identical to the one created by the generator. We could
avoid creating this file again and reuse the one generated by G, but we do it to represent
the fact that P is independent from G, as it would happen in a real-world scenario. The
other created file is a .in input file called crowdpatching_prover.in.

• Now we can run the libsnark-side program for the prover P. This will take both the .arith

and .in files just created as command line arguments. Another input is the PK key file, but
its name is hard-coded. Most importantly, the secret values and the public values (i.e. the
non-secret values, the primary input for the NP statement) are hard-coded in the program,
as explained in Section 6.2. To achieve this, we execute the following:
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$ ~/<REPOSITORY PATH>/crowdpatching/zksnarks/libsnark/build/libsnark/

jsnark_interface/prover crowdpatching_prover.arith crowdpatching_prover.in

In the last step we generated the actual zk-SNARKs proof. This is stored in a new file called
proof_export, so that it can be retrieved by the verifier program.

B.3.3 Verify : Verify the Proof File

Finally, we can execute the verifier V. In this case, there is no jsnark-side program, but only the
libsnark-side. This program takes no command line arguments, as the file names for the key VK
and the proof are hard-coded. Most importantly, the public values (i.e. the non-secret values, the
primary input for the NP statement) are hard-coded in this program as explained in Section 6.2.
The following command must be executed from the terminal window:

$ ~/<REPOSITORY PATH>/crowdpatching/zksnarks/libsnark/build/libsnark/jsnark_interface/

verifier

In this case, there result displayed as output is PASS, because the zk-SNARKs proof is valid.
Otherwise, the result would be FAIL.
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