
1

POLITECNICO DI TORINO

 Master’s Degree Course

In Computer Engineering

Master’s Degree Thesis

Dynamic Application Placement in a Kubernetes

Multi-cluster Environment

Supervisor: Candidate:

prof. Fulvio Risso Lorenzo Marino

 Anno Accademico 2020/2021

2

Table of contents

Table of contents ... 2

ACKNOWLEDGEMENTS .. 5

ABSTRACT .. 6

1 Introduction ... 7

1.1 Distributed applications: microservices ... 7

1.2 Why Kubernetes ... 8

1.3 Same Kubernetes, different platforms .. 8

1.3.1 On-premise .. 9

1.3.2 Cloud ... 9

1.3.3 Multi/Hybrid Clusters ... 9

2 Multi-cluster architecture .. 11

2.1 Why to choose multi-cluster? ... 11

2.2 How to manage multi-cluster? ... 13

3 Problem statement ... 15

3.1 A real case study ... 15

3.2 Clusters architecture ... 15

3.3 A design challenge ... 15

3.3.1 Data classification ... 16

3.3.2 Cost of cloud providers ... 16

3.3.3 Latency of the applications ... 16

3.4 The challenge to overcome ... 17

3.5 AS-IS .. 17

3.6 TO-BE .. 17

4 Technologies involved .. 19

3

4.1 Kubernetes .. 19

4.1.1 Control Plane ... 20

4.1.2 Node .. 21

4.1.3 Kubernetes Objects ... 21

4.2 Docker .. 23

4.3 Client-go ... 25

4.4 Kubernetes Cluster Federation ... 26

4.4.1 Architecture ... 26

4.4.2 Installation and use .. 28

5 Proposed solutions .. 30

5.1 Clusters setup ... 30

5.2 Application classification ... 31

5.2.1 Business logic ... 31

5.2.2 Initial configurations ... 33

5.2.3 Service discovery .. 35

5.3 KubeFed solution ... 36

5.3.1 Placement section .. 36

5.3.2 Federation configuration ... 37

5.3.3 Business logic ... 38

5.4 Custom solution .. 44

5.4.1 Business logic ... 44

5.4.2 Moving the resources .. 49

5.4.3 NodePort port issue report .. 53

5.4.4 Service account for GKE cluster ... 54

6 Validation .. 57

6.1 Simulation setup ... 57

4

6.2 Testing the KubeFed solution ... 58

6.3 Testing the custom solution .. 63

6.4 Results of the tests .. 66

7 Conclusions ... 68

7.1 Why two solutions .. 68

7.2 Future improvements .. 69

7.2.1 CustomResourceDefinitions ... 69

7.2.2 Improve security.. 71

7.3 Final considerations .. 72

8 Bibliografia ... 75

5

ACKNOWLEDGEMENTS

I would like to thank my supervisor Professor Fulvio Risso and Davis Quirico for

helping me to achieve this great goal during a difficult year for the whole world.

I would like to thank my family. My parents and my sister always supported me. It

was a difficult journey. Probably without them I would have been lost. Specially, I

would like to thank my grandparents. More than others were waiting for this

achievement. I can tell them now, I did it.

Finally, I would like to thank my friends. New friends have come, others have gone

but I thank everyone because they brought me here.

6

ABSTRACT

During the past years the way of deploying applications is changed. We started from

deploy them on traditional servers, then move toward virtualized environments to

ending in a more recent technology such as the containers.

In particular, microservices architecture suits very well in the containers. As they

grown in popularity it came up a new necessity: a way to manage all of them. In

fact, the enterprises were facing not just one or two containers but dozens or

hundreds. The solution is Kubernetes.

Kubernetes is a platform for deploying and managing containerized applications, a

container orchestrator. One of the main advantages of Kubernetes is that it offers a

system that can be installed on different environments but the applications will run

on any of them in the same way. For this reason, it is common for the enterprises

run Kubernetes both on cloud or on-premise based on particular requirements.

This thesis aims to study and resolve a specific design challenge of an enterprise

that adopt a multi-cluster configuration for Kubernetes: the dynamic application

placement among different clusters. Two solutions are proposed and discussed, one

based on KubeFed and one exploiting the basic mechanisms of Kubernetes.

7

1 Introduction

This introduction explains why Kubernetes is became a standard platform for the

enterprises to develop their applications. In fact, with the evolution of developing

applications, new challenges arise for the developers.

1.1 Distributed applications: microservices

Microservice architecture is a different approach in developing applications

opposite to monolithic architecture. The monolithic approach has some limits: the

application is deployed as a single big entity and this implies some difficulties

during the developing and future updates. With microservices the application is

split in its basic functions and each one of them is developed independently as single

service. This service can communicate between them and produce the final result.

Development, future updates or scaling the application are easier with

microservices because the teams can focus only on the service of interest instead of

the whole.

Figure 1: Monolithic vs Microservices architecture [1]

Changing the architecture also changes the deployment. If at first the applications

were deployed on physical server then on virtual machine to reduce the costs, now

the enterprises are moving towards the containers. Containers guarantee isolation

similar to virtual machine, but they are lighter because the operating system is

shared among applications. In the end a container is portable on different

environment without any modification.

8

1.2 Why Kubernetes

The enterprises were facing hundreds or thousands of containers because they were

developing containerized application. A new challenge arose, how to manage all of

them. In 2014, Google presented to the world Kubernetes, an open-source platform

for managing containerized workloads and services as a result of years of

experience with a proprietary system called Borg. [2] [3]

Kubernetes provides some useful utilities. After the deployment of the application,

the system is in charge of constant monitoring and self-healing the containers: in

order to preserve the declared state of the application, if a container fails this is

replaced with a new one. Scaling containers is very easy, it is a matter of change

the number of desired replicas and this can also be automated to proper scale based

on the amount of resource the service need. Kubernetes abstracts the hardware; it is

decoupled from the underlying infrastructure so it can be installed on different

platform like bare-metal or cloud, but the environment will be always consistent.

Thank to that, now developing and production are more closer because they will

face the same environment: an application can be tested locally or on a restricted

area of the cluster(refers to namespace) and then moved to production on the desired

platform without big difficulties.

In the end, being an open-source project means that Kubernetes is largely extensible

and pluggable. All the native resources can be used to produce a specific final

product or make use of one already developed by the community.

1.3 Same Kubernetes, different platforms

As mentioned in previous section, one of the main advantages of Kubernetes is that

provides the same environment independently of the underlying platform. A

Kubernetes cluster can be built on virtual machines, directly on machines or even

9

on some Raspberry PI [4]. This allows the enterprises to choose different

configurations between on premise and cloud (or both).

1.3.1 On-premise

Organizations may decide to build a cluster locally in their data-center. This

can happen due to some constraints or preferences. The downside of this setup

it is that the cluster must be built from zero. It means that installing

Kubernetes is not enough, but further action should be taken. A full operating

cluster needs solutions for networking, storage, load balancing, monitoring,

authentication. A team must install all these and more solutions before to use

the cluster, an operation that requires some knowledges and it is not

immediate. On-premise solutions are less scalable than cloud one because it

requires to buy new hardware or install new virtual machine.

1.3.2 Cloud

All the installing process discussed before is not applied if organizations rely

on cloud solutions. Nowadays many cloud providers provide their solutions

of Kubernetes to the users. For example: Google GKE, Amazon EKS, Azure

AKS and many more. After a subscription and few configurations, the cluster

is already up. Because is a cloud solution an organization can decide among

different type of machine configurations based on the necessities. After the

purchase, the cluster is ready to use without further setups. Usually the

Kubernetes version proposed it is not the latest or without alpha feature to

provide a more stable environment. Cloud solution are very scalable because

in a few seconds it possible to bring up or down a node.

1.3.3 Multi/Hybrid Clusters

Kubernetes provides an environment independent from the underlying

platform and the same application will work on the same way no matter where

it will be. Considering that, many enterprises choose a hybrid or multi cluster

configuration. That is mean utilize more than one cluster and of different

10

types. For example, a cluster on premises and one or more on cloud even of

different cloud providers. These choices depend on the necessities of an

enterprise and lead to a new challenge: how to manage multiple cluster?

11

2 Multi-cluster architecture

Kubernetes is an independent system, and this gives to the enterprises different

ways of building their own cluster or also multiple clusters. The strategy of

managing multiple clusters as a unique entity is very common because leads to

different benefits and it is not very hard to achieve. In facts there are lots of

possibilities to build a cluster, no matter if the final location will be on premises

data center, on cloud or on personal computer.

2.1 Why to choose multi-cluster?

There are several reasons why a company decides to build its business on multiple

cluster:

- When a company has both development and production teams it can help

the process to reach the final product. Production environment is quite

sensible because no one wants a service that can go down after an update or

as soon the new product is deployed. So, it should be pleasant to have a test

environment more similar to the final one. With Kubernetes is possible. Test

clusters can also be built locally with solutions like Minikube [5] or Kind

[6] which gives the opportunity to build a minimal cluster on a local

machine without adding extra cost for hardware or cloud resource

consumption. In case are required more advanced clusters with more

resources, which a personal computer can’t offer, they can be built on

premises or on some cloud provider to have in the end different clusters,

some dedicated to the development and others to the production

environment.

- Some businesses, to guarantee good performance in term of latency, need

to be deployed across different regions. After to have built up different

clusters in different regions the same application can be deployed in all of

them and users will face similar experience independently of the location.

The replicas work independently while a load balancer is in charge to

redirect the requests of the clients to the closest cluster.

12

- To guarantee high availability of the services it can be used a similar

approach of the previous one. Some providers offers the possibility to

replicate the cluster in multiple regions so in case of some failures, like

hardware failures or maintenance of the cloud facility, the workload is

migrated to the backup cluster [7]. The clusters redundancy can be achieved

by running clusters on different zones, different regions or even on different

cloud providers. Again, a load balancing solution is needed to redirect the

traffic in case of some cluster failure.

- Many enterprises already have a local data center that can be used for

running a Kubernetes cluster to not waste a previous investment. A data

center has limited resources and it is not convenient to add more of them

only when needed. In this case, when the enterprise needs more resources

just for a limited time, instead of upgrading the hardware it is more

convenient start up a cluster on a cloud provider to satisfy the request in this

short period. When the overload falls down, the instance of the cloud cluster

can be shut down to reduce the cost. In facts cloud provider’s solutions are

not so cheap. This technique is called cloud bursting and let the companies

to reduce the costs because extra resources are added only when needed

without paying for it all the time not used.

- Every enterprise must follow some regulations or policies about their own

data. Maybe for some enterprises is forbidden to have some applications

with their sensitive information on cloud because it is a place not directly

controlled by them. They are forced to have a local cluster and deploy these

applications on premise data center. Anyway, if the enterprise does not want

to renounce the cloud approach, it will manage multiple clusters in different

environments and based on the workload, the applications can be executed

on premise or on cloud. For some applications is possible that the workload

changes in time so whenever in the workload change the type of data

processed, the application originally running in the cloud can be transferred

to the on-premise data center.

- To avoid the dependence by a single cloud provider an organization may

runs different clusters on different cloud providers. Different providers can

13

offer different features because a provider has its own version of Kubernetes

and functionalities. An enterprise can test a provider and then moving to

another one without making any change to the application because the

Kubernetes environment is independent from the platform. The cost for the

cloud providers is different, so whenever a solution becomes more

convenient than others, the applications can be migrated. Or in case of some

cloud provider unavailability, having clusters on other providers increase

the availability of the applications because can be migrated to the working

clusters.

2.2 How to manage multi-cluster?

Reasons to adopt a multi cluster architecture have been exposed. The next step is to

choose some solutions to operate on all the clusters.

The first choice is a method for managing the deployment of applications across the

clusters. Firstly, let us remark this concept: instead of having a single big cluster

with nodes across the regions or in different environments, the chosen strategy is to

own different clusters. In this way, what the actual technologies are trying to do is

to handle all the clusters as a whole entity while in practice they are split. I used the

term technologies in plural form because there is not one unique solution to achieve

the objective. Some solutions have in common the concept of “federation” as the

entity composed by multiple parts, the clusters, that must be managed. Kubernetes

itself is developing its own solution called KubeFed in order to provide a standard

solution. This approach will be discussed in more details later because it is the one

adopted in the thesis’s project. During the waiting for a standard solution, some

companies has developed their own by extending the functionalities of Kubernetes:

- For example, the online travel agency Booking.com has open-sourced its

project Shipper [8]. Shipper realizes advanced rollout strategies in a multi-

cluster environment.

- Google offers its proprietary solution called Anthos [9]. It offers a solution

to avoid a vendor lock-in with a platform where deploy and run workloads

across different providers.

14

Different approaches but the common objective of deploying applications across

different clusters no matter if on bare metal or on different cloud providers.

Another choice can be how to implement the connectivity between the clusters.

Some applications require a connection between the cluster to guarantee a

distributed service across different regions in order to distribute the workflow or

the database information for example. It can be adopted a service mesh solution like

Istio [10] or for a layer 3 connectivity between cluster, Submariner [11] is an

optimal solution.

15

3 Problem statement

After an introduction, in the previous chapters, on the evolution of the architecture

of the recent applications and how the world of Kubernetes can offer a solid

platform where to deploy them, I will expose the issue addressed by my thesis.

3.1 A real case study

During my thesis I had the opportunity to collaborate with an international company

whose core business is civil and military aeronautics systems. Their applications

are heavily based on microservices so in the last years, since Kubernetes became

the new standard for deploying this kind of applications, they decide to integrate

their already existing system with Kubernetes clusters with the future objective to

migrate a big part of the production services there. After an initial period of

employment, a new necessity came up for the company. To better understand this

necessity, the clusters architecture should be explained.

3.2 Clusters architecture

The company chose a cluster architecture already described in the previous chapters

known as multi cluster. In particular their configuration can be described as hybrid

multi cluster because it groups both a cluster on-premise and more than one on

cloud. The clusters are not an exact replica of each other, but everyone hosts their

own applications. The kind of cloud provider or on-premise solution is not relevant

for the purpose of the thesis because it does not affect the company’s necessity and

the relative solution, thanks to the fact of Kubernetes being independent from the

underlying platform.

3.3 A design challenge

The adoption of this clusters design brought a new challenge to the developer and

production teams. For some particular situations, their desire was the automation of

moving a particular application from a cluster to another one. This feature is not

present in Kubernetes out of the box for two reasons:

16

- Kubernetes is born with the idea of managing only one cluster. In particular,

a cluster typically is composed by nodes and on the nodes are deployed the

applications. In this way, with a basic installation of Kubernetes every

cluster is a single entity by its own and the communication with another

cluster is not immediate.

- The feature it can be considered a particular case. Being Kubernetes a

relatively young project it is reasonable that this kind of function is not

supported by default.

The situations in which this feature can be useful are different.

3.3.1 Data classification

Many companies have some policies or constraints about sensible data.

Having this kind of data in a public environment like in the cloud of external

provider may be forbidden. If an application does not process all the time

sensible data and it is projected to running the most of the time on a public

cloud, when these data enter in the workload, the application can be

automatically moved on-premise in a private cluster.

3.3.2 Cost of cloud providers

Subscription and use of a cloud provider can have significant cost if the use

is intensive. In fact, the price changes based on the number of nodes and

configuration of the machine picked. Usually the price is hourly so to reduce

cost some application can be moved on premises or on cloud with a more

convenient price.

3.3.3 Latency of the applications

Based on the type of business, some applications can require a limited

response time. Not all companies have the fortune to be located near the cloud

provider data center. For example, at the time of this writing, Google Cloud

does not have data center located in Italy but they are working on it. The better

17

solution is to automatically move these applications when this constraint is

required.

Other situations can exist, and this depends on the type of business. Not all

the enterprises have the same necessity but this particular feature, automate

the moving of an application, can be useful for many.

3.4 The challenge to overcome

During the meetings with the company, with which I collaborated, I noticed that

they were more concerned about one of the previous challenges. In fact, they are

very restricted on the kind of data that can reside on public clouds. Some type of

sensible data must reside within the perimeter of the facility. The only possible

place for these data is their local data center where is installed a Kubernetes cluster

on-premise. These data restriction is not always applied: the restriction is only on a

part of all the data processed by the application. It means that the workflow of some

applications does not change during the time but what changes is the kind of data

processed. If the application resides on a public cloud, whenever sensible data have

to be processed, the application must be moved on-premise. Their future project is

to overcome this situation.

3.5 AS-IS

Currently the mechanics described before are all made by hand without automation.

Among their services, in particular one is in charge to indicate what kind of data, if

classified or not, every application is processing. When the service notifies a change

in the data classification, the production team sets up and perform the moving. From

this point, I will refer to this service as “classification service”. The “classification

service” is aware of the applications deployed in all the clusters.

3.6 TO-BE

The project is to automate the process described in the AS-IS section. To not bring

heavy changes to the “classification service” it will be developed a new application

18

and these two will communicate between them in order to decide which application

has to be moved and where to move it. In the end, the “classification service” will

handle monitoring and notification of the data classification while the new

developed application will handle the practical moving.

Figure 2 Summary of the challenge

After this illustration of the needs for the company to implement this function, I

will expose my proposed solutions. Two solutions will be proposed and analysed.

The solutions have to be intended as a prototype, a starting point for a future

development. In fact, this is a feature that the company should like to bring in

production. Being the production a very sensible environment, the feature should

be fully tested and exploited before making it operative.

19

4 Technologies involved

Before exposing my proposed solutions, I would like to introduce the technologies

involved in this project. This project is a combination of four main technologies.

They are the followings:

- Kubernetes itself because is the environment of the study.

- Docker, a container runtime.

- Client-go, the official client to interact with Kubernetes and let the

developers to build custom applications.

- KubeFed, a young project to coordinate and managing a federation of

multiple Kubernetes cluster.

4.1 Kubernetes

Kubernetes [2] is an open-source system to orchestrate and manage containers,

originally developed by Google in 2014 as the result of year of experience on a

proprietary system called Borg. It provides mechanisms for deployment,

maintenance, and scaling of applications. Actually, it is maintained by the Cloud

Native Computing Foundation (CNCF). Kubernetes offers a perfect environment

to deploy containerized applications and guarantees an elevated resilience for the

apps. The need of a system like Kubernetes arose when applications, in particular

distributed applications such as microservices, were growing more and more in the

number of containers involved with the relative managing becoming too difficult.

Notice that a company have to face not a dozen of containers but maybe hundreds

or thousands. What Kubernetes can offer is:

- Deploying and scaling application across different host declaring a desired

state to maintain.

- Service discovery and load balancing among the containers. A virtual

network is built to connect all the containers across the cluster.

- Easy and controlled way to perform rollout or rollback of an application.

20

- Continue monitoring and self-healing of the containers based on health

checks to maintain the desired state. If a container dies for some reason, a

new one will be created to replace it.

- High level of security for sensible password or data and

authentication/authorization for users and clients to perform actions on the

cluster.

A Kubernetes cluster is composed by nodes. Nodes are categorized in “master” and

“worker” node. The master node hosts the Kubernetes Control Plane to manage all

the cluster. The worker node hosts the Pods in which runs the application workload.

Figure 3A Kubernetes cluster view [12]

4.1.1 Control Plane

The Control Plane on the master node hosts vital components for the correct

functioning of the cluster. For this reason, it is a good practice replicate the

master node to have a more resilient system. The components are:

- Kubernetes API Server: the implementation is called kube-apiserver

and expose the Kubernetes API. Kubernetes API is a REST API that

lets users or components to query and manipulate the state of the

objects in the cluster. It can be access by kubectl (the Kubernetes

CLI), by client libraries or directly by REST requests. The REST

operation permitted by an entity are defined in the corresponding role.

21

- Scheduler: kube-scheduler decides on which node deploy a new pod.

The scheduling depends on resource requirements, pod or node

constraints, affinity.

- Controller Manager: kube-control-manager runs different controllers.

Each of this controller is responsible for a determinate object. For

example, there are: node controller, replication controller, endpoints

controller, service account & token controller.

- Cloud Controller Manager: it is optional because it is a controller

manager specific for a cloud provider. It integrates the cloud provider

API with the cluster

- Etcd: it is a reliable key value data store that stores all the cluster

configuration. It is a sensible part and it is a good practice have a

backup of it.

4.1.2 Node

On every node there are components that guarantee the correct functionality

of pods:

- Kubelet: it manages the pods and the container inside the guarantee

the pod specification defined in the PodSpecs.

- Kube-proxy: it is a network proxy the implements network

functionalities on the nodes like service discovery or load balancing.

- Container runtime: it is the software for running the containers. For

example, Docker.

4.1.3 Kubernetes Objects

The Kubernetes system is composed by entities called Kubernetes objects.

Every object contains a desired state and a current state. The system

continuously monitors and acts to keep these two states consistent. The

desired state of an object is defined by a .yaml file that is send to the API

22

server through kubectl or can be sent directly to the API server with a client

library for example. There are many objects, the follows are the most relevant

for my solutions:

- Pod: a pod is the smallest deployable unit in Kubernetes. It groups

containers and volumes belonging to the same workflow. A pod can

run one or more containers. Usually it is not created directly but by

other objects like Deployments or Jobs. Every pod has its own IP

address and domain name while the containers inside share the same

network namespace. The pod assures that an application is running in

a unique environment and is not spread among the nodes.

- Deployment: the deployment is the abstraction of an application. In a

deployment is defined a desired state of the application. It will own

the pods and the ReplicaSet that creates the pods. It provides a simple

way to update the application because through the deployment you

can change number of replicas, roll out a new version of the software

and eventually roll back if there are some errors.

- Service: a service exposes the applications as a network service.

When a service is defined, all the pods of an application are linked to

the service. This is possible thanks to a label selector. To the service

is assigned a virtual IP, called Cluster IP, and a mapped port to access

the application on the network. If multiple pods are defined for the

single application, the traffic is load balanced between the pods. Every

pod can discover any services in the cluster through DNS service

discovery. DNS service is provided by a component such as

CoreDNS.

- ConfigMap: a configMap is an object to store some configurations to

be consumed by the pods. It can be passed to the pod as environment

variable, command line argument or as file in a volume. The data in

the configMap are stored as key-value pairs. This object lets to not

hard-code the configuration in the application code so in case of some

23

configuration changes, the application must not be recompiled but just

the configMap should be edited with the new configurations. The

name must be a valid DNS name.

- Secret: a secret is an object similar to a configMap but for sensitive

configurations with additional features for sensitive data like

passwords, tokens or keys. The content of a secret is encoded in

Base64. A secret can be used as environment variable or as a file

mounted in a volume. The name must be a valid DNS name

- Volume: a volume is a directory mounted into a container of the pod.

The volume contains some data and can be composed by different

types of data. For example, a volume can contain the content of a

configMap or of a secret. It can be used to claim a persistent storage

so the data inside the container will live outside when the container

will be shut down.

4.2 Docker

Docker is an open-source solution for packaging and deploying containerized

applications. An application needs several dependencies in order to run correctly.

In the container, the application is packaged with its environment formed by

libraries and part of the files of the filesystem. This means that the application has

everything it needs to run, and it is not necessary anymore to install a dedicated full

operating system. This leads the container being lighter than the virtual machines

affirming a new standard to deploy applications. A Docker container is based on a

Linux container, it runs on a host with Docker installed and will be isolated from

the host and other processes running on it.

24

Figure 4Difference between Docker container and VMs [13]

The main components of Docker are:

- Docker Engine: it is a client-server application composed by three main

part. A server called docker-deamon, a REST API used to talk with the

docker-deamon, a client that represent the docker CLI. Through the cli and

the API, the docker-deamon is controlled to create and manage the Docker

objects.

- Image: it is a template for the application containing environment files and

metadata needed for running the application. The image is a set of layers

providing certain information. If changes are made, only the layer involved

is update. There are basic images where you can start from to build your

own image.

- Container: as described before it is a Linux container created from an image.

It can be managed by the Docker API or the cli.

- Docker Registry: it is a repository for storing Docker images. Images are

uploaded and downloaded with the cli commands push and pull. A

repository can be public or private. Docker Hub is a public repository hosted

by Docker and by default is looked for an image to be pulled or pushed.

Kubernetes needs a container runtime installed on every node in order to run the

pods. Docker is a supported choice. Inside the pod specification it is defined the

container image to download from a container registry.

25

4.3 Client-go

Client-go [14] is the official client library written in Go for interacting with the

Kubernetes API and perform action on the cluster. It supports all official types of

Kubernetes and also user defined types (Custom Resource Definition). The library

is available on GitHub and the version is parallel to that of Kubernetes, so you need

to check what version to use based on your cluster. When you build a client there

are two types of authentications to perform in order to use the Kubernetes API:

- Out-of-cluster configuration: this method needs a kubeconfig file with the

context information of the cluster to initialize the client. It is the method

used by kubectl cli. The application built with this authentication method

can run out of the cluster but still operating on it.

- In-cluster configuration: this method is for applications that run in a pod

inside the cluster. When the pod is running, the kubelet creates a service

account token at the path /var/run/secrets/kubernetes.io/serviceaccount that

can be used for the authentication. To get the permission of operating on the

cluster if RBAC is enabled, a cluster role must be created also.

After a configuration is obtained, a client set can be built to interact with the API.

All Kubernetes resources are represented as a struct in Go. All the object has some

fields in common:

- TypeMeta: it describes the type of the object (kind) and the API schema

version.

- ObjectMeta: it contains different metadata information of a resource like

name, namespace, resource version (different from API version) and many

more.

- Spec: it is the desired state of an object defined during the creation of the

object

- Status: it is the actual state of the object compiled by Kubernetes controller

26

4.4 Kubernetes Cluster Federation

Kubernetes Cluster Federation [15] it is a SIG Multicluster project. It is also known

as KubeFed or Federation V2 because it is a new version of the previous federation

project. The objective is to introduce the concept of federation in a Kubernetes

environment composed by multiple clusters and how to coordinate the deployment

of applications on the desired cluster in the federation. KubeFed is based on Custom

Resource Definition (CRD) that redefines all Kubernetes resource as federated

resources. At the moment it is in alpha release with the aim to move toward beta in

the future.

4.4.1 Architecture

Figure 5 KubeFed architecture [15]

27

The picture shows the KubeFed control plane. This control plane is installed

only on one cluster that will become the “Host cluster”. Two configurations

are stored:

- Cluster configuration: it contains sets of configurations to target the

clusters. When a cluster is registered to the federation it becomes a

“Member cluster”. With the cluster configuration, the federated

resources can be deployed on the desired clusters.

- Type configuration: it stores the Kubernetes API types (objects) that

should be federated. The Federated Type is a CRD of a Kubernetes

resource type (for example, FederatedNamespace is the CRD for

Namespace) formed by three significant parts:

o Template: it is a wrapper of the federated type containing the

original spec definition.

o Placement: it specifies in which federated cluster a federated

resource should be deployed

o Overrides: in this section can be defined some per-cluster

parameter variations. For example, in a federatedDeployment

specify a different number of replicas for a certain cluster.

A controller, called “PushReconciler”, is in charge to push the changes of the

federated resources to all member clusters in order to have the desired state

in all the clusters. It continually collects and re-sync the status of federated

resources across the federation to keep a consistent desired state defined on

the host cluster. For example, if a federated deployment is deleted on a

member cluster, this will be recreated after a while by the PushReconciler.

28

The following example shows the relationship between a Deployment and a

FederatedDeployment:

Figure 6 Differences from Deployment and FederatedDeployment

The metadata and spec sections of the deployment are put inside the template

section of the federated resource. The placement lists the clusters where to

deploy the resource. The overrides section changes the number of replicas on

the cluster “cluster2”

4.4.2 Installation and use

As anticipated before, the KubeFed control plane must be installed on the

Host cluster. Then the member clusters can be joined with the KubeFedctl cli.

Now the federation is created. Every federated resource deployed will be also

deployed on other clusters based on the Placement definition. Actually, the

29

control plane can be installed from Kubernetes v1.13 and is fully tested on

these environments: kind, Minikube, Google GKE and IBM Cloud Private.

30

5 Proposed solutions

My desire is to propose two different solutions and make a comparison between

them. Both the solutions aim to build an application in charge to moving other

applications but with a different setup. One solution exploits the concepts of

KubeFed, the other one the basic Kubernetes environment. The containers created

for the applications are Docker containers written in Go using client-go, the official

library to create a Kubernetes client in Go. Before to describe the solutions, I will

show my testing setup and describe an application that offers a service in common

with the two solutions.

5.1 Clusters setup

The challenge is to handle multiple Kubernetes clusters. I recreate this setup with:

- Minikube: I started two instances of Minikube locally by creating two

different profiles. Every profile creates a dedicated VM with the opportunity

to run two cluster independently. The result is two clusters with one node

for each one, on my local pc.

- Google GKE: GKE is the Kubernetes service available on Google Cloud

Platform. I created one cluster with two nodes.

As result, I have three different Kubernetes clusters that can be controlled by my

local machine:

Figure 7 Different contexts in the kubeconfig file

The clusters “cluster1” and “cluster2” are the Minikube one, “google” that on

Google Cloud Platform. The last one is not part of the thesis project.

31

5.2 Application classification

As discussed in the problem statement section, there can be different reasons why

to move an application among the clusters. The main requirement for the company

is moving based on the type of data processed by their services. They have a service

in charge to list the type of data processed by every other application in all the

clusters in real time. I will refer to this service as “classification service”. This

service can list two different type of data: classified or not classified. The idea

behind my solutions is to use this classification service as input for the service

responsible of moving the applications. In fact, a constraint for the company is to

must have and process classified data inside the perimeter of the company’s

building. In other words, this kind of data must reside in their local data center, in

their local Kubernetes cluster. For obvious reasons classified data cannot be located

on other external cloud because the cloud is physically located outside the building.

The operating scenario is the following: the classification service registers all the

running applications in the clusters and lists the type of data handled by them.

Whenever it is reported a data of type “classified”, that application must be moved

on the on-premise cluster. So, the classification service sends a notify to the

application in charge to re-place the target.

The development of this classification service is not the main objective of my thesis,

so I did not develop a full operational version of it. Instead what I did is to write an

application that emulates in a generic way the operation of the classification service.

5.2.1 Business logic

The classification service must send to the dynamic placement application the

information required to perform the replacement. This information depends

on the parameters required by the client-go methods (REST methods) to

operate on the Kubernetes resources and on the current/future cluster location.

- For the REST methods: we will go through the details of all the

methods in the next sections where I will describe the dynamic

application. For now to understand the mechanism we can just focus

32

on a simple GET request to obtain a resource from the cluster: the

parameters needed for the request are the name of the resource and the

namespace where the resource is located.

- For the cluster location: it depends on the type of data processed. This

service at every notification alternates the type of data processed: if

the data is set to “C”(classified) the target application will be moved

to on-premise, if is set to “NC” (not classified) it will be moved to the

cloud.

In the end, the information about the target application to send to the dynamic

application are: current cluster location (source), future cluster location

(destination), namespace and name (application). The parameters are loaded

from the configuration files and stored in the following structures:

Figure 8 Parameters to send via HTTP POST

All these parameters are embedded in the variable “data” that will be the body

of a HTTP POST form directed to the dynamic application. The source

location is the last destination value related to the app (taken from

“destinations” map) while the future location is the new opposite value. In the

simulation this operation is looped every 3 minutes.

33

Figure 9 Core logic of the classification service simulation

5.2.2 Initial configurations

The classification service requires some initial configurations. These

configurations provide the initial location of the applications by the relations

between C/NC and on-premise/cloud, the namespace of the applications and

the name of the dynamic placement service in order to send the http form.

Instead of hard coding these configurations inside the application, a

Kubernetes configuration resource has been used: a ConfigMap. The key-

value pairs in the “data” section of a configMap can be consumed by a pod as

files mapped in a mounted volume in the pod. The key will be used as file

name, the value as file content. The configMap can be generated with a

kubectl command:

34

 kubectl create configmap appsclassification-config --

from-file=config.

The parameter “config” is the name of the folder that contains all the

configuration files. The configMap created can be checked with:

kubectl describe configmaps appsclassification-config:

Figure 10 Description of the created ConfigMap

The pod specification inside the deployment definition must be filled with a

volumeMounts and volumes definition to mapping the configMap to the pod:

Figure 11 Volume mount for the ConfigMap inside pod definition

35

The volume is mounted on the start of the pod. Changes to the configMap

after the pod is started have no effect. To make the updates have effect, the

pod should be restarted with:

 kubectl rollout restart deployment deploymentName.

5.2.3 Service discovery

The communication between the classification service and the dynamic

placement application is possible due to the service discovery performed in

Kubernetes. To expose an application running in a pod to other applications

(or pods) within the cluster or to the external, it can be used a Service. A

service creates a stable entry point for the target pods assigning a virtual IP

called clusterIP. Then the pods can access the service through a DNS look up.

Every pod is configured with a DNS server that can resolve the domain name

of a service. The domain name has a specific format: for example, the domain

name of a service called my-service in the namespace my-ns has the following

format [16]: my-service.my-ns. In this way a pod can resolve the desired

clusterIP for reach another pod.

In the configuration file service.conf it will be present the address with the

domain name of the service associated to the dynamic placement application

to let the communication with the classification service: for example,

http://dynamic-moving-custom.default . The address in stored in the variable

“service” and can be used in the function that performs the http POST and the

DNS service will resolve it:

Figure 12 HTTP POST with information about the target app

This is how my version of the classification service works and triggers the

dynamic placement application. In order to have a simple and quick

36

communication with the two apps I decided to run both apps in the same

cluster.

5.3 KubeFed solution

To achieve a dynamic placement of the applications I decided to take advantage of

KubeFed because it is an open-source project strictly related to Kubernetes, an

extension of its functionalities. KubeFed out of the box provides a single point of

management for all the clusters in the federation. This solves lots of problems like

the monitoring and synchronization of the resources. The managed clusters must be

joined to the host cluster where is present the KubeFed control plan and is exposed

the KubeFed API. After the joining, whenever a federated resource is deployed on

the host cluster, it will be deployed on the clusters defined in the “placement”

section.

5.3.1 Placement section

A KubeFed resource definition introduces three new section: template,

placement and override. The placement section lists the clusters in which the

resource will be deployed. There are two ways to determinate where a

federated resource will be propagated, the fields clusters or clusterSelector

[17] under the placement section:

- Clusters: it is simply a list (array of elements in JSON) with the name

of the federated clusters where the resource should be propagated.

More are the cluster to list more verbose became the section. If the

field is an empty list, the resource will be propagated to all member

clusters.

- clusterSelector: this field offers an easier way to target a subset of the

federated clusters. The clusterSelector is a label selector used by

KubeFed to identify a set of clusters. It is similar to a nodeSelector

but applied to entire clusters. If the field “clusters” is defined, the

content of clusterSelector will be ignored. To be active, only the

37

clusterSelector should be defined. In this way the federated resource

will be propagated only on clusters with the specific label.

My dynamic placement application takes advantage of this functionality to

decide where to move the target application. When the classification service

reports a change of the data classification, this app automatically modifies the

clusterSelector section in order to move the target to right cluster. As soon as

the change is applied, the PushReconciler takes care of re-sync the status of

the federation an re-deploy the target application in the desired cluster (or

clusters).

5.3.2 Federation configuration

Before using the dynamic placement application, the federation must be

created. For the purpose of the thesis I skip the details about the installation

of the KubeFed control plane. What is important to understand about, is that

the cluster where is installed the control plane becomes the “host” cluster.

After the installation, the clusters can be joined, a process called cluster

registration [18]. The join is performed by the tool “kubefedctl”, the KubeFed

cli utility. The parameters for the join are: the cluster name to be joined, host

cluster name, host and joined cluster context. Here, an example of the

command:

kubefedctl join cluster1 --cluster-context cluster1 --

host-cluster-context cluster1.

As you can notice, also the host cluster can be joined to be the destination of

future resources. The contexts are taken by a single config file, the same used

by kubectl. So before performing the join, a config file with all the desired

contexts must be created.

For my setup I choose one of the Minikube clusters(cluster1) to be the host.

After the installation of the control plane I joined all the clusters, including

the host. The result is shown in the next figure:

38

Figure 13 Federation clusters

A READY status True means that the cluster is correctly joined with the host.

I call the attention to the last section of the table, LABELS. This shows all

the labels applied to the clusters and that will be used by the clusterSelector.

In fact, to complete the configuration after the joins, I added a label to every

cluster. In Kubernetes, a label is a key/value pair to organize a subset of

object. The goal is to attach a label to the cluster based on its location. The

key is indeed “location”, while the value can be:

- Onpremise: it stands for a cluster that resides on-premise, on the local

datacenter of the company.

- Cloud: it stands for a cluster that resides on some public cloud

provider; in my case it was on Google cloud.

Notice that for testing purposes I labelled cluster2, a Minikube cluster, as

cloud even if it is physically on my local pc. The AGE section, indeed, shows

a different age between “cluster2” and “google” because I started the tests

only on Minikube clusters. The clusterSelector section of a federated resource

will be like:

spec:
 placement:
 clusterSelector:
 matchLabels:
 location: cloud

The use of labels by my application will be described in detail in the next

section where I show the business logic of the application.

5.3.3 Business logic

The application, deployed in the host cluster, runs waiting for a target

application to move. In both my solutions, a target application is meant as

39

composed by two Kubernetes objects: a deployment and a service. These two

objects will be moved to another cluster. The deployment handles the pods

where the application logic is running meaning that if the deployment is

moved to another cluster, the whole application logic is moved away. I also

considered a service attached to the application because many applications

expose some kinds of service inside or outside the cluster. As result, when a

notify from the classification service arrives, the related deployment and

service object will be transferred to the future destination. The following

sections describe the main parts of the developed KubeFed solution.

5.3.3.1 Notification system

This application and the classification service communicate with HTTP

requests. To be reachable, a service must be created to expose the pod of this

application. In this way, the classification service can reach the dynamic

application thanks to the service discovery mechanism present in Kubernetes.

Figure 14 Service of the dynamic placement application

In particular, the classification service sends an HTTP POST form with all

the parameters needed for the dynamic placement. These parameters are:

namespace of the target, name of the target and the future destination. These

are grouped in a struct for easy access:

40

Figure 15 Struct to store the parameters received

Figure 16 Parameters taken from the HTTP POST

The current position of the target is not needed because all the changes are

done on the federated definition present in the host cluster, so always in the

same place. The namespace of the target is a federatedNamespace: in this

way, federated resources are kept organized in dedicated namespaces.

5.3.3.2 Possible destinations

The destination depends on the type of data processed by the target app. The

classification service can notify two kind of destination: onpremise for

classified data or cloud for not classified one. The current location of a

federated resource can be changed by modifying the clusterSelector field in

order to match the desired label of a particular cluster. If the destination is

“onpremise” the resource will be moved to “cluster1”, if “cloud” will be

moved to “cluster2” or “google”. The clusterSelector is changed with a HTTP

method PATCH on the KubeFed API. The PUT method is not necessary

because just a field must be changed so it is not required the full object. The

content of the patch is in json format:

{"spec":{"placement":{"clusterSelector":{"matchLabels":

{"location":"cloud"}}}}}
The possible patch values are fixed and stored in a map. With the received

destination, the correct patch can be chosen:

41

Figure 17 Map with the possible patches

5.3.3.3 Interact with the Kubernetes API server

KubeFed resources are custom resources. To interact with the API server, I

used a dynamic client provided by client-go. Firstly, it requires the cluster

config to be authorized and authenticated by the API and have access to the

resources. The federated resources are on the host cluster so this app must run

in a pod in the host cluster. For pod running in the cluster, the credentials of

the pod can be used for the authentication. The credentials can be get with the

method rest.InClusterConfig(). Now the dynamic client can be created but

requires an extra configuration respect to a typed client offered by client-go

that will be used in the next custom solution. The dynamic client uses a

generic type unstructured.Unstructured to recreate the objects from the API

server. It needs the schema of the resource that must be handled so I provide

the schema for both the federated deployment and service:

Figure 18 Schema of the resources for the dynamic client

The group, version and resource can be retrieved from a kubectl get on

the relative resource.

42

The app is ready to perform the dynamic placement. Whenever a notify

arrives, it builds the client and then applies the patch, one to the deployment

and one to the service. The federated resources are updated, and the target

application is automatically moved from the previous location to the new one:

Figure 19 Patch methods on the resources

The dynamic application (as every other developed application) requires the

authorizations to perform actions on the resources. By default, only view

permissions are granted. Other permissions can be grant with the creation of

a clusterRoleBinding: a clusterRoleBinding binds a clusterRole, that has

specific rules of operation, to a particular subject: by default, the subject of a

developed app is the service account “default”. Being in a testing

environment, I create a clusterRole with permission of all verbs(actions) on

all the federated resources (apiGroup=types.kubefed.io).

43

Figure 20 ClusterRole and ClusterRoleBinding declaration

In a production environment the verbs should be limited only to the minimum

required.

To verify the result of the dynamic placement, it can be checked the status

section of the federated resources (updated with the new cluster location) or

perform a kubectl get with both the contexts of the old and new cluster:

kubectl -n my-federation get all --context=OldClusterContext

kubectl -n my-federation get all --context=NewClusterContext

44

5.4 Custom solution

During the research for a possible solution to the challenge showed to me by the

company I decided to implement another possible solution to the problem. The

reasons that lead me to this decision are different. I will list these reasons and other

considerations in the last main chapter “Conclusions”.

I refer to this current solution as custom because it is based on the implementation

of an application that performs the actions required without extending the

functionality of Kubernetes or without installing additional feature but it just

exploits the basic functions of Kubernetes. There is not a federation that organize

and manage all the clusters. The clusters and data processed by the applications are

always monitored by the classification service as the KubeFed solution, indeed the

notification system is very similar. What really changes is the way how the target

application is dynamically moved. No labels or cluster selectors are involved but

the resources of the target application are taken from the current cluster, modified

and then pushed to the new location.

5.4.1 Business logic

Also in this solution an application is represented by a deployment and a

service to expose the pod. The current dynamic placement application

requires several configuration files to let the interaction with the different

clusters. The following sections describe the main parts of the developed

solution.

5.4.1.1 Notifications system

The interaction between the dynamic placement application and the

classification service is the same as the KubeFed version. The only difference

is the need for a fourth parameter, the current location of the target

application. This parameter is required because there is not a unique

representation of the resource among all the clusters, but the target must be

taken directly from the initial location and moved to the final location. The

structure to store the received parameters is the following:

45

Figure 21 Structure to store the content of HTTP POST

To be reachable by the classification service, the dynamic application must

be exposed creating a service resource:

Figure 22 Content of the service .yaml file

The name of the service must be set in the configuration file “service.conf”

of the classification service. In this way the classification service can reach

the dynamic application using the service discovery feature of Kubernetes.

5.4.1.2 Interaction with different Kubernetes API servers

In the KubeFed solution the application interacts only with the KubeFed API

because the control plane stores a unique representation of the resources

distributed among the clusters. Without a federation, every resource must be

handled independently. It means that if the target application resides in a

generic cluster A and has to be moved to a generic cluster B, the dynamic

application must interact first with cluster A API server and then with cluster

B API server. To interact with the API servers, you need a client and for this

46

solution it is used the typed client set provided by client-go. The difference

with the dynamic client set used in the previous solution is that instead of

using generic data structure to represent the resources, typed clients use

specific Golang types for every kind. The types to be represented must be

known at compile time. Typed clients are simpler to use but less flexible

because they strictly depend on the version and types used.

To build the client set you need a configuration with the information and

credentials to be authenticated and authorized by the API server. These

information are the same used by kubectl to interact with the cluster and are

stored in a so called kubeconfig file. To permit the communication, the

dynamic application needs the kubeconfig files of all the clusters where the

target apps can be moved. The kubeconfig file of a cluster is passed to the

method clientcmd.BuildConfigFromFlags to build the configuration.

Then with the configuration can be created the client set with the method

kubernetes.NewForConfig. I create a function to perform these steps

every time you need a client set:

Figure 23 Wrapper function to build a clientset

The function buildClientSet(configFile string) receives as

parameter the name of the target cluster and this name is used to build the full

name of the kubeconfig file in order to open it and get the configuration data

to build the client set.

All the kubeconfig files and possible locations are passed to the application

through objects provided by Kubernets to pass configuration parameters to

47

the pods. The objects used are a Secret and a ConfigMap. The kubeconfig

files contains sensible data like certificates, keys and cluster servers

addresses. To store these configurations, I used a Secret. Then the secret is

passed to the pod as a volume so the application can access to the kubeconfig

files.

Figure 24 Secret to store the kubeconfig files

The gsa-key.json contains information to be authenticated on GKE cluster.

More details are discussed on chapter 5.4.4.

The possible locations instead, indicated by the cluster name, are written

down in a file .json and this file is used to create a configMap.

Figure 25 ConfigMap to store the possible locations

Then both the secret containing the kubeconfig files and the configMap are

mounted in a volume inside the container of the pod. To mount the volume

into the pod I used a particular volume instead of a volume of type configMap

or secret directly. The volume type used is called projected. This type of

volume is used to map different volume type sources under the same

48

directory. Not all the volume types can be used but configMaps and secrets

can.

Figure 26 Spec section of the pod definition with the volume mount

With the volumes mounted, the files can be used by the application. The name

of the kubeconfig files must be in the following format: config-clusterName.

In this way the correct file can be easily picked by the application through the

map clusters map[string][]string:

Figure 27 Configuration file .json with the clusters location

Figure 28 Map to store the file .json

49

The above structure lists the possible locations. When the dynamic

application receives the notify by the classification service, the source and

destination parameters (cloud or premise) are used as key to access the

clusters map and get name of the source/destination clusters. In my setup, the

key “premise” has the value “cluster1” and the key “cloud” have the values

“cluster2” and “gke”. The correct value is then passed to the function

buildClientSet(configFile string) to get the kubeconfig file and

build the client set. This operation is performed before moving the target app

to remove it from the current location, and after to move the target to the new

location:

Figure 29 Clientset to interact with the source clusters

Figure 30 Clientset to interact with the destination clusters

5.4.2 Moving the resources

After getting the access to the cluster API is possible to move the application.

In this solution will be moved the deployment and the service associated to

the target application. the process is split in different steps:

- Get: A resource is taken from the current location and stored in an

empty object of the same type to obtain all the resource’s

configuration. The parameters received by the classification service,

namespace and name, are used to get the target resource:

50

Figure 31 Objects to store the resources

Figure 32 GET method on the resources

- Delete: with the resource saved is possible to delete it from the cluster

because it will be moved:

Figure 33 DELETE method on the resources

- Modify: this step is the most crucial because without some

modifications, the stored resource cannot be moved to a different

cluster. When a resource is created on the cluster, some unique fields

are created. These field are strictly related to the cluster and to the time

of creation. Before moving, the application deletes some fields from

the ObjectMeta section and the entire Status section. The ObjectMeta

contains all the metadata of the resource like name, namespace; the

Status contains the result of the desired state of the resource (specified

in the Spec section). From ObjectMeta are removed the following

fields:

o ResourceVersion: it is a string to identify the version of an

object. The value of the string comes from the etcd and it is

incremented every time the object is modified.

51

o SelfLink: it is a URL that represent a resource

o UID: it is a unique string generated by Kubernetes to identify

an object in the cluster

In addition, for the service object must be deleted some fields present

in the Spec section:

o ClusterIP: it is a cluster’s internal IP address and it is

automatically assigned during the creation of the service if not

statically specified in the service’s definition. By removing it

we assure that will not be collisions with already existing

services in the cluster or incompatibility with the CIDR range

inside the cluster. In fact, deploying a Service with an invalid

ClusterIP returns a 422 HTTP Status from the API server. The

CIDR range depends on the CNI provider installed in the

cluster. Anyway, if all the clusters have the same CIDR range,

it is possible not modify the service ClusterIP if it has to be

statically provided but it must be assured its uniqueness into

the cluster.

o NodePort: it is not referred to the service type but is a

consequence of it. When defining a service of type NodePort,

the service is exposed on each node’s IP at a static port called

nodePort. This happens also for the type LoadBalancer

because it is an extension of the type NodePort. If not statically

specified, the control plane allocates a value for the nodePort

in the range 30000-32767 by default. After some tests I found

out an issue with the nodePort value, so I decide to remove the

value before the placement. This issue is described in detail in

the next chapter 5.4.3. The nodePort value is of type integer so

to remove it, the nodePort is set to 0, the zero value in Golang

for numeric types. This reset is performed in a for loop because

the ports information are into an array of type SerivcePort so

52

in case are defined multiple port element for the service, all

the nodePort values are reset to 0.

Figure 34 Fields modified before moving

- Moving: Finally, after the previous modifications, it is possible to

move the application to the future cluster. The destination is acquired

by the classification service and it is used to build the client set to

interact with the future cluster API. The previous modified objects

will be used in the method Create to recreate the target application in

the new cluster:

Figure 35 CREATE method on the new cluster

With the described process is possible to perform a dynamic placement of the

applications under particular conditions. The correct placement can be

checked using the kubectl get command on all the objects moved with the

context of the involved clusters.

53

5.4.3 NodePort port issue report

During some tests of my solution I found an issue during the placement of a

service on the GKE cluster. The problem occurs when the service is placed in

the GKE cluster, moved to another cluster and then moved back to GKE

cluster. In this last step the service is not placed because the API server returns

the following error:

Figure 36 Error during service port allocation

Originally, I did not remove the nodePort value associated to the service, so

the service had the same value on every cluster where it was moved in. When

the service is brought back to GKE cluster, this error occurs even if the

resource is not present in the cluster because previously deleted. The deletion

of the previous version can be confirmed by a kubectl get service. This

problem, in my setup, occurs only on GKE cluster when performing the

placement of the same service in a short period of time since its deletion. This

issue is being reported by several Kubernetes users in the past years but never

officially fixed. The issue seems to be related to a missing synchronization

between the local map of ports allocated and the map present in the etcd [19].

The deletion of the service correctly deletes the resource from the etcd

(confirmed by the get on the API server) but the information about the port

allocated is not immediately updated. In fact, after repeating the deployment

of the service for a period of time (in my case it was about 8-10 minutes), the

deployment is successful because the two maps have been synchronized.

The port allocator, during the checking if the port is already allocated, firstly

checks the local map (in local memory) instead of the etcd. So, if the two are

not updated, the allocation fails. The bug should be resolved in future releases

of Kubernetes by checking first the etcd. I noticed this bug by myself because

in my simulations the moving is performed every 3 minutes, not enough for

the GKE cluster to update the information. Discussing with the company, we

confirm that moving services in this short time and with a fixed nodePort

54

value is a very particular use case and highly depends on the type of the

application. For example, they should move back the applications to the

original location after a period of about an hour so the synchronization

problem should not occur. Furthermore, currently they do not use services

with static nodePort values so resetting the value and let Kubernetes to assign

a new one is not an issue for their environment.

5.4.4 Service account for GKE cluster

The access to the GKE cluster requires an extra configuration. When you

build a cluster on the Google Cloud Platform is possible to control it from the

local command line with kubectl by getting the credentials from the cloud.

Once the gcloud SDK is installed locally, with the command:

 gcloud container clusters get-credentials clusterName

 --zone clusterZone --project projectName

a kubeconfig file with the credentials to access the cluster is created. Kubectl

will use this kubeconfig file to interact with the API server. The obstacle in

my solution is that this kubeconfig cannot be used by my application because

part of the authentication process is handled by the local gcloud tool and in

the cluster where the dynamic placement application is running, gcloud SDK

is not present. The solution is to create a IAM policy [20]. The IAM defines

which member has access (based on a role) to a resource. In this case, the

member will be a service account related to my application, with the role of

Kubernetes engine developer. Then get a key for the service account just

created:

gcloud iam service-accounts create dynamic-moving

gcloud projects add-iam-policy-binding tesi-282514
 --member=serviceAccount:dynamic-moving@tesi-
282514.iam.gserviceaccount.com
 --role=roles/container.developer

gcloud iam service-accounts keys create gsa-key.json --
iam-account=dynamic-moving@tesi-
282514.iam.gserviceaccount.com

55

The final step is to build a kubeconfig file for the GKE cluster, where the user

is the service account. This service account will use the generated key for the

authentication on the cluster. This key can be passed to the pod of the

application by mounting a volume with the content of key inside and then an

environment variable of the container must be set with the path to reach the

file containing the key. The gsa-key.json, that contains the key, has been

stored in a secret, alongside the kubeconfig files, because contains sensible

data.

Figure 37 Kubeconfig file of the Google GKE cluster

56

Figure 38 Deployment declaration with environment variable for the authentication

With this setup the client will be authenticated through the service account

and will perform the actions on the resources.

57

6 Validation

In the previous chapter I described the proposed solutions to resolve the real case

challenge presented by the company. In this section I will walk through a simulation

for testing both the solutions and demonstrate the working concepts behind.

6.1 Simulation setup

The simulation environment aims to emulate a real production scenario with the

adoption of a multi-cluster setup. The multi-cluster setup has been described in the

5.1 Clusters setup section. To quickly remind, the clusters involved are three, two

deployed with Minikube (kubectl contexts cluster1 and cluster2) and one on

Google Cloud Platform (kubectl context google). To reproduce a real possible

multi-cluster architecture, I have split the clusters in two locations: on-premise and

on cloud. Cluster1 represents an on-premise cluster while cluster2 (logically) and

google two cloud clusters. All the three clusters must be intended as under the same

organization control. I created two different namespaces on every cluster where

deploy the applications involved in the test. The KubeFed solution use the “my-

federation” namespace while the Custom solution use the namespace “test-

dynamic”. The application classification service and the dynamic placement

services are deployed only on cluster1 in the default namespace instead, to

underline the fact that they do not have to be necessarily in the same cluster and

namespace of the target applications.

In the simulation two applications will be dynamically moved between the clusters.

These applications are: nginx, a basic Nginx web server [21] and hostname, a

minimal web server developed by myself. The last responds to an HTTP GET with

the name of the pod and node where is currently running. In this way I can have a

practical demonstration on where the application is located.

By querying the three different Kubernetes API of all the clusters and the hostname

application I can check the effects of the dynamic placement performed by the

developed solutions.

58

The simulation is repeated for both the solutions with different initial configurations

to match the required parameters for the apps involved.

6.2 Testing the KubeFed solution

In this solution, the two target applications must be composed by federated

resources. In facts the KubeFed solution exploits the mechanism of KubeFed by

patching the value of the clusterSelector. The initial state presents the two target

applications deployed on the cloud (cluster2 and google). The following are the

representations of the federated resources:

Figure 39 Yaml description of the federated resources

The clusters in the federation have been previously labelled with

location=onpremise or location=cloud based on the relative location (chapter 5.3.2

as reference). With the current setup, clusterSelector matches the label

59

“location=cloud” so the applications will be deployed on the cloud clusters. This

can be checked by querying the API servers:

Figure 40 Queries to the different Kubernetes API server

Another way to track the current position of the applications is to check the Status

of the related federated resources. As example, the next picture shows the

description of the federated deployment hostname (part of the response from the

API is intentionally omitted because not useful for the purpose):

60

Figure 41 Description of the federated deployment hostname

The Status section lists the current clusters where the resource is currently deployed.

The Events sections lists the actions of the creation on both the clusters. The same

kind of information can be retrieved for the relative federated service and for the

nginx application. These sections are managed by the KubeFed control plane.

To test the hostname application, we can perform a curl to hit the related service:

Figure 42 Command curl to perform a GET to the hostaname services

The IP addresses are very different because of the type of the cluster. The first is a

private IP address assigned to the local Minikube VM. The address can be retrieved

by: kubectl --context=cluster2 get nodes -o wide. It will be listed

the nodes of the cluster but Minikube create a single node cluster so there is only

one IP to take. Then the service can be access at the address nodeIP:servicePort.

Figure 43 How to get the IP of a node

Instead, for the service on Google Cloud, because the service is of type

LoadBalancer, it is assigned a public IP address from the cloud provider’s load

61

balancer and the service is directly exposed on that address. In my Minikube

clusters is present a local load balancer but it is not completely configured so the

services are accessed by the IP address of the node and the port of the service. The

service type LoadBalancer is an extension of the type NodePort. The type NodePort

let to access the service through the node IP and the reserved port. That is why even

if the services on cluster1 and cluster2 are created as LoadBalancer it still works

the access through the node IP.

The next step is to configure correctly the configMaps for the application

classification and for the dynamic moving application and deploy them on the

cluster1. First deploy the dynamic moving application and then the app

classification. The order is important because the simulation starts as soon as the

application classification is deployed: in facts it has the information to trigger the

re-placement.

Figure 44 Dynamic and Classification application deployed on cluster1

The appClassification simulates a changing in the type of data processed by the

applications and triggers the moving. The PATCH on the clusterSelector is applied

and the applications hostname and nginx, one by one, are transferred to the on-

premise cluster. Both the relative deployments and services are moved. If we check

again the resources on the clusters, we can notice this change:

62

Figure 45 Queries on the API servers after the dynamic re-placement

The curl now can be performed only to the service on cluster1:

Figure 46 Command curl after the dymanic re-placement

The simulation continues to move the applications among the clusters. In facts in a

real scenario it must be possible bring back the applications when new conditions

let to deploy the applications on the cloud again. The events inside the description

of a federated resource confirm this correct behaviour:

Figure 47Events on the federated deployment hostname

In the simulation the applications are moved every 3 minutes. Obviously in a real

scenario the moving depends on the occurring of the specific conditions.

To repeat the simulation with the custom solution, the dynamic moving and

classification application can be scaled to 0 pods with the following commands:

kubectl --context=cluster1 scale deployment deploymentName

63

--replicas=0. In this way there is no need to redeploy the two applications, but

it let to just stop the running simulation.

6.3 Testing the custom solution

The solution exploits the mechanism of a basic installation of Kubernets, it does

not require particular resources. The target applications are deployed on the cloud

clusters (cluster2 and google). The object involved are simple deployment and

service, no more federated:

Figure 48Yaml descripion of the two target applications

We can notice that part of the content of the resource description is the same under

the template section of the previous federated resource. In facts the goal of

Kubernetes Federation is to federate the Kubernetes resources.

64

The target applications are deployed in the namespace “test-dynamic”. This process

is not fundamental for the working of the solution, but it just helps to organize the

workload:

Figure 49 Resources present in the "test-dynamic" namespace

The applications are correctly deployed, and the services can be reached:

Figure 50 HTTP Get on the two web servers

Before starting the simulation, it must be changed a configuration parameter for the

app classification. I used two different names for the service of the relative dynamic

solutions. The configMap of the app classification previously created, must be

edited with the new name of the service to reach.

65

Figure 51Name of the dynamic services

The figure shows the name of the services of the dynamic applications.

When the appClassification deployment will be rescale to 1 replica, the updated

configurations will be uploaded. Firstly, deploy the custom dynamic solution and

then to start the simulation, just rescale the appClassification deployment. As soon

as the relative pod is created, the simulation starts, and the target applications are

moved to the on-premise cluster. To check the correct working, we query the three

Kubernetes API servers and will see that the nginx and hostname applications are

moved to cluster1. In addiction an Http Get is performed to the hostname service:

Figure 52 Applications moved to on-premise cluster1

Figure 53 Http Get to the hostname service

 After 3 minutes the appClassification notifies a change in the type of data

processed by both the applications and they will be moved back to the cloud

clusters. Check again the resources present on the clusters:

66

Figure 54 Applications moved back to the cloud clusters

Figure 55 Reaching the hostname services on cloud clusters

The simulation continues until the appClassification is stopped.

6.4 Results of the tests

With the previous simulations I was able to test the two solutions. The expected

results have been achieved and it was found a mechanism to automate the placement

of applications on different location under certain conditions. The process can be

adapted to any kind of condition, in facts the dynamic moving applications can be

driven by any kind of notification system and not just by the change of the

classification of data processed.

67

I did not find significant differences in the performance. In both cases the removing

and placement of the applications on a new cluster were performed in similar times.

The big difference is the underlying environment. The KubeFed control plane offers

controllers that simplify the managing and monitoring of the resources. The

information retrieved in the description of a federated object about the status and

the events are very useful to easily monitoring the state of the resource. For a similar

feature in the custom solution, it must be developed extra controllers.

68

7 Conclusions

To achieve the objective of the company I developed two solutions based on open-

source resources. The final result is very similar, but the two approaches differ on

the surrounding environment. We consider these solutions has a starting point for a

future and more complete development.

7.1 Why two solutions

Two approaches have been analysed because discussing with the company, the

KubeFed solution it is a valid option but difficult to adopt nowadays. In facts the

Kubernetes Cluster Federation is currently in alpha release and this represent a

problem for the company. Notice that the current project is also called Federation

V2 because an initial project for a Kubernetes federation was abandoned to starting

a new one with different concepts. The hope is that the actual project can become

production ready in a while but, without a certain future, if the company has to

choose between the two proposed solutions, they will opt for the custom one. I do

not think the KubeFed solution has to be totally discarded but just keep in mind and

ready to use in case the project becomes production ready. In facts KubeFed can

offer some management features out of the box that with a custom solution have to

be built from zero. The dynamic placement exploits the main function of KubeFed

that is synchronize a desired state in all the clusters: by changing just a label (the

ClusterSelector) the resource will be replaced in the correct location. In addiction

the control plane offers a mechanism to easily keep track of the current position of

a resource by looking at the status section in the object description. At the moment,

Kubefed offers other few features, like a service discovery across the federation,

and we do not know if other additional features will be developed. The risk of

adopting this solution is that if in the future will be added many new features not

related with the problem of dynamic moving the applications, in the end the clusters

will run a control plane with not required or not adopted functionalities.

Writing a custom solution means develop only the required functionalities. It

represents for the company a more stable starting point for future developments

69

because it is strictly related to the basic mechanisms of Kubernetes and can be easily

integrated with desired features. It needs to implement a way to interact with the

cluster’s API servers, a feature not required for the KubeFed solution because after

the joining of the clusters in the federation, KubeFed provides a single point of

interaction. The moving process results different because the KubeFed solution

exploits a function of the KubeFed control plane not present in the basic Kubernetes

environment.

7.2 Future improvements

Both my solutions are in an early stage of development, so some functionalities

have been simplified for the sake of testing the main process of dynamic placing

the applications. In this section I will introduce some future improvements that can

be applied to the solutions to continue their development.

7.2.1 CustomResourceDefinitions

To obtain a deeper integration with the Kubernetes environment is possible

to introduce custom resources in our project. A custom resource [22] is an

object that extends the Kubernetes API, a new resource type. The new

resource is described by a CustomResourceDefiniton (CRD), a Kubernetes

resource that allows to define a new custom resource with a specific name

and schema. After a custom resource is defined it can be created and managed

like any other Kubernetes resource in the cluster. At this point a custom

resource represents only a set of structured data and to be very useful usually

it is combined with custom controllers. A controller watches on the related

custom resource and reacts on the events on the resource.

For example, in my custom solution can be integrated a custom resource to

define the clusters configuration instead to store it in configuration objects.

The result is a more flexible and integrated way to provide the configuration

to the application. When my application needs the configuration of a cluster,

that can be obtained with a GET of the related custom resource from the API

server. Another custom resource can be used in substitution of the HTTP

70

POST with the information of the target application sent by the classification

service. In facts, the classification service sends a set of information that can

be easily packed in a resource. Instead of collecting the data in a structure an

pass this data with a HTTP POST, the service could create a new custom

resource, for example called “Target”, and the logic of the two solutions

moved inside a controller for that kind of custom resource. The controller

watches for events on that resource so when a new resource is added to the

cluster, via the CREATE operation on the API performed by the classification

service, it can run the process to dynamically move the target application in a

new location.

Figure 56 Example of a custom resource definition for the target application

71

The Custom Resource Definition above contains the definition of the custom

resource Target. The properties section contains the parameters exchanged

between the dynamic moving and classification application. With the use of

this new custom resource, the classification service will create a Target

resource like in the following figure:

Figure 57 Example of the Target custom resource

The resource, called “targetinfo”, is now present in the cluster and can be

obtained by the API server.

Figure 58 Get the custom resource from the API server

7.2.2 Improve security

During the developing of my solutions I did not focus too much on the

security of the applications. This was intentionally done because the main

goal was to exploit the basics of Kubernetes and KubeFed to achieve a

dynamic placement on particulars requirements. These applications can have

potentially the authorization to manipulate every kind of resource because if

they need to move a whole application, they need to move all the component

of that. It is better to create dedicated service accounts because if it is not

specified inside the pod spec section, Kubernetes assigns to the pod a default

service account. If you grant some authorization’s policies with high privilege

to the default service account, all the pods associated to the default account

72

will have high privilege. Therefore, create separate service accounts and role

bindings is a good practice to limit the privilege to not authorized pods.

In addition, all the keys and certificates used for the cluster authentication are

passed as a Secret [23]. Thinking about a more improved version close to the

production, these sensitive data must be handled correctly. Kubernetes offers

this kind of resource to store sensitive data. This prevents to hard code these

data inside the application but to pass them from the outside by mounting the

secret as volume in the pod or through environment variable of the pod.

Anyways secrets by default are just encoded in base64 by Kubernetes so they

can be easily read and decoded by anyone. For this reason, when using this

type of resource in a production environment you should consider applying

additional security practices. Some best practices are:

- Limit the access to the secret resources with authorization policies.

Only the developed client/application must access the relative secrets.

The methods get, list, and watch should be limited only to privileged

entities.

- Enable encryption for the secrets so they are no longer just encoded

in base64. In facts base64 encoding is way different from encryption

and can be considered as storing the data as plain-text.

- Make sure that the developed application handles the secrets in a

secure way, by not exposing to the outside in some logging or with

untrusted party.

Security is a very important aspect in an application especially for companies

that process particulars sensitive data. There are external tools that can be

integrated with Kubernetes to implement different security features.

7.3 Final considerations

During my master’s degree thesis, I had the opportunity to collaborate with a

company on a real-case scenario. The company, like many others, has been trying

for the last years to migrate their service on a new technology. This recent

73

technology is Kubernetes, an open-source container orchestrator born to satisfy the

requests of the market. In fact, the widely adoption of microservices application

required a new way to manage all the containers involved. Kubernetes offers a

starting environment that can be extended and customized based on personal

necessities. In this case the company has the necessity to dynamic place the running

applications on different location from the current one. Even if the reasons of this

behaviour can differ from company to company, it is a solution that affect many. In

my thesis, the interested reason is the kind of data processed by the services, where

the company has the constraint to handle a determined type of data, considered by

them as classified, only on a cluster running on-premise.

 My solutions required an initial deep study on the functionalities of Kubernetes

and on the ways to interact with different clusters. The research led me to the

concept of federation implemented by KubeFed and I found in it a valid technology

to build a solution around. In particular, I found very useful the feature of the

KubeFed control plane of continuously monitoring and re-synching the state of the

federated resources. The status of a federated resource simplifies the localization of

that resource by other services in case they need. The limit of the KubeFed solution

is that this technology is currently in alpha release and the company is not intended

to bring in production a technology in early release. For this reason, my final

proposal solution to the company was the custom solution. The objective was to

interact with a service already present in their environment, which I referred to as

classification service, and trigger another service in charge to place the target

application in a new location.

The solutions are to be intended as a prototype, a starting point of developing a

production solution. The final goal of the company is to build a technology that

automize a process that is currently performed by the production team manually

every time a service processes classified data. With my thesis I exploited the basics

to implement an interaction with multiple clusters and in the final consideration

section I pointed out the important aspect of security. This aspect needs to be widely

analysed before bringing the solution in production because the configuration

74

parameters potentially expose crucial data like keys and certificates that allow to

take the control of the cluster if not managed correctly.

The objective of the thesis is considered achieved. After an initial analysis of a real

use case, a solution has been proposed to the company for a good starting point to

continue the developing of a final production solution.

75

8 Bibliografia

[1] Red Hat, «Cosa sono i microservizi?,» [Online]. Available:

https://www.redhat.com/it/topics/microservices/what-are-microservices.

[2] Kubernetes, «What is Kubernetes?,» [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

[3] Kubernetes, «Borg: The Predecessor to Kubernetes,» 23 April 2015. [Online].

Available: https://kubernetes.io/blog/2015/04/borg-predecessor-to-

kubernetes/.

[4] J. B. K. H. Brendan Burns, «APPENDIX A: Building a Raspberry Pi

Kubernetes Cluster,» in Kubernetes: Up and Running, 2nd Edition, O'Reilly

Media, Inc., 2019.

[5] Kubernetes, «minikube,» [Online]. Available:

https://minikube.sigs.k8s.io/docs/.

[6] Kubernetes, «kind,» [Online]. Available: https://kind.sigs.k8s.io/.

[7] Kubernetes, «Running in multiple zones,» [Online]. Available:

https://kubernetes.io/docs/setup/best-practices/multiple-zones/.

[8] Booking.com, «Shipper,» [Online]. Available:

https://github.com/bookingcom/shipper.

[9] Google, «Anthos,» [Online]. Available: https://cloud.google.com/anthos.

[10] Istio, «What is Istio?,» [Online]. Available:

https://istio.io/latest/docs/concepts/what-is-istio/.

[11] Submariner, «SUBMARINER,» [Online]. Available: https://submariner.io/.

76

[12] Kubernetes, «Kubernetes Components,» [Online]. Available:

https://kubernetes.io/docs/concepts/overview/components/.

[13] Docker, «Orientation and setup,» [Online]. Available:

https://docs.docker.com/get-started/#containers-and-virtual-machines.

[14] Kubernetes, «client-go,» [Online]. Available:

https://github.com/kubernetes/client-go.

[15] kubernetes-sigs, «kubefed,» [Online]. Available:

https://github.com/kubernetes-sigs/kubefed.

[16] Kubernetes, «Service, Discovering services,» [Online]. Available:

https://kubernetes.io/docs/concepts/services-

networking/service/#discovering-services.

[17] kubernetes-sigs, «Using Cluster Selector,» [Online]. Available:

https://github.com/kubernetes-

sigs/kubefed/blob/master/docs/userguide.md#using-cluster-selector.

[18] kubernetes-sigs, «Cluster registration,» [Online]. Available:

https://github.com/kubernetes-sigs/kubefed/blob/master/docs/cluster-

registration.md.

[19] K. aojea, «portAllocator sync local data before allocate,» [Online]. Available:

https://github.com/kubernetes/kubernetes/pull/89937.

[20] Google, «Authenticating to the Kubernetes API server,» [Online]. Available:

https://cloud.google.com/kubernetes-engine/docs/how-to/api-server-

authentication#environments-without-gcloud.

[21] I. Nginx, «Nginx,» [Online]. Available: https://hub.docker.com/_/nginx.

77

[22] Kubernetes, «Custom Resources,» [Online]. Available:

https://kubernetes.io/docs/concepts/extend-kubernetes/api-

extension/custom-resources/.

[23] Kubernetes, «Secrets,» [Online]. Available:

https://kubernetes.io/docs/concepts/configuration/secret/.

