
POLITECNICO DI TORINO
MASTER’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Development of Simulation Technologies
for Assessing Multi-Rotor Unmanned

Aerial Vehicle Performance in Precision
Agriculture Operations

Supervisors

Prof. FABRIZIO DABBENE

Prof. GIORGIO GUGLIERI

Prof.ssa MARTINA MAMMARELLA

Prof. LORENZO COMBA

Candidate

RICCARDO LAZZARI

DECEMBER 2020

i

Abstract

The adoption of Unmanned Aerial Vehicles (UAVs) in agricultural scenarios can
aspire to become a reality if the validation of their effectiveness will be sustained by
the contemporary and shared improvement of all those technological gaps identified
by current research projects. In particular, a commercial quadrotor-based spraying
system that will have to fly automatically between vineyard rows would need to
implement sophisticated flight control algorithms that could imply a great amount
of computational workload just to keep attitude and position under control while
following the flight path.

This kind of trajectories are often characterized by steep slopes, limited room
for manoeuvring and sharp turns. At the same time, the control algorithm should
be flexible enough to deal with rapid changes in the reference signal due to collision
avoidance alerts, wind disturbances and spraying reaction effects. Moreover, the
field of agriculture needs robust machines that can operate at a wide air temperature
range, into various conditions of sunshine and with the necessity of easy use and
maintenance. In addition, the cost of the development and the production of the
system have to be kept as low as possible to comply with the market rules.

This Master’s degree thesis aims at exploring the potentialities of the selected
commercial off-the-shelf (COTS) autopilot board, the Pixhwak 4, for the imple-
mentation and testing of advanced control algorithms, in particular with Processor-
In-the-Loop (PIL) trials with the automatic generated code running on the micro-
controller while the modeling environment, developed in MATLAB/Simulink, is
running on a generic computer.

In addition, a second objective of this work is to derive virtual 3D scenarios from
laser, detection & ranging (LIDAR) point cloud maps realized by survey campaigns
on the actual location selected for the flight testing operations: these scenarios
have the twofold objective to be a useful tool for generating feasible trajectories
and for visualizing the flight simulation of the UAV.

i

Acknowledgements

Vorrei porgere i miei più sinceri ringraziamenti al Prof. Fabrizio Dabbene per avermi
concesso la sua fiducia, nonostante qualche mio tentennamento ed incoprensione
iniziale, e per avermi dato la possibilità di svolgere questo lavoro così interessante
e di respiro così ampiamente interdisciplinare; questa esperienza ha contribuito, ne
sono certo, a sviluppare le mie capacità di adattamento e di "problem solving". Lo
ringrazio, inoltre, per la flessibilità che mi ha garantito durante le varie fasi della
tesi, che mi ha permesso di conciliarla agevolemente con la mia attività lavorativa.

Ringrazio il Prof. Giorgio Guglieri, con il quale condivido l’innata e profonda
passione per le macchine volanti, per i suoi puntuali consigli, le sue rassicuranti
e rapide risposte e per la sempre preziosa disponibilità, anche in questi tempi
caratterizzati dalla pandemia mondiale.

Non posso, inoltre, non ringraziare il Prof. Lorenzo Comba per i suoi sempre
precisi consigli ed idee sul da farsi e per aver condiviso con me dati e considerazioni,
parte delle sue importanti ricerche.

Ringrazio, infine, la Prof.ssa Martina Mammarella, persona dotata di incredibile
forza di volontà e spirito di sacrificio, per avermi fatto lavorare sempre al limite
della mia "comfort zone", ma, al tempo stesso, per esser stata sempre disponibile
per qualsiasi mia necessità e per chiarire ogni mio più piccolo dubbio o perplessità.
Lavorare con Martina mi ha permesso di mettermi alla prova e di continuare a
crescere, capendo di giorno in giorno che c’è sempre qualcosa da imparare o qualcosa
per cui vale la pena essere curiosi.

Rivolgo, in conclusione, un pensiero commosso a tutti gli affetti della mia vita,
vicini e lontani, che mi hanno accompagnato durante questi anni di lavoro e di
studio e che hanno condiviso con me ogni sacrificio: a loro devo infinita gratitudine
per la persona che sono oggi.

Riccardo

ii

iii

Table of Contents

List of Figures vi

Technologies for UAV operations in precision agriculture 1

1 System Selection and Description 7
1.1 Requirements and selection . 7
1.2 Autopilot hardware and software 8

1.2.1 Pixhawk 4 autopilot board 8
1.2.2 NuttX operating system . 11
1.2.3 uORB middleware . 13
1.2.4 PX4 flight control software stack 15

1.3 Development environment . 18
1.3.1 MathWorks Embedded Coder Support Package for PX4 Au-

topilots . 18

2 Implementation and Simulation of Customized Quadrotor Con-
trol Algorithms using Model-Based Design 23
2.1 Model-Based Design for Unmanned Aerial Systems 23
2.2 Quadrotor UAV model description 27
2.3 Control algorithms . 30

2.3.1 PID controller . 31
2.3.2 LQR controller . 32

2.4 Software-in-the-loop simulation . 33
2.5 Processor-in-the-loop simulation . 35
2.6 Flight Gear simulator interface . 40

3 Development of 3D Simulation Scenarios from LIDAR Point Cloud
Maps 43
3.1 Virtual scenarios for trajectory tracking design and visualization . . 43
3.2 LIDAR technology . 44
3.3 Point cloud map description . 46

iv

3.4 Point cloud map processing and classification 47
3.5 3D mesh generation . 53
3.6 Scenario loading into Simulink 3D Animation simulation environment 56

4 Results 59
4.1 Trajectory and reference signals generation 59
4.2 PID tuning for quadrotor operation in 3D vineyard scenario 62
4.3 LQR PIL simulations results tracking vineyard scenario-generated

trajectory . 66

5 Conclusions and Future Works 71
5.1 Conclusions . 71
5.2 Future works . 72

A Guide for Implementing a Pixhawk 4 Processor-in-the-loop Sim-
ulator 73
A.1 Package installation and hardware setup 73
A.2 Processor-in-the loop simulation of a deployed controller subsystem 76

B Guide for Creating a 3D Virtual Scenario from a LIDAR Point
Cloud Map 89
B.1 Reference system conversion . 90
B.2 Point cloud classification and separation 92
B.3 Mesh generation . 95
B.4 Mesh recomposition and loading into the simulation environment . 97

Bibliography 99

v

List of Figures

1 Quadrotor flying above the vine rows for monitoring operations. . . 3

1.1 Pixhawk 4 autopilot board [29]. 9
1.2 Pixhawk FMU and I/O responsibilities [29]. 10
1.3 Pixhawk software layers [17]. 12
1.4 NuttShell console view opened from QGroundStation and connected

to Pixhawk 4 autopilot board. 12
1.5 uORB publish/subscribe asynchronous messaging API [35]. 13
1.6 Published topics on a PX4 autopilot. From left to right the columns

represent topic name, multi-instance index, number of subscribers,
publishing frequency in Hz, number of lost messages per second (for
all subscribers combined), and queue size [29]. 14

1.7 PX4 flight stack architecture [29]. 17
1.8 PX4 flight stack pipeline [29]. 18
1.9 Simulink blocks that interface with PX4 modules [38]. 19
1.10 Example of a simple attitude control built with PX4 Simulink blocks. 20

2.1 Model-Based Design workflow [42]. 24
2.2 V-Model applied to a multi-rotor development [47]. 26
2.3 Quadrotor configurations. 28
2.4 Conventional quad-rotor reference systems and basic movements. . . 29
2.5 SIL Simulator implemented using the Embedded Coder Support

Package for PX4 autopilots. 33
2.6 jMavSim PX4 Simulator [60]. 35
2.7 PIL "wrapper" used to cross-compile the controller and to assess its

performance by comparing with standard simulation. Flight Gear
interface is described in Section 2.6. 36

2.8 PIL simulation process overview [63]. 37
2.9 PIL simulation: the quadrotor dynamic model is running on the

personal computer while the controller is running on the Pixhawk 4
autopilot board. 38

vi

2.10 Default NuttX "tick rate" threshold for PX4 PIL simulations. 39
2.11 FlightGear interface implemented in Simulink and connected to the

PIL simulator represented in Figure 2.7. 40
2.12 Quadrotor PIL simulation in FightGear. 41

3.1 3D scenario development overview. 44
3.2 LIDAR used to detect the unknown distance of an object [76]. . . 45
3.3 Picture of detail of Cerretta Vineyard in Serralunga d’Alba (Pied-

mont) [courtesy Az. Agr. Germano Ettore]. 46
3.4 Cerretta vineyard point cloud map visualized in CloudCompare. . 48
3.5 Optimal hyperplane separating two linearly separable classes. . . . 49
3.6 "Soil" class example. 50
3.7 "Vineyard" class example. 50
3.8 Visual representation of the high dimensional space where points

are clearly separated in two classes. 51
3.9 CANUPO point classification applied to the data set. 52
3.10 Classified point cloud portion selected for building the virtual sce-

nario. 52
3.11 AlphaShape mesh construction intermediate result over a selected

vineyard portion with α = 0.7 (processed and visualized in MAT-
LAB). 54

3.12 AlphaShape mesh construction over a selected vineyard portion with
α = 0.1 (processed in MATLAB, exported and visualized in Meshlab). 55

3.13 Ball-pivoting mesh construction over selected vineyard portion (pro-
cessed and visualized in Meshlab). 55

3.14 Ball-pivoting mesh construction over a subsampled soil portion. . . 57
3.15 Re-assembled "vineyard" and "soil" meshes building the 3D vineyard

scenario in Simulink 3D Animation. 58

4.1 Scenario loaded in Simulink 3D Animation aligned to NED reference
system . 59

4.2 Way-points placing and trajectory building on a modified version of
the asbTrajectoryTool, provided in the Mathworks Quadcopter
Project, . 60

4.3 Trajectory depicted on the scenario 61
4.4 Quadcopter project flight controller. 62
4.5 Intermediate tuning results obtained modifying the Attitude Con-

troller parameters only. 63
4.6 Tuning results obtained modifying both the Attitude Controller and

XY Position Controller parameters. 63
4.7 Visualization of the quadrotor flying the designed trajectory. 64

vii

4.8 Path flown by the quadrotor controlled by PID controllers, tracking
the trajectory designed starting from the 3D vineyard scenario. . . . 66

4.9 LQR PIL simulation results. 67
4.10 LQR standard simulation results. 67
4.11 Pitch - Roll - Yaw - Total thrust numerical difference between LQR

PIL simulation and LQR standard simulation. 68
4.12 LQR PIL trajectory tracking. 68

A.1 USB communication error between computer and Pixhawk. 76
A.2 PX4 Attitude Control scheme template. 77
A.3 Examples of quadrotor plant and controller. 77
A.4 PX4 PIL Block template. 78
A.5 Deploy subsystem to hardware selection. 79
A.6 LQR controller build window. 80

B.1 3D scenario development overview. 90
B.2 ConveRgo reference system conversion tool. 91
B.3 ConveRgo settings. 92
B.4 "Vineyard" and "Soil" samples. 93
B.5 CANUPO Training settings. 93
B.6 Classified point cloud map. 94
B.7 Classified point cloud map portion. 95
B.8 AlphaShape mesh generation with α=0.35 and α=0.7 respectively

(point cloud map portion without splitting). 96
B.9 3D mesh position in Blender graphic editor to obtain a correct

loading in Simulink 3D animation. 97
B.10 3D scenario loaded into 3D World Editor. 98

viii

ix

Introduction

Technologies for UAV
operations in precision
agriculture

Farming is undergoing the so-called fourth agricultural revolution, thanks to
the introduction of emerging technologies as robotics and artificial intelligence [1],
aiming at improving the output and sustainability of plantations, quality of products
and working conditions. This revolution came after the first agricultural revolution
representing the transition from hunting and gathering to settled agriculture, the
second with the British agricultural revolution in the 18th century and the third
relating to post-war productivity increment associated with mechanization and
Green Revolution in the developing world.

The progressive automation of agricultural processes has significantly improved
the productivity of agriculture labour, shifting masses of workers into other pro-
ductive industrial areas. Since then, scientific advances in chemistry, genetics,
robotics and many other applied sciences have boosted an accelerated development
of agricultural technology. Actually, in recent years, agricultural production has
increased substantially [2].

In this context, the Food and Agriculture Organization of the United Nations
(FAO) and the International Telecommunication Union (ITU) worked in cooperation
with partners to address some of the challenges faced in agriculture, through the
use of sustainable Information and Communication Technologies (ICTs) [3].

One of the latest development is represented by the increased use of Unmanned
Aerial Vehicles (UAVs) in agriculture. These systems have a great potential to
support and address some of the most pressing challenges in farming.

Nowadays, it is clear that aerial robotics will have its impact throughout the
crop cycle: UAVs are already widely used for remote sensing missions and, in the

1

Technologies for UAV operations in precision agriculture

near future, more complex applications, such as pesticide spraying, will become
standard fields of UAVs operations.

More specifically, UAVs are employed or will probably have an utilization in the
following frameworks [4]:

• Soil and field analysis: at the beginning of the crop cycle, UAVs could provide
precise 3-D maps via remote sensing for early soil analysis, useful in planning
seed planting patterns. After planting, this kind of soil analysis would be able
to provide data for irrigation and nitrogen-level management [5];

• Crop spraying: UAVs can scan the ground and spray the correct amount
of liquid, modulating distance from the ground and the target, thanks to
distance-measuring equipment, ultrasonic echoing and lasers such as those
used in the laser, detection and ranging (LIDAR), methods that enable to
adjust the UAV altitude as the topography and geography vary. In this way,
an increased efficiency with a reduction of the amount of chemicals penetrating
into groundwater could be achieved [6] [7];

• Crop monitoring: vast fields and low efficiency in crop monitoring are com-
posing together the largest obstacle in farming. Monitoring challenges are
aggravated by increasingly unpredictable weather conditions, which drive risk
and field maintenance costs. Previously, satellite imagery offered the most
advanced form of monitoring but images had to be ordered in advance, could
be taken only with low frequency and could be not so precise. Further, services
were extremely costly and and the quality could be poor in some days due to
the weather conditions. Today, time-series animations taken by UAVs with
specific on-board equipment can show the precise development of a crop and
reveal production inefficiencies [8] [9];

• Irrigation: On-board hyper-spectral, multi-spectral or thermal sensors can
identify which parts of a field are too dry and where the water supply needs
to be improved. Additionally, once the crop is growing, these technologies
allow the calculation of various irrigation indexes, which describes the relative
density of the crop, and show the heat signature, the amount of energy the
crop emits [10];

• Health assessment: it is essential to assess crop health and spot bacterial or
fungal infections on plantations. By scanning a crop using both visible and near-
infrared light, UAV-carried devices can identify which plants reflect different
amounts of green light and near infra-red (NIR) light. This information can
produce multi-spectral images that track changes in plants and indicate their
health [11].

2

Technologies for UAV operations in precision agriculture

Particularly interesting is the fact that many advanced solutions for spraying
and monitoring applications (see e.g., the work presented in [6]) have been proposed
but, most of them, are designed to operate in specific and limited scenarios, such
as flat terrains covered by crops with homogeneous canopies or where operations
are performed from the top of plantations. An example of this kind of operations
is shown in Figure 1.

Figure 1: Quadrotor flying above the vine rows for monitoring operations.

These scenarios represent ideal situations: for sure, existing UAV technology
can be deepened for bringing advantages also in more challenging and specific
situations because, in general, at the state of the art, the level of engagement of
the available solutions is still far from being completely representative of the real
potential of aerial robotics.

From this point of view, vineyards represent intriguing scenarios where all the
potentialities of unmanned aerial platforms could be exploited: in fact, grapes
plantations are often placed on sloped and in perched areas where UAVs could
guarantee clear advantages with respect to traditional methods, in terms of higher
efficiency in operations, reduced environmental impact and enhanced human health
and safety [12].

Specifically, in these scenarios, UAVs could exploit their manoeuvrability and
flexibility: in fact, they do not suffer problems connected with low traction soil like
ground vehicles and they do need a dedicated way to access the field. In this way,
UAVs could reach the most perched places and so all the space could be adequately
and uniformly exploited to the fullest.

This thesis is inserted in an academic research project called “New technical and
operative solutions for the use of drones in Agriculture 4.0” (Progetto di Ricerca

3

Technologies for UAV operations in precision agriculture

di Interesse Nazionale (PRIN) 2017, Prot. 2017S559BB) where a multi-phase
approach is proposed with various types of robotic platforms that are involved into
the implementation of innovative solutions for automated navigation and in-field
operations within a complex irregular and unstructured scenario, such as vineyards
on sloped terrains [13].

For its flying characteristics, a multi-rotor UAV is the ideal choice for flying
between vineyard rows and the reason why this platform has been chosen for the
project. In fact, due to its light-weight configuration and inherent instability, a
multi-rotor has a good flight maneuverability and the capability to perform vertical
take-off and landing (VTOL) and hovering in mid-flight: these characteristics could
be very useful for bio-pesticide distribution or pruning operations.

Within the PRIN research project, the aim is to exploit 3D point cloud maps
of vineyards, collected by survey campaigns carried out with a fixed-wing UAV,
for the aims explored in [14], in [15] and [16]. In particular, these maps will be
processed to obtain their simplified version to be uploaded on board of the drones
for real-time navigation within the vineyard rows, without losing canopy geometry.
In fact, the limited computation resources on vehicles and the complexity of the
scenario discourages on-line simultaneous localization and mapping procedure.

In this thesis, the same 3D point cloud maps have been used for generating
3D virtual scenarios. In their turn, these scenarios have been used to generate
trajectories. The point cloud maps have been processed with a series of software
tools to obtain a virtual product to be loaded into the selected simulator. The
generation of these 3D scenarios is described in Chapter 3.

On the other hand, the main objective of this thesis has been the exploration of
the potentialities of the selected commercial off-the-shelf (COTS) autopilot board,
the Pixhwak 4, for the implementation and testing of advanced control algorithms
for controlling multi-rotors in precision agriculture operations, exploiting a Model-
Based Design approach, and test them on a trajectory generated from 3D virtual
scenario.

During these kinds of operations, to ensure a safe flight between vineyard
rows, it is mandatory to provide optimal and efficient guidance, navigation and
control (GNC) capabilities to the UAVs. To this end, flyable GNC schemes shall
be implemented on board of the UAV autopilot to guarantee high efficiency and
manoeuvrability.

The literature on control design for multi-rotors is vast and is mainly based on
proportional-integrative-derivative (PID) controllers, thanks to their reliability and
ease of implementation. Examples that exploit this technology are available in [17],
[18], [19] and many others.

Even if these kinds of controllers are versatile and have a low-cost development
process, the trajectory between vineyard row is often characterized by limited
room for manoeuvring and sharp turns. Even if these features are manageable by

4

Technologies for UAV operations in precision agriculture

well-tuned PID controllers (an example of PID tuning for this purpose is shown
in Chapter 4), they are not flexible enough to deal with rapid changes in the
reference signal due to collision avoidance alerts, wind disturbances and spraying
reaction effects. In other words, the design of the control strategy has to guarantee
the fulfillment of mission, system and safety requirements despite the presence of
external and internal disturbances.

For this reason, advanced controllers are gaining attraction for their employment
on board of UAVs in precision agriculture operations: Model Predictive Control
(MPC) [20], Linear Quadratic Regulator (LQR) [21], Sliding Mode Control (SMC)
[22] are only few examples of advanced control algorithms that, nowadays, are a
subject of study in academic research for the aforesaid field of application.

These techniques imply a great amount of computational workload just to keep
attitude and position under control while following the flight path: understanding
if the Pixhawk 4 autopilot board could handle these complex control algorithms,
exploiting a familiar development environment, such as MATLAB/Simulink, has
been the main driving motivation of this work. In fact, assessing this possibility on
a so widespread autopilot could have a big impact, in terms of cost and time spent
for the design, on the final platform development.

During the course of the work, a non-negligible focus has been put on the
automatic code generation: in fact, this feature of the Model-Based Design paradigm
is crucial to pull down the development time, as stated in [23]. Because of this,
the LQR controller, chosen for being implemented on the selected board, has been
cross-compiled and run using the Mathworks Embedded Coder Support Package
for PX4 autopilots. Then, Processor-In-the-Loop (PIL) trials have been executed
tracking the trajectory generated thanks to a simple scenario, derived from actual
3D point cloud maps of the location chosen for flight testing.

Details about the selected hardware and the Model-Based Design process used
in this project can be found in Chapter 1 and Chapter 2; the results achieved in
trajectory generation, visualization and simulation of the quad-rotor flight between
grapevine rows are reported in Chapter 4. Chapter 5, on the other hand, contains
some reflections on the work carried out and future developments.

5

Chapter 1

System Selection and
Description

1.1 Requirements and selection
The initial requirements for this project depended essentially on the final application:
in fact, a precision agriculture multi-rotor that has to fly automatically between
vineyard rows. This needs to implement sophisticated flight control algorithms
that imply a great amount of computational workload just to keep attitude and
position under control while following the flight path.

This trajectory is often characterized by steep slopes, limited room for manoeu-
vring and sharp turns. At the same time, the control algorithm has to be flexible
enough to deal with rapid changes in the reference signal due to collision avoidance
alerts, wind disturbances and eventual reaction effects of spraying or other activities.
Moreover, the agricultural environment needs robust machines that can operate
at a wide air temperature range, into various conditions of sunshine and with the
necessity of simple maintenance. In addition, the cost of the development and the
production of the system have to be kept as low as possible to comply with the
market rules.

Taking into account all of these considerations, the system and the development
environment selection was essentially lead by the following prerequisites:

• use of a commercial off-the-shelf (COTS) autopilot hardware with a reasonable
computational capability;

• software stack capability to adapt to diverse airframe (in fact, a great advantage
would be using the same autopilot not only for a multi-rotor vehicle but for
all the robotic platforms employed in the same scenario);

7

System Selection and Description

• use of Model-Based Design with automatic code generation for the development
process to expedite the prototyping phase.

After an evaluation of various autopilot models (a good summary of the available
options can be found in [24]), the Pixhawk 4 was chosen for the project; in addition,
to comply with the third prerequisite, the Mathworks Embedded Coder Support
Package for PX4 autopilots (now integrated in the UAV toolbox from the 2020b
MATLAB release) was chosen, to exploit also the background already held with
use of the MATLAB/Simulink suite, against other possible development suites and
software stacks, such as ArduPilot [25].

The decision was made also analyzing the interesting results achieved in [17],
[22] and [26]. In particular, [17] uses the Pixhawk Pilot Support Package [27] for
implementing customized flight control algorithms over a quadrotor platform, giving
a good starting point for the purposes of this thesis. More than that [22] uses the
same approach for implementing a Sliding Mode Control (SMC) algorithm, giving
sufficient assurance that the Pixhawk autopilot board could handle computational
complexity of advanced control algorithms.

In conclusion, [26] is an example of a Pixhawk autopilot board interfaced with
a spraying system for plant protection, one of the final field of application of the
entire project.

1.2 Autopilot hardware and software

1.2.1 Pixhawk 4 autopilot board
Pixhawk is an independent open-hardware project providing low-cost autopilot
hardware designs to the academic, hobby and industrial communities.

Its history began in 2008 in ETH Zurich as master thesis project and, nowadays, it
is a widespread open-source full-scale solution, reusable and standardized, together
with the PX4 flight stack. Pixhawk has become a functional alternative for
professional and economic implementation of flight control algorithms [28].

This autopilot board has reached a level in which coding an advanced task does
not require to know in depth how to design an autopilot itself, but, for implementing
automatic control solutions, an average knowledge of control theory and high-level
programming (such as, for example, C++, Java, Python programming languages)
is sufficient [25].

The Pixhawk project creates open hardware designs in the form of schematics,
which define a set of components (CPU, sensors, etc.) and their connections/pin
mappings. Latest standard can be found in [30]. These schematics and reference
designs are licensed under CC BY-SA 3: this allows to use, sell, share, modify and

8

System Selection and Description

Figure 1.1: Pixhawk 4 autopilot board [29].

build on the files in almost any way providing credit/attribution and sharing any
changes made under the same open source license.

Each design is named using the designation FMUvX (Flight Management Unit
Version X): higher FMU numbers indicate that the board is more recent, but may
not indicate increased capabilities. The FMUv5 is the latest version produced and
the one used in the Pixhawk 4: the main feature, already introduced with the
v4-PRO version, is the integration of the I/O processor on the same board of the
main CPU; it has also more RAM compared to the previous versions.

Boards based on the same design are "binary compatible": it means that they
can run the same firmware, the software tied to the board contained in non-volatile
memory [31].

The Pixhawk 4 is the latest update to the family of Pixhawk flight controllers.
It is optimized to run the full Dronecode stack and the latest PX4 firmware is
pre-installed. It comprises advanced processor technology from STMicroelectronics,
sensor technology from Bosch and InvenSense and a NuttX real-time operating
system, delivering good performance, flexibility and reliability for controlling
autonomous vehicles.

Figure 1.1 represents the Pixhawk 4 board. All the ports needed for connecting
the board to the actual drone, batteries and sensors are visible on the front face:

9

System Selection and Description

Figure 1.2: Pixhawk FMU and I/O responsibilities [29].

in particular, there are two power supply ports for redundancy, ports used for
telemetry, Controller Area Network (CAN) bus port and Inter-Integrated Circuit
(I2C) bus ports for connecting additional sensors. In particular, two I2C bus ports
are grouped with serial ports for GPS/compass modules. At the bottom of the
board, an SD card slot can be used to store startup scripts and log flight data. On
the side of the board, the micro Universal Serial Bus (USB) 2.0 port is present:
that is the interface for connecting the board to the development computer, deeply
involved in Processor-in-the loop (PIL) simulation, described in Section 2.5.

The USB 2.0 ("High-Speed" USB) has a 125 microseconds time base called a
"microframe": a "microframe" can contain several transactions and their maximum
number may vary with specific system implementation details. In addition, also
transaction data payloads can be modified on the basis of application requirements.
More information about USB 2.0 can be found in [32], while specific details about
NuttX implementation for Pixhawk 4 autopilot board can be found in the next
Section.

10

System Selection and Description

As already mentioned, Pixhawk 4 autopilot is equipped with two CPU: the
main FMU processor (a STM32F765 32 Bit Arm Cortex-M7, 216MHz, 2MB flash
memory, 512KB RAM) is the one that runs most of the applications and collect
sensors data while the IO processor (a STM32F100 32 Bit 32 Bit Arm Cortex-M3,
24MHz, 8KB SRAM) is mainly delegated to take over the main FMU in case
of failure via a dedicated safety switch that passes control to the manual radio-
command. The same switch can be used for taking manual control of the vehicle
intentionally.

This can be easily seen in Figure 1.2, where the upstream data connections to
both processors and the downstream servo control connections to Pulse Width
Modulation (PWM) signals, directed to the motors, are represented [33].

Specifically, main FMU Processor has a clock period of approximately 4.62 ns
(derived from 216 MHz), 2 MB of flash memory and 512KB of RAM: taking just
these specifications into consideration, it is possible to affirm in broad terms that
this autopilot board has enough computational resources to support customized
algorithms and models with a moderate level of complexity.

1.2.2 NuttX operating system
NuttX is a real-time operating system (RTOS) with an emphasis on UNIX standards
compliance and small memory footprint. Its goal is to provide most standard oper-
ating system interfaces to support a rich, multi-threaded development environment
for deeply embedded processors. Figure 1.3 shows how the NuttX operating system
interfaces with other components of the autopilot board taken into consideration
in this work: the architecture is very similar to a personal computer where loaded
and running applications interact with the hardware (processors and sensors) via
standard system calls, provided by the RTOS. The approach selected by NuttX is
intended to support greater scalability from the very tiny to moderate embedded
platform.

NuttX documentation extensively underlines the importance of the compliance
to the standards: users can think about NuttX like a tiny work-alike Linux OS with
a much reduced feature set but supporting also, for example, the Executable and
Linkable Format (ELF), the standard Linux binary format for compiling customized
applications.

NuttX offers a well-developed multithread capability (tasks and threads try to
emulate standard Unix processes and threads) and it is "fully preemptible": a task
or a thread can be interrupted by the operating system at any time to achieve a
strict priority scheduling.

Regarding the I/O, NuttX has its own implementation for managing ports:
specifically, as of interest for this work, the implementation regarding the USB
serial port is contained in stm32_otgfshost.c source code file.

11

System Selection and Description

Figure 1.3: Pixhawk software layers [17].

Figure 1.4: NuttShell console view opened from QGroundStation and connected
to Pixhawk 4 autopilot board.

It is interesting to observe that the STM32_MAX_PACKET_SIZE variable, indi-
cating the maximum size of a USB transaction payload, has a default setting of 64
bytes: referring to tables presented in the USB documentation [32], it means that
every USB micro-frame (that can be composed on its turn by many transactions, see
Section 1.2.1) can contain a maximum of 4672 bytes of useful data (approximately
equivalent to a one-way transfer data rate of 37 MB/s).

NuttX is also provided by a lightweight, bash-like shell with a rich feature

12

System Selection and Description

set for basic user interaction called NuttShell (NSH). It supports a rich set of
included commands, scripting and the ability to run applications as “built-in”. NSH
is implemented as an application, part of a library called nshlib. Like other
components, NSH is completely optional and can be disabled: in this case, at
startup, NuttX directly loads a given task instead of the main NSH application
(this is the case of px4_simulink_app module, see Section 1.3 for details).

When NuttX is installed on a Pixhawk board, NuttShell can be accessed via
serial connection setting the correct baud rate (57600) and using a terminal emulator
(for example PuTTY, TerraTerm or the NSH console provided with many ground
station software such as QGroundControl, as depicted in Figure 1.4). Some useful
commands, relating to the PX4 environment, can be found in [27].

All these features make NuttX an useful interface and knowing how it works is
a good starting point to understand the environment where an autopilot software
stack functions.

For more information regarding NuttX, refer to [34].

1.2.3 uORB middleware
An autopilot system is a multi-task/multi-thread environment where the appli-
cations are divided in modules that have to coordinate many operations with
each other. For this reason, in this kind of environment, it is necessary an inter-
task/inter-thread communication mean to achieve the required synchronization.

Figure 1.5: uORB publish/subscribe asynchronous messaging API [35].

13

System Selection and Description

In 2015, the micro Object Request Broker (uORB) has been developed by the
same team who developed Pixhawk design (the original reference is [35]), exploiting
the multithreading capabability of the NuttX operating System, described in the
previous Section.

Figure 1.6: Published topics on a PX4 autopilot. From left to right the columns
represent topic name, multi-instance index, number of subscribers, publishing
frequency in Hz, number of lost messages per second (for all subscribers combined),
and queue size [29].

The uORB is an asynchronous messaging Application Programming Interface
(API) based on shared memory: the whole middleware runs in a single address
space; in this way, memory is shared between all modules.

uORB follows the one-to-many publish-subscribe design pattern: all the parte-
cipants to a communication are called "nodes" and are divided into "publishers"
(senders) and "subscribers" (receivers). A publisher willing to share information
advertises a communication channel called "topic" where it updates the data at its
own frequency.

A subscriber can subscribe to a topic and, after the subscription is established,

14

System Selection and Description

it can ask for new data at its own pace (the "polling" action) or be woken from the
thread sleep state when the new data is available.

A process can be both publisher and subscriber at the same time and it can
subscribe and publish to multiple topics. This process and the relative functions to
connect sensors and ports to applications are represented in Figure 1.5.

In Figure 1.6, it is possible to see the output of the command uorb top given
to NuttShell, running on a PX4 autopilot: it can be noticed that most of the sensor
topics have a frequency of 242 Hz, that means that a data is updated every 4.13 ms.
If this frequency is too high, there is the possibility to limit the rate with which
subscribers receive updates.

The uORB framework, combined with the task priority setup of the operating
system, gives the possibility to achieve a synchronization between nodes and
low-priority and high-priority tasks can be mixed.

In addition, uORB provides a mechanism to publish multiple independent
instances of the same topic: this is useful, for example, if the system has several
sensors of the same type.

It can be noted that using the uORB middleware, senders do not know any
information about the receivers and vice versa: in this way, the system topology is
unknown from the point of view of each module.

In conclusion, it is interesting to underline that data publication and subscriber
copy are atomic operations (achieved by a read-write lock) to guarantee the
consistency of the data. In addition, when a data is transmitted, the previous value
is replaced and all the subscribers can only receive the last written value in the
topic [29].

1.2.4 PX4 flight control software stack
PX4 is an advanced autopilot software stack, developed by a great variety of
contributors since 2011 [28]. At the time of this work, it reached the 1.11 stable
release.

PX4 is designed for UAVs, with a great focus on multirotors, but it became
enough versatile and modular to be used with many kinds of robotic platforms (the
codebase is the same for any type of vehicle). In [36], for example, PX4 is used
to control the on-the-ground path of a rover, while, a very detailed study about
the design of Autonomous Surface Vehicle (ASV) controlled over water by a PX4
autopilot, is presented in [37].

PX4 flight stack is an estimation and flight control system and it leverages on
the uORB middleware that provides internal communications between modules
and hardware integration via dedicated drivers. For external communication, PX4
uses a lightweight messaging protocol called MAVLink, specifically designed for the
drone ecosystem. This protocol gives the possibility to communicate with ground

15

System Selection and Description

stations and to integrate the flight controller board with other components, such as
companion computers, enabled cameras, proximity sensors, spraying devices etc..
When running over NuttX operating system, MAVLink can be used to connect the
board with a terminal emulator for using NuttShell.

The complete system design is "reactive": it means that all functionality is
divided into exchangeable and reusable components and communication is done by
asynchronous message passing between self-contained modules/programs (uORB
nodes that use topics to share data; for details, refer to Section 1.2.3).

The PX4 architecture allows every module to be rapidly and easily replaced,
even at runtime: this feature is very important because it gives the possibility to
modify the flight stack with the MathWorks Embedded Coder Support Package for
PX4 autopilots, the development environment described in Section 1.3 and used in
Chapter 2.

The flight stack is a collection of guidance, navigation and control algorithms.
It includes estimators for attitude and position, controllers for any kind of airframe
and mixers to traslate outputs into individual motor commands. All of them are
included in the the Estimation and Control Library (ECL).

For estimation, the Extended Kalman Filter (EKF) algorithm takes one or
more sensor inputs, combines them, and computes a vehicle state (for example,
the attitude from Inertial Measurement Unit (IMU) sensor data). The EKF has
different modes of operation for different combinations of sensor measurements. On
start-up, the filter checks for a minimum viable combination of sensors and after the
tilt, yaw and height alignment is completed, it enters a mode that provides rotation,
vertical velocity, vertical position, IMU delta angle bias and IMU delta velocity
bias estimates. This mode requires IMU data, a source of yaw (magnetometer or
external vision) and a source of height data. This minimum data set is required for
all EKF modes of operation. Then, other sensor data can then be used to estimate
additional states.

A controller is a component that takes a setpoint and a measurement or estimated
state (task/thread variable) as input. Its goal is to adjust the value of the process
variable such that it matches the setpoint. The output is a correction to eventually
reach that setpoint. For example, the position controller takes position setpoints
as inputs, the process variable is the currently estimated position and the output
is an attitude and thrust setpoint that move the UAV towards the desired position.
Default controllers implemented into the flight stack are a mix of Proportional
(P), Proportional-Integrative (PI) and Proportional-Integrative-Derivative (PID)
controllers. These kinds of controllers are common control feedback mechanisms
broadly used: they are simple and can be adapted to various systems but, for
position control of extremely dynamic system, robust solutions cannot be obtained
with PID controllers (for more details, refer to Section 2.3.1). In this direction, one
of the practical objective of this thesis has been replacing the default PX4 attitude

16

System Selection and Description

Figure 1.7: PX4 flight stack architecture [29].

17

System Selection and Description

and position controllers with a Linear Quadratic Regulator (LQR) controller.
A mixer takes force commands and translates them into individual motor

commands, while ensuring that some limits are not exceeded. This translation
is specific for a vehicle type and depends on various factors, such as the motor
arrangements with respect to the center of gravity or the rotational inertia of
the UAV. For example, pitching forward, for a multi-rotor, requires changing the
speed of motors, while, for a plane, it implies to move the elevators or the elevons.
Separating the mixer logic from the actual attitude controller greatly improves the
software stack capability to be employed on every kind of robotic platforms.

It is important to remark that each sensor driver, estimator, controller or
mixer is implemented as a module that, when running as a task, sends or receives
data publishing or subscribing a topic, exploiting the functionalities of the uORB
middleware, described in Section 1.2.3. Figure 1.8 shows an overview of the blocks
of the flight stack pipeline: it contains the full outline, from sensors, manual input
(RC) and autonomous flight control (Navigator-Position Controller-Attitude &
Rate Controller), down to the motor control (Actuators).

Figure 1.8: PX4 flight stack pipeline [29].

1.3 Development environment
1.3.1 MathWorks Embedded Coder Support Package for

PX4 Autopilots
In academic research, MATLAB/Simulink environment is frequently used as a
tool for system modeling and control design. In particular, MATLAB/Simulink
is the standard tool for exploiting model-based design approach that consists in
the development of embedded software, starting from block models. This approach
applied to UAVs development cycle is deeply described in Section 2.1.

The most interesting steps in UAV development cycle for the purposes of
this thesis are the Software-in-the-loop (SIL) and Processor-in-the-loop (PIL)
simulations: during these phases, the production code dedicated to the aerial

18

System Selection and Description

Figure 1.9: Simulink blocks that interface with PX4 modules [38].

system control and derived from the model is tested on an emulated environment
(SIL) or on the actual autopilot board (PIL), to check its robustness and to evaluate
performances and potential optimizations, before proceeding to real flight tests
(more details and applications are given in Sections 2.4 and 2.5).

To exploit this framework, in the past, there has been a great effort to give the
possibility to automatically translate algorithms developed in MATLAB/Simulink
on the Pixhawk autopilot series: the original approach can be found in [39].

Nowadays, due to the advances in automated embedded coding achieved by
MathWorks, PX4 development is able to support system models and control
algorithms, designed with a Model-Based Design approach, without the need for
the developers to be proficient in low-level programming. In concrete terms, one of
the practical objective of this thesis has been exploring the potentiality of the means
made available by the Embedded Coder Support Package for PX4 autopilots for
implementing the quad-rotor model and controller design directly on the Pixhawk
4 with automatic code generation.

The Embedded Coder Support Package for PX4 autopilots has been available
since 2018b MATLAB/Simlulink release. The package is directly derived from the
Simulink Pilot Support Package [27], used for the studies [17] and [22] taken as a
reference for this work, that in its turn, was derived from [39].

This development environment enables to access autopilot peripherals from
MATLAB/Simulink environment and generate C++ code using the PX4 software

19

System Selection and Description

stack, building and deploying algorithms while incorporating on-board sensor data.
Interfaces for the PX4 architecture components are provided by Simulink blocks
that work as inputs and outputs for the model [38].

Figure 1.10: Example of a simple attitude control built with PX4 Simulink blocks.

Using these capabilities, position controller and attitude rate controller modules
of the general PX4 architecture are replaced with user-defined algorithms: this is
possible thanks to a custom startup script, which needs to be copied on the micro-
SD card mounted on the Pixhawk (refer to Section 1.2.1 for slot details). This script,
launched just after NuttX bootstrap, disables the default Navigator and Commander
PX4 modules, substituting them with a module, called px4_simulink_app, that
acts as a "wrapper" for the generated code.

The Embedded Coder [40], leveraging on CMake builder [41], generate and
cross-compile the code from the models developed in Simulink using blocks (more
details about automatic code generation can be found in Section 2.5). This code is
then run by the module px4_simulink_app inside the PX4 software stack.

In Figure 1.9, some of the PX4 Simulink blocks are represented: in general, they
give the possibility to subscribe or publish uORB topics to retrieve sensors read
or to impose a control output (for more details about uORB middleware, refer to
1.2.3). This allows to build a model referencing directly to peripherals, sensors,
commands of the autopilot board.

For example, the Vehicle Attitude block reads the vehicle_odometry uORB
topic and outputs the attitude measurements from the Pixhawk hardware. With its
own frequency, the block representing the software module checks if a new message
is available on the vehicle_odometry topic. The block outputs the vehicle
attitude in roll, pitch and yaw angles (refer to Section 2.2, for reference systems
and model details).

These information are computed into an attitude control system that, for
following a reference signal, emits control outputs that, throught a mixer matrix,

20

System Selection and Description

are delivered to a Pulse Width Modulation (PWM) block (for more details about
PWM, refer to [33]). Attitude control system and mixer matrix need to be selected,
designed and tuned according to the particular airframe in use (refer to Section 2.3
for more details about position and attitude controllers for quad-copters).

The PWM Block configures the PWM outputs for servo motors: the block
accepts the signals from controller as input and writes those values to the selected
channels, that are topics on their turn, subscribed by motor drivers modules.

In Figure 1.10, it is depicted the interconnection between PX4 blocks and
attitude controller: this model is ready for building process and deployment on
the selected Pixhawk Series flight controller, that has to be installed on the actual
UAV for flight test. Since that actual flight testing is outside of the purposes of this
thesis, in the next chapter, the simulation potentialities of the Support Package
is explored, while the controller implementation exploiting these blocks for flight
tests is left for future works.

21

Chapter 2

Implementation and
Simulation of Customized
Quadrotor Control
Algorithms using
Model-Based Design

2.1 Model-Based Design for Unmanned Aerial
Systems

Embedded software is often the differentiating factor in a product success. Dealing
with the need to create more complex software with better quality in less time while
staying innovative and competitive, organizations seeking to manage complexity
have increasingly turned to Model-Based Design.

Model-Based Design is a model-centric approach for developing control, signal
processing, communications and other dynamic systems. Rather than relying on
physical prototypes and textual specifications, Model-Based Design uses a model
throughout development [42]. The model includes every component relevant to
system behavior algorithms, control logic, physical components and intellectual
property.

In Figure 2.1, the central role of the model is represented and the focus on it
can be found in all the phases shown. In particular:

• Research & Requirements: it is the model that encapsulates all design infor-
mation, selected system components features and application scenarios. The

23

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.1: Model-Based Design workflow [42].

requirements are modeled to ensure their consistency and accuracy and usually
the model contains more information than a text document. This leads to
decreased risk for errors of interpretation. At the same time, all the knowledge
required for the project coming from research is encapsulated into the model.

• Modeling & Simulation: model elaboration is an iterative process that uses
simulation to turn a low-fidelity system model into a high-fidelity implementa-
tion. Knowledge derived from the continuous development and improvement
of the model includes not only design specifications and details about the
system, but also product knowledge, expertise and design best practices. The
model of the entire system is simulated to investigate system performance and
component interactions, validate requirements, check the feasibility of a project
and conduct early test and verification. In simulations, design problems and
uncertainties can be investigated early, preventing problems that could emerge
only after the construction of expensive hardware prototypes.

• Rapid Prototyping: modules adopted for describing the embedded software can
be used to generate code for rapid prototyping when they reach an adequate
level of detail. Prototyping is a technique that uses simulation to validate

24

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

a design before the hardware is available. Sometimes, to fully understand
the system, it may be necessary to use a hardware prototype for experiments
and from which building the model. The knowledge acquired from these
experiments is then stored in the model and from there the virtual prototype
can be modified and updated.

• Continuous Test & Verification: test and verification are the practices of
simulating a design at every stage of development. They can be carried out in
various forms such as software/processor/hardware-in-the-loop testing (refer
to next Sections for details).

• Generation of Outputs: common outputs of the process are production code,
reports and certifications. In particular, the model can be used for production
code generation using specific tools. The automatic code generation guaran-
tees that software systems deployed in safety-critical applications, such as
aerospace or automotive field, could satisfy rigorous development and verifica-
tion standards and achieve the required certifications (an example of this kind
of certification standards is the DO-178 for aerospace software employment
[43]). Incidentally, automatic code generation have an impact into the roles of
control and software engineers, freeing them from coding algorithms by hand,
moving their focus from manual implementation to the software integration.

One of the most common methodologies used for implementing Model-Based
for development of complex systems, such as aerial systems, is the V-Model [44].
It uses essentially the same steps as the "waterfall" model [45] that is generally
acknowledged as the traditional software development flow, progressing through
requirements, design, coding, testing, and release. The difference between V-Model
and "waterfall" is that, instead of proceeding through the steps in a linear fashion,
V-Model bends upwards after the implementation (coding) phase, with the purpose
of matching each development step with a corresponding test phase.

The Figure 2.2 shows how the V-Model splits the development process into two
main phases. The left side of the V is the part of requirement analysis, function
design and change management. The right side of the V concentrates on the
main verification and validation (V&V) activities showing how they are connected
between the various activities. The difference between verification and validation
is that verification is an objective set of tests to confirm that the product meets
the metrics of the requirements, while validation seeks to demonstrate that the
product meets the original intent [46].

A key piece for V&V in the V-Model is constituted by in-the-loop simulations:

• A Model-in-the-loop simulation (MIL or standard simulation) helps to evaluate
the algorithms in a simulation environment at the beginning of the development
[48].

25

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.2: V-Model applied to a multi-rotor development [47].

• A Software-in-the-Loop (SIL) simulation compiles algorithms source code
and executes that code as a separate process on a generic computer. By
comparing SIL and standard simulation results, it is possible to test the
numerical equivalence of model and code [49].

• A Processor-in-the-loop (PIL) simulation is a test technique that allows
designers to evaluate a designed controller and its coded implementation while
running on the selected micro-controller, with the objective of measuring both
hardware and software performance. Model still runs in the development
environment while the controller only runs on the board [50].

• A Hardware-in-the-loop (HIL) is a real-time simulation in presence of hardware
and other control systems in which a dynamic simulator is replaced by the
real system. In an ideal HIL test, the system is substituted with its simulator
and other hardware and software are exactly implemented [51].

Not every step in this process is strictly necessary before moving to the actual
testing: depending on the certification requirements and the complexity of the
designed system, developers can adopt one or more of these simulation steps for
V&V.

In this thesis, the focus is mostly put on the phase of a quadrotor develompent
process regarding the implementation of already existing algorithms on the Pixhawk
4 autopilot board and on their test with in-the-loop simulations.

The suite MATLAB/Simulink has become a standard in the field of the devel-
opment of models and simulation: this suite enables to design the controllers and

26

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

algorithms that are going to be boarded in the UAV, and also model the UAV
platform for simulation purposes [47].

To embrace automatic code generation, this suite has been equipped with other
tools, such as Embedded Coder, that gives the possibility to rapidly transfer
the controller portion of the models to embedded target processors. In addition,
libraries help to customize generated code to meet compliance standards, optimize
it or integrate the new code with existing application code [40].

For the purposes of this work, the package described in Section 1.3 exploit the
Embedded Coder for automatic coding of the modules for the PX4 flight stack
(Section 1.2.4).

The same toolbox gives the possibility to test the generated code in two different
simulation frameworks: executing the code on the same host platform that is used
for the modeling environment (SIL) or flashing and running the code into the
autopilot board (PIL).

The next Sections proceed through the V-Model methodology starting from the
description of the classical quadrotor model and the control algorithms adopted,
and proceeding to the in-the-loop simulation phases with their interface with
visualization tools.

2.2 Quadrotor UAV model description
Once the mission and the system requirements have been defined, the first practical
step into the V-Model development process is to build a model as accurate as
possible of the flying machine that has to be automatically controlled.

The multi-rotor is an UAV lifted and propelled by two or more motors with
propellers, usually electrically operated. This vehicle is characterized by a simple
design where lift and torque control is delivered by varying the rotational speed of
the fixed-pitch rotors, measured in revolutions per minute (RPM) [52].

A quadrotor is a multi-rotor with four rotors with two sets of identical propellers
that are rotating in opposite direction (two propellers rotate clockwise, two counter-
clockwise). There are two possible configurations for the quadrotor design: "Plus"
configuration (“+”) and "Cross" configuration (“×”). The main difference between
the two configurations consists in the rotors position compared with the direction
of motion of the vehicle. Figure 2.3 shows the possible rotor configurations.

For the aim of this thesis, it has been chosen to model a conventional "+"
configuration quadrotor, taking into consideration the different type of design
stated in [53] and [54].

Such other 6 degrees of freedom (DOF) rigid systems, kinematics (the branch
of the mechanics that studies the motion of a body) offers the basis to identify
two reference systems and the transformations between them to understand the

27

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.3: Quadrotor configurations.

quadrotor motion.
They are shown in Figure 2.4 and described below:

• The Earth reference system, or NED-frame (oE, eN , eE, eD) is chosen as the
inertial right-hand reference. eN points toward the North, eE points toward
the West, eD points Downwards respect to the Earth and oE is the axis origin.
This frame is used to define the linear position and the angular position of the
quadrotor. This is not the only way to describe the Earth reference system
but it is the most useful for this project;

• The quadrotor reference system, or B-frame (oB, xB, yB, zB) is attached to
the body. xB points toward the quandrotor front-hand, yB points toward
the vehicle right-hand, zE points downwards and oB is the axis origin. oB is
chosen to coincide with the center of the quadrotor configuration.

As already stated, quadrotor UAV has 6 DOF but, since it is equipped with just
four propellers, it is not possible to reach a desired set-point for all the DOF at
the same time. However, thanks to its structure, it is quite easy to choose the four
best controllable variables and to achieve the four basic movements which allow
the vehicle to reach a certain height and attitude [53]. The control of each motion
is achieved by altering the rotation rate of two or more rotors, thereby changing
the torque load and thrust/lift characteristics.

The four basic movements shown in Figure 2.4 are:

28

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.4: Conventional quad-rotor reference systems and basic movements.

• Throttle: increasing or decreasing the power of all motors equally causes the
aircraft move along the zB axis.

• Roll Φ: this movement is caused by increasing the power of one lateral motor
while decreasing the power of the motor on the opposite side (e.g. increasing
motor 2 power and decreasing motor 4 power or vice versa). The rotation
generated is around the xB and causes a change in speed perpendicular respect
to the direction of the flight. The sum of the power of all motor remains equal.

• Pitch Θ: very similar to the preceding movement, it regards front and rear
motor. If the motor 1 (front) decreases its power while the motor 3 increases,
the vehicle pitch forward; vice versa, it pitches backward. The rotation
generated is around the yB axis and causes a change in speed parallel respect
to the direction of the flight. The sum of the power of the all motor remains
equal.

• Yaw Ψ: this command is provided by increasing/decreasing the power of the
motor couple 1-3 (front-rear) motor power together while decreasing/increasing
the power of couple 2-4 (left-right). Since the couples rotates in opposite
direction, this unbalance makes the quadrotor turning towards one direction
or towards the other, rotating around zB axis. A torque respect to the zB axis
is generated which makes the quadrotor to turn.

The angular speeds are the derivatives of Φ, Θ, and Ψ conventionally called p, q
and r respectively.

Reference systems, basic movements, angular speeds, forces and torques are
needed for writing of the quadrotor mathematical model (the equations of motion):

29

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

it represents a dynamical system with a 12-dimensional state and 4-dimensional
control inputs. Deriving these equations is outside the scope of this thesis but these
details can be found in [52], [53] and [54].

Incidentally, the model needs to reflect the quadrotor behaviour in different flight
phases (climb, descent, forward flight, manoeuvres, and so on). It incorporates body
motion dynamics and propulsion system aerodynamics. The propulsion system
aerodynamics modelling tasks include momentum theory, blade element theory,
ground effect, vortex ring state and windmill break state which have not been
investigated in this work.

2.3 Control algorithms
Once the model has been designed, a controller has to be engineered to proceed to
Model-in the-loop simulations, following the V-Model steps.

The control of the quadrotor position and attitude is accomplished by a controller
that can implement a wide range of control algorithms.

The quadrotor is an under-actuated system: this means that, for accomplishing
one basic movement, a quadrotor needs to vary more than one control inputs. For
example, to move forward, gaining speed along xB direction, the quadrotor must
first change its attitude by pitching downwards generating a horizontal force, while
maintaining its altitude increasing total thrust. Similarly, in order to move laterally
in the yB direction, the quad-rotor must change its attitude by rolling to the right
or left while, again, maintaining its altitude varying the total thrust [55].

For achieving this goal, the control algorithm has to find the value of the motors
voltage, which maintains the UAV in a certain position or moves it in a certain
direction required for following a reference signal. The control algorithm receives
the data from the sensors as inputs and provides the Pulse Width Modulation
(PWM) signal of the four motors as main output to vary the rotational speed of
the propellers [33].

In this project, two different control algorithm have been investigated and
implemented:

• a Proportional-Integral-Derivative (PID) control mechanism is the default
technique implemented in the PX4 flight stack described in Section 1.2.4 and
the same control algorithm has been used in Section 4.2 to fly a customized
trajectory into vineyard scenario.

• a Linear Quadratic Regulator (LQR) control is used to explore the feasibility
of the customization of the default control algorithm into the Pixhawk 4 flight
controller and to exploit the possibilities of the development environment,
described in 1.3. It has been used also for the Processor-in-the loop simulations.

30

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

2.3.1 PID controller

Proportional-Integral-Derivative (PID) controller is a common control feedback
mechanism broadly used in industrial control systems. The reasons of its success are
the simple structure, the good performance for several processes and the possibility
of tuning even without a specific model of the controlled system [56].

A PID controller estimates an "error" value as the difference between a measured
process variable and a desired set point. The controller attempts to minimize
the error by altering the process control inputs. In an attitude control system,
for example, roll, pitch and yaw angles are generally used as process variables to
acquire the desired orientation.

In the frequency domain, the transfer function of a PID controller can be
represented by equation

G(s) = KP + KI

s
+KDs

Each gain in the PID controller can be tuned to modify a particular transient
response parameter of the feedback system: in particular KP is the proportional
coefficient, KI is the integral coefficient and KD is the derivative coefficient. The
blocks 1/s and s represents the integration and derivation operations [21].

The KP value is increased to reduce the time required for the output signal to
reach the desired signal. By increasing only the KP value in the PID controller, a
steady-state error can be reduced and expected to be between the desired signal and
the output signal. In addition, setting an overly high KP value will also propagate
any inherent disturbance signal within the system and cause the system to be
affected by unstable oscillations.

The KI value is increased to eliminate the steady-state error of the feedback
system. However, the system might become increasingly oscillatory in the steady-
state when the KI value is too much increased.

The KD value is increased to reduce the overshoot and the settling time. Al-
though derivative control does not affect the steady-state error directly, it introduces
damping to the feedback system. This would allow the system to use a larger KP

value, which would result in an overall improvement of the steady-state performance.
The quad-rotor model is highly nonlinear and so parameters that work well

at some flight conditions, could not work well, for example, during the take-off
phase. For this reason, the PID tuning is a complex problem: usually an adequate
and careful tuning, such as the one applied in Section 4.2 for tracking a specified
trajectory with a quadrotor UAV, is necessary to reach the desired performance
[17].

31

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

2.3.2 LQR controller
Linear Quadratic Regulator (LQR) is an optimal control that produces a steady-
state minimum error minimizing a cost function for providing the best control
signal. Intuitively, in general, it does not exits a "universal" best control signal but
it depends on the weights given to the performance or to the actuation effort in
given conditions (and the control signal is the "best" only in these conditions).

Given a continous-time linear time invariant system state space representation

ẋ = Ax+Bu

y = Cx+Du

where all states are measurable and the feedback gain is the matrix K

u(t) = −K(xr − x)

where xr is the vector of desired states.
In order to obtain the optimal K that gives the best control signal,

J =
∫ ∞

t0
(xTQx+ uTRu)dt

represents the cost function that has to be minimized solving the LQR problem. If
the unknown elements of the matrix K are determined minimizing the cost function
J , then u(t) is optimal for any initial state x0.

The matrices Q and R determine the relative importance of the error (perfor-
mance) and the expenditure of this energy (actuation effort) [57].

Matrix Q weights the size of state responses: it is diagonal positive definite and
have the same number rows and columns as the states. Increasing values in a Q
diagonal element reflects into a lower error in the corresponding state. Vice versa
low values means that the error in the corresponding states are not so significant
to achieve the best performance.

Matrix R is similar to Q and weights the control: if an element of this matrix is
large, then the control action of the corresponding input will be penalized, reducing
its energy expenditure.

In general, it is possible to state that a trade-off thumb rule could be putting
more energy (lower value of the corresponding R element) where a lower error is
needed (higher value of the corresponding Q element).

After tuning R and Q and solving the Riccati equation of the LQR problem,
(for more mathematical details refer to [57]), it is possible to derive the optimal
matrix K that controls each state of the system individually.

In MATLAB, the function lqr(A,B,Q,R) solves the continuous-time, linear,
quadratic regulator problem and the associated Riccati equation. This command
calculates the optimal feedback gain matrix K given the matrices A, B, Q and R.

32

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

In conclusion, it is worth to underline that in order to use a LQR controller for
a non-linear system such as the quadrotor, the vehicle model must be linearized
about a certain operating point. For a very clear example of quadrotor system
linearization, refer to [58].

2.4 Software-in-the-loop simulation
As stated in Section 2.1, simulation tools are required because of increasing com-
plexity in algorithms and their software implementation for embedded systems
; "in-the-loop" simulations are known as prominent tools before realistic tests of
the system and are used for verification and validation of automation and control
software [51].

Figure 2.5: SIL Simulator implemented using the Embedded Coder Support
Package for PX4 autopilots.

A SIL simulation compiles source code and executes the code as a separate
process on a generic computer. In this way, developed embedded software is tested
and then rapidly evaluated and debugged.

SIL does not strictly require automatic code generation. After developing code
from the model, it can be compiled with traditional compilers and then tested:
manual coding of complex control algorithms, even in high level programming
language such as C++, is a time-consuming and an error-prone activity.

33

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

The MATLAB code generation tools are capable of generating embedded C/C++
code optimized for specific hardware directly from MATLAB codes and Simulink
models [59]. Specifically, Embedded Coder provides SIL automation which converts
MATLAB projects to executables and also generates the SIL infrastructure for
interfacing with MATLAB. Then, it verifies if the generated C/C++ code is correct
and it profiles run-time performance [49]. The process for code generation is similar
for both Software and Processor-in-the-loop simulations, so for more details about
it refer to Section 2.5.

The Embedded Coder Support Package for PX4 Autopilots, described in Section
1.3, provides the option to simulate developed PX4 autopilot algorithms with SIL.
The Support Package supports simulation of algorithms by generating an executable
referred as PX4 Host Target on the host and jMAVSim simulator. PX4 Host Target
is an emulated board that supports code generation and deployment, like other
supported hardware boards: it has to be selected in the hardware setup phase of the
configuration (specifically it has to be selected posix_sitl_default.cmake for
the CMake configuration, refer to Appendix A for details). During the simulation,
it is possible to perform signal monitoring and parameter tuning of the model.

In [29], it is stated that jMAVSim is a simple quadrotor simulator that allows to
fly this type of vehicles, running PX4 in a simulated world. During the hardware
setup of the development environment, this simulator is downloaded and installed.

For the purposes of this work, model and controller described in Section 2.2
and Section 2.3.2 have been included in a SIL simulator derived from a template
available in the development environment. The complete model derived in this way
is represented in Figure 2.5.

Exploring the functionalities of the template and of jMAVsim simulator, it
results that they do not guarantee enough flexibility to test the performance of a
UAV in a complex scenario, such as operations for precision agriculture.

In Figure 2.6 is shown the jMavSim 3D environment: in particular, in this
simulator, customized 3D scenario cannot be loaded and, in addition, there is no
easy way to integrate extra sensors or obstacles in the simulation, so there is no
possibility of simulating a visual inspection or other types of complex operations
[61]. Moreover, loading customized quadrotor CAD models in jMAVsim is not
straightforward and also the the customization of the dynamycs used is problematic.
In addition, the documentation, that can be retrieved in [60], is pretty poor.

Once assessed the potentialities of the SIL simulation in this development
environment and decided that they were not suitable for the final scope of this
thesis, the work moved towards PIL simulations as described in the following
Section.

34

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.6: jMavSim PX4 Simulator [60].

2.5 Processor-in-the-loop simulation
PIL test environment is an intermediate step between the software simulation and
the flight experiments: this step is very important in critical software development
such as GNC systems that are going to be boarded in an autopilot, to prevent
errors and delays, derived from the execution of the production code, before the
flight tests.

In fact, once the GNC algorithms are designed and tested in simulation and the
integration framework is developed, it is important to validate the software in the
target hardware in order to verify the implemented algorithm behavior.

In particular, during PIL testing, it is possible to detect failures that have
not been detected in the standard simulation or in the SIL simulation, such as
synchronization and timing issues.

In this thesis, taken into the consideration the results obtained with PIL simula-
tions in [62], it has been explored the framework described in Section 1.3.

Specifically, the objective was to cross-compile the model of the LQR controller
described in Section 2.3.2 and make it run on the Pixhawk 4 to control the quadrotor,
while tracking a trajectory designed between vineyard rows (see Section 4.1 for
trajectory generation details). Hence, PIL simulations have been performed to

35

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

validate the effectiveness of the proposed controller scheme and the computational
capability of the board.

For performing these kinds of PIL simulations, the development environment
makes available a "wrapper model" that allows to integrate in it both the dynamic
model and the controller. In Figure 2.5, it can be noticed how the blocks are
interconnected: after placing the developed model and controller blocks, it is
possible to proceed for generating the code of the LQR. A scope is present in order
to test numerical equivalence by comparing standard simulation results against
PIL simulation results.

Figure 2.7: PIL "wrapper" used to cross-compile the controller and to assess
its performance by comparing with standard simulation. Flight Gear interface is
described in Section 2.6.

As preparation for code generation, the quadrotor dynamic model and the
controller have been adjusted to satisfy the requirements of the Embedded Coder
and the design specification of the PX4 autopilot software: these requirements
comprise discretizing the models according to the sample time, configuring the
hardware implementation and setting the code style customization options.

When the models are ready for code generation, other parameters have to be
set to determine how the code has to be built. Configuration parameters, in fact,
determine the method that the code generator uses to produce the code and its
format. These parameters can be chosen manually or automatically, in order to
maximize the selected pre-defined code generation performance objectives, such as
traceability [64], execution efficiency [65] or safety precaution [66]. For pursuing
one objective or the other, execution speed, CPU throughput and memory usage
need to be traded off as required [40].

All the configuration parameters are stored in the ert.tlc file, the Embedded
Real-Time system target file. A system target file is a collection of scripts, written

36

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.8: PIL simulation process overview [63].

in an interpreted language, that explains how the model has to be converted into
source code. This file has to be interpreted by the Target Language Compiler to
transform the representation of the Simulink model file into target-specific code.
For more information about TLC, refer to [67].

In Figure 2.8 is illustrated the steps executed when a PIL simulation starts
in Simulink: the model is translated and the Embedded Coder creates a build
folder within the working folder, where the generated source code files are stored.
In this case, the build folder name is Controller_ert_rtw, derived from the
chosen subsystem block name. Here, the target file that calls (with the include
directive) other target files used for the compiling application is called the "entry
point". Another folder, called slprj is created for the code that could be shared
among multiple models [40].

Directions to ert.tlc and to all the source code files are stored in the
buildInfo.mat. Starting from this file, it is now possible to generate a .mk

37

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

makefile, using the expected toolchain, in this case the Windows Cygwin toolchain,
containing also the GNU tools for PX4 autopilots, installed during the support
package setup (refer to Appendix A for details). A makefile consists in one or
more commands for making up the project with CMake, that is an extensible,
open-source system that manages the build process in an operating system and in
a compiler-independent manner [41].

Following the instructions contained in the makefile and the list of source
code files provided in CMakeLists.txt, CMake is used to invoke the ARM-
GCC compiler for building the application that will have to run on the autopilot
board. When the command make is performed, CMake generates a native build
environment that compiles source code, creates libraries and builds executables.
The excutable object code is then downloaded to the Pixhawk autopilot board to
be run.

The module that runs the newly generated code is px4_simulink_app, the
application started during Pixhawk booting process that substitutes the default
flight control modules of the PX4 firmware (for more details, refer to Section 1.3).

Figure 2.9: PIL simulation: the quadrotor dynamic model is running on the
personal computer while the controller is running on the Pixhawk 4 autopilot
board.

38

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

The "wrapper" model running in the generic computer communicates with the
Pixhawk board through a micro USB 2.0 serial port: in Figure 2.9, it can be seen
how the autopilot is connected and how a running PIL simulation looks like. The
interface program interprets and forwards the USB microframes between the model
simulator and the autopilot hardware to accomplish the transmission of the flight
state data and flight control actuator commands for regulating the thrust of each
simulated rotor and acquiring the indicated reference signal (see details about USB
communication in Sections 1.2.1 and 1.2.2).

After downloading the controller code into the autopilot board for PIL simula-
tion,px4_simulink_app_task_main function contained in the ert_main.cpp
source code file is the first being executed by px4_simulink_app module: this
function initializes the NuttX OS running instance with a "tick-rate" of 1 ms,
passing this parameter to the function nuttxRTOSInit. The so-called "tick" can
be considered as the time given to hardware to update the state of the controlled
vehicle. Incidentally, since most of sensor topics send updates every approximately
4 ms (see Section 1.2.3 for details about "topics"), choosing a smaller "tick rate"
for simulation purposes would not add realism to the simulation, but it just could
introduce delays caused by the USB serial communication. The complete code
listing of ert_main.cpp source code file is reported in Appendix A.

While performing PIL simulations, in fact, Simulink prevents the user to reduce
the sample time under the threshold of 1 ms: in this way, communication delays
between the PC and the board do not affect the simulation process. In Figure 2.10,
it is shown the simulation exception, caused by a wrong choice in sample time.

Figure 2.10: Default NuttX "tick rate" threshold for PX4 PIL simulations.

If simulations provide satisfactory results, a similar procedure can be adopted
to generate and flash the stand-alone controller into the autopilot board for flight
tests, using the Simulink blocks described in Section 1.3.

Results of the simulations performed while tracking a designed trajectory using a
cross-compiled controller on the Pixhawk 4 autopilot board are reported in Section
4.3.

In conclusion, a step-by-step guide for realizing a PIL simulator as described in
this section is reported in Appendix A.

39

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

2.6 Flight Gear simulator interface
Commercial flight simulator software, such as those described in [61], are adopted
in academic research as flight dynamic modeler as they are equipped with accurate
flight models and detailed 3D visual effects.

As stated in the introductory part of this thesis, basic visualization of the
quadrotor performance has not been the only objective pursued in the project: in
fact, a lot of effort has been put to use the virtual scenarios, derived from the actual
location selected for the flight testing operations and loaded in flight simulators,
for generating feasible trajectories and assess the behaviour of a multi-rotor UAV
in these contexts.

Figure 2.11: FlightGear interface implemented in Simulink and connected to the
PIL simulator represented in Figure 2.7.

To carry out this objective, the first attempt has been made with the FlightGear
MATLAB/Simulink interface. This choice has been made on the base of the results
obtained in [68].

FlightGear is an open-source flight simulator available through a GNU General
Public License (GPL). The goal of the FlightGear developers has been creating
a sophisticated and open flight simulation framework dedicated to research or
academic environments, pilot training, as an industry engineering tool but, at the
same time, to amateurs as a challenging desktop flight simulator [69].

A FlightGear interface is included within the Aerospace Blockset for MAT-
LAB/Simulink [70]. The interface consists in a unidirectional transmission link that
exploits the FlightGear net_fdm binary data exchange protocol: in particular,
data packets are transmitted via User Datagram Protocol (UDP) from the simulated
model to a running instance of FlightGear. Figure 2.12 shows the implementation
of the FlightGear interface in Simulink, connected to the PIL simulator described
in the preceding Section. It is possible to notice the input data needed to the
simulator block to visualize the flight dynamics.

40

Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design

Figure 2.12: Quadrotor PIL simulation in FightGear.

For performing simulation in FlightGear, a quadrotor CAD model available in
[29], called FlightGear-TF-Mx1, has been loaded and used to visualize the flight
dynamics already implemented. In Figure 2.12 it can be seen the quadrotor UAV
in stationary flight conditions over the area selected for the flight tests (described
in Section 3.3).

It is possible to notice that, even if the flight dynamics is well represented,
environment scenarios are not detailed: in particular, the vegetation is almost
absent and the grape plantations are not present. Moreover, it is not possible
to understand precisely the slope of the terrain. In conclusion, this visualization
tool is not suitable to design precise trajectories into a well-defined scenario, as
requested for the project.

For this reason, it has been decided to move to another simulation environment
for realizing a virtual environment where it could be possible to test different
trajectory tracking control technologies: in this way, efforts have been made to
bring Simulink 3D Animation [71] in the development loop. This simulation
environment is deeply described in Section 3.6.

41

Chapter 3

Development of 3D
Simulation Scenarios from
LIDAR Point Cloud Maps

3.1 Virtual scenarios for trajectory tracking de-
sign and visualization

After the studies carried out on the simulation framework for implementing advanced
control techniques on a commercial autopilot board, the focus of this thesis has
been moved on how to exploit the 3D point cloud maps, collected by Laser Imaging,
Detection And Ranging (LIDAR) survey campaigns, for generating 3D virtual
scenarios.

The point cloud map exploited for this scope has been originally processed
for the works illustrated in [15] and [72]. In particular, in [72], 3D point clouds
of vineyards are used to generate low-complexity 3D mesh models, reducing the
the amount of data contained in the cloud, without losing relevant crop shape
information. These models will have their final use as an accurate space description
to be loaded in robotic vehicles and machines for their in-field precision agriculture
operations [13].

In this project, the point cloud has been processed to become a virtual scenario
for simulation of trajectory tracking for a quadrotor UAV flight: a series of software
tools (ConverGo [73], CloudCompare [74], Meshlab [75], MATLAB), well described
in the following Sections, have been used to obtain a virtual product to be loaded
into the selected simulator, Simulink 3D Animation [71].

Figure B.1 shows the overview of the process steps followed for realizing the
virtual scenario. In general, after the conversion from World Geodetic System-1984

43

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.1: 3D scenario development overview.

(WGS84) to a local reference frame, the point cloud has been split with a binary
classification algorithm in two other clouds, identified as "vineyard" and "soil". This
operation has two objectives: reducing the points density of "soil" cloud for pulling
down the data size to handle and building a continuous mesh without the holes
caused by the shaded areas under the grape canopies. The following Sections are
walking through this process explaining taken decisions, exploited algorithms and
used software tools for pursuing the purpose. All the practical details for repeating
the achieved results are reported in Appendix B.

3.2 LIDAR technology
Since the invention of the laser in the 1960s, scientists and engineers have been
using this technology to image, detect and find ranges to objects. In fact, already
at the time of the Apollo 15 lunar mission in 1971, astronauts used a laser system
to map the surface of the Moon. This type of implementation is known as Laser
Imaging, Detection And Ranging (LIDAR).

LIDAR is implemented by using pulsed or modulated laser beams and laser
detectors to determine precise distances to objects. The laser pulses are split outside
the laser output: one beam is directed to the receiving components (typically a

44

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

telescope with photon counting detectors) while the other portion is directed onward
to a distant object. Using the split beam as a time reference, the reflected beam
return time is compared and the difference between them will be twice the time
required for the light to travel from the origin to the object. Accordingly, it is
trivial to calculate the distance [76]. A graphical example of this process can be
seen in Figure 3.2.

The LIDAR receiver will see returned light from particles in the air, multiple
objects along the way and background. The various return times are used to map
the various distances to objects and therefore a 3D map can be generated of the
scanned area. The laser beam travels in a straight line and therefore it can be used
to place points accurately on a single plane [76].

Figure 3.2: LIDAR used to detect the unknown distance of an object [76].

LIDAR systems are often installed on aerial, terrestrial or underwater vehicles
for collecting accurate data: distance measurements are then associated to precise
GPS positions to give them a standard reference system (normally WGS-84); often,
these data are associated also to IMU system to combine also the orientation
information and scan angles. Results are dense groups of elevation points, called
“point cloud maps” that can be used to generate other geospatial products [77].

LIDARs usually operate at a monochromatic wavelength but, nowadays, multi-
spectral LIDAR sensors have been developed. These sensors have the possibility to
acquire data at different wavelengths and so diversity of spectral reflectance from
objects can be recorded to show the color information.

Airborne LIDARs (installed on a manned or unmanned aircraft) are divided

45

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

into topological LIDAR and bathymetric LIDAR: their main difference is about the
wavelength of the light beam used. Interesting applications exist in oceanography
for knowing the exact depth of the surface of the sea or for locating objects, in the
case of a maritime accident or research activities [78].

In conclusion, LIDAR systems allow scientists and mapping professionals to
examine both natural and manmade environments with accuracy, precision, and
flexibility.

3.3 Point cloud map description
As already stated, data used for this project comes from LIDAR survey campaigns
realized for the studies [15] and [72]. In particular, the selected vineyard is located
in Serralunga d’Alba (Piedmont, Northwest of Italy). This piece of land includes
three contiguous parcels and several partial ones, cultivated with grapevine and
covering a total surface of about 2.5 ha.

The area is located at longitude positions range [44.62334 44.62539] and latitude
position range [7.99855 8.00250] (WGS84); the elevation ranges from 330 to 420 m
above sea level. A loamy soil and a steep slope (ranging from 8 to 30%) characterise
the vineyard, which is exposed towards the south-east direction (ranging from 120°
to 160°) with the vine rows perpendicular to the maximum slope gradient. Due
to the irregularity of the vineyard terrain morphology in terms of altitude, soil
features and inclination, the plantation vigour usually varies within and between
parcels. A partial picture of the described area can be seen in Figure 3.3.

Figure 3.3: Picture of detail of Cerretta Vineyard in Serralunga d’Alba (Piedmont)
[courtesy Az. Agr. Germano Ettore].

46

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

The point-cloud map was generated with the Agisoft PhotoScan software, by
processing a set of more than a thousand aerial images acquired with an airborne
Parrot Sequoia multispectral camera. Agisoft Photoscan is a stand-alone software
product that performs photogrammetric processing of 2D raw digital images and
generates 3D point cloud and other spatial data to be used in many applications such
as cultural heritage documentation, visual effects production, precision agriculture
as well as indirect measurements of objects of various scales [79].

The data collection took place at the end of June, with presence of about 1 cm
diameter green grapes.

3.4 Point cloud map processing and classifica-
tion

A LIDAR point cloud map is a set of points, each one represented by an array
of WGS84 latitude, longitude and elevation coordinates: most of the open-source
processing software tools can only recognize local metric Cartesian reference (LRF)
systems and cannot interpret the point clouds in WGS84 reference system.

Moreover, point clouds are saved in .las format files: usually, the size of these
files is approximately 500MB per ha of scanned land and they are not readable
with a common CAD software and are not directly loadable into a flight simulation
environment.

For the conversion between the reference systems, the tool used in this work
is the ConveRgo software, an open-source platform able to perform coordinate
transformations between the various frames in which the geographical data are
expressed, also considering the respective cartographic systems. The altimetric
component is also considered for the conversions between ellipsoidal and geoidic
heights [73]. A very useful guide for using this software can be found in [80].

The ConveRgo conversion is very accurate but during the process the color
information cannot be preserved. In Figure 3.4, the all-white Cerretta vineyard
point cloud map can be seen after the conversion from WGS84 to LRF: this point
cloud is composed by almost 31 million points and has a size of 1.15 GB, once
converted in .txt format for the processing.

After the conversion step, the main tool exploited for visualizing and classifying
the point cloud map is the CloudCompare software.

CloudCompare is a 3D point cloud editing and processing software. Originally, it
has been designed to perform direct comparison between dense 3D point clouds. It
relies on a specific octree structure that have good performances when performing
this kind of task.

CloudCompare can deal with point clouds of great dimensions on a standard
laptop, typically more than 10 million points. It also includes various point

47

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.4: Cerretta vineyard point cloud map visualized in CloudCompare.

48

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.5: Optimal hyperplane separating two linearly separable classes.

cloud processing algorithms like resampling (SPATIAL [81]), color/normal vec-
tors/scalar fields management (smoothing, gradient evaluation, statistics, etc.),
statistics computation (χ2-squared Test [82]), interactive or automatic segmenta-
tion (Connected-component labeling [83]) as well as display enhancement tools. In
academic research, CloudCompare has already been used in the analysis of vineyard
point clouds captured with terrestrial sensors in [84]. An interesting overview of
the potentialities of this open-source software can be found in [85] while all the
functions are deeply explained in its user manual [74].

The first processing step on the LRF point cloud consisted in identifying if points
were part of canopies or soil and then separating the two sets of points. Identifying
and separating these points are not simple operations, taking into consideration
only the LRF point position information.

For this reason, a binary classifier, called Caractérisation de NUages di POints
(CANUPO), has been exploited as a plugin software of CloudCompare to perform
the classification.

This tool has been explicitly designed for 3D point clouds classification of
complex natural environments: it works directly on point clouds and it is largely

49

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.6: "Soil" class example.

Figure 3.7: "Vineyard" class example.

insensitive to shadow effects or changes in point density. Moreover, it allows some
degree of variability and heterogeneity in the selected class and it is coded to handle
large point cloud datasets [86].

The approach used by CANUPO strongly rely on Support Vector Machines
(SVM) : a support-vector machine is a linear model for classification that constructs
a hyperplane for separating classes, maximizing the distance (or the "margin")
between each other. The hyperplane for which the margin is maximum is the
optimal hyperplane [87]. In the Figure 3.5, an optimal hyperplane is shown while
separating two linearly separable classes.

50

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

If two classes are not linearly separable, the idea is to add one or more dimensions
to find a dimensional space where the classes are easily separable and then project
the decision boundary found in the original space [88].

Figure 3.8: Visual representation of the high dimensional space where points are
clearly separated in two classes.

In CANUPO, multi-scale dimensionality feature is used to describe the local
geometry of a point in the scene and how it can characterize simple elementary
environment features (ground and vegetation). The general idea is to define the
best combination of scales that allows the maximum separability of classes: the
strength of this method is that a reliable classification is based uniquely on the
3D geometrical properties of the elements on multiple scales, allowing for example,
recognition of the vegetation on complex scenes with very high accuracy [86].

In practice, the user could have an intuitive sense of the range of scales at which
the categories will be the most geometrically different, but in many cases, because
of natural variability in shape and size of objects, this is not a trivial exercise.
CANUPO solves this issue giving the possibility to automatically construct a
classifier that finds the best combination of scales (e.g. all scales contribute to
the final classification but with different weights); this combination maximizes the
separability of two categories that the user has previously manually defined (e.g.
samples of vegetation and samples of ground segmented from the point cloud).

In the case of Cerretta Vineyard point cloud (Figure 3.4), the best examples of
classes were defined by manual segmentation of "vineyard" and "soil" samples: this
selection allows to have good results in classifying the canopies, accepting the fact

51

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.9: CANUPO point classification applied to the data set.

Figure 3.10: Classified point cloud portion selected for building the virtual
scenario.

that other type of vegetation could not have been recognized by the classifier (for
example, the wood portion of the scenario). In Figure 3.6 and in Figure 3.7, the
two classes examples selected for the classification of the entire point cloud map
are shown.

The "soil" class sample is composed by two strips of ground (approximately 20
meters long) located in between the vineyard rows and with a small difference
in height among each other. The "vineyard" class sample is a vineyard row
approximately with a lenght the same as the previous example and approximately

52

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

70 cm wide. This last sample has been expressly chosen because the density of the
points and the absence of shade effects in the lower part of the canopies.

Once the samples have been loaded in CANUPO, a "trial & error" approach
have been used to find a good combination of the parameters requested by the
classifier training: it has been found that a minimum scale of 0.1 to a maximum
scale of 3.0 with a number of 10000 core points were enough to guarantee a good
separability.

Figure 3.8 shows the cloud points relating to the Cerretta vineyard in the
dimensional space where a linear hyperplane can guarantee a clear separability
between classes: the "soil" class points (in blue color) are separated from the
"vineyard" class points (in red color). An optimal hyperplane (in magenta color),
automatically calculated by CANUPO, divides the two classes.

In Figure 3.9, the effects of the CANUPO SVM classification algorithm applied
to the entire vineyard are represented: in the figure, "soil" classified points are
colored in white while "vineyard" classified points are colored in green. It can be
noticed that the algorithm does not work really well in the part of cloud where
undefined vegetation (like wood) appears: depending on the need of the project,
this part could be cut or another classifier could be built for separating the cloud
portion in more different classes iteratively.

For building the initial virtual scenario, it has been decided to ignore the portion
of the cloud not well classified after the first step of the CANUPO classification
process and to select a small portion of the vineyard: this portion is shown in
Figure 3.10 and it is composed by seven vineyard rows approximately 29 meters
long, interspersed by a free soil gap approximately 1.2 meters wide on each side.

The entire portion has a width of approximately 19 meters covering an area
of approximately 580 square meters with an average topographic slope of approx-
imately 30% in the direction perpendicular to the rows, that means an altitude
change of 7 meters from lowest to the highest point.

3.5 3D mesh generation
The reconstruction of precise surfaces from point clouds is a fundamental step for
building a virtual 3D scene. In fact, generation of polygonal meshes, that can satisfy
high modeling and visualization demands, is required in different applications like
video-games, movies, virtual reality applications, flight simulation, etc..

An overview of methods and techniques for modeling and visualization of 3D
scenes is provided in [89]. Historically, the first algorithm introduced in this field
has been the computation of the "convex hull" to generate a shape from a finite
point set [90].

Starting from the portion of the vineyard point cloud shown in Figure 3.10, two

53

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

approaches for generating a shape have been tried and compared: the alpha-shape
generation algorithm [91], implemented in the MATLAB suite, and the ball-pivoting
algorithm [92], used in Meshlab software.

The alphashape function in MATLAB is based on the alpha-shape generation
algorithm: it is a generalization of the "convex hull" approach where, given a finite
set of points, a family of shapes can be derived from the Delaunay triangulation
of the point set. The Delaunay triangulation maximizes the minimum angle of
all the angles of the triangles in the triangulation process: it tends to avoid the
construction of slivers, triangles with extremely acute angles. The real parameter
α controls the desired level of detail. The construction of the shape graph proceeds
in the following way: for each point in our point set, a vertex is created; then an
edge is created between two vertices whenever there exists a generalized disk of
radius 1/α containing the entire point set and which has the property that the two
vertices lie on its boundary [91].

Indeed, the ball-pivoting algorithm is based on the fact that three points form a
triangle, if a ball of a user-specified radius touches them without containing any
other point. Starting with a seed triangle, the ball pivots around an edge until
it touches another point, forming another triangle. The process continues until
all reachable edges have been tried, and then starts from another seed triangle,
until all points have been considered [92]. This algorithm has been implemented
in Meshlab, an open source, extensible, mesh processing system developed at the
Visual Computing Lab of the Institute for Information Science and Technologies
(ISTI-CNR) of Pisa (Italy). MeshLab is a tool focused on mesh processing, instead
of mesh editing and mesh design, and it is described as a mesh viewer application,
where a 3D object, stored in a variety of formats can be loaded and interactively
inspected, dragging and clicking on the mesh itself [75].

Figure 3.11: AlphaShape mesh construction intermediate result over a selected
vineyard portion with α = 0.7 (processed and visualized in MATLAB).

54

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.12: AlphaShape mesh construction over a selected vineyard portion
with α = 0.1 (processed in MATLAB, exported and visualized in Meshlab).

Figure 3.13: Ball-pivoting mesh construction over selected vineyard portion
(processed and visualized in Meshlab).

55

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

In Figure 3.12, it is shown the application of the alphashape function to the
portion of the vineyard point cloud to obtain a triangular mesh: it can be noticed
that varying the α parameter, the level of detail increases, but if the α becomes
too small, holes formed in the portion of soil in the shadow below the vineyard
row, where the algorithm is unable to conclude the triangulation with the precision
applied to the canopies or to the free soil. In Figure 3.11, the visualization of an
intermediate result with α=0.7 is shown: this is a case where the AlphaShape
algorithm is able to close the holes but the level of detail is poor.

Similar results in mesh generation were found using the ball-pivoting algorithm
in Meshlab, that are shown in Figure 3.13: in particular, it has been found that
Meshlab ball-pivoting algorithm gives results comparable to AlphaShape algorithm
with α = 0.1 (vertices and faces produced are almost the same number in both
cases).

To solve the issue about the holes in the soil portion, keeping an appropriate
level of detail for the canopies, it has been exploited the CANUPO classification
described in Section 3.4: in particular, mesh generation algorithms have been
separately applied to the two point clouds, coming from the binary classification.
In this way, it has been possible to take advantage of a sub-sampling process of
the "soil" point cloud in order to build a continous mesh of the ground, closing the
holes.

In Figure 3.14, it can be noticed the successful results of the triangulation
process over a sub-sampled "soil" point cloud. Then, after building the "vineyard"
mesh with the original level of detail, it has been possible to recompose the scenario
using a graphic editor (in this case Blender [93]).

In conclusion, the recomposed mesh in .stl format has been loaded into
Simulink 3D Animation as explained in the next Section.

3.6 Scenario loading into Simulink 3D Anima-
tion simulation environment

Simulink 3D Animation is a MATLAB/Simulink tool for visualizing dynamic system
behavior in a virtual reality environment. This simulation tool links developed
models and algorithms to 3D graphics objects in virtual reality scenes. It gives
the possibility to animate a virtual world during simulation. Collisions and other
events can also be simulated in the virtual world and forwarded back into the
running models. This tool gives also the possibility to stream video from virtual
cameras for processing, debugging or demonstration purposes [71]. An example on
how to proceed for simulating dynamic systems with Simulink 3D Animation can
be found in [94].

56

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.14: Ball-pivoting mesh construction over a subsampled soil portion.

This simulation environment includes editors and viewers for rendering and
interacting with virtual scenes: 3D World Editor can, for example, import CAD
and 3D mesh file formats (such as .stl or .ply) and the 3D worlds can be viewed
immersively using stereoscopic vision.

For virtual scenarios, Simulink 3D Animation supports Virtual Reality Model
Language (VRML) file format. VRML .wrl format is one of the most common
3D interactive navigation language that allows to create 3D scenes. It is an ISO
standard format for representing 3D models. VRML gives the possibility to store
different viewpoints that allow to navigate through the 3D model.

As already stated, the mesh recomposition has been carried out into Blender
graphic environment, a tool that gives the possibility to easily interact with the 3D
meshes [93].

Blender and Simulink 3D Animation use different reference systems: in particular,
attention must be paid about the reference frame while exporting the .stl file
regarding the scenario.

After exporting the mesh in the correct reference frame, it is possible to load it
into a .wrl scene: the separation of the in two different meshes, "vineyard" and
"soil", if kept unaltered, helps to choose different colors to identify the portions of
the scenario.

Figure 3.15 shows the results of the virtual scenario construction process, de-
rived from a real piece of land of Cerretta Vineyard, loaded into the simulation
environment.

57

Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps

Figure 3.15: Re-assembled "vineyard" and "soil" meshes building the 3D vineyard
scenario in Simulink 3D Animation.

58

Chapter 4

Results

4.1 Trajectory and reference signals generation
Vineyards on steep slope hills represent a high-complexity environment for automa-
tion development. Here, the aim has been to discover if the 3D scenarios, developed
as described in Chapter 3, could be a useful tool for designing trajectories and
visualize their tracking performed by UAVs: the designed trajectory has been used
to asses the performance of a PID controller and as a testbed for the Processor-in-
the-loop simulations of the LQR controller cross-compiled on Pixhawk 4 autopilot
board.

Figure 4.1: Scenario loaded in Simulink 3D Animation aligned to NED reference
system

The 3D vineyard scenario has been loaded into an already existing quadrotor
project template, developed by Mathworks [95] and already interfaced with Simulink
3d Animation: this choice was made to speed up the learning process about the
simulation environment, concentrating the efforts on the control tuning and the
evaluation of Simulink 3D Animation as visualization tool.

59

Results

To ease trajectory design and reference signals generation, a simplification has
been made: the vineyard rows have been aligned with the North-East-Down (NED)
reference system of the simulator, neglecting the real orientation of the portion of
soil in WGS84 (for details about reference systems, refer to Section 2.2 and Section
3.4). In particular, the rows have been aligned with eE axis (East direction), leaving
in this way the eN axis (North direction) perpendicular to them. In this way, it has
been also exploited the fact that the altitude change in the selected soil portion
only occurs along the eN axis. Figure 4.1 shows the generated scenario aligned
with NED reference system.

Taken into consideration the measures of the selected portion of land, reported
at the end of Section 3.4, and NED coordinates (the lower left-hand corner of the
loaded scenario is placed at North=30.6 East=32.7), it became possible to estimate
the way-points and the total distance that the quadrotor needed to cover during
the flight.

Figure 4.2: Way-points placing and trajectory building on a modified version of
the asbTrajectoryTool, provided in the Mathworks Quadcopter Project,

60

Results

Figure 4.3: Trajectory depicted on the scenario

The lower left-hand corner has been also the starting position from where a
square pattern between the vineyard rows been designed: the resultant trajectory
keeps a constant altitude in sections parallel to the eE axis, while the necessary
climbs are made only in sections parallel to eN axis. A final continuous descent
has been designed from the higher left-hand corner back to the starting point for
landing.

To visualize the pattern on the scenario, the asbTrajectoryTool, provided
with the Quadcopter Project has been used, customizing the code relating to the
altitude change. In Figure 4.2, the built trajectory is shown on the tool user
interface while Figure 4.3 shows the pattern visualized between the vineyard rows
of the scenario.

Reference signal inputs for tracking the trajectory has been sent to the quadrotor
using a cmdData.mat file, selecting one of the options provided in the original
project: this file is a time series containing a sequence of NED positions, starting
from the initial location of the quadrotor, coupled with "yaw" angles and time
increments of 50 ms.

This time series has been generated with a dedicated MATLAB script: to simplify
its construction, it has been useful to choose the quadrotor starting orientation
with the xB axis of the UAV aligned with the eN axis. In this way, the derivation of
the movements of the quadrotor has been simplified because the position variations
never happened on eN axis and eE axis at the same time.

61

Results

NED positions and "yaw" angles time sequences are the only reference signals
required in this implementation: other Euler angles and total thrust for achieving
the desired positions along the pattern are controlled by the flight controller
described and tuned in the next Section.

4.2 PID tuning for quadrotor operation in 3D
vineyard scenario

Figure 4.4: Quadcopter project flight controller.

The Quadcopter project uses a quadrotor model based on the Parrot series mini-
drones, that implements various combination of proportional-integrtive-derivative
(PID) modules for the flight controller (for details about PID controllers refer to
Section 2.3.1).

In Figure 4.4, the block scheme of the Quadcopter project flight controller is
shown and the control blocks are described below:

• Yaw: the "yaw" control block takes as input the "yaw" reference signal and
"yaw" estimated state and gives as output the "yaw" command as a result of
PD control;

• XY Position: the "XY position" control block takes as input the NED position
reference signal and the "yaw" estimated state from the "yaw" control block,
and gives as outputs the pitch and roll reference signals as a result of a P
control for position and a D control for velocity;

• Attitude: the "attitude" control block takes as inputs the pitch and roll
reference signals, outputs of the "XY position" control block and their estimated
states, and gives as outputs "pitch" and "roll" commands as a results of a PID
control for "pitch" and one for "roll";

62

Results

• Altitude: the "altitude" control block takes as inputs the height reference
signal and the estimated state and gives as output the total thrust command
as a result of a P control for position and a D control for velocity.

Figure 4.5: Intermediate tuning results obtained modifying the Attitude Controller
parameters only.

Figure 4.6: Tuning results obtained modifying both the Attitude Controller and
XY Position Controller parameters.

63

Results

Figure 4.7: Visualization of the quadrotor flying the designed trajectory.

The tuning process started from the default values and fixing an horizontal
speed of 1 meter per second along the all trajectory: with these settings, after
the first 90° turn to the right, the quadrotor becomes unstable on the "pitch" and
"roll" axis. The choice made for correcting this issue was to focus initially on the
Attitude PID control, trying to find the best combination of its parameters leaving
unaltered the others. In Figure 4.5, the best results achieved with the following
parameters for the Attitude Controller are shown:

• Pitch: P=0.04293 I=0.0101 D=0.009761

• Roll: P=0.04133 I=0.0101 D=0.009529

With these settings, even if at the end of the fourth leg (West direction) the
quadrotor departed from the planned trajectory, the attitude oscillations were
limited and some turns were gained, before loosing control.

Considering these as the best values found and keeping them fixed, the tuning
process moved to the XY Position controller. It is necessary to decrease both
values, regarding respectively position and velocity, to make the quadrotor flying
the planned trajectory with a good approximation:

• X: P=-0.03 dx: D= 0.035

• Y: P= 0.03 dy: D=-0.035

In general, decreasing the values in the XY Position controller allows more time
for the attitude controller to absorb the perturbations and achieve the reference
without any loss of control of the vehicle.

64

Results

In Figure 4.6, The final trajectory tracking results are shown:

• "North" coordinate: it can be noticed that the steady state error in this
coordinate slightly increases as the flight proceed: in this case, this error can
be accepted but a correction it would become necessary if more rows are added
to the path;

• "East" coordinate: after the turns, a small delay in the re-acquisition of the
reference has to be accepted in order to not put under too much pressure the
attitude controllers;

• Altitude: reference signal is well tracked even during the uphill turns, where
many changes of motor powers are carried out simultaneously;

• Roll: it can be noticed that the perturbations on are essentially caused by the
sharp right-angles bends, made in conjunction with the total thrust increment
necessary for the climbs. The PID controller reacts well on re-acquiring the
reference signals with a maximum runaway value of the command equal to
approximately 2 degrees;

• Pitch: also here the perturbations happen during the turns and the behaviour
is similar to the previous axis with the oscillations put under control, with a
maximum runaway value of the command equal to approximately 4 degrees.
The slight difference between the reference signal and the actual pitch command
is due to the pitch-down attitude necessary to keep the forward speed of 1
m/s;

• Yaw: following the yaw signal during sharp turns is the action that mostly
causes the perturbations on "roll" and "pitch" axis, together with total thrust
increment for altitude change. It could be possible to relax the constraint
relative to the two broken turns around the end of the row and make a long
continuous turn as a simplification, but that was not adopted in order to look
for the finest tuning values of the "roll" and "pitch" controllers.

In Figure 4.7, it is possible to see the visualization of the quadrotor flying the
designed trajectory: in particular, it is shown a stretch of straight-in level flight
between the vineyard rows and a right-angled left turn performed while climbing.
On the other hand, in conclusion, Figure 4.8 shows the entire trajectory and the
path flown by the quadrotor.

65

Results

Figure 4.8: Path flown by the quadrotor controlled by PID controllers, tracking
the trajectory designed starting from the 3D vineyard scenario.

4.3 LQR PIL simulations results tracking vine-
yard scenario-generated trajectory

As the very last step of this project, the simulation framework developed in Chapter
2 has been tested on the trajectory generated thanks to the scenario developed in
Chapter 3. The main goal is not only to analyze the effectiveness of the proposed
control scheme tracking the designed trajectory, but also verifying if the cross-
compilation generates delays or compatibility problems on the Pixhawk 4 autpilot,
described in detail in Chapter 1.

After tuning the LQR controller and fixing a horizontal speed of 2 meters per
second along the all pattern, two different simulations have been performed, one
as PIL simulation and one as standard simulation, exploiting the same setting
parameters and comparing the results by numerical difference (for details about
PIL simulations refer to Section 2.5).

Figure 4.9 and figure 4.10 represent the main outputs obtained respectively
during PIL testing and standard simulation. It is possible to observe the complete
adherence among PIL and standard simulation results, thus highlighting the
reliability of the simulation environment and the effectiveness of the control scheme.
The same result can be visualized also in Figure 4.11 where the numerical difference
between PIL simulation and standard simulation is shown always equal to zero
along all control channels.

66

Results

Figure 4.9: LQR PIL simulation results.

Figure 4.10: LQR standard simulation results.

Moreover, it is observable that the disturbances caused by the sharp turns are
not implying any loss of control on the "pitch" and "roll" axis. This behaviour is
demonstrated by the fact that the UAV always remains within reasonable limits
from the reference of the designed pattern. This is also widely demonstrated in
Figure 4.12, where the 3D PIL trajectory tracking is shown.

67

Results

Figure 4.11: Pitch - Roll - Yaw - Total thrust numerical difference between LQR
PIL simulation and LQR standard simulation.

Figure 4.12: LQR PIL trajectory tracking.

68

Results

Since the matrix K is calculated offline using a MATLAB function for resolving
the Riccati Equation with the selected Q and R matrices (see Section 2.3.2 for
details), the main task delegated to the hardware remains to compute the matrix
multiplication between K and the matrix resulting from the difference between the
actual state and the desired state.

The code generation of a matrix multiplication like this case is well optimized in
the process and when the autopilot board executes the code, it does not generate
any delay.

As already stated in Section 2.5, a "tick-rate" of 1 millisecond is a lot of time
to perform operations for a 216MHz CPU (considering also a round-trip time for
USB data transfer of 250 microseconds) and to stress it out we would need a lot
more complex control algorithm respect to the LQR, taken into consideration in
this work. This is just a general consideration: to deeply understand the actual
performance of the generated code, it would be necessary to perform a rigorous
code verification and profiling, as described in [96], but this is left for future works.

69

Chapter 5

Conclusions and Future
Works

5.1 Conclusions

Aim of this project was to assess the potentialities of the Embedded Coder Support
Package for PX4 autopilots for implementing customized control algorithms over the
Pixhawk 4 autopilot board. It is possible to say that this purpose has been achieved:
it was demonstrated that the development environment gives the possibility to
cross-compile an LQR controller with automatic code generation for controlling a
conventional model of quadrotor along a generated trajectory, obtaining results
comparable with a standard simulation.

Unfortunately, this is not a "free meal": in fact, even if the effort on code writing
and testing is highly reduced, understanding how an automatic code generator (such
as the Embedded Coder) works and setting all its requested parameters requires
a non-negligible learning curve and expenditure of time and resources. Moreover,
replacing the standard modules in the PX4 stack with the px4_simulink_app,
necessary step for using the development environment still causes incompatibility is-
sues with mission planning software (such as QGroundControl), making difficult the
use of them for Hardware-in-the-loop simulations, inside the current potentialities
of the support package.

Second objective of the project was realizing useful virtual scenarios from LIDAR
point cloud map: even if Simulink 3D Animation is not a simple tool to understand
and customize, the process found for processing the point cloud is general and can
be applied also to other fields where a 3D mesh is necessary.

71

Conclusions and Future Works

5.2 Future works
As future works, a lot has to be done exploiting the selected hardware and many
ideas were born during the work:

• implementing a more complex and advanced controller, such as Model Predic-
tive Control (MPC) techniques presented in [20] and [97], to understand if this
kind of algorithms can be used for tracking trajectories between vineyard rows,
also modeling flight disturbances and performing a rigorous code profiling as
described in [96];

• interfacing Simulink 3D Animation with the PIL framework, as done with
FlightGear simulator, to exploit the illustrated visualization tool also for this
kind of simulations, introducing also collision detection;

• removing the simplifications introduced loading the scenario into the simulation
environment while considering bigger land portions and generating more
complicated trajectories (also using automatic approaches, such as the one
that has to be presented in [98]);

• finding a solution for performing HIL simulations (that are still not directly
supported in the Support Package) and/or moving to flight tests, cross-
compiling the selected controller using the PX4 Simulink blocks described in
Section 1.3.

72

Appendix A

Guide for Implementing a
Pixhawk 4
Processor-in-the-loop
Simulator

This Guide has the aim to list and describe all the steps required to use the
Embedded Coder Support Package for PX 4 autopilots in order to perform Processor-
in-the-loop simulations, exploiting a Pixhawk 4 autopilot board. As described in
Section 2.5, this type of simulations wants to exploit the real hardware in order to
test advanced control algorithms on the Pixhawk 4 autopilot board.

The main reference of this guide is the MathWorks documentation, available in
[38] and [40]. Internal references are Chapter 1 and Sections 2.1, 2.4 and 2.5.

This guide is based on MATLAB/Simulink 2020a release running on Windows
10 operating system: it is possible to adapt the listed steps also for Linux distri-
butions but it not recommended to use any kind of OS virtualization tools (e.g.
VirtualBox, VMware, etc.) because it causes too much overhead with the hardware
communication and it can invalidate the obtained results.

A.1 Package installation and hardware setup
1. During the MATLAB setup process or, if already installed, using the Add-on

Manager, download and install the following required packages:

• Simulink;
• Embedded Coder;

73

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

• MATLAB Coder;
• Simulink Coder;
• Aerospace Blockset,

2. At the end of the installation process, it is requested to down-
load and install the Mingw-w64, the GCC compiler support for
Windows [99]. For reference, the compiler can be retrieved
at https://www.mathworks.com/matlabcentral/fileexchange/
52848-matlab-support-for-mingw-w64-c-c-compiler.

3. Open MATLAB/Simulink and begin the installation process of the Embedded
Coder Support Package for PX4 autopilots from the Add-on Manager.

4. Follow the installation instructions. Be sure to proceed with the
setup of the required Windows Cygwin Toolchain version 0.5. If
during the setup, the step is skipped, the toolchain can be re-
trieved at https://www.mathworks.com/help/supportpkg/px4/
ug/setup-cygwin-toolchain.html. For more information about sup-
ported toolchains, refer to https://dev.px4.io/v1.8.0/en/setup/
dev_env_windows.html#other-windows-toolchains.

5. At the end of the installation process, clone the PX4 Firmware version 1.8.0
in the same location where the toolchain has been installed: this operation
can be done selecting the correct option at the end of the process or directly
from https://github.com/PX4/Firmware/tree/v1.8.0 . It is rec-
ommended to install the toolchain and clone the firmware at the default path
C:\px4_cygwin .

6. During board selection, choose "Pixhawk 4" and the
nuttx_px5fmu-v4_default.cmake CMake configuration. If it is
needed to perform SIL tests without using any board, select PX4 Host Target
and posix_sitl_default.cmake as CMake configuration. PX4 Host
Target is, in fact, the emulated board for performing SIL simulations (refer to
Section 2.4 for more details). For advanced users, there is the possibility to
select a customized Cmake configuration. Once the choice is made, build the
firmware by clicking on the button "Build".

7. Connect the Pixhwak 4 autopilot board to the development computer via the
USB serial port.

8. Begin the hardware setup process. The process can be started from the setup
option, looking for the support package from the Matlab Add-on Manager, or
from the Simulink "Hardware" tab->"Hardware Board"->"Setup Hardware".

74

https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c-compiler
https://www.mathworks.com/matlabcentral/fileexchange/52848-matlab-support-for-mingw-w64-c-c-compiler
https://www.mathworks.com/help/supportpkg/px4/ug/setup-cygwin-toolchain.html
https://www.mathworks.com/help/supportpkg/px4/ug/setup-cygwin-toolchain.html
https://dev.px4.io/v1.8.0/en/setup/dev_env_windows.html#other-windows-toolchains
https://dev.px4.io/v1.8.0/en/setup/dev_env_windows.html#other-windows-toolchains
https://github.com/PX4/Firmware/tree/v1.8.0
C:\px4_cygwin

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

9. Select the installed Cygwin Toolchain and verify its setup. After that, veryfy
the cloned PX4 firmware by clicking the appropriate button (make sure to
indicate the correct location of the firmware, the default is C:\px4_cygwin).

10. Select the option "Design Flight Controller Algorithm in Simulink" in the
"Select Application" screen.

11. For the hardware setup of the Pixhawk 4 autopilot board, it is requested
to copy the rc.txt startup script into the /etc SD-card directory of the
Pixhawk 4 hardware board. To perform this action, it is necessary to extract
the SD card from the Pixhawk and plug it into the development computer
via card reader (embedded or external), because it not directly accessible
from the board. Specifically, deploying a customized flight control systems on
the board, requires to suppress the execution of some default processes (in
particular the Navigator and the Commander modules, refer to Section 1.3 for
details). This is achieved with this start-up script: changing its contents, it is
possible to choose which flight software modules have to be run or not. After
the selection, the script starts the px4_simulink_app, "wrapper" module
for executing applications generated by Simulink. Addtitional details about
the system startup can be found at https://dev.px4.io/master/en/
concept/system_startup.html.
The script can be found at the path C:\ProgramData\MATLAB\
SupportPackages\R2020a\toolbox\target\supportpackages\
px4\lib\etc. The code of the script is also reported below for reference
and example:

1 #Copyright 2020 The MathWorks , Inc .
2

3 # This i s the custom rc . txt which loads px4_simulink_app on
4 #star t −up
5 us l e ep 1000
6 uorb s t a r t
7 us l e ep 1000
8 tone_alarm s t a r t
9 us l e ep 1000

10 px4io s t a r t
11 #gps s t a r t −f #Sta r t s GPS d r i v e r and Fake a GPS s i g n a l
12 #(u s e f u l f o r t e s t i n g)
13 us l e ep 1000
14 sh / e t c / i n i t . d/ rc . s e n so r s
15 us l e ep 1000
16 #Uncomment the below 2 l i n e s to use LPE est imator
17 #att itude_est imator_q s t a r t
18 #loca l_pos i t i on_es t imato r s t a r t

75

C:\px4_cygwin
https://dev.px4.io/master/en/concept/system_startup.html
https://dev.px4.io/master/en/concept/system_startup.html
C:\ProgramData\MATLAB\SupportPackages\R2020a\toolbox\target\supportpackages\px4\lib\etc
C:\ProgramData\MATLAB\SupportPackages\R2020a\toolbox\target\supportpackages\px4\lib\etc
C:\ProgramData\MATLAB\SupportPackages\R2020a\toolbox\target\supportpackages\px4\lib\etc

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

19 #Using EKF2 es t imator by d e f a u l t as PX4 does bu i ld LPE on
20 #px4fmu−v2 due to a l i m i t e d f l a s h .
21 ek f2 s t a r t
22 us l e ep 1000
23 mtd s t a r t
24 s e t PARAM_FILE / f s /mtd_params
25 param s e l e c t $PARAM_FILE
26 us l e ep 1000
27 param load
28 us l e ep 1000
29 rgb led s t a r t
30 us l e ep 1000
31 fmu mode_pwm #This i s r equ i r ed f o r AUX PWM channe l s
32 us l e ep 1000
33 px4_simulink_app s t a r t
34 #e x i t #30−Jan−2020

12. As the last step of the hardware setup, choose the USB COM port of the
development computer for firmware upload and flash it into the board (the
default selection should be the port where the board is already connected).
During the process, the message shown in Figure A.1 could appear: to solve
the issue unplug and plug the USB connector on the Pixhawk side of the cable
to re-establish the two-way communication. The operation has success if the
FMU LEDs light up: if this does not happen, repeat operation, taking care to
unplug the USB connector from the Pixhawk side. In case of success, at the
end of the process, it will be possible to visualize Pixhawk accelerometer data.

Figure A.1: USB communication error between computer and Pixhawk.

A.2 Processor-in-the loop simulation of a deployed
controller subsystem

To design and simulate the flight control, the first step is to realize a Model-in-
the-loop simulator as a test-bench model. It can be realized with any preferred
methodology or following the template shown in Figure A.2, provided by the
Support Package.

76

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

Figure A.2: PX4 Attitude Control scheme template.

After the flight control system has been successfully simulated (with the aid of a
MATLAB script for the initialization of variables in the the workspace), simulator
subsystems can be moved in the Processor-in-the loop model to generate code
for the Pixhawk hardware. the initial Model-in-the-loop realization is out of the
scope of this guide but, for reference and example, in Figure A.3 are reported the
realizations of both quadrotor plant and controller, used in this project.

Figure A.3: Examples of quadrotor plant and controller.

Since the controller has to be cross-compiled, it is recommended
to design it with blocks supported for code generation. More infor-
mation about block compatibility and S-functions can be retrieved at
https://it.mathworks.com/help/releases/R2020b/ecoder/ug/
supported-products-and-block-usage.html and https://it.
mathworks.com/help/rtw/ug/s-functions-and-code-generation.
html .

77

https://it.mathworks.com/help/releases/R2020b/ecoder/ug/supported-products-and-block-usage.html
https://it.mathworks.com/help/releases/R2020b/ecoder/ug/supported-products-and-block-usage.html
https://it.mathworks.com/help/rtw/ug/s-functions-and-code-generation.html
https://it.mathworks.com/help/rtw/ug/s-functions-and-code-generation.html
https://it.mathworks.com/help/rtw/ug/s-functions-and-code-generation.html

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

After having implemented the Model-the-loop simulator, follow the following
steps to realize a Processor-in-the-loop simulator:

1. Open the PIL Block model px4demo_pil_block.slx, avail-
able in the Support Package, that can be retrieved at the path
C:\ProgramData\MATLAB\SupportPackages\R2020a\toolbox\
target\supportpackages\px4. The template is shown in Figure A.4.

Figure A.4: PX4 PIL Block template.

2. Modify "Plant" and "Controller" blocks with own subsystems, already part
of the Model-in-the-loop simulator. It is possible to customize the necessary
outputs for the project. After moving the subsystem blocks, make a first
simulation trial to check if everything works in the same way of the Model-in-
the-loop simulator.

3. Open the "Hardware" tab and click on the "Hardware settings" button to open
"Configuration Parameters" window. This window is essential for configuring
all the parameters for code generation: here it is indicated the minimum
configuration but it is possible to customize more parameters depending on
the project needs. Select the following settings:

• Select "Hardware Implementation" -> "Target Hardware Resources" ->
"PIL". Select the hardware board serial port and enter the value of the

78

C:\ProgramData\MATLAB\SupportPackages\R2020a\toolbox\target\supportpackages\px4
C:\ProgramData\MATLAB\SupportPackages\R2020a\toolbox\target\supportpackages\px4

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

host serial port. The default value should be the USB COM port already
used for firmware upload, during the hardware setup.

• Select "Code Generation" -> "Verification" -> "Advanced parameters" and
choose PIL.

4. Go back to the model and right-click on the "Controller" subsystem and
select "Deploy this Subsystem to Hardware". Creating a PIL block out of the
Controller subsystem is the fundamental step for cross-compiling the controller
subsystem for the execution on the hardware board. This selection is shown
in Figure A.5.

Figure A.5: Deploy subsystem to hardware selection.

5. In the next window (shown in Figure A.6), it is possible to choose tunable
parameters: in this case, since the matrix K for the LQR controller was
calculated offline, it has been chosen to make tunable the sample time. Before
beginning the build process, be sure to connect the autopilot board to the
computer and to choose a determined folder as MATLAB workspace (do not
use Windows Desktop). For more details about managing and understanding
the complex hierarchy of build folders, refer to https://it.mathworks.
com/help/rtw/ug/build-process-folders-.html.

79

https://it.mathworks.com/help/rtw/ug/build-process-folders-.html
https://it.mathworks.com/help/rtw/ug/build-process-folders-.html

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

Figure A.6: LQR controller build window.

6. After the selection, click on the "Build" button to begin the code generation
of the controller. If the build process is successful, the diagnostic messages
in the listing below and another window with the generated PIL block are
automatically shown up.

1 ### Sta r t i ng bu i ld procedure f o r : C o n t r o l l e r
2 Removing old px4_simulink_app d i r e c t o r y : C: \ px4_cywin\home\

Firmware\ s r c \modules\px4_simulink_app .
3 Build path : C: \ Users \ l a z za \Desktop\ Contro l ler_ert_rtw
4 ### S u c c e s s f u l complet ion o f bu i ld procedure f o r : C o n t r o l l e r
5 ### Creat ing PIL block . . .
6 ### Connect iv i ty c o n f i g u r a t i o n f o r "C: \ Users \ l a z za \Desktop\

Contro l ler_ert_rtw " : PX4 Autop i lot ###
7 ### COM port : COM3
8 ### Baud ra t e : 3000000
9 Bui ld ing with 'MinGW64 Compiler (C) ' .

10 MEX completed s u c c e s s f u l l y .
11 Build p roce s s completed s u c c e s s f u l l y

80

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

7. The code of the generated ert_main.cpp is reported below for reference
and example:

1 // F i l e : ert_main . cpp
2 //
3 // Code generated f o r Simulink model ' C o n t r o l l e r ' .
4 //
5 // Model v e r s i on : 1 .263
6 // Simulink Coder ve r s i on : 9 . 3 (R2020a) 18−Nov−2019
7 // C/C++ source code generated on : Tue Nov 24 18 : 04 : 22 2020
8 //
9 // Target s e l e c t i o n : e r t . t l c

10 // Embedded hardware s e l e c t i o n : ARM Compatible−>ARM Cortex
11 // Code gene ra t i on o b j e c t i v e s : Unspec i f i ed
12 // Va l idat ion r e s u l t : Not run
13 //
14 #inc lude <s t d i o . h>
15 #inc lude <s t d l i b . h>
16 #inc lude " C on t r o l l e r . h "
17 #inc lude " Cont ro l l e r_pr iva t e . h "
18 #inc lude " rtwtypes . h "
19 #inc lude " l i m i t s . h "
20 #inc lude "MW_PX4_TaskControl . h "
21 #inc lude " n u t t x i n i t i a l i z e . h "
22 #d e f i n e UNUSED(x) x = x
23 #d e f i n e NAMELEN 16
24

25 // Function prototype d e c l a r a t i o n
26 void exitFcn (i n t s i g) ;
27 void ∗ terminateTask (void ∗ arg) ;
28 void ∗baseRateTask (void ∗ arg) ;
29 void ∗ subrateTask (void ∗ arg) ;
30 v o l a t i l e boolean_T stopRequested = f a l s e ;
31 v o l a t i l e boolean_T runModel = true ;
32 sem_t stopSem ;
33 sem_t baserateTaskSem ;
34 pthread_t schedulerThread ;
35 pthread_t baseRateThread ;
36 void ∗ threadJo inStatus ;
37 i n t terminat ingmodel = 0 ;
38 void ∗baseRateTask (void ∗ arg)
39 {
40 runModel = (rtmGetErrorStatus (rtM) == (NULL)) ;
41 whi le (runModel) {
42 sem_wait(&baserateTaskSem) ;
43 s tep () ;
44

45 // Get model outputs here

81

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

46 stopRequested = ! ((rtmGetErrorStatus (rtM) == (NULL))) ;
47 runModel = ! stopRequested ;
48 }
49

50 runModel = 0 ;
51 terminateTask (arg) ;
52 pthread_exit ((void ∗) 0) ;
53 re turn NULL;
54 }
55

56 void exitFcn (i n t s i g)
57 {
58 UNUSED(s i g) ;
59 rtmSetErrorStatus (rtM , " stopping the model ") ;
60 }
61

62 void ∗ terminateTask (void ∗ arg)
63 {
64 UNUSED(arg) ;
65 terminat ingmodel = 1 ;
66

67 {
68 runModel = 0 ;
69 }
70

71 MW_PX4_Terminate() ;
72

73 // Disab le rt_OneStep () here
74 sem_post(&stopSem) ;
75 re turn NULL;
76 }
77

78 i n t px4_simulink_app_task_main (i n t argc , char ∗ argv [])
79 {
80 px4_simulink_app_control_MAVLink () ;
81 rtmSetErrorStatus (rtM , 0) ;
82

83 // I n i t i a l i z e model
84 i n i t i a l i z e () ;
85

86 // Cal l RTOS I n i t i a l i z a t i o n funct ion , pas s ing the " t i c k ra t e "
as a parameter

87 nuttxRTOSInit (0 . 001 , 0) ;
88

89 // Wait f o r stop semaphore
90 sem_wait(&stopSem) ;
91

92 #i f (MW_NUMBER_TIMER_DRIVEN_TASKS > 0)
93

82

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

94 {
95 i n t i ;
96 f o r (i =0; i < MW_NUMBER_TIMER_DRIVEN_TASKS; i++) {
97 CHECK_STATUS(sem_destroy(&timerTaskSem [i]) , 0 , " sem_destroy

") ;
98 }
99 }

100

101 #e n d i f
102

103 re turn 0 ;
104 }
105

106 //
107 // F i l e t r a i l e r f o r generated code .
108 //
109 // [EOF]
110 //

8. Place the generated PIL block where indicated in the Figure A.4 and run the
simulation from Simulation tab, making sure to have initialized the workspace
variables requested by "Plant" and "Controller" subsystems. The process starts
with CMAke commands (that, in this case, can be found in Controller.mk
file, while the list of the source code file use is in the CMakelist.txt file) for
building the code to pass to px4_simulink_app module for the execution.
The object code is flashed to the board and the application started for per-
forming the simulation. The results of the PIL simulation are transferred
to Simulink to verify if a numerical difference exists between the standard
simulation and the PIL simulation results. Double click on the "Numerical
Difference" block to see the difference between the simulated Controller subsys-
tem and the PIL block running on the board. It is possible to switch between
the original block and "PIL" block by double clicking on the "Manual Switch"
block.
The PIL verification process is a crucial part of the development cycle to
ensure that the behavior of the deployment code matches the design.
Incidentally, to run the Simulink model using by using PIL and having
MAVLink communication protocol also enabled (for starting NSH console
or other debugging purposes), it is necessary to choose another USB COM
port for this additional connection (for example, choose /dev/ttyS6, under
"Target hardware resources" -> "External mode"). In this case, to connect
another USB cable to board, a serial-to-USB converter is needed.
Below is reported the diagnostic messages listing of the PIL simulation execu-
tion.

83

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

1 ### Connect iv i ty c o n f i g u r a t i o n f o r "C: \ Users \ l a z za \Desktop\
Contro l ler_ert_rtw " : PX4 Autop i lot ###

2 ### COM port : COM3
3 ### Baud ra t e : 3000000
4 ### Connect iv i ty c o n f i g u r a t i o n f o r "C: \ Users \ l a z za \Desktop\

Contro l ler_ert_rtw " : PX4 Autop i lot ###
5 ### Prepar ing to s t a r t PIL block s imu la t i on :

px4demo_PIL_final_2020a/ Cont ro l l e r 1 . . .
6 n in ja : Enter ing d i r e c t o r y `/ cygdr ive /c/px4_cywin/home/Firmware/

bu i ld /nuttx_px4fmu−v5_default '
7 [0 / 1] Re−running CMake . . .
8 −− PX4 VERSION: v1 . 8 . 0
9 −− CONFIG: nuttx_px4fmu−v5_default

10 −− Build Type : MinSizeRel
11 CMake Deprecat ion Warning at / usr / share /cmake −3.6.2/ Modules/

CMakeForceCompiler . cmake :79 (message) :
12 The CMAKE_FORCE_C_COMPILER macro i s deprecated . Ins tead j u s t

s e t
13 CMAKE_C_COMPILER and al low CMake to i d e n t i f y the compi le r .
14 Cal l Stack (most r e c ent c a l l f i r s t) :
15 cmake/ t o o l c h a i n s / Toolchain−arm−none−eab i . cmake :31 (

cmake_force_c_compiler)
16 bu i ld /nuttx_px4fmu−v5_default /CMakeFiles / 3 . 6 . 2 / CMakeSystem .

cmake : 6 (i n c lude)
17 CMakeLists . txt :176 (p r o j e c t)
18 CMake Deprecat ion Warning at / usr / share /cmake −3.6.2/ Modules/

CMakeForceCompiler . cmake :93 (message) :
19 The CMAKE_FORCE_CXX_COMPILER macro i s deprecated . Ins tead j u s t

s e t
20 CMAKE_CXX_COMPILER and al low CMake to i d e n t i f y the compi ler .
21 Cal l Stack (most r e c ent c a l l f i r s t) :
22 cmake/ t o o l c h a i n s / Toolchain−arm−none−eab i . cmake :37 (

cmake_force_cxx_compiler)
23 bu i ld /nuttx_px4fmu−v5_default /CMakeFiles / 3 . 6 . 2 / CMakeSystem .

cmake : 6 (i n c lude)
24 CMakeLists . txt :176 (p r o j e c t)
25 −− C compi le r : arm−none−eabi−gcc . exe (GNU Tools f o r Arm Embedded

Proce s so r s 7−2017−q4−major) 7 . 2 . 1 20170904 (r e l e a s e) [ARM/
embedded−7−branch r e v i s i o n 255204]

26 −− C++ compi le r : arm−none−eabi−g++.exe (GNU Tools f o r Arm
Embedded Proce s so r s 7−2017−q4−major) 7 . 2 . 1 20170904 (r e l e a s e)
[ARM/embedded−7−branch r e v i s i o n 255204]

27 −− PX4 ECL: Very l i g h t w e i g h t Est imation & Control L ibrary v0
.9.0−553− g1a11068

28 −− Bui ld ing and in c l ud ing px4io−v2
29 −− Using C++03
30 −− Release bu i ld type : MinSizeRel
31 −− Adding UAVCAN STM32 plat form d r i v e r

84

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

32 −− NuttX : px4fmu−v5 nsh cortex−m7
33 −− ROMFS: px4fmu_common
34 −− Conf igur ing done
35 −− Generating done
36 −− Build f i l e s have been wr i t t en to : / cygdr ive /c/px4_cywin/home/

Firmware/ bu i ld /nuttx_px4fmu−v5_default
37 [1 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/

CMakeFiles/modules__px4_simulink_app . d i r / x i l _ i n t e r f a c e . cpp . obj
38 [2 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/

CMakeFiles/modules__px4_simulink_app . d i r /pil_main_px4 . cpp . obj
39 . . / . . / s r c /modules/px4_simulink_app/pil_main_px4 . cpp : In func t i on

' void ∗ baseRateTask (void ∗) ' :
40 . . / . . / s r c /modules/px4_simulink_app/pil_main_px4 . cpp : 2 4 : 3 4 :

warning : i n v a l i d conver s i on from ' void ∗ ' to ' void ∗∗ ' [−
f p e r m i s s i v e]

41 errorCode = x i l I n i t (argc , argv) ;
42 ^
43 In f i l e inc luded from . . / . . / s r c /modules/px4_simulink_app/

pil_main_px4 . cpp : 4 : 0 :
44 . . / . . / s r c /modules/px4_simulink_app/ x i l _ i n t e r f a c e _ l i b . h : 2 2 : 3 7 :

note : i n i t i a l i z i n g argument 2 o f '
XIL_INTERFACE_LIB_ERROR_CODE x i l I n i t (int , void ∗∗) '

45 extern XIL_INTERFACE_LIB_ERROR_CODE x i l I n i t (const i n t argc ,
46 ^~~~~~~
47 . . / . . / s r c /modules/px4_simulink_app/pil_main_px4 . cpp : 4 4 : 1 : warning

: no return statement in func t i on r e tu rn ing non−void [−Wreturn
−type]

48 }
49 ^
50 [3 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/

CMakeFiles/modules__px4_simulink_app . d i r /MW_PX4_TaskControl .
cpp . obj

51 [4 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/
CMakeFiles/modules__px4_simulink_app . d i r /
MW_PX4_rtiostream_serial . cpp . obj

52 . . / . . / s r c /modules/px4_simulink_app/MW_PX4_rtiostream_serial . cpp :
In func t i on ' i n t rtIOStreamOpen (int , void ∗∗) ' :

53 . . / . . / s r c /modules/px4_simulink_app/MW_PX4_rtiostream_serial . cpp
: 5 2 8 : 5 : warning : ' r e s u l t ' may be used u n i n i t i a l i z e d in t h i s
func t i on [−Wmaybe−u n i n i t i a l i z e d]

54 i f (r e s u l t == RTIOSTREAM_ERROR) {
55 ^~
56 . . / . . / s r c /modules/px4_simulink_app/MW_PX4_rtiostream_serial . cpp

: 4 5 5 : 9 : note : ' r e s u l t ' was dec l a r ed here
57 i n t r e s u l t ;
58 ^~~~~~
59 [5 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/

CMakeFiles/modules__px4_simulink_app . d i r / C o n t r o l l e r . cpp . obj

85

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

60 [6 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/
CMakeFiles/modules__px4_simulink_app . d i r / n u t t x i n i t i a l i z e . cpp .
obj

61 [7 / 1 7] Bui ld ing CXX ob j e c t s r c /modules/px4_simulink_app/
CMakeFiles/modules__px4_simulink_app . d i r / Contro l l er_data . cpp .
obj

62 [8 / 1 7] Bui ld ing C ob j e c t s r c /modules/px4_simulink_app/CMakeFiles/
modules__px4_simulink_app . d i r / x i l _ s e r v i c e s . c . obj

63 [9 / 1 7] Bui ld ing C ob j e c t s r c /modules/px4_simulink_app/CMakeFiles/
modules__px4_simulink_app . d i r / xi lcomms_rtiostream . c . obj

64 [1 0 / 1 7] Bui ld ing C ob j e c t s r c /modules/px4_simulink_app/CMakeFiles
/modules__px4_simulink_app . d i r / x i l_r t i o s t r eam . c . obj

65 [1 1 / 1 7] Bui ld ing C ob j e c t s r c /modules/px4_simulink_app/CMakeFiles
/modules__px4_simulink_app . d i r / r t i o s t r e a m _ u t i l s . c . obj

66 [1 2 / 1 7] Bui ld ing C ob j e c t s r c /modules/px4_simulink_app/CMakeFiles
/modules__px4_simulink_app . d i r / xil_data_stream . c . obj

67 [1 3 / 1 7] Bui ld ing C ob j e c t s r c /modules/px4_simulink_app/CMakeFiles
/modules__px4_simulink_app . d i r / x i l _ i n t e r f a c e _ l i b . c . obj

68 . . / . . / s r c /modules/px4_simulink_app/ x i l _ i n t e r f a c e _ l i b . c : 3 7 1 : 6 :
warning : no prev ious prototype f o r ' xi lProcessMsg ' [−Wmissing−
prototypes]

69 void x i lProcessMsg (void) {
70 ^~~~~~~~~~~~~
71 [1 4 / 1 7] Linking CXX s t a t i c l i b r a r y s r c /modules/px4_simulink_app/

libmodules__px4_simulink_app . a
72 [1 5 / 1 7] Linking CXX executab l e nuttx_px4fmu−v5_default . e l f
73 [1 6 / 1 7] Generating . . / . . / px4fmu−v5 . bin
74 [1 7 / 1 7] Creat ing / cygdr ive /c/px4_cywin/home/Firmware/ bu i ld /

nuttx_px4fmu−v5_default /px4fmu−v5_default . px4
75 ### Sta r t i ng a p p l i c a t i o n : ' Control ler_ert_rtw \ p i l \ C o n t r o l l e r . px4 '
76 Using COM3 f o r upload .
77 Loaded f irmware f o r 32 ,0 , s i z e : 1574632 bytes , wa i t ing f o r the

boot loader . . .
78 Attempting reboot on COM3 with baudrate =57600 . . .
79 I f the board does not respond , unplug and re−plug the USB

connector .
80 Found board 32 ,0 boot loader rev 5 on COM3
81 f

f f
f f

f f
f f

f f
f f

f f f f f f f f f f f f f f f f f ami ly : STM32F7 [6 | 7] x
82 r e v i s i o n : Z
83 f l a s h 2064384
84

85

86

Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator

86 Erase : [] 0.0%
87 Erase : [=] 5.6%
88 Erase : [==] 11.3%
89 Erase : [===] 16.9%
90 Erase : [====] 22.6%
91 Erase : [=====] 28.3%
92 Erase : [======] 33.9%
93 Erase : [=======] 39.6%
94 Erase : [=========] 45.3%
95 Erase : [==========] 50.9%
96 Erase : [===========] 56.6%
97 Erase : [============] 62.2%
98 Erase : [=============] 67.9%
99 Erase : [==============] 73.5%

100 Erase : [===============] 79.1%
101 Erase : [================] 84.7%
102 Erase : [====================] 100.0%
103

104 Program : [] 4.1%
105 Program : [=] 8.2%
106 Program : [==] 12.3%
107 Program : [===] 16.4%
108 Program : [====] 20.5%
109 Program : [====] 24.6%
110 Program : [=====] 28.7%
111 Program : [======] 32.8%
112 Program : [=======] 36.9%
113 Program : [========] 41.0%
114 Program : [=========] 45.1%
115 Program : [=========] 49.2%
116 Program : [==========] 53.3%
117 Program : [===========] 57.4%
118 Program : [============] 61.4%
119 Program : [=============] 65.5%
120 Program : [=============] 69.6%
121 Program : [==============] 73.7%
122 Program : [===============] 77.8%
123 Program : [================] 81.9%
124 Program : [=================] 86.0%
125 Program : [==================] 90.1%
126 Program : [==================] 94.2%
127 Program : [===================] 98.3%
128 Program : [====================] 100.0%
129

130 Ver i fy : [] 1.0%
131 Ver i fy : [====================] 100.0%
132 Rebooting .
133 }

87

Appendix B

Guide for Creating a 3D
Virtual Scenario from a
LIDAR Point Cloud Map

This Guide aims at generating 3D virtual scenarios, in particular for simulating
UAVs precision agriculture operations, exploiting the 3D point cloud maps, collected
by LIDAR survey campaigns.

After the creation, it is also briefly described in this Guide how to load the
scenarios into the selected simulator.

The steps for realizing the virtual scenario are summarized in the process shown
in Figure B.1. The software tools used for the process are:

• ConveRgo [73]

• CloudCompare [74]

• MATLAB

• Meshlab [75]

• Blender [93]

• Simulink 3D Animation [71]

89

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

Figure B.1: 3D scenario development overview.

B.1 Reference system conversion
Since the data taken into consideration in this project (see Section 3.3 for details)
are generated with the Agisoft PhotoScan software from a set of aerial images and
saved in .las file in WGS84 reference system, it is necessary to convert them in a
Local Reference Frame for the processing with the listed software tools.

1. Open the point cloud .las file with CloudCompare software tool.

2. Opening the file, a prompt window requests to choose a translation to apply:
keep the default settings and choose "Apply to all".

3. The point cloud will be visualized as a long strip without showing any kind of
scenario. Select "File"->"Save File" and save the point cloud in .txt format
file. When the prompt window appears for choosing saving settings, select the
precision requested, tabulation as separator and "ASC" for order selection.

4. After the conversion is finished, open the resultant .txt file with ConveRgo
software tool: in this Guide, all the ConferGo potentialities will not be
explained but, if necessary, refer to [80] for more details about it. In Figure
B.2 is represented the user interface of the tool. On the left side, the features

90

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

of the input file are indicated: they depend on the nature of the file in input
and should be acquired from who has done the survey; in this case, ETRF89
is selected to indicate that the data are saved in WGS84 reference system.

Figure B.2: ConveRgo reference system conversion tool.

On the right side, there are the characteristics of the file in output: choose
UTM-ETRF2000 for "Piane" coordinates and "Stessa di Input" for altitude.
Click on the "Formato file con liste di coordinate" button: in the new window
select the options indicated in Figure B.3.

5. Click "Converti Lista dei file" button. Longitude and latitude will be converted
in North and East coordinates in Local Reference Frame. Unfortunately this
type of conversion does not preserve the color information and other feature
that could be associated to every point in the original .las point cloud file.

91

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

Figure B.3: ConveRgo settings.

B.2 Point cloud classification and separation
The .txt point cloud now obtained contains three columns with North East
Altitude coordinates. Now it is necessary to classify the points to discriminate if
they belong to the vegetation or to the soil. This is done mostly to generate a correct
and lightweight 3D mesh. For point classification, a plugin for CloudCompare
called CANUPO is exploited: for more details about it, refer to Section 3.4.

1. Open the point cloud .txt file with CloudCompare software tool. Opening
the file, a prompt window request to choose a translation: now it is possible
to keep the default settings or choose a customized translation, that can be
useful for the project. In Figure ?? is shown the point cloud after reference
system conversion.

2. For using CANUPO for point classification, it is necessary to select two
class samples: this can be done using the "Segmentation" tool available in
CloudCompare toolbar or via "Edit"->"Segment". Once the selection is made,
save the two samples in two separate point cloud .txt files. In Figure B.4
are shown the samples used for this project.

92

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

Figure B.4: "Vineyard" and "Soil" samples.

3. Open CANUPO from "Plugin"->"CANUPO"->"Train classifier": select the
two class samples and the parameters for classification as shown in Figure B.5
(see Section 3.4 for classification details). After the selection, click "Ok" for
building the classifier.

Figure B.5: CANUPO Training settings.

4. Start the classification process by selecting "Plugin"->"CANUPO"->"Classify":
select the created .prm classifier file and the cloud to classify, then click
"Ok". The prompt window indicates the clusters, separated by the hyerplane:
it is possible to adjust the position of the hyperplane to acquire a better
separation of the clouds. Click "Ok" to apply the classification. The result of

93

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

the classification is shown in Figure B.6.

5. If necessary, use the "Segmentation" tool to clean the cloud and/or to select a
portion of it. In Figure B.7 is shown a portion of the point cloud, selected
with the "Segmentation" tool.

Figure B.6: Classified point cloud map.

6. Once the cloud is classified, it is also possible to separate it per class: in doing
this separation, it is possible to exploit the color assigned to each classified
point. This color can be customized from the "Properties" window -> "Color
scale" section. For splitting, Select "Edit"->"Scalar Fields"->"Filter by value"
and, in the next window, 1.0 and 1.5 values. Click "Split" button to create
two different clouds based on the CANUPO classification.

7. If necessary, apply a different subsampling for each cloud: in the case of this
project a subsampling has been applied to the "soil" point cloud the ease
the correct mesh generation of that portion. Subsampling can be achieved
selecting "Edit"->"Subsampling" and then choosing the minimum distance
between each point.

8. Save the point clouds in two different files: if it is intended to use Meshlab
software tool for mesh generation, it is recommended to perform the next step
and then to choose .ply format for saving the files in order to guarantee
compatibility.

9. Go to "Edit"-> "Edit global shift/scale". In this window, it is possible to see the
translation applied to the point cloud during the import into CloudCompare
(the settings chosen at Step 1 of this Section). Take note of these numbers,

94

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

Figure B.7: Classified point cloud map portion.

go to "Edit"->"Apply transformation" and insert them in the "Translation"
section. Click "Ok" and then proceed in saving the two files. This action
has the purpose of reducing coordinates number sizes that Meshlab has to
handle for doing calculations, reducing the processing time for mesh generation,
explained in the next Section.

B.3 Mesh generation
For mesh generation, two approaches with two different software tools are explored
in this Guide: the first is the use of the AlphaShape algorithm, used in the MATLAB
commercial software, the second is the processing with Ball-Pivoting algorithm,
implemented in the Meshlab open-source software (for more information about the
algorithms, refer to Section 3.5).

• MATLAB

1. Import in the MATLAB workspace the first three columns, rep-
resenting North-East-Altitude coordinates, from the point cloud
.txt file using the preferred technique (for example, refer to
https://it.mathworks.com/help/matlab/import_export/
ways-to-import-text-files.html and save the the into a matrix
variable.

95

https://it.mathworks.com/help/matlab/import_export/ways-to-import-text-files.html
https://it.mathworks.com/help/matlab/import_export/ways-to-import-text-files.html

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

2. Apply the following MATLAB script for generating the 3D mash with
Alphashape algorithm and the selected α parameter:

1 %V i s the matrix conta in ing the coo rd ina t e s o f the po in t s
2 shp=alphaShape (V) ;
3 %Choose the nece s sa ry Alpha parameter f o r the d e t a i l

g r a n u l a r i t y
4 shp . Alpha =0.35;
5 p lo t (shp) ;
6 [A,B]= boundaryFacets (shp) ;
7 %Export the mesh in . s t l format f i l e
8 s t l w r i t e (t r i a n g u l a t i o n (A,B) , ' mesh . s t l ') ;

Figure B.8: AlphaShape mesh generation with α=0.35 and α=0.7 respectively
(point cloud map portion without splitting).

• Meshlab

1. Open the .ply format file (or another compatible format) containing the
point cloud.

2. Select "Filters"->"Remeshing, Simplification and Reconstruction" -> "Sur-
face Reconstruction: Ball Pivoting". Then, In the prompt window, select
the parameters for mesh generation: it is possible to leave the default
settings or try to find the best combination, remembering the there is no
"undo" command in Meshlab, so every combination originates a permanent
result.

3. If, after the generation, the mesh has "holes" the function "Close holes" can
be applied. For selecting it, go to "Filters"->"Remeshing, Simplification
and Reconstruction" -> "Close holes".

4. Save the obtained result in .stl format file.

96

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

B.4 Mesh recomposition and loading into the
simulation environment

For this project, it has been necessary to recompose the complete mesh from
the two portions obtained from cloud classification: for this scope, Blender
graphic editor has been used, even if Meshlab also has the same potentialities.

1. Open Blender and select "File->"Import"->"Stl (.stl)" to import the .stl
meshes taken into consideration in the scenes hierarchy.

2. To apply the simplifications seen in this project, move the mesh in the
position shown in Figure B.9. This can be done highlighting the meshes
and move them with the short-cut commands ctrl+R (Rotation) and
ctrl+G (Translation) or using the "Transform" window.

Figure B.9: 3D mesh position in Blender graphic editor to obtain a correct
loading in Simulink 3D animation.

3. Once the meshes are in the desired position, export them as a single
.stl file by selecting "File"->"Export"->"Stl (.stl)". This file format has
been chosen to be loaded in a .wrl template scenario for Simulink 3D
Animation. It is possible to choose other formats for other simulation
environment (e.g. Collada for Gazebo). When exporting the .stl
for Simulink 3D animation, make sure to choose Y-up/Z-ahead options:
Simulink 3D animation, in fact, works with Y-up worlds (this is a graphic
convention and does not affect reference systems for simulated dynamics).

4. Create a new .wrl scenario or open an already existing one with 3D
World Editor, the Simulink 3D Animation editor (for this project it has
been used a template scenario available in the Quadcopter Project [95]).

97

Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map

5. Select "Nodes"->"Import from.."-> "STL file..." and choose the .stl file
exported from Blender. When imported, meshes composing the scenario
remain separated: in this way it is possible to select each one of them
for customization (refer to 3.6 for other details). In Figure B.10, the
.stl meshes imported in 3D World Editor are shown and it is possible
to observe the selection to change the color of the single mesh.

Figure B.10: 3D scenario loaded into 3D World Editor.

98

Bibliography

[1] V. Mazzia L. Comba A. Khaliq M. Chiaberge P. Gay. «UAV and Machine
Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision
Agriculture». In: Sensors 20 (2020) (cit. on p. 1).

[2] D. Rose and J. Chilvers. «Agriculture 4.0: responsible innovation in an era
of smart farming». In: Frontiers in Sustainable Food Systems 2 (2018), p. 87
(cit. on p. 1).

[3] G. Sylvester. E-agriculture in action: Drones for agriculture. Food, Agriculture
Organization of the United Nations, and International Telecommunication
Union, 2018 (cit. on p. 1).

[4] Six Ways Drones Are Revolutionizing Agriculture. MIT Technology Review.
url: https://www.technologyreview.com/2016/07/20/15874
8/six-ways-dron%20es-are-revolutionizing-agriculture/
(cit. on p. 2).

[5] G. Sona et al. «UAV Multispectral Survey to Map Soil and Crop for Precision
Farming Applications». In: International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences (ISPRS) XLI-B1 (2016),
pp. 1023–1029 (cit. on p. 2).

[6] B. Faiçal et al. «An adaptive approach for UAV-based pesticide spraying in
dynamic environments». In: Computers and Electronics in Agriculture 138
(2017), pp. 210–223 (cit. on pp. 2, 3).

[7] X. Xue et al. «Develop an unmanned aerial vehicle based automatic aerial
spraying system». In: Computers and Electronics in Agriculture 128 (2016),
pp. 58–66 (cit. on p. 2).

[8] J. Primicerio G. Caruso L. Comba A. Crisci P. Gay S. Guidoni L. Genesio
D. Ricauda Aimonino F. Vaccari. «Individual plant definition and missing
plant characterization in vineyards from high-resolution UAV imagery». In:
European Journal of Remote Sensing 50 (2017) (cit. on p. 2).

99

https://www.technologyreview.com/2016/07/20/158748/six-ways-dron%20es-are-revolutionizing-agriculture/
https://www.technologyreview.com/2016/07/20/158748/six-ways-dron%20es-are-revolutionizing-agriculture/

BIBLIOGRAPHY

[9] R. R. Shamshiri et al. «Fundamental Research on Unmanned Aerial Vehicles
to Support Precision Agriculture in Oil Palm Plantations». In: 2018 (cit. on
p. 2).

[10] N. Waskitho. «Unmanned aerial vehicle technology in irrigation monitoring».
In: Advances in Environmental Biology 9 (2015), pp. 7–10 (cit. on p. 2).

[11] E. Puig Garcia et al. «Assessment of crop insect damage using unmanned
aerial systems: A machine learning approach». In: 21st International Congress
on Modelling and Simulation. 2015, pp. 1420–1426 (cit. on p. 2).

[12] B. Vroegindeweij et al. «Autonomous Unmanned Aerial Vehicles for Agricul-
tural Applications». In: EurAgEng Zurich. 2014 (cit. on p. 3).

[13] M. Mammarella L. Comba A. Biglia F. Dabbene P. Gay. «Cooperative
Agricultural Operations of Aerial and Ground Unmanned Vehicles». In: IEEE
International Workshop On Metrology for Agriculture and Forestry. 2020
(cit. on pp. 4, 43).

[14] P. Gay L. Comba J. Primicerio D. Ricauda Aimonino. «Vineyard detection
from unmanned aerial systems images». In: Computers and Electronics in
Agriculture 114 (2015), pp. 78–87 (cit. on p. 4).

[15] L. Comba A. Biglia D. Ricauda Aimoino P. Gay. «Unsupervised detection of
vineyards by 3D point-cloud UAV photogrammetry for precision agriculture».
In: Computers and Electroincs in Agricolture 155 (2018), pp. 84–95 (cit. on
pp. 4, 43, 46).

[16] L. Comba A. Biglia D. Ricauda Aimoino C. Tortia E. Mania S. Guidoni P.
Gay. «Leaf Area Index evaluation in vineyards using 3D point clouds from
UAV imagery». In: Precision Agricolture 21 (2020), pp. 881–896 (cit. on p. 4).

[17] W.Z. Fum. Implementation of Simulink controller design on Iris+ quadrotor.
Naval Post Graduate School, 2015. url: https://calhoun.nps.edu/
handle/10945/47258 (cit. on pp. 4, 8, 12, 19, 31).

[18] A. Koszewnik. «The parrot UAV controlled by PID controllers». In: Acta
Mechanica et Automatica 8 (2014) (cit. on p. 4).

[19] A. Salih et al. «Flight PID Controller Design for a UAV Quadrotor». In:
Scientific research and essays 5 (2010), pp. 3660–3667 (cit. on p. 4).

[20] M. Mammarella G. Ristorto E. Capello N. Bloise G. Guglieri F. Dabbene.
«Waypoint Tracking via Tube-based Robust Model Predictive Control for
Crop Monitoring with Fixed-Wing UAVs». In: IEEE International Workshop
On Metrology for Agriculture and Forestry. 2019 (cit. on pp. 5, 72).

[21] S. Khatoon et al. «PID & LQR Control for a Quadrotor: Modeling and Simula-
tion». In: International Conference on Advances in Computing,Communications
and Informatics (ICACCI). 2014, pp. 796–802 (cit. on pp. 5, 31).

100

https://calhoun.nps.edu/handle/10945/47258
https://calhoun.nps.edu/handle/10945/47258

BIBLIOGRAPHY

[22] A. Khattab et al. «Implementation of Sliding Mode Fault Tolerant Control
on the IRIS+ Quadrotor». In: 2018 IEEE Conference on Control Technology
and Applications (CCTA). 2018, pp. 1724–1729 (cit. on pp. 5, 8, 19).

[23] NASA Interns Develop Guidance, Navigation, and Control Software for Quad-
copter with Model-Based Design. MathWorks. url: https://it.mathwork
s.com/company/user_stories/nasa-marshall-space-flight-
center-internship-program.html (cit. on p. 5).

[24] E.Ebeid et al. «A Survey of Open-Source UAV Flight Controllers and Flight
Simulators». In: Microprocessors and Microsystems 61 (2018) (cit. on p. 8).

[25] J. A. Mendoza-Mendoza et al. Advanced Robotic Vehicles Programming: An
Ardupilot and Pixhawk Approach. Apress, 2020 (cit. on p. 8).

[26] K. Yang et al. «Research of Control System for Plant Protection UAV Based
on Pixhawk». In: Procedia Computer Science 166 (2020), pp. 371–375 (cit. on
p. 8).

[27] Pixhawk Pilot Support Package (PSP) User Guide Version 3.04. MathWorks
Pilot Engineering Group. 2018 (cit. on pp. 8, 13, 19).

[28] The history of Pixhawk. Auterion. url: https://auterion.com/compa
ny/the-history-of-pixhawk/ (cit. on pp. 8, 15).

[29] PX4 Development Guide. DroneCode. url: https://dev.px4.io/ (cit.
on pp. 9, 10, 14, 15, 17, 18, 34, 41).

[30] DS-011 Pixhawk Autopilot v5X Standard Revision 0.3.0. Pixhawk. 2020 (cit.
on p. 8).

[31] S. Ahn S. Malik. «Modeling Firmware as Service Functions and Its Application
to Test Generation». In: Hardware and Software: Verification and Testing.
Springer International Publishing, 2013, pp. 61–77 (cit. on p. 9).

[32] Universal Serial Bus Specification Revision 2.0. USB Implementers Forum,
Inc. 2000 (cit. on pp. 10, 12).

[33] Pulse Width Modulation. AspenCore - ElectronicsTutorials. url: https:
//www.electronics-tutorials.ws/blog/pulse-width-modula
tion.html (cit. on pp. 11, 21, 30).

[34] NuttX Real-Time Operating System. Apache Software Foundation. url: h
ttps://cwiki.apache.org/confluence/display/NUTTX/NuttX
(cit. on p. 13).

[35] L. Meier et al. «PX4: A Node-Based Multithreaded Open Source Robotics
Framework for Deeply Embedded Platforms». In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). 2015, pp. 6235–6240 (cit. on
pp. 13, 14).

101

https://it.mathworks.com/company/user_stories/nasa-marshall-space-flight-center-internship-program.html
https://it.mathworks.com/company/user_stories/nasa-marshall-space-flight-center-internship-program.html
https://it.mathworks.com/company/user_stories/nasa-marshall-space-flight-center-internship-program.html
https://auterion.com/company/the-history-of-pixhawk/
https://auterion.com/company/the-history-of-pixhawk/
https://dev.px4.io/
https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html
https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html
https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html
https://cwiki.apache.org/confluence/display/NUTTX/NuttX
https://cwiki.apache.org/confluence/display/NUTTX/NuttX

BIBLIOGRAPHY

[36] Q. Jiang L. Wang. «Research on Obstacle Avoidance System and Path Plan-
ning of Unmanned Ground Vehicle Based on PX4». In: Dynamical Systems
and Control 08 (2019), pp. 167–180 (cit. on p. 15).

[37] J. Moulton et al. «An Autonomous Surface Vehicle for Long Term Operations».
In: OCEANS 2018 MTS/IEEE Charleston. 2018, pp. 1–10 (cit. on p. 15).

[38] Embedded Coder Support Package for PX4 Autopilots Documentation. Math-
Works. 2020. url: https://it.mathworks.com/help/releases/
R2020a/supportpkg/px4/ (cit. on pp. 19, 20, 73).

[39] A. Polak. PX4 development kit for Simulink. Polakium Engineering, 2014
(cit. on p. 19).

[40] Embedded Coder. MathWorks. 2020. url: https://it.mathworks.com/
help/ecoder/ (cit. on pp. 20, 27, 36, 37, 73).

[41] CMake. Kitware. url: https://cmake.org/overview/ (cit. on pp. 20,
38).

[42] R. Aarenstrup. Managing Model-Based Design. MathWorks, 2015 (cit. on
pp. 23, 24).

[43] B. Potter. Model-Based Design for DO-178B. MathWorks. url: https:
//it.mathworks.com/company/newsletters/articles/model-
based-design-for-do-178b.html (cit. on p. 25).

[44] Essential aspects of the V-cycle software development process. X-Engineer. url:
https://x-engineer.org/graduate-engineering/modeling-
simulation/model- based- design/essential- aspects- of-
the-v-cycle-software-development-process/ (cit. on p. 25).

[45] H. D. Benington. «Production of Large Computer Programs». In: Annals of
the History of Computing 5.4 (1983), pp. 350–361 (cit. on p. 25).

[46] Difference between Verification and Validation. Software Testing Class. url:
https://www.softwaretestingclass.com/difference-betwee
n-verification-and-validation/ (cit. on p. 25).

[47] N. C. Pemmaraju. «Model-Based Design for Autonomous Aerial Systems».
In: Matlab Expo. 2019 (cit. on pp. 26, 27).

[48] M. Kale N. Ghatwai S. Repud. Processor-In-Loop Simulation: Embedded
Software Verification & Validation In Model Based Development. eInfochips.
url: https://www.design-reuse.com/articles/42548/embe
dded-software-verification-validation-in-model-based-
development.html (cit. on p. 25).

102

https://it.mathworks.com/help/releases/R2020a/supportpkg/px4/
https://it.mathworks.com/help/releases/R2020a/supportpkg/px4/
https://it.mathworks.com/help/ecoder/
https://it.mathworks.com/help/ecoder/
https://cmake.org/overview/
https://it.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
https://it.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
https://it.mathworks.com/company/newsletters/articles/model-based-design-for-do-178b.html
https://x-engineer.org/graduate-engineering/modeling-simulation/model-based-design/essential-aspects-of-the-v-cycle-software-development-process/
https://x-engineer.org/graduate-engineering/modeling-simulation/model-based-design/essential-aspects-of-the-v-cycle-software-development-process/
https://x-engineer.org/graduate-engineering/modeling-simulation/model-based-design/essential-aspects-of-the-v-cycle-software-development-process/
https://www.softwaretestingclass.com/difference-between-verification-and-validation/
https://www.softwaretestingclass.com/difference-between-verification-and-validation/
https://www.design-reuse.com/articles/42548/embedded-software-verification-validation-in-model-based-development.html
https://www.design-reuse.com/articles/42548/embedded-software-verification-validation-in-model-based-development.html
https://www.design-reuse.com/articles/42548/embedded-software-verification-validation-in-model-based-development.html

BIBLIOGRAPHY

[49] K. Schultz. All About SIL in MATLAB. MATLAB Central File Exchange. url:
https://it.mathworks.com/matlabcentral/fileexchange/
60245-all-ab%20out-software-in-the-loop-in-matlab (cit.
on pp. 26, 34).

[50] J. Mina et al. «Processor-in-the-loop and hardware-in-the-loop simulation
of electric systems based in FPGA». In: 13th International Conference on
Power Electronics (CIEP). 2016, pp. 172–177 (cit. on p. 26).

[51] P. Sarhadi S. Yousefpour. «State of the art: hardware in the loop modeling and
simulation with its applications in design, development and implementation
of system and control software». In: International Journal of Dynamics and
Control 3 (2014) (cit. on pp. 26, 33).

[52] P. Marqués A. Da Ronchor. Advanced UAV Aerodynamics,Flight Stability
and Control -Novel Concepts, Theory and Applications. Wiley, 2017 (cit. on
pp. 27, 30).

[53] T. Bresciani. Modelling, Identification and Control of a Quadrotor Helicopter.
Department of Automatic Control - Lund University, 2008 (cit. on pp. 27, 28,
30).

[54] R. Beard. «Quadrotor Dynamics and Control». In: (2008) (cit. on pp. 27, 30).
[55] B. J. Emran H. Najjaran. «A review of quadrotor: An underactuated mechan-

ical system». In: Annual Reviews in Control 46 (2018), pp. 165–180 (cit. on
p. 30).

[56] D. Greenfield. When is PID Not the Answer? Control Engineering. url:
https://www.controleng.com/articles/when-is-pid-not-
the-answer/ (cit. on p. 31).

[57] K. Ogata. Modern Control Engineering. Prentice Hall, 2010 (cit. on p. 32).
[58] F. Sabatino. Quadrotor control: modeling, nonlinearcontrol design, and sim-

ulation. School of Electrical Engineering (EES) - KTH Royal Institute of
Technology, 2015 (cit. on p. 33).

[59] M. Zuo et al. «Model-Based Design of UAV Autopilot Software». In: Advanced
Materials Research (2014), pp. 756–759 (cit. on p. 34).

[60] jMAVsim ReadMe. DrTon. url: https://github.com/DrTon/jMAVSi
m (cit. on pp. 34, 35).

[61] A. Driss et al. «Simulation Tools, Environments and Frameworks for UAV
Systems Performance Analysis». In: 14th International Wireless Commu-
nications & Mobile Computing Conference (IWCMC). 2018, pp. 1495–1500
(cit. on pp. 34, 40).

103

https://it.mathworks.com/matlabcentral/fileexchange/60245-all-ab%20out-software-in-the-loop-in-matlab
https://it.mathworks.com/matlabcentral/fileexchange/60245-all-ab%20out-software-in-the-loop-in-matlab
https://www.controleng.com/articles/when-is-pid-not-the-answer/
https://www.controleng.com/articles/when-is-pid-not-the-answer/
https://github.com/DrTon/jMAVSim
https://github.com/DrTon/jMAVSim

BIBLIOGRAPHY

[62] M. Mammarella E. Capello. «Tube-Based Robust MPC Processor-in-the-
Loop Validation for Fixed-Wing UAVs». In: Journal of Intelligent & Robotic
Systems 100 (2020) (cit. on p. 35).

[63] L. Rosqvist R. Aarenstrup K. Lindqvist. Processor-In-the-Loop Simulation on
Embedded Linux Boards. MathWorks. url: https://it.mathworks.c
om/company/newsletters/articles/processor-in-the-loop-
simulation-on-embedded-linux-boards.html (cit. on p. 37).

[64] R. Parizi et al. «Towards Gamification in Software Traceability: Between Test
and Code Artifacts». In: 2015, pp. 393–400 (cit. on p. 36).

[65] Code Efficiency. Techopedia. url: https://www.techopedia.com/
definition/27151/code-efficiency (cit. on p. 36).

[66] I. Fey I. Stürmer. «Code Generation for Safety-Critical Systems-Open Ques-
tions and Possible Solutions». In: SAE International Journal of Passenger
Cars - Electronic and Electrical Systems 1 (2009) (cit. on p. 36).

[67] Target Language Compiler Basics. MathWorks. 2020. url: https://it.m
athworks.com/help/rtw/tlc/what-is-the-target-language-
compiler.html (cit. on p. 37).

[68] E. Sorton S. Hammaker. «Simulated Flight Testing of an Autonomous Un-
manned Aerial Vehicle Using FlightGear». In: 2005 (cit. on p. 40).

[69] FlightGear Flight Simulator. FlightGear Project. url: https://www.fli
ghtgear.org/about/ (cit. on p. 40).

[70] Aerospace Blockset. MathWorks. 2020. url: https://it.mathworks.
com/help/aeroblks/ (cit. on p. 40).

[71] Simulink 3D Aninmation. MathWorks. 2020. url: https://it.mathwor
ks.com/help/sl3d/ (cit. on pp. 41, 43, 56, 89).

[72] L. Comba S. Zaman A. Biglia A. D. Ricauda F. Dabbene P. Gay. «Semantic
interpretation and complexity reduction of 3D point clouds of vineyards». In:
Biosystems Engineering 197 (2020), pp. 216–230 (cit. on pp. 43, 46).

[73] ConveRgo. GeoPiemonte - Regione Piemonte. url: https://www.geop
ortale.piemonte.it/cms/servizi/servizi-di-conversione/
25-il-programma-convergo (cit. on pp. 43, 47, 89).

[74] CloudCompare Version 2.11.1. CloudCompare. 2019 (cit. on pp. 43, 49, 89).
[75] P. Cignoni et al. «MeshLab: an Open-Source Mesh Processing Tool». In:

Computing. Vol. 11. 2008, pp. 129–136 (cit. on pp. 43, 54, 89).
[76] T. S. Taylor. Introduction to Laser Science and Engineering. CRC Press, 2020

(cit. on p. 45).

104

https://it.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://it.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://it.mathworks.com/company/newsletters/articles/processor-in-the-loop-simulation-on-embedded-linux-boards.html
https://www.techopedia.com/definition/27151/code-efficiency
https://www.techopedia.com/definition/27151/code-efficiency
https://it.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://it.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://it.mathworks.com/help/rtw/tlc/what-is-the-target-language-compiler.html
https://www.flightgear.org/about/
https://www.flightgear.org/about/
https://it.mathworks.com/help/aeroblks/
https://it.mathworks.com/help/aeroblks/
https://it.mathworks.com/help/sl3d/
https://it.mathworks.com/help/sl3d/
https://www.geoportale.piemonte.it/cms/servizi/servizi-di-conversione/25-il-programma-convergo
https://www.geoportale.piemonte.it/cms/servizi/servizi-di-conversione/25-il-programma-convergo
https://www.geoportale.piemonte.it/cms/servizi/servizi-di-conversione/25-il-programma-convergo

BIBLIOGRAPHY

[77] Introduction to Lidar Point Cloud Data - Active Remote Sensing. Earth Lab.
url: https://www.earthdatascience.org/courses/earth-ana
lytics/lidar-raster-data-r/explore-lidar-point-clouds-
plasio/ (cit. on p. 45).

[78] What is lidar? NOAA (National Oceanic and Atmospheric Administration).
url: https://oceanservice.noaa.gov/facts/lidar.html (cit.
on p. 46).

[79] Agisoft PhotoScan. Agisoft. url: https://www.agisoft.com/ (cit. on
p. 47).

[80] P. Corradeghini. Trasforma coordinate con il software gratuito CONVERGO.
3DMetrica - Youtube. 2019. url: https://www.youtube.com/watch?
v=vrk4VYmCyak (cit. on pp. 47, 90).

[81] Spatial Re-Sampling. ESA - European Space Agency. url: https://sent
inel.esa.int/web/sentinel/technical-guides/sentinel-3-
olci/level-1/spatial-re-sampling (cit. on p. 49).

[82] William G. Cochran. «The χ2 Test of Goodness of Fit». In: Annals of
Mathematical Statistics 23.3 (1952), pp. 315–345 (cit. on p. 49).

[83] H. Samet M. Tamminen. «Efficient component labeling of images of arbitrary
dimension represented by linear bintrees». In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 10.4 (1988), pp. 579–586 (cit. on p. 49).

[84] Hugo Moreno et al. «On-Ground Vineyard Reconstruction Using a LiDAR-
Based Automated System». In: Sensors 20 (2020) (cit. on p. 49).

[85] D. Girardeau. «CloudCompare - Point Cloud Processing Toool». In: Cloud-
Compare Workshop. 2019 (cit. on p. 49).

[86] N. Brodu D. Lague. «3D terrestrial lidar data classification of complex
natural scenes using a multi-scale dimensionality criterion: Applications in
geomorphology». In: ISPRS Journal of Photogrammetry and Remote Sensing
68 (2012), pp. 121–134 (cit. on pp. 50, 51).

[87] C. Cortes V. Vapnik. «Support-vector networks». In: Machine Learning 20
(1995), pp. 273–297 (cit. on p. 50).

[88] W. Yu et al. «Application of support vector machine modeling for prediction
of common diseases: The case of diabetes and pre-diabetes». In: BMC medical
informatics and decision making 10 (2010), p. 16 (cit. on p. 51).

[89] F. Remondino. «From point cloud to surface: The modeling and visualization
problem». In: International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XXXIV-5/W10 (2004) (cit. on p. 53).

105

https://www.earthdatascience.org/courses/earth-analytics/lidar-raster-data-r/explore-lidar-point-clouds-plasio/
https://www.earthdatascience.org/courses/earth-analytics/lidar-raster-data-r/explore-lidar-point-clouds-plasio/
https://www.earthdatascience.org/courses/earth-analytics/lidar-raster-data-r/explore-lidar-point-clouds-plasio/
https://oceanservice.noaa.gov/facts/lidar.html
https://www.agisoft.com/
https://www.youtube.com/watch?v=vrk4VYmCyak
https://www.youtube.com/watch?v=vrk4VYmCyak
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/spatial-re-sampling
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/spatial-re-sampling
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-1/spatial-re-sampling

BIBLIOGRAPHY

[90] R.A. Jarvis. «On the identification of the convex hull of a finite set of points
in the plane». In: Information Processing Letters 2 (1973), pp. 18–21 (cit. on
p. 53).

[91] H. Edelsbrunner E. Mucke. «Three-Dimensional Alpha Shapes». In: ACM
Transactions on Graphics 13 (1994) (cit. on p. 54).

[92] F. Bernardini et al. «The Ball-Pivoting Algorithm for Surface Reconstruction».
In: IEEE Transactions on Visualization and Computer Graphics 5 (1999),
pp. 349–359 (cit. on p. 54).

[93] B. Kent. 3D Scientific Visualization with Blender. Morgan & Claypool Pub-
lishers, 2015 (cit. on pp. 56, 57, 89).

[94] L. Tran et al. «Simulation and Visualization of Dynamic Systems Using
MATLAB, Simulink, Simulink 3D Animation, and SolidWorks». In: Interna-
tional Mechanical Engineering Congress and Exposition (ASME). Vol. 7. 2011
(cit. on p. 56).

[95] Quadcopter Project. MathWorks. url: https://it.mathworks.com/
help/aeroblks/quadcopter-project.html (cit. on pp. 59, 97).

[96] Code Execution Profiling with SIL and PIL. MathWorks. 2020. url: https:
//it.mathworks.com/help/ecoder/ug/configuring-code-
execution-profiling.html (cit. on pp. 69, 72).

[97] M. Mammarella T. Alamo F. Dabbene M. Lorenzen. Computationally efficient
stochastic MPC: a probabilistic scaling approach. 2020 (cit. on p. 72).

[98] M. Beul S. Behnke. Trajectory Generation with Fast Lidar-based 3D Collision
Avoidance for Agile MAVs. 2020 (cit. on p. 72).

[99] Mingw-w64. 2020. url: http://mingw-w64.org/doku.php/documen
tation (cit. on p. 74).

106

https://it.mathworks.com/help/aeroblks/quadcopter-project.html
https://it.mathworks.com/help/aeroblks/quadcopter-project.html
https://it.mathworks.com/help/ecoder/ug/configuring-code-execution-profiling.html
https://it.mathworks.com/help/ecoder/ug/configuring-code-execution-profiling.html
https://it.mathworks.com/help/ecoder/ug/configuring-code-execution-profiling.html
http://mingw-w64.org/doku.php/documentation
http://mingw-w64.org/doku.php/documentation

	List of Figures
	Technologies for UAV operations in precision agriculture
	System Selection and Description
	Requirements and selection
	Autopilot hardware and software
	Pixhawk 4 autopilot board
	NuttX operating system
	uORB middleware
	PX4 flight control software stack

	Development environment
	MathWorks Embedded Coder Support Package for PX4 Autopilots

	Implementation and Simulation of Customized Quadrotor Control Algorithms using Model-Based Design
	Model-Based Design for Unmanned Aerial Systems
	Quadrotor UAV model description
	Control algorithms
	PID controller
	LQR controller

	Software-in-the-loop simulation
	Processor-in-the-loop simulation
	Flight Gear simulator interface

	Development of 3D Simulation Scenarios from LIDAR Point Cloud Maps
	Virtual scenarios for trajectory tracking design and visualization
	LIDAR technology
	Point cloud map description
	Point cloud map processing and classification
	3D mesh generation
	Scenario loading into Simulink 3D Animation simulation environment

	Results
	Trajectory and reference signals generation
	PID tuning for quadrotor operation in 3D vineyard scenario
	LQR PIL simulations results tracking vineyard scenario-generated trajectory

	Conclusions and Future Works
	Conclusions
	Future works

	Guide for Implementing a Pixhawk 4 Processor-in-the-loop Simulator
	Package installation and hardware setup
	Processor-in-the loop simulation of a deployed controller subsystem

	Guide for Creating a 3D Virtual Scenario from a LIDAR Point Cloud Map
	Reference system conversion
	Point cloud classification and separation
	Mesh generation
	Mesh recomposition and loading into the simulation environment

	Bibliography

