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Chapter 1

Introduction and relative
work

The following work is an analysis of unsupervised learning techniques concerning
multivariate series. They have been applied to the context of the agricultural ve-
hicle, and therefore time-series involved concerned the values of complex machines
that need a lot of maintenance for correct functioning. This analysis is designed
to find the right balance of "states of the vehicle" to identify the behavior of the
latter in a balanced way. The "states of the vehicle" definition will be clarified in
the next paragraph concerning the statement of the problem [Subsection 1.1.2].
The conclusion of this analysis, bring very important results that can be exploited
in this industry in many ways. Here are two of them.

One way to benefit from a correct identification of the states of a vehicle is to
assign a certain degree of usury to each state and derive an overall consumption
score based on the time spent on each state. In fact, if a wear score is given to all
states, it is possible to obtain an overall degree of wear and assessments regarding
the condition of the vehicle. Subsequently, starting from this analysis, it is possible
to proceed with preventive maintenance or to anticipate any permanent breakages.
This would certainly allow much more precise cost estimates and more prudent
business planning.

A second method of using this information is the preventive correction of users’
habits.
The statistics on the number of hours spent in a certain state are certainly very
useful to understand which situation occurs more frequently and which are the
routines. Based on the wear scale associated with the states (mentioned above) it
is possible to change the users’ habits by suggesting the most appropriate behavior
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Introduction and relative work

according to the different situations. In this way, the lifetime of the machines can
be extended.

1.1 An in-company thesis
Data are provided by Tierra S.p.A., a society involved in the IoT sector. The IoT
takes its value from the internet connection that allows transforming all internet-
connected devices into more adaptable and smart objects. The company has a wide
range of products that provide various digital services to its customers through
the creation of a network whose nodes are Tierra’s devices, which are directly con-
nected to customers’ vehicles. This ensures a more dynamic and faster exchange
of information, bringing added value to customers’ machines.

This work is based on a dataset generated by a test vehicle working in a test
field, and so I was not in contact with a third party involved. The vehicle is
a Valtra-T182 and it is about twelve years old. During the data recording, the
vehicle tested both the Tierra device that generated the dataset involved in the
analysis and other devices. Therefore, it did not carry out any agricultural activ-
ities, the real purpose of the vehicle. This fact made the analysis not extremely
varied, as it would have been possible to highlight other types of behavior under
different stress conditions. However, the method used is flexible and can be pro-
posed also with different datasets. Moreover, the low precision of the vehicle was
one of the most evident problems. For this reason, some methods to attenuate
excessive oscillations have been used.

1.1.1 Nature of the data: CAN system, PNG and SPN
messages

All data provided by Tierra had an industrial format and in this section, a short
description of the procedure used to translated data into an easy-to-use structure
is provided. This part is only illustrative since it is not crucial for the thesis aim.
So, it does not intend to go into the details of the protocols involved.
All off-road vehicles use the Controller Area Network (CAN), a standard BUS
protocol that allows easy access to information from the control system of the
machines. In this way, an efficient secure, and integrated network for data trans-
mission is created. It is based on a serial communication protocol, namely the SAE
J1939 protocol, but for further details on it, the reader can refer to the application
report [HPL02]. To summarize its content, it is a standard for networking and
communication between commercial vehicles without using a host computer.
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1.1 – An in-company thesis

Each CAN message is generated with a high frequency (up to 100Hz), and they
are managed by a controller that pre-processes them. In this network, messages
are consistent in each node of the vehicle. These signals concern different parts of
the machine such as engine speed, coolant temperature, etc.
These signals are clustered in macro-categories: the PNGs. Within every PNG
group or cluster, it is possible to associate all individual signals to a unique code:
the SPN (Suspect Parameter Number). In conclusion, an SPN is an ID that
uniquely identifies a specific signal of the vehicle.
After a bunch of data fills the memory of the Tierra hardware (about 10Mb), the
latter sends this data package to the server via a mobile connection (a SIM card is
involved). Finally from the raw data contained in the server, the analysis starts.

Figure 1.1. Data flow stylization: from the creation of the data in the vehicle to
the servers for data analysis.

1.1.2 Statement of the problem
Agricultural vehicles are heavily exploited during their lifetime and very often it
is necessary to check their condition according to the number of hours spent in a
certain state. To clarify the meaning of state one can refer to those identified so
far by Tierra. In [Table 1.1] three states are reported as an example.

Status Speed IO Engine Speed
Idle = 0 = 1 = 0
Work / moving > α = 1 > β
High workload > γ = 1 > ι

Table 1.1. Short description of three main status of vehicles. Threshold values
are not specified and parameters considered are more than the ones showed.

Referring to the reported case, the "Idle" status identifies a vehicle that is on
but not moving. Some threshold values are set to identify this behavior, consider-
ing a limited number of parameters, based on what common sense suggests.
To generalize the concept, one can think of the vehicle as a physical system that
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Introduction and relative work

passes in different states based on two factors: the manual inputs of the user and
the external inputs of the surrounding environment. According to these condi-
tions, the vehicle will be in a certain working mode which characterizes differently
the working state.
To identify the influences that internal and external agents cause to the vehicle,
the levels of some machine components are examined.

As shown before in [Table 1.1], until now the company has been identified the
states of vehicles with a threshold system. One of the tasks of this thesis, on the
other hand, is to find the optimal method of separating (clustering) vehicle behav-
ior in a more precise and automatic way.
A crucial aspect that the company stressed is the granularity of the dataset and
the pre-processing phase, the second challenge of this thesis. In fact, the data
that have been provided have a very fine granularity (order of milliseconds) and
therefore considerable problems have arisen compared to the previous situation.
In the threshold system, the series considered had a granularity of a few minutes,
as processes for aggregation through simple steps were automatically integrated.
For example the aggregation by average.
The most evident problem in the finer data case is evidence of noise. Since the
data are not filtered, they present many anomalous behaviors, sometimes caused
by the vehicle itself. Secondly, the finer data to be transmitted from the vehicle
to the server were in very large quantities and not so useful due to the raw nature
of the vehicles involved. Therefore an optimal method of aggregation is certainly
needed to avoid slowdowns in any real-time processes. For these and other reasons,
special attention has been paid to the alignment and pre-processing of the dataset.

1.2 Summary and main references
The thesis is divided into six chapters which can be summarized as follows. The
first is an introduction to the work. The second and third are related to the dataset
preparation, and more specifically the second is the theoretical background on
which the third (real case application) is based. I will refer to this part as "part
one" of the thesis.
The fourth and the fifth chapter have been written with the same logic: the fourth
contains the theoretical background on which the fifth chapter is based.
They are the core of the thesis, and they concern unsupervised methods for mul-
tivariate time series clustering. I will refer to this part as "part two" of the thesis.
The sixth chapter contains my conclusions, observations, and possible future de-
velopments.
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The first part of the thesis, which concerns data preparation, includes operations
to transform the rough data into the multivariate series needed for subsequent
analysis. This was made possible by several steps. First, alignment and synchro-
nization techniques were used to make the time series homogeneous with respect
to their clock. In [Section 2.1], time-frequency theory involved is reported.
Subsequently, more datasets have been produced, each built according to a specific
granularity and method of aggregation/downsampling.
Starting from the various datasets produced, the work cycles were highlighted us-
ing a technique based on the trend of particular series, since this information was
not directly available.
Then, since a fixed window length method has been used, the optimal value of the
window length was needed. This was made possible by a motif recognition based
algorithm called VALMOD [LZPK18b]. After the window identification, data was
ready for the second part of the analysis. This part of the thesis concerns the
multivariate clustering techniques, the core of the research.
To assess the best cluster configuration, since all data are completely unlabeled,
it was necessary to rely on the internal CVIs (Cluster Validity Indices), which
consider the intra-cluster and inter-cluster distance as goodness indices. Most of
the ones used in this part are taken from the article [AGM+13].
Since not all CVIs always agree on the same ranking of best clustering methods,
a ranking algorithm was necessary. The RankAggreg [PDD09] has been exploited,
which identifies an optimal ranking, based only on goodness indices, by using them
as weights.
All clustering methods exploited in the further analysis have been divided into
single-signal based or dataset oriented techniques.
The first takes as input the single signals and then generates different clusters
according to the merging of the results of the single signals. In [Section 5.1] this
approach is exploited. This part is based on the study of unsupervised univariate
clustering techniques such as the k-shape algorithm [PG15].
Afterward, a dataset-based approach was explored. This time, multivariate series
are exploited simultaneously. In this part, three approaches have been compared
to achieve optimal clustering results. A novel multivariate time-series clustering
method is proposed in [Subsection 5.2.2].
In the final chapter, conclusions are reported. An optimal model is proposed and
future developments are suggested.
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Chapter 2

Time-series preprocessing
theory

This chapter is proposed as the theoretical background for the next chapter, where
preliminary analyses have been conducted. It is divided into three parts. The first
is an introduction to the time-frequency analysis, where series are considered as
signals to be transformed and studied through the Fourier (or other) transform.
Then, time-series are seen with a probabilistic lens by stressing the stochastic
processes under them. In the last section, the VALMOD algorithm is explained
to the reader. This matrix profile-based algorithm will be exploited to find an
optimal length of the time window in the segmentation phase; crucial for the next
part of the thesis.

2.1 Time-frequency analysis
The theory explained in this part has been applied to the dataset as the first
step of transformation to align time-series at a unique clock. In fact, techniques
exploited in the next sections need aligned time-series to be properly evaluated.
To obtain a homogeneous series, it was necessary to use re-sampling techniques,
and afterward, to obtain the desired granularity, the functions explained in the
following part have been exploited. Most of the following contents are taken from
the book [VKG14].

2.1.1 Introduction
In the beginning, the mathematical concepts that will be used for the filtering and
transform section are mentioned. Not being the core of the thesis, this introduc-
tion will report only those concepts strictly essential to understand what follows.
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Time-series preprocessing theory

Let’s begin this part by defining the main normed and inner product spaces in-
volved in this chapter.

• CN spaces. The normed vector space of complex-valued finite-dimansional
vectors is generally provided with the p−norm defined as

||x|| =
(
N−1∑
n=0
|xn|p

)1/p

.

If p = 1, it is defined Manhattan norm. In case p = 2, one get the usual
Euclidean square norm, which is induced by an inner product. In this case
the inner product and the norm are defined respectively,

〈x, y〉 =
N−1∑
n=0

xnyn, ||x|| =
(
N−1∑
n=0
|xn|2

)1/2

.

If p =∞ the norm is defined as

||x||∞ = max (|x0|, . . . , |xN−1|).

For p ∈ (0,1) it is not a norm, but it is not important for the purpose of this
chapter to deep on this particular case.

• `p(Z) spaces. One can define the norm on CZ as done in the previous case,

||x||p =
∑
n∈Z
|xn|p

1/p

.

To satisfy the norm properties, also in this case values of p ∈ [1,∞) are
considered, while for p =∞ one get the extension,

||x||∞ = sup
n∈Z
|xn|.

Definition 2.1 For any p ∈ [1,∞], the normed vector space `p(Z) is the
subspace of CZ consisting of vectors with finite `p norm.

In the specific case of p = 2, the `p norm is induced by an inner product,
defined as follows,

〈x, y〉 =
∑
n∈Z

xnyn, ||x|| =
∑
n∈Z
|xn|2

1/2

.
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2.1 – Time-frequency analysis

• Lp(R) spaces. In this space, the norm is defined on CR,

||x||p =
(∫ +∞

−∞
|x(t)|p dt

)1/p
.

Also in this case, the above definition is valid for p ∈ [1,∞) while for p =∞
the norm is extended as follows,

||x||∞ = ess sup
t∈R
|x(t)|.

Definition 2.2 For any p ∈ [1,∞], the normed vector space Lp(R) is the
subspace of CR consisting of vectors with finite Lp norm.

In the specific case of p = 2, the Lp norm is induced by an inner product,
defined as follows,

〈x, y〉 =
∫ +∞

−∞
x(t)y(t) dt, ||x|| =

(∫ +∞

−∞
|x(t)|2 dt

)1/2
.

The above mentioned spaces are all complete, and so they met the following
definition,

Definition 2.3 A normed vector space V is complete when every Cauchy sequence
in V converges to a vector in V.

This definition is recalled in the following one, which defines the most important
spaces for this section.

Definition 2.4 A complete normed vector space is called a Banach space. A
complete inner product space is called a Hilbert space.

So, in the definition of a Hilbert space, a scalar product is set, and the norm of
this space derives from this. Besides, the triangular inequality is met, which says
that the module of the scalar product of two vectors is less than or equal to the
product of their norms. Equality occurs when two vectors are linearly dependent
(or at least one of the two is null).
It is crucial to underline that thanks to this, the scalar product defines the simi-
larity between vectors.
Now, let’s see the definition of an orthonormal basis in this context.

Definition 2.5 A set of vectors {ϕk}k∈J ⊂ V (where J is finite or countably
infinite), is called basis for a normed vector space V when
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Time-series preprocessing theory

• it is complete in V, meaning that, for any x ∈ V , there is a sequence α ∈ CJ

such that
x =

∑
j∈J

αjϕj.

• For any x ∈ V , the sequence above mentioned α, is unique

Definition 2.6 If H is an Hilbert space, a set of vectors Φ = {ϕk}k∈J ⊂ H (where
J is finite or countably infinite), is an orthonormal basis if

• Φ is a basis for H, and

• Φ is orthonormal, that is

〈ϕk, ϕj〉 =
1, if k = j,

0, if k /= j.

Now that the main basic concepts have been shown, the following crucial the-
orem, formalize the digitization concept.

Theorem 2.1 Riesz theorem. If {ϕk}k∈J (where J is finite or countably infinite)
is an orthonormal base of H, the application

Φ∗ : H → `2(J)
x→ {〈x, ϕk〉}k∈J

is an isometric isomorphism. The inverse is

Φ : `2(J)→ H

α = {αk}k∈J →
∑
k∈J

αkϕk.

So, x =
∑
k∈J
〈x, ϕk〉ϕk converges unconditionally on H (no matter the order of

the indices).

The fact that the series converge unconditionally is implicitly written in the
summation, since it is not specified the order of the terms.
Another important clarification concerns the therms isometric isomorphism.
Isometric means that the norm is preserved by applying the map:

||x||2H =
∑
k∈J
|〈x, ϕk〉|2.
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2.1 – Time-frequency analysis

Thanks to the term isomorphism, it is possible to say that the application is
bijective.

More in general, if the {ϕk} is an orthonormal system of H, one can define Φ
as the synthesis operator and Φ∗ as the analysis operator.
In the theorem, the adjoint map coincides with the inverse and so, one can state
that Φ is a unitary operator.

In the last part of this subsection, the most important case for further devel-
opments is proposed. In finite dimension, if H = CN and Φ : CN → CN , one can
define the Fourier basis (f (0), . . . , f (N−1)) as

f (k)
n = 1√

N
e

2π
N
jkn where k, n = {0, . . . , N − 1}.

This basis will be used to perform the Fourier transform in the case of finite
series (but it can also be extended with a similar form into the countably infinite
case). In this way, signals can be decomposed efficiently.

2.1.2 Filtering
The starting setting for this subsection is a discrete signal of infinite length {xk}k∈Z.
One can also consider a signal of finite lengths, in fact the concept is easily exten-
sible in infinite dimension in the following two ways:

• extension with zeros

(x−1, x0, x1)→ (. . . , x−1, x0, x1, . . . );

• periodic extension

(x−1, x0, x1)→ (. . . , x−1, x0, x1, x−1, x0, x1, x−1, x0, x1, . . . ).

A discrete-time system is an operator A, that maps an input sequence x ∈ V
into an output sequence y ∈ V ,

y = A(x).

In the following section, space V considered is always `2(Z), so if it is written only
`2, it refers to the aforementioned space.

Definition 2.7 A discrete-time system A is called linear when for any given input
x and y, and any α and β ∈ C,

A(αx+ βy) = αA(x) + βA(y).
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Once established the bases of the domain and the codomain (in this chapter
always the standard one), the linear operators can be represented in a unique way
by a matrix.
By defining the Kronecker delta sequence δ ∈ `2(Z) as follows,

δk =
1, if k = 0,

0, if k /= 0,
(2.1)

each column k of the unique matrix is the resulting output from taking the
shifted Kronecker delta sequence as the input of the system, δn−k. In fact, the
Kronecker delta sequence and its shifts represent the standard basis of `2(Z).

Definition 2.8 A discrete-time system A is called memoryless when for any given
integer k and inputs x and x′,

1{k}x = 1{k}x
′ =⇒ 1{k}A(x) = 1{k}A(x′).

Definition 2.9 A discrete-time system A is called shift-invariant when for any
given integer k and inputs x,

y = A(x) y′ = A(x′), where x′n = xn−k and y′n = yn−k.

With reference to the previous definition of the unique matrix defined for a lin-
ear system, a clarification in the case of LSI (Linear Shift Invariant) is necessary.
In fact, by definition, it is easy to understand why its columns are identical but
shifted.

Now, a formal definition of the impulse response of an LSI is proposed and thanks
to that, the convolution concept will be presented.

Definition 2.10 A sequence h is called the impulse response of an LSI discrete-
time system H when the Kronecker delta input produces output h.

As said before, in the case of the LSI systems, the columns of the unique matrix
are always the same but shifted, and so, the sequence resulting from the Kronecker
delta sequence as input completely specifies the system.
Now let’s introduce the key concept of convolution.
To obtain the matrix representation of an LSI system, impulse response and its
shift are considered to form its columns. If one considers this operation as a sum,
it is easier to understand the convolution concept. In fact, given an arbitrary input
x, it can be expressed as

x = {xk}k∈Z =
∑
k∈Z

xkTkδ, (2.2)
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2.1 – Time-frequency analysis

where Tk is the translation operator, which means that if it is applied to a generic
x ∈ `2(Z) it produce a translation of k positions,

(Tkx)n = xn−k.

In this case Tk is applied to the Kronecker delta sequence, so that it produces the
standard basis of `2(Z).
Moreover, Tk commute with the matrix H corresponding to a LSI system.

Let’s introduce the context by defining H : `2(Z) → `2(Z) as a limited LSI
operator, x as a generic input signal, and y as its output response.

y = Hx

= H
∑
k∈Z

xkTkδ (by the expression 2.2)

=
∑
k∈Z

xkHTkδ

=
∑
k∈Z

xkTkHδ

=
∑
k∈Z

xkTkh (where Tkh ∈ `2 and can be read as synthesis operator)

At this point one can notice that (Tkh)n = hn−k and so
(x ∗ h)n =

∑
k∈Z

xkhn−k,

and this can be formalized in the following definition.

Definition 2.11 The convolution between sequences h and x is defined as
(Hx)n = (x ∗ h)n =

∑
k∈Z

xkhn−k =
∑
k∈Z

hkxn−k,

where H is called the convolution operator associated with h.

Now it is possible to link the previous definition with the filtering one.

Definition 2.12 A filter is the impulse response of a system while the convolution
with the impulse response is called filtering.

There are different classes of filters, the most famous are listed.

• Causal filters: hn = 0∀n < 0.

• Anticausal filters: hn = 0∀n > 0.

• Finite impulse response (FIR) filters have only a finite number of coefficients
hn /= 0.

• Infinite impulse response (IIR) filters have infinitely many nonzero terms.
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2.1.3 Discrete-time Fourier transform
In this subsection, different ways to analyze sequences and discrete-time systems
are described. First, the discrete-time Fourier transform (DTFT) definition is pre-
sented. It represent the Fourier transform for infinite-length discrete-time signals,
and it is a 2π -periodic function of frequency ω ∈ R that is written as X(ejω). Its
variation to the case of finite length sequences is explained below.
This transforms aim to bring to light hidden aspects of the signal or to reduce the
computational cost of certain operations. Another purpose is to study the effects
of a certain transformation to avoid problems of transmission of the information.
This last one will be subsequently deepened.
Let’s consider a complex exponential sequence

vn = ejωn, n ∈ Z,

where ω is any real number. The quantity ω is called the angular frequency. Let’s
consider a convolution operatorH and assume that its impulse response is in `1(Z).
Under these hypothesis the convolution h ∗ v assumes a particular form.

(Hv)n = (h ∗ v)n
=
∑
k∈Z

vn−khk

=
∑
k∈Z

ejω(n−k)hk

=
∑
k∈Z

hke
−jωkejωn

= λωvn where λω :=
∑
k∈Z

hke
−jωk

This proves that applying H to the complex exponential, a scalar is returned. It
seems that v is an eigensequence of H with the corresponding eigenvalue λω.

Definition 2.13 DTFT. The discrete-time Fourier transform of a sequence x is

X(ejω) =
∑
n∈Z

xne
−jωn, ω ∈ R.

It exists if the above summation converges for all ω ∈ R and it is called spectrum
of x. The inverse DTFT of a 2π-periodic function X(ejω) is

xn = 1
2π

∫ +π

−π
X(ejω)ejωndω, n ∈ Z.

When the DTFT exists, the DTFT pair can be represented as

xn
DTFT←−−→ X(e−jω).
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2.1 – Time-frequency analysis

These concepts are then expandable to the case of finished or periodic signals in
the following way. Let’s consider a finite length signal (x0, . . . , xN−1) and extend
to zero by obtaining the following (. . . , 0, x0, . . . , xN−1, 0, . . . ). In this way, it is
possible to apply the DTFT by obtaining

N−1∑
n=0

xne
−jωn = X(ejω).

However, in this case, there are N degrees of freedom and so, it can be consid-
ered a function w.r.t. ω. In general, if one sets the degree N , the dimension of the
space is also set.
Under this logic, if N equally spaced point in the interval (0,2π) are set, the DTFT
is evaluated only in for those points as

Xk := X(ejωk) =
N−1∑
n=0

xne
−j 2π

N
kn, where k = 0, . . . , N − 1. (2.3)

It also possible to indicate the complex number e−j 2π
N as WN . It will be used in

the following definition.

Definition 2.14 DFT. The discrete Fourier transform of a length-N sequence x
is

Xk = (Fx)k =
N−1∑
n=0

xnW
kn
N , k ∈ {0,1, . . . , N − 1}.

It is called spectrum of x. The inverse DFT of a length-N sequence x is

xn = 1
N

(F ∗X)n = 1
N

N−1∑
k=0

XkW
−kn
N , n ∈ {0,1, . . . , N − 1}.

The DFT pair can be represented as

xn
DFT←−→ Xk.

Within the definition, we have introduced F : CN → CN to represent the linear
DFT operator. In the same way, one can define the discrete cosine transform
(DCT), which changes form depending on the scale factor and real basis considered.
The type II DCT, involved in the following chapter, is defined as follows

Xk =
N−1∑
n=0

xn cos
[
πk

N

(
n+ 1

2

)]
, k ∈ {0,1, . . . , N − 1}.

The inverse transform in this case is
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xk = 2
N

N−1∑
n=0

Xn cos
[
πk

N

(
n+ 1

2

)]
, k ∈ {0,1, . . . , N − 1}.

In this section, the computational aspect of the transformation methods are
not analyzed, however, all the implemented algorithms are based on the articles
[Mak80, CT65].

2.1.4 Multirate systems
Multirate systems are combinations of filters and another category of operators in
time-frequency theory that will be defined ahead: downsampling or upsampling.
Let’s start with the definition of the downsampling function of degree k in the case
of a signal of infinite length, which will be indicated with the D letter.

Dn : l2(Z)→ l2(Z)
xn → xkn

The matrix that represents this transformation is an identity matrix whose lines
are translated by k units and seen from another point of view the operator maps

(. . . , x−1, x0, x1, . . . )
Dk−→ (. . . , x−k, x0, xk, . . . ).

The upsampling function can be defined with the same logic, but since it has
not been applied in the following chapter, it will not be further investigated. The
operator described is not a filter because it is not shift-invariant and it may present
some critical issues. The most important is the elimination of frequencies due to
the sampling activity.
An important mathematical result in this context is the Nyquist-Shannon sampling
theorem. In the case of finite band signals, this states that in order to sample a
signal without loss of information, it must be sampled at a frequency at least twice
the highest frequency among all the informative spectral components (also called
Nyquist frequency).
If this theorem is not respected, one can incur the aliasing issue, that is the cancel-
lation or the distortion of some frequencies important for the signal reconstruction.
More formally the theorem for digital signals can be expressed as follows. Let
BL(− π

N
, π
N

) a limited band sequence defined as follows.

BL
(
− π
N
,
π

N

)
:=
{
x ∈ l2(Z) : X(ejw) = 0, π

N
≤ |w| ≤ π

}
Let x ∈ l2(Z), its orthogonal projection in BL(− π

N
, π
N

) is

Px =
∑
k∈Z

ykTKNg, where yk =< x, TKNg >l2 .
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If x ∈ BL(− π
N
, π
N

), then

xn =
∑
k∈Z

xKNsinc
(
π

N
(n−KN)

)
.

In most real cases, this theorem is not respected. To overcome the problem of
aliasing, it is necessary to define a multi-rate system.
In the downsampling case, the optimal system is a composition of an anti-aliasing
filter before the downsampling operation.
Let x be the incoming signal, then the response signal y can be obtained in the
following way to avoid/reduce the aliasing phenomenon.

u = G · x = x ∗ g
y = Dk · u = Dk ·G · x

In the system, the G represents a low-pass filter, and then, the k-order downsam-
pling operator Dk is applied. A low-pass filter allows keeping only the frequencies
that will be retained after downsampling and so, in this way, aliasing is avoided.

In the applications proposed in the next chapter, two aforementioned systems
have been applied. The first is a method that is based on the Fourier transform
and uses a pre-filtering with an order 8 Chebyshev type I filter. The second one
is based on the cosine transform and exploit an ideal low pass filter. The ideal
low-pass filter truncates the frequencies that cause the aliasing and the second
filter is one of the most used to avoid the aliasing phenomenon. The construction
of the two filters is not reported as it is not in the objectives of the thesis but
in [VKG14], theoretical clarifications are reported.
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2.2 Basic elements for time series study
Many of the theoretical contributions in this section have been taken from the
following book and articles on time series [MC09, CC08].
To fully understand the concept of time series it is necessary to start from the
definitions of stochastic processes in the theory of probability.

Definition 2.15 A stochastic process is a collection of random variables

{Xt}t∈T (2.4)

defined on a probability space (Ω,F ,P).

The t index is usually called time. Each random variable Xt assumes values,
called states, in a set E called space of the states of the process. In particular,
since each random variable is defined as a function by a sample space S to the real
set, a stochastic process is a set of functions

{Xt,s}t∈T,s∈S.

If one fixes t = t0 the function Xt0,s, is a random variable on the sample space S.
Likewise, if one fixes a particular point s0 ∈ S, the function Xt,s0 is a realization
of the stochastic process.
According to the type of domain of s and t different families of random variables
are defined.

• The space of the states E can be discrete or continuous. In the first case
(discrete space) the stochastic process is also called chain and space E ∈
{0,1,2, . . . }. In the second case, the set of values assumed by the random
variable is uncountable.

• The time index can be discrete or continuous. A stochastic process at a
discrete-time is also called stochastic sequence and it is denoted as {Xn}t∈T ,
where the T set is countable. In this case, the state changes only at certain
times. On the contrary, if the state changes occur at any time (in a finite
or infinite set of real intervals), then you have a continuous-time process,
denoted as {Xt}t∈T .

For the rest of the thesis, all processes occur at discrete moments but the range
of states has great variability. A realization of the stochastic process Xt will be
called xt but we will refer with the same name "time-series" both to the stochastic
variable and to the realization.
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2.2.1 Autocorrelation and partial autocorrelation
Key concepts for the following discussion are the mean, variance, and autocovari-
ance functions of the stochastic process Xt. These are defined in the following
way.

Definition 2.16 Let {Xt} be a time series with E(X2
t ) <∞. The mean function

of {Xt} is
µX(t) := E(Xt) ∀ t ∈ T. (2.5)

The covariance function of {Xt} is

γX(r, s) := Cov(Xr, Xs) = E [(Xr − µX(r)) (Xs − µX(s))] ∀ r, s ∈ T. (2.6)

Definition 2.17 Let {Xt} be a time series and let FX(xt1+h, . . . , xtn+h) represent
the cumulative distribution function of the unconditional 1 joint distribution of
{Xt} at times t1 + h, . . . , tn + h. Then, {Xt} is said to be strictly stationary if

FX(xt1+h, . . . , xtn+h) = FX(xt1 , . . . , xtn) ∀h, t1, . . . , tn ∈ T,∀n ∈ N (2.7)

A weak concept of stationarity is now introduced.

Definition 2.18 A time series {Xt} is (weakly) stationary if

• µX(t) is independent of t;

• γX(t+ h, t) is independent of t for each h.

Whenever the term stationarity is used, it shall mean weakly stationary as in
[Definition 2.18], unless otherwise specified. To understand how much information
occurs cyclically over time the following function is considered.

Definition 2.19 Let {Xt} be a stationary time series. The autocovariance func-
tion (ACVF) of {Xt} at lag h is

γX(h) := γX(h,0) = γX(t+ h, t) = Cov(Xt+h, Xt) ∀ t ∈ T. (2.8)

The autocorrelation function (ACF) of {Xt} at lag h is

ρX(h) := γX(h)
γX(0) = Cor(Xt+h, Xt) ∀ t ∈ T. (2.9)

1This means that the distribution has no reference to any particular starting value
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These definitions, in particular the last one, allows obtaining the recurrent
patterns within a given time series. However in practical cases, one will always have
an observed historical series of finite lengths. To adapt the previous function to
these cases, it is necessary to define the sample autocorrelation function. This is a
good approximation of the autocorrelation function, in case the series is stationary.
A comment is required at this point. The autocorrelation function (sample or not)
is also applicable to non-stationary series. For series that are not stationary, the
shape of the autocorrelation function can be analyzed and it can be used as a
discrimination factor. For example in the case of the series with a trend, the
downward movement of the autocorrelation function will be slower than other
cases.
Now let’s define the sampled version of the functions previously seen.

Definition 2.20 Let x1, . . . , xn be observations of a time series. The sample mean
of x1, . . . , xn is

x := 1
n

n∑
t=1

xt. (2.10)

The sample autocovariance function is

γ̂(h) := 1
n

n−|h|∑
t=1

(xt+|h| − x)(xt − x), −n < h < n. (2.11)

The sample autocorrelation function is

ρ̂(h) := γ̂(h)
γ̂(0) , −n < h < n. (2.12)

Finally the definition of partial autocorrelation is mentioned. The partial auto-
correlation function measures the correlation between the series (xt) and its lagged
version (xt−h) without taking into account the correlation with eh middle values
(xt+1, . . . , xt−(h−1)).

2.2.2 Correlation
Another fundamental concept is introduced. The correlation is a dimensionless
measurement, which expresses how linearly two variables co-variate. In fact, it is a
coefficient that belongs to the interval [−1, 1] and it gives the following information.

• a correlation of 1 indicates exact positive linear association;

• a correlation of 0 indicates no linear association;

• a correlation of −1 indicates exact negative linear association.
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To define this function, the previous process is not repeated but the formulas are
directly reported as an extension of the autocorrelation case. In fact, if before the
comparison was made on the same variable at different lags, now the comparison
is made between two different variables.
Let’s start with the definition of covariance between two random variables Xt and
Yt . It will be indicated with δ only to be not confused with the autocorrelation
function.

δ(Xt, Yt) := E[(Xt − µX(t))(Yt − µY (t))]
σ(Xt)σ(Yt)

. (2.13)

Starting from this definition and extending the concept to the case where Xt and
Yt are two random variables referring to two time-series, the formula of the sample
correlation becomes the following.

Definition 2.21 Let x1, . . . , xn and y1, . . . , yn be observations of two time series.
The sample correlation is

δ̂(x, y) :=
∑
t(xt − x)(yt − y)√∑

t(xt − x)2∑
t(yt − y)2

. (2.14)

2.2.3 The classical decomposition model
This last definition will be used in the next chapter to understand what signal
is really indispensable. In this way, it will be possible to have a dataset without
redundancies.

The autocorrelation, instead, will be exploited to understand which signals are
characterized by seasonality. This term refers to those systematic components in
the time inside a time series. Formally, in fact, the seasonality of order k is the
correlation between the i-th and the (i − k)-th element. In fact, looking at the
correlogram, that is the graph which on the x-axis has the lags and represents the
autocorrelations for each of them, it is possible to identify recurrent patterns for
signals marked by seasonal patterns.

Another element that can characterize a time series is the trend, which is long-
term behavior that assumes. In general, the trend is the component of increasing
or decreasing of the time series. A very effective method to detect long-term be-
havior is the "moving average" or the "moving median". The methods are simple
but effective; in a nutshell, they evaluate a mean/median value within a scrolling
window that goes along the signal.

Now, let’s see how to decompose a time-series i.e. with respect to their trend
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and seasonality components. This model is also known as "the classical decompo-
sition model".

Xt = Tt + St + It. (2.15)

This model decomposes the process through three variables. It reports the
trend component Tt that is a very smooth function that represents the long-term
progression, a function with a known period referred to as the seasonal component
(St), while It is the variable that represents the noise, the irregular component.
The second model that is reported is the multiplicative model, where the compo-
nents are the same but the relationship changes.

Xt = Tt · St · It. (2.16)

2.3 Motif identification
In this section, an algorithm to find recurrent time-series patterns based on the
matrix profile will be described; its name is VALMOD. As mentioned in the intro-
ductory chapter, a not-overlapped fixed window method will be proposed in the
following chapter, and therefore it is necessary to understand what is the optimal
window length by studying the probability of finding all different window lengths.
In fact, the dataset is completely unlabeled and domain experts can only specify
a range of lengths that could capture the variations and behaviors in time series
windows.
Originally, the algorithm is used for different purposes, in fact, VALMOD aims to
find all motifs in a given range of lengths within a data series very effectively. It is
important to underline the last adjective because the datasets that will be analyzed
during the applications of this chapter are very large, so, a scalable method was
necessary. The chapter is based on [LZPK18a, LZPK18b]. However, in the section
are not reported the details of the above-mentioned articles but an understanding
and the basic ideas are reported.
From now on, the notation will change compared to before but the following defi-
nitions will clarify the context.

Definition 2.22 Data series. A data series T ∈ R is a sequence of n real-valued
numbers ti ∈ R.

But in general, the section will investigate finding series subsequences.

Definition 2.23 Subsequence. A subsequence Ti,l ∈ Rl of a data series T, is a
continuous subset of the values from T of length l starting from position i.
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2.3 – Motif identification

Given a particular subsequence, the goal will be to find his pair with minimum
distance.

Definition 2.24 Data series motif pair. Ta,l and Tb,l is a motif pair iff dist(Ta,l, Tb,l) ≤
dist(Ti,l, Tj,l)∀i, j ∈ [1, 2, ..., n − l + 1] where a /= b and i /= j; dist evaluate the
z-normalized euclidean distance between the two input subsequences.

It is important to note that if one deletes the motif pair, then the second one
will have the best result and thus become the new motif pair. This way, as result,
one obtains an ordered list of pairs of length l. Let’s always assume that n is the
length of the starting series. One method to optimize the detection of motif pairs
is to organize the distances of each subsequence with all the others in a matrix
called matrix profile. From this derives the following two definitions.

Definition 2.25 Distance profile. Given a data series T, the distance profile
D ∈ R(n−l+1) with respect to a subsequence Ti,l is a vector that stores dist(Ti,l, Tj,l) ∀ j ∈
[1, 2, ..., n− l + 1] where i /= j.

Definition 2.26 Matrix profile. Amatrix profile (MP ) is a series of z-normalized
Euclidean distance between each subsequence and its nearest neighbor. MP ∈
R(n−l+1) and the data series motif is identified through the two lowest values is it.

To avoid trivial matches, the exclusion zone concept is used, according to which
a region before and after a certain pattern is ignored. In this way, a pattern can’t
match itself or an almost identical series.
Once these definitions are given, it is useful to formalize the first problem that the
algorithm solves. In fact, it aims to find all the motif pairs of all the lengths in a
certain range that can be found in T. So, for all l ∈ [lmin, . . . , lmax].
The second problem that the algorithm solves is based on the concept of motif set.
It is a definition of radius with respect to a motif pair {Ta,l, Tb,l}. In fact, a motif
set Slr is defined as

Slr = {Ti,l|dist(Ti,l, Tb,l) < r ∨ dist(Ti,l, Ta,l) < r}.

The cardinality of Slr is called the frequency of the motif set.
In this way it is possible to define another problem that Valmod solves, that is the
possibility to find Variable-Length Motif Sets. This is defined as

S∗ = {Slr|Slris a motif set, lmin ≤ l ≤ lmax}.

The only restriction is that each subsequence can be included into a single motif
set. More formally,

Slr, S
l
r ∈ S∗ =⇒ Slr ∩ Slr = ∅.
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In the next chapter, we will use this algorithm for the detection of the motif sets.
Then, the result that will be considered is the optimal length of l∗ which identifies
the Motif Sets with the higher cardinality.

To achieve the two objectives called up during the introduction, VALMOD starts
by calculating the matrix profile for the minimum length in the range considered
[lmin, lmax]. The intuition that leads to a significant reduction in the calculation
of subsequent measurements is as follows. Note that if the lmin-length motif pair
is Ti,lmin , Tj,lmin , then the motif Ti,lmin+1, Tj,lmin+1 will most likely be a motif pair
for length lmin + 1. However, this is not always true, especially when l grows.
However, it can be used as an initial intuition.

Figure 2.1. (Top distance profile) Ranking by true distance, based on Euclidean
Distance, bring to a different ranking when l grows. (Bottom distance profile)
Ranking order is preserved thanks to the Lower Bounds of Euclidean Distance.

In fact, although the distance profile values may change, a derived distance
profile preserves the rank property. This is the lower bound distance profile.
To get a rough idea, this collects the lower bound distance between Ti,l+k and Tj,l+k
, ∀k ∈ [1,2,3, . . . ] by knowing the one between Ti,l and Tj,l. This instrument will
avoid many calculations and thus achieve a computationally efficient method to
meet the two objectives mentioned above.
A more rigorous description of the creation of the lower bound distance profile is
provided while the six algorithms on which VALMOD are fully described in the
paper [LZPK18b].
From now on, the mean and variance of the subsequence Tx,y will be indicated as
µx,y and σx,y.
The problem can therefore be reformulated as follows. Knowing the distance dli,j
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between Ti,l and Tj,l, the objective is to estimate a distance between Ti,l+k and
Tj,l+k. Last k values of Ti,l+k, both µi,l+k and σi,l+k, are unknown and can thus be
considered as variables.

dl+ki,j ≤ min
µi,l+k,σi,l+k

√√√√√ l∑
p=1

(
ti+p−1 − µi,l+k

σi,l+k
− tj+p−1 − µj,l+k

σj,l+k

)2

(2.17)

min
µ′,σ′

σj,l
σj,l+k

√√√√√ l∑
p=1

(
ti+p−1 − µ′

σ′
− tj+p−1 − µj,l

σj,l

)2

(2.18)

The minimum value which is obtained from [Equation 2.17] can be set as the
minimum possible LB(dl+ki,j ). It can be solved by differentiating and imposing
equal to zero.

LB(dl+ki,j )

√
l
σj,l
σj,l+k

, if qi,j ≤ 0;
σj,l
σj,l+k

√
l(i− q2

i,j) otherwise.
(2.19)

where qi,j =
∑l
p=1

(tj+p−1ti+p−1)
l

− µi,lµj,l
σi,lσj,l

.

Once the LBs have been ranked in an ascending order, one get the ranked lower
bound distance profile

LBranked(Dl+k
l ) = LB(dl+kr1,j), LB(dl+kr1,j), . . . , LB(dl+krn−l−k+1,j

),

where LB(dl+kr1,j) ≤ LB(dl+kr1,j) ≤ · · · ≤ LB(dl+krn−l−k+1,j
).

The ranked lower bound distance profile is needed to speed the calculations. From
now on, intuition will be provided.

A small number p is set and for each j, LB(dl+krp,j) > distBSF inequality is
verified. Where distBSF is the distance of the best-so-far (BSF) pair of motifs.
If the inequality hold true, it is necessary to evaluate only dl+kr1,j, d

l+k
r2,j, . . . , d

l+k
rp−1,j.

Otherwise it is necessary to compute all elements of Dl+k
j . Also distBSF is updated

when a smaller distance is found.
Thanks to this approach, to find the motif of length l+k, at least O(np) operations
are needed.
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Chapter 3

Multivariate time-series
preparation

Data preparation is crucial to understand which part of the dataset is most useful
for the analysis. In this section, however, some transformations of the dataset will
be discussed without drawing a clear and definitive conclusion on the most suit-
able pre-processing method for the analysis. In fact, as said in the introduction,
the different pre-processed datasets will be compared by analyzing the clustering
results, explained in the next part of the thesis.

So, the result obtained at the end of the chapter will be a set of datasets elab-
orated with different aggregations/granularities, which will be processed by the
algorithms in the next part of the work.

3.1 Row data
All the data sent by the machine to the Tierra servers are text files weighing about
10Mb. For each line, there are a series of hexadecimal codes indicating the times-
tamp, the SPN (i.e. the signal identification code as explained in the introduction),
and the measurement collected. From this file, it was then necessary to translate
the signals into their alphanumeric understandable version.

All SPN codes refer to standard CAN signal messages only up to the number
10000. It means that any vehicle using the protocol mentioned has a unique asso-
ciation between an SPN code and its meaning in terms of the signal it refers to,
only up to SPN 10000. All other SPNs are custom. Therefore they depend on
customer specifications and they are often subject to corporate restrictions.
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In this case, the company vehicle had a summary file of all the SPN codes which
was used for the translation.
The interpreted data were stored in a single compact file and a preliminary analysis
was carried out.

3.1.1 Preliminary analysis

The dataset is composed of 20 correctly interpreted SPNs and the number of
signals for each one varies a lot as shown in [Figure 3.1].

Figure 3.1. Number of messages for each SPN in the entire dataset.

The data has been collected between 7 November 2019 and 15 April 2020,
but only 40 days within this period have been used to actively record them. A
schematic picture of the amount of data collected for each day is given in [Fig-
ure 3.2].
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Figure 3.2. Number of signals per working day.

The dataset does not containNaN values or missing values, however, it contains
duplicate lines that have been removed. Moreover, the dataset had some inconsis-
tencies: because of the high frequency of the signals, in some cases, two different
values for the same combination (SPN, timestamp) were recorded. In these cases,
because there were no significant discrepancies between the two values, the mean
value was considered. Afterward, the signals that had a constant value, and those
that were completely out of the feasible range have been removed. In conclusion
13 SPN on which to begin the preliminary analysis have been obtained.

3.1.2 Rate detection and work cycles
Since the data was raw and there was no additional information on the machine’s
operation, one of the objectives of the pre-processing analysis was to identify the
sampling rate of each SPN and the work cycles. The sampling rate is the quite
constant rate at which the individual components of the vehicle send signals to
the control unit. To calculate it, a new feature was calculated: the time difference
between one observation and the following for each SPN. The average value and the
median of the frequency of these features were found (one for each SPN). Besides,
by qualitatively examining the time difference distributions, it was found that the
majority of the time differences coincided with the average and the median of the
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distribution. The main reasons why some time differences did not coincide with
these values have been identified.

• A signal delay in the control unit of some milliseconds.

• An anomalous interruption of the signal.

• The vehicle turned off.

However, since the distribution of these features was very concentrated in the
median (which coincides with the average value in all SPNs), this value has been
considered as the signal acquisition rate for each SPN (see [Figure 3.3]).

Figure 3.3. In blue, the bars representing the number of occurrences of a certain
time difference between two consecutive observations of a specific signal: the
number 94. This is just an example since all SPNs report the same graph.

The purpose of finding the original sampling rates is the following. The average
operator and the downsampling operators, as intended in the theory chapter, work
very well when the signal is sampled at constant rates. Less intuitively, one could
treat the signal with other techniques to preserve the sampling irregularities, but
these alternative methods have been avoided for two reasons. From the prelimi-
nary analysis and thanks to the comments of domain experts, preserving all the
information would have been useless for the final goal. Besides, the vehicle studied
in this work is not so precise to require such peculiar preservation of information.
To obtain a regularized signal, therefore, it was necessary to center the observa-
tions and align them in a homogeneous time axis. This process has been carried
out, without complications, for every SPN and if one observation overlapped with
the next because it was incorrectly sampled, then the average with the following
observation was taken. This last case, however, has happened a few times and
does not deserve to be deepened. In the conclusion of this part, all signals have
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been aligned at a constant clock.

As announced at the beginning, the second goal of this part is to find the "work
cycles" of the vehicle. It means a period of time in which the machine is working
continuously. It was found by considering a single significative SPN: the engine
coolant temperature [Figure 3.4].

Figure 3.4. Plot of SPN 110 (coolant temperature) over time.

This signal represents the cooling liquid temperature trend and it helped to
detect the moment of inactivity from work periods. This signal has a shape that
strongly depends on the working cycles, as the machine heats up and cools down
according to the use of the vehicle. Therefore a temperature threshold (below
which the vehicle is considered to be in a heating phase) has been set by do-
main experts and it has been exploited to delimit the work cycles [Figure 3.5] by
highlighting the moment of stability of this signal.

3.2 Multivariate time series alignment and ag-
gregation

This section is dedicated to the procedure used for the creation of the final datasets
which will be examined in the next part.
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Figure 3.5. Blue bars represent the length of the working cycles identified. The
yellow horizontal dotted lines represent the separation between days. This is to
emphasize that, within one working day, several work cycles have been identified.

It collects the experimental results obtained from the tests carried out on relevant
signals to the thesis purpose. In fact, the aggregation methods and the granularity
has been chosen through the analysis of the results of the following experiments.
Some other consideration has been suggested by continuous comparisons with do-
main experts.

3.2.1 Downsampling and aggregation
This part is dedicated to the choice of the best aggregation and downsampling
methods that have been used to preprocess the dataset. The theoretical details on
which this part is based are all reported in [Section 2.1].

Three methods have been compared: aggregation by averaging and downsampling
by two transforms, one based on the Fourier transform and the other on the Cosine
transform. The three methods obtain the same purpose in terms of point aggre-
gation and signal synthesis, however, they achieve the purpose in a completely
different way. By using an average operator, the signal is synthesized in such a
way that the information is lost for sure. In the case of downsampling, on the other
hand, it is known which frequency of the starting signal will be lost and which one
will be preserved. In extremely regular cases, all the information could be retained
(see [Subsection 2.1.4]). The synthesis of information through the sampling of the
moving average has been used in the following analyses because it is a type of
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aggregation used to pre-process signals by the company Tierra. So, to compare
this method with one based on transforms, it was necessary to understand which
of the two selected transforms was more suitable for the signals studied.
The first one uses a grade 8 Chebichec polynomial anti-aliasing filter. The second
is based on the cosine transform. In the second method, the simple truncation
of the expanded series at the appropriate level allows avoiding the aliasing phe-
nomenon.

Regarding the level of aggregation, the following considerations have been made.
The signal sampling rates range from 50Hz up to 1Hz. As mentioned in the previ-
ous section, the data obtained from the vehicle are noisy, and sometimes this high
frequency is not necessary for an agricultural vehicle, therefore an aggregation or
downsampling leads to an improvement since the signal is seen at a lower level of
detail and these operators can smooth possible errors. However, to find a min-
imum level of detail, optimal to improve the signal without capturing noises, it
was needed a comparison with the domain expert, who suggested to start from a
granularity of 0.5Hz. The purpose to fix the optimal maximum level of aggregation
was not to flatten the signal and to allow correct identification of the shape that
characterizes the signal also after the smoothing operation. Experimentally, it was
obtained that the optimal upper level for this purpose is 0.25Hz. In conclusion,
the following levels of aggregation have been considered for the rest of the analysis:
2Hz, 1Hz, 0.5Hz e 0.25Hz.

The first comparison result between downsampling methods is quantitative. In
fact, the comparison was made using the DTW measurement between downsam-
pled series with the two transforms and the original series (see [Section 4.1.1]).
The distance between the original series and the respective downsampled signals
has been evaluated for all levels of aggregation and both methods. In this way, an
objective measure of goodness that could be compared was evaluated.

The result obtained was ambiguous. There was no better outstanding method.
In fact, even if the method that uses the Fourier transform seemed to perform bet-
ter, it is not much better than the other one. An example summary table about
the signal SPN 524 is reported. Two reference work cycles have been taken as an
example, the longest (in terms of the number of milliseconds that ranges) and one
of the shortest.
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dimension work cycle frequency (HZ) distance Fourier distance Cosine
large 2 32.16 65.59
large 1 402.04 422.81
large 0.5 441.70 457.38
large 0.25 509.55 538.59
small 2 230.36 589.65
small 1 8935.91 6468.68
small 0.5 9076.24 9333.66
small 0.25 7323.38 8601.01

Table 3.1. Table summarizing the results of distance between the two work cycles
(large and small) and downsampled signals. The second column shows the fre-
quency of the result signal after downsampling procedure. The last two columns
are the similarity measurements.

Excluding one case, the comparison of the signal processed with the Fourier
method gives better results in this situation, but also other signals give quite sim-
ilar outputs.
The first consideration is that the results of the Fourier method are better but not
significantly, the second consideration is that it is not always verified.

Since these results did not give a clear and well-defined choice, it was necessary
to switch to a graphical and subjective comparison of the results obtained. The
comparison that was made concerned the graphs of the reconstructed series at the
same levels of granularity but with the two aggregation methods. In this way, it
was possible to discover some added criticality for the analysis. It was noticed that
the downsampled signal through the Cosine transform had the addition of oscilla-
tions near to the sudden changes of the signal, which can be easily explained from
the theoretical point of view, as no filter was applied in this procedure. This was
critical for subsequent analysis in which the similarities between time windows are
identified by the occurrence of repeated patterns and motifs. For this reason, the
Fourier-based method was preferred, where this criticality is not evident.

3.2.2 Time series optimal window
So far, the most suitable granularity and aggregation/downsampling methods have
been identified, but to conduct the next analysis it is necessary to set two impor-
tant parameters: the window length and window shift (see [Section 2.2]). The
window shift determines the time-series clustering method. In this case, since the
data are used for mining purposes a not-overlapped (jumping) method seemed
more appropriate for the dataset division in windows.
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To choose the optimal length of the window, two scenarios were possible: a
Domain-driven or Data-driven approach. For the final goal of the analysis, how-
ever, it seemed more appropriate to use a fixed window length. In fact, given
future applications in the real-time recognition of states, using a domain-driven
approach considerable complications could occur. With a fixed-length, instead,
data would be automatically packaged in windows without the need for previous
calculations. To obtain the right length of the time window, a method based on
the Matrix profile and Motif Discovery concept has been used: VALMOD.
As explained in the appropriate section (see [Section 2.3]) this method is used for
a different purpose. It identifies all motif in a given time window length interval.
In this case, it is used to compare the number of motif occurrences for each time
length in a given range to select the most appropriate window length to be used in
the time series segmentation. To understand which is the right interval of lengths
to consider, a domain expert was consulted. Based on the characteristics of the
machines involved and based on the purpose of the analysis, an interval of possible
lengths was identified: from 2 to 10 minutes. Before proceeding with the analysis,
then, the cycles with a duration of less than 10 minutes were discarded from the
analysis, as this was the minimum length of a window in the upper extreme case.
The optimal length found through the analysis of the VALMOD algorithm results
was 2 minutes, considering all the datasets.
At the end of this process, the data was transformed in the following way. The
eight datasets (four granularity times two aggregations/downsampling methods)
were built. Each column of the dataset represents an SPN signal and the times-
tamps identify the lines, aligned according to the unique clock. A total of 2332
windows was obtained.

Figure 3.6. Head of the dataset sampled with a granularity of 1Hz.
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3.3 Exploratory data analysis

In this section, some preliminary analyses are carried out to identify the most
useful series for the thesis. First, the autocorrelation was calculated to understand
the patterns inside the single series. The values that can assume this function are
between −1 and 1. In these extreme cases, high autocorrelation is present, while
a value towards the zero indicates that there is no autocorrelation. Among the 13
SPN, three categories have been found according to the autocorrelation function.
A graph of these categories is reported in [Figure 3.7]. The analysis that follows is
based on the aggregated dataset with the average method and with a granularity
of 1Hz. In fact, comparing the results obtained with the other datasets, significant
differences did not emerge. Therefore the analysis is to be considered valid without
loss of generality for all datasets.

Figure 3.7. The three "types" of SPN signal autocorrelation represented by SPN
182, 183, 975. The first shape represents only SPN 182 and 30694 and it indi-
cates a constantly increasing trend. The second graph reflects a trend without
autocorrelation, being almost constantly at zero levels. The third is the typical
trend of almost constant signals with peaks in certain areas. These lead to very
high autocorrelation at those points.
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The autocorrelation curve of the SPN 182, which represents the first category, is
smooth and decreases steadily. If one could represent the autocorrelation for lags
over 200000, it will finally rise to zero. This autocorrelation trend is linked to an
increasing trend in the time-domain representation [Figure 3.8]. In this case, SPN
182 represents the total fuel consumed and therefore the level rises constantly.
The two SPNs that present this particular form (SPN 182 and 30694) will be an-
alyzed later to understand if they could be useful for further analysis.

Figure 3.8. On top, the time-domain representation of SPN 182. In the cen-
ter, the same signal after the "Trend Elimination by Differencing" technique.
At the bottom, the same graph proposed in central position, plotted without
the extremely large values.

The second group is represented by SPN 183 and presents an autocorrelation
graph that starts from value 1 and then, descends very quickly to zero, remaining
almost constant for the rest of the lags. The majority of SPNs belong to this
category and in the time domain, they appear as random series. These signals
present neither trend nor seasonality and therefore are considered in the follow-
ing analysis without other pre-processing steps. For this category also the partial
autocorrelation has been observed and a result that agrees with the previous was
obtained. In fact, the curve goes down to zero even faster and then remains stable
for the rest of the lags [Figure 3.9].

The third category represented by SPN 975 presents sudden and sporadic vari-
ations in the time domain. However, most of the time, this category of signals
remains constant on a certain value.
The vehicle considered, as mentioned above, is about 12 years old, and some com-
ponents could not work well anymore. Probably, these series are the result of
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Figure 3.9. Partial correlation graph of the SPN 183.

52



3.3 – Exploratory data analysis

malfunctions. The autocorrelation graph in these cases detects a very high cor-
relation in the points where peaks appear. These SPNs were removed from the
dataset for further analysis to avoid errors and for the impossibility to identify
significant behaviors.

At this point, only the most useful portion of the dataset has been selected.
In fact, all SPNs that involve external components of the vehicle and that do not
compromise the use of the engine, such as the position of the rear trailer hitch
(SPN 30694), have been removed from the dataset.
Moreover, the SPN 182, representative of the first category of autocorrelation
analysis, has been removed due to its low significance. Let’s look at its graph
[Figure 3.8] after the trend has been removed through the "Trend Elimination by
Differencing" method. Many negative values indicate a bad functioning of the
float that keeps track of the fuel level. Moreover, even after removing the negative
values, the transformed signal does not appear significant for the analysis, not
presenting relevant variations.
The last signal to delete before continuing is the number 110, the one representing
the engine coolant temperature. In fact, although fundamental for the analysis of
the identification of work cycles, it has a trivial behavior throughout its duration.
At the beginning of the work cycle, the temperature rises, and then during the
work cycle, it stabilizes at a fixed value, without generating any kind of useful
information (see [Figure 3.10]).

The next step was the analysis of the correlation between the remaining SPNs.
Before doing this, however, it was appropriate to conduct a statistical test to
verify the stationarity of the SPNs; the Augmented Dickey-Fuller test. The test
confirmed that it was not necessary to conduct further processes to the SPNs con-
sidered.
The correlation between the remaining SPNs has been considered and a strong
correlation between 183 and 190 has been observed. The 183 represents the in-
stantaneous fuel consumption while the 190 represents the engine speed. There-
fore, the correlation is easily explained by the fact that an increase in engine speed
causes an increase in instantaneous fuel consumption. The variable 183 has been
removed from the dataset.
The variables left at the end of this chapter are the following.

• 94. The fuel delivery pressure in the vehicle engine. This parameter is influ-
enced by engine speed but more generally considers the fuel requirements to
carry out all the activities that the vehicle is conducting.

• 190. The signal represents the engine speed, which is essential to understand
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Figure 3.10. Four windows of the SPN 110, from when the temperature of the
liquid starts to rise faster until it becomes constant at the maximum level. The
0, 1, 6, 11 windows are represented in sequence. This example reinforces the
hypothesis of signal exclusion. In fact, it has a trivial behavior for the whole
duration; every time a work cycle starts, it goes up for about 15 minutes with a
staircase trend, and then, it stabilizes at a constant value.
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the speed of the vehicle and the type of activity it has to perform.

• 524. This variable represents the vehicle’s gears. It will have values between
1 and 5 as this vehicle has 5 gears.

Finally, it is reported a graph with all the SPNs signals. The shown dataset is
always the one aggregated by average with a granularity of 1 Hz [Figure 3.11].
This is the representation for the rest of the thesis; blue points represent the single
SPN messages, while the orange line connects the points.

Figure 3.11. The three SPN 94, 190, 524 represented in the time-domain.
On the left, it is represented the entire time domain, while on the right,
some zooms are shown.
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Chapter 4

Multivariate time series
clustering techniques

This chapter collects all the mathematical tools that will be used in the next chap-
ter. In particular, the first part deals with the most common methods to establish
how similar two time-series are, based on their shapes: Shape-Based Distance and
the Dynamic Time Warping. These allow understanding the similarity of two se-
ries considering all the shifts. Then, clustering algorithm techniques are reported.
These will be analyzed both from an algorithmic and theoretical point of view.

4.1 Distance measure for Time-series clustering
As said above, this section is dedicated to the two main similarity measures ex-
ploited to perform the clustering algorithms. In fact, the classic Euclidean or
Manhattan distances are not sufficient in the time-series context; very often the
shapes that characterize a certain time-series window do not overlap perfectly in
time with the ones in similar windows; the reason is the time shift. With the
methods described below this limit is overcome.

4.1.1 Dynamic Time Warping
This part is dedicated to an in-depth study of Dynamic Time Warping (DTW),
a dissimilarity measure that helps to find disparities between time series more
effectively than the simple Euclidean point distance. Part of the concepts is based
on the [Mül07].
The invention and use of DTW stem from the need to measure distances between
time series that are not aligned or even of different lengths. Originally it was used
to compare sequences in speech recognition and subsequently DTW was applied in
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all contexts with time-dependent data. But now, let’s deep into the technicalities.
As said, the considered time series can also be of different length, so let’s consider
two series X := (x1, . . . , xN) and Y := (y1, . . . , yM) where N,M ∈ N. These can
be time-series or more generally sequences sampled at regular clock. F indicates
the feature space and so xn, ym ∈ F ∀n ∈ [1 : N ] and m ∈ [1 : M ]. It is necessary
to define a local cost measure which is a function c,

c : F ×F → R+.

This function define a cost matrix where each element is represented by c(xn, ym),

C(n,m) := c(xn, ym).

The optimal path within this matrix produces the distance between the two se-
quences. The following definition will formalize the alignment concept.

Definition 4.1 An (N,M)−warping path is a sequence p = (p1, . . . , pL) with
pl = (nl,ml) ∈ [1 : N ]× [1 : M ] for l ∈ [1 : L] which satisfy the conditions:

• Boundary condition: p1 = (1,1) and pL = (N,M).

• Monotonicity condition: n1 ≤ · · · ≤ nL and m1 ≤ · · · ≤ mL.

• Step size condition: pl+1 − pl ∈ {(1,0), (0,1), (1,1)} for l ∈ [1 : L− 1].

The third condition implies the second but it has been quoted for sake of com-
pleteness.
The three conditions implicitly explain the process of path creation. In fact, the
optimal path must start and reach the extreme points of the two series according
to the first condition. This forces the algorithm to consider a warped alignment of
the series. The monotonicity condition, instead, imposes to preserve the temporal
order of the series. This suggests a recursive approach. Step size condition can be
seen as a sort of continuity condition, which implies that all the elements of the
two series must be considered.
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Figure 4.1. The four illustrations represent paths of index pairs of two sequences,
one 9 in length and the other 7. (a) A path that satisfies the three properties.
(b) Boundary condition is violated. (c) Monotonicity condition is violated. (d)
Step size condition is violated. ([Mül07])

From the previous definitions the total cost of the warping path p between X, Y
with respect to the local cost measure c is defined as following,

cp(X, Y ) :=
L∑
l=1

c(xnl , yml).

But now it is crucial to define the optimal warping path between X and Y . It is
simply the one that reaches the minimum cost among all possible warping paths:
p∗. The DTW dissimilarity measure is defined as the total cost of the optimal
warping path:

DTW (X, Y ) := cp∗(X, Y ).

It is important to underline that the DTW dissimilarity is well defined also if there
are more optimal paths. Moreover, DTW is symmetric only in case c is symmet-
ric. Last, the DTW cannot be considered a metric since it does not satisfy the
triangular equality. This last fact is easily demonstrated with counter-examples.
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Figure 4.2. On the left, a cost matrix is represented in a black and white
heat map. Low costs are indicated by dark colors and vice versa. On
the right a graph that represents accumulated cost matrix D. In white, an
optimal warping path is drawn. ([Mül07])

Now that the DTW has been defined, the methods by which this measure-
ment is iteratively evaluated will be presented. In fact, the three properties can
be transformed into constraints and the result can be evaluated through dynamic
programming. In the case of this thesis, an algorithm contained in the package
[SESL17] has been exploited. It is a symmetric algorithm so that two out of three
metric properties are met (positivity and symmetry).

The process for DTW calculations is carried out in steps. For sake of completeness
the whole process is described for multivariate time series, so that can be easily
understood also in the univariate case.
The first step aims to find a local cost matrix (lcm) that has n×m entries. This
is built for each pair of distances. Let’s consider X and Y as input series and
let’s indicate with Xv

i the i-th element of the v − th variable of the multivariate
series. From now on, all multivariate series have the same length as in the cases
considered in the following chapter. However, it is easy to generalize even in cases
with different length series. Let the cost matrix be evaluated as in [Equation 4.1]
for each element (i, j).

lcm(i, j) =
(∑

v

|Xv
i − Y v

j |p
)1/p

(4.1)

Secondly, the DTW algorithm uses the lcm to evaluate the optimal path, start-
ing from the point (1,1) and arriving at the point (n, n), in case the two series are of
the same n-length. In the end, an ideal path is defined as φ = {(1,1), . . . , (n, n)}
which contains the nodes that must be joined for each of the two series. The
final result of the DTW is a sum of the distances obtained as in the equation
[Equation 4.2].
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DTWp(X, Y ) =
(∑ mφlcm(k)p

Mφ

)1/p

, ∀k ∈ φ (4.2)

mφ is a per-step weighting coecient and Mφ is the corresponding normalization
constant ([Gio09]).
In this definition of DTW, the p-norm is used twice, both in the first and second
equation. However, the [Equation 4.1] is affected by the p-norm only if the series
is multivariate.

4.1.2 Extension of the DTW
As previously discussed DTW dissimilarity cannot be considered a distance be-
cause of its inconsistency with the definition itself. A measure D, that induces a
metric in the space of the time series, satisfies the following properties for each
triplet of time series x, y, z:

1. Positivity: D(x, y) ≥ 0 ; D(x, y) = 0 ⇐⇒ x = y;

2. Symmetry: D(x, y) = D(y, x);

3. Triangle inequality: D(x, y) +D(y, z) ≥ D(x, z).

However in the more classical algorithms for the DTW calculation, properties 2)
and 3) are not verified. To satisfy property 2), it is sufficient to use an algorithm
that symmetrically calculates the DTW and in the literature, there are routines
for this task (also implemented in the most common libraries). The algorithm
used in this thesis is symmetric and so this property is met (see [SESL17]).
The triangle inequality, instead, is very problematic to enforce. However, some
studies show that this property, in practical cases, is respected very often. See for
example [RNS85] or [Jai18] which state that the property is met in 99% of the
cases explored.
So, from now on, let’s consider the DTW dissimilarity measure, a distance measure
(improperly), by considering the third property always met.

Now that this clarification has ended, the purpose of the following part is to extend
the concept of DTW by proving the following statement. By applying DTW to
individual one-dimensional time-series and then aggregating them via C and M
function, the result is a distance.
But now, let’s properly formalized this sentence.
Let V p

n be a set of all the possible multivariate time-series with n dimension of
length p. Let’s consider the following two functions.
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M(x, y) =
∑
i

DTW (xi, yi); (4.3)

C(x, y) = max{DTW (xi, yi) : i = 1, .., n}, (4.4)
where x and y are any two time-series andDTW (xi, yi) refers to the DTW distance
between the same features.
The aim is to prove that these two are (pseudo) distance too.
Let x,y, and z be three generic multivariate time-series that belong to V p

n . First,
let’s prove that summing the DTW distances [Equation 4.3] leads to a new metric.

1. The first aspect required is the positivity. Using the hypothesis

DTW (xi, yi) ≥ 0 and DTW (xi, yi) = 0 ⇐⇒ xi = yi ∀i ∈ {0, . . . , n},

it follows that∑
i

DTW (xi, yi) ≥ 0 and
∑
i

DTW (xi, yi) = 0 ⇐⇒ x = y.

2. Since DTW (xi, yi) is a distance for all i ∈ 0, . . . , n, the equality

DTW (xi, yi) = DTW (yi, xi)

holds. Then, summing on both sides,∑
i

DTW (xi, yi) =
∑
i

DTW (yi, xi) ∀i ∈ {0, ..., n}. (4.5)

3. As we assume that DTW is a metric, the triangle inequality is satisfied by
each single feature. Thus,

DTW (xi, yi) +DTW (yi, zi) ≥ DTW (xi, zi) ∀i ∈ {0, ..., n} (4.6)

Again, summing on both sides we conclude that∑
i

DTW (xi, yi) +
∑
i

DTW (yi, zi) ≥
∑
i

DTW (xi, zi). (4.7)

Let’s now pass to the second function, which consists in taking the max distance
between any component of two time series [Equation 4.4].

1. As before, the first step is the positivity. Using again the hypothesis

DTW (xi, yi) ≥ 0 and DTW (xi, yi) = 0 ⇐⇒ xi = yi ∀i ∈ {0, ..., n},

it follows that max{DTW (xi, yi) : i = 1, .., n} ≥ 0 and

max{DTW (xi, yi) : i = 1, .., n} = 0 ⇐⇒ x = y.
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2. Since DTW (xi, yi) is a distance for all i ∈ {0, . . . , n}, the equality

DTW (xi, yi) = DTW (yi, xi)

holds. Then, by taking the max on both sides,

max{DTW (xi, yi) : i = 1, .., n} = max{DTW (yi, xi) : i = 1, .., n}. (4.8)

3. Let’s consider the index j such that j = maxiDTW (xi, zi). Since we assume
that DTW is a metric, the triangle equality is satisfied for each feature, also
the j-th. Thus,

DTW (xj, zj) ≤ DTW (xj, yj) +DTW (yj, zj) (4.9)

By definition of max, both the followings statements hold true

DTW (xj, yj) ≤ max{DTW (xi, yi) : i = 1, .., n}

and
DTW (yj, zj) ≤ max{DTW (yi, zi) : i = 1, .., n}.

In conclusion
max{DTW (xi, zi) : i = 1, .., n} ≤ max{DTW (xi, yi) : i = 1, .., n}

+ max{DTW (yi, zi) : i = 1, .., n}
(4.10)

4.1.3 Shape-Based Distance (SBD)
The SBD was initially proposed in the article on the k-shape algorithm [PG15],
which will be discussed in [Subsection 4.4.3]. In the article, the algorithm is
presented as a faster version of the DTW. This is based on the cross-correlation
with the coefficient normalization (NCCc) sequence between two series. This is
therefore very sensitive to scale factors and for this reason, it is always advisable
to use a z-normalization before applying it. The NCCc is obtained by convolving
the two series, so, similar shapes are identified even if the characteristic features
are shifted. However, point-wise warpings are never performed. Convolution is
performed by Fast Fourier Transform (FFT) and this speeds up the calculations.
In conclusion, the distance formula can be expressed as follows,

SBD(x, y) = 1−max
(
NCCc(x, y)
||x||2||y||2

)
,

where the || · ||2 is the l2 norm. The distance ranges from 0 to 2 where 0 indicates
perfect similarity. The article does not extend the distance in the multivariate
case since k-shape is proposed only in the univariate context.
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4.2 Time-series prototypes
This section aims to define the various methods that will be used to calculate
summary information about a set of time-series that share the same label (are the
same cluster). These methods are important in the partitional clustering methods,
explained later. In fact, they rely on a reference central point for each cluster, and
to identify it, a prototype time-series function is necessary to summarize all series
in a given cluster. The three methods of prototyping used are Partition Around
Medoids (PAM), DTW barycenter averaging (DBA), and Shape extraction one.

4.2.1 Partition Around Medoids (PAM)
This first method is also very common in classical clustering methods. This one
evaluates the central element of a dataset by considering the intra-cluster distance.
In fact, it defines the cluster representative as the element that has a minimum
average distance from the other elements. In this way, an element already ex-
isting in the dataset is chosen. This method is convenient in case the distance
matrix is already fully calculated, as it is possible to use it at each iteration of the
prototyping evaluation.

4.2.2 DTW barycenter averaging (DBA)
In the previous section, the DTW has been explained. Now, a prototyping method
based on this measurement is presented. The article on which this part is based
is [PKG11]. This is an iterative and global method that means not influenced
by the order of the series. It assumes that the series are grouped in clusters and
a representative is found as a reference. Then, the time-series of the cluster are
aligned with the chosen centroid through the warping algorithm. Subsequently, all
points of all the series (general elements contained in the cluster) that correspond
to the first point in the reference series (centroid) are grouped according to the
DTW alignments, and the mean is computed. The algorithm proceeds in this way
for each point of the centroid series. The result is the DBA.
It is important to note that there can be also many points of the cluster series
that correspond to only one point of the centroid series because of the warping
alignment.

4.2.3 Shape extraction
This prototyping method was firstly explained in the article [PG15] and it is di-
rectly linked to the clustering algorithm that it deals with. As for the previous
prototyping method, starting from a set of series, a reference series µ∗ is obtained.
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An NCCc-based alignment is performed and this process can be seen as a shifting
of the various series to overlap the same shapes of the series in the same points
4.3. The method to obtain the reference series can be written as an optimization
problem where one looks for the series that meets the following condition.

µ∗ = argmaxµ
∑
x∈X

NCCc(x, µ)2, (4.11)

where X is the set of time series.

Figure 4.3. This is an example of the NCCc-based alignment performed on two
sample series. On the left the series before the alignment. On the right the series
after the alignment ([SE17]).

4.3 Unsupervised learning techniques
Unsupervised techniques are all those methods that receive as input a dataset
whose samples are not identified by a label. The aim is to divide data points
into a number k of clusters, to better satisfy an optimization condition/problem.
The literature contains various examples of unsupervised clustering algorithms,
but these can be grouped into three categories ([SE17]): hierarchical, partitional,
and fuzzy (that technically are part of the partitionals).

4.3.1 Hierarchical clustering
Hierarchical clustering methods take as input data and a measure of similarity
that is used to evaluate the distance between series points [HTF09]. It produces
a hierarchical representation of the data where, at the lowest level, there are the
single data points, while, going up in the hierarchy, the clusters join the closest
groups recursively. There are two approaches, agglomerative (bottom-up) and di-
visive (top-down). The first merges groups starting from the single points using
the minor inter-group dissimilarity as a criterion for the union. The second starts
from a single cluster and then splits it into all its components.
The most common graphical representation of this clustering is the dendrogram.
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This is a tree that shows each division, generating from each mother node. The
height of each node depends on the inter-group dissimilarity between its two daugh-
ter nodes. As mentioned earlier, a dendrogram is created regardless of a fixed
number of k clusters, and therefore, to understand what is the optimal number of
clusters, one needs to study the largest change in dissimilarity between nodes. See
example in [Figure 4.4]. Alternatively, one can fix an optimal number and stop
the algorithm of division or union as soon as this threshold is reached.
The most evident disadvantages of this method are

• Time and memory complexity of O(N2) (the complete dissimilarity matrix is
needed).

• The algorithm imposes a hierarchical structure even if data are not coherent
with it.

Figure 4.4. Dendrogram created with a random sample con-
tained in the package [SESL17]

4.3.2 Partitional clustering
Partitional clustering uses a different strategy to create partitions. Initially, a
number k is fixed, indicating the number of desirable clusters. Then, entries are
assigned to only one cluster out of k created. Then, a combinatorial optimization
problem dynamically changes the centroids to get the final result. The latter
minimizes the intra-cluster distance and at the same time maximizes the inter-
cluster dissimilarity. In a few words, the whole process is an optimization problem
that takes advantage of iterative greedy descent strategies. However, it is likely to
arrive at a local rather than a global minimum.
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The steps of the algorithm are as follows. It randomly defines the starting k
centroids. The distance between the data and the centroids is calculated and
each element is assigned on this basis to the cluster with the nearest centroid.
At this point, the centroids are changed to minimize the overall cost function.
The procedure is then repeated until a function F is optimized. The latter is the
mathematical translation of a given splitting condition that must be met to obtain
a proper division. In other words, given k clusters {C1, . . . , Ck} and N elements
X = {x1, . . . , xN}, the function

F : Pk(Ω)→ R,
where Pk(X) are all the possible partitions of the dataset, must be optimized by
obtaining k non empty clusters.

4.3.3 Fuzzy clustering
The two previous clustering methods are methods that produce a hard partition.
This means that at the end of the division a point belongs either to a cluster or
to another. The clusters are therefore mutually exclusive. The fuzzy clustering
methods, on the contrary, associate each point to a cluster with a certain degree.
The degree of belongingness is assigned to each point for each cluster, resulting in
a matrix of belongingness N × k, where N are the points and k are the considered
clusters. All the rows must sum to 1. The most used version of this algorithm
is the one proposed by [Pei83], where a fuzzy c-means version is described. The
algorithm solves the optimization problem described in the [Equation 4.12].

min
N∑
p=1

k∑
c=1

ump,cd
2
p,c (4.12)

k∑
c=1

up,c = 1, up,c ≥ 0 (4.13)

The u represents the membership matrix and is randomly initialized to meet
the constraints. m is the fuzziness exponent and it commonly has a value of 2. The
most common distance (dp,c) used is the Euclidean one between the p-th object
and the c-th fuzzy centroid.

4.4 State-of-the-art clustering algorithms
In this section, some well-known clustering methods are presented. Both time-
series oriented and generic methods are explained. The first two, Clara and K-
means, were used in the manual feature extraction section while the k-shape was
used in the single SPN oriented technique.
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4.4.1 K-means
The first method that is described is the most well-known clustering partitional
algorithm, the k-means.
Let X = {x1, . . . , xN} be the data points, k ∈ [2, . . . N ] the number of clusters one
intends cluster data and V = {v1, . . . , vk} the centers of the clusters {C1, . . . , Ck}.
The goal of the algorithm is to minimized the l2 distance between each element
and its centroid. In fact, the clustering criterion can be expressed as

F ({C1, . . . , Ck}) =
k∑
i=1

ki∑
j=1
‖xij − x̄i‖2 .

In the previous definition, ki is the number of data in the cluster i, xij is the j-th
observation of the i-th cluster. The x̄i is the barycenter of the i-th cluster and it
represents the centroid. It is evaluated as

x̄i = 1
ki

ki∑
j=1

xij ∀ i = 1, . . . k.

The algorithmic steps follow (see graphic example [Figure4.5]).
In the first step, the centers are established randomly. Then the distance between
each data point and cluster centers is calculated. According to the previous dis-
tance evaluations, each data point is assigned to the cluster whose distance from
the cluster center is minimum compared to the other centers. The new centroids
are evaluated x̄i. Distance between each data point and new clusters is evaluated.
If there are no changes with respect to the previous step the algorithm stops.
Otherwise, another cycle of the algorithm is executed.

Figure 4.5. This is an example of the k-means algorithm. Points represent data,
crosses represent centroids and colors represent clusters. Each image represent a
step in the k-means execution.
Site: https://stanford.edu/~cpiech/cs221/handouts/kmeans.html
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4.4.2 Clara
This method is described in the article [KR90] and is an extension of the well-
known partitional algorithm k-medoid. It only uses the sampling approach to
simplify calculations in a large dataset setting. In this section, the k-medoid
method is described since Clara is easily derived.
The algorithm has a structure similar to the k-means and in fact, in this section,
we will show the fundamental differences. The main difference between k-means
and k-medoids lies in the definition of centroids and distances. In fact, in the
first case, the centroids are the barycenter of the points of the cluster, while in
the second, they are points placed in a particularly central position of the cluster.
In a few words, while the centroid is a point of space, the medoid (centroid of
k-medoid) is a point among data. A positive side of this aspect is that it makes
the algorithm less sensitive to outliers. In fact, if a new outlier point is present in
a cluster, the centroid (barycenter) will be strongly influenced while the medoid
could remain at the same point as before. Moreover, the distance used is often
the Manhattan one, as opposed to the k-means case where Euclidean is preferred.
However, in both algorithms, it is not excluded from the use of other dissimilarity
measures. The algorithm passages are reported.
Let’s consider a setup similar to the previous case. Let X = {x1, . . . , xN} be the
data points, k ∈ [2, . . . N ] the number of clusters one intends to divide data and
V = {v1, . . . , vk} the medoids of the clusters {C1, . . . , Ck}.

• Randomly select k points that will be the k medoids at time 0.

• Calculate the distances through the dissimilarity measure between the points
and the medoids and assign the points to the nearest medoid.

• For each element of a cluster, the following operation is performed. The
medoid and simple data points roles are swapped. The intra-cluster dissimi-
larity between the new medoid and the rest of the cluster points is calculated.
The new medoid will be the one with the smallest intra-cluster measurement
with respect to the others.

• All points are reallocated according to the new definition of medoids. If there
is no difference in the cluster arrangement, the algorithm stops, otherwise, it
starts again from step two.

4.4.3 K-shape
The starting point of this algorithm is different from the previous ones. In fact, it
aims to divide a set of time series into clusters (see article [PG15]).
This is a partitional algorithm that operates in a similar way to k-means but it is
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applied to the time-series context. The reason why it has managed to become one
of the most exploited algorithms for time-series clustering is for its excellent ability
to obtain well-separated and homogeneous clusters and it scales linearly with the
number of time-series windows. It uses distance measurement and a method of
creating a representative series based on the shapes of the series. Both the distance
and the prototyping function have been anticipated in [Subsection 4.2.3] and in
[Subsection 4.1.3].
Given as input a set of time-series X and a number k of desirable clusters, the
algorithm steps are the following.

• The time series are assigned to k random clusters.

• For each cluster, the centroid is calculated using the method explained in
[Subsection 4.2.3].

• Each time series in X is assigned to the cluster relative to the nearest centroid
by using as a distance the one described in [Subsection 4.1.3].

• The procedure is iterated until convergence.

4.5 Internal Cluster Validity Indices (CVI)
All the experiments reported in this thesis are unsupervised and therefore, it is
not possible to find direct proof of the accuracy of cluster division. However, it is
possible to take advantage of some parameters of goodness that give information
about the quality of the clusters without considering external information. For
that reason, all parameters considered are called internal. These consider connec-
tivity, compactness, and separation of partitions. In this way, one can objectively
compare clustering divisions. The parameters used in this thesis are implemented
into the two packages [BPD+11] and [SESL17] and they will be discussed below.
In the following explanations, the number of clusters will always be K and clusters
will be indicated as C = {C1, . . . , CK}. dist indicates a generic distance and the
term average point could vary depending on the subject of the clustering.

Connectivity
Connectivity is explained in the article [HKK05] and it is an indicator of connect-
edness between observations in the same cluster.
Let’s indicate with N the number of observations in the dataset and with M the
number of attributes that each observation has. We define also nni(j) the j-th
nearest neighbor of observation i. Last element to be described is xi,nni(j) , which
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is zero if i and j are in the same cluster while it is 1/j otherwise. The formula is

conn(C) =
N∑
i=1

L∑
j=1

xi,nni(j) ,

where L is the number of nearest neighbors to consider. The connectivity can
assume values from 0 to infinity and should be minimized.

Silhouette Width
This indicator, as well as the following one, considers the intra-cluster variance
and also the distance between clusters in one indicator. It is fully explained in the
article [Rou87].
Let’s define the elements that characterize the Silhouette Width formula. Let
n(Cp) be the cardinality of the p-th cluster and C(i) the cluster containing the i
observation. Then

bi = min
Cp∈C\C(i)

∑
j∈Cp

dist(i, j)
n(Cp)

is the average distance between observation i and the nearest cluster. Let’s define
ai as the avarage distance between observation i and all other observations in the
same cluster. The silhouette related to observation i is defined as

S(i) = bi − ai
max(bi, ai)

,

while the Silhouette Width is the average of Silhouette values. It ranges between
−1 and 1 and it should be maximized.

Dunn Index
This index summarizes the compactness and separation (opposing trends) of clus-
ters in a unique indicator. It was described for the first time in [Dun74].
Let’s define diam(Cm) as the maximum distance between observations in Cm, so
the Dunn index is defined as follows.

Dunn(C) =
min

Ck,Cl∈C,Ck /=Cl

(
min

i∈Ck,j∈Cl
dist(i, j)

)
max
Cm∈C

diam(Cm)

Average Proportion of Non-overlap (APN)
This measure [DD03] highlights the stability of the clusters. In fact they involve
removing every attribute at each repetition. In particular, this index measures
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how the amount of observations placed in a given cluster varies, by eliminating
the l-th column from time to time.
Let Ci,0 be the cluster of observation i using all the available features, while Ci,l

is the one obtained by exploiting all attributes but the l-th.

APN(C) = 1
MN

N∑
i=1

M∑
l=1

(
1− n(Ci,l ∩ Ci,0)

n(Ci,0)

)

The interval of this measure is between 0 which correspond to highly consistent
results and 1.

Average Distance (AD)
This measure evaluates the avarage distance between observations contained in the
same cluster evaluated in different ways. In a first step, with all feature involved
and afterwards, without the l-th column.

AD(C) = 1
MN

N∑
i=1

M∑
l=1

1
n(Ci,0)n(Ci,l)

 ∑
i∈Ci,0,j∈Ci,l

dist(i, j)


It assumes values between 0 and infinite and it should be minimized.

Average Distance between Means (ADM)
This index measures the distance between the cluster centers evaluated with the
clustering algorithm before and after removing the l-feature. Let’s define x̄Ci,0 the
average point of all observations contained in the cluster which includes the i-th
observation, considering all features. x̄Ci,l is defined as before but excluding the
l-feature in the clustering evaluation.

ADM(C) = 1
MN

N∑
i=1

M∑
l=1

dist(x̄Ci,0 , x̄Ci,l)

It takes values between 0 and infinite and it is preferred small.

Figure Of Merit (FOM)
This index evaluates the average intra-cluster variance of a deleted column by
considering the clustering based on the remaining columns. This method is fully
explained in [YHR01]. The mean error is evaluated as

FOM(l, C) =

√√√√√ 1
N

K∑
k=1

∑
i∈Ck(l)

dist(xi,l, x̄Ck(l)),
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where xi,l is the l-th feature of the i-th observation in cluster Ck(l) while x̄Ck(l) is
the average of the same cluster. It takes values from 0 and infinity and small value
is index of better performance.

COP index
This index, as the next three, is fully described in [AGM+13]. It describes the
cohesion of the clusters by evaluating the ratio between the distance of all the
cluster points with its centroid and the furthest neighbor distance. This index
should be minimized.

COP (C) = 1
N

∑
Ck∈C

n(Ck)
1

n(Ck)
∑

xi∈Ck
dist(xi, x̄Ck)

min
xi /∈Ck

max
xj∈Ck

dist(xi, xj)
.

Where the fraction in the summation represents intra/inter and x̄Ck is the average
point of all elements in cluster Ck.

Davies-Bouldin index (DB) and Modified Davies-Bouldin
index (DB*)
This is one of the most used indexes in literature and it estimates cohesion and
separation in the following way. The first thanks to the distance between the
points and its centroids. The second is based on the distance between centroids.

DB(C) = 1
K

∑
Ck∈C

max
Cl∈C\Ck

(
S(Ck) + S(Cl)
dist(x̄Ck , x̄Cl)

)
,

where S(Ck) = 1
n(Ck)

∑
xi∈Ck

dist(xi, x̄Ck).

In its variation the denominator has been changed into the minimum distances
between centers.

DB∗(C) = 1
K

∑
Ck∈C

max
Cl∈C\Ck

(S(Ck) + S(Cl))

min
Cl∈C\Ck

(dist(x̄Ck , x̄Cl))

Both indices should be minimized.

Calinski-Harabasz index (CH)
This index is a ratio type index, where the two terms represent cohesion and
separation. The first is calculated through the distance between points and cor-
responding centroids, while the second is the distance between centroids and the
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global centroid.

CH(C) = N −K
K − 1

∑
Ck∈C

n(Ck)dist(x̄Ck , X̄)∑
Ck∈C

∑
xi∈Ck

dist(xi, x̄Ck)

where X̄ is the average of all observations. Large values are preferred.

Score Function (SF)
This last index is a summation-type one. Separation is evaluated by taking the
distance between cluster centroids and global centroid, while cohesion takes the
distance from each point and its centroid. The definition is the following.

SF (C) = 1− 1
eebcd(C)+wcd(C) .

Now the two components of the formula are described.

bcd(C) =

∑
Ck∈C

n(Ck)dist(x̄Ck , X̄)

NK
,

wcd(C) =
∑
Ck∈C

1
n(Ck)

∑
xi∈Ck

dist(xi, x̄Ck).

This index should be maximized.
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4.6 Ranking algorithm
In the next chapter, for each category of clustering algorithms, different K (number
of clustering to split the dataset) and aggregation methods will be compared.
When analyzing clusters through the goodness indicators reported in [Section 4.5],
the results very often do not provide a definite winner with respect to all indices.
This was the reason why a ranking algorithm has been employed. This algorithm
is based on the results obtained on the individual indices. In fact, for each test,
a ranking that takes into account how well the algorithm performs with certain
characteristics is provided. The algorithm involved is already present in R and it is
fully explained in the article [PDD09]. The distance involved to compare rankings
is described in the first part of the section, while the proper algorithm will be
explained afterward.
As the author of the article proposes, the ranking problem will be seen as an
optimization problem where the goal is to find a "super-list" as close as possible
to all the others. Given a set of m lists L = {L1, . . . , Lm}, the objective function
can be written as

Φ(δ) =
m∑
i=1

widist(δ, Li),

where δ is the proposed list of length k = Li, while wi is the importance of every
list Li. The optimization problem becomes

δ∗ = argmin
m∑
i=1

widist(δ, Li),

so that the resulting δ∗ minimizes the total distance with all other lists.

4.6.1 Spearman footrule distance
Let’s define some actors involved in the following definitions. LetMi(1), . . . ,Mi(k)
be the ordered scores associated to each list Li, where Mi(1) is the best score. Let
rLi(A) be the ranking of the item A in the list Li. If A is not within the fists k
items, the constant value k + 1 will be associated to rLi(A). The ranking in this
phase is given according the definition of "best" and "worst" for each case, i.e. the
first position is given to A, if A assumes the best values as possible according to
the ranking criterion. rδ(A) is defined in the same way. The Spearman footrule
distance is defined as

S(δ, Li) =
∑

t∈Li∩δ
|rδ(t)− rLi(t)|.

This distance is very simple and only compares the position of the elements in
the lists, but does not take into account the differences based on "how far" two lists
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are. This is why very often the weighted version of the previous distance is taken
into account. Weighted Spearman’s footrule distance, which more objectively de-
fines the distance between lists, is defined as follows for the comparison between
a generic Li list and the δ list.

WS(δ, Li) =
∑

t∈Li∩δ
|M(rδ(t))−M(rLi(t))| × |rδ(t)− rLi(t)|.

In this way, if two items are very far apart, the weight that will be given is very
relevant for the final result and vice versa.

4.6.2 Cross-Entropy Monte Carlo algorithm
The following algorithm is the core of the method. This is based on the consider-
ations made and on the measure previously introduced. However, to continue, it
is appropriate to define in a new way the ranking concepts.
Let’s consider a matrix (X)n×k, and let’s associate it to an ordered list of n el-
ements through k positions. In this way, rows can sum at most to one, while
columns must sum up to one. This matrix represents the position of the n-th
element when a "1" appears in the k-th column.
Now, the solution space X is defined by all the possible X matrix and the objec-
tive function must be optimized in such space. Let’s assume that X is a random
variable, and let’s define the probability mass function of a generic matrix x as
P(x). The index of this new matrix will be indicated as (v)n×k = ((pjr)). The
conditions of the join distribution P(X = x) satisfy the following condition.

Pv(x) ∝
n∏
j=1

k∏
r=1

(pjr)xjr

× I

 k∑
r=1

xjr ≤ 1, 1 ≤ j ≤ n;
n∑
j=1

xjr = 1, 1 ≤ r ≤ k


The algorithm follows the next four steps.

• Initialization: At t = 0 the random distribution is initialized to a constant
value p0

jr = 1/n, where the exponent indicates the instant of time. At this
step every item could be included into the final ranking with same probability.

• Sampling: A sample of size N is drawn from Pvt(x). The top-k lists δi’s and
the values of the objective function Φ(δi) are evaluated at each time t. Now,
let’s define the integer part of a real number e as [e]. The Φ(δi)’s are sorted
in ascending order and the ρ-quantile is evaluated (yt = Φ([ρN ])).
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• Updating: Parameters of the distribution are updated as

p
(t+1)
jr = (1− w)p(t)

jr + w

N∑
i=1

I(Φ(δi) ≤ yt)xijr
N∑
i=1

I(Φ(δi) ≤ yt)
,

where w is a parameter introduced to avoid local maxima and xijr is the value
at the jr-th position in i-th sample.

• Convergence: If the previous step does not modify the optimal list, the
algorithm stops and the optimal value of Φ is found.
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Chapter 5

Clustering techniques
applied to off-road vehicle
time series

The theory analyzed in the previous chapters will be exploited in this one to obtain
clusters that will group univariate or multivariate series.
Although a different approach is reported in the various sections, some common
concepts can be identified. First of all, to understand how much two time series
are similar, measures that deal with shape-based characteristics will be involved
(see [Section 4.1]). On the other hand, to illustrate a cluster of elements, a rep-
resentative that summarizes the characteristics of the series will be drawn. It can
be done exploiting the prototyping techniques illustrated in [Section 4.2].
In conclusion, clustering algorithms exploited in this section can be described
through the following three parameters.

• Type. There are different methods of clustering but the most common are
fuzzy, partitioning, or hierarchical ones.

• Distance. To measure the distance between elements and understand which
is the relative positioning, a similarity measure is needed. In this section,
shape-based and DTW similarity measures are considered.

• Centroid evaluation method. The clustering algorithms are based on
the maximization of the distance between clusters whose representative is a
centroid series. So, it is crucial to appropriately identify the representative of
each cluster.

The objective of this chapter is to apply different methods to understand how
they work in the proposed scenario, i.e. three series (SPNs) aligned with respect
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to a unique clock. In this way, it will be possible to understand which type of ag-
gregation or downsampling works better for each model. Later, in the concluding
chapter, the results obtained in this section will be analyzed.

Two approaches will be addressed in this chapter. The first involves a two-step
process: individual time-series are clustered according to their own properties and
then an aggregation phase follows, where an optimal method to merge previous
results. This will cover the first section.
The second section will involve methods that consider all three series at the same
time.

5.1 Combination of univariate results
The first approach that has been tested is based on the identification of clustering
within the individual SPN signals and then, combining the results, a general clus-
tering is obtained. The process that follows involves, as in almost all cases from
now on, all the eight datasets that have been determined by aligning the time
series at different granularities.
The three models reported in [Table 5.1] have been exploited to compare the dif-
ferent aggregation methods.

Name type distance centroid evaluation norm
k-shape partitional SBD “shape” method 1
Pam-based partitional DTW pam 1
Dba-based partitional DTW dba 2

Table 5.1. Features of the clustering algorithms that have been applied. The
"Name" column is only reported for the sake of the reader’s understanding.

For each SPN-signal, algorithms presented in [Table 5.1] are applied to the
eight datasets to obtain which one performs better. To evaluate the division per-
formances, internal goodness indices (CVIs) are used. Among those mentioned in
the previous chapter, those reported in [Table 5.2] have been selected.

Before conducting the experiments, one could expect that an optimal combi-
nation of (algorithm, aggregation, granularity) could emerge independently of the
SPN considered.
However, a unique general solution did not emerge only based on the results of the
CVI.
There are two main reasons.
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CVI Optimal
Silhouette index to be maximized
Dunn index to be maximized
COP index to be minimized
Davies-Bouldin index to be minimized
Modified Davies-Bouldin index to be minimized
Calinski-Harabasz index to be maximized
Score Function to be maximized

Table 5.2. Cluster Validity Indices (CVIs) in the one-SPN clustering analysis.
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Depending on the shape of the single SPN signal, the type of aggregation/down-
sampling acts differently. For example, a method that has flattening problems with
an already smooth SPN can be optimal for an irregular one. Moreover, depending
on the complexity of the shapes of each signal, the clustering algorithm can have
more or less difficulty in finding the representative elements of each cluster.

The CVIs output of a single dataset that passes through one clustering algorithm
is a vector of seven values as reported in [Table 5.2]. However, for each SPN, eight
datasets are compared and for each of them, three different clustering algorithms
are used. So, the result is very difficult to interpret, especially because not all
CVIs agree on a unique winning solution/method. For this reason, a method to
get a more stable ranking was needed. The ranking algorithm that is explained in
[Section 4.6] solves this problem.
After calculating the CVIs of all analyzed cases, they were merged into a ma-
trix. The latter was used as the weight matrix, useful to calculate the Spearman
footrule distances between rankings. This method allows therefore to establish
which couple (algorithm, dataset) is better than others. This is possible without
the constraint that the couple is the best according to all the indexes.

[Table 5.3] shows the best result obtained in the optimal list for each considered
SPN.

SPN number of clusters dataset method
190 2 Fourier, 0.5Hz K-shape
524 2 Fourier, 0.5Hz Dba-based
94 3 Fourier, 2Hz Pam-based

Table 5.3. SPN optimal choice in the one-signal based analysis.

Since the analysis is unsupervised, it was necessary to use heuristic methods
to validate the goodness of the clusters. The following graphical analyses have
been inspected together with domain experts which have been validated what has
been inferred. Before going any further, however, a small clarification on the use
of colors seemed necessary. The time-series have been drawn with the addition of
vertical lines indicating the cluster to which the left window belongs. Moreover, a
one-to-one correspondence has been set between the cluster number and a specific
color (see [Table 5.4]).
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Number 0 1 2 3 4
Color blue red green pink violet
Number 5 6 7 8 9
Color grey yellow light blue light green dark green

Table 5.4. In the whole analysis this one-to-one correspondence between cluster
number and associated color is used.

Engine speed windows (SPN 190) have been clustered clearly (see [Figure 5.1]).
On one hand one can find windows characterized by a strong presence of high fre-
quencies and absence of low ones. They are grouped in cluster 1. This means that
they experience micro oscillations at constant levels. On the other hand (cluster
0), windows present the opposite situation, with the presence of strong variations
in engine speed measurement [Figure 5.1]. In the same figure, the averages of the
frequency responses are represented. Here, it is even more evident the difference
between the two clusters highlighted before. Finally, a time-domain representation
in a limited time slot is shown. Here all hypotheses are confirmed again.

Very similar behavior is shown in the figure which displays the results of the
transmission gear (SPN 524). In cluster 0, shaken series are grouped, while flat
windows are set as cluster 1. However, as one can see by the example reported in
the second plot in [Figure 5.2], cluster 1 not only contains straight lines but also
segments with slight oscillations. In fact, in the indicated plot, a not exactly flat
green line is shown.
Since this signal has only five different measurements (the vehicle has five gears)
when the pattern is stable on a single gear, there are no oscillations at all and
therefore, the difference between the two clusters is more evident than before. In
[Figure 5.2] all main results are shown.

The last univariate analysis involves the fuel pressure signal (SPN 94). Also in
this case the cluster assignment mechanism is very similar to the previous ones.
However, three behaviors are highlighted. In [Figure 5.3] main results are reported.
Cluster 0 and 2 are characterized by fluctuating windows (strong presence of low
frequencies) while number 1 is characterized by flat windows. Cluster number 0,
however, presents fewer oscillations (also less powerful) than cluster 2 and this is
confirmed once again by the graph which shows the windows in the time-domain
and frequency-domain, the third and fourth image respectively.
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Figure 5.1. Set of plots that summarizes the result obtained from the best
clustering (in terms of goodness indexes) for what concern the engine speed
signal. In the first two plots, the centroid is drawn in red, while 5 random
series belonging to the relative clusters are plotted in green. The third im-
age represents the averages of the magnitude of the Fourier transform of the
windows belonging to cluster 0 and 1. The plot at the bottom represents a
time-domain plot of the signal which highlights the windows clusters. In this
plot, the x-axis represents the window number.
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Figure 5.2. Set of plots that summarizes the result obtained from the best clus-
tering algorithm (in terms of goodness indexes) with respect to the SPN 524. The
first two plots represent in red the centroid and in green the random series belong-
ing to the relative clusters. The clusters represented in these first two images are
respectively 0 and 1. The third image represents the averages of the magnitude
of the Fourier transform of the windows. The plot at the bottom represents a
time-domain plot of the signal by highlighting the windows clusters. In this plot,
the x-axis represents the window number.

85



Clustering techniques applied to off-road vehicle time series

Figure 5.3. Set of plots that summarizes the result obtained from the best clus-
tering algorithm (in terms of goodness indexes) with respect to SPN 94. The
first three plots represent in red the centroid and in green the random series be-
longing to the relative clusters. The clusters represented in these first images are
respectively 0, 1 and 2. The third image represents the averages of the magnitude
of the Fourier transform of the windows belonging to the different clusters. The
plot at the bottom represents a time-domain plot of the signal by highlighting the
windows cluster. In this plot, the x-axis represents the window number. Only a
few windows are considered in the example.
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In the conclusion of this section, some analysis on the similarity of the clusters
of the different signals (SPNs) is needed. Although belonging to different engine
parts, the SPNs analyzed are all closely interconnected. This led to conducting a
more in-depth analysis of the number of windows that are classified in the same
way within the three signals. The result obtained is about 57%. As anticipated,
this is not unexpected considering the strong connection of the characteristics of
a machine. Even if the similar signals (in terms of simple correlation) have been
removed, some similarities are present within the signals selected, since the subject
involved is a fully connected vehicle.

After having interpreted the single results, the next step is to characterize each
window in order to combine the characteristics of the windows of each SPN signal.
For example, if a window has been labeled as 1 for all three signals, it will be
labeled with the triplet (1,1,1). This means that the vehicle behavior is character-
ized by the different status of the SPNs considered.
In this way, 2x2x3 clusters will be created.
The 12 resulting super-clusters are summarized in [Table 5.5].

General Cluster 524 cluster 190 cluster 94 cluster number points
0 0 0 0 79
1 1 0 0 218
2 0 1 0 1
3 1 1 0 125
4 0 0 1 53
5 1 0 1 252
6 0 1 1 11
7 1 1 1 1258
8 0 0 2 52
9 1 0 2 170
10 0 1 2 1
11 1 1 2 112

Table 5.5. Final result of the single SPN approach.

This division identifies as the biggest cluster the one characterized by flat win-
dows (1,1,1). It contains half of the data. All the other clusters are much smaller
because they identify windows with rarer characteristics than the flat series in a
vehicle moving in a test field. Other clusters are empty (or almost empty) because
they identify combinations of incompatible single clustering characteristics. For
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example, the cluster 10 (in the new configuration) indicates all windows charac-
terized by rapid gear changes but flat engine speed. Two incompatible behaviors
that never find a match.

5.2 Multivariate clustering application
In this section, the methods exploited in the previous section are proposed in a
multivariate context. In the first part, clustering is based on multivariate DTW,
while in the second part, a DTW-based aggregate similarity measure is derived
to achieve the clustering goal. In the last subsection, a method that exploits the
feature extraction has been developed.

5.2.1 DTW-based methods
The first approach is the one used in the previous section but extended to the
multivariate time-series context.
In this case, the algorithm based on the shape distance (k-shape) was not exploited,
due to the difficult generalization from the univariate to the multivariate case.
Also the authors of [PG15] does not report this extension in their work or in the
following ones.
In conclusion, the two models involved are summarized in [Table 5.6].

Model type distance centroid evaluation norm
Pam-based partitional DTW pam 1
Dba-based partitional DTW dba 2

Table 5.6. The table summarizes the features that distinguish the different
clustering algorithms applied.

The execution process that has been carried out is the same as in the previous
case; the eight datasets were processed through clustering algorithms summarized
in [Table 5.6]. Then, the CVIs are evaluated. This time the CVIs involved are the
ones reported in [Table 5.7].

After that, all results of CVIs analysis have been processed by the ranking
algorithm, which has decreed as the best way to divide data the one reported in
the [Table 5.8]. The algorithm has divided the data in a very unbalanced way as
we can see from table [Table 5.9].

The results obtained are shown in the same fashion as before. [Figure 5.4] and
[Figure 5.5] summarize all results.
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CVI Optimal
Silhouette index to be maximized
Dunn index to be maximized
COP index to be minimized
Davies-Bouldin index to be minimized
Modified Davies-Bouldin index to be minimized
Calinski-Harabasz index to be maximized
Score Function to be maximized

Table 5.7. CVIs in DTW-based approach.

number of clusters dataset method
2 Mean, 0.5Hz Pam-based

Table 5.8. SPN optimal choice in the DTW-based multivariate analysis.

label of cluster number of windows
0 114
1 2218

Table 5.9. Number of windows for each cluster in the DTW-based
multivariate analysis.
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Figure 5.4. Multivariate DTW-based algorithm results. In the first 6 images,
each row represents the SPN considered (from the top to the bottom: SPN 94,
190 and 524), while columns represent the cluster number (in order from left to
right: cluster 0 and 1). In red the prototype for each group is plotted while,
in green, 5 random elements for each cluster are reported. The last 3 images
represent the average of FFT magnitude among all windows of the same cluster
(in order from the top to the bottom: SPN 94, 190, and 524).
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Figure 5.5. Multivariate DTW-based algorithm results. For each SPN, a
plot is drawn. The three series are plotted in the time domain ranging in
the window-slot (220− 234). Clusters are represented by the color of the
respective label (see [Table 5.4]).
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The two clusters that have been formed have a clear characterization for each
of the three signals in the dataset. In this case the result is very unbalanced (see
[Table 5.9]); there are 114 windows classified as cluster 0 and the rest as cluster 1.
Cluster 0 is characterized by strong variations while cluster zero is characterized by
smoother shapes. For further comments or comparisons with the previous method,
the reader is invited to refer to the conclusions chapter.

5.2.2 Aggregation-based approach for multivariate cluster-
ing

In this section, two methods allow to combine the 3 distance matrices obtained
through the DTW (one for each SPN). These methods are fully described in [Sub-
section 4.1.2] and they can be summarized in the M and C operations by consid-
ering two multivariate series x and y.

M(x, y) =
∑
i

DTW (xi, yi)

and
C(x, y) = max{DTW (xi, yi) : i = 1, .., n}.

The data analysis process starts as in the previous cases. The eight multivariate
series, aligned according to the univocal clock, are spitted in the 2332 windows
obtained previously. The windows are transformed into null mean and unitary
variance multivariate series and then, they move towards the next step. For each
dataset the matrix of the distances is created in the two ways described previously,
to be used by the clustering algorithm. For this section, only the traditional PAM
method is used to evaluate the centroid (see [Table 5.10]).

Model type distance centroid evaluation norm
"max" model partitional ∑

iDTW (xi, yi) PAM 1
"sum" model partitional max{DTW (xi, yi)} PAM 1

Table 5.10. "max" / "sum" models.

The reason why these two aggregations have been derived, deserves an explana-
tion and an in-depth examination. The explanation is reported in the final chapter
where the three methods based on the multivariate approach are compared.
After processing the datasets in the clustering algorithms CVIs tables are evalu-
ated. Since the same indexes of the previous case are used, they are not reported
here (see [Table 5.7]). From this analysis, the optimal ranking algorithm has estab-
lished that the optimal solution is the one reported in [Table 5.11] and [Table 5.12].
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5.2 – Multivariate clustering application

number of clusters dataset distance
2 Fourier, 0.5Hz "max" meth.

Table 5.11. Optimal choice for the "max" / "sum" method.

Label of cluster number of windows
0 627
1 1705

Table 5.12. Number of windows for each cluster in the best "max" / "sum" method.
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Figure 5.6. Aggregation-based clustering results. In the first 6 images, each row
represents the SPN considered (in order from the top to the bottom: SPN 94,
190 and 524), while columns represent the cluster number (in order from left to
right: 0 and 1). In red the prototype for each group is plotted, while in green,
5 random elements for each cluster are drawn. The last 3 images represent the
average of the FFT magnitude among all windows of the same cluster (in order
from the top to the bottom: SPN 94, 190 and 524).
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Figure 5.7. Aggregation-base clustering results. For each SPN a plot is
drawn. The three series are plotted in the time-domain ranging in the
window slot (545 − 560). Clusters are represented by the color of the
respective label (see [Table 5.4]).
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The results on clustering are very similar to the previous ones, but the propor-
tions changed. In fact, in the previous case about 100 windows were classified with
0 label, while now about 600. From the [Figure 5.6] and [Figure 5.7] the following
evaluations on the clusters can be made. In cluster 1, generally flatter series are
grouped. On the contrary, cluster 0 has a strong presence of low and medium
frequencies. However, in cluster 0, there are not only windows characterized by
a strong presence of low frequencies with respect to all SPN. In fact, as one can
see by the images, even if a single SPN window is far away from the others (with
respect to the DTW distance), that window is labeled as 1. This behavior can be
easily seen in the time-domain. For example, one can see windows 546 and 550
where the gear of the machine is constant.

5.2.3 Manual feature extraction for clustering purposes

This subsection deals with clustering through manually extracted features.
This approach is generally applied in the biomedical context where the analysis
of signals is mainly based on the frequency response of certain body indicators.
These are often used to correlate a series of microscopic pulses to macroscopic
behaviors. In other cases, instead, given a priori knowledge about a specific bio-
logical frequency, one can understand behaviors or actions much more hidden and
less obvious, for example those at the brain level.
Many articles concerning these methods are present in the literature of biomedical
engineering. Specifically, this section is inspired by [ZWYG18] for what concerns
the applications and [BZ11] for the theoretical part.

First of all, it is necessary to specify how the starting dataset was created. Each
SPN signal has been aligned with its own rate (see [Table 5.13]) and then, the re-
sulting signals have been divided into the 2-minute windows previously identified.
Each window is identified by a label that identifies it (in each signal) in a unique
way. In particular, all window labels have a one-to-one relationship with the labels
of the previous sections. The starting time-series have been aligned to their rate
to keep the data as authentic as possible (without any loss of information) in order
to identify every fluctuation. In conclusion, the dataset exploited to extract the
features is composed of 3 vectors of different lengths according to the rates of the
various SPNs.
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SPN Rate
94 2 HZ
190 50 HZ
524 10 HZ

Table 5.13. These are the rates of the SPNs involved in the feature based approach.

From the single-SPN dataset, 7 features have been derived for each SPN to
build the final dataset. On the other hand, each row of the final dataset will rep-
resent one of the 2332 windows.
The first feature evaluated for each window and for each SPN is the average in
the time-domain. After that, the window average has been removed from each
window to not affect the other features.
Unfortunately, there is no a priori knowledge about specific bands of vehicle sig-
nals. So, the spectrum has been divided into equal parts, obtaining three groups
for each window in the frequency-domain: high, medium, and low frequencies.
The two functions that have been used to derive the other 6 features are the
following: the average of the squared magnitude of the components and the max-
imum magnitude for each group of frequencies. More formally, let Xk

i (f) be the
n coefficients of the Fourier transform relative to the k frequency band, with
k = low, medium, high. The dataset has been created by evaluating

1
n

n∑
i=1
|Xk

i (f)|2

and
max{|Xk

i (f)|2 ∀i ∈ {0, . . . , n}}.

In the end, a total of seven features have been extracted for each SPN, resulting
in a total of 21 features. Remember that the number of total windows is 2332 and
therefore the final matrix obtained is 2332x21.
Afterward, all features were analyzed with respect to the correlation index, thanks
to which important considerations have been drawn (see [Figure 5.8]).

In general, all features seem to be very correlated but especially within the
individual SPNs, the correlation is very high. A method to extract information
without repetitions has been exploited to reduce the number of features. In fact,
the traditional algorithmic techniques suffer from the so-called curse of dimension-
ality, preferring as few features as possible (see [AHK01]). In this case, it is even
useless to consider a high dimensionality, since some information is redundant.
However, as it is not a supervised problem, it was not possible to select features
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Figure 5.8. Manual feature extraction clustering. General correlation matrix.
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according to the relationship with a given response variable.
So, in this case, the matrix was reduced to its main components by applying the
PCA method.
This method is an important unsupervised learning technique, which discovers the
most informative directions; i.e. the ones along which the dataset varies the most.
A short explanation of the mathematical foundation is reported below.

Let’s consider xi ∈ Rn, i = 1, . . . ,m data points. Let’s consider the baricenter
x̄ and the matrix with centered data points X̃ = [x̃1, . . . , x̃m] where x̃i = xi − x̄.
The algorithm allows finding the normalized direction z ∈ Rn, ||z||2 = 1 in data
space such that the variance of the projection of the centered data points is max-
imal.
One can indicate the components of the centered data along direction z as

αi = x̃i
T z, i = 1, . . . ,m.

According to the previous definitions, the mean-square variation of the data along
direction z can be expressed as

1
m

m∑
i=1

α2
i =

m∑
i=1

zT x̃ix̃i
T z = zT X̃X̃T z.

The problem now can be formalized as following,

max
z∈Rn

zT X̃X̃T z, s.t. ||z||2 = 1.

To solve the problem is useful to recall the singular value decomposition (SVD),
which states that every matrix A ∈ Rn,m can be factorized as

A = UΣ̃V T ,

where V ∈ Rn,n and U ∈ Rm,m are orthogonal matrices and Σ̃ ∈ Rn,m is a matrix
having the first r = rank(A) diagonal entries positive and decreasing in magnitude,
and all other entries zero. In this way it is possible to rewrite the problem according
to the decomposition of

X̃ = UrΣV T
r .

The direction of the largest data variation is z = u1, the first column of Ur, and
the mean-square variation along this direction is proportional to the square of its
eigenvalue. Successive principal axes can be found by removing the first principal
components, and by applying another time the previous procedure.
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Figure 5.9. Graph of cumulative variance in the case of manual feature
extraction clustering.
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By exploiting this method, it was possible to capture more than 85% of the
variance with 6 principal components (instead of 21) [Figure 5.9].

From here on, the clustering process starts. The data obtained, in fact, have
been processed by k-means (see [Subsection 4.4.1]) and Clara (see [Subsection 4.4.2])
algorithms, for a number of clusters between 2 and 10. To understand which
method is the most appropriate in this case, goodness indexes have been evalu-
ated, and the choice of the optimal number of clusters was derived. Indices involved
in this case are summarized in [Table 5.14].

CVI Optimal
Silhouette index to be maximized
Dunn index to be maximized
Connectivity index to be minimized
Average proportion of non-overlap (APN) to be minimized
Average distance (AD) to be minimized
Average distance between means (ADM) to be minimized
Figure of merit (FOM) to be minimized

Table 5.14. CVIs in the case of manual feature extraction clustering.

However, also in this case, indices were not directly comparable as it was not
possible to identify a clear winner from them. Index results are reported in [Fig-
ure 5.10] and [Figure 5.11].

Figure 5.10. Result of the clustering algorithm in the manual feature extraction
approach. For each line, it is reported the ranking of the cluster algorithms
according to the CVI considered.
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Figure 5.11. Result of the clustering algorithm in the manual feature extraction
case. For each line, there is the value of the cluster algorithm, according to the
CVI considered. This table is referred to [Figure 5.10].
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For this reason, it was necessary to involve the ranking algorithm [Section 4.6].
At the end of the process, it determines the winning ranking; the k-means al-
gorithm with two clusters was ranked in the first position (see [Table 5.15] and
[Figure 5.12].

Figure 5.12. Graphical result of the ranking algorithm in the manual
feature extraction case.

[Figure 5.13] represents the result by plotting the first three main components,
which together explain almost 70% of the variance. To better understand the
graph, let’s keep in mind the convention of representing each point with the cluster
color in [Table 5.4]. In this graph, it is evident that the algorithm has been divided
data into two unbalanced parts. The first one is very concentrated on the left side
of the plot and its windows have low PCs values (in absolute value). Instead,
the second scattered group (the minority) is characterized by higher values. Some
quantitative features of the two clusters are reported in [Table 5.15].

To get a more complete overview, however, it is necessary to go into the
frequency-domain. Cluster 1 is composed of series that on average have more
visible oscillations and have a strong presence of middle and low frequencies. The
opposite happens with cluster 0 ([Figure 5.14]). This behavior is well visible even
in the time-domain, where the reader can observe that the windows classified with
the label 1 have many more variations compared to the other case([Figure 5.15]).
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Figure 5.13. Graphical result of the first 3 PC in the manual feature extraction case.

Cluster number baricenter color
0 331 (6.6, 15.1, -8.1) blue
1 2001 (0.2, 3.3, -2.6) red

Table 5.15. Best result in the manual feature extraction approach.
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Figure 5.14. Feature average for each SPN and for each cluster.
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Figure 5.15. Example of time-domain clustering results. The three cen-
tral windows are clustered together, while the others are mainly flat and
their label is set to 1.
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Chapter 6

Conclusions

In this chapter, reflections on the results obtained in the previous chapter are re-
ported.
In the first part, criticalities and favorable points that distinguish all methods are
collected. Subsequently, an optimal method is proposed, and finally, ideas on fu-
ture developments, which could help to achieve a better result, are suggested.

The first observation concerns the granularity and the optimal type of aggre-
gation/downsampling to use for this analysis. Although the analyzed datasets are
always the eight explained in [Subsection 3.2.1], solutions that take advantage of a
dataset with an intermediate/high level of aggregation (low frequency) have been
preferred (see granularity level of the winner clustering methods in the previous
chapter). These aggregations lead to a flattening of the series, but at the same
time, clusters are more easily identifiable and get higher goodness measurements.
In fact, an oscillatory but almost flat signal could be perceived as a completely
different series with a higher granularity, while the aggregated time window could
assume the most common shape among those present in the dataset. In conclu-
sion, for the analysis carried out (and so related to agricultural machinery) an
intermediate/high granularity is suggested. Logically this advice should not be
taken at face value. In fact, some isolated situations, such as SPN 94 in the single
SPN approach, need more resolution to understand the real differences between
the windows, and therefore a preliminary analysis on the type of aggregation is
still advisable for future analysis.
Moreover, significant differences in clustering results by using aggregation by av-
erage or downsampling have not been highlighted. Very often the two methods
were equivalent in terms of goodness indexes if compared at the same granularity
level. Therefore no preference is expressed.
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Turning to the particular cases of the various algorithms used, the following
conclusions can be drawn.
The starting algorithm of the previous chapter is the single signal based. This
method surely has a negative side; it cannot be generalized. In fact, taking more
signals of reference than three (as in this case), too many details in the division
could be identified, not recognizing the macro behaviors of the vehicle. This ap-
proach, therefore, is very precise but not scalable.
On the contrary, a generic issue present in all dataset-oriented methods is the op-
posite; the optimal choice flattens too much the results.

Before drawing the conclusions, let’s look for the best method among the dataset-
oriented ones. The first one proposed is described in [Subsection 5.2.1]. This
method is extremely selective for windows classified with the label 0. In fact, it
can identify shaped windows, only if all three components of the multivariate series
have a strong presence of low frequencies. On the contrary, in the more numerous
cluster 1, the algorithm generally combines extremely flat windows with ones in
which not all 3 signals have this behavior.
This problem led to the development of a measure that took into account vari-
ations in the individual SPN signal. For that reason the [Subsection 4.1.2] was
developed and subsequently exploited in the application of [Subsection 5.2.2].
The operations of the maximum and the sum, in fact, highlight as anomalous a
window even if only one of the three variables of the multivariate series has anoma-
lous behavior compared to the other signals. In this way, it is possible to highlight
at different levels without compression of the results. An example is given to
clarify this point. Let’s focus on three consecutive random windows. Let’s call
them window 0,1 and 2. Let’s assume that only the first window has a singularity
about SPN 94 and therefore this window series is very far from the second and
third window series for what concerns the SPN 94. In the second window, instead,
let’s assume a rare behavior happening to SPN 190, which determines a big DTW
dissimilarity with respect to the window series of the first and third series. Let’s
assume now that the SPN 524 is flat for all the periods. Under these hypotheses,
if the max or sum aggregation function is considered, the first and second win-
dows will be far away from the third window even though it is caused by different
elements.
This leads to a correct result from the point of view of the diversity of the win-
dows. The negative aspect is the flattening of the results due to the impossibility
to understand which SPN causes the distance. In fact, there can be many ways
in which two windows can be labeled in the same way. This second method also
suffers from a lack of interpretability of the results. It is not possible to establish
a priori what is the reason for the clustering but it must be based on analysis of
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the clustered series after the algorithm has acted.
This led to the development of the third method. The third method involves man-
ually extracted features that can give useful information on the structure of the
time series windows. Moreover, it partially solve the issues raised previously, since
it provides a way to immediately interpret the results by using the starting feature
as indicators.
This last sentence is only partly true, because the process exploits a PCA, which
"mixes the features". However, these were derived from real features that can be
read after the clustering analysis.
This last algorithm seems to be the most reliable also from the point of view of
CVIs. Not all indices can be exploited for the final comparison because, for each
section, the most appropriate ones have been used. The CVIs result can be found
in [Table 6.1]. By the numbers, it is clear that the feature method can better
divide clusters and make them more cohesive within themselves.

Algorithm Dunn Silhouette
Feature - based 0.1 0.67
DTW - based ([Subsection 5.2.1]) 0.1 0.46
DTW - based ([Subsection 5.2.2]) 0.03 0.07

Table 6.1. CVIs of the best dataset-oriented methods identified.

In conclusion, a method that takes the positive side of both approaches is rec-
ommended. In fact, the dataset can be initially processed by the dataset-oriented
method that exploits the features extraction. This method seemed more stable
and interpretable than the others.
Then, signals of particular interest can be chosen, and they are exploited to apply
the single signal oriented clustering method. In this way, specific groups will be
created based on the shapes of these specific signals. The recommended number
of selected signals does not exceed 3 but, in any case, an extremely high number
of final clusters is not appropriate due to the scarce utility.
In the end, a merge of the two results can be done. The macro-categories are kept
in mind but at the same time, the shape dissimilarity between the single signal
windows can be used to identify a more in-depth analysis.
A future study would find out which SPN values are the best to be considered
in the univariate approach compared to the initial set. It might even be a better
choice to analyze other variables with respect to the ones used for the second step.
In fact, in this way, the link between the univariate and multivariate clustering
approach would be completely deleted. At the same time, there is a risk of ob-
taining incompatible results. By using the same variables for the univariate (a
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part of them) and multivariate approach, it is more likely to obtain two compa-
rable but almost overlapping results, as in this case. Besides, these analyses will
be possible starting from a richer dataset in terms of the number of variables and
considering a vehicle that performs routine operations rather than functional tests.

In conclusion, other investigations on multivariate methods for time series clus-
tering will be necessary to find a method that can obtain more refined divisions
already in the first step. This way the second step may no longer be necessary.
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