
POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Matematica

Tesi di Laurea Magistrale

Computational experiments with stochastic models for the
assembly-to-order system under demand uncertainty.

Relatori Candidato
prof. Paolo Brandimarte Alberto Gennaro
prof. Edoardo Fadda

Anno Accademico 2019-2020

Acknowledgements

I would like to extend my sincere thanks to Professor Paolo Brandimarte, who has
guided me through this project with invaluable expertise and to Professor Edoardo
Fadda: we had long confrontations for every tiny detail of the models and he helped
me so much in the computational aspects of this work.

I want to thank every friend I have met during my experience at Politecnico, col-
leagues which have stimulated me to become a better student and a better person,
thank you for every laugh we had, every joke and every hour spent together.
I dedicate this work to all my friends from the tennis centre and to my coaches:
without intense training hours and competitions, wins and losses I would not be
the same person.
To all my lifelong friends, and in particular, to the Amitici and to the "Fai Come
il Capo Bottega" group, we shared so many years together, I could not have been
here without you. I cannot wait to celebrate with all of you when the pandemic will
let us do.

To my family and to my girlfriend, you have inspired in so many ways, I have
learned so much from you and I can simply say I love you, you have always been the
reason for not giving up in every difficult moment. Thanks to my mum Luisa and
to my dad Vittorio, for the unconditional love and support, thanks to my brother
Carlo for every joyful moment, every fight we have had in our room together (you
are hundred times wiser than me), thanks to my cousin Lorenzo for every carefree
summer, thanks to my grandparents Paola, Carlo, Marika and Franco for having
shown me how powerful the willingness of human beings can be and thanks to
my girlfriend Federica, who more than anyone has shown me how the hard-work
always pays-off. I would be nothing without you all. The best is yet to come.

1

Contents

1 Introduction 5

2 Literature Review and code structure 8
2.1 ATO . 8
2.2 Optimization methods . 9

2.2.1 Dynamic Programming . 9
2.2.2 Multistage Stochastic Programming 11
2.2.3 Linear Decision rules . 12

2.3 General code architecture . 14

3 Two-stage models 16
3.1 The basic problem: Expected Value formulation 16
3.2 Recourse Second Stage version . 18
3.3 Decision Rules models . 18

3.3.1 Model I: Linear Decision Rules version 18
3.3.2 Model II: Deflected Linear Decision Rules version 20

3.4 A short dive in the code: model classes 21

4 Comparison and results: two-stage 24
4.1 How to understand the importance of accounting for uncertainty? . . . 24

4.1.1 Value of Stochastic Solution . 24
4.1.2 Expected Value of Perfect Information 26

4.2 Instance generation and important parameters 27
4.2.1 A short dive in the code: two stage instance class 29

4.3 In sample and Out of sample stability 31
4.4 Comparison between stable solutions 32

4.4.1 A short dive in the code: two stage evaluation class 38

5 Robust models 39
5.1 Max Min formulation . 39
5.2 Robust version of the recourse model 40
5.3 Robust version of DLDR model . 40
5.4 Robust results . 41

6 Multistage models 43
6.1 Multistage recourse model . 43
6.2 Multistage Decision Rules models . 47

6.2.1 Linear Decision Rules . 48
6.2.2 Deflected Linear Decision Rules 50

6.3 A short dive in the code: multi-stage models 51

2

7 Comparison and results: multi-stage 56
7.1 A short dive in the code: multistage instance generation 56
7.2 Evaluation of multistage solutions . 58

7.2.1 An alternative approach for Decision Rules 61
7.2.2 Computational times: a brief digression on fairness of compar-

isons . 62
7.3 A computational trick: two-stage-multi-period model 64

8 Towards the dynamic programming approach 71
8.1 Comparison between fast methods: continuation value vs DLDR heuris-

tic . 74

9 Conclusions and further work 80

Appendices 84

A Tables for two-stage results 84

List of Figures

1 DP scheme: an agent interacts by means of an action with the envi-
ronment which in turn provides a reward to the agent and changes its
state. 10

2 Example of a scenario tree: 2 realization of the risk factor and 4-time
intervals leads to 24−1 possible scenarios. 12

3 Package architecture. 14
4 Graphical representation of the classical gozinto schemes. 30
5 profits (left) and rho (right) for different margin level with a right

skewed beta distribution. 34
6 profits (left) and rho (right) for different margin level with a left skewed

beta distribution. 35
7 Profits for some symmetric distributions. 36
8 Normal distribution low margin is a critical situation for all models

expect the recourse one. 37
9 Extreme behaviour of Decision Rules approaches caused by a mix of

low margins and no common components. 41
10 profits (left) and rho (right) for different skewness of a beta distribu-

tion. 42
11 Compact variable formulation: at each node corresponds a variable. . 46
12 profits (left) and rho (right) for different level of profitability of a right

skewed beta distribution with multi-period and heuristic models. . . . 66
13 profits (left) and rho (right) for different level of profitability of a left

skewed beta distribution with multi-period and heuristic models. . . . 67

3

14 profits (left) and rho (right) for different level of profitability of a uni-
form distribution (finite and symmetric) with multi-period and heuris-
tic models. 68

15 profits (left) and rho (right) for different level of profitability of a nor-
mal distribution (infinite and symmetric) with multi-period and heuris-
tic models. 69

16 profits (left) and ROI (right) under different profitabilities for a normal
distribution under standard (1.0) tightness condition. 75

17 profits (left) and ROI (right) under different profitabilities for a right
skewed beta distribution under standard (1.0) tightness condition. . . 76

18 profits (left) and ROI (right) under different profitabilities for a left
skewed beta distribution under standard (1.0) tightness condition. . . 77

19 profits (left) and ROI (right) under different profitabilities for a uni-
form distribution under standard (1.0) tightness condition. 78

List of Tables

1 ROI, normal distribution, tightness set to 0.8. 84
2 ROI, uniform distribution, tightness set to 0.8. 85
3 ROI, right skewed beta distribution, tightness set to 0.8. 86
4 ROI, left skewed beta distribution, tightness set to 0.8. 87
5 Profits, normal distribution, tightness set to 0.8. 88
6 Profits, uniform distribution, tightness set to 0.8. 89
7 Profits, right skewed beta distribution, tightness set to 0.8. 90
8 Profits, left skewed beta distribution, tightness set to 0.8. 91
9 EVPI and VSS, left skewed beta distribution, no common components,

low profitability. 92
10 EVPI and VSS, left skewed beta distribution, no common components,

medium profitability. 92
11 EVPI and VSS, right skewed beta distribution, no common compo-

nents, low profitability. 93
12 EVPI and VSS, right skewed beta distribution, no common compo-

nents, medium profitability. 93
13 EVPI and VSS, normal distribution, no common components, low pro-

fitability. 94
14 EVPI and VSS, normal distribution, no common components, medium

profitability. 94
15 EVPI and VSS, uniform distribution, no common components, low pro-

fitability. 95
16 EVPI and VSS, uniform distribution, no common components, medium

profitability. 95

4

1 Introduction

Uncertainty is pervasive in the world where we live and it becomes essential to
take it into account properly in business decision. Among different approaches,
stochastic programming is one of the most used. In this work, the focus is on an
assembly-to-order system, a business situation where the firm does not store final
products, but only the components necessary to make these products. Then, when
an order arrives, components are assembled together and the product is sold to
the client. It is obvious that such system may be a smart solution whenever the
firm has some difficulties in producing or ordering the components, so that this
first step is slow and need to be done before orders arrive, but it is extremely fast
to assembly components and to deliver the final product; an example of such case
may be the automotive sector.

In this business problem, there can be a lot of risk factors, like for example
demand uncertainty for final products, machines delays or breakdowns, quality
control on the production, assembly problems or changeover costs and lead times
in production. This work assumes a fairly simple setting, where we ignore all
the aforementioned risk factors but the demand uncertainty. Basically, we want
to optimize our production decisions without knowing the demand. The classic
approach to tackle this problem is to build a stochastic program with two different
types of decision:

1. the first stage decisions, which are in our case the production plan for the
components and must be chosen before demand realization;

2. the second stage decisions, which are sales (or assembly) decisions and can
be taken while discovering the demand for the products. These decisions are
conditioned on the first stage ones because we have limited components to
assembly final products.

Production has a cost, which we assume to be linearly dependent on the amount
of components made, and has a limit, since we need to allocate a finite number
of resources. We further assume that unsatisfied demand is lost (no backlogging)
and we have limits on sales based on the demand realization and the amount of
components available. Our aim is to maximize profit.

We build several models to formalize the problem, both considering a single
period and multi-period sales (demand as a random variable or stochastic pro-
cess), trying to understand which performs better in terms of profits generated
and return on investment, a popular measure for firm performance. In particular,
within the same demand framework, we have two families of models: classical re-
course models and decision rules ones. In the former, second stage decisions are
an implicitly defined non-linear function with respect to the risk factors involved,
while, in the latter, decisions are a parametric function with respect to the same
risk factors (in our case we explore linear and piece-wise linear functions). So,
the difference among the models is in the second stage decisions structure, while
the production plan, which is the implemented part of the solution, has the same

5

structure. Their common characteristic is the fact they are built on montecarlo ap-
proximation of the expected value presented before, which is a common procedure
in the literature of the sample average approximation technique. Our primary in-
terest is the comparison of such models in different condition coming from possibly
different economic situations. In particular, we analyse the impact of

• the demand uncertainty, so we try to optimize under different demand distri-
butions, with differences in mean, volatility, skewness and finiteness;

• the number of common and specific components. It can be logic to expect
that the more common components, the easier is to manage the components’
production because of the risk-pooling effect on the variance of the demand
for end products;

• the profitability of end products, i.e the margin over the cost of making an
end-item;

• the capacity limit.

We are interested in gaining some insights about the quality of the solutions
under different settings: the questions we want to answer are, for example, if there
is a single model that, no matter how the aforementioned features are chosen, is
always better than the other, or if there are some settings in which some or all
the models have strange behaviours or lead to very bad outcomes. The work also
wants to stress the importance of tractability of the models, so we put a focus on
computational issues when models have heavy requirements with respect to both
hardware and software. This will be tremendously important in the multi-period
sales framework.

The technological support of a commercial solver was needed and we adopt the
GUROBI 9.0.3 solver for every experiment carried out; all results displayed are
obtained using a MacBook Pro 2018 with 2,3 GHz Intel Core i5 quad-core and 8
GB of RAM.

The work has been organized as follow: after the introduction (Chapter 1),
there is an overview (Chapter 2) of the business problem, the related literature
and the optimization machinery used to build meaningful models to tackle the
problem.
Subsequently, in Chapter 3, the first simple models are described in details: these
are the models where uncertainty does not span over different time instants but
it is concentrated in a single moment. Precisely, we build four models, one where
uncertainty is not treated, the classical two-stage approach and two decision rules
models. We then exploit the results of the models described before, defining some
measures to evaluate them, putting some lights on their behaviour and stability
when changing the principal features of the problem.
After that, in Chapter 5, the robust counterparts of the previous models are pre-
sented and compared, gaining an insight into the price we pay in mean perfor-
mance to build more stable solutions. In Chapter 6 the attention shifts to a new

6

framework, where uncertainty is modelled as a stochastic process. New models
are developed, which are the extension of models we have built in the third chap-
ter, with a new important state variable, the inventory: now we can keep pieces and
assembly them in a future period, where demand is high. This machinery requires
a greater computational burden: these are the multi-stage stochastic programs
which are known for their issues of tractability (the curse of dimensionality) and
so we show how, with decision rules models, we can avoid intractability. Specif-
ically, we show that computational requirements for the decision rules approach
scale quadratically with respect to the number of time periods, while for classical
models the scaling is exponential. These models are evaluated both from a man-
agerial point of view and in computational terms.
Finally, before the conclusions, there is an attempt (Chapter 8) to put all the mod-
els presented before under the same light, exploring some tricks coming from the
dynamic programming literature to avoid computational burdens without losing
too much performance. Results seem to suggest that these approaches worth the
effort, since they lead to sensible solutions.

7

2 Literature Review and code structure

2.1 ATO

The assembly to order (ATO) is a very well known business problem, from both
an academic point of view, but also from an industry perspective. An assembly-to-
order system consists of multiple components, which in turn can be thought as end
products of a precedent assembly, and end products to be sold to clients which are
made by a suitable mix of the components. The idea behind this kind of systems
is quite simple: in certain sectors, as for example car manufacturing or high-tech,
the supply chain has its bottleneck in the making or ordering of the components,
whereas the assembly part can be carried out in a very efficient way, so that the
company can maintain low the response time to clients’ orders. We will refer to
the components used by all the end products as the common components, while
the term specific components will identify the components used by only one end
product. In the literature, sometimes the common adjective is used with a less
harsh meaning, so that a common component may be part of at least a certain
percentage of the final items. Common components play a significant role in the
risk management perspective: if demand has a really high variability for different
products, this may not be the case for the common components, which are shared
across all the final products. So, in some sense they allow pooling the demands
of various final products, leading to a reduction in the risks and therefore in the
cost of offering a big amount of different products to the clients. Remaining in the
tech sector, one can think of an ATO system for a producer of computers: there
are a certain number of hardware components which can be customized (graphics
card, computer data storage, keyboard) and other which are common (like the
motherboard) and it is natural to store more motherboard, which is necessary to
build all the computers, with respect to a specific keyboard, which may be used
only by graphics experts. In the ATO problem there can be multiple sources of
uncertainty, like for example:

• demand uncertainty, which is often the most studied one;

• lead time uncertainty both for components and final products;

• reliability of machines used to make the components or to assembly the final
products.

Moreover, in the literature, depending on the sources of uncertainty used, there
may be solutions based on optimising the (expected) profit or risk measures based
on profit, but also based on client satisfaction, meaning that the objective becomes
to be able to meet the client order in the smallest time possible. From this brief
inspection, it is clear that a comprehensive model to tackle the problem will likely
result computationally infeasible, so our choice is to study the problem taking into
account only the demand uncertainty. In particular, the scope of the study will be
the investigation of the robustness of our solution with respect to certain factors
characterizing the instance of the problem, like:

8

• the skewness of the chosen distribution and demands’ distributions;

• the number of common components with respect to the overall number of
components;

• the percentage of items with high margin.

A quite comprehensive literature review can be found in Atan et al. (2017).

2.2 Optimization methods

Uncertainty is pervasive in our modern society and therefore, in order to survive in
the increasingly competitive world of business, it is necessary to make consistently
good decisions without perfect information. This is for sure one of the reason why
the last few decades were devoted to developing new powerful frameworks to
take uncertainty into account in the decision making process. In this context, two
very popular settings were dynamic programming (DP) and multi-stage stochastic
programming (MSP). We will briefly discuss these two approaches, pointing at
their advantages and pitfalls, which will justify the decision rule approach that will
be used in this work.

2.2.1 Dynamic Programming

Dynamic Programming is a very powerful and general paradigm based on a simple
dependency among different stage of information. It is possible to cast in these
settings a lot of problems, both with finite and infinite horizons. In this brief pre-
sentation, we will concentrate in a setting where the objective is to maximize the
expected value of the sum of some discounted rewards in time, with a finite horizon
T , but we stress that this is not meant to be a complete description of all possi-
ble problems that can be tackled by DP. Interested readers may consult Denardo
(2013) or Bertsekas (2017) for a comprehensive treatment of the subject.

In the naive DP, there is a markovian flow of information (in the computer sci-
ence field processes with this feature are known as Markov Decision Processes
(MDPs)), meaning that the current state is the only thing that matters in order to
make a decision for the next period.
Actions to perform are chosen in order to maximize the (expected value of the)
objective function (also known as reward function), which depends on both action
and current state. Based on current state and action chosen, there is a state transi-
tion and the agent receives its reward, as highlighted in Fig. 2.2.1. The very strong
assumption of Markov behaviour leads to a nested principle known as the Bellman
equation which in turn allows finding an optimal policy (with respect to the cu-
mulative reward function) that maps the current state of the world to an optimal
action to execute. Basically, we are solving the following optimization problem:

arg max
π∈Π

E
[T−1∑
t=0

γtf(st, A
π
t (st)) + γT f(sT)

]
(1)

9

Stated as such the problem seems to be unfeasible, but here markovianity assump-
tion comes into play. In order to be able to apply this paradigm, it is necessary to
have a value function Vt for every time instant t which maps every state st in a real
value that can be thought as the monetary value of the state itself. Moreover, we
suppose that VT (sT) = f(sT) is known.
Now, we can recourse backward in time, stating that

VT−1(sT−1) = maxxT−1∈XT−1(sT−1){fT−1(sT−1, xT−1 +

+ γE
[
VT (gT (sT−1, xT−1, ξT)|sT−1, xT−1

]
} (2)

where the function gT is responsible for the change of the state, possibly random
given the presence of risk factors ξT , while XT−1(sT−1) is the set of feasible actions
to perform given the current state.

Figure 1: DP scheme: an agent interacts by means of an action with the environ-
ment which in turn provides a reward to the agent and changes its state.

The Markov property allows not to have concerns regarding how the state sT−1

has been reached, giving the chance to solve a simpler one stage problem. Recur-
ring back up to the time t = 0 we obtain

V0(s0) = max
x0∈X0(s0)

{f0(s0, x0 + γE
[
V1(g1(s0, x0, ξ1)|s0, x0

]
} (3)

Once we have solved this last problem, we have implicitly found the best decisions
xt depending on the state st, i.e we have found the best policy π. Unfortunately,
DP is plagued by the curse of dimensionality because we need to evaluate the
value function at each time in each possible state. We have assumed that state
space is discrete, but this is not often the case (and this can lead to solutions
such as approximate dynamic programming or interpolation methods) and also

10

if discrete, the problem becomes computationally unfeasible if the dimension of
the state space becomes larger and larger, as we need to evaluate each possible
state-action combination in time and the number of possible combinations grows
exponentially, posing problem not only in the evaluation but also in the saving of all
of them. So we can conclude that, despite it allows for implicit but optimal policies,
in its naive setting, DP is not really suitable for real world (and size) applications.

2.2.2 Multistage Stochastic Programming

Multistage Stochastic Programming offers other advantages and has some other
pitfalls with respect to DP. First of all, it does not assume any specific characteristic
about the way uncertainty is revealed through time, but only a non-anticipativity
requirement must be satisfied (which is very reasonable), giving a very elastic
setting to work with. Following closely the notation adopted in Georghiou et al.
(2019), we can cast a MSP problem as:

min
x1,...,xT

Eξ
[T∑
t=1

ct(ξt) · xt(ξt)
]

(4)

s.t.
t∑

s=1

Atsxs(ξ
s) ≥ bt(ξt) ∀ξ ∈ Ξ, t = 1, . . . , T (5)

xt(ξ
t) ≥ 0 ∀ξ ∈ Ξ, t = 1, . . . , T (6)

where it is important to explicitly state the difference between ξt which is a real-
ization of the risk factors at time t, and ξt = (ξ1, . . . , ξt) which is a realization of the
risk factors from the beginning up to time t.
It is noteworthy to mention that non-anticipative constraints are implicitly written
because of the dependency of xt only from ξt and not from ξt+1, . . . , ξT . In the no-
tation, we can also see a ξ, which we will refer as a scenario (or trajectory) and it
has the same meaning of ξT .
The problem stated in this way accommodates an infinite number of constraints,
as eq. (5) and (6) must be satisfied for each possible scenario ξ in the set of uncer-
tainty Ξ, so it is generally intractable.

To overcome this problem, the Sample Average Approximation (SAA) is often
used: some techniques are adopted to generate scenarios ξ from the set Ξ and
non-anticipativity constraints must be enforced for decisions which are indistin-
guishable at the moment they are taken. The problem becomes computationally
feasible, but with some care: in fact, the more scenarios one can generate, the
better the solution, but it has been shown that the complexity of the problem scale
exponentially with the number of stages with respect to generated scenarios. This
is the main drawback of this method. It is critical to understand the trade-off
between solution accuracy and computational requirements. Small size sample so-
lutions are strongly dependent on the sample itself and therefore perform poorly
out of sample, while a big size sample leads to intractability.

11

Figure 2: Example of a scenario tree: 2 realization of the risk factor and 4-time
intervals leads to 24−1 possible scenarios.

2.2.3 Linear Decision rules

Improvements can be made from the naive description of these two frameworks
(from approximate dynamic programming to smart scenario generation and vari-
ance reduction techniques), or a third road may be taken: it is exactly in the middle
of the two aforementioned approaches that decision rules find their place. The idea
behind decision rules is to look for the best policy possible among a parametrized
subspace of the infinite space of all real-valued functions. In order to better under-
stand what that means, it is worthy to set the environment in which we are going
to deploy these decision rules. In their description, we will again follow closely the
work of Georghiou et al. (2019).
The general problem we want to solve is

min
x1,...,xT

Eξ
[T∑
t=1

ct(ξt) · xt(ξt)
]

(7)

s.t. Eξ
[T∑
s=1

Atsxs(ξ
s)|ξt

]
≥ bt(ξt) ∀ξ ∈ Ξ, t = 1, . . . , T (8)

xt(ξ
t) ≥ 0 ∀ξ ∈ Ξ, t = 1, . . . , T. (9)

This problem is a generalization of Problem 4, which can be reconstructed by set-
ting Ats = 0 ∀t < s: in this way we meet non-anticipativity constraints and, since
now we only deal with no-future variables, conditional means with respect to ξt

12

are treated as constants, so we recover Problem 4.
First of all, without any loss of generality, we can always assume that only con-
straints are subject to uncertainty, possibly using some additional variables to
write the problem in its "epigraph" form, therefore we can suppose that cost coef-
ficients ct are non random. Now, it is clear from this problem that we are trying to
optimize some functions xt(·), ∀t = 1, . . . , T under some constraints, but we are
not requiring any form of regularity about these functions: the space of all possible
functions from an infinite set to another one is non-countable and this means the
problem is intractable. But what if we impose that xt(ξt) = Xtξ

t with Xt matrix?
Then, we are basically shifting our problem to a stochastic linear program, looking
for the best matrix coefficient (which are finite in number) under some constraints.
So, our focus is now on the linearized version with non-anticipativity constraints
(no conditional expectation), that we can write as

min
X1,...,XT

Eξ
[T∑
t=1

ctXtξ
t
]

(10)

s.t.
T∑
s=1

AtsXsξ
s ≥ bt(ξt) ∀ξ ∈ Ξ, t = 1, . . . , T (11)

Xtξ
t ≥ 0 ∀ξ ∈ Ξ, t = 1, . . . , T. (12)

Now, under suitable condition on the set Ξ (basically Ξ has to be a polyhedron that
can be separable) it is possible to show (see Georghiou et al. (2014) or Georghiou
et al. (2019)) that the problem, which accommodates an infinite number of con-
straints, can be reduced to a finite linear programming problem (using concept of
duality). This is the most technical approach and solve exactly the problem, but
requires the knowledge of the space in which the risk factors lie. Another possi-
ble approach, the one we will use in our work, simply operates a sample average
approximation to the approximated linear program generated by the linearization
of the decision: the advantage of this approach is due to the fact that rules are
scenario independent and so there is no need in the construction of a scenario tree
for the non anticipativity requirements. This allows representing uncertainty well
without an explosion in the number of scenarios, so that the trade-off between
the accuracy of the solution and computational burden may be the one desired.
The drawback is obviously a loss of optimality, since this is an approximation and
it is quite common to have optimal policies which are non-linear. Nevertheless,
linear policies are simple to implement in real-life applications (and are gener-
ally more interpretable) and "locally" approximately correct (if we think of the
linearized version like a Taylor expansion truncated at the first order). This was
a simple introduction on the topic, where the focus was on the intuitive idea and
the mathematical framework has been kept simple. For the interested reader, a
more comprehensive treatment can be found in Ben-Tal et al. (2004), which is the
seminal work for the renaissance of linear decision rules in the XXI century. In
Chen et al. (2007) new deviation measure (forward and backward) are defined to

13

overcome some difficulties with infinite domains for the uncertainties, to set prob-
abilistic constraints which are tighter than usual. Decision rules can be extended
to obtain greater model’s flexibility, so in the literature, some advances have been
done from Linear Decision Rules (LDRs). In particular, in Chen et al. (2007) and
Georghiou et al. (2014) some piece-wise linear decision rules are treated and in
Georghiou et al. (2019) some non-linear decision rules are studied by means of
a lifting operator, an operator that takes the uncertainty factor from a space to
another, preserving essentially the convexity of the set (or finding a tight inner
approximation for the set Ξ). A great work in assessing the sub-optimality of this
approach can be found in Georghiou et al. (2014) where a posteriori bounds on
the optimality gap can be found by solving the primal approximate linear program
and its dual. Finally, this framework may be used in different contexts: in Ben-Tal
et al. (2004) an inventory management problem is discussed, in Georghiou et al.
(2014) a production planning problem is tackled, but also in portfolio management,
we can see applications of decision rules, as for example in Calafiore (2008) or in
Moallemi and Sağlam (2017).

2.3 General code architecture

In the following sections of this work, we propose different models with which to
tackle the ATO problem and we have stated them in mathematical terms.
To use these models and solve the problem we needed an optimization toolbox
and we found it in the Python version of the Gurobi optimizer. The choice is re-
lated both to the great performances a commercial solver can achieve and to the
fact that model generation and maintenance is made really easy in the gurobipy
(Gurobi toolbox for Python) framework. We have built an Object-Oriented archi-
tecture to handle model creation, instance generation and evaluation, which will
be available on GitHub (upon request): We now discuss briefly all the folders and

Figure 3: Package architecture.

14

then, when needed, our focus will be on some specific classes.

1. the copulas folder is a future work add-in for allowing the demand to be
related in different ways from independence or linear correlation in case of
jointly normal demands and will no be further discussed in here;

2. in the etc folder there are the .json file in which the user may specify some
features related to the instance of the ATO problem he wants to solve (see
ch. 4 for an in-depth explanation on what can be found in such files);

3. the logs and results are two folders in which are stored information about
model creation, solving and performances, plus some graphics interpretation
of the solutions if needed;

4. the simulator is the package in which there are the classes related to the
instance generation and for the solutions evaluations, which are two of the
three phases (and classes) we are going to cover in-depth in the rest of the
work;

5. the solver folder is where models are created and therefore it is where the
most important part of the code is situated.

6. the utility is the folder in which we store useful functions which compare
models and write down results in .csv format that are then processed to
obtain graphs.

15

3 Two-stage models

In this section, we build several models describing the ATO production planning
problem over two periods of time. In the first period, components are made with-
out any information on future demands of end products with constraints on the
capacity of our machines, while in the second stage demands realize and we as-
sembly our components into the final items, trying to maximize our profit under
constraints related to the total components we have made and to the demands out-
comes. Each of these models has some common and specific features, so, for the
sake of parsimony, we introduce the common notation and sets for every model.

• I = {1, . . . , I} is the set for the components;

• J = {1, . . . , J} is the set for the end items;

• M = {1, . . . ,M} is the set for production machines (resources);

• S = {1, . . . , S} is the set for scenarios that we use to discretize the distribu-
tion of random demand;

• dsj , the demand for end item j ∈ J in scenario s ∈ S;

• πs, the probability of scenario s (if not otherwise specified we are going to
use Montecarlo sampling, so that πs = 1

|S| and scenarios are equiprobable);

• Ci, the cost of component i ∈ I;

• Pj , the price (or revenue) of the end item j ∈ J ;

• Lm, the time availability (in the chosen temporal unit) of the machine m ∈M;

• Tim, the processing time for the component i ∈ I on machine m ∈M;

• Gij , the number of components of type i ∈ I needed to assemble one end
item of type j ∈ J ; in manufacturing parlance, these coefficients are called
gozinto factors and are grouped into the gozinto matrix G;

• I0,i is the initial inventory for the component i ∈ I and it is set to zero if not
explicitly stated otherwise;

• xi is the quantity of component i made before the realization of the end prod-
ucts’ demands and they are the only variables common to all models.

3.1 The basic problem: Expected Value formulation

The Expected Value (EV) model takes a stochastic problem and transforms it into a
simple deterministic one, by simply taking expected value every time a risk factor
is encountered. In this way we eliminate all the uncertainty of the problem, we do
not really take care of it. This may not be the best approach, but it is for sure the
simpler one and produces a small (or medium) size linear program. So the model
has only J additional variables which are:

16

• yj , the quantity of end item j produced.

The model then it is given by

max −
I∑
i=1

Cixi +

J∑
j=1

Pjyj (13)

s.t.
I∑
i=1

Timxi ≤ Lm ∀m (14)

yj ≤ d̄j ∀j (15)
J∑
j=1

Gijyj ≤ xi + I0,i ∀i (16)

yj , xi ≥ 0

where d̄j is the mean demand for end item j.
We are optimizing over the decision variables xi, i ∈ I and yj , j ∈ J . The objective
function in eq. (13) is simply composed of the total revenues given by the sales
of end items minus the total costs of the component we have made to meet the
demand of our products. We have three types of constraints:

1. capacity constraints, which are written in form of eq. (14): they state that
the time of completion of our components must not be greater of the time
available on the machines we have. We emphasize that the capacity of our
machines is not aggregated, so that the system represented may be seen as
a real supply chain and may be affected by a bottleneck (i.e a machine that
under-produces with respect to all the others);

2. demand constraints, which are in eq. (15) and tell that we cannot sell more
end-products than the demand (in this simplistic case the demand coincide
with the mean of the distribution)

3. assembly constraints, which are in eq. (16) and limit the assembly of final
items: we cannot produce them if there are not enough components to build
them, both just made or present in the inventory.

Finally, we have some lower bounds on the variable, which basically state that we
cannot produce negative amounts of components nor assembly negative amounts
of end items.
Talking about the dimension of the problem, we have I+J variable to optimize and
M + J + I constraints, so that the problem grows linearly with respect to items,
components and resources. Again we want to stress that there are other models to
tackle the ATO problem which are harder to write and solve: for example, in our
model, there are no fixed costs on machines use, nor the possibility of malfunctions
of resources or quality checks on productions; we have kept deliberately simple our
model to be able to carry out extensive comparisons in demand uncertainty and in
how components’ type (common or specific) act in changing the solution.

17

3.2 Recourse Second Stage version

This is the classical two-stage recourse problem with sample average approxima-
tion. In this model we need more second-stage variables with respect to the EV
problem; in particular, we define

• ysj is the quantity of end-item j produced under the demand scenario s

and the problem becomes

max −
I∑
i=1

Cixi +

S∑
s=1

J∑
j=1

πsPjy
s
j (17)

s.t.
I∑
i=1

Timxi ≤ Lm ∀m (18)

ysj ≤ dsj ∀j, s (19)

J∑
j=1

Gijy
s
j ≤ xi ∀i, s (20)

ysj , xi ≥ 0

Basically, the main difference is that we now have a second stage variable for every
end item and every possible scenario (therefore they are scenario dependent). This
implies that the number of constraints of the type of eq. (19) grows from J up
to J × S, exactly the same number of second-stage variables, while the number
of assembly constraints becomes I × S. This is because market and assembly
constraints must be satisfied in each scenario.
In this case, the number of decision variables is O(J × S). What we dislike is the
fact that this number is linear in S and this is not a good news, as the number of
scenarios is usually quite big if we want to generate stable solutions. Luckily there
are some algorithms already implemented in the Gurobi solver that maintain the
computational burden low in this particular case of two-stage setting, deploying
the particular structure of the constraint matrix. This will not be possible when
multi-stage models are built.

3.3 Decision Rules models

We now shift the attention to the decision rules models: we present two models
based on a linear and piece-wise linear characterization of the decisions, which
still lead to linear programs of moderate size.

3.3.1 Model I: Linear Decision Rules version

We have the following second-stage variables in addition to the common first-stage
xi:

18

• ȳj is the number of end item j produced in the standard condition;

• Hj,k is the rate of variation of production of item j per one item variation in
demand of item k;

Again, we use d̄j as the mean demand for item j. The model then becomes

max −
I∑
i=1

Cixi +

J∑
j=1

Pj ȳj +

+

S∑
s=1

J∑
j=1

πsPj
(J∑
k=1

Hjk[dsk − d̄k]
)

(21)

s.t.
I∑
i=1

Timxi ≤ Lm ∀m (22)

ȳj +

J∑
k=1

Hjk[dsk − d̄k] ≤ dsj ∀j, s (23)

J∑
j=1

Gij
(
ȳj +

J∑
k=1

Hjk[dsk − d̄k]
)
≤ xi ∀i, s (24)

ȳj +

J∑
k=1

Hjk[dsk − d̄k]) ≥ 0 ∀j, s

xi ≥ 0 ∀i

The differences with respect to the previous model are concentrated in the second-
stage decisions y. In this model we separate the standard (or better the mean)
behaviour, which is represented by ȳj , the decision we adopt in case of a scenario
in which the demand is equal to its mean, from the adjustments Hj,k which are the
best linear responses in the assembly of item j if demand for item k moves from
its mean value.
This intuition has been emphasized in the objective function: first-stage costs and
mean second-stage behaviours are independent of scenarios, while in eq. (21) we
can see the profit coming from an adjustment in a specific scenario, multiplied by
the probability of the scenario.
The constraints about capacity (eq. (22)) are equivalent to the previous model,
since they concern only first stage solution, while eq. (24) and (23) are respectively
the linear equivalent of eq. (20) and (19). So, basically, the idea behind this model
is to substitute ysj of the Recourse Second Stage version (which in the standard

model of the chapter 2 was xt(ξt) with t = 1) with ȳj +
∑J
k=1Hjk[dsk − d̄k] (which is

affine with respect to our risk factors). In this way, we have linearized the recourse
model and we have (linear) decision rules which are scenario independent in the
sense that the rate of adjustment does not depend on the scenario considered. This
may be a good feature in the out of sample performance, since highly non-linear
scenario dependent adjustments may lead to first-stage decisions which perform

19

badly on a never seen scenario. In computational term the model presented is
quite different with respect to the previous one: the number of parameters here is
no more dependent on the number of scenarios, but the number of constraints still
is. In fact, now we are optimizing over

• I first stage variables xi,

• J second stage mean variables ȳj ,

• J × J second stage adjusting variables Hj,k,

so that the total number of variables is O(J2). The number of constraints remains
equal to the recourse model just presented, since constraints must still be met in
every scenario.
Giving the difference in the total number of variables we expect a better perfor-
mance of the decision rules in terms of computational time when the number of
scenarios is high enough. Unfortunately, this cannot be appreciated: as we pointed
out before the structure of the recourse matrix in the recourse problem is suitable
for faster methods (this is basically due to the fact that we have variables for each
scenario), while the structure here is more complicated, since the rules in some
sense aggregate all the scenarios together, so the solver is not able to spot a par-
ticular useful matrix structure.

3.3.2 Model II: Deflected Linear Decision Rules version

For this model we introduce the additional notation of

d+ := max(d, 0), d− := max(−d, 0) (25)

which is used in defining

d+s
j = max(dsj − d̄j , 0), d−sj = max(d̄j − dsj , 0) ∀s ∈ S, j ∈ J

because we have different coefficients for variations upward or downward of the
demands from the expected value.
Therefore, with respect to the previous model, we have the following variables in
addition to the first stage xi:

• ȳj is again the number of end item j produced in the standard condition;

• H+
j,k is the rate of variation of production of item j per one item positive

variation in demand of item k;

• H−j,k is the rate of variation of production of item j per one item negative
variation in demand of item k

20

Then the deflected (or piece-wise) linear decision rules model is

max −
I∑
i=1

Cixi +

J∑
j=1

Pj ȳj +

+

S∑
s=1

J∑
j=1

πsPj

(J∑
k=1

H+
jkd

+s
k +H−jkd

−s
k

)
(26)

s.t.
I∑
i=1

Timxi ≤ Lm ∀m (27)

ȳj +

J∑
k=1

H+
jkd

+s
k +H−jkd

−s
k ≤ d

s
j ∀j, s (28)

J∑
j=1

Gij
(
ȳj +

J∑
k=1

H+
jkd

+s
k +H−jkd

−s
k

)
≤ xi ∀i, s (29)

ȳj +

J∑
k=1

H+
jkd

+s
k +H−jkd

−s
k ≥ 0 ∀ j, s

xi ≥ 0 ∀i

As stated before, the only difference with respect to the previous model is due
to the different coefficient for opposed moves from the mean: if the demand falls
short we adjust followingH− matrix, while if demand goes over we adjust following
the H+ matrix.
Computationally speaking, this doubles the number of variables in the model, but
the model has greater elasticity, so that an increase of the performances has to be
expected.
Finally, at least for in-sample tests, this model outperforms the previous one, since
the optimal choice of H coefficient in the precedent section is amongst the solution
of this model, imposing H+ = H− entry-wise.

3.4 A short dive in the code: model classes

In this chapter, we have presented 4 different models to tackle the ATO problem.
From a software point of view, these models are all created in the solver folder
of the repository. Specifically, expected value problem and elementary recourse
share a class called ato.py, while two different classes contain respectively the
linear and piece-wise linear decision models.

In snippet 1, it can be seen the basic structure of expected value and simple
recourse problem. As stated before they share the same class and differ only in one
initialisation parameter, the stoch_type, a string which can take values "ev" for
expected value, "st" for the (stochastic simple recourse) or "qn" for the quantile
version (the choice of the mean as a possible realization is subjective). Then this
parameter is central in the solve method, where a conditional statement based

21

Listing 1 ato.py class skeleton

1 class Ato():

2 def __init__(self, stoch_type, var_type="dis"):

3

4 def solve(

5 self, dict_data, cont_value=None, time_limit=None,

6 gap=None, qnt_approx=0.8, verbose=False

7):

on this value build the model in the desired way. Another important parameter
of this function, which is common to all models classes is the dict_data, where
there is all relevant information of the instance we want to solve. While we will
talk about the cont_value parameter when referring to multistage evaluation, the
other parameters are less important for the following discussion: qnt_approx is
the quantile level in case of the quantile version of the problem, and all other
parameters are settings for the gurobi solver.

Listing 2 atoDLDR.py class skeleton

1 class AtoDeflectedLinearRules():

2 def __init__(self, a_priori_check=False, threshold=0, var_type="dis"):

3

4 def solve(

5 self, dict_data, cont_value=None, time_limit=None,

6 gap=None, verbose=False

7):

The Linear and Deflected Linear Decision Rules models are in two different
classes for user ease, but share the same class attributes and so we now anal-
yse only one of the two, the Deflected one. Contrary to the class before, in
the __init__() method there is no information about the stochastic type, since
in these models uncertainty is always taken into account. There is the same
var_type parameter, which can be "dis" (integer variables) or "con" (continuous
variables): even if the default is to treat integer variables, we strongly recommend
to put this value to "con" for computational reasons. The two new parameters are
deeply related and try to explicitly avoid over-fitting of the model. The parameter
a_priori_check, if set to True, puts to 0 all the adjustment coefficients for items
j with respect to demand movements of every item k for each item k which is dis-
similar to item j. The similarity (or dissimilarity) is calculated as the percentage
of common components between items j and k over their total number of com-
ponents. The obvious question is how much dissimilar two objects need to be in

22

Listing 3 Adjustments creation and over-fitting check

1 H_plus = model.addVars(

2 dict_data['n_items'], dict_data['n_items'],

3 vtype=self.var_type,

4 name='H_plus',

5 lb=-GRB.INFINITY

6)

7 H_minus = model.addVars(

8 dict_data['n_items'], dict_data['n_items'],

9 vtype=self.var_type,

10 name='H_minus',

11 lb=-GRB.INFINITY

12)

13 if self.a_priori_check:

14 for j in items:

15 for k in items:

16 if dict_data['items_metric'][j, k] <= self.threshold:

17 model.addConstr(H_minus[j, k] == 0)

18 model.addConstr(H_plus[j, k] == 0)

order to activate this check? The threshold parameter takes care of the answer
and adjustments are set to 0 if the similarity of two objects is less than this value.
In the listing 3 we can see an example of adjustment definition, by means of the
addVars() method for a gurobi model object, which requires dimensions, type of
the variable, a name, a lower bound (if different from the default value 0) and an
upper bound (not present in this case since the default value +∞ is the right one
for our problem) and how the control for dissimilar products is carried out, with
the use of the addConstr() gurobi method, which has a self-explanatory name.

23

4 Comparison and results: two-stage

Up to this point, we have presented 4 different models, trying to explain a priori,
by means of intuition and number of variables and constraints, what are the pros
and drawbacks of each one intuitively.
In this chapter, we solve different instances of the ATO problem with all the models
and we end up with 4 different solutions that we want to test and compare. It
is important to note that the global solutions coming from the 4 problems are
structurally different. In fact, the part of the solution related to the components
are equally dimensioned: x∗ = (x∗1, . . . , x

∗
I) are the optimal amounts of components

to be made; the part related to the assembly of final products is really different:

• in the Expected Value solution, it is composed of J values, which represents
for each final product the number of pieces to be sold;

• in the Recourse Problem solution, it is composed of J×S values, which repre-
sents for each final product the number of pieces to be sold in each scenario;

• in the Linear Decision Rules model there are J + J × J values, so we have
ȳ∗j and H∗jk which are respectively what to do in case of demand equal to the
mean of the distribution from which the demand is sampled and how to react
from the movement of the demand of the final product k;

• in the Linear Decision Rules model there are J + 2J × J values, so we have
ȳ∗j , H+∗

jk , H−∗jk which are respectively what to do in case of demand equal to
the mean of the distribution from which the demand is sampled and how to
react from the movement of the demand of the final product k, with positive
and negative deviation treated separately.

But are the second stage, assembly-related, part of the solutions really important
in the evaluation of the solutions themselves? The answer is luckily no, so that one
type of evaluation can be carried out for the 4 solutions.
In fact, second stage solutions depend on the particular scenarios used in the opti-
mization routine (for the EV there a single scenario consisting in the mean of each
demand), but after we implement first stage decisions for production, the real-life
demand arrives and we try to do our best to obtain the largest possible revenues
from what we have available, so that what really matters is just the components’
production decisions.

4.1 How to understand the importance of accounting for un-
certainty?

4.1.1 Value of Stochastic Solution

The last remark we have done is particularly important for the difference between
the solutions coming from the recourse version of the problem and the expected
value ones. This is because in the expected value we get rid of the uncertainty by

24

replacing the risk factors with their means or another fixed value.
This approach is sometimes the only viable option, but let arise an important ques-
tion: how much are we losing by not considering the uncertainty information?
A popular measure to capture this fact is the Value of the Stochastic Solution (VSS).
To define it, let us introduce a new light notation for a stochastic program

min
x∈X

z(x, ξ) = Eξ
[
cTx+Q(x, ξ)

]
(30)

where Q(x, ξ) is the so called recourse function and comes from the following min-
imization:

Q(x, ξ) = min
y

qTξ y

s.t. Wy = hξ − Tξx
y ≥ 0

In this description, x is the first stage decision which does not depend on uncer-
tainty and y are successive stage decisions depending on the risk factors ξ.
This implies that now we the recourse problem is simply

RP = min
x

Eξ
[
z(x, ξ)

]
(31)

while the expected value problem can be written as

EV = min
x
z(x, ξ̄) (32)

where the bar over ξ signals the fact that we are considering the mean of each risk
factor. While RP theoretically represents the mean value of the cost (we are in a
minimization framework), EV is the cost under a particular scenario, so the two
values are not fairly compared. A fair comparison can be achieved by plugging the
first stage solution x̄EV of the EV in the function z and minimize the mean under
all scenarios: the logic is to check the performance over all the possible scenarios
of a solution found discarding the uncertainty. In formulas, we calculate

EEV = Eξ
[
z(xEV , ξ)

]
(33)

and compare it with the RP.

Definition 4.0.1. We define the Value of Stochatic Solution as

V SS = EEV −RP.

Proposition 4.1. VSS is non negative.

Proof. Proof is straightforward: RP comes form the minimization over x of a cer-
tain quantity, while EEV it is the same quantity with a fixed x. In formulas, we
have

RP := min
x

Eξ
[
z(x, ξ)

]
≤ Eξ

[
z(x, ξ)

]
∀x.

25

In particular this is true for x̄∗ so that

RP := min
x

Eξ
[
z(x, ξ)

]
≤ Eξ

[
z(x̄∗, ξ)

]
=: EEV.

VSS is a very useful measure because let the modeller understand if the com-
putational burden of employing all the machinery of the stochastic programming
approach is worth or not: a high value of the VSS means that including the uncer-
tainty in the model we are saving a good amount of money, if the value is small it
may be the case that a more simplistic approach may lead to good enough solution
for our purposes. It is important to understand two main points when carrying out
the calculation for VSS:

1. for risk factors like the one present in the ATO problem, which come from
a continuous distribution the VSS practically calculated is a sample average
and not the exact value;

2. the recourse first stage solution is calculated on other samples of the dis-
tribution and not over the same ones used to find the result, otherwise the
comparison would be too biased in favour of the latter.

4.1.2 Expected Value of Perfect Information

With the VSS we can characterize the importance of taking uncertainty into ac-
count. This measure is very useful because operatively tells the modeller if the
extra effort to build a more sophisticated model generates a larger profit (or a
thinner overall cost). Another precious information for the decision-maker can
sometimes be about the role uncertainty has in the problem he faces, in terms of
how much he is losing for not having perfect knowledge. Perfect knowledge of
the future is obviously impossible in case of risk factors which are exogenously
random, but sometimes more money can be invested to gain a better perspective
on the business. With this idea in mind, we introduce the concept of the Expected
Value of Perfect Information (EVPI). The idea is basically to compare the profit
generated by the RP model with the one generated by a decision-maker that can
decide the production after having seen the demand, known as the wait and see
solution. Switching again into the standard minimization formalisation, we define
the wait and see profit as

WS = Eξ
[
minx(ξ)(z(x(ξ), ξ))

]
(34)

so that we can first choose x and then we carry out the average process.

Definition 4.0.2. The Expected Value of Perfect Information is defined as

EV PI = RP −WS.

Proposition 4.2. EVPI is non negative.

26

Proof. Proof is again straightforward: WS comes from an expected value of a min-
imization while the RP is the minimization of the expected value. If we take xRP
as the RP solution of the RP model, we have that

z(xRP , ξ) ≥ z∗(ξ) = min
x

(z(x, ξ)) ∀ξ ∈ Ξ,

so we have that
WS := Eξ

[
z∗(ξ)

]
≤ Eξ

[
z(xRP , ξ)

]
=: RP.

Unfortunately, EVPI is not as useful as VSS because it simply tells how much are
we losing for our lack of information, but it is uninformative of how to improve. It
is a good measure to understand how much uncertainty is deteriorating the profit
and how much we are willing to pay at maximum to eliminate uncertainty from our
problem.

4.2 Instance generation and important parameters

Once created the skeleton of the problems, the successive step is to build an in-
stance of the problems to be solved. In the companion code of this work, the
instance is a separate class from the problems classes (and an input for the latter)
and it is initialized mainly through a .json file containing critical information that
we now analyze with some detail.
Specifically, the file contains a dictionary with

• the number of end-items, the number of components and the number of ma-
chines (or resources);

• the number of common (to all items) and specific (single item) components;

• a dictionary containing the stochastic information about the demands, nam-
ing the dependency between demands, distribution from where to sample (in
particular normal, left-skewed beta, right-skewed beta and uniform) and rel-
evant info about these distributions (mean and variance for the normal, a, b
and an interval for betas, the interval for the uniform);

• three intervals for the margin of three different categories of end-products:
low, medium and high margin product;

• for the same categories, the percentage of items that are into one of the
categories (percentage of high-profit products is implicitly defined);

• a range for the processing time of all the components, another one for the
number of components (processing_time_interval) in each final product (goz-
into_factor) and still one for the components’ costs;

• a parameter called tightness that we are discussing deeply in a while.

27

Listing 4 An example of .json file

{
"n_items": 35,
"n_components": 50,
"n_machines": 5,
"n_scenarios": 1000,
"n_common_components": 0,
"n_specific_components": 10,
"components_per_item": [5, 10],
"dict_stoch":{

"dependency": {
"copula": "ind"

},
"marginal": {

"distr": "beta",
"a": 2,
"b": 4,
"low": 100,
"high": 500

}
},
"profit_margin_low": [0.05, 0.2],
"profit_margin_medium": [0.2, 0.4],
"profit_margin_high": [0.4, 0.6],
"perc_low_margin_item": 0.4,
"perc_medium_margin_item": 0.3,
"processing_time_interval": [0, 6],
"gozinto_factor": [0, 6],
"component_cost": [1, 5],
"tightness": 0.8

}

An example of such information is the code snippet 4:
From the data settings, we further generate:

1. scenario demands, which are built using stochastic information and the num-
ber of end-products (in the file) by means of the method generate_demand()
of the instance class;

2. the gozinto matrix, choosing randomly from the gozinto_factor with some
constraints related to the number of common and specific components;

28

3. the time processing matrix, which is built by choosing randomly again from
the processing_time_interval;

4. the limits to the capacity are set in a way that tries to stress the production
and it is worth to be deeply explained. Indeed, the limits are found by solv-
ing a simplified version of the expected value problem, without the capacity
constraints (14). Then, the optimal production solution x∗ is left-multiplied
by the time processing matrix to understand how much time-machine is used
in each resource. Finally, this quantity for each machine is multiplied by the
tightness factor, so if this parameter is less than one we are in a condition in
which we cannot produce enough to satisfy mean demands. We have done
this because we were unable to obtain real data, so this was a meaningful
way to create synthetic ones.

4.2.1 A short dive in the code: two stage instance class

As stated before, we have created a separate class to consider the instance in order
to fill the skeleton of our models. In this way, we can keep separate the structure
of the model from the data with which we need to solve the problem. In the listing
5 it can be seen the method declaration of the Instance class, that we now dis-
cuss. Beginning with the __init__() method, the sim_setting attribute is simply

Listing 5 Instance initialisation

1 class Instance():

2 def __init__(

3 self, sim_setting, init_inventory=None,

4 plot_gozinto_matrix=False, gozinto_style=None, sampling_type=None

5):

6 def _simulate_gozinto(self, gozinto_style):

7 def get_data(self, n_scenarios=-1):

8 def generate_demand(self, n_scenarios=-1, sampling_type=None):

9 def _simulate_marginal_distribution(self, dict_distr, size):

10 def create_metric(self):

11 def update_info(self, sol, assembly, cv_coeff):

the json file similar to the one in the listing 4, loaded in python, init_inventoy is
an array which (if not null) tells what is the initial inventory, while the other pa-
rameters are related respectively to plots, particular shape in the gozinto matrix
and to demand generation. The method performs what we have described in the
preceding section, so basically generate all data necessary to fill a model. Inside it
other methods of the class are called, in particular:

• the _simulate_gozinto() to generate the gozinto factors. This method re-
quires information about the maximum number of components of the same

29

type as well as the maximum number of the different type of components, the
number of common and specific components. There is an optional parameter
for the style of the gozinto matrix; we know from the literature three very
well known and studied cases:

1. the M -shaped version;

2. the W -shaped version;

3. the nested version.

A graphical representation of such a system is given by fig. 4.2.1. These spe-
cial cases are interesting because they allow, under some assumption on the
distribution of the demands, to find analytically the optimum for low dimen-
sional instances. Since our interest is for medium-sized instances, we do not
experiments with them, but the interested reader can refer to Nadar et al.
(2014), Elhafsi et al. (2015) or Reiman and Wang (2015).

• the generate_demand() to generate the demand on which the models are
optimized. This method is quite self-explanatory; when the default value is
used for the first attributes, this implies that scenarios are generated in the
number read in the json file, otherwise in the parameter-specified number.
This function call also _simulate_marginal_distribution() to sample from
same known distributions of the random library (when needed), and charac-
teristics useful in describing the distribution are used.

• the create_metric() to create a dissimilarity matrix to use to control inter-
actions among different products in decision rules models. This method takes
the gozinto matrix as input and returns the dissimilarity matrix between final
products.

Figure 4: Graphical representation of the classical gozinto schemes.

The last two methods are get_data(), which creates the dictionary with all the
information that will be passed to the problem class, and update_info(), which
is a useful method when we will talk about multistage evaluation, since it allow

30

to change the values of initial inventory (and continuation values, which we will
discuss deeply later).

4.3 In sample and Out of sample stability

In order to evaluate a solution, the first property to be checked is its stability, hence
how much the objective function or the solution itself changes when different sam-
ples are available. In our case, we are interested in the stability of the objective
function, which is often the case when the problem is business-related (there is a
keen interest on profits or costs and not on how the result is achieved). The first
basic request, which is a sort of minimum requirement to believe in the goodness
of the solution is in sample stability. The idea behind in sample stability is quite
simple. The scope of the stochastic program is to find a solution which yields the
best possible mean profit (or cost). In formulas, using a simplified notation, we
want to find

x∗ := arg min
x∈X

f(x, ξ),

where ξ here represent the true probability distribution, but, because of computa-
tional limitations, we can only obtain

x∗i := arg min
x∈X

f(x, Ti),

where Ti is a generic sample of the real distribution.
In sample stability is basically asking that, given two different samples Ti and Tj
and their respective optimal solutions

x∗i := arg min
x∈X

f(x, Ti) (35)

x∗j := arg min
x∈X

f(x, Tj), (36)

it must hold that
f(x∗i , Ti) ≈ f(x∗j , Tj).

In sample stability is, therefore, a request of similar results when evaluating a so-
lution against the set of scenarios on which the solution has been obtained, but
what can we expect when evaluating the solution over a new set of scenarios? The
short answer is that, with only in sample stability, there are no guarantees about
performance on a never seen scenario. To overcome this issue the stronger no-
tion of out of sample stability comes into play. Out of sample stability requires to
evaluate different solutions (coming from optimization over different samples of
the distribution) with respect to a set of scenarios which is different from the one
used to obtain the solution. It can be thought as the validation step in a machine
learning paradigm, where the scope is to have an insight into the true performance
of the algorithm.
Out of sample evaluation can be computationally expensive for multistage stochas-
tic programs, as a costly rolling horizon simulation procedure is needed. In our

31

two stages case, this check is not hard, as it requires solving many second stage
problems. In fact, giving two solutions x∗i and x∗j defined as eq. (35) and (36)
and three sets of scenarios Ti, Tj and Tk, two possibilities are available to check if
solutions are stable out of sample:

1. with the cross check we use only Ti and Tj and check if

f(x∗i , Tj) ≈ f(x∗j , Ti)

2. with an independent check we want

f(x∗i , Tk) ≈ f(x∗j , Tk)

The cross-check is quite useful if there are some difficulties in finding new data
and may be considered the equivalent of the cross-validation approach in machine
learning, while the independent check is more similar to the classical validation
set approach.

It is important to stress that stability is a relative concept as it depends on the
type of the problem: if the problem requires a very precise result maybe there is
satisfaction only with solutions that range in an interval very tight (for example
an interval with length less than 1% of the mean value of the objective function),
other times we can be satisfied with a broader range for our solutions.

A priori, since LDR and DLDR models are a simplistic approximation of the
recourse model, we expect to find that stability of the LDR and DLDR solutions
is achieved with a shorter amount of scenarios than the stability of the two-stage
recourse model.

4.4 Comparison between stable solutions

Given that for all models it seems that 500 scenarios are enough to generate stable
solutions, we have set the number of scenarios to this value, with a seed for exact
replication of our results, and we have run all the models, so at this stage, we ba-
sically have 4 vectors xRP , xLDR, xDLDR and xEV .
In particular, for the solutions we are analysing, we have generated the instance
with setting 35 end-items, 50 components, 5 machines and then we have created
all other parameters. The aforementioned settings are kept fixed for every exper-
iment we have carried out, while now we describe which are the parameters we
have varied to gain an insight on possible critical behaviours about the different
models we propose. Specifically, we are interested in

• the role of uncertainty of the demands, so we have tried 4 different distribu-
tion settings, with differences in mean, volatility, skewness and finiteness;

• the role of specificity of components, how much common and specific compo-
nents are critical for a solution to perform well. It can be logic to expect that

32

the more common components, the easier is to manage the components’ pro-
duction because of the mitigation effect on the overall variance of the total
demand for risk pooling. On the contrary the more specific components, the
riskier to produce them in case of an adversary demand situation;

• the role of profit margins, how a solution change if there are more low margin
items or vice versa if there are more medium (or even high) margin products.

• the role of capacity by means of the tightness parameter, which can give an
insight about where to put additional efforts or resources in order to avoid
bottlenecks in production.

We are obviously interested in these analyses for all the models we have just pre-
sented, to understand if some of the models may be discarded, which are the most
remunerative ones, how risky they are in terms of variability of the results. An ob-
vious question is which metric to use in order to evaluate the 4 solutions. The first
obvious metric, since we are solving a business problem, is related to the profits
the firm made using the proposed solutions. We indicate profits with letter p from
now on, with the subscript of the type of problem if needed for clarity. Another
popular evaluation of the performance of a firm is the return on investment, which
is usually abbreviated in ROI.
ROI is defined as the profits made over the total costs afforded to generate them,
so, indicating by C the global costs, we define the ROI

ρ =
p

C
(37)

and again we will use the subscript of the problem when needed.
With these solutions, we have solved 100 second stage problems with fixed first

stage solution (equal to the ones we have previously found) and we have regis-
tered for each sub-problem both the ROI (return on investment) and the overall
profit (or loss). By observing the differences between the profit and ROI of the re-
course problem and the expected value, we can also assess the importance of the
uncertainty in the problem, i.e the Value of Stochastic Solution (VSS). From both
the following figures and tables in section A, it is clear that the VSS is quite high
no matter the distribution used. The difference is less evident in the favourable
settings where a lot of common components are present or where profitability is
higher.

Talking about the EVPI, it is clear from the table A that uncertainty has a re-
ally deep impact, with a high value of the information: we can see a structural
behaviour similar to the VSS insight, with the profits possible with the recourse
version of the problem that is generally around the 55% of the profits generated
with the perfect information in the more averse case of no common components
and low profitability, while the gap reduces in a more convenient situation, vary-
ing from 90 to 95%. This suggests that it is crucial for a firm operating with an
ATO system to collect as much as possible in terms of data and information about
demand. Tables from which the following figures have been created are available

33

in the Appendix. After these premises, we are ready to take a look at the plots
(fig. 5, fig. 6 and fig. 7). In the first four plots of Fig. 5, we can appreciate, from

Figure 5: profits (left) and rho (right) for different margin level with a right skewed
beta distribution.

both a profit and a ROI perspective, how the profitability is crucial for LDR model
to be comparable with respect to both DLDR and the recourse model when the
demand is distributed as a right-skewed beta. DLDR suffers less from this feature,
staying almost at the same level of the recourse version both when margins are
medium and low. Amongst the two decision rules, LDR shows a significantly worse
expected profit and so a major grade of sub-optimality, with a gain in terms of less
uncertainty in the profits, as it can be seen from the very tight box-plot.

34

The behaviour of these decision rules models can be explained by a simple rea-
soning: the two approaches differ because of the possibility of having different
adjustments in case of negative or positive variation from mean demand leads to
an higher mean sales’ plan, with positive adjustment which are smaller. The fact
that LDR cannot do that implies a smaller mean sales’ plan and therefore a more
conservative production plan, which is able to sell almost everything that is pro-
duced, but creates more unsatisfied demand which would carry on more costs and
more profits too.

Figure 6: profits (left) and rho (right) for different margin level with a left skewed
beta distribution.

35

So, making few components with respect to the other approaches guarantees
that the majority of the items assembled is sold and therefore with low costs it
is not surprising that the ROI is high and the overall profit is very low. This also
reflects on the variances of both profits and ROI and, since very few items are
assembled and sold, it is quite uncommon to not sell everything and so profit (and
ROI) tend to be stable and low (high).
As stated before, this pattern is particularly evident for LDR, while DLDR seems to
suffer from this problem in critical situations, like for example when there are no
common components and 10 specific components; nevertheless in this situation,
maybe, a conservative plan is what a firm should implement as there is no risk
pooling effect and the demand risk is exacerbated by very specific items.

Figure 7: Profits for some symmetric distributions.

36

In Fig. 6, we can appreciate what happens when the distribution is a left-
skewed beta. The pattern is similar, but it is slightly better for the LDR solution,
with results which are tighter to the other two models more often than before.
This is because now the mean behaviour is towards left and there is room for a
more aggressive mean sales’ plan without worries about satisfying the demand
constraints. Anyway, exactly as before, the low margin case is still very difficult
to manage for the LDR model, especially when there are no common components,
which is another quite risky situation for business in any case.

The poor behaviour of LDR in these situations is even more clear for medium
margin and symmetric distribution, like uniform distribution when there are no
common components or in every case of a normal distribution, as we can see from
Fig. 7.

Finally, before jumping into the last section, we briefly summarize the overall
evaluation done over these 4 methods. In a trade-off between mean value of profits
and ROI, the recourse problem is probably the best approach to be used, as one
can suppose. A good competitor is the DLDR approach, which is quite close to
the recourse formulation, with a little more conservative solutions which in some
cases, like for example in the normal distribution low margin case of Fig. 8. A
possible explanation is that in this case adjustment are difficult because of the
unlimited nature of the demand, so that big movements are possible and this is
combined with very low profitability that discourages large production, so a super
conservative plan is adopted. LDR are poorer with respect to the DLDR, which

Figure 8: Normal distribution low margin is a critical situation for all models ex-
pect the recourse one.

in some sense justifies the major computational burden of the latter method. In
general, with LDR, solutions are very conservative no matter the settings if there

37

is a limited number of common components, and this leads to a quite lower overall
profit, very stable, but to a surprisingly high ROI: this is because the profit is lower
but also costs are lower. It is noteworthy to mention that in case of a good number
of common components (which implies a risk-pooling effect on the end-items de-
mands) LDR solutions are quite similar to the other two methods. Lastly, limited
support of the distribution (which is an obvious requirement for real-life problems)
seems to be a relevant factor concerning the demand distribution, left and right
skewness are an important factor for decision rules approaches: in particular, right
skewness leads to a conservative LDR solution. The combination of number of the
common components and profitability is instead crucial for all the models and in
particular for decision rules approaches to generate aggressive solutions which
are comparable to the recourse problem plan in terms of absolute profit.

4.4.1 A short dive in the code: two stage evaluation class

The two stage evaluation is another class. The compare_sols_lst() method re-

Listing 6 Two stages evaluation skeleton

1 class EvaluateTwostage():

2 def compare_sols_lst(

3 self, inst: Type[Instance], sols: List, labels: List, n_scenarios: int,

4 get_rho=False, get_both=False,

5 file_path=None, verbose=False,

6 get_raw_data=False, show_graph=False

7):

8 def solve_second_stages(

9 self, inst: : Type[Instance], sol: List, n_scenarios: int,

10 demands: np.array, get_rho: bool, get_both: bool, var_type="cont"

11):

quires an Instance class, which is the one on which a list of solutions (sols in
the code) have been found. Parameter labels has the same length as the previ-
ous one and it contains the name of the problems of the related solutions. The
n_scenarios simply tells the evaluator on how many scenarios to carry out the
evaluation. get_rho indicates if we want to store ROIs (True) or profits (False)
and it is active in the function only if get_both is set to False, otherwise both
metrics are kept. Last important parameter is get_raw_data: if set to True the
function returns a dictionary with, for each label, a list of result for ROIs and (or)
profits. If set to False some key facts about ROIs and (or) profits are returned
(mean, standard deviation, min and max). The solve_second_stage() method is
called inside the compare_sols_lst() and, as the name may indicate, solves the
second stage problems with a fixed first stage solution (sol in the parameters).

38

5 Robust models

As the actual pandemic has pointed out, sometimes the goal of a firm should be
to make decisions which allow surviving even in very complicated (and potentially
unexpected) situations. The idea is to find solutions that perform well in stressed
conditions (in other words "robust"), at the expenses of possible conservativeness
behaviour in good times. Robust optimization is a popular branch of the optimiza-
tion and in its naive approach, it lays down to a max min (for profit) or min max
(cost) problems. The interested reader may find a great detail of algorithms and
robust formulation in Ben-Tal et al. (2009). In this work, we focus on this max
min approach, where the min is taken with respect to the scenarios used in the
optimization routine and the max is related to the decisions to take. We propose a
robust formulation for the recourse problem and then we shift our attention to the
decision rules formulation. Some alternatives of the classical robust version and
its decision rules counterparts may be found in Brandimarte et al. (2020), where
models are coupled with some financial-related risk measure such as Value at Risk
(VaR) or Conditional Value at Risk (CVaR) because of the strong links with the ATO
problem with portfolio optimization (assets are the components and products are
portfolios which generate random returns).

5.1 Max Min formulation

The model coming from a max min problem, where the maximization is respect the
decision variables xi, ysj and the minimization is over the set of scenarios.

max −
I∑
i=1

Cixi + min
s∈S

J∑
j=1

Pjy
s
j (38)

s.t.
I∑
i=1

Timxi ≤ Lm ∀m (39)

ysj ≤ dsj ∀j, s (40)

J∑
j=1

Gijy
s
j ≤ xi ∀i, s (41)

ysj , xi ≥ 0

The problem in this version, despite the sample approximation, is still not suitable
for implementation because it is in a non linear form.

39

5.2 Robust version of the recourse model

The problem can be readily cast into the LP framework by adding an auxiliary
variable t in the following way:

max −
I∑
i=1

Cixi + t (42)

s.t. t ≤
J∑
j=1

Pjy
s
j ∀s (43)

I∑
i=1

Timxi ≤ Lm ∀m (44)

ysj ≤ dsj ∀j, s (45)

J∑
j=1

Gijy
s
j ≤ xi ∀i, s (46)

ysj , xi ≥ 0

5.3 Robust version of DLDR model

Since also in the previous model were present some recourse variables, it may
be the case to transform these variables in a decision rules fashion. To maintain
a certain consistency among the different parts of the work, we have developed
both the LDR and DLDR version of the problems, but for the sake of parsimony
(and also because of the extremely conservativeness of LDR without even asking
for robustness), we only present the former. Then the model becomes

max −
I∑
i=1

Cixi + t (47)

s.t. t ≤
J∑
j=1

πsPj

(J∑
k=1

H+
jk(d+)sk +H−sjk (d−)sk

)
∀s (48)

I∑
i=1

Timxi ≤ Lm ∀m (49)

ȳj +

J∑
k=1

H+
jk(d+)sk +H−jk(d−)sk ≤ dsj ∀j, s (50)

J∑
j=1

Gij
(
ȳj +

J∑
k=1

H+
jk(d+)sk +H−jk(d−)sk

)
≤ xi ∀i, s (51)

ȳj +

J∑
k=1

H+
jk(d+)sk +H−jk(d−)sk ≥ 0 ∀j, s

xi ≥ 0 ∀i

40

5.4 Robust results

From robust models, we expected solutions which lead to results less volatile in
terms of profit, but also less profitable (in the mean case). We have carried out
experiments proposing a comparison with all previous models.
Since the Robust version of the recourse problem was already present in Brandi-
marte et al. (2020), we focused only on the Decision Rules version. This results
will be denoted by the acronym RDLDR (Robust Deflected Linear Decision Rules).
The behaviour, in this case, lies between the pure DLDR and the LDR: solutions
are generally more conservative than the DLDR and so profits are lower as it is
its variance and sometimes a very concentrated box-plot signals the presence of a
really conservative plan which reminds us about a plain LDR solution.
We present here (Fig. 5.4 and 5.4) some of the most significant plots regarding the
comparison between our robust model and precedent ones. As one can see from

Figure 9: Extreme behaviour of Decision Rules approaches caused by a mix of low
margins and no common components.

Fig. 5.4 with medium margin it is noticeable that the behaviour is exactly as ex-
pected: less variance with respect to DLDR and a lower mean profit, but the price
of the robustness (the difference between mean profits) seems overall acceptable.
Obviously, there are some pitfalls in the model, as the low margin situation exacer-
bate, where the robust model behaves almost exactly as the LDR, but as we have
already discussed, this situation is amongst the worst possible for a real business,
so a very conservative plan may be a good solution in this case. An example with
the same distributions may be the figures in Fig. 5.4.

41

Figure 10: profits (left) and rho (right) for different skewness of a beta distribution.

42

6 Multistage models

Two-stage models in section 3 give an insight into what a firm should do now,
looking at what may happen in a subsequent period of time. Despite the useful
information these models may provide, a firm’s cycles of production usually last
for more than two periods and therefore multistage models come in handy. The
decision they output is less myopic: they consider a larger time horizon and the
benefits of far-in-to-the-future events. From a practical point of view, in the prob-
lem we are analysing, the multistage perspective must take into account a new
state variable: the inventory. We consider a pure ATO system, so that inventory
is kept only for components and not for the end products. Furthermore, we keep
our models relatively simple and we restrict our analysis for non-perishable com-
ponents, so that we can keep a component in the inventory as long as we want.
A possible real-life industry case in which a similar system is involved may be the
automotive case: in an industrial plant manufactured cars are not stored, but only
components, which are non-perishable and the technological development is not
as fast as in the high-tech sector, so that it is uncommon to discard some pieces of
the inventory due to obsolescence. We think that this setting is not too restrictive
for almost every ATO systems if time intervals considered are wisely chosen and
therefore our decisions are widely applicable in real-life instances.

6.1 Multistage recourse model

As we pointed in Chapter 2, multistage stochastic optimization programs suffer
from the curse of dimensionality, and the following model, unfortunately, is not
an exception. Variance reduction techniques are a clever approach to reduce the
variance of the distribution from which we sample out, but since our experiments
are based on the difference between some synthetic distributions, it makes little
sense to use them. Anyway, variance reduction is very useful in a more data-driven
approach and the interested reader may check some details on these techniques
in Brandimarte (2014). Another popular technique is to be more precise in sample
out of a distribution for the first time periods and to sample less the more time
goes by. This is because, in real-life applications, we may rely on good models for
demand prediction over a short term, while models become less and less accurate
the more we augment the elapsed time and so we are unsure about the true dis-
tribution of far-away-in-time demands. This leads to different branching factors in
different time periods: by doing so, we change the number of scenarios from |S|T
to |S1| × · · · × |ST |, where S is the (common) number of scenario generated in an
equally branched fashion and |S1| . . . |ST | are the number of scenarios at each time
instant considered. For example, with T = 6 we can have a very similar number
of scenarios by setting |S| = 10 or |S1| = 50, |S2| = 35 and |St| = 5 t = 3, . . . , 6:
it is clear that, if we plan to rerun the model as the time goes by, it is better to
characterize well the first two instants and have a less precise view of the fur-
ther future. In general, we can observe that there is a trade-off between initial and

43

final precision and it is part of the job of a good modeller to choose the right uncer-
tainty sampling model. In the companion code of this work, we have implemented
the following model with a scheme where the branching factor was decreasing
in time, since business models like the ATO are usually re-optimized at each new
time instant. Now, we present the multistage recourse version of the problem, an
extension of the second model of section 3.

max −
T−1∑
t=0

I∑
i=1

Ci,t

S∑
s=1

πsxsi,t +

T∑
t=1

J∑
j=1

Pj,t

S∑
s=1

πsysj,t (52)

s.t.
I∑
i=1

Ti,mx
s
i,t ≤ Lm,t ∀m, s, t ≥ 0 (53)

ysj,t ≤ dsj,t ∀j, s, t ≥ 1 (54)

J∑
j=1

Gi,jy
s
j,t = xsi,t−1 + Isi,t−1 − Isi,t ∀i, s, t ≥ 1 (55)

xsi,t = xs
′

i,t ∀s′ ∈ {s}t−1, ∀t (56)

ysi,t = ys
′

i,t ∀s′ ∈ {s}t, ∀t (57)

ysj,t, x
s
i,t, I

s
i,t ≥ 0 ∀i, j, s, t

Let’s analyse in detail the model.
The most critical part of the model is perhaps the constraints in Eq. (56) and (57).
They are respectively the non-anticipativity constraints for x variables and y. We
have used the very common notation of {s}t to indicate all the scenarios s′ which
are indistinguishable to s up to the time t. It is important to note that the variables
related to the component making are in the objective function now there is a sum
over scenarios also for the components’ making variables, which are a decision
process predictable with respect to the information flow (i.e filtration) generated
by the end-items’ demands. We can appreciate this fact from the constraint in
Eq. (56), where, at the stage t, xsi,t must be the same of the decision taken under
scenarios indistinguishable at the precedent time t− 1. We avoided to write down
in a separate way the special case of time t = 0, for which decisions are the same
in every possible scenario. This is also consistent with the interpretation in the
working paper of Brandimarte et al. (2020), where the ATO problem is seen as
a portfolio allocation problem, with components which play the role of assets: in
fact, it is a well-known fact in discrete-time finance that portfolio weights must be
predictable. The variables related to the assembly of final items (y’s) are instead
adapted to the information of demands for end items, so that at the stage t, ysi,t
must be the same of the decision taken under scenarios indistinguishable at the
time t itself. The rest of the model is quite standard:

• the objective function in Eq. (52) is the sample expected value of the rev-
enues generated by the sales of end items minus the costs of ordering (or
making) of components and the costs of keeping an inventory;

44

• constraints in Eq. (53) and (54) are almost identical to the recourse model of
section 3, but must be satisfied for all possible time instants;

• constraints in Eq. (55) is the constraint that links end items sold with com-
ponents’ production and inventory of the beginning and end of the period;
it can also be read as the evolution of the inventory, which is the only state
variable of the model (x’s and y’s are proper decision variables).

This model is presented in its split-variable formulation. This formulation is the
compact formulation. What are the differences between the two approaches?

1. in the split-variable formulation, the tree structure is maintained only in the
scenario generation, while we have, for each time step, a number of vari-
ables equal to the number of leaves of the tree. Then, non-anticipativity
constraints are written such that decisions at stage t must be equal for sce-
narios which have the same history up to stage t (for adapted decisions) or
t − 1 (for predictable decisions). This model has, therefore, a huge amount
of repeated variables which are forced to be equal and this is why this model
is really slow; however, the advantage is its simplicity in the implementation
and probably its interpretation ease.

2. in the compact formulation, the tree structure is maintained for both de-
mands and decisions, so at each node corresponds a decision (in our case the
decision concerns both sales for all items and production plan for subsequent
periods). Here, non-anticipativity constraints are incorporated in the struc-
ture of the decisions themselves, so that a greater effort in the variables’
definition leads to a lesser amount of the number of both variables and con-
straints, which in turn usually means a faster solving step. The difference
between adaptation and predictability can be noticed (and we will stress this
fact when analysing the code) because predictable decisions start at the root
of the tree, while adapted ones begin at the first branch.

In order to introduce formally the compact formulation, we will denote:

1. with A we denote the entire set of all nodes. It can be expressed as the
union between the pairwise disjoint sets N0, . . . , NT which contains the nodes
related to stages 0, . . . , T − 1 respectively. N0 = n0 contains the root of the
tree, corresponding to the time instant 0;

2. with the subscript a(n) we will identify the (unique) predecessor at node n;

3. finally, the vector π becomes now a vector of length T + 1 where we record
the probability at each time step to arrive in a node (we are under monte-
carlo sampling, so that within an information stage all nodes have the same
probability).

45

Figure 11: Compact variable formulation: at each node corresponds a variable.

So we have that a(n0) = ∅. Then the model can be written as:

max −
T−1∑
t=0

I∑
i=1

Ci,t
∑
n∈Nt

πtxi,n +

T∑
t=1

J∑
j=1

Pj,t

S∑
n∈

πtyj,n (58)

s.t.
I∑
i=1

Ti,mxi,n ≤ Lm,t ∀m, 0 ≤ t ≤ T − 1, n ∈ Nt (59)

yj,n ≤ dj,n ∀j, t ≥ 1, n ∈ Nt (60)
J∑
j=1

Gi,jyj,n = xi,a(n) + Ii,a(n) − Ii,n ∀i, t ≥ 1, n ∈ Nt (61)

yj,n, Ii,n ∀j, t ≥ 1, n ∈ Nt (62)

xi,n ≥ 0 ∀i, 0 ≤ t ≤ T − 1, n ∈ Nt (63)

Another possibility is to write down a model without explicitly defining an inven-
tory: this state variable is dependent on a recursion on time of the difference
between what has been produced and what have been assembled. In formulas, if
we start from t = 0 with an inventory I0, and for the first time we need to assembly
it must be the case that

J∑
j=1

Gi,jyj,1 ≤ xi,0 + Ii,0 (64)

We truncated the apex for the scenario for the sake of simplicity of the reasoning,
but there is one of such constraint for every scenario. Basically, this is the con-
straint in Eq. (55), where we have omitted the positive variable with negative sign

46

Ii,1, so we can treat

xi,0 + Ii,0 −
J∑
j=1

Gi,jyj,1

as the inventory kept for the t = 1 stage and use this in the same way as I0 in Eq.
(64). So we have

J∑
j=1

Gi,jyj,2 ≤ xi,1 + xi,0 + Ii,0 −
J∑
j=1

Gi,jyj,1

which can be rewritten, putting similar terms together, as

J∑
j=1

Gi,j

2∑
t=1

yj,t ≤ Ii,0 +

1∑
t=0

xi,t (65)

Repeating inductively the same reasoning for a generic time t, we end up with
the following constraint in substitution of constraint in Eq. (55) of the multistage
problem:

J∑
j=1

Gi,j

t∑
u=1

ysj,u ≤ Ii,0 +

t−1∑
u=0

xsi,u ∀ t, s, i (66)

This implicit scheme for the inventory is slightly more complicated in the compact
formulation

J∑
j=1

Gi,j

t∑
u=1

yj,at−u(n) ≤ Ii,0 +

t−1∑
u=0

xi,at−u(n) ∀ t ≥ 1, i, n ∈ Nt (67)

where we used the notation of ai(n) to indicate the i-th predecessor of node n.
In this way we can highlight where the computational burden came from: in fact
it is the inventory which links all the stages together and does not allow for a
decomposition in simpler two-stage problems.

6.2 Multistage Decision Rules models

In the Chapter 3 we have presented the decision rules approach for the two-stage
problem, in which we have found that computational times were worse than classi-
cal two-stage recourse model. The advantage of such models came when classical
recourse formulation begins its burden: the multistage setting is exactly the case.
The approach to build the models is exactly as the one has already taken for the
two-stage case: we take every recourse variable and we linearize (possibly into two
pieces) with respect to movements in the demands. There are two main interesting
points to discuss:

1. the fact that now we have also components making as recourse variable after
the initial time, so we linearize also this kind of decision;

47

2. in the two-stage models there was a demand in the second stage (t = 1),
while now we have different demands at each time stage, so which one is
the risk factor we want to linearize about? The answer is that the general
model will consider as risk factors all the demands up to the time considered
included (for adapted decisions) or excluded (predictable decisions), but we
also explore a version in which only the last relevant demand is taken into
account as a risk factor.

6.2.1 Linear Decision Rules

Even if we have seen a greater degree of sub-optimality, to be consistent with the
previous work on the two-stage models, we have built the linear decision rules
multistage model. For clarity we present a version with explicit inventory, but, ex-
actly as stated for the classical recourse multistage version, there is the possibility
to work without it. Before showing the formal model, we state the new notation:

• with x̄it we denote how many pieces of component i the firm produces at time
t in the mean case of demand;

• with ȳjt we denote how many pieces of item j the firm sells at time t in the
mean case of demand;

• with Xitu we denote how many pieces of component i the firm produces at
time t if demand for it at time u differs of a piece with respect to the mean;

• with Yjktu we denote how many pieces of item j the firm sells at time t if
demand for item k at time u differs of a piece with respect to the mean;

• with Isit we denote the number of pieces of component i which remains in the
inventory after demand occurrence at time t. Please note that this is a state
variable and not a decision one, so it has not been linearized;

• for the sake of brevity, in this model, with a little abuse of notation, we use
the symbol dsjt not for the demand for item j at time t in scenario s, but for
the deviation from its mean value (as if we have centred demands data in 0).

We have mentioned demand for a component, but the firm only sells items. This
is due to the fact that, since it is involved a linear transformation (guided by the
gozinto matrix) from the items to the components, we can calculate the effective
demand for a component by left-multiply a demand realization for the products by
the gozinto matrix. So, for a generic demand realization ds = (ds1, . . . , d

s
J), we can

find the corresponding demand realization for the components

cs = G′ds,

where the ′ is used to consider the transpose of matrix G. In the same way we
can calculate the mean demand for each component and then having the shifts
with respect to the mean, so we will use, with a slight abuse of notation cst for

48

general movements with respect to the mean c̄t = G′d̄t and c+si,t and c−si,t for positive
and negative movements. Finally, all the models presented have a maximum of 4

indexes. This is because, in the most general setting, we allow for adjustments
with respect to earlier instants movements in the demand (as it can be seen in the
fact that we have Yj,k,t,u with u ≤ t), but we propose also a simpler version where
adjustment are possible only for the same period for sales and one-step-preceding
period for the production plan of the components. In this way, the dimension of
the problem in terms of the number of variables, scales linearly with respect to
time instants, while in the more general setting, the scaling was quadratic. The
impact of the elimination of the second time index seems to be insignificant in
our naive setting of inter-stage independent demands. An interesting analysis for
a future work could be to analyse the impact of this elimination when demands
follow an auto-regressive process or a process with some memory; in our simple
case, the inventory seems to be a sufficient information to pass from one stage to
the following one.

The linear decision rules model is:

max −
∑T−1
t=0

∑I
i=1

[
Cit
(
x̄it +

∑t
u=0

∑S
s=1 π

sXituc
s
iu

)]
+
∑T
t=1

∑J
i=1

[
Pjt
(
ȳjt +

∑t
u=0

∑S
s=1 π

s
∑J
k=1 Yjktud

s
ku

)]
(68)

+
∑I
i=1

∑T
t=1

∑S
s=1 π

shitI
s
it

s.t. Xitu = 0, ∀i, j, t ∀u ≥ t (69)

Yijtu = 0, ∀i, j, t ∀u > t (70)∑I
i=1 T

t
im

(
x̄it +

∑t−1
u=0Xituc

s
iu

)
≤ Ltm ∀m, s, t < T (71)

ȳjt +
(∑t

u=1

∑J
k=1 Yjktud

s
ju

)
≤ dsjt ∀j, s t ≥ 1 (72)∑J

j=1Gij

[
(ȳjt +

(∑t
u=1

∑J
j=1 Yijtud

s
ju

)]
= x̄i,t−1 +

+
∑t−1
u=0Xituc

s
iu + Isi,t−1 − Isi,t ∀i, s, t ≥ 1 (73)

ȳjt +
∑t
u=1

∑J
k=1 Yjktud

s
ku ≥ 0 ∀j, s, t ≥ 1

x̄i,t +
∑t−1
u=0Xituc

s
iu ≥ 0 ∀i, s, t < T

ȳjt, x̄i,t ≥ 0 ∀y, i, t

Since the model is quite complicated, we analyze it in detail:

• Eq. (68), divided in 3 lines, is the overall profit, divided respectively in total
costs due to components making, revenues generated by the sales of and
items and cost of inventory.

• Eq. (69) and (70) are non-anticipativity constraints and are worth a deeper
look. With these two lines we simply state that adjustment decisions must
not depend on future events, i.e demands which are still unknown at the time
of the decision. Here is again evident the difference between the nature of

49

components and items decisions: components decisions are predictable and
in fact adjustments are not possible for the same time (t > u), while items
decisions are adapted (t ≥ u);

• Eq. (71), (72) and (73) are the multistage equivalent of Eq. (22), (23) and
(24), with obviously the time subscript as extra dimensional for which con-
straints must be satisfied.

• last three lines are boundary requirement: they simply imply that compo-
nents made at each time must be a non negative number such as items sold
(first two lines) and also mean case must respect non negativity conditions
without adjustments.

We stress again that, repeating exactly the same inductive reasoning as in the
multistage recourse case, we can get rid of the inventory state variable by writing
the generic Isit as

Ii,0 +

t−1∑
h=0

(x̄i,h +

h∑
u=1

J∑
j=1

Xiuhc
s
ih)−

J∑
j=1

Gi,j

t∑
h=1

(ȳj,h +

h∑
u=1

J∑
k=1

Yjkuhd
s
kh)

6.2.2 Deflected Linear Decision Rules

In this subsection, we briefly see another decision rules models, where there is a
greater elasticity and therefore (at least) in sample better performances with re-
spect to the model we have just presented. The differences in notation between
this model and the previous one concern only the adjustments and relative move-
ments of the demand. In particular

• we have now X+
itu and X−itu and they represent how many additional pieces

(with respect to the mean case) of component i the firm produces at time t if
demand for the same component i at time u differs of one piece respectively
positively and negatively with respect to the mean;

• we have now Y +
jktu and Y −jktu and they represent how many additional pieces

(with respect to the mean case) of item j the firm sells at time t if demand
for item k at time u differs of one piece respectively positively and negatively
with respect to the mean;

• finally we came back to the aforementioned notation of d+s
jt , d−sjt , c+sit and c−sit

for positive and negative deviations with respect to mean demand for item j

or component i at time t.

50

The model then becomes

max −
∑T−1
t=0

∑I
i=1

[
Cit
(
x̄it +

∑t
u=0

∑S
s=1 π

sX+
ituc

+s
iu +X−ituc

−s
iu

)]
+
∑T
t=1

∑J
i=1

[
Pjt
(
ȳjt +

∑t
u=0

∑S
s=1 π

s
∑J
k=1 Y

+
jktud

+s
ku + Y −jktud

−s
ku

)]
(74)

+
∑I
i=1

∑T
t=1

∑S
s=1 π

shitI
s
it

s.t. X+
itu = 0, X−itu = 0 ∀i, t ∀u ≥ t (75)

Y +
jktu = 0, Y −jktu = 0 ∀j, k, t ∀u > t (76)∑I

i=1 T
t
im

(
x̄it +

∑t−1
u=0X

+
ituc

+s
iu +X−ituc

−s
iu

)
≤ Ltm ∀m, s, t (77)

ȳjt +
(∑t

u=1

∑J
k=1 Y

+
jktud

+s
ku + Y −jktud

−s
ku

)
≤ dsjt ∀j, s t (78)∑J

j=1Gij

[
(ȳjt +

(∑t
u=1

∑J
k=1 Y

+
jktud

+s
ku + Y −jktud

−s
ku

)]
= x̄i,t−1 +

+
∑t−1
u=0X

+
ituc

+s
iu +X−ituc

−s
iu + Isi,t−1 − Isi,t ∀i, s, t ≥ 1 (79)

ȳjt +
(∑t

u=1

∑J
k=1 Y

+
jktud

+s
ku + Y −jktud

−s
ku

)
≥ 0 ∀j, s, t

x̄i,t +
(∑t−1

u=0X
+
ituc

+s
iu +X−ituc

−s
iu

)
≥ 0 ∀i, s, t

ȳjt, x̄i,t ≥ 0 ∀y, i, t

All comments we have done to the previous model are still valid for this one, where
the only difference is a possibly better adjustment due to the double number of
adjustments coefficients. The last remark we do is that, exactly as in the two-
stage problems we have already discussed, by defining the same metric for the
dissimilarity of the end-items, it is possible to force the adjustment to be set to 0

for items which pairwise do not have common components (or have a few) for every
time u ≤ t. The regularization for the adjustments of production plans after the
first time is easier: since we are aggregating using the gozinto matrix, we consider
only movements of demand for items which are built using the component we are
considering.

6.3 A short dive in the code: multi-stage models

Exactly as the two-stage models, we have built one class for each new model in the
multistage setting. We have built, for the classical recourse version of the problem
4 classes, the split-variable formulation, with explicit and implicit inventory, and
the compact formulation, again with explicit and implicit inventory. In this way,
we have been able to assess the importance of carefully design the mathematical
model in order to avoid useless computational overload. The difference between
the compact and the split-variable formulations are clearly present in the initiali-
sation of the adjustment variables As it can be seen in the Listing 7, with the help
of the tree structure for demand, we calculate with n_scen_y and n_scen_x the
correct number of decisions at each information stage and then we use two dictio-
naries to save the variables. Again we stress the difference between the nature of

51

Listing 7 Compact formulation variables init

1 class AtoMultistageCompactNoInv():

2 def solve(

3 self, dict_data, time_limit=None,

4 gap=None, verbose=False

5):

6 ...

7 array_scenarios = dict_data['scenario_tree']

8 n_scen_y = np.cumprod(dict_data['scenario_tree'])

9 n_scen_x = np.ones(T)

10 n_scen_x[1:T] = np.cumprod(dict_data['scenario_tree'][0:T - 1])

11 ...

12 X_var = {}

13 for t in times:

14 X_var[t] = model.addVars(

15 dict_data['n_components'], int(n_scen_x[t]),

16 vtype=self.var_type,

17 name=f'X_var_{t}',

18 lb=0.0

19)

20 Y_var = {}

21 for t in range(T):

22 Y_var[t+1] = model.addVars(

23 dict_data['n_items'], int(n_scen_y[t]),

24 vtype=self.var_type,

25 name=f'Y_var_{t+1}',

26 lb=0.0

27)

making and sales decisions: the former begins with a single decision to be taken
whichever scenario, the latter begins with a number equal to the first branching
factor. The alternative of split-variable in Listing 8 is to obtain a big matrix of
n_items x n_scenarios x n_times and then apply non-anticipativity constraints
by equalizing decisions which are non-distinguishable up to the time considered.

52

Listing 8 Split-variable formulation variables init

1 class AtoMultistageNoInv():

2 def solve(

3 self, dict_data, time_limit=None,

4 gap=None, verbose=False

5):

6 ...

7 array_scenarios = dict_data['scenario_tree']

8 n_scenarios = np.prod(array_scenarios)

9 ...

10 X = model.addVars(

11 dict_data['n_components'], n_scenarios, T,

12 vtype=self.var_type,

13 name='X',

14 lb=0.0

15)

16

17 Y = model.addVars(

18 dict_data['n_items'], n_scenarios, T,

19 vtype=self.var_type,

20 name='Y',

21 lb=0.0

22)

23 ...

24 # Non anticipative constraints for making of components

25 for i in components:

26 n_groups = 1

27 for (t, t_scen) in enumerate(array_scenarios):

28 n_equal_dec = int(n_scenarios / n_groups)

29 for h in range(n_groups):

30 for k in range(n_equal_dec):

31 model.addConstr(

32 X[i, k + h*n_equal_dec, t]==X[i, h*n_equal_dec, t]

33)

34 n_groups = int(n_groups * t_scen)

35 # Non anticipative constraints for assembly final products

36 for j in items:

37 n_groups = 1

38 for (t, t_scen) in enumerate(array_scenarios):

39 n_groups = int(n_groups*t_scen)

40 n_equal_dec = int(n_scenarios / n_groups)

41 for h in range(n_groups):

42 for k in range(n_equal_dec):

43 model.addConstr(

44 Y[j, k + h*n_equal_dec, t]==Y[j, h*n_equal_dec, t]

45)

53

This is achieved by calculating the number of different decisions at each time
stage (n_groups) and for each one of these, how many scenarios share the same
decision (n_equal_dec), i.e how many scenarios are equal up to the point consid-
ered. The difference between making and sales can be seen in the delayed update
(for the making decisions) of the number of different decision to be made. So, for
example, for a medium size tree of depth 4, with decreasing branching factor like
array_scenarios = [30, 10, 5, 5] , we have for the compact formulation, for
each end-item we have a total of 30 + 300 + 1500 + 7500 = 9330 variables, against
the 7500×4 = 30000 of the split-variable formulation. Similarly, for the components
making, the difference is between 1 + 30 + 300 + 1500 = 1831 variables for each
component of the compact formulation against the 1500× 4 = 6000 variables of the
split-variable model.

Listing 9 Example of difference between formulations of multistage-DLDR.

1 class AtoMultistageDLDRNoInv():

2 X_plus = model.addVars(

3 dict_data['n_components'], dict_data['n_items'], T, T,

4 vtype=self.var_type,

5 name='X_plus',

6 lb=-GRB.INFINITY

7)

8 for t in times:

9 for j in items:

10 for u in range(t, T):

11 for i in components:

12 model.addConstr(

13 X_plus[i, j, t, u] == 0,

14 "Non_antic_X_plus_{}_{}_t_{}_u_{}".format(i, j, t, u)

15)

16 ...

17 class AtoMultistageDLDRCompactNoInv():

18 X_plus = {}

19 for t in times:

20 if t > 0:

21 X_plus[t] = model.addVars(

22 dict_data['n_components'], dict_data['n_items'], t,

23 vtype=self.var_type,

24 name=f'X_plus_{t}',

25 lb=-GRB.INFINITY

26)

This behaviour becomes huge when time intervals increase in number and
when longer horizon branching factor becomes larger and even in this moderate
size example, the difference in computational speed is about a magnitude order in

54

the advantage of the compact formulation. Finally, the explicit or implicit defini-
tion of the inventory, in this case, is really important: with the explicit version, we
double the number of our variable (the inventory has the same order of magnitude
of sales decisions), so for very deep trees or for trees with moderate deep and big
branching factors, this really slows down the solver. As we can see in a while, for
decision rules models this may not be the case.

Concerning the decision rules models, exactly as in the two-stage case, we
present the more complex deflected (or piece-wise) linear rules model. For this
model also we have a version with explicit and implicit inventory, and we can talk,
with a little abuse of notation, about normal and compact formulation. In fact, we
can smartly avoid to produce a good amount of useless variables and not using the
same amount of (simple) constraints, as we can see from the Listing 9.

In fact, the choice is between producing 4-d fixed-dimension adjustment deci-
sions (with subscript for the components, the risk factor causing the movements,
the time of the adjustment and to which time is related the risk factor) or to pro-
duce a 3-d dynamically dimensioned variables which will be located in a dictionary
where the time of adjustment is the key (other 3 subscript remains in the variable).
By dynamical dimensioning, it is possible to avoid to define the adjustments related
to future demands and so we do not have to write explicitly non-anticipativity con-
straints which are present in the first formulation. Finally, concerning the explicit
versus implicit inventory definition, in this case, there is a trade-off: if not explic-
itly built, model generation is quite slow, while model solving is relatively fast with
respect to the explicit case. Overall, for medium-sized instances, there is a com-
putational gain in solving the problem with explicit inventory and so this model is
the one we adopt for our tests.

55

7 Comparison and results: multi-stage

The structure remains the same also for the multistage framework, so up to now,
we have investigated the model formulations and their skeletons, which are pop-
ulated by means of a multistage instance class and are evaluated by means of a
multistage evaluation class as well. In this section we briefly see the difference in
this new instance class, then we see how the evaluate class operates and finally
we explore quantitative results and insights on the behaviour of our models.

7.1 A short dive in the code: multistage instance generation

We have already talked about how the two-stage instance is generated in great de-
tail and almost the same process happens in this case too, with some differences
we now remark. We will tacitly assume from now on that costs, profits, gozinto
factors, capacity limitations are constant in time, so for this parameter the gen-
eration is exactly equal to the two-stage case and we remind to Chapter 4 for a
refreshment. The great novelty with respect to the previous generation method is

Listing 10 Multistage instance: differences in the init method.

1 class InstanceMultistage():

2 def __init__(

3 self, sim_setting, T, array_scenarios_tree=None,

4 init_inventory=None, plot_gozinto_matrix=False, gozinto_style=None

5):

6 self.time_instants = T

7 if array_scenarios_tree is not None:

8 if len(array_scenarios_tree) < T:

9 compl_array=[array_scenarios_tree[len(array_scenarios_tree)-1]]*
10 (T-len(array_scenarios_tree))

11 array_scenarios_tree = array_scenarios_tree + compl_array

12

13 self.scenario_tree = None if array_scenarios_tree is None

14 else array_scenarios_tree

15 self.n_scenarios = sim_setting['n_scenarios'] if array_scenarios_tree

16 is None else np.prod(array_scenarios_tree)

17 ...

18 self.demand = self.generate_demand(

19 self.time_instants,

20 n_scenarios=self.n_scenarios,

21)

obviously related to the demand generation and this is the part we concentrate on,
but there are also some minor changes that are worth some extra explanations. As

56

it is possible to see from the Listing 10, there are two new parameters with respect
to the two-stage case:

1. T, which is the number of different time instants in which demands occur, so
that the model has T + 1 stages;

2. the optional parameter array_scenarios_tree, which carries crucial infor-
mation on the uncertainty nature (and give in some sense an a priori choice
for the model to be used).

The second parameter is really important for the understanding of the dynamics of
our two families of models: classical stochastic programming and decision rules.
In fact, for decision rules, which are implicitly non-anticipative, we do not need to
generate a scenario tree to assure a sensible meaning to the problem itself and
therefore we can directly sample trajectories for the demands and this avoids the
curse of dimensionality in terms of the explosion of the scenario tree. So, when
solving the decision rules models, the instance we pass to populate the skeleton
has the array_scenarios_tree parameter set to None. On the contrary, for build-
ing the classical recourse program we need to enforce this tree structure and so
we pass to the initialisation method an array for the branching factor.
Note that we pass the number of time step separately to be able to generate de-
mand scenarios even if the tree structure is not present and if present, we con-
sider this structure to be possibly incomplete: in that case, last branching factor
becomes the branching factor for all subsequent periods.

Listing 11 Multistage instance: demand generation.

1 def generate_demand(self, T, n_scenarios=-1):

2 ...

3 size = (self.n_items, T, n_scenarios)

4 ...

5 if self.scenario_tree is None:

6 demand = self._simulate_marginal_distribution(marginal, size)

7 else:

8 demand = np.zeros(size)

9 n_groups = 1

10 n_equal_dec = n_scenarios

11 for (t, t_scen) in enumerate(self.scenario_tree):

12 different_demand = self._simulate_marginal_distribution(marginal,

13 (self.n_items, t_scen))

14 n_equal_dec = int(n_equal_dec / t_scen)

15 for j in range(self.n_items):

16 demand[j, t, :] = np.tile(different_demand[j,:].repeat(

17 n_equal_dec), n_groups)

18 n_groups = int(n_groups * t_scen)

57

In Listing 11 we can appreciate the difference in the demand generation in
the multi-stage framework. The first thing to note is that, no matter the scenario
tree parameter, the demand is returned as a matrix of size ((n_items, n_times,
n_scenarios)). This is a choice related to the fact that we wanted to keep sepa-
rated the data information from the model to use and so we had to choose a uniform
return format and this was the only viable option. When simulating trajectories, we
operate like in the two-stage setting, with the simulate_marginal_distribution
method called directly that receives a 3-d size. The most complex part is to trans-
form the tree structure into a matrix format and we achieve this by using informa-
tion about the tree structure and the combination of two functions coming from
the numpy package: tile, which repeat the structure a desired number of times
with repeat, which instead repeat each number contiguously a desired number of
step. A simple example of how this combination works can be found in Listing 12.
These highlighted differences are basically the only details that change from the

Listing 12 An example of combination of tile and repeat.

1 import numpy as np

2 np.tile(np.array([1,2,3,4]).repeat(2),3)

3 # result

4 array([1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 3, 4, 4])

two-stage models. Last tiny detail is that, in the treatment of parameters gener-
ation in Chapter 4, we have omitted a simple attribute from the .json file, which
was already present, but we have preferred to introduce now since it is used only
by the multistage class: this is the perc_inventory voices in the file. This attribute
has been kept simple, but there is of course room for generalisation. In this simple
form, it is the cost of the inventory for every component expressed as the per-
centage of the components cost. Our choice to use a percentage over the cost of
making is related to the fact that also revenues are built in the same way and this
allows to vary this parameter in a meaningful way. After this introduction to the
instance class, we can suppose to have generated instances with the components
costs, profits, inventory costs, gozinto factor for 10 final products generated by 30

components and we can now concentrate in the mechanism of evaluation and then
in a comparison about the results achieved by the various models. We have built
this relatively smaller instance because of the large number of tests we wanted to
carry out and the difficulties in evaluations of the various solutions, which is the
topic of the next section.

7.2 Evaluation of multistage solutions

Multistage stochastic programs are known to be difficult and slow to evaluate. This
is because

58

1. all the decisions except the first stage ones are an adaptation with respect
to the scenarios over which the solver optimizes, used to avoid myopic be-
haviour and so they are not implemented in practice;

2. nevertheless these decisions are hard to find because of non-anticipativity
constraints which do not allow for clever scenario decompositions or at least
good property of the so-called technological matrix (in terms of sparsity), so
computational time in solving the original problem is high.

In these two bullets, there are the main reasons why evaluation is usually slow. To
completely understand why this is the case, we now talk about two different types
of evaluation:

• the rolling horizon evaluation. This is the method one should probably
use in case of a problem for which the limited support of the horizon is used
to let the model be tractable, but the real horizon is unknown (and possibly
infinite). The general procedure in this case is, given a tree structure for
demand representation and a model to solve, we optimize it at time t = 0 and
find first-stage decision that we implement. Then, at t = 1 we see the real
demand for this time instant and we do the best we can possibly do with sales
decisions given the numbers of components we have in our inventories (what
first stage decisions have told us) and we keep track of costs for making,
revenues and final inventory. Then, at time t = 1 we have another sample
which follows the initial tree structure, we optimize again and repeat the
previous steps and we do this re-optimization until we reach time T . Then we
sum all costs and revenues and calculate profits and, if needed, ROI, so at the
end, for the evaluation, we have solved T instances of the same problem. The
real problem in terms of computational resources is that, apart for the first
problem to solve, in which every problem has the same conditions (i.e the
same initial inventory), for subsequent times, we have to solve an instance
of the problem for each trajectory, so, in the end, we solve a total number of
n_scenarios× (T − 1) +T difficult problems, where the number of scenarios
is the number of trajectories over which we want to carry out the evaluation.

• the shrinking horizon evaluation. This method is suitable for instances
where the time T is the right time to stop and close the firm. In this case,
the algorithm for the evaluation is similar to the previous one with a crucial
exception. After the first optimization routine, we do not solve the T + 1-
stages problem, but we decrease the tree depth of one step at the time up to
a two-stage tree, so the difficulty scales down because in this setting time is
really passing and it is not rolling like before. In the end, we solve the same
exact number of problems, but their difficulty scales down rapidly (in some
sense, we reverse the exponential growth and take advantage of it, solving
problems that are way easier than the precedent ones).

These are the two main possibilities that we have implemented in our architecture
and they are general in the sense that they can be applied to both the decision

59

rules approach as well as to the stochastic recourse one. We now see the exact
implementation of the topics we have discussed. In the class (Listing 13) there are

Listing 13 Skeleton of the multi-stage evaluation class.

1 class EvaluateMultistage():

2 def __init__(self, time_step, n_scenarios, evaluation_type="rolling"):

3 def compare_problems(

4 self, prb_inst_list, sim_settings, dldr_via_eur=False

5):

6 def _run_one_realization(

7 self, prb_inst_list, data_realization, cv_coeff=None

8):

9 def heuristic_one_realization(self, sol, inst, data_realization):

10 def _evaluate_sol(self, sol, data):

11 def time_evaluation(self, prb_inst_list, max_t=5):

two head methods, one for evaluation purpose (which is compare_problems) and
one for computational times comparison (the time_evaluation). The first method
requires a list of tuples (instance, problem), a homogeneous file for settings and a
boolean value to understand what to do for the decision rules problems (for further
details, see next section). Then, it implements the kind of evaluation (rolling or
shrinking) that it is passed into the initialization method. The way it has been done
is by means of the _run_one_realization method, where problems are solved and
most importantly, the instance is updated.

Listing 14 Some details of the evaluation procedure.

1 class InstanceMultistage():

2 ...

3 def update_info(self, sol=[0], assembly=[0], evaluation_type=None, T= -1):

4 ...

5 if evaluation_type is "rolling":

6 pass

7 elif evaluation_type is "shrinking":

8 if self.scenario_tree is not None:

9 self.scenario_tree = self.scenario_tree[0:self.time_instants-1]

10 self.n_scenarios = int(np.prod(self.scenario_tree))

11 self.time_instants = self.time_instants-1

12 self.initial_inventory = self.initial_inventory + sol -

13 np.matmul(self.gozinto.T, assembly)

14 self.demand = self.generate_demand(self.time_instants)

It can be seen that the inventory costs are calculated from the initial inven-

60

Listing 15 Evaluation over a single realziation over time.

1 class EvaluateMultistage():

2 ...

3 def _run_one_realization(

4 self, prb_inst_list, data_realization, cv_coeff=None

5):

6 ...

7 for (inst, prb) in prb_inst_list:

8 cost_sol, cost_inv, profit = 0, 0, 0

9 used_inst = copy.copy(inst)

10 for ele in range(self.time_step):

11 of, sol, comp_time = prb.solve(dict_data)

12 I_0 = dict_data['initial_inventory']

13 for i in range(len(sol)):

14 cost_sol += dict_data['costs'][i][0] * (sol[i] + 0.0)

15 cost_inv += dict_data['perc_inventory'] * \

16 dict_data['costs'][i][0] * (I_0[i] + 0.0)

17 dict_data['demand'] = data_realization[:, ele]

18 new_profit, assembly = self._evaluate_sol(sol, dict_data)

19 profit += new_profit

20 used_inst.update_info(sol,assembly[:,s],self.evaluation_type)

tory of the subsequent time instant: this is because this was the simplest way to
separate this cost from the profits made. Then the evaluate_sol calculate over
a realization what are the optimal sales and finally, with this information and info
about first-stage solution, initial inventory is updated.

7.2.1 An alternative approach for Decision Rules

A sub-optimal alternative it is possible for the decision rules approach, which has
some drawbacks, but also a great advantage. The idea behind this approach is that,
in the decision rules settings we are finding the best policy among the ones in the
family we are restricting our attention to, but this policy is, for its own nature,
scenario-independent and, in the infinite limit of the sample from which we have
generated it, it is optimal. So, one could use not only the first-stage solution, but a
complete version of the solution we have from the optimization routine. Of course,
it may have little sense to consider the linearized version of the sales, but we
can take as a "complete solution" the deflected linear decision for the components
making. The overall result is sub-optimal because we are not under the assumption
of an infinite large scenario tree and so we have no assurance about the optimality
of the rules (which is guaranteed for the scenarios over which we have optimized).
Moreover, this is not even the major concern: in fact, we are assured to respect
all constraints only in the scenarios we have used to build these rules, but not for

61

out-of-sample realizations, so we need to find a suitable way to always respect the
limitations we have. In particular, for the model we are analysing, the problems
are related to:

1. the capacity constraints;

2. the non-negativeness of the components making.

We have chosen a very simplistic way to assure these two conditions, correcting
the decisions which are inconsistent by taking the maximum between each deci-
sion and 0, and by reducing all decision by the right multiplicative factor when a
violation of the capacity constraints occurred. This is what Listing 16 shows.

Listing 16 Heuristic approach to evaluate a DLDR solution.

1 def heuristic_one_realization(self, sol, inst, data_realization):

2 ...

3 for i in range(dict_data['n_components']):

4 tmp = sol[f'{t}']['X_bar'][i]

5 for u in range(t):

6 for j in range(dict_data['n_items']):

7 tmp += sol[f'{t}']['X_plus'][i, j, u] * d_plus[j, u] + \

8 sol[f'{t}']['X_minus'][i, j, u] * d_minus[j, u]

9 if tmp < 0:

10 counter_adj += 1

11 comp[i] = np.max([tmp, 0.0])

12 respect, fraction = self.check_bound(inst, comp)

13 if not respect: # if we break the capacity constraints

14 sol[f'{t}']['X_bar'] = sol[f'{t}']['X_bar']/(fraction+0.00001)

15 sol[f'{t}']['X_plus'] = sol[f'{t}']['X_plus']/(fraction+0.00001)

16 sol[f'{t}']['X_minus'] = sol[f'{t}']['X_minus']/(fraction+0.00001)

17 counter_adj += 1

From the code, it is clear what we do when the solution imposes a negative
production for a component, but the capacity constraints check is done in the
check_bound() method, where we basically reconstruct how much resources we
have used and check if the bound is respected. Please note that this passage needs
to be done after the check on the positiveness because otherwise, it may be the
case that it was the negative production of a component to let the constraints be
met.

7.2.2 Computational times: a brief digression on fairness of comparisons

A subtle point in the discussion is how to evaluate solution coming from very differ-
ent demand models: classical stochastic programming approaches need a demand
tree for non-anticipativity requirements, while the decision rules approaches only

62

need trajectories. In the tree structure, there is an (exponential) growth of the
number of scenarios when time flows and the number of the leaves can be enor-
mous. For example, if we think of a normal distribution and a tree with T = 6 time
steps and branching factor array of bf = [40, 20, 5, 5, 5, 5] leads to

1. 40 indistinguishable scenarios at the first time;

2. 800 at the second time step;

3. 4000, 20000, 100000, 5000000 respectively at time t = 3, 4, 5, 6

but if we concentrate in how uncertainty is explored within each single time in-
stants, it is clear that there is a bad representation for time 3, 4, 5 and 6, which
may be a feature signaling a scarce interest in what happens in longer-horizon
times (since in a multi-stage optimization setting we will re-optimize) or it can be
related to the fact that there is a lot more uncertainty also in which will be the fu-
ture distribution, but it remains that the uncertainty representation is poor. On the
other hand, if we simply sample a certain number of trajectories, for example 200,
we have a representation with 200 realization at each time instant, which may or
may not be sufficient to capture sufficiently well the uncertainty, but it is a constant
number. In our settings (10 products and 30 components), the ideal situation would
be to have a tree structure with fixed branching factor over which to optimize, but
this is not possible, and especially for a tree with depth over 5 time instants, it
is really difficult computationally to ask more than a branching factor of 10 after
the first 3 or 4 time instants. If this was possible, for sure the multi-stage recourse
model, which is the "exact" version would be the logical choice against the decision
rules models. Unfortunately, this becomes computationally intractable if we want
something meaningful (like first branching factor greater than 50). Another possi-
bility is saying that, since we have a certain number of scenarios for the decision
rules, we need to structure the tree such that the number of the scenarios in a mid-
dle level of the tree is equal (or approximately equal) to the number of trajectories
for the decision rules models. This may seem a good compromise, but, in the end,
becomes too biased toward decision rules, and this is because of the exponential
growth of the number of scenarios in a tree structure. So, a good decision is to
fix a certain amount of time and find the tree structure and number of trajectories
with which the models are able to find a solution in the required time (at least the
mean time should be lower than the chosen one). This is what should be done when
taking real decisions. Unfortunately, stable results can be obtained with configura-
tions which require about 15 minutes, which is a very short time when deciding a
firm strategy, but it is still too much to carry out extensive multi-setting evaluation
experiments over hundreds of scenarios. For this reason, we have preferred to use
a common trick for the recourse model and we have compared it with our decision
rules heuristic, avoiding any kind of computational issue.

63

7.3 A computational trick: two-stage-multi-period model

As we have already pointed out, the multi-stage recourse model is quite slow be-
cause of the explosion in the number of scenarios that should be generated by
means of a tree structure. This is crucial to guarantee that non-anticipativity con-
straints are met, but we can avoid a part of this computational burden applying a
common trick in the literature. The idea is based on the fact that we build a com-
plicated model to take far-from-now uncertainty into account, but then only first
stage solution is kept and implemented, generating, in some sense, a waste in the
computational resources we have deployed. So we do enforce non-anticipativity
constraints, but only for the first stage decision plan which must be unique. In

Listing 17 Trick to transform the multi-stage model in a multi-period one.

1 class AtoMultistage():

2 def solve(

3 self, dict_data, multi_period=False, time_limit=None,

4 gap=None, verbose=False

5):

6 ...

7 if not multi_period:

8 for i in components:

9 n_groups = 1

10 for (t, t_scen) in enumerate(array_scenarios):

11 n_equal_dec = int(n_scenarios / n_groups)

12 for h in range(n_groups):

13 for k in range(n_equal_dec):

14 model.addConstr(

15 X[i, k + h*n_equal_dec, t] == X[i, h*n_equal_dec, t]

16)

17 n_groups = int(n_groups * t_scen)

18 for j in items:

19 n_groups = 1

20 for (t, t_scen) in enumerate(array_scenarios):

21 n_groups = int(n_groups*t_scen)

22 n_equal_dec = int(n_scenarios / n_groups)

23 for h in range(n_groups):

24 for k in range(n_equal_dec):

25 model.addConstr(

26 Y[j, k + h*n_equal_dec, t] == Y[j, h*n_equal_dec, t]

27)

28 else:

29 for i in components:

30 for s in scenarios:

31 model.addConstr(X[i, s, 0] == X[i, 0, 0])

64

this way, in the model we are deciding what to do right and then having perfect
demand information, the uncertainty revealed not one step at the time but all at
once, the model knows everything just after having decided the production plan of
the current time.

A possible drawback of this method is that obviously all decisions after time 0

are taken to perfectly match what happens in the trajectory where they are, which
is a sort of extremely over-fitted behaviour, but the big benefit is a reduction in
the computational times: in fact this model is a two-stage model and off-the-shelf
algorithm work very fast with this kind of problems. The question we try to answer
with this model is if the over-fitted behaviour means a bad inventory management
or if, in the end, it is good enough to generate consistent returns. We stress also
that, with this method, we are able to use a scenario generation method based
on trajectories and not on the tree structure, which gives the possibility of a fair
comparison with the decision rules approach based on the number of scenarios.
In Listing 17 we can appreciate how the code for the split-variable formulation of
the multi-stage model can be reused, by adding a single boolean value, to produce
a two-stage-multi-period-model. If the boolean value is equal to true, we simply
eliminate the non-anticipativity constraints for all the variables except for the first
production decisions. It is important to note that in the compact formulation we
are unable to do so because in that model variables were already dimensioned to
consider stage uncertainty revealed one step at the time (n_equal_dec was the pa-
rameter responsible of the cited behaviour). We now show how are performances
of the decision rules heuristic compared to the latter described two-stage-multi-
period model. As pointed out before, the comparison is fair because we can use
the same exact instance (in terms of demand generation) to solve the problems.
For results shown in all the following, we have used T = 5 instant over which de-
mand arrives (so 6 time steps in total), again 10 end items and 30 components and
5 machines and we have let the distribution, the number of common and specific
components and the profitability varying, in order to gain some insights on the im-
pact of these features. Another key characteristic, we have only run experiments
with tightness 1.0: this is because, if capacity limits are tight, there is no need
for use a complicated multi-instant framework to tackle the problem, as we hardly
satisfy the demand and there is no need to control the inventory properly. If there
is extremely high capacity, we do not need intelligent inventory management, as
we can produce just in time. For the same reason, we apply an upper bound on
inventory, forcing it to be less than a prespecified value for each component (in our
case the value was 1500). In the evaluation process, since there is no guarantee to
respect the bound after having decided the production, if a components violated
the constraint, it was simply discarded, but, experimentally, this was rare, as the
number of scenarios with which the solutions have been built, where the condi-
tion was enforced, seems to be sufficiently high to guarantee the respect of such
constraint with high probability.

In the first plot (Fig. 7.3), we can appreciate a comparison by using a right
skewed beta distribution. It can be clearly seen that there is a big difference

65

Figure 12: profits (left) and rho (right) for different level of profitability of a right
skewed beta distribution with multi-period and heuristic models.

caused by the profitability: in case of low profitability the difference between
the two approaches becomes larger, in terms of both absolute profit and roi. In
general, with this distribution, the decision rules approach outperforms the multi-
period model and the only case in which the difference is tight, at least in terms of
profits, is when profitability is large enough and there are common components;
this is the best possible setting for our problem, because there are the benefits
from an high margin and the risk pooling effect on components demands. In gen-
eral, we can conclude that the right skewness seems to generate a heavy over-

66

fitted multi-period model which does not perform well in out-of-sample trajectories.
This can be the result of an heavy production plan because the bigger probability
of positive events leads to a larger number of scenarios where production after
time 0 is higher than usual, which leads to a too optimistic first stage solution.

Figure 13: profits (left) and rho (right) for different level of profitability of a left
skewed beta distribution with multi-period and heuristic models.

The situation is more fair for the left skewed beta distribution (Fig. 7.3), where
the multi-period model behaves better, staying very close to its competitor, at least
for absolute profit. This partially confirm the aforementioned effect of the right
skewness. In particular, the benefit of the left skewness is evident in the low pro-

67

fitability case, where profits are close to the heuristic ones in almost every setting
of components types. In the end, also for this distributional setting, decision rules
approach seems to guarantee a better performance, but the gap is reduced for
sure.

Figure 14: profits (left) and rho (right) for different level of profitability of a uni-
form distribution (finite and symmetric) with multi-period and heuristic models.

In Fig. 7.3 we can appreciate the symmetric case of a uniform distribution. The
insights are extremely interesting; first of all, looking at the upper left picture, we
can appreciate how in this case the multi-period model performs slightly better
than its competitor, with the variance which is comparable in every setting, also

68

when there are no common components, where in the previous analysis the vari-
ability of multi-period was sufficiently higher. The absolute result is overturned in
the ROI picture, where the heuristic has a clear advantage. It is also interesting
to note that, in the low profitability case, the comparison between the two method
is strongly dependent on the number of common components: if they are present,
in absolute terms the two models are basically equivalent, in case of absent of
common components the difference is huge as much as in the right skewed case.

Figure 15: profits (left) and rho (right) for different level of profitability of a normal
distribution (infinite and symmetric) with multi-period and heuristic models.

Finally, in the normal distribution case (Fig. 7.3), we see the weakness of

69

the heuristic approach. As we have already discussed, this is the effect of non-
finiteness of the distribution, which lead to a very conservative mean plan and ad-
justment for the heuristic approach: this is due to the fact that in-sample scenarios
must respect demand constraint and capacity constraints and, with a possibility of
extremely high demand realization, the mean case shifts down and adjustment
must be kept really small. This is a reflection on the really low and tight box-plots
for profits and high and tight for the ROI, signaling that trade-off between stabil-
ity and absolute profit is biased toward the former. This is the distributional case
where, no matter the other characteristic, the multi-period model is clearly the
best option.

Overall, in all figures, models show a good behaviour in terms of stability except
when the number of specific components is high and the number of common ones
is low: this is due to the fact that there is no risk pooling effect and profits depend
largely on demands which have low correlation. The performances of the decision
rules heuristic are better and in some sense they justify the fact that this model
requires a little more time to find a solution, time which is then an advantage fea-
ture in evaluation mode, where it is necessary to solve only once the problem. By
the way, both are able to provide a solid solution in less than 5 minutes with these
settings, so computational requirements are very affordable with both models. We
stress the fact that in these results, we have deployed the simplified version of
the DLDR model, with time dependencies possible only for in time demand realiza-
tions for sale decisions and just-realized demands for production decision; this is
because, in our simple setting of independent demand, the aggregated information
coming from the inventory seems to be sufficient to obtain good performances.

70

8 Towards the dynamic programming approach

In the previous chapter we have seen how complicated can be the evaluation of a
multistage solution, especially in rolling horizon framework, since it involves the
repeated solution of a difficult problem with different initial conditions and demand
samples. The basic idea behind this chapter will be to develop a meaningful way to
adapt the two-stage models into the multi-stage framework, trying to understand
if the multi-stage machinery is worth the effort or if a more simplistic approach
may be enough to generate consistent returns. There is an obvious problem: in
the multistage case, the inventory has a cost (which in our case is expressed as a
percentage on the cost of production) but plays a key role because it allows to sat-
isfy demand that would be lost if simply using the just-made products. Inventory is
basically the state variable which avoid a myopic behaviour and links every infor-
mation stage with each other. In the classical two stage models, we can for sure
penalize inventory by adding to the inventory cost for the remaining components,
but they are useful in subsequent periods and it is less obvious what value to give
to these remaining items, a value which is known as terminal value or continuation
value in the literature. The name and the idea behind this term is similar to the
dynamic programming approach we have discussed in Chapter 2, where the focus
was on finite horizon DP. There, there was a terminal value which was the starting
point of the backward induction process and the value function was the key to as-
sign a (economic) value to the state in which we arrive when a decision was taken.
In the same way, in the multistage evaluation process we would be able to put
together the immediate profits generated by the current sales plus the benefit of
having something in the inventory that is a partial insurance against unexpectedly
high demand realisation in the future.

Listing 18 Skeleton of continuation value class.

1 class ContinuationValue():

2 def __init__(self, inst, n_scen_out=500, n_scen_in=500):

3 ...

4 def solutions_report(self, value=20):

5 ...

In order to find this value, which is proper to every different component, we do
a reasoning similar to what we have done to find suitable limits for the capacity
constraints, i.e we solve the ato problem. However, this time not there will not
be a relaxed form: we want to understand the importance of the initial inventory
to be able to quantify the value of what passes between a time stage and the
subsequent one. The class in Listing 18 is where such values are computed and
in its first version the computation is quite simple. The initialisation requires an
the instance considered to solve the two-stage model we are interested in and two

71

number of scenarios: one for solving the ato problem and one for evaluating the
solutions. The main method, solutions_report, requires a simple value to return
the coefficient of the continuation values for each component. The idea is basically
to solve J+1 ato problem in different condition, where J is the number of products
for sale. The differences among this problems is in the boundary conditions: we
want to solve our real problem, with no initial inventory and compare the solution
against the one found in case of an inventory where we have the exact amount to
build k objects of type j ∈ J . This is what is accomplished in listing 19.

Listing 19 Calculation of continuation value coefficients.

1 def solutions_report(self, value=20):

2 coeff = np.zeros(self.inst.n_components)

3 dict_data = self.inst.get_data()

4 prb_rp = Ato(stoch_type="st", var_type="con")

5 of, sol_rp, time_rp = prb_rp.solve(dict_data)

6

7 eval_demands = self.inst.generate_demand(self.n_scenarios)

8 ev = EvaluateTwostage()

9 actual_profits = ev.solve_second_stages(self.inst, sol_rp, self.n_scenarios,

10 eval_demands, False, False)

11 mean_profit = np.mean(actual_profits)

12 used_inst = copy(self.inst)

13 for j in range(used_inst.n_items):

14 used_inst.initial_inventory = np.zeros(used_inst.n_components)

15 used_inst.initial_inventory += used_inst.gozinto[j, :] * value

16 sunk_cost = 0

17 for i in range(used_inst.n_components):

18 sunk_cost += used_inst.initial_inventory[i]*used_inst.costs[i, 0]

19 dict_data = used_inst.get_data()

20 of, sol_rp, time_rp = prb_rp.solve(dict_data)

21 profits = ev.solve_second_stages(used_inst, sol_rp, self.n_scenarios,

22 eval_demands, False, False)

23 adv_prof = np.max([np.mean(profits) - mean_profit - sunk_cost, 0])

24 for i in range(used_inst.n_components):

25 if used_inst.gozinto[j, i] > 0:

26 coeff[i] += adv_prof / (value * used_inst.gozinto[j, i] *
27 sum(used_inst.gozinto[j, :] > 0))

28 return 1.1**self.time_instants * coeff

After having the solutions, we compare the average profit made without inven-
tory with the one made in one between the J situation and we save the positive
difference between the two as the advantage of having the equivalent of k items
of type j in the inventory. Then, we divide this number by k, to obtain the gain for
a single item and then we divide the merit of the extra profit equally among the

72

components and, for each component, we still divide for the number of the type
of components used to build the product. We repeat this logic for each type of
end products. Finally, the coefficient are multiplied by a coefficient build with the
time steps necessary to arrive to the horizon T : this is an empirical way to let the
two-stage model understand how much time is passed.

After these premises we have a set of coefficient which try to give a value for
the components remaining in the inventory at the end of the second stage, so when
we are going to evaluate the two-stage models in the multi-stage setting there will
be a new part in the objective function that uses these coefficients (see Listing 20).

Listing 20 Changes in the objective function ato class.

1 class Ato():

2 ...

3 def solve(

4 self, dict_data: Dict, cont_value=False, time_limit=None,

5 gap=None, qnt_approx=0.8, verbose=False

6):

7 ...

8 if cont_value:

9 cv_coeff = dict_data["cv_coeff"]

10 expr += quicksum(

11 pi_s * cv_coeff[i] * (X[i] + I_0[i] - quicksum(

12 dict_data['gozinto'][j, i] * Y[j, s]

13 for j in items

14)

15)

16 for s in scenarios

17 for i in components

18)

We want to stress the fact that the model’s solution in this case tries to be less
myopic by giving a positive value to the inventory, which is a non sense in the
two-stage framework.

73

8.1 Comparison between fast methods: continuation value vs
DLDR heuristic

We have highlighted the difficulties in using multi-stage models in Chapter 7, so we
now propose another strategy to obtain faster results, based on classical two-stage
models. This is the continuation value we have just discussed and we compare it
with the heuristic approach we have built in the second section of Chapter 7, which
we have shown to be superior with respect to the other fast approach based on a
multi-period-two-stage model. From a pragmatic point of view, the difference in the
evaluation step of the solutions find with the continuation value are in the update
of the instance, which is now of type Instance and not InstanceMultistage, but,
apart from that, there are no other differences from the scheme already described
in the precedent chapter when we have talked about rolling horizon evaluation
(there is no sense in shrinking the two-stage horizon). In computational terms, the
fastest method to evaluate is still the heuristic approach, since the comprehensive
model needs to be solved only once, whereas the new approach is extremely fast
in the single solving (it is a modified version of the classical recourse version of
Chapter 3), but it has to be solved for each scenario T time steps. We know try to
analyze the impact of common and specific components as well as the distribution
type and the profitability, while we keep the tightness parameter fixed to 1.0 in this
case: we wanted a situation in which inventory is important but we have limit to
what we can produce, so that a meaningful production plan is used. Specifically,
as in the previous chapter, results are obtained with 10 products, 30 components,
over 5 machines and for 6 time instants (considered also time 0). We know use
some plots to gain an insight about the solutions behaviour. In Fig. 16, it can be
seen how the approach based on the decision rules maintains, when a non-finite
distribution like the normal is used, as already noted in all previous analysis, a
conservative behaviour, observable from the tight and low box-plots in terms of
profit and tight and high for the ROI; the continuation value model seems instead
to be less stable with 500 realization with respect to its competitor, but it is over-
performing the heuristics. In terms of common and specific components with the
normal distribution a shift in both profit and ROI happens, but the differences be-
tween the two approaches remains the same. Finally, profitability does not seems
to differenciate the structure of both profits and ROI, but act simply with a vertical
shift again.

A more tight comparison can be done when observing the figures related to
finite distributions. For example, in Fig. 8.1 we can see that the two models are
basically equivalent when a right skewed distribution is used, and the role of num-
ber of specific components is more important than common components, as there
is high variability when 5 specific components are used. It is interesting to note
that this high variability is present in case of a higher profitability, while it dis-
appears when all items generate a low margin. It is also noteworthy to mention
that, when profitability is higher there is a substantial equivalence in both profits
and ROI, while, when margins are lower, continuation value model has a slightly

74

Figure 16: profits (left) and ROI (right) under different profitabilities for a normal
distribution under standard (1.0) tightness condition.

75

Figure 17: profits (left) and ROI (right) under different profitabilities for a right
skewed beta distribution under standard (1.0) tightness condition.

higher absolute profit but a slightly lower ROI, so that it is still difficult to un-
derstand what is the best model. We note that, as already seen in the previous
chapters, the risk pooling effect of the common components seems to shift both
profits and ROI, while the specificity of components impacts on the variability of
the solution, as already highlighted before.

In Fig. 8.1 the situation become even more subtle: there is an overall advan-
tage for the heuristic model when margins are higher, since absolute profits are
equal but the ROI is higher for the heuristic, but profits become in favor of the con-

76

Figure 18: profits (left) and ROI (right) under different profitabilities for a left
skewed beta distribution under standard (1.0) tightness condition.

tinuation value model when margins are low. There is not a enormous difference,
but from the box-plots we can see that it is significant statistically speaking, so in
the latter case the continuation value model seems to outperform its competitor.

Lastly, in Fig. 8.1, when the distribution is symmetric but finite, the two mod-
els are again difficult to compare: when medium margins are evaluated, profits
are higher for continuation value model, while ROI is lower, but in both cases the
difference is subtle. Moreover, in this medium case in terms of profitability, num-
ber of specific components is not playing any kind nor in shifting the figures nor

77

Figure 19: profits (left) and ROI (right) under different profitabilities for a uniform
distribution under standard (1.0) tightness condition.

in augmenting the variability, while the number of common components seems
to generate higher absolute profits. In the low margin case instead, when there
are no common components, heuristic method becomes superior in both profits
and ROI, while there is a partial reversion when common components are present,
since the continuation value model becomes more profitable even if the ROI is still
lower than the one of its competitor. Also in this case, the number of common
components has a shifting effect, but in this case this effect can be appreciated
both in terms of profits and ROI.

78

Finally, we want to stress that the continuation value model has been built fol-
lowing a sensitivity analysis on the inventory, an idea based on a value found for
one subsequent period and not still seeing a global picture, which has been added
by multiplying the coefficient found by a simple function of the time to go. This
implies that there are no guarantees about the behaviour of such model when path
dependencies of the demand stochastic processes are added, while the heuristic
model does not rely directly on this assumption, but we are not sure on its perfor-
mances as well when more complicated processes are evaluated.

79

9 Conclusions and further work

In the previous chapters we have tried to answer some questions related to an
assembly-to-order system under demand uncertainty and here, we summarize the
results. First of all, taking into account uncertainty seems to be crucial, as high-
lighted by the high VSS when conditions are unfavourable, i.e when there are a lot
of specific components or profitability is low. In such conditions not considering
uncertainty means basically going out of business.
Secondly, we have shown that perfect information in this kind of problems is highly
valuable and again this is particularly true for situations where the risk-pooling ef-
fect of common components is scarce: this is because, when there are a lot of
common components, the aggregated demand for components has less variability
and in some sense, this is equivalent to an augmentation of information for the
recourse problem.
In the same chapter, we have then compared the recourse problem against the
decision rules approaches, concluding the supremacy of the former when the dis-
tribution is normal and in stressing condition for the firm, as for example in case
of low profitability for every component. Nonetheless, deflected rules are very
similar in the result in a lot of settings, suggesting that the elasticity price of an
easily tractable form for the problem is not too high while, forcing a linearity con-
dition seems to lead to extremely conservative plans when not needed. Then, we
have briefly discussed about the trade-off between stability and performances for
the robust models, showing a similar structure for the decision rules approaches
in the non-robust and robust cases. After that, we have shifted our attention to
multi-stage models. We have built multi-stage recourse and deflected rules mod-
els, which were the building blocks for further evaluation based on them. in par-
ticular we have seen how the limited support of the distribution seems to be a
determinant factor for assessing the goodness of a heuristic based on the decision
rules approach, which is a method sufficiently good to outperform the two-stage
multi-period model, a popular way to avoid the computational burden of multistage
programs. Both these two methods are fast to solve and can be implemented in
minutes in real-sized problems, but in the evaluation phase, there is a preference
for the heuristic method, as it requires the problem solution only once. We have fi-
nally proposed a two-stage variant with continuation value to build meaningful and
not myopic inventory management using a two-stage model in the multi-stage set-
tings. By comparing it to the heuristic approach based on decision rules, we have
shown once again the pitfall of the normal distribution case for the decision rules
model, but apart from that, the two methods proposed are nearly equivalent in all
other settings, suggesting good inventory management in both cases. Overall, the
decision rule approach seems to be a valid alternative for finite distributions and
medium conditions in terms of profitability and specificity of components. We have
explored the multistage setting in the easiest possible case of time-independent
demand and the first research theme could be to check whatever our findings for
the multistage framework remain valid for more complex stochastic processes. So,

80

in this work, we claim that, under suitable economical conditions, when classical
recourse version of the problem begins to suffer from the curse of dimensionality,
decision rules based approach may be a good option, since it does not explode,
in terms of the number of variables, exponentially when the number of scenario
increases, but only linearly. In addition, there is the possibility of investigating
what happens when there is correlation for demand in the same time period, how
changes the risk-pooling effect of the common components when another source
of interaction is added. Another interesting continuation for the work is to run
experiments with real data and possibly using other risk factors, generated by di-
mensionality reduction techniques from the demand data available: in our case of
synthetic data it would be useless, but greater performances in terms of compu-
tational requirements are possible if risk factors are kept limited in size. Finally,
it would be interesting, when the dimension of the problem grows in terms of the
number of components and end products, to build a machine learning approach
to understand what are the critical items, with bad characteristic, to be treated
scenario by scenario, and what are the simpler products that can be treated by
expected value or by decision rules, creating a mix and having a trade-off between
tractability and performance.

81

References

Z. Atan, T. Ahmadi, C. Stegehuis, T. de Kok, and I. Adan. Assemble-to-order sys-
tems: A review. European Journal of Operational Research, 261:866 – 879, 2017.
ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.02.029. URL https:
//www.sciencedirect.com/science/article/abs/pii/S0377221717301510.

A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust so-
lutions of uncertain linear programs. Mathematical Programming, 99:351–376,
2004. doi: https://doi.org/10.1007/s10107-003-0454-y.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series
in Applied Mathematics. Princeton University Press, October 2009.

D. P. Bertsekas. Dynamic Programming: Models and Applications, volume I. 4th
edition, 2017. ISBN 1-886529-43-4. URL http://athenasc.com/dpbook.html.

P. Brandimarte. Variance Reduction Methods, chapter 8, pages 341–377. John
Wiley & Sons, Ltd, 2014. ISBN 9781118593264. doi: https://doi.org/10.1002/
9781118593264.ch8. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/9781118593264.ch8.

P. Brandimarte, E. Fadda, and A. Gennaro. The value of the stochastic solution in
a two-stage assembly-to-order problem. working paper, 2020.

G. C. Calafiore. Multi-period portfolio optimization with linear control poli-
cies. Automatica, 44(10):2463–2473, 2008. URL https://doi.org/10.1016/
j.automatica.2008.02.007.

X. Chen, M. Sim, and P. Sun. A robust optimization perspective on stochastic
programming. Operations Research, 55(6):1058–1071, 2007. ISSN 0030364X,
15265463. URL http://www.jstor.org/stable/25147146.

E. V. Denardo. Dynamic Programming: Models and Applications.
2013. ISBN 978-0486428109. URL https://www.amazon.com/
Dynamic-Programming-Applications-Computer-Science/dp/0486428109.

M. Elhafsi, L. Zhi, H. Camus, and E. Craye. An assemble-to-order system with prod-
uct and components demand with lost sales. International Journal of Production
Research, 53(3):718–735, 2015. doi: 10.1080/00207543.2014.920547.

A. Georghiou, D. Kuhn, and W. Wiesemann. Generalized decision rule approxi-
mations for stochastic programming via liftings. Mathematical Programming,
152:301–338, 2014. doi: http://dx.doi.org/10.1007/s10107-014-0789-6. URL
https://dspace.mit.edu/handle/1721.1/103397.

A. Georghiou, D. Kuhn, and W. Wiesemann. The decision rule approach to op-
timization under uncertainty: methodology and applications. Computational

82

https://www.sciencedirect.com/science/article/abs/pii/S0377221717301510
https://www.sciencedirect.com/science/article/abs/pii/S0377221717301510
http://athenasc.com/dpbook.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118593264.ch8
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118593264.ch8
https://doi.org/10.1016/j.automatica.2008.02.007
https://doi.org/10.1016/j.automatica.2008.02.007
http://www.jstor.org/stable/25147146
https://www.amazon.com/Dynamic-Programming-Applications-Computer-Science/dp/0486428109
https://www.amazon.com/Dynamic-Programming-Applications-Computer-Science/dp/0486428109
https://dspace.mit.edu/handle/1721.1/103397

Management Science, 16:545 – 576, 2019. ISSN 1619-6988. doi: https://doi.
org/10.1007/s10287-018-0338-5. URL https://link.springer.com/article/
10.1007%2Fs10287-018-0338-5.

C. C. Moallemi and M. Sağlam. Dynamic portfolio choice with linear rebalancing
rules. Journal of Financial and Quantitative Analysis, 52(3):1247–1278, 2017.
doi: https://doi.org/10.1017/S0022109017000345.

E. Nadar, M. Akan, and A. Scheller-Wolf. Technical note—optimal structural re-
sults for assemble-to-order generalized m-systems. Operations Research, 62(3):
571–579, 2014. doi: 10.1287/opre.2014.1271.

M. I. Reiman and Q. Wang. Asymptotically optimal inventory control for assemble-
to-order systems with identical lead times. Operations Research, 63(3):716–732,
2015. doi: 10.1287/opre.2015.1372.

83

https://link.springer.com/article/10.1007%2Fs10287-018-0338-5
https://link.springer.com/article/10.1007%2Fs10287-018-0338-5

Appendices

A Tables for two-stage results

Sol. Perc. low. cc sc Mean Std CI lower CI upper

EV 0.4 0 0 0.06360 0.08293 0.04734 0.07985
RP 0.4 0 0 0.18394 0.06465 0.17127 0.19661

LDRV 0.4 0 0 0.32248 0.00991 0.32054 0.32442
DLDRV 0.4 0 0 0.18842 0.10478 0.16789 0.20896

EV 0.4 0 10 0.05065 0.08062 0.03485 0.06645
RP 0.4 0 10 0.18913 0.05935 0.17749 0.20076

LDRV 0.4 0 10 0.31975 0.00944 0.31790 0.32160
DLDRV 0.4 0 10 0.16660 0.10923 0.14519 0.18800

EV 0.4 10 0 0.27057 0.04882 0.26101 0.28014
RP 0.4 10 0 0.29015 0.03911 0.28249 0.29782

LDRV 0.4 10 0 0.38301 0.02641 0.37783 0.38818
DLDRV 0.4 10 0 0.34304 0.03346 0.33648 0.34960

EV 0.4 10 10 0.31136 0.04466 0.30261 0.32011
RP 0.4 10 10 0.32022 0.04220 0.31195 0.32849

LDRV 0.4 10 10 0.40154 0.03213 0.39524 0.40784
DLDRV 0.4 10 10 0.37700 0.03424 0.37029 0.38371

EV 1 0 0 -0.10938 0.06545 -0.12221 -0.09656
RP 1 0 0 0.06334 0.02813 0.05783 0.06886

LDRV 1 0 0 0.11467 0.01244 0.11223 0.11710
DLDRV 1 0 0 0.11286 0.00811 0.11127 0.11445

EV 1 0 10 -0.09533 0.06312 -0.10771 -0.08296
RP 1 0 10 0.06902 0.03044 0.06305 0.07498

LDRV 1 0 10 0.12813 0.01546 0.12510 0.13116
DLDRV 1 0 10 0.12905 0.01516 0.12608 0.13202

EV 1 10 0 0.11991 0.02862 0.11430 0.12552
RP 1 10 0 0.13401 0.01854 0.13038 0.13764

LDRV 1 10 0 0.17723 0.00450 0.17635 0.17811
DLDRV 1 10 0 0.16198 0.00648 0.16071 0.16325

EV 1 10 10 0.11641 0.02496 0.11151 0.12130
RP 1 10 10 0.12853 0.01912 0.12478 0.13228

LDRV 1 10 10 0.17111 0.00628 0.16988 0.17234
DLDRV 1 10 10 0.15597 0.00736 0.15453 0.15742

Table 1: ROI, normal distribution, tightness set to 0.8.

84

Sol. Perc. low. cc sc Mean Std CI lower CI upper

EV 0.4 0 0 0.14007 0.05631 0.12903 0.15110
RP 0.4 0 0 0.21669 0.03444 0.20994 0.22344

LDRV 0.4 0 0 0.27104 0.00019 0.27100 0.27107
DLDRV 0.4 0 0 0.22578 0.04481 0.21699 0.23456

EV 0.4 0 10 0.14114 0.05104 0.13113 0.15114
RP 0.4 0 10 0.22296 0.03250 0.21658 0.22933

LDRV 0.4 0 10 0.28450 0.00028 0.28444 0.28455
DLDRV 0.4 0 10 0.24098 0.03966 0.23321 0.24875

EV 0.4 10 0 0.32593 0.03076 0.31990 0.33196
RP 0.4 10 0 0.33393 0.02586 0.32887 0.33900

LDRV 0.4 10 0 0.34269 0.02318 0.33814 0.34723
DLDRV 0.4 10 0 0.34147 0.02354 0.33685 0.34608

EV 0.4 10 10 0.31194 0.02983 0.30610 0.31779
RP 0.4 10 10 0.32275 0.02443 0.31797 0.32754

LDRV 0.4 10 10 0.32426 0.02457 0.31945 0.32908
DLDRV 0.4 10 10 0.32244 0.02445 0.31764 0.32723

EV 1 0 0 0.00357 0.03981 -0.00423 0.01137
RP 1 0 0 0.09978 0.01203 0.09742 0.10214

LDRV 1 0 0 0.12303 0.00007 0.12302 0.12305
DLDRV 1 0 0 0.12303 0.00007 0.12302 0.12305

EV 1 0 10 -0.00379 0.04113 -0.01185 0.00427
RP 1 0 10 0.10230 0.01621 0.09912 0.10547

LDRV 1 0 10 0.13360 0.00004 0.13359 0.13361
DLDRV 1 0 10 0.13340 0.00012 0.13338 0.13343

EV 1 10 0 0.13773 0.01149 0.13548 0.13999
RP 1 10 0 0.14142 0.00757 0.13994 0.14290

LDRV 1 10 0 0.15414 0.00418 0.15332 0.15496
DLDRV 1 10 0 0.15200 0.00441 0.15113 0.15286

EV 1 10 10 0.13730 0.01329 0.13469 0.13990
RP 1 10 10 0.14312 0.00811 0.14153 0.14472

LDRV 1 10 10 0.15722 0.00438 0.15636 0.15808
DLDRV 1 10 10 0.15380 0.00478 0.15286 0.15473

Table 2: ROI, uniform distribution, tightness set to 0.8.

85

Sol. Perc. low. cc sc Mean Std CI lower CI upper

EV 0.4 0 0 0.21523 0.03505 0.20836 0.22210
RP 0.4 0 0 0.25989 0.02028 0.25591 0.26386

LDRV 0.4 0 0 0.29518 0.00056 0.29507 0.29529
DLDRV 0.4 0 0 0.26703 0.02870 0.26141 0.27266

EV 0.4 0 10 0.20534 0.03604 0.19828 0.21241
RP 0.4 0 10 0.25837 0.02009 0.25444 0.26231

LDRV 0.4 0 10 0.29903 0.00110 0.29882 0.29925
DLDRV 0.4 0 10 0.26375 0.02673 0.25851 0.26899

EV 0.4 10 0 0.31289 0.02162 0.30866 0.31713
RP 0.4 10 0 0.31598 0.01801 0.31245 0.31951

LDRV 0.4 10 0 0.31927 0.01687 0.31596 0.32257
DLDRV 0.4 10 0 0.31753 0.01663 0.31427 0.32079

EV 0.4 10 10 0.30424 0.01684 0.30094 0.30754
RP 0.4 10 10 0.31376 0.01553 0.31072 0.31681

LDRV 0.4 10 10 0.32512 0.01514 0.32216 0.32809
DLDRV 0.4 10 10 0.31762 0.01527 0.31463 0.32062

EV 1 0 0 0.02997 0.03128 0.02384 0.03610
RP 1 0 0 0.10947 0.00937 0.10764 0.11131

LDRV 1 0 0 0.12735 0.00015 0.12732 0.12738
DLDRV 1 0 0 0.12728 0.00020 0.12725 0.12732

EV 1 0 10 0.00065 0.03685 -0.00657 0.00787
RP 1 0 10 0.09235 0.00854 0.09068 0.09402

LDRV 1 0 10 0.10584 0.00018 0.10580 0.10587
DLDRV 1 0 10 0.10600 0.00026 0.10595 0.10605

EV 1 10 0 0.14530 0.00710 0.14391 0.14669
RP 1 10 0 0.14665 0.00483 0.14570 0.14759

LDRV 1 10 0 0.15422 0.00353 0.15353 0.15491
DLDRV 1 10 0 0.15114 0.00373 0.15041 0.15187

EV 1 10 10 0.14128 0.00801 0.13971 0.14285
RP 1 10 10 0.14311 0.00521 0.14209 0.14413

LDRV 1 10 10 0.14987 0.00389 0.14911 0.15063
DLDRV 1 10 10 0.14735 0.00400 0.14656 0.14813

Table 3: ROI, right skewed beta distribution, tightness set to 0.8.

86

Sol. Perc. low. cc sc Mean Std CI lower CI upper

EV 0.4 0 0 0.24489 0.02650 0.23969 0.25008
RP 0.4 0 0 0.26856 0.01750 0.26513 0.27199

LDRV 0.4 0 0 0.28009 0.01570 0.27702 0.28317
DLDRV 0.4 0 0 0.26520 0.02427 0.26045 0.26996

EV 0.4 0 10 0.23253 0.02618 0.22740 0.23766
RP 0.4 0 10 0.26218 0.01405 0.25943 0.26494

LDRV 0.4 0 10 0.28309 0.01290 0.28056 0.28561
DLDRV 0.4 0 10 0.25366 0.02078 0.24959 0.25773

EV 0.4 10 0 0.34619 0.01037 0.34416 0.34822
RP 0.4 10 0 0.34913 0.01094 0.34698 0.35127

LDRV 0.4 10 0 0.34871 0.01067 0.34662 0.35080
DLDRV 0.4 10 0 0.34895 0.01068 0.34686 0.35104

EV 0.4 10 10 0.33798 0.01180 0.33567 0.34029
RP 0.4 10 10 0.34232 0.01129 0.34011 0.34454

LDRV 0.4 10 10 0.34186 0.01167 0.33957 0.34415
DLDRV 0.4 10 10 0.34217 0.01157 0.33991 0.34444

EV 1 0 0 0.06834 0.02103 0.06422 0.07247
RP 1 0 0 0.10927 0.00993 0.10733 0.11122

LDRV 1 0 0 0.12657 0.00075 0.12642 0.12672
DLDRV 1 0 0 0.11572 0.01223 0.11332 0.11811

EV 1 0 10 0.07268 0.02495 0.06779 0.07757
RP 1 0 10 0.11479 0.01078 0.11268 0.11690

LDRV 1 0 10 0.13005 0.00011 0.13003 0.13007
DLDRV 1 0 10 0.11973 0.01123 0.11753 0.12193

EV 1 10 0 0.13878 0.00471 0.13786 0.13970
RP 1 10 0 0.13908 0.00420 0.13825 0.13990

LDRV 1 10 0 0.14090 0.00373 0.14016 0.14163
DLDRV 1 10 0 0.13897 0.00407 0.13818 0.13977

EV 1 10 10 0.11966 0.00583 0.11851 0.12080
RP 1 10 10 0.12305 0.00267 0.12253 0.12358

LDRV 1 10 10 0.12350 0.00259 0.12299 0.12400
DLDRV 1 10 10 0.12263 0.00260 0.12212 0.12314

Table 4: ROI, left skewed beta distribution, tightness set to 0.8.

87

Sol. Perc. low. cc sc Mean Std CI lower CI upper

PerfectInfo 0.4 0 0 577300.84 58510.25 565691.14 588910.54
EV 0.4 0 0 110629.54 144266.58 82003.92 139255.16
RP 0.4 0 0 240768.05 84628.12 223975.99 257560.11

LDRV 0.4 0 0 10108.04 310.56 10046.42 10169.66
DLDRV 0.4 0 0 165579.52 92073.46 147310.15 183848.90

PerfectInfo 0.4 0 10 464189.02 47119.90 454839.41 473538.63
EV 0.4 0 10 71705.31 114133.92 49058.66 94351.95
RP 0.4 0 10 189231.23 59384.46 177448.07 201014.40

LDRV 0.4 0 10 7253.88 214.24 7211.37 7296.39
DLDRV 0.4 0 10 114419.67 75018.69 99534.34 129305.01

PerfectInfo 0.4 10 0 959794.96 90543.70 941829.13 977760.80
EV 0.4 10 0 787997.05 142166.42 759788.15 816205.95
RP 0.4 10 0 839494.31 113145.95 817043.70 861944.92

LDRV 0.4 10 0 607594.91 41890.20 599282.99 615906.84
DLDRV 0.4 10 0 750947.37 73255.94 736411.80 765482.93

PerfectInfo 0.4 10 10 970548.56 89718.07 952746.55 988350.57
EV 0.4 10 10 847250.46 121530.21 823136.23 871364.69
RP 0.4 10 10 865406.18 114058.29 842774.54 888037.82

LDRV 0.4 10 10 717634.46 57424.04 706240.29 729028.64
DLDRV 0.4 10 10 790803.21 71817.88 776552.98 805053.43

PerfectInfo 1 0 0 169492.01 12141.99 167082.77 171901.24
EV 1 0 0 -158798.74 95016.51 -177652.08 -139945.41
RP 1 0 0 34887.07 15495.28 31812.47 37961.67

LDRV 1 0 0 509.64 55.29 498.67 520.61
DLDRV 1 0 0 972.96 69.94 959.08 986.84

PerfectInfo 1 0 10 184231.50 12361.18 181778.77 186684.23
EV 1 0 10 -135944.53 90011.14 -153804.70 -118084.37
RP 1 0 10 37116.44 16367.64 33868.75 40364.14

LDRV 1 0 10 1093.46 131.92 1067.28 1119.63
DLDRV 1 0 10 1123.16 131.92 1096.98 1149.33

PerfectInfo 1 10 0 364282.29 22229.53 359871.47 368693.11
EV 1 10 0 296361.67 70733.71 282326.57 310396.78
RP 1 10 0 310989.76 43035.55 302450.57 319528.95

LDRV 1 10 0 79788.13 2026.24 79386.08 80190.18
DLDRV 1 10 0 215514.92 8621.82 213804.16 217225.68

PerfectInfo 1 10 10 294362.33 14860.50 291413.68 297310.97
EV 1 10 10 237596.41 50954.77 227485.88 247706.94
RP 1 10 10 248908.93 37020.21 241563.32 256254.55

LDRV 1 10 10 78215.30 2869.60 77645.91 78784.69
DLDRV 1 10 10 181463.00 8558.77 179764.75 183161.24

Table 5: Profits, normal distribution, tightness set to 0.8.

88

Sol. Perc. low. cc sc Mean Std CI lower CI upper

PerfectInfo 0.4 0 0 143574.21 8814.77 141825.17 145323.25
EV 0.4 0 0 65036.31 26144.48 59848.68 70223.94
RP 0.4 0 0 89831.18 14277.67 86998.18 92664.18

LDRV 0.4 0 0 53776.21 37.05 53768.86 53783.56
DLDRV 0.4 0 0 77959.94 15471.28 74890.11 81029.78

PerfectInfo 0.4 0 10 116822.90 6076.20 115617.25 118028.55
EV 0.4 0 10 52010.25 18807.98 48278.34 55742.16
RP 0.4 0 10 73998.48 10788.05 71857.89 76139.06

LDRV 0.4 0 10 44678.80 43.84 44670.10 44687.50
DLDRV 0.4 0 10 64852.69 10673.13 62734.91 66970.47

PerfectInfo 0.4 10 0 256513.46 15864.18 253365.67 259661.26
EV 0.4 10 0 241863.51 22827.16 237334.11 246392.91
RP 0.4 10 0 246307.39 19074.37 242522.62 250092.15

LDRV 0.4 10 0 236565.28 16004.99 233389.54 239741.01
DLDRV 0.4 10 0 240871.77 16606.06 237576.77 244166.77

PerfectInfo 0.4 10 10 214682.27 13181.89 212066.69 217297.84
EV 0.4 10 10 199507.15 19080.54 195721.15 203293.14
RP 0.4 10 10 205576.22 15558.93 202488.99 208663.45

LDRV 0.4 10 10 200455.95 15186.10 197442.70 203469.20
DLDRV 0.4 10 10 203806.67 15456.92 200739.68 206873.66

PerfectInfo 1 0 0 61258.19 2670.82 60728.24 61788.14
EV 1 0 0 1619.36 18043.22 -1960.81 5199.52
RP 1 0 0 30994.92 3736.08 30253.60 31736.24

LDRV 1 0 0 22654.11 13.62 22651.41 22656.82
DLDRV 1 0 0 22654.11 13.62 22651.41 22656.82

PerfectInfo 1 0 10 50709.13 2037.14 50304.92 51113.34
EV 1 0 10 -1335.78 14495.35 -4211.97 1540.42
RP 1 0 10 26914.40 4265.12 26068.10 27760.69

LDRV 1 0 10 19401.93 5.57 19400.83 19403.04
DLDRV 1 0 10 19648.69 17.80 19645.15 19652.22

PerfectInfo 1 10 0 101231.58 3167.30 100603.12 101860.04
EV 1 10 0 93783.26 7826.59 92230.29 95336.22
RP 1 10 0 96549.55 5166.47 95524.41 97574.69

LDRV 1 10 0 78440.53 2126.91 78018.50 78862.55
DLDRV 1 10 0 83821.10 2434.41 83338.06 84304.14

PerfectInfo 1 10 10 92029.18 2659.53 91501.47 92556.89
EV 1 10 10 83739.07 8103.30 82131.20 85346.94
RP 1 10 10 87132.20 4938.93 86152.21 88112.20

LDRV 1 10 10 73196.72 2040.49 72791.85 73601.60
DLDRV 1 10 10 77682.64 2416.74 77203.10 78162.17

Table 6: Profits, uniform distribution, tightness set to 0.8.

89

Sol. Perc. low. cc sc Mean Std CI lower CI upper

PerfectInfo 0.4 0 0 114456.37 5527.16 113359.66 115553.08
EV 0.4 0 0 72586.90 11819.36 70241.68 74932.12
RP 0.4 0 0 85530.38 6674.97 84205.92 86854.84

LDRV 0.4 0 0 59403.76 113.22 59381.30 59426.23
DLDRV 0.4 0 0 80924.36 8698.28 79198.43 82650.28

PerfectInfo 0.4 0 10 90344.18 3752.27 89599.65 91088.71
EV 0.4 0 10 54873.01 9631.02 52962.01 56784.01
RP 0.4 0 10 68105.43 5294.47 67054.90 69155.97

LDRV 0.4 0 10 48685.97 178.87 48650.48 48721.46
DLDRV 0.4 0 10 64545.47 6541.66 63247.46 65843.48

PerfectInfo 0.4 10 0 154487.45 7650.03 152969.52 156005.39
EV 0.4 10 0 147448.36 10188.38 145426.77 149469.96
RP 0.4 10 0 148931.11 8486.51 147247.20 150615.02

LDRV 0.4 10 0 147050.84 7770.17 145509.07 148592.61
DLDRV 0.4 10 0 147954.41 7750.64 146416.52 149492.30

PerfectInfo 0.4 10 10 135869.54 6164.79 134646.32 137092.77
EV 0.4 10 10 128136.82 7093.58 126729.30 129544.34
RP 0.4 10 10 132124.99 6538.94 130827.52 133422.46

LDRV 0.4 10 10 127900.77 5957.74 126718.62 129082.91
DLDRV 0.4 10 10 130362.43 6269.31 129118.46 131606.40

PerfectInfo 1 0 0 45489.86 1380.53 45215.94 45763.79
EV 1 0 0 9859.95 10293.36 7817.53 11902.38
RP 1 0 0 31193.83 2669.04 30664.23 31723.42

LDRV 1 0 0 23071.78 27.91 23066.24 23077.31
DLDRV 1 0 0 23685.69 36.29 23678.49 23692.89

PerfectInfo 1 0 10 37247.57 1300.94 36989.43 37505.70
EV 1 0 10 216.63 12262.96 -2216.61 2649.87
RP 1 0 10 24752.19 2287.80 24298.24 25206.14

LDRV 1 0 10 18835.83 32.55 18829.37 18842.29
DLDRV 1 0 10 19264.43 47.35 19255.04 19273.83

PerfectInfo 1 10 0 66668.99 1836.96 66304.50 67033.48
EV 1 10 0 64353.36 3145.91 63729.14 64977.57
RP 1 10 0 65106.83 2145.35 64681.15 65532.52

LDRV 1 10 0 59608.20 1362.63 59337.83 59878.58
DLDRV 1 10 0 61987.90 1530.24 61684.27 62291.53

PerfectInfo 1 10 10 65648.68 1657.05 65319.89 65977.47
EV 1 10 10 62338.23 3533.46 61637.12 63039.35
RP 1 10 10 63457.73 2312.19 62998.94 63916.52

LDRV 1 10 10 58096.87 1507.79 57797.69 58396.05
DLDRV 1 10 10 60289.18 1635.22 59964.71 60613.64

Table 7: Profits, right skewed beta distribution, tightness set to 0.8.

90

Sol. Perc. low. cc sc Mean Std CI lower CI upper

PerfectInfo 0.4 0 0 149438.09 3702.59 148703.41 150172.76
EV 0.4 0 0 114084.66 12347.73 111634.61 116534.72
RP 0.4 0 0 122758.29 7999.36 121171.04 124345.54

LDRV 0.4 0 0 108732.17 6095.61 107522.67 109941.68
DLDRV 0.4 0 0 117452.30 10746.66 115319.92 119584.67

PerfectInfo 0.4 0 10 152975.86 4127.66 152156.84 153794.88
EV 0.4 0 10 113159.36 12740.04 110631.46 115687.26
RP 0.4 0 10 127788.16 6849.34 126429.11 129147.22

LDRV 0.4 0 10 112315.71 5116.13 111300.56 113330.86
DLDRV 0.4 0 10 122693.08 10051.00 120698.75 124687.42

PerfectInfo 0.4 10 0 244897.23 6831.21 243541.77 246252.69
EV 0.4 10 0 239308.76 7169.85 237886.10 240731.41
RP 0.4 10 0 240738.52 7545.80 239241.27 242235.77

LDRV 0.4 10 0 239922.02 7341.55 238465.30 241378.75
DLDRV 0.4 10 0 240468.93 7360.77 239008.39 241929.46

PerfectInfo 0.4 10 10 255061.10 8054.91 253462.83 256659.37
EV 0.4 10 10 247672.94 8645.19 245957.55 249388.34
RP 0.4 10 10 250349.81 8258.17 248711.21 251988.41

LDRV 0.4 10 10 248530.24 8486.81 246846.27 250214.20
DLDRV 0.4 10 10 249087.79 8421.31 247416.82 250758.76

PerfectInfo 1 0 0 75427.65 1423.53 75145.19 75710.10
EV 1 0 0 37493.11 11535.35 35204.25 39781.98
RP 1 0 0 57743.17 5246.06 56702.24 58784.10

LDRV 1 0 0 34088.06 201.00 34048.18 34127.94
DLDRV 1 0 0 51297.41 5421.56 50221.66 52373.16

PerfectInfo 1 0 10 74076.21 1553.85 73767.89 74384.52
EV 1 0 10 38713.77 13287.85 36077.17 41350.37
RP 1 0 10 58325.33 5479.39 57238.10 59412.56

LDRV 1 0 10 34035.58 28.88 34029.85 34041.31
DLDRV 1 0 10 51958.51 4871.88 50991.82 52925.20

PerfectInfo 1 10 0 108480.08 2880.56 107908.52 109051.65
EV 1 10 0 105755.80 3586.08 105044.24 106467.36
RP 1 10 0 106836.42 3222.92 106196.93 107475.92

LDRV 1 10 0 104704.46 2770.14 104154.80 105254.11
DLDRV 1 10 0 106577.24 3117.41 105958.68 107195.80

PerfectInfo 1 10 10 86787.27 1733.83 86443.24 87131.30
EV 1 10 10 83325.86 4057.49 82520.77 84130.96
RP 1 10 10 85770.73 1862.47 85401.17 86140.28

LDRV 1 10 10 84304.84 1765.01 83954.62 84655.05
DLDRV 1 10 10 85287.73 1807.97 84928.99 85646.47

Table 8: Profits, left skewed beta distribution, tightness set to 0.8.

91

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 1 0.8 0 75427.65 1423.53 75145.19 75710.10
EV 1 0.8 0 37493.11 11535.35 35204.25 39781.98
RP 1 0.8 0 57743.17 5246.06 56702.24 58784.10

PerfectInfo 1 0.8 10 74076.21 1553.85 73767.89 74384.52
EV 1 0.8 10 38713.77 13287.85 36077.17 41350.37
RP 1 0.8 10 58325.33 5479.39 57238.10 59412.56

PerfectInfo 1 1.3 0 92753.50 3474.82 92064.02 93442.98
EV 1 1.3 0 38755.98 17323.96 35318.53 42193.43
RP 1 1.3 0 63195.24 6211.79 61962.68 64427.79

PerfectInfo 1 1.3 10 74810.66 2916.30 74232.00 75389.32
EV 1 1.3 10 25416.16 15430.00 22354.51 28477.81
RP 1 1.3 10 50406.15 5311.27 49352.28 51460.03

Table 9: EVPI and VSS, left skewed beta distribution, no common components, low
profitability.

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 0.4 0.8 0 149438.09 3702.59 148703.41 150172.76
EV 0.4 0.8 0 114084.66 12347.73 111634.61 116534.72
RP 0.4 0.8 0 122758.29 7999.36 121171.04 124345.54

PerfectInfo 0.4 0.8 10 152975.86 4127.66 152156.84 153794.88
EV 0.4 0.8 10 113159.36 12740.04 110631.46 115687.26
RP 0.4 0.8 10 127788.16 6849.34 126429.11 129147.22

PerfectInfo 0.4 1.3 0 196816.70 7448.00 195338.86 198294.55
EV 0.4 1.3 0 142192.26 18248.39 138571.39 145813.14
RP 0.4 1.3 0 154805.04 11499.13 152523.36 157086.72

PerfectInfo 0.4 1.3 10 172768.17 7874.82 171205.64 174330.71
EV 0.4 1.3 10 123678.97 16921.44 120321.39 127036.55
RP 0.4 1.3 10 136705.23 10705.82 134580.97 138829.50

Table 10: EVPI and VSS, left skewed beta distribution, no common components,
medium profitability.

92

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 1 0.8 0 45489.86 1380.53 45215.94 45763.79
EV 1 0.8 0 9859.95 10293.36 7817.53 11902.38
RP 1 0.8 0 31193.83 2669.04 30664.23 31723.42

PerfectInfo 1 0.8 10 37247.57 1300.94 36989.43 37505.70
EV 1 0.8 10 216.63 12262.96 -2216.61 2649.87
RP 1 0.8 10 24752.19 2287.80 24298.24 25206.14

PerfectInfo 1 1.3 0 56583.60 3600.41 55869.21 57298.00
EV 1 1.3 0 4075.16 13476.80 1401.07 6749.25
RP 1 1.3 0 34216.63 3049.04 33611.63 34821.62

PerfectInfo 1 1.3 10 48934.36 2651.72 48408.21 49460.52
EV 1 1.3 10 6763.54 10518.30 4676.48 8850.59
RP 1 1.3 10 30055.35 2431.70 29572.85 30537.85

Table 11: EVPI and VSS, right skewed beta distribution, no common components,
low profitability.

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 0.4 0.8 0 114456.37 5527.16 113359.66 115553.08
EV 0.4 0.8 0 72586.90 11819.36 70241.68 74932.12
RP 0.4 0.8 0 85530.38 6674.97 84205.92 86854.84

PerfectInfo 0.4 0.8 10 90344.18 3752.27 89599.65 91088.71
EV 0.4 0.8 10 54873.01 9631.02 52962.01 56784.01
RP 0.4 0.8 10 68105.43 5294.47 67054.90 69155.97

PerfectInfo 0.4 1.3 0 129813.94 8633.82 128100.80 131527.08
EV 0.4 1.3 0 71860.84 16882.32 68511.02 75210.66
RP 0.4 1.3 0 90762.72 7885.56 89198.06 92327.39

PerfectInfo 0.4 1.3 10 105724.21 6826.58 104369.67 107078.75
EV 0.4 1.3 10 57595.38 12538.75 55107.42 60083.34
RP 0.4 1.3 10 73981.93 6932.50 72606.38 75357.49

Table 12: EVPI and VSS, right skewed beta distribution, no common components,
medium profitability.

93

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 1 0.8 0 169492.01 12141.99 167082.77 171901.24
EV 1 0.8 0 -158798.74 95016.51 -177652.08 -139945.41
RP 1 0.8 0 34887.07 15495.28 31812.47 37961.67

PerfectInfo 1 0.8 10 184231.50 12361.18 181778.77 186684.23
EV 1 0.8 10 -135944.53 90011.14 -153804.70 -118084.37
RP 1 0.8 10 37116.44 16367.64 33868.75 40364.14

PerfectInfo 1 1.3 0 259362.00 32376.32 252937.84 265786.17
EV 1 1.3 0 -229223.76 129956.19 -255009.89 -203437.63
RP 1 1.3 0 49910.74 21170.97 45709.96 54111.52

PerfectInfo 1 1.3 10 203087.89 23736.88 198377.98 207797.80
EV 1 1.3 10 -161120.18 94163.28 -179804.22 -142436.14
RP 1 1.3 10 42556.54 18380.21 38909.51 46203.57

Table 13: EVPI and VSS, normal distribution, no common components, low pro-
fitability.

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 0.4 0.8 0 577300.84 58510.25 565691.14 588910.54
EV 0.4 0.8 0 110629.54 144266.58 82003.92 139255.16
RP 0.4 0.8 0 240768.05 84628.12 223975.99 257560.11

PerfectInfo 0.4 0.8 10 464189.02 47119.90 454839.41 473538.63
EV 0.4 0.8 10 71705.31 114133.92 49058.66 94351.95
RP 0.4 0.8 10 189231.23 59384.46 177448.07 201014.40

PerfectInfo 0.4 1.3 0 644874.09 84724.24 628062.96 661685.21
EV 0.4 1.3 0 72621.80 146740.36 43505.33 101738.27
RP 0.4 1.3 0 242824.57 76309.69 227683.07 257966.06

PerfectInfo 0.4 1.3 10 464473.84 62072.11 452157.39 476790.29
EV 0.4 1.3 10 22057.40 112263.51 -218.11 44332.92
RP 0.4 1.3 10 168290.72 48736.58 158620.33 177961.12

Table 14: EVPI and VSS, normal distribution, no common components, medium
profitability.

94

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 1 0.8 0 61258.19 2670.82 60728.24 61788.14
EV 1 0.8 0 1619.36 18043.22 -1960.81 5199.52
RP 1 0.8 0 30994.92 3736.08 30253.60 31736.24

PerfectInfo 1 0.8 10 50709.13 2037.14 50304.92 51113.34
EV 1 0.8 10 -1335.78 14495.35 -4211.97 1540.42
RP 1 0.8 10 26914.40 4265.12 26068.10 27760.69

PerfectInfo 1 1.3 0 56839.95 3903.19 56065.48 57614.43
EV 1 1.3 0 -7742.65 16725.99 -11061.45 -4423.85
RP 1 1.3 0 25844.40 2949.71 25259.11 26429.68

PerfectInfo 1 1.3 10 57526.97 4370.78 56659.71 58394.23
EV 1 1.3 10 -10235.33 17766.39 -13760.57 -6710.09
RP 1 1.3 10 26812.68 3289.78 26159.91 27465.44

Table 15: EVPI and VSS, uniform distribution, no common components, low pro-
fitability.

Sol. Perc. low. tight sc Mean Std CI lower CI upper

PerfectInfo 0.4 0.8 0 143574.21 8814.77 141825.17 145323.25
EV 0.4 0.8 0 65036.31 26144.48 59848.68 70223.94
RP 0.4 0.8 0 89831.18 14277.67 86998.18 92664.18

PerfectInfo 0.4 0.8 10 116822.90 6076.20 115617.25 118028.55
EV 0.4 0.8 10 52010.25 18807.98 48278.34 55742.16
RP 0.4 0.8 10 73998.48 10788.05 71857.89 76139.06

PerfectInfo 0.4 1.3 0 176396.72 13375.48 173742.73 179050.70
EV 0.4 1.3 0 84988.93 25849.08 79859.91 90117.95
RP 0.4 1.3 0 109964.17 13892.10 107207.67 112720.66

PerfectInfo 0.4 1.3 10 121177.32 10158.72 119161.61 123193.03
EV 0.4 1.3 10 42506.44 22120.28 38117.29 46895.58
RP 0.4 1.3 10 70173.91 10331.60 68123.90 72223.92

Table 16: EVPI and VSS, uniform distribution, no common components, medium
profitability.

95

	Introduction
	Literature Review and code structure
	ATO
	Optimization methods
	Dynamic Programming
	Multistage Stochastic Programming
	Linear Decision rules

	General code architecture

	Two-stage models
	The basic problem: Expected Value formulation
	Recourse Second Stage version
	Decision Rules models
	Model I: Linear Decision Rules version
	Model II: Deflected Linear Decision Rules version

	A short dive in the code: model classes

	Comparison and results: two-stage
	How to understand the importance of accounting for uncertainty?
	Value of Stochastic Solution
	Expected Value of Perfect Information

	Instance generation and important parameters
	A short dive in the code: two stage instance class

	In sample and Out of sample stability
	Comparison between stable solutions
	A short dive in the code: two stage evaluation class

	Robust models
	Max Min formulation
	Robust version of the recourse model
	Robust version of DLDR model
	Robust results

	Multistage models
	Multistage recourse model
	Multistage Decision Rules models
	Linear Decision Rules
	Deflected Linear Decision Rules

	A short dive in the code: multi-stage models

	Comparison and results: multi-stage
	A short dive in the code: multistage instance generation
	Evaluation of multistage solutions
	An alternative approach for Decision Rules
	Computational times: a brief digression on fairness of comparisons

	A computational trick: two-stage-multi-period model

	Towards the dynamic programming approach
	Comparison between fast methods: continuation value vs DLDR heuristic

	Conclusions and further work
	Appendices
	Tables for two-stage results

