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ABSTRACT

The thesis deals, in the context of Chemical Reaction Networks, with the conditions
under which the existence of a stationary distribution can be demonstrated,
highlighting its connection with the validity of certain balancing conditions.

In this regard, state-of-the-art results and a research study on the existence of new
possible conditions are presented.

In particular, the thesis starts from the unpublished draft "Stationary measures for
stochastic closed loop networks" by Daniele Cappelletti, Badal Joshi and Enrico
Bibbona.

Taking inspiration from it, new balancing conditions on loops of reactions are defined.
These conditions are then used in order to demonstrate the existence of a stationary
measure and examples are brought in order to corroborate this statement.

In particular, using these new conditions, it is possible to re-prove already known
results about the existence of stationary measures for conservative mass-reaction
CRNs. On the other hand, even if some interesting results are achieved, it seems

impossible to obtain stationary measures for CRNs not included in the state-of-art.



Introduction

The model and study of complex natural systems are typical research topics of the
physical and mathematical disciplines. In particular, one of the most recent families
of mathematical models that has been studied is that of stochastic Chemical Reaction
Networks (CRNS5).

These models aim to describe systems whose components interact with each other by
exchanging a certain type of "information". Processes of chemical reactions or
epidemiological spreads are examples in this regard, in which a set of species or
agents interact over time causing mass and energy exchanges in the first case and viral
diseases in the second.

CRNSs represent these possible interactions using graphs and then associate them a
deterministic or stochastic model, in order to describe the evolution of all the species
present in the system and their long run behaviour. In addition, CRNs allow to reveal
the symmetries of the system, transposing them into the so-called balancing
conditions.

CRNss take their foundations in the early 1900 when, after the formulation of the mass
action law, the dynamical properties of reaction networks began to be studied by
many scientists in chemistry and physics. Among these, Rudolf Wegscheider must be
quoted [16] for his definition of detailed balance condition for complex chemical
reactions.

However, it was necessary to wait until 1965 to start hearing about CRNs theory,
introduced by Rutherfor Aris in [2].

Starting from these basis, in 1972, Fritz Horn, Roy Jackson and Marting Feinberg laid
down the first results for deterministic CRNs [12, 11, 7]. In particular they introduced
the concepts of complex balanced equilibrium (as generalization of the detailed
balanced) and deficiency for a network.

The study of stochastic models dates back more recently, to 2010, in [1] by David F.
Anderson, Gheorghe Craciun, and Thomas G. Kurtz, where the authors prove that the
existence of a complex balanced equilibrium for the deterministic system implies that

of a stationary Poisson-like distribution for the stochastic one. Later the necessary



conditions for the converse to hold were illustrated by Daniele Cappelletti and
Carsten Wiuf in [6]. In the same paper, a new stochastic complex balance condition
and its equivalence with the deterministic one, were also proved.

Finally only in the last years the way was paved to new balance conditions such as the

reaction vector and cycle ones, defined by Daniele Cappelletti and Badal Joshi in [4].

The thesis aims to try to extend the knowledge on CRNs by analyzing balance
conditions not yet present in the literature and their implications in terms of stationary
distributions.

Starting from the previously mentioned background, a general introduction is given at
first, describing how CRNs models are structured, what their properties are, and how
their temporal evolution and long run behaviour can be studied. The focus moves then
on the latter point, in particular on stochastic models, trying to understand what
conditions can guarantee the existence of a stationary measure for the system under
consideration.

The state of the art is presented and, in particular, the linkage between the existence of

a stationary measure and the fulfillment of certain balancing conditions is highlighted.

Taking inspiration from the draft of an unpublished research article [5], the thesis
proceeds then with the definition of a new balancing condition, defined on sets of
reaction loops within the network. The properties of this condition are then analyzed,
with particular regard on relation to stationarity and to the already existing balance
conditions. Finally, the thesis re-proves, under a new perspective, known results
regarding the existence of a stationary measure for conservative mass-reaction

Chemical Reaction Networks.



Part I

State of the art
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Chemical Reaction Network
1.1 Definition and General properties

A Chemical Reaction Network is a mathematical model used to describe a
biochemical system such as chemical reactions and epidemiological flaws.

Three sets are necessaries in order to define a Chemical Reaction Network:

e species S It is the set of the components that interact in the system and whose

distribution we wish to model over time.

e complexes C It is the set of the nonnegative linear combinations of species which
appear in the system. It represents how the different species can interact with

each other.

e reactions R It is the set which describes how each complex converts each one in

another.

B+ FE

Figure 1.1

Example of Chemical Reaction Network

Example 1.1.1. If we consider the CRN in Figure 1.1 we could easily identify the 3
sets as:

S ={A,B,C,D,E},C ={A,2B,A+C,D,B+E},R=1{A <k—1 2B,2B <k—2 2, A+ C <ki
D, D <k—4A+C,D <k—SB+E,B+E<k—6A+C}.

Where we have indicated with {k;}; the reaction rate constants.



In a more formal way we can define a Chemical Reaction Network as follows:

Definition 1.1.2 (Chemical Reaction Network). A Chemical Reaction Network is a

triple G = {S,C, R}, where:

e $={51,52,...,5,} is the set of species

.....

stoichiometric coefficient of species s in the complex y.

e R={y— v,y €C,y+#y'}is the set of reactions.

In order to indicate the kth reaction we write:
n n
D ksSs = D VS (1)
s=1 s=1

Now we define two other objects that will be useful later:

Definition 1.1.3 (Reaction vector). For each reaction y — y" € R we define the reaction

vector & as:

&=y -yeZ ©)

Definition 1.1.4 (Stoichiometric subspace). We define the stoichiometric subspace of

G the linear subspace of R" generated by the reaction vectors:
S =span{é;,i=1,...,|R|}. 3)

The sets defined as (c+S)N Rgo, Yc € R" are called instead the stoichiometric

compatibility class of G.

We denote with r the dimension of S and we called it rank.

We introduce now a notation that will be useful later in describing the spaces
identified by the CRN in a more easy way.
If we consider the set of species S, we can define a new space RS as follows: x € RS

is a vector which indicates the concentration of the species in the system and



X5, s € {1,...,|S|} is the concentration of the specific species S s.
In the same way we can define the corresponding space for complexes RC.

Taking inspiration from [15] we can then define {w;};cc, Where:

1 if j=i
(wi)j=
0 if j#1,
this is the standard basis for RC.

So if x € RC, we can write:

X = E XiW;i.

ieC
Finally, if we consider a subset £ C C, we can define the indicator function:

1 ifie L

wr ::Zwi—

ieL 0 ifie C\{L}.
Speaking of subsets of the set S, we can also introduce here the following concepts
taken from [8].

Definition 1.1.5. Two complexes y,y’ € C are said to be linked, if any of the following

conditions is satisfied:
Ly=y
2. y—y ory — ybelongs to R
3. There exists a set of complexes {y1,y2,..., yx} such that:
yeoyene . opey,

where with © &’ we intends that for those complexes condition 2 holds (and we

call it direct link).

If y and y’ are linked we write y ~ y'.

This establishes an equivalence relation that induces a partition of C. The equivalences

6



classes that are created in that way, are called linkage classes of the CRN. We denote

with [ the number of linkage classes in a network.

Definition 1.1.6. We define cut-link of a CRN, a direct link y <y’ such that the

removal of this link, leaves y and y’ unlinked.

Similarly to 1.1.5 we can also define:

Definition 1.1.7. It is said that the complex y € C ultimately reacts to complex y’ € C

if any of the following conditions is satisfied:

1. y=y
2. y—>y eR

3. There is a path of reactions y1,y7, ..., yx such that

= Y1L.Y1 2 Y2 k-1 2 Ve Yk = Y ER.

If y ultimately reacts with y’ we write y = y’.

Lastly we define:

Definition 1.1.8. Two complexes y,y’ € C are strongly linked if bothy = y" and y’ =y
hold. In this case we write y ~ y" and this definition establishes an equivalence relation
that induces another partition of C in equivalence classes called strong-linkage classes.
A strong-linkage class £ is in addition called ferminal if no complex in L reacts to a
complex not in L; that is if ye L and y —» y’ € R then y’ € L. And since L is also
strong-linked,this means that for each path that starts with y — y” € R, it is contained
in a closed directed path. In this case y — y’ is called terminal reaction.

We denote with ¢ the number of terminal strong-linkage classes in a CRN.

Definition 1.1.9. A linkage class (strong linkage class) in a reaction network is called
tree like if every direct link connecting two complex in the class is a cut-link. Moreover

if all classes are tree like, the network is said to be forest like.



A —-B

N B+D —E — F+A = 2F
C
A B B+D<— E — F+A
N/ |
C 2F
Figure 1.2

Two different CRN with same linkage classes

Remark 1.1.10. Now we give an observation which would be very useful to better
understand an important property of CRNs, which we will introduce later. We should
notice indeed that, if we consider the two networks described in Figure 1.2 and the
definition given in 1.1.5, both of them have same linkage classes {A,B,C} and
{B+D,E,F +A,2F}.

Moreover we observe that if &,& € RS then span{&i} = span{é) and
span{aé + Bér, a, B € R} = span{é1,&>}, then it’s easy to see that both networks have
also same stoichiometric subspace.

Thus to compute r = dim(S) of a CRN, is easier to calculate that of a simplified
network in which for each linkage class we chose one complex and we connect to it
each other complex in that class with one link (as the second network in Figure 1.2).
We will call this type of network "star-like".

Now, since the "star-like" network has obviously m — [ reaction vectors, we have

necessarily:

r<m-I,

where m is the number of complexes. The equality holds only when the m — [ reaction

vectors of the "star-like" network are linearly independent.

These considerations naturally lead us to the definition of a characteristic of CRNs,

which will have a main role in our text.



Definition 1.1.11 (Deficiency). We define deficiency of a CRN with m complexes, [
linkage classes and rank s as:

o=m-—I[-r. (@Y

Hence ¢ is a measure of how independent the reaction vectors are, given the

network’s linkage class structure, and ¢ = 0 if these are independent.

Before going ahead in hour study on CRN, we lastly dwell on an other really

important property.

Definition 1.1.12 (Weak reversibility). A Chemical Reaction Network is said to be
weak reversible if y = y’ whenever y’ = y.
If on the other hand we have that y — y’ € R implies y — y € R than we call the CRN

reversible.

1.2 Kinetic

What we would like to do now that we have a model, is to attach it to a dynamic (so
a kinetic model), in order to be able to describe the system evolution over time and to
try to find its long run behaviour.
First of all we should ask ourselves how to represent the state of the system whose

evolution we would like to study. There are two possibilities:

1. x(¢r) gives the concentration of each species at instant ¢ (which leads to the

deterministic model).

2. X(t) gives the number of entities we have for each species at instant ¢ (which is

the description at the base of the stochastic model)

We will analyze both options, but first we need to give some more definitions (see [4]).

Definition 1.2.1 (Kinetic). Let G be a CRN and suppose that to each reaction y —

Yy € R, there is associated a non-negative, continuously differentiable rate function



/ly_>y’ R — RZO'
By kinetics on G we mean that there is a correspondence between the reactions and the

rate functions such:

A:(y—=y eR) — Ay,

We call (G, A) a reaction system.

Definition 1.2.2. Let (G, A) be reaction system and let T C RS. Then we define:

e y—y €Ris said to be active if Ay_,/(x) > 0 for some x. This holds if and only
if supp(y) € supp(x), with supp(y) = {s € {1,...,n}lys # O};

o the active sub network in I is the network determined by the reactions in R that

are active in I'. We refer to it with Gr;

e I'is called active if Gr = G, thatis Vy — y’ € Rdx € I" such that 4,y > 0.

Now we have the basis to analyze the two proposed dynamical system. Notice that
if we do not state otherwise, we will refer for the deterministic one to [8] and [4],

whereas for the stochastic one to [15] and [1].

Remark 1.2.3. Notice that with the introduction of the state space and looking at
Definition 1.1.3, we can give the following interpretation: a reaction vector £ is the

vector that indicates the state transformation that takes place when a reaction occurs.

1.2.1 Deterministic model

Let x = x(¢) € Rg defined as above in the first case. In the deterministic model,

given an initial condition x(0) € R, we have that the time evolution of the system is

expressed by:
dx
I =f(x), )
with
fO= > Ay®6 -y (6)
y—y'eR

10



f is called species-formation-rate function.

Hence, for each species s in the network, its evolution is expressed by the sum, over all
the reactions in the network that involves s, of the rate at which each reaction occurs
times the variation that the reaction causes for species s in the system.

Notice that f(x) € §. That implies that Yz > 0 x(t) € P := (x(0)+S5)N R’;O. So, given
the initial condition, the state of the system remains always in the same stoichiometric
compatibility class.

If the compatibility class £, is non empty, it is called positive.

Definition 1.2.4. c € R" is said to be an equilibrium of the deterministic reaction system

if:
fO= > Ay®6 -y =0. (7)
y—y' eR
If x € RY ), we say that x is a positive equilibrium and we denote it x > 0.

An important type of kinetics is the following one:

Definition 1.2.5 (Mass action kinetic). We define deterministic mass action kinetic the

correspondence Kp : (y = y') = A,-,/, where
Ay—y (x) = ky%y’xy]lxzo, )

where ¥’ =[], xlv !, The pair (G, Kp) is called deterministic mass action system.

1.2.2 Stochastic model

We will study now the stochastic model. The simplest one considers the state X(f) €
ZZ,, as the number of entities/molecules of each species present at instant t and builds
on the reaction network a Continuous Time Markov Chain in which X(¢) represents the
state in t of the chain after all the transitions (in this case the reactions) occurred in

[0,7]. For simplicity suppose a finite number of transitions.

So for example, if the chain is in state X(¢) and in ¢ + dt the reaction y — y” occurs,

we have:

11



xp = (1,1) initial state

B
Chain state space
I move along the reaction
A+B — 2A to the state
xl ES (2,0).
il | . . .
; The propensity with which
i this reaction occurs is given
(0,0) 1 2 A by the rate Ay 5 24
Figure 1.3

Markov chain on a Chemical Reaction Network
X(t+dh) =Xt +y —y.

If we denote with Ry_,/(¢) the number of times that reaction y — y” occurs by time t,

then the state of the system at time t can be written as:

XO=XO)+ ) Ry =),

y—=y'eR
Notice that Ry, (?) is a counting process with the intensity equal to the rate function

Ay (X(2)). So we can write:

Ry—>y’(t) = Yy—>y’ (L /ly—>y’(X(s)) dS),

where Y, is for each reaction and independent unit-rate Poisson process.

After this premise, we can define:

Proposition 1.2.6. The generator for the Continuous Markov chain (X(t)); is the

operator A defined by:

AF = D Aoy (D) (Fa+y =) =f(), ©)

y—oy'eR

where f is any measurable, bounded function defined on the state space.

So, if we suppose that the initial state of our Markov Chain is X(0) = x,, by

generator’s properties we have:
d
d—tExo [f(X(D)] = Ex, [Af (X(®))]. (10)

12



Recalling that, if 71, is the distribution on Z" of X(¢), then

P(X(®) = y| Xo = x0) = m:(y),

and we can re-write the previous expression as:

d
=2 SOmO) = 3 AFOmO). (11)
y y

Taking f(y) = 1,(y) we therefore have that the evolution over time of the CTMC defined
on the CRN can be expressed by:

dr: _

= D T ANy =y )= ) m@Aey (). (12)

y—oy'eR y—=y'eR
Remark 1.2.7. For a more detailed explanation of (9) and (11) see appendix A.
Similarly to before and as consequence of (12)we can define:

Definition 1.2.8. 7 measure on Z" is said to be a stationary measure of the stochastic

reaction system if ; =, ¢, that is:

Z A(X =Y + V) Ayoy (x—y +y) = Z Aoy (x), YxeZ'.  (13)
yoy'ER yoy'eR

We also define supp(n) = min{T C Z" | n(Z"\ T) = O}.
Let now (G, A) be a stochastic reaction system. As well as for the CRN species
space, we can define on the state space Z" a concept similar to that of linkage classes.

Definition 1.2.9 (Accessibility). Given x,x” € Z" states of the CTMC, we say that x’
is accessible from x if either x = x’ or there exists a sequence of states
(x =v,V1,...Vk—1,Vk = X’), such that ¥ (v;,v;41),0 < i < k-1

d an active reaction y —» y’ e Ratv; with y' —y = vy —v;

Definition 1.2.10 (Irreducible component). Let = C Z" be a nonempty set. = is called

irreducible component if Y x € 2, Vv € Z", v is accessible from x if and only if v € E.

13



We have then that all stationary distributions of the CTMC describing the system

can be expressed as:

ﬂ:Za’XiﬂE, Q/EZO,ZQ’E: 1, (14)

which is a convex combination of the wunique stationary distributions
nz such that 7z(E) = 1, for those Z, irreducible components, for which a stationary

distribution exists.

Lastly, we show also in this case two specific types of kinetics.

Definition 1.2.11 (Mass action kinetics). We define Stochastic mass action kinetics the
correspondences Kg : (y = y') — A,y wWhere

x!
T (x-y)!

The pair (G, Ky) is called stochastic mass action system.

Ay (%) = ky Loy,  VxeZ', (15)

Definition 1.2.12 (General kinetics). It is possible to define a more general type of

kinetics inspired to that of mass action one, with rate function in the form of:

n Vsk— 1

Ay ) =k [ | [ ] O5xe= 0, (16)
s=1 j=0

where 6; : Z — Rsq, 6; =0 if x <0.

1.2.3 Quasi-thermostatic and quasi-thermodynamic kinetic systems

In this subsection we present the definition, from [8], of a different type of reaction
systems.

The first type of system we consider is the following one:

Definition 1.2.13 (Quasi-thermostatic kinetic system). Let (G, A) be a reaction system.
And letf : RS — S be the species-formation-rate function defined above. The system
is said to be quasi-thermostatic if there exists a x* € RS such that the set of positive

equilibria is equivalent to the set:
E={xeR%|Inx—Inx"e S*}.

14



Proposition 1.2.14. If (G,A) is a quasi-thermostatic system, then in each

stoichiometric compatibility class there is exactly one equilibrium.

Proof. Let us assume that there exist in one stoichiometric compatibility class two
equilibria: X, X2,

For definition of stoichiometric compatibility class we have that x> — x' € §. Moreover
the system is quasi-thermostatic, and so Inx*> —Inx! € S *.

The following holds:

0=(x*—x",Inx*—Inx'y = Z(x? —xi)(lnx? —Inx).
seS

Because the function /n : Ry — R is strictly increasing, the equality can hold only if
x! = x2 V5 € 8. And this obviously concludes the proof. O

Then we define a second type of system as follows:

Definition 1.2.15 (Quasi-thermodynamic kinetic system). A kinetic system (G, A)
with stoichiometric subspace S and species-formation-rate function f is said to be
quasi-thermodynamic if there exists a x* € R‘f such that the system is

quasi-thermostatic with respect to x* and
((Inx-Inx),f(x)) <0, YxeRS,
with equality holding only if f(x) =0 or if Inx—Inx* € S +.
Proposition 1.2.16. If (G, A) is a quasi-thermodynamic kinetic system, the followings
hold within each stoichiometric compatibility class:
1. there is only one equilibrium
2. the equilibrium is asymptotically stable

3. there is no nontrivial cyclic trajectory along which all species concentrations are

positive

15



Proof. 1. The first is simple to prove because is direct consequence of the fact that

a quasi-thermodynamic system is also quasi-thermostatic

2. For the second statement consider:

h(x) := Z [xs(Inxg —Inx; — 1)+ x5];
SES

it’s obvious to see that A(x™) = 0.
Moreover, thanks to the concavity property of the logarithmic function it holds
that:

1
k k
Inxg—Inx; > x—(xs - X)s
s

with equality holding if and only if x; = x7.
So we have h(x) > 0, ¥V x # x*.

Lastly:
dith(x(t)) = (Vh(x(1)), x(?)) = (Inx—Inx"),f(x)) <0, Vxe(x"+S) HR‘E, x#x"

Therefore for each stoichiometric compatibility class S and for the equilibrium
x* contained in it, we have that h(x) restricted to S is a strict Lyapunov function

for x* on S. So x* is asymptotically stable.

3. To show the last sentence, we suppose that there exists a solution x : [0,7T] — Rf

with x(¥) = x(0). Then we can write:

T

d T
h(JC(T))—h(?C(O))=‘[0 d—th(x(l))df:f(; (Vh(x(1)),f(x))dt.

Because the solution is non constant, using the observation for 42 made at previous
point, we can tell that the integrand is negative. So it holds h(x(T)) < h(x(0)),

which is clearly a contradiction to the initial hypothesis.

16



2

Balancing

In this chapter we will talk about an important class of properties related to
Chemical Reaction Networks and in particular to the graph structure underlying the

system and the symmetry that this shows.

We can define a balancing concept both for deterministic and stochastic reaction
systems, so we will discuss in detail each case separately.
Unless otherwise specified, the results shown in this section have to be considered

taken from [4].

2.1 Balancing for deterministic kinetic systems

For the deterministic case the graph structure underlying the system network could

lead to three different types of balancing:

Definition 2.1.1. Let (G, A) be a deterministic reaction system and let ¢ € R" be a state

of the network. Suppose as well that if y — y” # R we can define A,_,, = 0. Then:

1. cis called reaction balanced if Y y, y’ € C we have:
/ly—>y’(c) = /ly’—>y(c) (17)
2. cis called complex balanced if Vy € C:

DAy (@ =D A0 (18)

yeC y'eC

3. c s called reaction vector balanced if V¥ & € RS:

D Ay@= D Ay(© (19)

Yoy ERlY —y=¢& Yoy ERlY —y=-§

17



4. ¢ is called cycle balanced if for every sequence of distinct complexes

O'1,¥2,...,y; €C, j = 3) we have:

J J
rl’lyz‘—mn(c) = l_l/l}’iﬂ_))’i’ with yji1 = y1.
i:l l=1

,11_

X7

Figure 2.1
Example 2.1.2

Example 2.1.2. Consider the CRN shown in Figure 2.1. If ¢ € RS, then:

1. cis reaction balanced if:
A14(c) = 41-(0)

A2+(c) = A2-(¢)
A34(c) = A3-(¢)
2. cis complex balanced if:
A14(0) + 3-(c) = A1-(¢) + A3+ (¢)
A2+ (¢) + A3-(c) = A2-(c) + A3+(¢)
A1+(c) + A2-(c) = A1-(c) + A24(0)
3. cis reaction vector balanced if:
A24(c) = A2-(¢)

A1+(c) + A34+(c) = A1-(c) + A3-(¢)

4. cis cycle balanced if:

A14+(0)24+()A31(c) = A1-(c)A2—(c)A3-(c)

18

(20)



Definition 2.1.3. Let (G, A) be a deterministic reaction system.

Suppose that the system admits at least one equilibrium and that every active
equilibrium is reaction balanced (or complex balanced or reaction vector balanced or
cycle balanced, respectively). Then (G, A) is called reaction balanced (or complex

balanced or reaction vector balanced or cycle balanced, respectively).

Now we express an important consequence provided by 2.1.1.

Theorem 2.1.4. Let (G, A) be a deterministic reaction system and let ¢ € RS. If one of

the following holds:

e c is a reaction balanced state for the system
e cis a complex balanced state for the system

e c is a reaction vector balanced state for the system,
then c is an equilibrium of (G,\) .

Proof. For simplicity we will prove only that a reaction vector balanced state is an
equilibrium. The proof of the other cases is based on reasoning very similar to that
proposed.

Let ¢ € RS be a reaction vector balanced state. So it holds:
YoV ERlY —y=¢£ Yoy ERlY —y=—¢
If we sum over all £ € RS and multiply each terms by & we have:

O:ZL > Ayﬁy/(c)]g—Z[ > ﬂyﬁy/(c)]§=

£eRS \y—oy eRly' —y=¢ EeRS \y—y eRly’ —y=—¢

= Z Z /ly—)y’ (C) é: + Z ﬂy—)y' (C) (_é‘:)] =
£eRS Ly—y eRly’ —y=¢ Y=Y eRlY —y=—¢
Z /1y—>y’(y, =¥,
y—oY'eR
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where the last equality holds if remembering the definition of £ =y —y.

Notice that this is exactly the expression of f(c¢) = 0 when c is an equilibrium. O
The following express the existing relations between the different types of
balancing.

Theorem 2.1.5. Let (G, A) be a deterministic reaction system and let c € RS. Then:

1. ¢ reaction balanced = ¢ complex balanced, reaction vector balanced, cycle

balanced

2. ¢ complex balanced and cycle balanced = c reaction balanced

Now we report two results (taken from [8]) of fundamental importance for what

will come later.

Theorem 2.1.6. Consider a deterministic mass action system.
If for a k € RR (where k refers to a set of reaction rate constanst) the system (G,Kp)

admits a positive reaction balanced equilibrium, then the following hold true:

1. the mass action system is quasi-thermodynamic

2. reaction balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class

Proof. 1. Suppose that there exists a positive reaction balanced equilibrium c*.
First of all remember, from(6) and (8) that:
fler= D oy 67 -)).
yoy'eR
Now, suppose that the CRN is reversible. We can then define the set R~ C R as
the subset containing half of the reactions in R such thatif y » y e R~ =

y o ygER”.
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We can accordingly write:

FO= D [kyoye —ky o] 7 =3 =

y_)yleR—)
~ cy c Y ,
Z Ky—y [(_*) - (—*) ] O =),
c c
y_)yleﬂﬁ
where lAcy_w/ =kyyc¥ = ky/%ycy', considering that c* is reaction balanced.
Define now:

u(c) :=Inc—Inc".

In this case we can write:
f(C) — Z ]%y_)y/ [e@,ﬂ(C» _ e()”,#(c»] (y’ _y),
y—y eR™

and

(nc=Inc" fle)y = > hyoy DD 4| [y, u(e)) = ¢y, u(c))]
y—=y' eR™

Since the exponential function is strictly monotonically increasing, we have that:
((Inc—1Inc*,f(c)y <0, VceRS,

with the equality holding if and only if ((y’ —y),u(c)) =0, that is when Inc—1Inc* €
S+. Moreover, if ¢ is an equilibrium (meaning that f(c) = 0), necessarily (1) must
be zero and so Inc —Inc* € S+ for what we said before. On the other hand, if
c is such that Inc —Inc* € S+ we have (y,u(c)) = ¢/, u(c)) ¥Yy—y € R”. By
placing this equality in (1) we have that c is inevitably an equilibrium.

Hence the system is quasi-thermostatic and (1) holds: by definition the system is

quasi-thermodynamic

. Suppose that ¢ is a generic equilibrium for the system. Because of point 1. we
have that Inc —Inc* € S+ and so {y,u(c)) = (y/,u(c)) ¥ y—y €R”. From this

it follows that:

0= /Acy_w' [ V) _ e<y’,u(6)>] = kyyc¥ — ky,_)ycy’,

which is exactly the definition of a reaction balanced state.
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Theorem 2.1.7. Consider a deterministic mass action system.
If the system (G,Kp) admits a positive complex balanced equilibrium, then the

followings hold true:

1. the mass action system is quasi-thermodynamic

2. complex balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class

Proof. 1. Consider as in the previous case the function defined in (6) and define the
two subsets R_,,,R,, € R as the set of reaction entering and exiting the
complex y respectively. Suppose in addition that there exists a complex balanced
equilibrium c*.

‘We can then write:

flo)= Z Z ky’—>y(c)y/ - Z ky—>y’ )|y 21

yeC [R5, Rys

Now consider as before u(c) :=Inc—1Inc*, defined ¥V c € R‘f . We have:
WEFEY = Y ks =), (0)) =
yoy'eR

S ko (€Y O (G @) — (),

y—oy'eR
which for the exponential property e*(x’ —x) < ¥ —¢*, is:

WOSE) S Y Ky (€Y (0 HD — gme) =
y—y'eR

D | Dk € = Y o (Y |4 =0,

YeC [R-y Ry—
where the last equality holds because c¢* is complex balanced.
Notice also that the inequality becomes an equality if and only if (y’,u(c)) =
(y,u(c)) for every y — y’ € R, which is exactly when u(c) € S+.

Now to conclude the proof of the first point we must show that the set of positive
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equilibria is of the form express by (1.2.13).
We first notice that if f(c) = 0 then necessarily u(c) = Inc —Inc* € S*. Consider

on the other hand c € R‘f | Inc—Inc* € S+. Using (21) we can write:

f©=), [Z Ky oy (€7 HD = ) kyay«c*)ye@’ﬂ“”ly -

C R—W Ry—)
Z e(y,p(c)) Z ky’—>y(c*)y — Z ky—>y’ (c*)y] y=0,
yEC Ray R,V‘)

where the last equality holds because u(c) € S+ = (' —y,u(c)y=0V¥y' | y—>y €

Rory — yeR. Socis an equilibrium.

2. Suppose that & € RS+ is an other equilibrium different from ¢*. Then for what we
stated before we have that (y/.y,u(¢))=0Vy,y | y—>y eRory - yeR. Sowe
can write:

Z k))'—w(é)y’ - Z ky—y @y =
Ry

Ry

Z ky —y(c”) e — Z ky—y (c*) VO =
ﬂﬂy R»H

e(y,,u(ﬁ)) Z ky’ey(c*)y/ - Z ky—)y’ (C*)y = O,

Ry Ryms
where the last it is true because we have initially supposed ¢* to be complex

balanced. So even ¢ satisfies the complex balance condition.

O

Remark 2.1.8. Notice that no theorem such as the ones stated before holds for an
equilibrium which is reaction vector balanced. Indeed if we consider the reaction
network:

0SA 24534,

we could see that the system admits for kg4 =6, ka—p = 11, koa—34 =6, k3a—24 =1
three distinct positive reaction vector balanced equilibria ¢ = 1, ¢ = 2, ¢ = 3 within the
same positive stoichiometric compatibility class. So the system is neither

quasi-thermostatic nor consequently quasi-thermodynamic.
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2.2

Balancing for stochastic Kkinetic systems

Definition 2.2.1. Let (G, A) be a stochastic reaction system.

Suppose that 7 is a measure on Z" and that we can take A,y = 0 if

y —y" ¢ R. Then we can define the following:

n is called reaction balanced measure it Vy,y € C, x € Z"
ﬂ(x)/ly—w’(x) = 7T(x+y/ _y)/ly’—>y(x+yl =) (22)

n is called complex balanced measure if Vy € C, x € Z"
7(x) Y Aoy () = D w4y =3y oy (x+y - ) (23)
yeC y'eC
n is called reaction vector balanced measure if V&, x € Z"
) > Aoy@=ak+d D Aoyx+d  (24)
Yoy ERly —y=¢£ YoV ERY —y==&

m is said to be generalized balanced [9] if there exists a set of tuples of subsets of
R, {(Li, Ri)iea}, with
U. Li=| ) Ri=R
i€A i€A

such that Vi€ A and ¥V x € Z" it holds:

Do bty =)Aoy (xty=y) =a(x) D Aoy, (29)

yoV'EL; YoV ER;

Notice that this definition of balancing is a generalization of the previous three

defined above.

n is called cycle balanced measure if ¥ x € Z" and for every sequence of distinct

complexes (y1,y2,...,y;) €C, j = 3, it holds

J J
[ [7C+30mmi 430 = | [ 7G4y o+ yie) (26)
i=1 i=1

Definition 2.2.2. Let (G, A) be a stochastic reaction system. If the system has at least

one stationary distribution within an active irreducible component and every stationary
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distribution within an active irreducible component is reaction balanced (or complex
balanced, or reaction vector balanced, or cycle balanced, respectively). Then we say
that (G, A) is a reaction balanced (or complex balanced, or reaction vector balanced, or

cycle balanced, respectively) reaction system.

Just as in the deterministic case, it is also easy to prove that the followings hold:

Theorem 2.2.3. Let (G, A) be a stochastic reaction system. Suppose that t is a measure

for the system. If one of the following holds:

e 1 is a reaction balanced measure

e 1 is a complex balanced measure

e 1 is a reaction vector balanced measure,

then 1 is a stationary measure of (G, \).

We express then the relations existing between different types of stochastic

balancing.

Theorem 2.2.4. Let (G, A) be a stochastic reaction system. The followings hold:

e 1 reaction balanced measure = 1 reaction vector balanced, complex balanced,

cycle balanced measure

e 1 complex balanced and cycle balanced measure — n reaction balanced

measure.

The other possible implications do not hold.

The theorem that now we will present below is a fundamental connection between
the stochastic and deterministic modeling of a Chemical Reaction Network, and in

particular it defines a connection between the existence of a complex balanced
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equilibrium and of a corresponding complex balanced stationary measure in the

reaction system.

Theorem 2.2.5. Let G be a Chemical Reaction Network and let k € RR be a choice of
rate constant for the mass-action system. Suppose that the system, which such a choice
of rates, is complex balanced and so admits a complex balanced equilibrium ¢ € R .

Then the stochastically model system with rate functions defined as in (15), admits a

complex balanced stationary distribution which has the following Poisson form:

nooxg

=] | is e, xeZl, 27)
s .

s=1

Moreover, if ZZ ; is irreducible, then the one above is the unique stationary distribution

of the system, whereas if not we can express r as in (14) with:

cf -
M=11,_ 1% XYEE

m=(x) = (28)
0, xX¢=,

where E is a irreducible component of the system, and M= a normalization constant.

Proof. (by [15]) The measure defined in (27) is a distribution by definition ()}, w(x) =
1). then we have to show that a such defined r satisfies the stationary conditions in
(13) only if ¢ is a complex balanced equilibrium for the system.

So, suppose that (13) holds, we write (making easy simplifications):

D ke Gyt = 25 ke ot

y—oy'eR yoy'eR

Z Z krz—>y’(x+n)!]l{x2n} = Z Z ky—yc™ ™ (xin)]l{xzr;}-

neCy—y eRly=n neCy—y eRly’=n

So for each x € Z" and for each fixed n € C, if we multiply by ¢"(x —n)! it must hold:

y—y eRly=n y—y eRly=n Y=Y eRlY'=n

which is the complex balanced equation for ¢ written for a deterministic mass action

system with rate function given by (8). O
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Remark 2.2.6. It should be noticed that Theorem 2.2.5, when Z" is not irreducible, it
doesn’t require for the equilibrium c¢ used for the construction of the different
distribution 7=z to be contained within the stoichiometric compatibility class
associated with Z. On the contrary the Theorem establishes that ¢ can be used to
construct a product-form stationary distribution for every closed, irreducible
component of the network and viceversa that for a given irreducible component = any
positive equilibrium of the system can be used to construct r=.

The validity of this statement seems to go against the uniqueness of the stationary

distribution. However [1] proves this is not true.

Let Z be a closed irreducible set associated with the stoichiometric compatibility class

(r+S)NZL,, and let ¢y, c2 € RY ) be two complex balanced equilibria of the system.

Lastly let x € E.

As a consequence of the theorem we can construct two distributions:

X

C.
7r,~(x) = M,'—l, i= 1,2.
x!
So, for each x e E C y+ S5, we have:

(%) _ M ¢ _ %e(x,(lncl—lncz» _ %e@,(lnq—mcz)) _ %i
m(x) M C% M, M M> C;’

where the third equality holds from point 1 in 2.1.7.

In the end we can write:
(Ml erE %)
b= e
M3} vez 3
, 29)
Qv o (
M (#2ee3) i
M 3 ’
2 (erE %) ﬂz(X)

Then the stationary distribution is independent from c.

Remark 2.2.7. 1t can be proved (see [1]) that there exists an equivalent theorem as 2.2.5
when we consider a stochastic model of CRNs. defined with rate function as in (16).

In this case the stationary distribution take the form:

n Xs

C
M5 xez,. 30
i HH;;IQSU) T GO

s=1
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On completion of this chapter, we present below further results related to the
interconnection between the balancing properties in the deterministic and stochastic

mass action model of a CRN.

Theorem 2.2.8. Let (G,Kp) be a deterministic mass action system and let (G,Ks) be

the corresponding stochastic mass action system. The followings hold:

e (G,Kp) is reaction balanced if and only if (G, Ks) is reaction balanced.
e (G,Kp) is complex balanced if and only if (G,Ks) is complex balanced.
e (G,Kp) is cycle balanced if and only if (G,Ks) is cycle balanced.

e if (G,Kp) is reaction balanced then (G,Ks) is reaction vector balanced and the

converse holds if the function

y=y — Y-y

is a one-to-one correspondence between the reactions in R and their reaction

vectors.

e if (G,Kys) is reaction vector balanced and complex balanced, then (G,Kp) is

reaction balanced.
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3

Deficiency Theorem

In this chapter we will state and in some cases prove three main results about the
existence of a stationary distribution for a Chemical Reaction Network under specific
conditions of the network graph. In particular we aim to highlight the logic path that
leads to the definition of the necessary conditions for the existence of a stationary
distribution which starts from the properties of a deterministic reaction network, goes
through the concept of balancing and then gets to the properties of stochastic reaction
networks discussed in the previous chapters. The logical thread that we will follow
will be inspired by the one adopted in [8], [15] and [4]. It is therefore recommended

to refer to it for any statement that will be presented without proof.

3.1 Deficiency zero Theorem for weak-reversible networks

Theorem 3.1.1. Let G = {S,C, R} be a Chemical Reaction Network modelled both
deterministically and stochastically with a mass-action kinetic. If the network is
weak-reversible and has deficiency zero, then for any choice of rate constants {k;};
there exists in each irreducible set 2, associated to a stoichiometric compatibility

class, a stationary distribution given by the Poisson product form:

oS
S n (A =
M=[1;, e X€EE

€1y

n=(x) =

0, x¢ZE.

The theorem is extremely important because it guarantees only by the properties of
the graph under the CRN, not only the existence of a stationary distribution, but it also

gives the form in which such distribution occurs.

We divide the proof into 3 logical steps:

1. Complex balanced equilibria
2. Existence of an equilibrium for the deterministic mass-action system
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3. Existence of a Poisson product stationary distribution for the stochastic

mass-action system

3.1.1 Complex balanced equilibria

First of all suppose that there exists at least an equilibrium for the deterministic
mass action system. We should ask ourselves the following questions: does this
equilibrium have any properties? If this is the case does any other equilibrium of the
system have the same property? What follows from this?

We will try to answer in this section.

In order to start we introduce the followings

Definition 3.1.2. We define Stoichiometric map for a CRN G, the linear transformation
Y : R® — RS such that:

Ywy, =y, VyecC, (32)

where {w,}, are the standard basis for RC as defined in 1.1.

Using this mapping we could rewrite the species-formation-rate function defined in

(6) as:

=Y Y Ay(@(wy - wy). (33)
y—y'R
Definition 3.1.3 (Complex-formation-rate function). We define

complex-formation-rate function g : RS —s RC for a CRN @, the function:

g0)= > Ay(O)wy —wy). (34)

y—oy'R

Notice that if we rewrite g in the form:
8= Y| > Ay = ) Ay (0| wy,
yeC [R—y Ry—

it is obvious to see that if g(c*) = 0, for a ¢* € RS, then a complex balancing occurs at

k

C .
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Note also that the function g takes values in the span of the set:
AL ={wy —wyeRC |y —y eR). (35)
Since y — y' € R implies that y,y” are linked, it follows that if we define:
A= {wy —wy €RE |y ~y'} (36)

we have

span(A=) C span(A). (37)

Moreover the following can be proved:

Lemma 3.1.4. For a CRN G with n complexes and [ linkage classes it holds that
span(A-) = span(A), (38)
and

dim(span(A=)) = dim(span(A)) =n—1. 39)

We now return to the main hypothesis, that is, we assume that there exists for the

CRN an equilibrium ¢*. Then it must hold:
f(c)=Yg(c") =0,

that is g(c*) € ker(Y).

Recalling from what said before then we must have:
g(c™) € ker(Y)N span(A).

Proposition 3.1.5. If G is a CRN with stoichiometric map Y, deficiency ¢ and A defined
as in (36), then:
6 =dim[ker(Y) N span(A)]. (40)

Proof. Let Y span(A) — RS be the restriction of Y to span(A). By standard
geometry we have:
dim(span(A)) = dim(ker(Y)) + dim(Im(Y)).
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Moreover notice that:

o V(wy —wy) =y —y, sodim(Im(¥)) = dim(S) =r.

o ker(Y) =ker(Y)N span(A).

By 3.1.4 and 1.1.11 we have:

dim|ker(Y)Nspan(A)|=n—1-r=4.

It follows then that if G has zero deficiency, dim[ker(Y)N span(A)] = 0 and so,
necessarily, g(c¢*) = 0.

We can then state:

Theorem 3.1.6. Complex balancing occurs at every equilibrium of a kinetic system in

which the underlying reaction network has a deficiency of zero.

3.1.2 Existence of an equilibrium for the deterministic mass-action system

In 3.1.1 we showed that if there exists an equilibrium ¢* in a CRN with deficiency
zero, then complex balancing occurs at that equilibrium. However we have not shown

that such an equilibrium exists. This will be the objective of this section.

Let (G,Kp) be a deterministic mass-action network. We recall that for such a system,

the rate function takes the form:
In this case we have that the complex-formation-rate function takes the form:

g(c) = Z ky_)y/cy((l)y’ — wy). (41)
yoy'eR

Let define the followings linear transformations:
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e A;: RE€ — RE€ such that

Apx = Z ky sy xy(wy — wy), 42)
y—oy eR

where x, is the y component of x.

e ¥: RS — RY such that

¥e)= ) Cwy. (43)

yeC
With these two new mappings we could rewrite the species-formation-rate and

the complex-formation-rate functions as follows:

f(e) =Y A¥(c),
(44)
g(c) = A (o).

Then, if we are studying the existence of an equilibrium for the system, we must ask
ourselves for which ¢ € R‘f it holds W(c) € ker(Y Ay).

Notice that if ¢ € RS then ¥(c) € R, so we are interested in the study of
ker(Y Ay) NRS.

We should also observe that if W(c) € ker(Ax) C ker(Y Ay) then g(c) = 0 and complex
balancing occurs at ¢, which is an interesting case for our study. However in general
for each equilibrium ¢ does not hold ¢ € ker(A;). The following statement comes

fortunately on our aid.

Lemma 3.1.7. If a deterministic mass-action network (G, Kp) has deficiency zero, then
for any k € RR it holds
ker(Y Ay) = ker(Ay). 45)

Then under the hypothesis of deficiency zero an equilibrium exists if and only if

Y(c) € ker(Ay).

Therefore to conclude we should study the set ker(Ax) N RZS and ask ourselves when
such set contains at least one point.

The answer is given by the following statement, proved in [8].
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Corollary 3.1.8. Let (G,Kp) be a deterministic mass-action network. and let k € Rf.

Then ker(Ar)N Rf is nonempty if and only if the network is weak-reversible.

Then by putting together 3.1.8 and 3.1.7 we can state the following:

Proposition 3.1.9. Let (G,Kp) be a deterministic mass-action network with
deficiency zero. Then there exists a positive equilibrium c* if and only if the network is

weak-reversible.

3.1.3 Existence of a Poisson product stationary distribution for the stochastic

mass-action system

In 3.1.2 we proved that if a deterministic mass action system (G,Kp) is
weak-reversible and has deficiency zero, then there exists at least a positive
equilibrium ¢*. Moreover in 3.1.1 we proved that such equilibrium is complex
balanced.

At this point, recalling 2.1.7 we can state that:

e within each stoichiometric compatibility class there is only one equilibrium

which is asymptotically stable;

e complex balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class,

then by definition 2.1.3 the system is complex balanced.

Hence the proof simply ends applying Theorem 2.2.5.

3.2 Deficiency zero Theorem for reversible Forest-like networks

Theorem 3.2.1. Let G be a reversible forest-like deficiency zero reaction network.

Then for any assignment of rate constants k € RZS the resulting stochastic mass-action
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system admits in each irreducible set E, associated to a stoichiometric compatibility

class, a stationary distribution given by the Poisson product form:

s _
~TI1" s (=
M=1T5_, T XEE

m=(x) = (46)

0, x ¢ =.

Proof. Noting the stronger reversibility hypothesis of the network, we concentrate this
proof not on complex balancing as before but on reaction balancing instead. We write
then the species-formation-rate function as follows:
f@r= D0 [hoy@© =2y (0] 67 ). (47)
y—oy'eR
Clearly as stated in 2.1.4 if ¢* € RS is a state at which reaction balancing occurs, then
c* is an equilibrium. The converse is not necessarily true. However it’s easy to see that

in the special case in which the set of reaction vectors
O -yeR¥ |y -y eR7) (48)

is independent, then reaction balancing must occur at every equilibrium.
Since by Definition 1.1.4 the set (48) is a set of generators for the stoichiometric
subspace, it will be independent precisely when the number of vectors in (48) is equal

to dim(S) =r.
Consider now the case in which the network is forest like. By a standard result in
graph theory we have that for a forest:

e=v+l,

where e is the number of edges, v is the number of vertices and [ is the number of

connected components. It follows that:
r=m-—I,

where r is the rank of the network, m is the number of complexes and / the number of
linkage classes.

Then, recalling the definition of deficiency in 1.1.11 the following holds:
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Theorem 3.2.2. Reaction balancing obtains at every equilibrium of a kinetic system

in which the underlying reaction network is forest-like and has deficiency zero.

Now we associate the system with a deterministic mass-action kinetics. The

following proposition holds:

Proposition 3.2.3. Let G be a reversible forest-like deficiency zero reaction network.

Then for any choice of k € Rf, there exists a detailed balanced positive equilibrium.

Proof. We’d like to prove the existence of ¢* € RS such that:
ky—>y’(c*)y = ky’—)y(C*)y,’ Yy— yl ER”,

which is equivalent to prove the existence of a vector Inc¢ € RS that satisfies:

’ * ky_’y' ’ —
(" =y)Inc") =In , Yy—-y eR™.
ky’—>y

Because the network is forest-like and has deficiency zero, the set (48) is independent.
Then it is a standard result of linear algebra that, in a vector space with scalar product,
the set of equations @;-x =b;, i=1,...,w admits a solution if {ay, ..,a,} is independent
and {by,...,b,} 1s a set of scalars.

Then it is enough to take ¢* = exp{Inc*}. O

Using the results given by 3.2.3 and recalling Theorem 2.1.6 we just proved that for
any choice of rate constants k € Rf, if a deterministic mass action system (G, Kp) is

forest-like and has deficiency zero, then:

e within each stoichiometric compatibility class there is only one equilibrium

which is asymptotically stable;

e reaction balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class,

then by definition 2.1.3 the system is reaction balanced. Moreover, recalling the
relations stated in 2.1.5, the system is also complex balanced.

Hence the proof simply ends applying Theorem 2.2.5. O
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3.3 Deficiency One Theorem for weak-reversible networks

Theorem 3.3.1 (Deficiency One Theorem). Let G = {S,C, R} be a Chemical Reaction
Network modelled both deterministically and stochastically with a mass-action
kinetics. Suppose that the network is weak-reversible and it has [ linkage classes,
each containing one terminal strong-linkage class.

If the following conditions between the deficiency of the network (5) and the

deficiencies of the individual linkage classes (59, 8 = 1,...,1) hold:
1. 6p<1, 0=1,..,1
2. % 60=0
then for any choice of rate constants {k;}; there exists in each irreducible set E,

associated to a stoichiometric compatibility class, a stationary distribution given by

the Poisson product form:

s _
— n s —
M=11;_, T X€E

0, x ¢ =,
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Part 11
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4

Loops on a Chemical Reaction Network

In this part of the thesis we aim to explore new aspects concerning Chemical
Reaction Networks. In particular we will start our dissertation displaying the contents
and the results of an unpublished article draft [5], and then we will try to extend this

results.

The main innovation brought by the article consists in defining a new notion of
balance, defined on loops which could be generated moving from one state to another

along reactions. We proceed giving a formal definition of a loop.

4.1 Loop and sets of loops

Definition 4.1.1 (Weighted reaction vector loop). Let (G, A) be a stochastic reaction
network and let Y C Z’;O be a closed set.

We define weighted reaction vector loop for S a finite sequence:
y =& p))iy » (49)

such that the following hold:

1. ey —yly—y eR}, Viand:

2. pi: T —> Ry Viand:

P > Aoy Yxel; (50)
yoy ERY —y=§;
3. V1<i<n,xeY it must hold that p;(x) # O if and only if p;;1(x+&;) # 0, with

Pn+1 = P1.
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We can observe that Condition 1. is the simply statement that y is a loop and so the
changes caused by the reactions in the system must be zero when we go through the
whole loop.

Condition 2. states that we are assigning at each reaction vector in the loop a weight
pi (which more or less denote the propensity with which that state change will occur
moving along the loop) but, more important, it states that this weight does not always
coincide but it could be smaller than the sum of the rates of all reactions whose reaction

vector is &;. The reasons behind this can be explained by the following example.

k1 ka2 k3 kq
W= A2A = A+B & 2B B & ¥/
E_q ko kg k4
Figure 4.1

Example 4.1.2

Example 4.1.2. Consider the Chemical Reaction Network described in Figure 4.1 with
set of species S = {A, B}.

First of all if we consider an initial state x = (a, b) it is easy to see that we can define on
the network a loop, starting in x, like the one in Figure 4.2 (where on the arrows there
are the rates of each reaction). So there exists at least one y which could be defined on

the network.

(a,b+1)

kola +1)a + kz(a+1)b
ky(b+1) C

0 _ k_sa(b+ 1)+ k_3(b+1)b
V—q

(a,b) Fy . (a+1,b)
ko1(a+1)

Figure 4.2
Loop Example

Then, due to the presence of reactions ) & A and B & (), two possible types of loops
can be defined on S as shown in Figure 4.3. This implies that if we chose as initial
state the one indicated by the black dot, we could move along the green reaction which

belongs both to the first and second type loop. Defining p; as in (67) therefore allows to

40



describe this phenomenon, assigning a propensity both of moving along green reaction

on Type 1 loop and on Type 2.

v

The green reaction which can occur i
i from the black point belongs either to !
' Type 1 or Type 2 loop E

Figure 4.3

Example of reactions belonging to more loops

Last but not least, Condition 3. states that all the propensities p; of a loop are not
zero only if the loop can be entirely covered starting from state x. Here follows an

example that shows how this does not always happen.

Example 4.1.3. Consider the CRN in Figure 4.4 and consider as possible reaction

vector loop the following:

-1 1 0
y=(E&E =|11[.p1):E=|0]|.p2&=|-1]|.p3)]
0 -1 1

which in the Figure is referred as Type 2 loop.

K1 Ry

A B A+ B 2B
c B+C
Figure 4.4

Example 4.1.3 (1)
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First of all it is obvious to notice that in such network the mass is preserved. So
if we define x4(7), xp(t), xc(c) as the number of molecules of each species at time t, it
must hold x4(¢) + xp(t) + xc(t) = N, V t > 0 with x4(0) + xp(0) + xc(0) = N. So the space

of states takes a simplex form, as shown in Figure 4.5.

(0,0,N)

. / A — BA+B—2B
Species:(A,B,C) /
/ B — C,2B—>B+C

» C — AB+C— A+B

[ ] Initial state x

D Loop Type 1
/ 7
C Loop Type 2
x' 4
(N,0,0) (0,N,0)

Figure 4.5
Example 4.1.3 (2)

Looking at this representation, we can say that y can not be considered a loop
according to 4.1.1 because it does not satisfy Condition 3. Indeed if we set each p;
as a proportion of the sum of corresponding rates >, , |/, 4y (x) and we
consider vy starting from the state X = (N, 0,0) (identified by the red cross in Figure 4.5),
the following hold:

e From this initial state the loop can start but it cannot be fully covered

e The corresponding weights satisfy:

- p1(%) # 0 because X,y _y—g Adysy (£) #0

- pa(x+ &) = p3(X+ &1+ &) = 0 because the corresponding reactions are not

active in these states.

So Condition 3. does not hold.
It is also just as easy to verify that on the contrary the Type 1 loop showed in Figure 4.5

satisfies all the conditions stated in Definition 4.1.1.
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4.2 Measures on a set of loops

It makes more sense to define not only one but a set of loops on a network.

Definition 4.2.1 (Complete set of reaction vector loops). Let (G,A) be a stochastic
reaction network and let Y C ZS ) be a closed set. We define complete set of reaction
vector loops for S on Y the finite set I' = {y;}"_ | of weighted reaction vector loops such

n
J=

that:
vi=(&p)), .

and foreach é e {y' —y |y — y’ € R} it holds:

m nj
>3 plw= > Ay, Vxe. (51)
J=lisngl=¢ y=y ERlY —y=¢

Inspired by what was discussed in Chapter 2, we can also define:

Definition 4.2.2 (I" balancing). Let (G,A) be a stochastic reaction network and let
T C Z7, be a closed set. Let moreover I' be a complete set of reaction vector loops on
T and let u be a measure with supp(u) = T.

We say that u is I'-balanced if:

pOpl(x) = p(x+EHpl (x+€),  VxeY, 1<j<ml<i<n;,  (52)
where p!_ (x+&)=0ifx+& ¢ 7.

Proposition 4.2.3. If u is I'-balanced on Y, then u is a stationary measure for the

system.

Proposition 4.2.4. Let (G,A) be a stochastic reaction network and let (' C Z’;O be a
closed set. Let moreover I be a complete set of reaction vector loops on " and let u be
a I'-balanced measure on Y. Let T = {y;.} j be a complete set of reaction vector loops

such that:
0y =€), = (€D
(P, P50, Pl DY = U P, (€0, DD, D PAD,

with o cyclic permutation. Then u is also I''-balanced.
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Proof. Let y | ((g—“’f , p’f )) be a loop in I'” defined as before. We want to write the
balancing conditions for yj, .

From 4.2.4 we know that it exists for sure a y » such that the reaction vectors and the
weights in 7}1 are a cyclic permutation of those in y 2. Then for each (£} ' , p;j 1) it will
exist a i* such that & Jh= fijf and p; Jh = plj2 . Moreover, being ¥’ a cyclic permutation it
will hold ‘f;+1jl = §£*+lj2 and p;+1jl = p{fn'

Therefore we can write:

j! Py — YR e 7y j'N ! |
pOPp; (x) = p(Op; (X) = p(x+E P, (x+E4) = p(x+E&) )p;, (x+&ij), VxeT,

and so is also I’-balanced. O

We go ahead now giving not only a more formal way to verify the existence of a
['-balanced measure but also a method to directly build it.

We need first some new definitions.

Definition 4.2.5 (Weighted path). Let (G,A) be a stochastic reaction network and let

T CZ, be a closed set. Let moreover I' be a complete set of reaction vector loops on
T.

Given a feasible path (xl)lL: ; In T such that:
Xip1 — X = g” VI<ISL-1,1<ji<m,1<i<nj,
and p?l # 0, we define a weighted path from x| to x;, the sequence:
s = (Cusin, j0)iy - (53)

If x; = xz the path is called closed.
Notice that j; identifies the loop and i; the index inside the loop, of the reaction along

which the path moves from x;.

Definition 4.2.6. We define score of a weighted path s = ((x,1;, jl))le_l1 the quantity
defined as:

Ji

with pn 41 =pi-
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Remark 4.2.7. Notice that if we write extensively the product, we find that the score is

the product of factors such as:

Pl Ca+€D

fe1 —, 1<i<L-1,
Pl G+ €l
in which the numerator is the (/+ 1)th step of the path and the denominator is the step
the path should have done after the /th, if it followed the order of reactions imposed by
J oYY
the loop ((fl. \D; ))izi.

’

L'-1
Definition 4.2.8. Let s = (.1, ) and 8" = (x4, ), be two weighted path
in 7, such that xz, = x].

We define concatenation of s and s’ the weighted path defined as follows:

L+L'-2

s s’ = ((fcl,il,jl))l:l ;

with
A (X111, J1) ifl<L-1
CTRINNE

b paro ) ifL<I<L+L -2.

By definition it also follows that:

n(s * s') =n(s)-n(s").

Theorem 4.2.9. Let (G, A) be a stochastic reaction network and let Y C Z’;O be a closed

and irreducible set. Let moreover I" be a complete set of reaction vector loops.

(G, N\) is I'-balanced om Y if and only if it holds:
n(s(x)) =1, V weighted closed path s with x € Y. 54)

If this is the case, then the score of any weighted path s from x; € Y to xp € T, depends
only on the initial and final states x1, x. Moreover for any fixed x* € I’ we can build a
stationary measure yon ‘Y’ as:

0 ifxgT
p(x) = (55)

n(s), with s any weighted path from x* to x ifxe®
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Proof. Assume at first that there exists a I'-balanced measure u on Y. Then by

Definition 52 we have that:
-1

1=
=1

#(XZ)P{II(XI)
JIN ) J
:u(x + é:ill)pill+ 1 (X[ + é:l'll)

=1(s), V weighted closed paths s.

Notice that the last equality holds because x; + fl{ "=x41, V1 <I<L-1and x; = xj.

On the other hand suppose that all the scores of weighted closed paths based at a state
in 7 are 1. Since T is irreducible, for each weighted path s(x, i, j), which is associated
with the single transition from state x to state x +§ij , we can define a weighted path
s(x, i, j) which goes from x+§ij to x. Hence (x,1, j) * s(x,1, j) is a weighted closed path

and by 4.2.8 we have:

R .., .
U=0(C0 ) * 5066 ) = ————= - (s(x,4, ])),
Pip (X +E7)
and so: i i
o P (et )
n(s(ai, j)) = === (56)
p;(x)
Consider also two weighted paths:
-1

§= ((xl,il’jl))[Lz_ll and s = ((x;’i;’j;))lzl ’

with x; = x’1 and x; = x}. And let be:
A 7 o/ 4 AT </
S§=5%8(Xp,_15lp_>Jp_p) * ex 8(XL 0, 07)

a closed weighted path. By 4.2.8 and (56) we have:

/

, ’ jl / ‘];
L'-1 L-1p,. (x; +§i,)
=1 =1 pi; (x)) T

Therefore the score of a weighted path only depends on its initial and final states x|
and x7 and can be denoted by n(x1,x7). Moreover it follows that for any x* € Y the
quantity (55) is well defined.

We last have to prove that (55) is [-balanced. This easily follows noting that V x € Y

andV1<j<m,1<i<nj, either plj = 0 implying

u()pl () = px+EHpl (x+&) =0,
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or . .
J(x) J(x) . .
H)— = g ) = (0 x4 €)= a4 E))
Pi (X +&) Pi (X +&)

We will report below three examples, two showing the existence and building of a
stationary measure for a CRN, and another one showing on the contrary the existence

of loops but not of a stationary measure for the CRN under consideration.

Figure 4.6
Example 4.2.12

Example 4.2.10. Consider the stochastic mass action system given by the CRN in
Figure 4.6 and let T = Zio. A complete set of reaction loops for the system is given by
the single loop:

-1 0 1

1 |, -+ Aa+p-2B|,||-1|, AB>Cc + A2B>B+C ||| O |, Ac»A + AB+c—A+B

0 1 -1
We want to verify that the score of all weighted paths on Y is 1. In order to do so is
sufficient to show that the score of all minimal weighted closed paths on Y is equal to 1.
Indeed every other path will be a concatenation of minimal paths and so by Definition
4.2.8 its score will be also 1.
In this case the minimal weighted closed paths are:

X1 x1—1 x1—1

Sl(x): X2 7191 ’ x2+1 ,2’1 » X2 73’1 )

X3 X3 x3+1
with x; > 1, and
X1 x1—1 X1
o) ={lx2|, L1 e+ 11,3, 1] {xo+1],2,1{],
X3 X3 X3—1
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with x1, x3 > 1.

Notice that s1(x) is a basic path, that is it follows exactly the order of reactions of
(4.2.14), and so by Remark 4.2.7 we obviously have that its score is 1. Therefore we
have only to verify that n(s(x)) = 1. Then we have:

(k11 +kax1x2)(k3x3 +Ko(xa + Dx3)(ka(xa + 1) +ks(xa + Dxa) _
(ko(x2 + 1)+ ks(x2 + Dxo) (ki x1 + kaxp (x2 + 1)) (k3x3 + kg x2x3)

(k1 + kgx2)(k3 + kg(x2 + 1))
(k1 +ka(xz + 1)) (k3 + kex2)

which is equal to 1 if and only if IZ—‘I‘ = l]z—g’

n(s2(x)) =

If this holds the system is I'-balanced and we can build a stationary measure as

follows.

The closed irreducible set for this model are given by:
Ty ={xeZ|xi+x2+x3=N,N €Zs}. (57)

For each Ty we set x* = (N,0,0). Then if we chose as path from x* to x the one in
which transition A — B occurs x» + x3 times and then transition B — C occurs x3 times,

by (55) we have:
xp+x3—1

() = n(x*, 1) =0 (ar+x2+x3—D(ki +kal)
pu(x) = n(x*,x) =

[1,277° lka + ksl = 1)]

]—Ifja](xz +x3 = Dlky +ks(o+x3-1-1)]
H;:SI k3 + kg(xp + x3=1)] B

(xi x4 x)! (ki | 2+ kal
k3 1=0 k2+k5l.

x1!(xp + x3)!
Remark 4.2.11. Notice that we proved the existence of a stationary measure for a

weak-reversible CRN with deficiency 6 = |C|—-[—-s=6-2-2=2.

Example 4.2.12. Consider the stochastic mass action system given by the CRN in

Figure 4.7 and let Y = Zio. A complete set of reaction loops for the system is given
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|

A B
D«——-2~C
ki
Figure 4.7
Example 4.2
by:
~1] [0 ]
1 -1
ol AA—>B+ AA+B-2B | ol AB—c + Q2B>B+C
- 0 B - 0 B

-

,_1_

,Acsp+AB+C—B+D

We want to verify that the score of all weighted paths on T is 1.

In this case the minimal and not basic weighted closed paths are:

x2
s1(x) =
X3

with x; > 1and x4 > 1

)
52(x) =
X3

X1

_x4_

X1

_x4_

1,1

1,1

_XI_I_
xy+1

X3

4

_XI_I_
x2+1

X3

x1—1
X2

x3+1

L x4 .

X1
x2+1

X3

_x4 - 1_
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X1
X2

x3+1

_x4 - 1_

X1
X2

x3+1

_x4 - 1_

-

s Ap—A + AB+D—A+B |-




with x; > 1 and x4 > 1.

X1 X1 -1 X1 X1
X2 xy+1 x+1 xy+1
S3(x) = ’1’1 b ’4’1 9 ’3’1 b ’2’1 b
X3 X3 X3 x3—1
| X4 | 4 x4 -1 | x4

with x; > 1, x4 > 1 and x3 > 1.

_xl_ —Xl - l— _xl — 1— - X1
X X +1 x+1 X+ 1
s =L u 7T a7 a7 2],
X3 X3 x3—1 x3—1
[ X4 | | 4] »)C4+17 | xg |

with x; > 1 and x3 > 1.

>)C1— >X1 - 1< >)C1 - 1— >x1 - 1—
X x>+ 1 X+ 1 X
s =L ui 7T LT 2] T A,
X3 X3 x3—1 X3
[ X4 | | 4] x4+ 1] x4+ 1

with x; > 1 and x3 > 1.

Then we compute the scores:

(k1x1 +ksx1x2)(ka(x2 + 1) + ke(x2 + 1)x2)
(ko (x2 + 1) + ke (x2 + Dxp)(k3(x3 + 1) + k7(x3 + 1)x2)

n(s1(x) =

(kaxa +kgxoxa)(k3(x3+ 1) +k7(x3+1)x2)
(k1x1 +ksx1x2)(kaxs + kgxox4)

which is equal to 1.

(k1x1 +ksxyx2)(kaxs +kg(x2 + 1)x4)
(k2(x2 + 1) + ke(x2 + Dx2) (k1 x1 + ksxi(x2 + 1))

n(s2(x)) =

(k2(x2 + 1) + ke(x2 + Dx2)(k3(x3 + 1) + k7(x3 + 1)x2)
(k3(x3 + 1) + k7(x3 + 1)xp)(kgxs + kgxox4)

which is equal to 1 if and only if lli—f = i—i

(k1x1 +ksx1x2)(kaxs +kg(x +1)x4)
(ka(x2 + 1) + ke (x2 + 1)x2) (k1 x1 +ksx1(x2 + 1)))

1n(s3(x)) =

(k3x3 +k7(x2 + 1)x3)(ko(x2 + 1) + ke(x2 + 1)x2)
(kaxy +kg(xp + D) xg(k3xz + k7x2x3)
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which is equal to 1 if and only if llz—f = %

(kyx1 + ksxyx2)(k3xs + kz(x2 + 1)x3)
(ka(x2 + 1) + ke(x2 + 1)x2)(ka(xa + 1) + kg (x2 + D)(xg + 1))
(ka(xa+ 1)+ kg(x2 + D(xa + D)(ko(xz + 1) + kg (x2 + 1)x2)
(kyx1 +ksxi(x2 + 1)(k3xs + k7x2x3)

which is equal to 1 if and only if IIZ—? = ]]z—;

n(s4(x)) =

2

n(s5(x)) = (kyx1 + ksxyx2)(k3x3 + k7(x2 + 1)x3)
(ko(x2 + 1) + ke(x2 + 1)x2)(ka(xq + 1) + kg (x2 + 1) (x4 + 1))
(ka(x2 + 1) + ke(x2 + 1)x2)(ka(x4 + 1) + kg x2(x4 + 1))
(k3x3 + k7x2x3)(k1x1 + ksx1x2)

which is equal to 1 if and only if % = %.

If this holds the system is I'-balanced and we can build a stationary measure for

each closed irreducible set of this model.

Remark 4.2.13. Notice that also in this case we proved the existence of a stationary
measure for a weak-reversible CRN with deficiency 6 = |C|-[-5s=8-2-3=3. In

addition we observe that conditions:

ks kg d ks ky
ki kg ki k3

are the ones that implies the measure to be complex balanced. Then, in this case, the

distribution existence and its form is already known in literature.

A—— B A+B—— 2B
x / B+C—— 2C
C C+A—— 2A
Figure 4.8
Example 4.2.14

Example 4.2.14. Consider the stochastic mass action system given by the CRN in
Figure 4.8 and let T = Z;O. A complete set of reaction loops for the system is given by

the single loop:

-1 0 1
1 |, =B+ AasB—2B ||| -1|, ABsc + AB+c—2c ||| O |, Ac—a + Ac+a—24

0 1 -1
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We want to show that in this case the complete set is not I'-balanced and so no
stationary measures could be found on it. To do this we show in this case that, within
the minimal weighted paths on Y there exists at least one which has score different

from 1. As shown in previous examples the minimal paths are:

X1 x1—1 x1—1

S](-x): X2 71’1 s x2+1 ,2’1 > X2 73’1 s

X3 X3 X3+1
with x; > 1, and
X1 X1 -1 X1
SZ(X): X2 9191 s X2+1 ’3’1 s x2+1 5251 )
X3 X3 x3—1

with x1, x3 > 1.
Also in this case s1(x) is a basic paths, and so its score is necessarily 1.
Therefore we have only to verify that n(s2(x)) # 1. We have:

(k1x1 +kax1x2)(k3x3 + ke(x1 — Dx3)(ka(x2 + 1) + ks(xo — 1)(x3 + 1)
(ko (x2 + 1) + ks(xp + 1)x3)(kyx1 +kaxy(x2 + 1)) (k3x3 + kg (x1x3

1n(s2(x)) = (58)

Suppose that 17(s»(x)) = 1 holds, in this case we should have:

(k1x1 +kax1x2)(k3x3 +ke(x1 — D)x3)(ka(x2 + 1)+ ks(xp = D(x3+ 1) =
(ko(x2 + 1) + ks(x2 + 1)x3) (k1 x1 + kax1(x2 + 1))(k3x3 + ke(x1X3)),

for certain values of rate {k;};.

By carrying out the counts it results:
(kikoks — kiksks — kikake + ki kske)x1x3 + (ki kske — kiksks)x1 x5 — ki kskexT x5+
(kykaks + kiksks — kykoke — kikske — kskaks — kokake + kakske)x1 x2x3+
kikakextxz + (kiksks — kikske — kskaks + kakske)x1 xox3+
(k1kake + kikske + kakag — kakse)xs x2x3+
(kykske — kakske)x? x5 + (kakaks — kakske)x1 X33+

(kskaks — kakake — kakske)x125x3 + (kakake + kakske)xTX5x3 + kakskex1 X323 =
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(k1koks + 2kpkska)xy xox3 + (kikoyks + kokskg)x1 x3 + (k1 koke + 2k2k4k6)x%xzx3
+(k1koke + kakake)xTx3 + kokskax1 X3x3 + kokake X723 X3+
(kyksks + 2kskaks)x1 xox3 + (ki ksks + kskaks)x1x3 + (ki kske + 2kakske)xT xa x5+
(kykske + kakske)x7 3 + kskaksx1 X33 + kakskex725X3,

from which we obtain the following system of equations having the coefficients as

unknowns:

k1koks — k1k3ks — k1kake + k1kske = k1kaks + kaokzks
kikske — k1k3ks = k1kzks + kzkaks

kikoks + ki1ksks — k1kake — k1kske — kakaks — kokake + kakske = kikoks + 2kpk3ky
k1koke = kikoke + kokake

k1kzks — k1kske — k3akaks + kakske = k1k3ks +2kzkaks
kikoke + k1kske + kokag — kakse = ki1koke + 2kakake
kikske — kakske = k1kske + 2kakske

kzkaks — kakske = k3kaks

kakaks — kokake — kakske = koks3ks

kakske = kakske

k2k4k6 + k4k5k6 = k2k4k6

—kikske = k1kske + kakskg

(59)
It’s easy to notice, by looking at the last two equations, that k4kske = 0 and kkske = O.
This is possible if:
L4 k5 =0
® kg=0

e ky=0and k; =0

However all cases are in contradiction with the existence of such a CRN.

Then necessarily 7(s2(x)) # 1 and so the complete set is not I'-balanced.
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4.3 A new and more general form of balancing

Inspired by the definition of a measure I'-balanced in 52 and by the generalized
balancing defined in 25, we’ll define in this section a more general type of stochastic

balancing.

Definition 4.3.1. Let (G,A) be a stochastic reaction system and suppose that 7 is a
measure defined on Z". « is said to be generalized rate balanced if there exists a set of
tuples of subsets of R, {(L;,R;)ica}, With
= Jr=%r (60)
i€A i€A

and can be defined YV y — y' € R, and ¥ x some weights which satisfies:

qf_w/(x) #0ifandonlyify >y e€L;, VYi€eA

¢, () #0ifandonlyify >y €R;, VicA 61)
such that Z qf_)y, (x) = Z qfl_,y, (x) = Aoy (%),
i€A i€cA
and
D ay=yNgh (+y=y) =nx) > g, . (62)
yoy'eR yoy'eR

Ll = {yl _'yrlJyZ_’yrz}r
YaY'y L, ={3’2 —byrzryfi"‘y’S}
Wy,l %yls
, _— Ry ={ya—y Vs —¥' s Ye— s},
Y2—*V 2 I '
ey Ry = {ya—y'p, 7 —¥'7}
T/

y w% We allow overlappings between the

different {(L;, R;)ica} In R.

Figure 4.9

Generalized rate balanced

Notice that in (60) it is no longer required for the sets L; (and respectively R;) to
form a partition of the space of reactions R. In other words we are allowing the same
reaction to be present in more than one set and, if this happens, we divide it among the

sets in which it is present. An example of this idea is shown in Figure 4.9.
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Proposition 4.3.2. Let (G,A) be a stochastic reaction network and let [ C Z’;O be a
closed set. Let moreover I be a complete set of reaction vector loops on (" and let u be

a I'-balanced measure with supp(u) = Y. Then u is generalized rate balanced.

Proof. Consider the following set of tuples of subsets of R, {(Llj sz N<i<n < j<m}-such
that:

Llj:{y—>y’e‘R|y’—y=§l.j, Vi<i<nj1<j<mj,
and

Ri={y—y eRly-y=¢&  Vi<i<n,1<j<m),

i+1°

with ff; 1= f{ . It is obvious to see that:

U u= | ®=®

I<i<nj, 1<j<m I<i<nj, 1<j<m
Recall now that we have supposed u to be I'-balanced:
,u(x—fl.])p{(x—gg) =u(x)pl{+1(x), YxeY,1<j<m,1<i<n;

Therefore, if we define Yy — y’ € R, ¥ x the following weights:

o Ify—y e Llj we associate for each x € T a weight g, i (x) # 0 such that

Z q,(x)=plx),Y1<i<nj1<j<m), (63)
y—>y’€Llj

. . i o
otherwise if y — y" ¢ L;, qL,i, =0.
o Ify—y e le we associate for each x € 1 a weight g,,;(x) # 0 such that

> @ =pl, 0, V1<i<n;, 1<j<m), (64)
y—>y'€le

otherwise if y — ' ¢ R{, qpi =0,

we obtain:

px=g) ), au=&)=px ), .

Y=y eRly ~y=¢] Y=Y ERlY —y=¢],
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Summing all over f{ € RS it results:
DT uxry=y)g (xery=y)= Y p(¥qp(x),  V1<i<ng 1<j<m), (65)
y=y'eR l y—=y'eR l
so u is generalized rate balanced.

Notice that the definition of ¢ L and Qi is consistent with (61) because I' is a complete

set of reaction vector loops and so (51) holds. O
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5

A new perspective: loops defined on reactions

In this chapter we aim to extend the previous results. In particular we will define a
different type of loops, based not any more on reaction vectors but on specific
reactions and we will give for this loops a new definition of balancing. Then we will
try to see the connections between this new balancing form and the I'-balancing
previously introduced, looking for cases for which the new formalization could

guarantee, differently than before, the existence of a stationary measure.

5.1 New models

Definition 5.1.1 (Weighted reaction loop). Let (G, A) be a stochastic reaction network

and let T C Z7 | be a closed set. We define weighted reaction loop:
6= (i = ¥}90),_,» (66)

such that the following hold:

1. yi—y €R, Yiand
n
D Vi-yi=0;
i=1

2. gi: Y >Ry, Yiand

gi(x) < Ay () Y xeT; (67)

3. V1 <i<n,xe€7T it must hold that g;(x) # 0 if and only if q,-+1(x+yl’. -yi) #0,

with g,+1 = q1.

If the CRN is weak-reversible we say that the loop is graph-related if it holds:

Yi=Yir1, i=1,.,n—landy, =y
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Definition 5.1.2 (Complete set of reaction loops). Let (G, A) be a stochastic reaction
network and let T € Z, be a closed set. We define complete set of reaction loops for

S on 7T the finite set A = {6 j};fizl of weighted reaction vector loops such that:
0j= ((yzj - y;J’qz!))izjl ’

and for each y — y’ € R it holds:

m

J : _
J= 1=

The set is called graph-related if all the reaction loops in it are graph-related.

Definition 5.1.3 (A-reaction balanced). Let (G, A) be a stochastic reaction network and
let T C Z7 ) be a closed set. Let moreover A be a complete set of reaction loops on T
and let i be a measure with supp(u) =Y.

We say that u is A- balanced if:
pOOG (0 = pCx+y) = yhal, 4y =y, VxeT, 1<j<m 1<i<n;, (69)
where q{+1(x+yl’.j—y'l.’) =0 i]‘x+ylfj—y{ ¢ 7.

Proposition 5.1.4. Let (G, \) be a stochastic weak-reversible reaction network and let
T C ZL, be a closed set. Let moreover A be a complete set of graph-related reaction
loops on Y and let u be a A-balanced measure with supp(u) = Y. Then u is complex

balanced.

Proof. First of all notice that if the network is weak-reversible, then necessarily each
reaction is included in at least one loop and so it is obviously always possible to build
a complete set of reaction loops. Secondly fix x € T and y € C.

Then, for each y’ € C, if y’ — y is active in x+y’ —y, then it necessary belongs to a loop
of the complete set of graph-related reaction loops by definition of completeness. So

using the hypothesis on u we can write:
i v\l iy = J
pu(x =y +yDqi(x =y +y7) = p(x)q;, (X,

where y// = y and ylj =y

Notice that if this holds then there necessarily exists a complex y”’ € C such that y{H =y
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and y; +1j =y”. Moreover the reaction y — y”’ is also active by condition 3. in Definition
5.1.1.
Now sum over ¥’ € C and i, j such that y;-i =yand ylj =y’. We have:
Y B A N S | , _ J ,
Z Zﬂ(x ity =y Y iy iy = Z Z/J(x)qm(x)]l(y{:y’y; jmyr):
y'eC i,j yeC ij
(70)
Now by definition of q{ for a complete set of reaction loops and by renominating the
y” mentioned before as y” (this is possible because we are summing all over y’ so we
are considering all possible reactions * — y and so on the other hand all the possible
reactions y — * active in x) we obtain:
D HGHY =)Aoy (Y =3) = Y a0y (%),
yeC yeC

which is exactly the definition of a complex balanced measure. O

5.2 Reaction loops and Reaction vector loops

We study now the connection between reaction loops and reaction vector loops.
Notice first that by Definition 4.2.1 it could happen that in a complete set of reaction
vector loops I' the same cycle appears more than once (that is the same sequence of
&; appears in more than one loop, obviously with different weights associated for each
loop). Then we could rewrite the set A expressed with reactions using reaction vectors
as follows:

yi=(&q)). . & =yi-yl.

In addition notice that for each i, j it holds:

qu(x) < /lylj_)y;j(x) < Z Aysy (%),

Y=y €RlY —y=¢/
and
J A _ ) S
Z Z Zq,-(x)ﬂ(y{:y,y;,-:y,)— Z Aysy (x), YEER® (71)
J=1 yoyeRly—y=¢ =l y—oy €RlY —y=¢

So A = {6} could be mapped in a complete set of reaction vector loops and definition

5.1.3 corresponds to (52) with weights qu .
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Hence, for A, Theorem 4.2.9 holds and so we can check the existence of a A-
balanced measure by computing the score of all minimal paths in A. Moreover if this

measure exists we know which form it takes.

Notice that when we rewrite the complete set of reaction loops in terms of reaction
vectors, we get a complete set of reaction vector loops that contains unnecessary

redundancies. Therefore the following definition naturally follows:

Definition 5.2.1. Let (G,A) be a stochastic reaction network and let Y C Z’;O be a
closed set. Let also A = {6 j}’]”.":] be a complete set of reaction loops on Y. We can build
what we call a natural complete set of reaction vector loops, I' = {ys}; on 7,

corresponding to A in the following way:

Sets=1, j=1

while (j < m)

ifds <s|

Vg = ((ff,pf/))zl such that

& =y =yl & =y, o & =y =y,
j=j+1

else

set ys = ((ff, pf))t such that

E =V =y, & =057~V s &0 = Vi =y
s=s+1;

j=j+1

end

end,

with arbitrary weights p; chosen so as to meet the conditions in (4.2.1).
Notice that this is a different type of mapping from that in (5.2), even if it also
describes a correspondence between the set of complete set of reaction loops and the

set of complete set of reaction vector loops.
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Figure 5.1
Example:5.2.2

After these considerations we would therefore like to study the relations between a
complete set of reaction loops A and its own arbitrary corresponding natural complete
set of reaction vector loops I', focusing in particular on the possible relations between

the existence of a A-reaction balanced measure and that of a I'’-balanced measure.

5.2.1 T-balanced does not imply A-balanced

In this regard let’s consider the following example.

Example 5.2.2. Let (G, A) be again the stochastic weak-reversible mass action reaction
network based on the CRN in Figure 5.1 and let be A' a complete set of reaction
loops and A” a graph-related complete set of reaction loops, both with corresponding

complete set of reaction vector loops I" defined as follows:

Al =6 = (g, (gD, (gt

6 = (" g1, (2,922, (12,43 ))

r"'=A+B—2B
n'l'=B-C
nl=C-A
rn'?=A—B
r'*=2B—B+C

't =B+C—>A+B
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1
q1 " = AA+B—2B

1,1 _

q2 = /lB—>C
1,1 _

q3 = /lC—>A
1,2 _

q1 = /lA—>B

12 _
q2 " = DBBiC

1,2 _
q3° = AB+C—A+B

A =181 = ((r "L 2D, (0 ), (P 3P )

6% = (12, q1°2), (>, 422, (372, ¢37)

n>'=A-B
n*'=B-C
nl=C-A
r**=A+B— 2B
r22’2:2B—>B+C

r>?=B+C—>A+B

C[lz’l = /lA—>B
21

Q" =Apsc
2

@3> = Acoa

22
q1”° = AA+B—2B

22 _
Q2" = A2pBiC

2,2 _
q37° = AB+C—A+B

I'={y = (€1, p2), (€2, 2), (€3, p3))}, with
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&1 =E€A—B,A+B—2B

& =& 2B-BC
&3 =&C>A,B+C—A+B
P1 = AA>B+ AA+B—2B
P2 = Ap—c + A2B—B+C

p3 = Acsa+AB+Cc—A+B

Now we want to know if these complete sets are balanced or not. Hence, by 4.2.9,
we have to compute the score of all minimal paths for each complete set and check if

they are all equal to 1. We have:

1. In this case the corresponding redundant complete set of reaction vector loops to
Alis:
I'=@h =" oD@ a".@ gty
P =@ a1 @ & ), with
s =6"? =g arp2s
&Y =6 =& copopic
& =82 =Ec L Brcoars

It is easy to see that the minimal path

s'00 = (06 1,2), e+ & 2,2, 1), e+ 62+ £11,3,1)

have score different from one. Indeed:

X1 x1—1 x1—1

s =] L2 |n+1]. 21| x» [.3.1

13 X3 x3+1
n(s' () = 017 e &) @theara 2+ e
2 +a D) G DE+a 26 @t
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ka_spxi kpc(xp+1) kcsa(xs+1)
kop—sprc(x2+ 1)xz kesa(xz + 1) karp—opxixo’

which is obviously not possible 1 if we look at the first and last denominator. So

the complete set of reaction vector loops A' is not A-balanced.

2. In this case the corresponding complete set of reaction vector loops to A? is:
= =@ a™) @ e, @™ a7,

P = (G757 (7). (77, 37 D)), with
&7 = &7 = €45 AvBo2B
&P =672 = €p copopic
&7 =677 = écLa Breoarh

In this case the complete set of graph-related reaction loops A’ is A-balanced
instead.
We show below the counts for the score of the two more particular minimal paths.

The others can be verified in a similar way.

Consider:
100 = (6 1,2), (k+6772,1), c+ &7 +£71,3,1))
200 = (G LD, (e +&7,3, D), e+ 67 +671,2,1)
We have:
X1 x1—1 x1—1
Szl(x): X2 3172 s X2+1 72’1 s X2 ’3’1
X3 X3 x3+1
) = L@ @M @) g e a )
T @20 e g a8 o)

(ka+B—2x1X2  kpoc(xo+1) kcoa(xz+1)
kop—prc(x2+ Dx2 kcaxi(xza+1)  kaspx

which is obviously equal to 1.

X1 x1—1 X1
SZZ(-X): X2 71’1 H x2+1 73’1 H X2+l 72’1
X3 X3 x3—1
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Figure 5.2

Example:5.2.3

g% (x) G x+&EP) P &P 85

@2 (x+ &2 @1 (x+ £ + 87 43! (x) -

(kaspx1  kc—axs kp—c(x2+1)
kp—c(x2+1) kaspxi  kc—axs

n(s*2(x)) =

)

which is also obviously equal to 1.

3. In this case the complete set of reaction vector loops is obviously I'-balanced

since we have already proved it in Example 4.2.12.

So if a natural complete set of reaction vector loops is balanced, this does not
imply that the corresponding complete set of reaction loop it is. Moreover, it’s easy to
observe that if the network is weak-reversible, describing it using a complete set of
reaction loops is more restrictive then describing it with a complete set of
graph-related reaction loops, which in this case is on the contrary balanced as the set
of reaction vector loops.

This is because, if loops already naturally exist in the graph structure of the CRN, it’s
easy to think that as time goes by, reactions will trend to occur following the already
defined loops. So, defining a background structure which breaks this intuitive flow,

won’t fit well with the dynamic model.

Now we can ask ourselves: does natural and I'-balanced complete set of reaction
vector loops imply A-balanced corresponding complete set of graph-related reaction
loops? Also in this case the answer is no and so the reaction loop model is not
equivalent to the reaction vector one. We prove our statement with the following

examples.

Example 5.2.3. Consider the weak-reversible CRN in Figure 5.2 and let be A and I"

a complete set of graph-related loops and its corresponding natural complete set of
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reaction vector loops, defined as follows:
A={61=((r",q1"), (2", q2"));

62 = (1,19, (2, ¢2M))

r11 =0—A

nl=A-0
r?=2A-3A
r?=3A—-2A
q1' = Apa
¢! = a0

q1> = 124534

2
Q2" = A3a24

I'={y=((&1,p1),(&2,p2))}

&1 =6p-4.2434

& =6a50,34524

P1=Ap-4+ 2434

P2 = A0 + 43424
Now we want to verify if these complete sets are balanced.
It is easy to see that the complete set of reaction vector loops is always I'-balanced.
That is because the only minimal not basic path is s(x) = ((x, 1,2), (x + &1,3)), which is

obviously a cyclic permutation of the basic path defined by moving on the loop in I

So it is necessarily balanced.
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On the other hand we now verify the balancing of A.

In this case the corresponding redundant complete set of reaction vector loops to Al is:
=" =@ a1 "H. & ")

d 42  d2N jed2 . d2 :
Yo =716, @27}, with
Al _ e d2 _
&1 =677 =&p-a,0434
Il _ e d2 _
‘fZC = '.5:2 = 'fA—>(D,3A—>A

The minimal and not basic paths are:
10 = (e 1,1, (x+€]1,2,2)),

520 = ((x.1,2), (x+£2,2,1)),

and their cyclic permutations. The counts for the scores of these paths are really similar
between each other and they all lead to the same results, hence we will show only the
first one of them.

s1(x) =((x,1,1),(x+1,2,2),)

@11 (%) Q2d’2(x+§1d’l):
QPN (x+EEY g12(x)

n(s1(x))) =

kosa  kza—oa(x1+1Dx(x—1)
kaso(x+1)  koaszax(x—1)

b

kosa _ koassza

which is obviously equal to 1 only if Fao = Foron”

So it is not true that a natural complete set of reaction vector loops I'- balanced, implies

its corresponding complete set of graph-related reaction loops to be A-balanced.

Remark 5.2.4. We should notice two things about the above example:

1. The network has 4 complexes, 2 linkage classes and the rank of the network is

obviously 1. So the deficiency is 1.
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2. It’s easy to see that for the ];zair of reactions () < A, the only possible complex
Ko—a yx

. k . .
balanced measure is u(x) = Ax;,@. Moreover this measure is complex balanced

for the other pair of reactions if and only if:

i@;A x—1 /]?;A X
A oaia(x = D(x=2) = 22— k34 pax(x— D)(x—2),
(x=1)! x!

kosa _ koas3a
kaso — ksa—oa®

which holds exactly only if

This is not only a practical confirmation of the validity of Proposition 5.1.4, but it also
means that thanks to reaction vector loops we have found the existence of a stationary
measure for cases in which the CRN which has one deficiency but is not complex
balanced, which is a case that does not fall under Theorem 3.3.1.Last but not least
notice that if we add more reactions of type @A — (a + 1)A, with @ > 2, we found
CRN with deficiency greater then 1, for which is always possible to find a stationary
measure describing the network with a complete set of reaction vector loops, even in

not complex balanced cases.

In other words, with these examples we have shown that I'-balanced does not
necessary imply A-balance. Then for sure the two balancing conditions are not
equivalent. We should however ask ourselves what happens about the other
implication, that is does A-balanced imply I'-balanced?

We will show that in this case the answer depends on the definition of the complete

set of reaction loops.

5.2.2 When A-balanced implies I'-balanced

Proposition 5.2.5. Let (G, \) be a generic stochastic reaction network and let (' C Z’;O

be a closed set.

my
=1

Let moreover A = {6}
s;=(0] = yl.ah).,
be a complete set of reaction loops containing all possible loops in Y and let u be a A-

balanced measure on Y.
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Moreover let be:
r = {ys}Tzzl ’
S A n_y
’}/S = ((f;’p;))lzl )
one natural complete set of reaction vector loops in Y corresponding to A, with weights

defined as follows for each s and t* fixed:
: 1 .
e =7 Z Z q)(x),
Yy I-yli=a () yi-yl=£s
where M is the number of all reactions in {ys}g € T which have reaction vector & = £,

and o is a cyclic permutation.

Then p is also I'-balanced.

Proof. We have to show that the I'-balanced equation holds for u for each y;. So we

write:
u(x)pp(x) =
1 .
> D MWW=
Y=yl = o€ Vi-yl =&,
1 ,: .. . .
Z 7 Z px+y =yhgl (x+yi! =yl =
Y-yl = o (€h) Yi-yl=¢5, |

where the last equality derives from writing the first summation extensively, applying
the definition of A- balanced, from the type of set we chose for pick up the qu in the
definition of p; and from Proposition 4.2.4.

This is equal to:
1 .
S J Sy —
oG D PDINEARCIAE
Yl = o€y Yi-vl=E
The same reasoning holds V s,¢. So the natural complete set of reaction vector loops is

I'-balanced with respect to measure f. m|

Notice that if we have a A-balance CRN, with A complete set of reaction loops, not

graph related and which does not contain all possible closed paths in the network, then
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A-balance does not necessary imply I'-balance.

Suppose indeed that:
A= {181 = {(r1, 1), (r3,42), (r3,43)),

62 ={(r}, D), (13, 45), (13, gD},

where

() = a1, (x).
0(0) = a2, (%),
3(0) = a3d,1 (x),
} (72)
q1(x) = ba,2(x),
g3(x) = 4,2(x),
g3(%) = 1,2(x),
with a;, b € [0, 1]. Suppose now that r% and r% lead to the same state change, that is they
have same reaction vector £&. Moreover suppose that fil * fi’ i, j €{2,3} instead.

Consider now the corresponding complete set of reaction vector loops:
=1 =&, )&, P &)

¥2 ={(&, pD, (&, P, (& P

where:

1,
2
I _
53 _frl’
2
§2 r2s
2
f3 :frZ
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P = 4,10 + A,2(),
Py() = 4,1 (),
P3@) = 4,1 (x),

PO = 4,0 (0 + 4,2(),
Py = A,2(0),
P30 = 4,2(x).

Notice that the network could be I'-balanced, only if, for the following closed path

S = (1D, (x+£1.3.1). (x+£] +£)).2.1)).

it also holds:

PIY)  pyxHE)  pyHE +E)
PYX+ED PIx+E+E) Py ’
A,1(0) +2,2(x) A (x+7) A (x+E+€)
A(+ED) Aa(r+E +E)+Ap(x+£+£) 1)

n(s*(x)) =

Now came back to the complete set of reaction loops. We supposed that A is
balanced and so the score of all closed paths on the network is necessarily 1. Then, if

we take the paths:
s1(x) = ((x, 1, 1),(x+y;1 —y},3, 1),()c+y']l —y} +y§1 —yé),Z, 1)),

sz(x):((x,l,Z) (x+y] —y1,3 1) (x+y'12—y%+y§1—yé),2,l)),

the following must hold:

1€ al/lri(x) a3/11(x+y1 _yl) a2/11(x+y1 _y1+y3 _y3)
n(si1(x) = p
az/lr%(x+y11 —y})alxlrl(x+y] —y1 +y3 —y3) a3/lr3(x)
b2 (x) ala(x+yP=yD) @l ey =y iyt -y
T](SZ(X))_ 1 =
02/1 (x+y1 _yl)al/1 (x+y1 _y1+))3 y3) a3/lr§(x)

It is easy to see, recalling
1_ .1 2
Yi Y= _yl &= 61 &1
AN |
) _)’2:‘52
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% -y =&
that n(s;(x)) = n(s2(x)) = 1 does not imply n(s*(x)) = 1. And so we can state that
A-balanced does not imply I'-balanced.
In addition it is possible to show that this depends on how the complete set of reaction
loops is defined. Indeed suppose to take A = {d1,02,03} with 81,0, defined as before

and

={(r pql) (’"2’92) (r3 513)}

rr=n
_ 1
r=r
_ 1
3 =73

70 = c1,2(x),
G50 = 24,1 (),

43(x) = c32,1 (%),
with ¢; € [0, 1].

Then it is possible to take the following closed path:

S3(x):((x,1,3),(x+y'13—y?,3,3) (x+y1 —y1+y3 —y3)23))

with score

c1d Z(X) /ll(x'i'yl _yl) 1(x+y1 _y1+y3 _y3)
n(s3(x)) = =1,
/11(x+y1 _yl)cl/l 2(x+y1 _y1+y3 _y3) /13()6)

because we have supposed A to be balanced.
It is easy to see that, under specific rate coeflicient conditions, in this case A-balanced
implies I'-balanced. Notice in particular that we are exactly in the case presented in

Proposition 5.2.5.

5.2.3 A-balanced with graph-related reaction loops does not imply I'-balanced

Notice that in Proposition 5.2.5 we have considered a generic Chemical Reaction

Network. In addition, the hypothesis which leads to the validity of the proposition
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itself, implies that the chosen complete set of reaction loops it is necessarily not graph
related.

We would like then to know what happens in the case the CRN is weak-reversible and
so when a graph-related complete set of reaction loops could be defined.

We provide in this regard the following examples.

A —B A+B —— 2B

\ / B+C —— 2C
C

C+tA —— 2A

Figure 5.3
Example:5.2.6

Example 5.2.6. Consider the CRN in Figure 5.3. Remembering Example 4.2.14 it is
obvious to see that the network is not I'-balanced. We will show on the contrary that it

is A-balanced on a graph-related complete set of reaction loops.

We define:
A={61=((n a1 H. (nh g, (il gzh):

62 = (1, 19, (2, ¢2);
63 = ((r1°,q1°), (>, q2°));

54 = (. 1. (n*, o))
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rn'=A—-B
n'=B-C
nl=C-A
r*=A+B—2B
rn?=2B—A+B
r’=B+C—2C
r’=2C— B+C
n*=C+A—-24

nt=24-C+A

q1' = 4B
@' = Apc
73" = Acoa

q1> = Aa+B—2B
=2

42~ = A2B—A+B
=2

q1” = AB+c—2C
3=2

q2° = A2c—B+C

4
q1" = Acya—2a

4 _
q2" = DAsC+HA

The minimal, not basic closed paths are:

s1(x) =

s2(x) =

X1

X2

[ X3 ]

X1

X2

[ X3 ]

9171 s x2+l 5391

_x] B 1_

71’27 X2+1 52’1

| X3
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_XI _1_

X2

>X3+1‘
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s3(x) =

s4(x) =

s5(x) =

s6(x) =

s7(x) =

sg(x) =

s9(x) =

s10(x) =

s11(x) =

X1

X2

X3_

X1

X2

X3_

X1

X2

X3_

,XI

X2

x3_

X1

X2

X3 |

X1

X2

X3_

X1

X2

X3_

X1

X2

X3A

X1

X2

x3_

1,2

1,1

1,1

I,1

1,1

1,2

1,2

1,2

1,2

o
x1

xy+1

X3

>X1—1

xy+1

X3

_ _1_
X1

x2+1

X3

x2+1

X3

o
X1

xp+1

X3

o
X1

xy+1

X3

»xl—l

xy+1

X3_

_ _1_
X1

x2+1

x3_
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1,3

1,4

1,3

1,4

x1

Xy +1

x3— 1]

>x1—1

X2

x3+1]

X1

X2 +1

x3— 1]

L
X1

X2

X3+1‘

x1

Xy +1

-1
x3—1]

_ _1—
X1

X2

x3+1)

X1

x2+1

x3—1]

1,3

1,4

1,3
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>x1< >x1 - 1— >x1 — 1—
s = (x| L1[||x+1[,L3|| x |[|.1.4
[ X3 | | X3 | »X3+1_
>X1ﬁ >X1—l— » X1
Sl3(x): X2 5151 ) .x2+1 9194 s X2+1 ’1’3
[ X3 | | X3 | | x3—1)
>X1— >X1—1— 7X1—1—
s14(-x): X2 5192 ) X2+1 9173 s X2 ’154
[ X3 | | X3 | _X3+1_
7X1— >)C1—17 7 X1
SlS(x): X2 71’2 s X2+1 ,1’4 H x2+1 ’1’3
| X3 | | X3 ] X3 — 1]
_xl- —)C1—1—
S16(~x): X2 71a1 s X2+1 7272
| X3 | | X3
_xl_ — X1

S]7(.x): X2 72’1 > X2—1 72’3

| X3 ] | X3 + 1‘
X1 x1+1
S]g(X) = X2 73’1 » X2 72’4
| X3 | [ x3— 1]

Below we compute the score for the most identifying paths. The other ones have
similar structure and so the counts are almost the same and lead to similar results and
same conditions.

ka+p—aox1x2  kpoc(xa+1) kcoa(xz+1)
kop—a+B(x2+ 1)x2 kcsa(x3+1)  kapxi

n(s2(x)) =

which is equal to 1 if and only if 48228 — Kazp
kap—a+ — kp—c

ka+B—2BX1X2  kc—ax3 kpoc(xa+1)
kop—a+B(x2+1)x2 kamspx1  kc—axz

1n(s3(x)) =

76



kaiB2B _ kap

which is equal to 1 if and only if Tomoais = ko

ka+B—2pX1x2  kprc—a2c(x2+1)x3 kcsa(x3 +1)
kop—a+B(x2+ 1)x2 kocprc(x3+1)x3  kaopX]

1(sg(x)) =

ka+B-2B kBrcooc keoa
k2p—A+B k2c—B+C ka—B

which is equal to 1 if and only if

kasp—2x1X2  kcoaxs kprc—ac(xa+1)(x3—1)
kop—a+p(x2+ 1)x2 kamspx1  koc—prcxz(x3—1)

b

1(s9(x)) =

ka+pop kprcoac kesa _
kap—a+B kac—p+c ka—B

which is equal to 1 if and only if

kasp—2x1X2  kprcsac(x2+ 1)x3 kcyasoa(xz +1)(x1—1)
kop—a+B(x2 + 1)x2 kocprc(x3+1)x3  koascraxi(x1—1)

1(s14(x)) =

b

katp—2B kprcooc kcaara _
k2B—a+B kac—B+c k2a—c+a

which is equal to 1 if and only if

ka+p—2X1X2  kcrasoaxz(x1—1) kprcooc(xa+ 1)(x3—1)
kop—a+B(x2 + 1)x2 koamsceaxi(x1 —1)  kacoprcxz(x3 —1)

1n(s15(x)) =

B

ka+B—2B kprc—oc kcaamoa
kop_sa+B koc—B+c koa—c+a

which is equal to 1 if and only if

kaspxi  kopoa+p(xa+1)x2
kpsc(x2+1)  karp—2px1%2

n(si6(x)) =

katp2B _ kaosp

which is equal to 1 if and only if Toris = e

kpocxa  kocopc(x3+1)x3
kcoa(x3+1)  kprc—2cx2x3

n(s17(x)) =

kpicooc _ ke

which is equal to 1 if and only if Foconee = keoa®

kcoaxs  koascia(xr +1)x
kassp(x1+1)  kciasoaxixs

n(s18(x)) =

kcrasoa _ kcoa

which is equal to 1 if and only if Tty = Ty

Then if the conditions hold the score of all minimal closed paths is 1 and the network
is A-balanced. Hence we can build a stationary complex balanced (remember
Proposition 5.1.4) measure for the system in the following way.

The closed irreducible sets for this model are given by:
Ty ={x€Z|x1+x2+x3=N,N € Zs}. (73)

For each Ty we set x* = (N,0,0). Then if we chose as path from x* to x the one in
which transition A — B occurs x; + x3 times and then transition B — C occurs x3 times,
by (55) we have:

120 kaspxr + 22+ 23 =) [132, " kposc (a2 +x3 = 1)

1,2, kposcl [12, keal

p(x) =n(x", x) =

7



X2+X3
kKyp  (x1+x2+x3)!

X
kpcke,,  X1ixela!

Remark 5.2.7. Notice that we prove the existence of a stationary measure for a

complex-balanced, weak-reversible and conservative CRN with deficiency

0=IC|-l-5s=9-4-2=3.

A ——B A+B —— 2B

\./ I

B+D «——B+C

Figure 5.4
Example:5.2.8

Example 5.2.8. Consider the CRN in Figure 5.4. Also in this case it is obvious to see
that the network is not I'-balanced. Indeed if we consider the complete set of reaction

vector loops:

C={y =&, & p2"). &)
y2 = (€12, p22), (&7, p2P), (637, p3P), (€47, pa®)))s
with:

1 2
&1 =&1" =6A-B,A+B—2B

| 2
& =67 =6, 2BBC

1
&3 =&c-a
2 _

&7 = EBrc—B+D

2
4" =EBiD—A+Bs
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and

pi' = a(Aamp + 41828
p1* = (1 - ) (Aump + Aa+B—28)
p2' =BAssc + A2p-pac)
p2* = (1=B)(Apoc + 2B pec)
p3' =Acoa
P3’ = AB+c—BeD
P4” = AB+D—A+B
with @, 8> 0. And if we compute the score of the closed path:
X1 x1—1 X1
sO=llxo[, L1+ 1.3 1[,]{xn+1].2,1{],

X3 X3 x3—1
we have:

ka—px1 +ka+p—2BX1X2 kc—ax3
kp—sc(x2+1)+kapsprc(x2 + 1)x2 kaspx1 + kayp—opx1(x2 + 1)

n(s(x)) =

kp—c(x2+1)+kop—prc(x2+ 1)x2
kC—)Ax3

b

which is obviously different from 1.

On the other hand we want to verify if the network is A-balanced on a graph-related
complete set of reaction loops.

We define:
A=1{61 =((r 1) (). (i3 g3 ));

6 = ((1%,q17), (%, q2%), (32, q32), (r4%, q42)))
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rII:A—>B
n'=B—-C

r31 =C—-oA
r>=A+B—2B
r22:23—>B+C
r3>=B+C—> B+D

14 =B+D—A+B

q1' = B
@' = Apc
3! = Acoa

2 _

q1° = AA+B—2B
2=2

q2” = DB-B+C

43> = AB+C—B+D

2 _
44" = AB+D—A+B

The minimal, not basic closed paths are:

X1 x1—1
X2 x2+1
Sl(x) = b 19 1 b b 3’ 1 9
X3 X3
>X4_ - X4 B
X1 x1—1
X2 x2+1
Sz('x) = 2 1’ 2 b b 2’ 1 9
X3 X3
>X4_ - X4 B
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X4 |




sg(x) =

s3(x) =

s4(x) =

s5(x) =

s6(x) =

s7(x) =

s7(x) =

X1
X2

X3

X4 |

1,2

x1
X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1
X2

X3

X4

1,2,

1,11,

1,11,

1,21,

1,21,

1,21,

X1—1
x2+1

X3

xp+1

x2+1

x2+1

x2+1

X3

X4
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X2+ 1
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s9(x) =

s10(x) =

s11(x) =

s12(x) =

513(x) =

s14(x) =

s15(x) =

X1

X1

x1

X2

X3

X4

X2

X3

X4

X2

X3

X4

X1

X2

X3

X4

,x1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

1,2

1,2

1,2

1,2

1,1

1,1

1,1

>x1—1

xo+1

X3

o
X1

xp+1

X3

o
X1

x2+1

X3

_ _1_
X1

xa2+1

X3

_ _1_
X1

XQ+1

X3

_ _1_
X1

x2+1

X3
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X1
xy+1

X3

X4—1_

X
x2+1

X3

X4—1]

L
X1

X2 +1

X3—1

X4+1A

L
X1

X2 +1

x3—1

X4+1‘

_ _1<
X1

X2

x3+1

X4 |

X1
x2+1

X3

X4 — 1}

X1
x2+1

X3

X4—1]

X1
X2

x3+1

x4—1]

X1
xo+1

-1
X3

X4 |

X1
x2+1

X3—1

X4 |

E)C1—1

X2

X3

X4+1_

X1
X2

x3+1

)C4—1_

X1
X2

x3+1

x4—1

X1
x2+1

x3—1

x4 |




s15(x) =

517(x) =

s18(x) =

s19(x) =

$20(x) =

521(x) =

522(x) =

X1

X

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

,x1

X2

X3

X4

X1

X2

X3

X4

X1

X2

X3

X4

1,1

1,1

1,2

1,2

1,2

1,2

1,2

L
x1

xy+1

X3

o
X1

xp+1

X3

o
X1

x2+1

X3

o
X1

x2+1

X3

_ _1_
X1

XQ+1

X3

_ _1_
X1

x2+1

X3
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o
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X3

X4+1A

L
x|

X2

X3+1

X4 |

X1
X2 +1

X3

x4—1]

X1

X2+1

X1
x+1

-1
X3

X4_

o
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X2

X3

)C4+1_

X1
X2

X3+1

x4—1]

X1
X2
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X x1—1 x1—1 X1
X x2+1 b)) X2
S23(‘x) = ’]‘,]‘ 2 72’1 2 ’4’2 b ’3,2 2
X3 X3 x3+1 x3+1
| X4 | | 4 | x4 | x4 —1]
X1 X1 -1 X1 X1
b)) xp+1 x+1 X2
S24(x) = ’1’1 2 ’4’2 b ’2’1 9 ’3,2 b
X3 X3 X3 x3+1
[ X4 | |4 [ x4 — 1] x4 — 1
X1 X1 -1 X1 X1
X2 x2+1 xo+1 x2+1
SZS(X) = ’]"1 b ’4’2 9 ,3’2 b ’2’1 b
X3 X3 X3 x3—1
| X4 4 x4 — 1] | x4
X1 X1 — 1 X1 — 1 X1
X2 x2+1 x2+1 x2+1
s26('x) = ’1’1 b ’3’2 b ,4’2 b ’2’1 b
X3 X3 x3—1 x3—1
[ X4 | 4] x4+ 1] | xg |
X1 x1—1 x1—1 x1—1
X2 xy+1 X2+ 1 X2
s27('x) = ’1’1 b ’3’2 b ,2’1 b ’472 b
X3 X3 x3—1 X3
[ X4 | 4| x4+ 1] x4+ 1]

Below we compute the score for the most identifying paths. The other ones derive

from similar counts or were already computed in previous examples.

ka—px1  kp-c(x2+1) kpip—a+BX2x4 kprc—p+pXx2(x3+ 1)
kp—c(xa+1) kcoa(x3+1) kayp—opxixa  kpyp—a+BX2X4

n(s23(x)) =

katp—op _ kaop
kprc—B+D = kc—a®

which is equal to 1 if and only if

n(524(x)) = ka—px1 kprc—p+D(x2+1)x3  kpc(x2+1) kpyp—a+pXx2(xs+1)
kpc(xo+1) kpipsarp(a+D(xa+1)  kcoaxz ka+p—apXix2
kat2B _ kaop

which is equal to 1 if and only if ToconD = Foa”

ka—pxi kprc—p+D(x2+1)x3  kpipoa+(x2+1)(x4+1) kp_c(x2+1)
kpc(xa+1) kpipsarp(xa+1)(xa+1)  karp—opxi(x2+1) kc—ax3

n(s25(x)) =
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karpoop _ kaop
kprc—B+D = kc—a®

which is equal to 1 if and only if

kapx1  kpypoa+B(x2+ 1)x4 kprc—pip(x2+1)x3 kp—c(xa+1)
kpc(x2+1) kaypsopxi(xp+1) kpipoarp(xa+1)xs  kcoaxs

n(s26(x)) =

katpoop _ kaop
kprc—B+D = kc—a®

which is equal to 1 if and only if

kapx1  kpypoa+B(x2+ 1)xs4 kpc(x2+ 1) kprc—prpx2(x3+1)
kp—c(x2+1) kaypoopxi(xa+1) kcoa(xz+1)  kpipoaspxoxs

1(s27(x)) =

b

katpoop _ kaop
kp+rc—B+D = kc—a®

which is equal to 1 if and only if

kas>2B _ koo kopopic  _ kBoc
kopsprc ~ kp—C’ kic—BsD ~ kCcoa’

Then carrying out the counts, if the conditions

kkA+B"23 = iA"B hold, the score of all minimal closed paths is 1 and the network is
B+C—B+D C—A

A-balanced. Hence we can build a stationary complex balanced (remember Proposition
5.1.4) measure for the system in the following way.

The closed irreducible sets for this model are given by:
Tn={x€Zl | xi+x2+x3+x4 =N, N € Zs}. (74)

For each Yy we set x* = (N,0,0,0). Then if chose as path from x* to x the one in which
transition A — B occurs xz + x3 + x4 times, then transition 2B — B+ C occurs x3 + x4

times and then transition B+ C — B+ D occurs x4 times, by (55) we have:

(x) = n(x*, x) fﬁg“”“‘lkmg(xl+x2+x3+x4—l)
HRX) = 1RX, 1) = +x3+
H}Z]XS X4kB—>Cl
+xg—1
I—[;:()x4 kop—prc(X2+x3+ x4 =D(x2+x3+x4—-1-1)

X3+X.
[1,2] " kB+c—B+Dl(x2 + X3+ x4 = 1))

-1
[T, kBrc—Bep(x3+ X4 =D

X
H lil kB+D—>A+le2

X2+X3+X4 7 X3+X4
kalp Kyppic (x1 +x2 +x3 +x4)!
[ SRRRERREY S K x1!x0!x3 x4

B—C B+C—-B+D"B+D—A+B

Remark 5.2.9. Notice that we prove the existence of a complex-balanced stationary
measure for a complex-balanced, weak-reversible and conservative CRN with

deficiency 6 = |C|-[—-s=7-2-3=2.
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A ——B A+B — 2B

N/ N\

2C B+2C

Figure 5.5
Example:5.2.10

Example 5.2.10. Consider the CRN in Figure 5.5. We would like to know if we can
find and build a stationary measure for the system.

Let’s consider the following graph-related complete set of reaction loops:

A=1{61 =(n" 1), (@2, (Y, g3

62 = (12, 19,12, ¢2%), (3%, ¢3°)))

rn'=A-B
rn'=B—2C
r3' =2C > A

rn’>=A+B— 2B
r22:2B—>B+2C

r3?=B+2C > A+B
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sg(x) =

s9(x) =

s10(x) =

s11(x) =

s12(x) =

513(x) =

514(x) =

s15(x) =

s16(x) =

X1

X2

X3_

X1

X2

X3_

X1
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517(x) =

s18(x) =

s19(x) =

$20(x) =

$21(x) =

522(x) =

523(x) =

524(x) =
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X1
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X3A

X1
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X3A

X1
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X1 x1—1 X1
s26(X) = (| [x2 |- L2 |xo + 11,3, L] {x2 + 11,2, 1
X3 X3 x3—2
Below we compute the score for the most identifying paths.

kaspx1  kacoaxz(x3—1) kpooc(x2+1) kprc—p+px2(x3+1)
kp—oc(xa+1) ka—px1 koc—ax3(x3—1)  kpip—a+BX2X4

n(si1(x) =

which is equal to 1.

ka+B—2BX1X2 kaop—p+2c(x2+1)x2 koc—a(x3+2)(x3+1)
kop—p+2c(x2+ 1)x2 kproc—a+px2(x3 +2)(x3 + 1) ka—pxi

n(ss(x)) =

which is equal to 1 if and only if Kaporp — Kaop
kpiocoarp — kacoa

ka+p—2BX1X2  kpyoc—a+B(x2+ 1)x3(x3—1) kopproc(x+1)x2
kop—p+2c(x2+1)x2 ka+p—2px1(x2+1) kpiac—a+px2x3(x3—1)

n(s14(x)) =
which is equal to 1.

) ) . k k k k
Then carrying out the counts, if the conditions pA#228 = ;A= F2BoBeC - JB22C
2B—B+2C B—-2C B+2C—A+B 2C—A

hold, the score of all minimal closed paths is 1 and the network is A-balanced. Hence

we can build a stationary complex balanced measure for the system in the following
way.

The closed irreducible sets for this model are given by:
Ty ={x€Z,|2x1 +2x2+x3 = N, N € Zx0}. (75)

For each Yy we set x* = (0,0, N). Then if chose as path from x* to x the one in which
transition 2C — A occurs x| + x| times, then transition A — B occurs x; times, by (55)
we have:

H;:lgxz_l kocoa(2x1 +2x0+ x3 —=2D)2x1 +2x2 + x3 = 21— 1)

X1+Xx
lell ! kA—)Bl

p(x) =n(x", x) =

125" kacsp(xy +x1 =)

n;;zl kB—)ZCl

X1+Xx1
kyela  (2x1+2x2 + x3)!

X1 X2 Ixs I xa!
kA—»BkB—>2C X1:X2:X3.
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Remark 5.2.11. Notice that we prove the existence of a complex-balanced stationary
measure for a complex-balanced, weak-reversible and conservative CRN with

deficiency 6 = |C|-[—-s=6-2-2=2.

Then we proved that A-balancing on a graph-related complete set of reaction loops
does not imply I'-balancing for the corresponding natural complete set of reaction
vector loops.

Moreover we found that A-balancing on graph-related complete set of reaction vector
loops makes it possible to find complex-balanced (then stationary) measures, for

Chemical Reaction Networks with deficiency greater then 1.

Remark 5.2.12. Notice that there is a specific reason because of which the previous

balance conditions are verified, that is the score of all closed paths are ones.

Let (G,A) be a stochastic weak-reversible mass-action reaction network and let
T CZ%, be a closed set. Let moreover A be a graph-related complete set of reaction
loops on Y.

Let’s take 01 = ((yl1 — yl’.l,ql.l )):;11 ,00 = ((y? — y;.z,q?)):il € A and suppose that:

e the CRN restricted to ¢; is balanced

o there exist k € {1,...,n1} and h € {1,...,n2} such that y}! -y} = y/? —y? = &, with:
—>yk equal to Zyk Ss— Z(yks+§s)S (76)
seS SES
and
iyt equalto Y yp S = > (Oh +E)S . (77)
s€S SES
° q}(x) a,/lyl_w,l(x) i=1,..,n and qz(x) bj /lyz_)y,z(x) j=1,..,ny,

with a;,b; € [0,11,V i, j

Now fix x € T and consider a generic closed path build on yy:

S(x) - {(xl9ll’ 1)}l 1 ’ Wlth X1 = X.
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We have that, by hypothesis:

ne g
nGse) = | |

AN | =
=1 D1 1Yy, =)

Now we know that necessarily there exists [* € {1,...,n; — 1} | i = k, with corresponding

factor: .
qk (X[*)

qap e +yt=yh

. x;! 1 G+ &=, D!
Dgak VoY (x4 —yli’s)! Clk+1ky;(1_)yl/{1+l (xs+&)! -
akky}{—w,’{1 X!
DS ak+1ky;(1_>y21+l (x5 + &

with this holding because of the definition of graph-related complete set and of rate
coeflicients for a stochastic mass-action network.
Now, since yﬁ - y;lz leads to the same system change &, we can build a new path as

follows:
§(X) = {(.XI,il, 1)’ (x27i2a 1)’ ---7(~xl*—l7il*—19 1)7 (XI*,I’Z, 22)’ (-xl*+1’il*+la 1)’ --~a(xn1—17in1—1’ 1)}?

with x| = x.
We want to prove that also n(§) = 1.
If we consider the definition of 7(§) and the more general definition of score for a path,
it’s easy to see that n(5) differs from 7(s) only for the /*th factor, which in this case is:
a5 (xr-)
oy G+ Y2 =VD)

Notice that we haven’t changed x;» because the two reactions lead to the same state

(78)

change, and so the state succession remains the same.

Then exactly as before (78) is equal to:

- x5! 1 (=G HED)!
Q " (ks — Y2 Whnetky o (xs+&5)! -
l—[ bikjoye )
s h+|ky;12_>y/2 (x5 +&5)!
Then, under the condition
akkyll_)yl'cl bhkyi_)y;f 79
ak+1kyrl_>y/l bh+1ky;lz—>y’21



the factor has the same value of the one before, and then 7(5) = n(s) = 1.

In the end notice that the same reasoning could be used when more then one reaction
in one loop could be replaced with reactions belonging to other loops in the set. This
because as we have just proved, each reaction will lead to a different factor in the score
which however will have same value of the previous one. Hence, the total score will

remain unchanged.
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Conclusion

We showed that, for some Chemical Reaction Networks, it is possible to build a set
of loops defined on the network reactions and, through them, characterize the state
space of the corresponding Continuous Time Markov Chain. Starting from such a set
of loops, a new balance condition has been defined for a system measure under which
the measure has been proven to be both stationary and complex balanced.

Finally the thesis analyzed different CRNs, focusing in particular on conservative
mass-action networks with deficiency greater than one. For these networks the
existence and analytic form of a stationary measure, even if already known, were
obtained again through the previous results, offering a new point of view from which

to observe the problem. Examples were also provided as support.
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Appendix A: On a generator of a Continuous time Markov chain

In this appendix we want to clarify the definition of generator for the CTMC
modelling the underling network.
Consider a CTMC with rate matrix A and transition matrix of the underling DTMC

I1. Firstly we introduce the following tools:

Definition 6.0.1 (Transition operator). Let f : E — R be a measurable function, with
f € B(E) Banach space.

We define the transition operator P; of f as:
(P =E[f(X)o =0] = E; [f(X))] = Zf (DIL;(0).
JjeE
Definition 6.0.2 (Generator). We call generator of the Markov chain, the operator A

defined as follows:
Pf—f

t

Af(i) = }ir% (@). (80)

Proposition 6.0.3. The following properties hold:

~

. (PsoPr) = Pyyy

2. Pp=1

w

. (Py); is strongly continuous

S

- AfD) = XA (D) =]

5. since Py is strongly continuous we have

diPJ = A(Pf) = Pi(Af)
1t
Proof. 1.

((Pso POf) (D) = (Ps(Pyf)) (i) =

Ei[Pf(X,)] = ) PA(RITTx(s) =

keE
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i (s) =

D [Zf(j)nk i)

keE | jeE

D) D (o)) =

JjEE keE
D FG)j(s+1) =
JjeE

E; [f(Xt+s)] = Ps+::f(i),

where we have used the Chapman-Kolmogorov equation on the transition matrix

of the underling DTMC.

Pof (i) = E[f(Xo)dim Xo = i] = f(i)

Notice that 1.+2. implies that the set of P; is a semi-group.

lim(Pef)(i) = limE; [£(X))] =
lim ];f(j)ﬂij(f) =

2 SDlimIL() =

JEE

> DS =10,
JjeE
So (P;); is strongly continuous.

Af() = lim Lt-f(,-) -

d
(d—thf)lzzo(i) =

. L0 =66
}I_I,I(}Zf(])f =

JEE

X retim 2 - g PO~
t—0 t—0

— t t
J#F

D DA =F) (—ZA,- J

J#i i#]j
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