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ABSTRACT

The thesis deals, in the context of Chemical Reaction Networks, with the conditions

under which the existence of a stationary distribution can be demonstrated,

highlighting its connection with the validity of certain balancing conditions.

In this regard, state-of-the-art results and a research study on the existence of new

possible conditions are presented.

In particular, the thesis starts from the unpublished draft "Stationary measures for

stochastic closed loop networks" by Daniele Cappelletti, Badal Joshi and Enrico

Bibbona.

Taking inspiration from it, new balancing conditions on loops of reactions are defined.

These conditions are then used in order to demonstrate the existence of a stationary

measure and examples are brought in order to corroborate this statement.

In particular, using these new conditions, it is possible to re-prove already known

results about the existence of stationary measures for conservative mass-reaction

CRNs. On the other hand, even if some interesting results are achieved, it seems

impossible to obtain stationary measures for CRNs not included in the state-of-art.



Introduction

The model and study of complex natural systems are typical research topics of the

physical and mathematical disciplines. In particular, one of the most recent families

of mathematical models that has been studied is that of stochastic Chemical Reaction

Networks (CRNs).

These models aim to describe systems whose components interact with each other by

exchanging a certain type of "information". Processes of chemical reactions or

epidemiological spreads are examples in this regard, in which a set of species or

agents interact over time causing mass and energy exchanges in the first case and viral

diseases in the second.

CRNs represent these possible interactions using graphs and then associate them a

deterministic or stochastic model, in order to describe the evolution of all the species

present in the system and their long run behaviour. In addition, CRNs allow to reveal

the symmetries of the system, transposing them into the so-called balancing

conditions.

CRNs take their foundations in the early 1900 when, after the formulation of the mass

action law, the dynamical properties of reaction networks began to be studied by

many scientists in chemistry and physics. Among these, Rudolf Wegscheider must be

quoted [16] for his definition of detailed balance condition for complex chemical

reactions.

However, it was necessary to wait until 1965 to start hearing about CRNs theory,

introduced by Rutherfor Aris in [2].

Starting from these basis, in 1972, Fritz Horn, Roy Jackson and Marting Feinberg laid

down the first results for deterministic CRNs [12, 11, 7]. In particular they introduced

the concepts of complex balanced equilibrium (as generalization of the detailed

balanced) and deficiency for a network.

The study of stochastic models dates back more recently, to 2010, in [1] by David F.

Anderson, Gheorghe Craciun, and Thomas G. Kurtz, where the authors prove that the

existence of a complex balanced equilibrium for the deterministic system implies that

of a stationary Poisson-like distribution for the stochastic one. Later the necessary
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conditions for the converse to hold were illustrated by Daniele Cappelletti and

Carsten Wiuf in [6]. In the same paper, a new stochastic complex balance condition

and its equivalence with the deterministic one, were also proved.

Finally only in the last years the way was paved to new balance conditions such as the

reaction vector and cycle ones, defined by Daniele Cappelletti and Badal Joshi in [4].

The thesis aims to try to extend the knowledge on CRNs by analyzing balance

conditions not yet present in the literature and their implications in terms of stationary

distributions.

Starting from the previously mentioned background, a general introduction is given at

first, describing how CRNs models are structured, what their properties are, and how

their temporal evolution and long run behaviour can be studied. The focus moves then

on the latter point, in particular on stochastic models, trying to understand what

conditions can guarantee the existence of a stationary measure for the system under

consideration.

The state of the art is presented and, in particular, the linkage between the existence of

a stationary measure and the fulfillment of certain balancing conditions is highlighted.

Taking inspiration from the draft of an unpublished research article [5], the thesis

proceeds then with the definition of a new balancing condition, defined on sets of

reaction loops within the network. The properties of this condition are then analyzed,

with particular regard on relation to stationarity and to the already existing balance

conditions. Finally, the thesis re-proves, under a new perspective, known results

regarding the existence of a stationary measure for conservative mass-reaction

Chemical Reaction Networks.
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Part I

State of the art
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1

Chemical Reaction Network

1.1 Definition and General properties

A Chemical Reaction Network is a mathematical model used to describe a

biochemical system such as chemical reactions and epidemiological flaws.

Three sets are necessaries in order to define a Chemical Reaction Network:

• species S It is the set of the components that interact in the system and whose

distribution we wish to model over time.

• complexes C It is the set of the nonnegative linear combinations of species which

appear in the system. It represents how the different species can interact with

each other.

• reactions R It is the set which describes how each complex converts each one in

another.

Figure 1.1

Example of Chemical Reaction Network

Example 1.1.1. If we consider the CRN in Figure 1.1 we could easily identify the 3

sets as:

S = {A,B,C,D,E},C = {A,2B,A + C,D,B + E},R = {A
k1
←−− 2B, 2B

k2
←−− 2A, A + C

k3
←−−

D, D
k4
←−− A +C, D

k5
←−− B+ E, B+ E

k6
←−− A +C}.

Where we have indicated with {ki}i the reaction rate constants.
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In a more formal way we can define a Chemical Reaction Network as follows:

Definition 1.1.2 (Chemical Reaction Network). A Chemical Reaction Network is a

triple G = {S,C,R}, where:

• S = {S 1,S 2, ...,S n} is the set of species

• C ⊂ {y =
∑n

s=1 ysS s | {ys}s=1,...,n ∈ Zn
≥0} is the set of complexes. ys is called the

stoichiometric coefficient of species s in the complex y.

• R = {y→ y′|y,y′ ∈ C, y , y′} is the set of reactions.

In order to indicate the kth reaction we write:

n∑
s=1

yk,sS s→

n∑
s=1

y′k,sS s (1)

Now we define two other objects that will be useful later:

Definition 1.1.3 (Reaction vector). For each reaction y→ y′ ∈ Rwe define the reaction

vector ξ as:

ξ = y′− y ∈ Zn
≥0 (2)

Definition 1.1.4 (Stoichiometric subspace). We define the stoichiometric subspace of

G the linear subspace of Rn generated by the reaction vectors:

S = span{ξi, i = 1, ..., |R|}. (3)

The sets defined as (c + S ) ∩ Rn
≥0, ∀c ∈ Rn are called instead the stoichiometric

compatibility class of G.

We denote with r the dimension of S and we called it rank.

We introduce now a notation that will be useful later in describing the spaces

identified by the CRN in a more easy way.

If we consider the set of species S, we can define a new space RS as follows: x ∈ RS

is a vector which indicates the concentration of the species in the system and
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xs, s ∈ {1, ..., |S|} is the concentration of the specific species S s.

In the same way we can define the corresponding space for complexes RC.

Taking inspiration from [15] we can then define {ωi}i∈C, where:

(ωi) j =


1 if j = i

0 if j , i,

this is the standard basis for RC.

So if x ∈ RC, we can write:

x =
∑
i∈C

xiωi.

Finally, if we consider a subset L ⊆ C, we can define the indicator function:

ωL :=
∑
i∈L

ωi =


1 if i ∈ L

0 if i ∈ C\ {L}.

Speaking of subsets of the set S, we can also introduce here the following concepts

taken from [8].

Definition 1.1.5. Two complexes y,y′ ∈ C are said to be linked, if any of the following

conditions is satisfied:

1. y = y′

2. y→ y′ or y′→ y belongs to R

3. There exists a set of complexes {y1,y2, ...,yk} such that:

y↔ y1↔ y2↔ ...↔ yk↔ y′,

where with ′↔′ we intends that for those complexes condition 2 holds (and we

call it direct link).

If y and y’ are linked we write y ∼ y′.

This establishes an equivalence relation that induces a partition of C. The equivalences
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classes that are created in that way, are called linkage classes of the CRN. We denote

with l the number of linkage classes in a network.

Definition 1.1.6. We define cut-link of a CRN, a direct link y ↔ y′ such that the

removal of this link, leaves y and y′ unlinked.

Similarly to 1.1.5 we can also define:

Definition 1.1.7. It is said that the complex y ∈ C ultimately reacts to complex y′ ∈ C

if any of the following conditions is satisfied:

1. y = y′

2. y→ y′ ∈ R

3. There is a path of reactions y1,y2, ...,yk such that

{y→ y1, y1→ y2, ...,yk−1→ yk, yk→ y′} ∈ R.

If y ultimately reacts with y′ we write y⇒ y′.

Lastly we define:

Definition 1.1.8. Two complexes y,y′ ∈ C are strongly linked if both y⇒ y′ and y′⇒ y

hold. In this case we write y ≈ y′ and this definition establishes an equivalence relation

that induces another partition of C in equivalence classes called strong-linkage classes.

A strong-linkage class L is in addition called terminal if no complex in L reacts to a

complex not in L; that is if y ∈ L and y→ y′ ∈ R then y′ ∈ L. And since L is also

strong-linked,this means that for each path that starts with y→ y′ ∈ RL, it is contained

in a closed directed path. In this case y→ y′ is called terminal reaction.

We denote with t the number of terminal strong-linkage classes in a CRN.

Definition 1.1.9. A linkage class (strong linkage class) in a reaction network is called

tree like if every direct link connecting two complex in the class is a cut-link. Moreover

if all classes are tree like, the network is said to be forest like.
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Figure 1.2

Two different CRN with same linkage classes

Remark 1.1.10. Now we give an observation which would be very useful to better

understand an important property of CRNs, which we will introduce later. We should

notice indeed that, if we consider the two networks described in Figure 1.2 and the

definition given in 1.1.5, both of them have same linkage classes {A,B,C} and

{B+ D,E,F + A,2F}.

Moreover we observe that if ξ1, ξ2 ∈ R
S then span{ξ1} = span{ξ2} and

span{αξ1 +βξ2, α, β ∈ R} = span{ξ1, ξ2}, then it’s easy to see that both networks have

also same stoichiometric subspace.

Thus to compute r = dim(S ) of a CRN, is easier to calculate that of a simplified

network in which for each linkage class we chose one complex and we connect to it

each other complex in that class with one link (as the second network in Figure 1.2).

We will call this type of network "star-like".

Now, since the "star-like" network has obviously m − l reaction vectors, we have

necessarily:

r ≤ m− l,

where m is the number of complexes. The equality holds only when the m− l reaction

vectors of the "star-like" network are linearly independent.

These considerations naturally lead us to the definition of a characteristic of CRNs,

which will have a main role in our text.

8



Definition 1.1.11 (Deficiency). We define deficiency of a CRN with m complexes, l

linkage classes and rank s as:

δ = m− l− r. (4)

Hence δ is a measure of how independent the reaction vectors are, given the

network’s linkage class structure, and δ = 0 if these are independent.

Before going ahead in hour study on CRN, we lastly dwell on an other really

important property.

Definition 1.1.12 (Weak reversibility). A Chemical Reaction Network is said to be

weak reversible if y⇒ y′ whenever y′⇒ y.

If on the other hand we have that y→ y′ ∈ R implies y′→ y ∈ R than we call the CRN

reversible.

1.2 Kinetic

What we would like to do now that we have a model, is to attach it to a dynamic (so

a kinetic model), in order to be able to describe the system evolution over time and to

try to find its long run behaviour.

First of all we should ask ourselves how to represent the state of the system whose

evolution we would like to study. There are two possibilities:

1. x(t) gives the concentration of each species at instant t (which leads to the

deterministic model).

2. X(t) gives the number of entities we have for each species at instant t (which is

the description at the base of the stochastic model)

We will analyze both options, but first we need to give some more definitions (see [4]).

Definition 1.2.1 (Kinetic). Let G be a CRN and suppose that to each reaction y→

y′ ∈ R, there is associated a non-negative, continuously differentiable rate function
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λy→y′ : Rn→ R≥0.

By kinetics on G we mean that there is a correspondence between the reactions and the

rate functions such:

Λ : (y→ y′ ∈ R)→ λy→y′ .

We call (G,Λ) a reaction system.

Definition 1.2.2. Let (G,Λ) be reaction system and let Γ ⊆ RS. Then we define:

• y→ y′ ∈ R is said to be active if λy→y′(x) > 0 for some x. This holds if and only

if supp(y) ⊆ supp(x), with supp(y) = {s ∈ {1, ...,n}|ys , 0};

• the active sub network in Γ is the network determined by the reactions in R that

are active in Γ. We refer to it with GΓ;

• Γ is called active if GΓ = G, that is ∀ y→ y′ ∈ R ∃ x ∈ Γ such that λy→y′ > 0.

Now we have the basis to analyze the two proposed dynamical system. Notice that

if we do not state otherwise, we will refer for the deterministic one to [8] and [4],

whereas for the stochastic one to [15] and [1].

Remark 1.2.3. Notice that with the introduction of the state space and looking at

Definition 1.1.3, we can give the following interpretation: a reaction vector ξ is the

vector that indicates the state transformation that takes place when a reaction occurs.

1.2.1 Deterministic model

Let x = x(t) ∈ Rn
0 defined as above in the first case. In the deterministic model,

given an initial condition x(0) ∈ Rn
0, we have that the time evolution of the system is

expressed by:
dx
dt

= f (x), (5)

with

f (x) =
∑

y→y′∈R

λy→y′(x) (y′− y); (6)
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f is called species-formation-rate function.

Hence, for each species s in the network, its evolution is expressed by the sum, over all

the reactions in the network that involves s, of the rate at which each reaction occurs

times the variation that the reaction causes for species s in the system.

Notice that f (x) ∈ S . That implies that ∀t > 0 x(t) ∈ Px(0) := (x(0)+S )∩Rn
≥0. So, given

the initial condition, the state of the system remains always in the same stoichiometric

compatibility class.

If the compatibility class Px is non empty, it is called positive.

Definition 1.2.4. c ∈Rn is said to be an equilibrium of the deterministic reaction system

if:

f (x) =
∑

y→y′∈R

λy→y′(x) (y′− y) = 0. (7)

If x ∈ Rn
>0, we say that x is a positive equilibrium and we denote it x > 0.

An important type of kinetics is the following one:

Definition 1.2.5 (Mass action kinetic). We define deterministic mass action kinetic the

correspondence KD : (y→ y′)→ λy→y′ , where

λy→y′(x) = ky→y′ xy1x≥0, (8)

where xy =
∏n

i=1 xyi
i . The pair (G,KD) is called deterministic mass action system.

1.2.2 Stochastic model

We will study now the stochastic model. The simplest one considers the state X(t) ∈

Zn
≥0 as the number of entities/molecules of each species present at instant t and builds

on the reaction network a Continuous Time Markov Chain in which X(t) represents the

state in t of the chain after all the transitions (in this case the reactions) occurred in

[0, t]. For simplicity suppose a finite number of transitions.

So for example, if the chain is in state X(t) and in t + dt the reaction y→ y′ occurs,

we have:

11



Figure 1.3

Markov chain on a Chemical Reaction Network

X(t + dt) = X(t) + y′− y.

If we denote with Ry→y′(t) the number of times that reaction y→ y′ occurs by time t,

then the state of the system at time t can be written as:

X(t) = X(0) +
∑

y→y′∈R

Ry→y′(t)(y′− y).

Notice that Ry→y′(t) is a counting process with the intensity equal to the rate function

λy→y′(X(t)). So we can write:

Ry→y′(t) = Yy→y′

(∫ t

0
λy→y′(X(s))ds

)
,

where Yy→y′ is for each reaction and independent unit-rate Poisson process.

After this premise, we can define:

Proposition 1.2.6. The generator for the Continuous Markov chain (X(t))t is the

operator A defined by:

Af (x) =
∑

y→y′∈R

λy→y′(x)
(
f (x + y′− y)− f (x)

)
, (9)

where f is any measurable, bounded function defined on the state space.

So, if we suppose that the initial state of our Markov Chain is X(0) = xo, by

generator’s properties we have:

d
dt
Ex0[f (X(t)] = Ex0[Af (X(t))]. (10)
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Recalling that, if πt is the distribution on Zn of X(t), then

P(X(t) = y | X0 = x0) = πt(y),

and we can re-write the previous expression as:

d
dt

∑
y

f (y)πt(y) =
∑

y
Af (y)πt(y). (11)

Taking f (y) = 1x(y) we therefore have that the evolution over time of the CTMC defined

on the CRN can be expressed by:

dπt

dt
=

∑
y→y′∈R

πt(x− y′+ y)λy→y′(x− y′+ y)−
∑

y→y′∈R

πt(x)λy→y′(x). (12)

Remark 1.2.7. For a more detailed explanation of (9) and (11) see appendix A.

Similarly to before and as consequence of (12)we can define:

Definition 1.2.8. π measure on Zn is said to be a stationary measure of the stochastic

reaction system if πt = π, t, that is:∑
y→y′∈R

π(x− y′+ y)λy→y′(x− y′+ y) =
∑

y→y′∈R

π(x)λy→y′(x), ∀ x ∈ Zn. (13)

We also define supp(π) = min{T ⊆ Zn | π(Zn \T) = 0}.

Let now (G,Λ) be a stochastic reaction system. As well as for the CRN species

space, we can define on the state space Zn a concept similar to that of linkage classes.

Definition 1.2.9 (Accessibility). Given x, x′ ∈ Zn states of the CTMC, we say that x′

is accessible from x if either x = x′ or there exists a sequence of states

(x = v0,v1, ...vk−1,vk = x′), such that ∀ (vi,vi+1),0 ≤ i ≤ k−1

∃ an active reaction y→ y′ ∈ R at vi with y′− y = vi+1− vi

Definition 1.2.10 (Irreducible component). Let Ξ ⊆ Zn be a nonempty set. Ξ is called

irreducible component if ∀ x ∈ Ξ, ∀v ∈ Zn, v is accessible from x if and only if v ∈ Ξ.
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We have then that all stationary distributions of the CTMC describing the system

can be expressed as:

π =
∑

Ξ

αXiπΞ, αΞ ≥ 0,
∑

Ξ

αΞ = 1, (14)

which is a convex combination of the unique stationary distributions

πΞ such that πΞ(Ξ) = 1, for those Ξ, irreducible components, for which a stationary

distribution exists.

Lastly, we show also in this case two specific types of kinetics.

Definition 1.2.11 (Mass action kinetics). We define Stochastic mass action kinetics the

correspondences KS : (y→ y′)→ λy→y′ where

λy→y′(x) = ky→y′
x!

(x− y)!
1{x≥y}, ∀ x ∈ Zn. (15)

The pair (G,KS ) is called stochastic mass action system.

Definition 1.2.12 (General kinetics). It is possible to define a more general type of

kinetics inspired to that of mass action one, with rate function in the form of:

λy→y′(x) = ky→y′

n∏
s=1

νs,k−1∏
j=0

θs(xs− j), (16)

where θi : Z→ R≥0, θi = 0 if x ≤ 0.

1.2.3 Quasi-thermostatic and quasi-thermodynamic kinetic systems

In this subsection we present the definition, from [8], of a different type of reaction

systems.

The first type of system we consider is the following one:

Definition 1.2.13 (Quasi-thermostatic kinetic system). Let (G,Λ) be a reaction system.

And let f : RS→ S be the species-formation-rate function defined above. The system

is said to be quasi-thermostatic if there exists a x∗ ∈ RS such that the set of positive

equilibria is equivalent to the set:

E = {x ∈ RS | ln x− ln x∗ ∈ S⊥}.
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Proposition 1.2.14. If (G,Λ) is a quasi-thermostatic system, then in each

stoichiometric compatibility class there is exactly one equilibrium.

Proof. Let us assume that there exist in one stoichiometric compatibility class two

equilibria: x1, x2.

For definition of stoichiometric compatibility class we have that x2− x1 ∈ S . Moreover

the system is quasi-thermostatic, and so ln x2− ln x1 ∈ S⊥.

The following holds:

0 = 〈x2− x1, ln x2− ln x1〉 =
∑
s∈S

(x2
s − x1

s)(ln x2
s − ln x1

s).

Because the function ln : R+ → R is strictly increasing, the equality can hold only if

x1
s = x2

s ∀ s ∈ S. And this obviously concludes the proof. �

Then we define a second type of system as follows:

Definition 1.2.15 (Quasi-thermodynamic kinetic system). A kinetic system (G,Λ)

with stoichiometric subspace S and species-formation-rate function f is said to be

quasi-thermodynamic if there exists a x∗ ∈ RS+ such that the system is

quasi-thermostatic with respect to x∗ and

〈(ln x− ln x∗), f (x)〉 ≤ 0, ∀ x ∈ RS+,

with equality holding only if f (x) = 0 or if ln x− ln x∗ ∈ S⊥.

Proposition 1.2.16. If (G,Λ) is a quasi-thermodynamic kinetic system, the followings

hold within each stoichiometric compatibility class:

1. there is only one equilibrium

2. the equilibrium is asymptotically stable

3. there is no nontrivial cyclic trajectory along which all species concentrations are

positive

15



Proof. 1. The first is simple to prove because is direct consequence of the fact that

a quasi-thermodynamic system is also quasi-thermostatic

2. For the second statement consider:

h(x) :=
∑
s∈S

[
xs(ln xs− ln x∗s −1) + x∗s

]
;

it’s obvious to see that h(x∗) = 0.

Moreover, thanks to the concavity property of the logarithmic function it holds

that:

ln xs− ln x∗s ≥
1
xs

(xs− x∗s),

with equality holding if and only if xs = x∗s.

So we have h(x) > 0, ∀ x , x∗.

Lastly:

d
dt

h(x(t)) = 〈∇h(x(t)), ẋ(t)〉 = 〈(ln x− ln x∗), f (x)〉 ≤ 0, ∀ x ∈ (x∗+S )∩RS+, x , x∗

Therefore for each stoichiometric compatibility class S and for the equilibrium

x∗ contained in it, we have that h(x) restricted to S is a strict Lyapunov function

for x∗ on S. So x∗ is asymptotically stable.

3. To show the last sentence, we suppose that there exists a solution x : [0,T ]→ RS+

with x(t) = x(0). Then we can write:

h(x(T ))−h(x(0)) =

∫ T

0

d
dt

h(x(t))dt =

∫ T

0
〈∇h(x(t)), f (x)〉dt.

Because the solution is non constant, using the observation for h made at previous

point, we can tell that the integrand is negative. So it holds h(x(T )) < h(x(0)),

which is clearly a contradiction to the initial hypothesis.

�
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2

Balancing

In this chapter we will talk about an important class of properties related to

Chemical Reaction Networks and in particular to the graph structure underlying the

system and the symmetry that this shows.

We can define a balancing concept both for deterministic and stochastic reaction

systems, so we will discuss in detail each case separately.

Unless otherwise specified, the results shown in this section have to be considered

taken from [4].

2.1 Balancing for deterministic kinetic systems

For the deterministic case the graph structure underlying the system network could

lead to three different types of balancing:

Definition 2.1.1. Let (G,Λ) be a deterministic reaction system and let c ∈ Rn be a state

of the network. Suppose as well that if y→ y′ , R we can define λy→y′ = 0. Then:

1. c is called reaction balanced if ∀ y, y′ ∈ C we have:

λy→y′(c) = λy′→y(c) (17)

2. c is called complex balanced if ∀ y ∈ C:∑
y′∈C

λy→y′(c) =
∑
y′∈C

λy′→y(c) (18)

3. c is called reaction vector balanced if ∀ ξ ∈ RS:∑
y→y′∈R|y′−y=ξ

λy→y′(c) =
∑

y→y′∈R|y′−y=−ξ

λy→y′(c) (19)
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4. c is called cycle balanced if for every sequence of distinct complexes

(y1,y2, ...,y j ⊆ C, j ≥ 3) we have:

j∏
i=1

λyi→yi+1(c) =

j∏
i=1

λyi+1→yi , with y j+1 := y1. (20)

Figure 2.1

Example 2.1.2

Example 2.1.2. Consider the CRN shown in Figure 2.1. If c ∈ RS, then:

1. c is reaction balanced if: 
λ1+(c) = λ1−(c)

λ2+(c) = λ2−(c)

λ3+(c) = λ3−(c)

2. c is complex balanced if:
λ1+(c) +λ3−(c) = λ1−(c) +λ3+(c)

λ2+(c) +λ3−(c) = λ2−(c) +λ3+(c)

λ1+(c) +λ2−(c) = λ1−(c) +λ2+(c)

3. c is reaction vector balanced if:
λ2+(c) = λ2−(c)

λ1+(c) +λ3+(c) = λ1−(c) +λ3−(c)

4. c is cycle balanced if:

λ1+(c)λ2+(c)λ3+(c) = λ1−(c)λ2−(c)λ3−(c)

18



Definition 2.1.3. Let (G,Λ) be a deterministic reaction system.

Suppose that the system admits at least one equilibrium and that every active

equilibrium is reaction balanced (or complex balanced or reaction vector balanced or

cycle balanced, respectively). Then (G,Λ) is called reaction balanced (or complex

balanced or reaction vector balanced or cycle balanced, respectively).

Now we express an important consequence provided by 2.1.1.

Theorem 2.1.4. Let (G,Λ) be a deterministic reaction system and let c ∈ RS. If one of

the following holds:

• c is a reaction balanced state for the system

• c is a complex balanced state for the system

• c is a reaction vector balanced state for the system,

then c is an equilibrium of (G,Λ) .

Proof. For simplicity we will prove only that a reaction vector balanced state is an

equilibrium. The proof of the other cases is based on reasoning very similar to that

proposed.

Let c ∈ RS be a reaction vector balanced state. So it holds:∑
y→y′∈R|y′−y=ξ

λy→y′(c) =
∑

y→y′∈R|y′−y=−ξ

λy→y′(c).

If we sum over all ξ ∈ RS and multiply each terms by ξ we have:

0 =
∑
ξ∈RS

 ∑
y→y′∈R|y′−y=ξ

λy→y′(c)

ξ−∑
ξ∈RS

 ∑
y→y′∈R|y′−y=−ξ

λy→y′(c)

ξ =

=
∑
ξ∈RS

 ∑
y→y′∈R|y′−y=ξ

λy→y′(c) ξ+
∑

y→y′∈R|y′−y=−ξ

λy→y′(c) (−ξ)

 =

∑
y→y′∈R

λy→y′(y′− y),
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where the last equality holds if remembering the definition of ξ = y′− y.

Notice that this is exactly the expression of f (c) = 0 when c is an equilibrium. �

The following express the existing relations between the different types of

balancing.

Theorem 2.1.5. Let (G,Λ) be a deterministic reaction system and let c ∈ RS. Then:

1. c reaction balanced =⇒ c complex balanced, reaction vector balanced, cycle

balanced

2. c complex balanced and cycle balanced =⇒ c reaction balanced

Now we report two results (taken from [8]) of fundamental importance for what

will come later.

Theorem 2.1.6. Consider a deterministic mass action system.

If for a k ∈ RR (where k refers to a set of reaction rate constanst) the system (G,KD)

admits a positive reaction balanced equilibrium, then the following hold true:

1. the mass action system is quasi-thermodynamic

2. reaction balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class

Proof. 1. Suppose that there exists a positive reaction balanced equilibrium c∗.

First of all remember, from(6) and (8) that:

f (c) =
∑

y→y′∈R

ky→y′cy (y′− y).

Now, suppose that the CRN is reversible. We can then define the set R→ ⊆ R as

the subset containing half of the reactions in R such that if y→ y′ ∈ R→ ⇒

y′→ y < R→.
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We can accordingly write:

f (c) =
∑

y→y′∈R→

[
ky→y′cy− ky′→ycy′

]
(y′− y) =

∑
y→y′∈R→

k̂y→y′

[( c
c∗

)y
−

( c
c∗

)y′
]

(y′− y),

where k̂y→y′ = ky→y′cy = ky′→ycy′ , considering that c∗ is reaction balanced.

Define now:

µ(c) := lnc− lnc∗.

In this case we can write:

f (c) =
∑

y→y′∈R→
k̂y→y′

[
e〈y,µ(c)〉− e〈y

′,µ(c)〉
]

(y′− y),

and

〈(lnc− lnc∗, f (c)〉 =
∑

y→y′∈R→
k̂y→y′

[
e〈y,µ(c)〉− e〈y

′,µ(c)〉
] [
〈y′,µ(c)〉− 〈y,µ(c)〉

]
Since the exponential function is strictly monotonically increasing, we have that:

〈(lnc− lnc∗, f (c)〉 ≤ 0, ∀ c ∈ RS+,

with the equality holding if and only if 〈(y′−y),µ(c)〉= 0, that is when lnc− lnc∗ ∈

S⊥. Moreover, if c is an equilibrium (meaning that f (c) = 0), necessarily (1) must

be zero and so lnc− lnc∗ ∈ S⊥ for what we said before. On the other hand, if

c is such that lnc− lnc∗ ∈ S⊥ we have 〈y,µ(c)〉 = 〈y′,µ(c)〉 ∀ y→ y′ ∈ R→. By

placing this equality in (1) we have that c is inevitably an equilibrium.

Hence the system is quasi-thermostatic and (1) holds: by definition the system is

quasi-thermodynamic

2. Suppose that c is a generic equilibrium for the system. Because of point 1. we

have that lnc− lnc∗ ∈ S⊥ and so 〈y,µ(c)〉 = 〈y′,µ(c)〉 ∀ y→ y′ ∈ R→. From this

it follows that:

0 = k̂y→y′
[
e〈y,µ(c)〉− e〈y

′,µ(c)〉
]

= ky→y′cy− ky′→ycy′ ,

which is exactly the definition of a reaction balanced state.
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Theorem 2.1.7. Consider a deterministic mass action system.

If the system (G,KD) admits a positive complex balanced equilibrium, then the

followings hold true:

1. the mass action system is quasi-thermodynamic

2. complex balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class

Proof. 1. Consider as in the previous case the function defined in (6) and define the

two subsets R→y,Ry→ ⊆ R as the set of reaction entering and exiting the

complex y respectively. Suppose in addition that there exists a complex balanced

equilibrium c∗.

We can then write:

f (c) =
∑
y∈C

∑
R→y

ky′→y(c)y′ −
∑
Ry→

ky→y′(c)y

y. (21)

Now consider as before µ(c) := lnc− lnc∗, defined ∀ c ∈ RS+. We have:

〈µ(c), f (c)〉 =
∑

y→y′∈R

ky→y′cy〈(y′− y),µ(c)〉 =

∑
y→y′∈R

ky→y′(c∗)ye〈y,µ(c)〉 (〈y′,µ(c)〉− 〈y,µ(c)〉),

which for the exponential property ex(x′− x) ≤ ex′ − ex, is:

〈µ(c), f (c)〉 ≤
∑

y→y′∈R

ky→y′(c∗)y(e〈y
′,µ(c)〉− e〈y,µ(c)〉) =

∑
y∈C

∑
R→y

ky′→y(c∗)y′ −
∑
Ry→

ky→y′(c∗)y

e〈y,µ(c)〉 = 0,

where the last equality holds because c∗ is complex balanced.

Notice also that the inequality becomes an equality if and only if 〈y′,µ(c)〉 =

〈y,µ(c)〉 for every y→ y′ ∈ R, which is exactly when µ(c) ∈ S⊥.

Now to conclude the proof of the first point we must show that the set of positive
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equilibria is of the form express by (1.2.13).

We first notice that if f (c) = 0 then necessarily µ(c) = lnc− lnc∗ ∈ S⊥. Consider

on the other hand c ∈ RS+ | lnc− lnc∗ ∈ S⊥. Using (21) we can write:

f (c) =
∑
C

∑
R→y

ky′→y(c∗)y′e〈y
′,µ(c)〉−

∑
Ry→

ky→y′(c∗)ye〈y,µ(c)〉

y =

∑
y∈C

e〈y,µ(c)〉

∑
R→y

ky′→y(c∗)y′ −
∑
Ry→

ky→y′(c∗)y

 y = 0,

where the last equality holds because µ(c) ∈ S⊥⇒ 〈y′−y,µ(c)〉 = 0 ∀y′ | y→ y′ ∈

R or y′→ y ∈ R. So c is an equilibrium.

2. Suppose that ĉ ∈ RS+ is an other equilibrium different from c∗. Then for what we

stated before we have that 〈y′.y,µ(ĉ)〉 = 0 ∀y,y′ | y→ y′ ∈ R or y′→ y ∈ R. So we

can write: ∑
R→y

ky′→y(ĉ)y′ −
∑
Ry→

ky→y′(ĉ)y =

∑
R→y

ky′→y(c∗)y′e〈y
′,µ(ĉ)〉−

∑
Ry→

ky→y′(c∗)ye〈y,µ(ĉ)〉 =

e〈y,µ(ĉ)〉

∑
R→y

ky′→y(c∗)y′ −
∑
Ry→

ky→y′(c∗)y

 = 0,

where the last it is true because we have initially supposed c∗ to be complex

balanced. So even ĉ satisfies the complex balance condition.

�

Remark 2.1.8. Notice that no theorem such as the ones stated before holds for an

equilibrium which is reaction vector balanced. Indeed if we consider the reaction

network:

∅� A 2A� 3A,

we could see that the system admits for k∅→2A = 6, kA→∅ = 11, k2A→3A = 6, k3A→2A = 1

three distinct positive reaction vector balanced equilibria c = 1, c = 2, c = 3 within the

same positive stoichiometric compatibility class. So the system is neither

quasi-thermostatic nor consequently quasi-thermodynamic.
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2.2 Balancing for stochastic kinetic systems

Definition 2.2.1. Let (G,Λ) be a stochastic reaction system.

Suppose that π is a measure on Zn and that we can take λy→y′ = 0 if

y→ y′ < R. Then we can define the following:

• π is called reaction balanced measure if ∀y,y′ ∈ C, x ∈ Zn

π(x)λy→y′(x) = π(x + y′− y)λy′→y(x + y′− y) (22)

• π is called complex balanced measure if ∀y ∈ C, x ∈ Zn

π(x)
∑
y′∈C

λy→y′(x) =
∑
y′∈C

π(x + y′− y)λy′→y(x + y′− y) (23)

• π is called reaction vector balanced measure if ∀ξ, x ∈ Zn

π(x)
∑

y→y′∈R|y′−y=ξ

λy→y′(x) = π(x + ξ)
∑

y→y′∈R|y′−y=−ξ

λy→y′(x + ξ) (24)

• π is said to be generalized balanced [9] if there exists a set of tuples of subsets of

R, {(Li,Ri)i∈A}, with ⋃̇
i∈A

Li =
⋃̇

i∈A
Ri = R,

such that ∀ i ∈ A and ∀ x ∈ Zn it holds:∑
y→y′∈Li

π(x + y− y′)λy→y′(x + y− y′) = π(x)
∑

y→y′∈Ri

λy→y′(x). (25)

Notice that this definition of balancing is a generalization of the previous three

defined above.

• π is called cycle balanced measure if ∀ x ∈ Zn and for every sequence of distinct

complexes (y1,y2, ...,y j) ⊆ C, j ≥ 3, it holds

j∏
i=1

π(x + yi)λyi→yi+1(x + yi) =

j∏
i=1

π(x + yi+1)λyi+1→yi(x + yi+1) (26)

Definition 2.2.2. Let (G,Λ) be a stochastic reaction system. If the system has at least

one stationary distribution within an active irreducible component and every stationary
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distribution within an active irreducible component is reaction balanced (or complex

balanced, or reaction vector balanced, or cycle balanced, respectively). Then we say

that (G,Λ) is a reaction balanced (or complex balanced, or reaction vector balanced, or

cycle balanced, respectively) reaction system.

Just as in the deterministic case, it is also easy to prove that the followings hold:

Theorem 2.2.3. Let (G,Λ) be a stochastic reaction system. Suppose that π is a measure

for the system. If one of the following holds:

• π is a reaction balanced measure

• π is a complex balanced measure

• π is a reaction vector balanced measure,

then π is a stationary measure of (G,Λ).

We express then the relations existing between different types of stochastic

balancing.

Theorem 2.2.4. Let (G,Λ) be a stochastic reaction system. The followings hold:

• π reaction balanced measure =⇒ π reaction vector balanced, complex balanced,

cycle balanced measure

• π complex balanced and cycle balanced measure =⇒ π reaction balanced

measure.

The other possible implications do not hold.

The theorem that now we will present below is a fundamental connection between

the stochastic and deterministic modeling of a Chemical Reaction Network, and in

particular it defines a connection between the existence of a complex balanced
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equilibrium and of a corresponding complex balanced stationary measure in the

reaction system.

Theorem 2.2.5. Let G be a Chemical Reaction Network and let k ∈ RR be a choice of

rate constant for the mass-action system. Suppose that the system, which such a choice

of rates, is complex balanced and so admits a complex balanced equilibrium c ∈ Rn
>0.

Then the stochastically model system with rate functions defined as in (15), admits a

complex balanced stationary distribution which has the following Poisson form:

π(x) =

n∏
s=1

cxs
s

xs!
e−cs , x ∈ Zn

≥0. (27)

Moreover, if Zn
≥0 is irreducible, then the one above is the unique stationary distribution

of the system, whereas if not we can express π as in (14) with:

πΞ(x) =


MΞ

∏n
s=1

cxs
s

xs!
, x ∈ Ξ

0, x < Ξ,

(28)

where Ξ is a irreducible component of the system, and MΞ a normalization constant.

Proof. (by [15]) The measure defined in (27) is a distribution by definition (
∑

xπ(x) =

1). then we have to show that a such defined π satisfies the stationary conditions in

(13) only if c is a complex balanced equilibrium for the system.

So, suppose that (13) holds, we write (making easy simplifications):∑
y→y′∈R

ky→y′
1

(x− y)!
1{x≥y} =

∑
y→y′∈R

ky→y′cy−y′ 1
(x− y′)

1{x≥y′}

∑
η∈C

∑
y→y′∈R|y=η

kη→y′
1

(x−η)!
1{x≥η} =

∑
η∈C

∑
y→y′∈R|y′=η

ky→ηcy−η 1
(x−η)

1{x≥η}.

So for each x ∈ Zn and for each fixed η ∈ C, if we multiply by cη(x−η)! it must hold:∑
y→y′∈R|y=η

kη→y′cy =
∑

y→y′∈R|y=η

kη→y′cη =
∑

y→y′∈R|y′=η

ky→ηcy,

which is the complex balanced equation for c written for a deterministic mass action

system with rate function given by (8). �
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Remark 2.2.6. It should be noticed that Theorem 2.2.5, when Zn is not irreducible, it

doesn’t require for the equilibrium c used for the construction of the different

distribution πΞ to be contained within the stoichiometric compatibility class

associated with Ξ. On the contrary the Theorem establishes that c can be used to

construct a product-form stationary distribution for every closed, irreducible

component of the network and viceversa that for a given irreducible component Ξ any

positive equilibrium of the system can be used to construct πΞ.

The validity of this statement seems to go against the uniqueness of the stationary

distribution. However [1] proves this is not true.

Let Ξ be a closed irreducible set associated with the stoichiometric compatibility class

(y + S )∩Zn
≥0, and let c1, c2 ∈ R

n
>0 be two complex balanced equilibria of the system.

Lastly let x ∈ Ξ.

As a consequence of the theorem we can construct two distributions:

πi(x) = Mi
cx

i

x!
, i = 1,2.

So, for each x ∈ Ξ ⊂ y + S , we have:

π1(x)
π2(x)

=
M1

M2

cx
1

cx
2

=
M1

M2
e〈x,(lnc1−lnc2)〉 =

M1

M2
e〈y,(lnc1−lnc2)〉 =

M1

M2

cy
1

cy
2

,

where the third equality holds from point 1 in 2.1.7.

In the end we can write:

1 =

(
M1

∑
x∈Ξ

cx
1

x!

)
(
M2

∑
x∈Ξ

cx
2

x!

) =

M1

M2

(
cy

1
cy

2

∑
x∈Ξ

cx
2

x!

)
(∑

x∈Ξ
cx

2
x!

) =
π1(x)
π2(x)

.

(29)

Then the stationary distribution is independent from c.

Remark 2.2.7. It can be proved (see [1]) that there exists an equivalent theorem as 2.2.5

when we consider a stochastic model of CRNs. defined with rate function as in (16).

In this case the stationary distribution take the form:

π(x) = M
n∏

s=1

cxs
s∏xs

j=1 θs( j)
, x ∈ Zn

≥0. (30)
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On completion of this chapter, we present below further results related to the

interconnection between the balancing properties in the deterministic and stochastic

mass action model of a CRN.

Theorem 2.2.8. Let (G,KD) be a deterministic mass action system and let (G,KS ) be

the corresponding stochastic mass action system. The followings hold:

• (G,KD) is reaction balanced if and only if (G,KS ) is reaction balanced.

• (G,KD) is complex balanced if and only if (G,KS ) is complex balanced.

• (G,KD) is cycle balanced if and only if (G,KS ) is cycle balanced.

• if (G,KD) is reaction balanced then (G,KS ) is reaction vector balanced and the

converse holds if the function

y→ y′ −→ y′− y

is a one-to-one correspondence between the reactions in R and their reaction

vectors.

• if (G,KS ) is reaction vector balanced and complex balanced, then (G,KD) is

reaction balanced.
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3

Deficiency Theorem

In this chapter we will state and in some cases prove three main results about the

existence of a stationary distribution for a Chemical Reaction Network under specific

conditions of the network graph. In particular we aim to highlight the logic path that

leads to the definition of the necessary conditions for the existence of a stationary

distribution which starts from the properties of a deterministic reaction network, goes

through the concept of balancing and then gets to the properties of stochastic reaction

networks discussed in the previous chapters. The logical thread that we will follow

will be inspired by the one adopted in [8], [15] and [4]. It is therefore recommended

to refer to it for any statement that will be presented without proof.

3.1 Deficiency zero Theorem for weak-reversible networks

Theorem 3.1.1. Let G = {S,C,R} be a Chemical Reaction Network modelled both

deterministically and stochastically with a mass-action kinetic. If the network is

weak-reversible and has deficiency zero, then for any choice of rate constants {ki}i

there exists in each irreducible set Ξ, associated to a stoichiometric compatibility

class, a stationary distribution given by the Poisson product form:

πΞ(x) =


MΞ

∏n
s=1

cxs
s

xs!
, x ∈ Ξ

0, x < Ξ.

(31)

The theorem is extremely important because it guarantees only by the properties of

the graph under the CRN, not only the existence of a stationary distribution, but it also

gives the form in which such distribution occurs.

We divide the proof into 3 logical steps:

1. Complex balanced equilibria

2. Existence of an equilibrium for the deterministic mass-action system
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3. Existence of a Poisson product stationary distribution for the stochastic

mass-action system

3.1.1 Complex balanced equilibria

First of all suppose that there exists at least an equilibrium for the deterministic

mass action system. We should ask ourselves the following questions: does this

equilibrium have any properties? If this is the case does any other equilibrium of the

system have the same property? What follows from this?

We will try to answer in this section.

In order to start we introduce the followings

Definition 3.1.2. We define Stoichiometric map for a CRNG, the linear transformation

Y : RC −→ RS such that:

Yωy = y, ∀y ∈ C, (32)

where {ωy}y are the standard basis for RC as defined in 1.1.

Using this mapping we could rewrite the species-formation-rate function defined in

(6) as:

f (c) = Y
∑

y→y′R

λy→y′(c)(ωy′ −ωy). (33)

Definition 3.1.3 (Complex-formation-rate function). We define

complex-formation-rate function g : RS −→ RC for a CRN G, the function:

g(c) =
∑

y→y′R

λy→y′(c)(ωy′ −ωy). (34)

Notice that if we rewrite g in the form:

g(c) =
∑
y∈C

∑
R→y

λy′→y(c)−
∑
Ry→

λy→y′(c)

ωy,

it is obvious to see that if g(c∗) = 0, for a c∗ ∈ RS, then a complex balancing occurs at

c∗.
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Note also that the function g takes values in the span of the set:

∆→ := {ωy′ −ωy ∈ R
C | y→ y′ ∈ R}. (35)

Since y→ y′ ∈ R implies that y,y′ are linked, it follows that if we define:

∆ := {ωy′ −ωy ∈ R
C | y ∼ y′} (36)

we have

span(∆→) ⊂ span(∆). (37)

Moreover the following can be proved:

Lemma 3.1.4. For a CRN G with n complexes and l linkage classes it holds that

span(∆→) = span(∆), (38)

and

dim(span(∆→)) = dim(span(∆)) = n− l. (39)

We now return to the main hypothesis, that is, we assume that there exists for the

CRN an equilibrium c∗. Then it must hold:

f (c∗) = Y g(c∗) = 0,

that is g(c∗) ∈ ker(Y).

Recalling from what said before then we must have:

g(c∗) ∈ ker(Y)∩ span(∆).

Proposition 3.1.5. IfG is a CRN with stoichiometric map Y, deficiency δ and ∆ defined

as in (36), then:

δ = dim
[
ker(Y)∩ span(∆)

]
. (40)

Proof. Let Ŷ : span(∆) −→ RS be the restriction of Y to span(∆). By standard

geometry we have:

dim(span(∆)) = dim(ker(Ŷ)) + dim(Im(Ŷ)).
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Moreover notice that:

• Ŷ(ωy′ −ωy) = y′− y, so dim(Im(Ŷ)) = dim(S ) = r.

• ker(Ŷ) = ker(Y)∩ span(∆).

By 3.1.4 and 1.1.11 we have:

dim
[
ker(Y)∩ span(∆)

]
= n− l− r = δ.

�

It follows then that if G has zero deficiency, dim
[
ker(Y)∩ span(∆)

]
= 0 and so,

necessarily, g(c∗) = 0.

We can then state:

Theorem 3.1.6. Complex balancing occurs at every equilibrium of a kinetic system in

which the underlying reaction network has a deficiency of zero.

3.1.2 Existence of an equilibrium for the deterministic mass-action system

In 3.1.1 we showed that if there exists an equilibrium c∗ in a CRN with deficiency

zero, then complex balancing occurs at that equilibrium. However we have not shown

that such an equilibrium exists. This will be the objective of this section.

Let (G,KD) be a deterministic mass-action network. We recall that for such a system,

the rate function takes the form:

λy→y′(c) = ky→y′cy. ∀c ∈ RS+, ∀y→ y′ ∈ R.

In this case we have that the complex-formation-rate function takes the form:

g(c) =
∑

y→y′∈R

ky→y′cy(ωy′ −ωy). (41)

Let define the followings linear transformations:
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• Ak : RC −→ RC such that

Akx :=
∑

y→y′∈R

ky→y′ xy(ωy′ −ωy), (42)

where xy is the yth component of x.

• Ψ : RS+ −→ R
C
+ such that

Ψ(c) =
∑
y∈C

cyωy. (43)

With these two new mappings we could rewrite the species-formation-rate and

the complex-formation-rate functions as follows:

f (c) = Y AkΨ(c),

g(c) = AkΨ(c).
(44)

Then, if we are studying the existence of an equilibrium for the system, we must ask

ourselves for which c ∈ RS+ it holds Ψ(c) ∈ ker(Y Ak).

Notice that if c ∈ RS+ then Ψ(c) ∈ RC+, so we are interested in the study of

ker(Y Ak)∩RC+.

We should also observe that if Ψ(c) ∈ ker(Ak) ⊂ ker(Y Ak) then g(c) = 0 and complex

balancing occurs at c, which is an interesting case for our study. However in general

for each equilibrium c does not hold c ∈ ker(Ak). The following statement comes

fortunately on our aid.

Lemma 3.1.7. If a deterministic mass-action network (G,KD) has deficiency zero, then

for any k ∈ RR it holds

ker(Y Ak) = ker(Ak). (45)

Then under the hypothesis of deficiency zero an equilibrium exists if and only if

Ψ(c) ∈ ker(Ak).

Therefore to conclude we should study the set ker(Ak)∩RR+ and ask ourselves when

such set contains at least one point.

The answer is given by the following statement, proved in [8].
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Corollary 3.1.8. Let (G,KD) be a deterministic mass-action network. and let k ∈ RR+ .

Then ker(Ak)∩RR+ is nonempty if and only if the network is weak-reversible.

Then by putting together 3.1.8 and 3.1.7 we can state the following:

Proposition 3.1.9. Let (G,KD) be a deterministic mass-action network with

deficiency zero. Then there exists a positive equilibrium c∗ if and only if the network is

weak-reversible.

3.1.3 Existence of a Poisson product stationary distribution for the stochastic

mass-action system

In 3.1.2 we proved that if a deterministic mass action system (G,KD) is

weak-reversible and has deficiency zero, then there exists at least a positive

equilibrium c∗. Moreover in 3.1.1 we proved that such equilibrium is complex

balanced.

At this point, recalling 2.1.7 we can state that:

• within each stoichiometric compatibility class there is only one equilibrium

which is asymptotically stable;

• complex balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class,

then by definition 2.1.3 the system is complex balanced.

Hence the proof simply ends applying Theorem 2.2.5.

3.2 Deficiency zero Theorem for reversible Forest-like networks

Theorem 3.2.1. Let G be a reversible forest-like deficiency zero reaction network.

Then for any assignment of rate constants k ∈ RR+ the resulting stochastic mass-action

34



system admits in each irreducible set Ξ, associated to a stoichiometric compatibility

class, a stationary distribution given by the Poisson product form:

πΞ(x) =


MΞ

∏n
s=1

cxs
s

xs!
, x ∈ Ξ

0, x < Ξ.

(46)

Proof. Noting the stronger reversibility hypothesis of the network, we concentrate this

proof not on complex balancing as before but on reaction balancing instead. We write

then the species-formation-rate function as follows:

f (c) =
∑

y→y′∈R

[
λy→y′(c)−λy′→y(c)

]
(y′− y). (47)

Clearly as stated in 2.1.4 if c∗ ∈ RS+ is a state at which reaction balancing occurs, then

c∗ is an equilibrium. The converse is not necessarily true. However it’s easy to see that

in the special case in which the set of reaction vectors

{y′− y ∈ RS | y→ y′ ∈ R→} (48)

is independent, then reaction balancing must occur at every equilibrium.

Since by Definition 1.1.4 the set (48) is a set of generators for the stoichiometric

subspace, it will be independent precisely when the number of vectors in (48) is equal

to dim(S ) = r.

Consider now the case in which the network is forest like. By a standard result in

graph theory we have that for a forest:

e = v + l̂,

where e is the number of edges, v is the number of vertices and l̂ is the number of

connected components. It follows that:

r = m− l,

where r is the rank of the network, m is the number of complexes and l the number of

linkage classes.

Then, recalling the definition of deficiency in 1.1.11 the following holds:
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Theorem 3.2.2. Reaction balancing obtains at every equilibrium of a kinetic system

in which the underlying reaction network is forest-like and has deficiency zero.

Now we associate the system with a deterministic mass-action kinetics. The

following proposition holds:

Proposition 3.2.3. Let G be a reversible forest-like deficiency zero reaction network.

Then for any choice of k ∈ RR+ , there exists a detailed balanced positive equilibrium.

Proof. We’d like to prove the existence of c∗ ∈ RS+ such that:

ky→y′(c∗)y = ky′→y(c∗)y′ , ∀y→ y′ ∈ R→,

which is equivalent to prove the existence of a vector lnc ∈ RS that satisfies:

〈(y′− y), lnc∗〉 = ln
ky→y′

ky′→y
, ∀y→ y′ ∈ R→.

Because the network is forest-like and has deficiency zero, the set (48) is independent.

Then it is a standard result of linear algebra that, in a vector space with scalar product,

the set of equations ai · x = bi, i = 1, ...,w admits a solution if {a1, ..,aw} is independent

and {b1, ...,bw} is a set of scalars.

Then it is enough to take c∗ = exp {lnc∗}. �

Using the results given by 3.2.3 and recalling Theorem 2.1.6 we just proved that for

any choice of rate constants k ∈ RR+ , if a deterministic mass action system (G,KD) is

forest-like and has deficiency zero, then:

• within each stoichiometric compatibility class there is only one equilibrium

which is asymptotically stable;

• reaction balancing obtains at every positive equilibrium regardless of

stoichiometric compatibility class,

then by definition 2.1.3 the system is reaction balanced. Moreover, recalling the

relations stated in 2.1.5, the system is also complex balanced.

Hence the proof simply ends applying Theorem 2.2.5. �
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3.3 Deficiency One Theorem for weak-reversible networks

Theorem 3.3.1 (Deficiency One Theorem). Let G = {S,C,R} be a Chemical Reaction

Network modelled both deterministically and stochastically with a mass-action

kinetics. Suppose that the network is weak-reversible and it has l linkage classes,

each containing one terminal strong-linkage class.

If the following conditions between the deficiency of the network (δ) and the

deficiencies of the individual linkage classes (δθ, θ = 1, ..., l) hold:

1. δθ ≤ 1, θ = 1, ..., l;

2.
∑l
θ=1 δθ = δ,

then for any choice of rate constants {ki}i there exists in each irreducible set Ξ,

associated to a stoichiometric compatibility class, a stationary distribution given by

the Poisson product form:

πΞ(x) =


MΞ

∏n
s=1

cxs
s

xs!
, x ∈ Ξ

0, x < Ξ.
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Part II
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4

Loops on a Chemical Reaction Network

In this part of the thesis we aim to explore new aspects concerning Chemical

Reaction Networks. In particular we will start our dissertation displaying the contents

and the results of an unpublished article draft [5], and then we will try to extend this

results.

The main innovation brought by the article consists in defining a new notion of

balance, defined on loops which could be generated moving from one state to another

along reactions. We proceed giving a formal definition of a loop.

4.1 Loop and sets of loops

Definition 4.1.1 (Weighted reaction vector loop). Let (G,Λ) be a stochastic reaction

network and let Υ ⊆ Zn
≥0 be a closed set.

We define weighted reaction vector loop for S a finite sequence:

γ = ((ξi, pi))n
i=1 , (49)

such that the following hold:

1. ξi ∈ {y′− y | y→ y′ ∈ R}, ∀ i and:

n∑
i=1

ξi = 0;

2. pi : Υ→ R≥0 ∀ i and:

pi(x) ≤
∑

y→y′∈R|y′−y=ξi

λy→y′(x) ∀ x ∈ Υ; (50)

3. ∀ 1 ≤ i ≤ n, x ∈ Υ it must hold that p1(x) , 0 if and only if pi+1(x + ξi) , 0, with

pn+1 = p1.
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We can observe that Condition 1. is the simply statement that γ is a loop and so the

changes caused by the reactions in the system must be zero when we go through the

whole loop.

Condition 2. states that we are assigning at each reaction vector in the loop a weight

pi (which more or less denote the propensity with which that state change will occur

moving along the loop) but, more important, it states that this weight does not always

coincide but it could be smaller than the sum of the rates of all reactions whose reaction

vector is ξi. The reasons behind this can be explained by the following example.

Figure 4.1

Example 4.1.2

Example 4.1.2. Consider the Chemical Reaction Network described in Figure 4.1 with

set of species S = {A,B}.

First of all if we consider an initial state x = (a,b) it is easy to see that we can define on

the network a loop, starting in x, like the one in Figure 4.2 (where on the arrows there

are the rates of each reaction). So there exists at least one γ which could be defined on

the network.

Figure 4.2

Loop Example

Then, due to the presence of reactions ∅� A and B� ∅, two possible types of loops

can be defined on S as shown in Figure 4.3. This implies that if we chose as initial

state the one indicated by the black dot, we could move along the green reaction which

belongs both to the first and second type loop. Defining pi as in (67) therefore allows to
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describe this phenomenon, assigning a propensity both of moving along green reaction

on Type 1 loop and on Type 2.

Figure 4.3

Example of reactions belonging to more loops

Last but not least, Condition 3. states that all the propensities pi of a loop are not

zero only if the loop can be entirely covered starting from state x. Here follows an

example that shows how this does not always happen.

Example 4.1.3. Consider the CRN in Figure 4.4 and consider as possible reaction

vector loop the following:

γ =

(ξ1 =


−1

1

0

 , p1); (ξ2 =


1

0

−1

 , p2); (ξ3 =


0

−1

1

 , p3)

 ,
which in the Figure is referred as Type 2 loop.

Figure 4.4

Example 4.1.3 (1)
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First of all it is obvious to notice that in such network the mass is preserved. So

if we define xA(t), xB(t), xC(c) as the number of molecules of each species at time t, it

must hold xA(t)+ xB(t)+ xC(t) = N, ∀ t ≥ 0 with xA(0)+ xB(0)+ xC(0) = N. So the space

of states takes a simplex form, as shown in Figure 4.5.

Figure 4.5

Example 4.1.3 (2)

Looking at this representation, we can say that γ can not be considered a loop

according to 4.1.1 because it does not satisfy Condition 3. Indeed if we set each pi

as a proportion of the sum of corresponding rates
∑

y→y′|y′−y=ξi λy→y′(x) and we

consider γ starting from the state x̂ = (N,0,0) (identified by the red cross in Figure 4.5),

the following hold:

• From this initial state the loop can start but it cannot be fully covered

• The corresponding weights satisfy:

– p1(x̂) , 0 because
∑

y→y′|y′−y=ξ1 λy→y′(x̂) , 0

– p2(x̂ + ξ1) = p3(x̂ + ξ1 + ξ2) = 0 because the corresponding reactions are not

active in these states.

So Condition 3. does not hold.

It is also just as easy to verify that on the contrary the Type 1 loop showed in Figure 4.5

satisfies all the conditions stated in Definition 4.1.1.
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4.2 Measures on a set of loops

It makes more sense to define not only one but a set of loops on a network.

Definition 4.2.1 (Complete set of reaction vector loops). Let (G,Λ) be a stochastic

reaction network and let Υ ⊆ Zn
≥0 be a closed set. We define complete set of reaction

vector loops for S on Υ the finite set Γ = {γ j}
m
j=1 of weighted reaction vector loops such

that:

γ j =
(
(ξ j

i , p
j
i )
)n j

i=1
,

and for each ξ ∈ {y′− y | y→ y′ ∈ R} it holds:

m∑
j=1

n j∑
i=1|ξ j

i =ξ

p j
i (x) =

∑
y→y′∈R|y′−y=ξ

λy→y′(x), ∀ x ∈ Υ. (51)

Inspired by what was discussed in Chapter 2, we can also define:

Definition 4.2.2 (Γ balancing). Let (G,Λ) be a stochastic reaction network and let

Υ ⊆ Zn
≥0 be a closed set. Let moreover Γ be a complete set of reaction vector loops on

Υ and let µ be a measure with supp(µ) = Υ.

We say that µ is Γ-balanced if:

µ(x)p j
i (x) = µ(x + ξ

j
i )p j

i+1(x + ξ
j
i ), ∀ x ∈ Υ, 1 ≤ j ≤ m, 1 ≤ i ≤ n j, (52)

where p j
i+1(x + ξ

j
i ) = 0 if x + ξ

j
i < Υ.

Proposition 4.2.3. If µ is Γ-balanced on Υ, then µ is a stationary measure for the

system.

Proposition 4.2.4. Let (G,Λ) be a stochastic reaction network and let Υ ⊆ Zn
≥0 be a

closed set. Let moreover Γ be a complete set of reaction vector loops on Υ and let µ be

a Γ-balanced measure on Υ. Let Γ′ = {γ′j} j be a complete set of reaction vector loops

such that:

∀ γ′j =
(
(ξ′i

j, p′i
j)
)n j

i=1
∃γ j =

(
(ξ j

i , p
j
i )
)n j

i=1
s.t.

{(ξ′1
j, p′1

j), (ξ′2
j, p′2

j), ..., (ξ′n j
j, p′n j

j)} = σ({(ξ j
1, p

j
2), (ξ j

2, p
j
2), ..., (ξ j

n j , p
j
n j)}),

with σ cyclic permutation. Then µ is also Γ′-balanced.
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Proof. Let γ′
j1

=
(
(ξ′i

j1 , p′i
j1)

)n j1

i=1
be a loop in Γ′ defined as before. We want to write the

balancing conditions for γ′
j1

.

From 4.2.4 we know that it exists for sure a γ j2 such that the reaction vectors and the

weights in γ′
j1

are a cyclic permutation of those in γ j2 . Then for each (ξ′i
j1 , p′i

j1) it will

exist a i∗ such that ξ′i
j1 = ξ

j2

i∗ and p′i
j1 = p j2

i∗ . Moreover, being γ′ a cyclic permutation it

will hold ξ′i+1
j1 = ξ′i∗+1

j2 and p′i+1
j1 = p j2

i∗+1.

Therefore we can write:

µ(x)p′i
j1(x) = µ(x)p j2

i∗ (x) = µ(x+ξ
j2

i∗ )p j2

i∗+1(x+ξ
j2

i∗ ) = µ(x+ξ
j1

i )p j1

i+1(x+ξi j1), ∀ x ∈Υ,

and so is also Γ′-balanced. �

We go ahead now giving not only a more formal way to verify the existence of a

Γ-balanced measure but also a method to directly build it.

We need first some new definitions.

Definition 4.2.5 (Weighted path). Let (G,Λ) be a stochastic reaction network and let

Υ ⊆ Zn
≥0 be a closed set. Let moreover Γ be a complete set of reaction vector loops on

Υ.

Given a feasible path (xl)L
l=1 in Υ such that:

xl+1− xl = ξ
jl
il
, ∀1 ≤ l ≤ L−1, 1 ≤ jl ≤ m, 1 ≤ il ≤ n jl ,

and pil
jl
, 0, we define a weighted path from x1 to xL the sequence:

s = ((xl, il, jl))L−1
l=1 . (53)

If x1 = xL the path is called closed.

Notice that jl identifies the loop and il the index inside the loop, of the reaction along

which the path moves from xl.

Definition 4.2.6. We define score of a weighted path s = ((xl, il, jl))L−1
l=1 the quantity

defined as:

η(s(x)) =

L−1∏
l=1

p jl
il

(xl)

p jl
il+1(xl + ξ

jl
il

)
,

with p jl
n jl+1 = p jl

1 .
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Remark 4.2.7. Notice that if we write extensively the product, we find that the score is

the product of factors such as:

p jl
il+1

(xl + ξ
jl
il

)

p jl
il+1(xl + ξ

jl
il

)
, 1 ≤ l ≤ L−1,

in which the numerator is the (l + 1)th step of the path and the denominator is the step

the path should have done after the lth, if it followed the order of reactions imposed by

the loop
(
(ξ j

i , p
j
i )
)n j

i=i
.

Definition 4.2.8. Let s = ((xl, il, jl))L−1
l=1 and s′ =

(
(x′l , i

′
l , j′l)

)L′−1

l=1
be two weighted path

in Υ, such that xL = x′1.

We define concatenation of s and s′ the weighted path defined as follows:

s ∗ s′ =
(
(x̂l, îl, ĵl)

)L+L′−2

l=1
,

with

(x̂l, îl, ĵl) =


(xl, il, jl) if l ≤ L−1

(x′l−L+1, i
′
l−L+1, j′l−L+1) if L ≤ l ≤ L + L′−2.

By definition it also follows that:

η(s ∗ s′) = η(s) ·η(s′).

Theorem 4.2.9. Let (G,Λ) be a stochastic reaction network and let Υ⊆Zn
≥0 be a closed

and irreducible set. Let moreover Γ be a complete set of reaction vector loops.

(G,Λ) is Γ-balanced om Υ if and only if it holds:

η(s(x)) = 1, ∀ weighted closed path s with x ∈ Υ. (54)

If this is the case, then the score of any weighted path s from x1 ∈Υ to xL ∈Υ, depends

only on the initial and final states x1, xL. Moreover for any fixed x∗ ∈ Υ we can build a

stationary measure µ on Υ as:

µ(x) =


0 if x < Υ

η(s), with s any weighted path from x∗ to x if x ∈ Υ

(55)
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Proof. Assume at first that there exists a Γ-balanced measure µ on Υ. Then by

Definition 52 we have that:

1 =

L−1∏
l=1

µ(xl)p jl
il

(xl)

µ(x + ξ
jl
il

)p jl
il+1(xl + ξ

jl
il

)
= η(s), ∀weighted closed paths s.

Notice that the last equality holds because xl + ξ
jl
il

= xl+1, ∀1 ≤ l ≤ L−1 and xL = x1.

On the other hand suppose that all the scores of weighted closed paths based at a state

in Υ are 1. Since Υ is irreducible, for each weighted path s(x, i, j), which is associated

with the single transition from state x to state x + ξ
j
i , we can define a weighted path

s(x, i, j) which goes from x+ξJ
i to x. Hence (x, i, j) ∗ s(x, i, j) is a weighted closed path

and by 4.2.8 we have:

1 = η ((x, i, j) ∗ s(x, i, j)) =
p j

i (x)

p j
i+1(x + ξ

j
i )
·η (s(x, i, j)) ,

and so:

η (s(x, i, j)) =
p j

i+1(x + ξ
j
i )

p j
i (x)

. (56)

Consider also two weighted paths:

s = ((xl, il, jl))L−1
l=1 and s′ =

(
(x′l , i

′
l , j′l)

)L′−1

l=1
,

with x1 = x′1 and xL = x′L. And let be:

ŝ = s ∗ s(x′L′−1, i
′
L′−1, j′L′−1) ∗ ... ∗ s(x′1, i

′
1, j′1)

a closed weighted path. By 4.2.8 and (56) we have:

1 = η(ŝ) = η(s) ·
L′−1∏
l=1

η
(
s(x′l , i

′
l , j′l)

)
) = η(s)

L′−1∏
l=1

p
j′l
i′l+1(x′l + ξ

j′l
i′l

)

p
j′l
i′l

(x′l)
=
η(s)
η(s′)

.

Therefore the score of a weighted path only depends on its initial and final states x1

and xL and can be denoted by η(x1, xL). Moreover it follows that for any x∗ ∈ Υ the

quantity (55) is well defined.

We last have to prove that (55) is Γ-balanced. This easily follows noting that ∀ x ∈ Υ

and ∀1 ≤ j ≤ m, 1 ≤ i ≤ n j, either p j
i = 0 implying

µ(x)p j
i (x) = µ(x + ξ

j
i )p j

i+1(x + ξ
j
i ) = 0,
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or

µ(x)
p j

i (x)

p j
i+1(x + ξ

j
i )

= η(x∗, x)
p j

i (x)

p j
i+1(x + ξ

j
i )

= η(x∗, x + ξ
j
i ) = µ(x + ξ

j
i ).

�

We will report below three examples, two showing the existence and building of a

stationary measure for a CRN, and another one showing on the contrary the existence

of loops but not of a stationary measure for the CRN under consideration.

Figure 4.6

Example 4.2.12

Example 4.2.10. Consider the stochastic mass action system given by the CRN in

Figure 4.6 and let Υ = Z3
≥0. A complete set of reaction loops for the system is given by

the single loop:


−1

1

0

 , λA→B +λA+B→2B

 ,



0

−1

1

 , λB→C +λ2B→B+C

 ,



1

0

−1

 , λC→A +λB+C→A+B


 .

We want to verify that the score of all weighted paths on Υ is 1. In order to do so is

sufficient to show that the score of all minimal weighted closed paths on Υ is equal to 1.

Indeed every other path will be a concatenation of minimal paths and so by Definition

4.2.8 its score will be also 1.

In this case the minimal weighted closed paths are:

s1(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,3,1

 ,

with x1 ≥ 1, and

s2(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,2,1

 ,
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with x1, x3 ≥ 1.

Notice that s1(x) is a basic path, that is it follows exactly the order of reactions of

(4.2.14), and so by Remark 4.2.7 we obviously have that its score is 1. Therefore we

have only to verify that η(s2(x)) = 1. Then we have:

η (s2(x)) =
(k1x1 + k4x1x2)(k3x3 + k6(x2 + 1)x3)(k2(x2 + 1) + k5(x2 + 1)x2)
(k2(x2 + 1) + k5(x2 + 1)x2)(k1x1 + k4x1(x2 + 1))(k3x3 + k6x2x3)

=

(k1 + k4x2)(k3 + k6(x2 + 1))
(k1 + k4(x2 + 1))(k3 + k6x2)

,

which is equal to 1 if and only if k4
k1

=
k6
k3

.

If this holds the system is Γ-balanced and we can build a stationary measure as

follows.

The closed irreducible set for this model are given by:

ΥN = {x ∈ Z3
≥0 | x1 + x2 + x3 = N, N ∈ Z≥0}. (57)

For each ΥN we set x∗ = (N,0,0). Then if we chose as path from x∗ to x the one in

which transition A→ B occurs x2 + x3 times and then transition B→C occurs x3 times,

by (55) we have:

µ(x) = η(x∗, x) =

∏x2+x3−1
l=0 (x1 + x2 + x3− l)(k1 + k4l)∏x2+x3

l=1 l[k2 + k5(l−1)]∏x3−1
l=0 (x2 + x3− l)[k2 + k5(x2 + x3− l−1)]∏x3

l=1 l[k3 + k6(x2 + x3− l)]
=

(x1 + x2 + x3)!
x1!(x2 + x3)!

(
k1

k3

)x3 x2−1∏
l=0

k1 + k4l
k2 + k5l

.

Remark 4.2.11. Notice that we proved the existence of a stationary measure for a

weak-reversible CRN with deficiency δ = |C|− l− s = 6−2−2 = 2.

Example 4.2.12. Consider the stochastic mass action system given by the CRN in

Figure 4.7 and let Υ = Z3
≥0. A complete set of reaction loops for the system is given
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Figure 4.7

Example 4.2

by:





−1

1

0

0


, λA→B +λA+B→2B


,





0

−1

1

0


, λB→C +λ2B→B+C


,





0

0

−1

1


, λC→D +λB+C→B+D


,





1

0

0

−1


, λD→A +λB+D→A+B


.

We want to verify that the score of all weighted paths on Υ is 1.

In this case the minimal and not basic weighted closed paths are:

s1(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,2,1


,





x1−1

x2

x3 + 1

x4


,4,1


,





x1

x2

x3 + 1

x4−1


,3,1




,

with x1 ≥ 1 and x4 ≥ 1

s2(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,4,1


,





x1

x2 + 1

x3

x4−1


,2,1


,





x1

x2

x3 + 1

x4−1


,3,1




,
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with x1 ≥ 1 and x4 ≥ 1.

s3(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,4,1


,





x1

x2 + 1

x3

x4−1


,3,1


,





x1

x2 + 1

x3−1

x4


,2,1




,

with x1 ≥ 1, x4 ≥ 1 and x3 ≥ 1.

s4(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,3,1


,





x1−1

x2 + 1

x3−1

x4 + 1


,4,1


,





x1

x2 + 1

x3−1

x4


,2,1




,

with x1 ≥ 1 and x3 ≥ 1.

s5(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,3,1


,





x1−1

x2 + 1

x3−1

x4 + 1


,2,1


,





x1−1

x2

x3

x4 + 1


,4,1




,

with x1 ≥ 1 and x3 ≥ 1.

Then we compute the scores:

η (s1(x)) =
(k1x1 + k5x1x2)(k2(x2 + 1) + k6(x2 + 1)x2)

(k2(x2 + 1) + k6(x2 + 1)x2)(k3(x3 + 1) + k7(x3 + 1)x2)

(k4x4 + k8x2x4)(k3(x3 + 1) + k7(x3 + 1)x2)
(k1x1 + k5x1x2)(k4x4 + k8x2x4)

,

which is equal to 1.

η (s2(x)) =
(k1x1 + k5x1x2)(k4x4 + k8(x2 + 1)x4)

(k2(x2 + 1) + k6(x2 + 1)x2)(k1x1 + k5x1(x2 + 1))

(k2(x2 + 1) + k6(x2 + 1)x2)(k3(x3 + 1) + k7(x3 + 1)x2)
(k3(x3 + 1) + k7(x3 + 1)x2)(k4x4 + k8x2x4)

,

which is equal to 1 if and only if k5
k1

=
k8
k4

.

η (s3(x)) =
(k1x1 + k5x1x2)(k4x4 + k8(x2 + 1)x4)

(k2(x2 + 1) + k6(x2 + 1)x2)(k1x1 + k5x1(x2 + 1)))

(k3x3 + k7(x2 + 1)x3)(k2(x2 + 1) + k6(x2 + 1)x2)
(k4x4 + k8(x2 + 1)x4(k3x3 + k7x2x3)

,
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which is equal to 1 if and only if k5
k1

=
k7
k3

.

η (s4(x)) =
(k1x1 + k5x1x2)(k3x3 + k7(x2 + 1)x3)

(k2(x2 + 1) + k6(x2 + 1)x2)(k4(x4 + 1) + k8(x2 + 1)(x4 + 1))
(k4(x4 + 1) + k8(x2 + 1)(x4 + 1))(k2(x2 + 1) + k6(x2 + 1)x2)

(k1x1 + k5x1(x2 + 1))(k3x3 + k7x2x3)
,

which is equal to 1 if and only if k5
k1

=
k7
k3

.

η (s5(x)) =
(k1x1 + k5x1x2)(k3x3 + k7(x2 + 1)x3)

(k2(x2 + 1) + k6(x2 + 1)x2)(k4(x4 + 1) + k8(x2 + 1)(x4 + 1))
(k2(x2 + 1) + k6(x2 + 1)x2)(k4(x4 + 1) + k8x2(x4 + 1))

(k3x3 + k7x2x3)(k1x1 + k5x1x2)

which is equal to 1 if and only if k7
k3

=
k8
k4

.

If this holds the system is Γ-balanced and we can build a stationary measure for

each closed irreducible set of this model.

Remark 4.2.13. Notice that also in this case we proved the existence of a stationary

measure for a weak-reversible CRN with deficiency δ = |C| − l− s = 8− 2− 3 = 3. In

addition we observe that conditions:

k5

k1
=

k8

k4
and

k5

k1
=

k7

k3

are the ones that implies the measure to be complex balanced. Then, in this case, the

distribution existence and its form is already known in literature.

Figure 4.8

Example 4.2.14

Example 4.2.14. Consider the stochastic mass action system given by the CRN in

Figure 4.8 and let Υ = Z3
≥0. A complete set of reaction loops for the system is given by

the single loop:


−1

1

0

 , λA→B +λA+B→2B

 ,



0

−1

1

 , λB→C +λB+C→2C

 ,



1

0

−1

 , λC→A +λC+A→2A


 .
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We want to show that in this case the complete set is not Γ-balanced and so no

stationary measures could be found on it. To do this we show in this case that, within

the minimal weighted paths on Υ there exists at least one which has score different

from 1. As shown in previous examples the minimal paths are:

s1(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,3,1

 ,

with x1 ≥ 1, and

s2(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,2,1

 ,

with x1, x3 ≥ 1.

Also in this case s1(x) is a basic paths, and so its score is necessarily 1.

Therefore we have only to verify that η(s2(x)) , 1. We have:

η(s2(x)) =
(k1x1 + k4x1x2)(k3x3 + k6(x1−1)x3)(k2(x2 + 1) + k5(x2−1)(x3 + 1)

(k2(x2 + 1) + k5(x2 + 1)x3)(k1x1 + k4x1(x2 + 1))(k3x3 + k6(x1x3
(58)

Suppose that η(s2(x)) = 1 holds, in this case we should have:

(k1x1 + k4x1x2)(k3x3 + k6(x1−1)x3)(k2(x2 + 1) + k5(x2−1)(x3 + 1) =

(k2(x2 + 1) + k5(x2 + 1)x3)(k1x1 + k4x1(x2 + 1))(k3x3 + k6(x1x3)),

for certain values of rate {ki}i.

By carrying out the counts it results:

(k1k2k3− k1k3k5− k1k2k6 + k1k5k6)x1x3 + (k1k5k6− k1k3k5)x1x2
3− k1k5k6x2

1x2
3+

(k1k2k3 + k1k3k5− k1k2k6− k1k5k6− k3k4k5− k2k4k6 + k4k5k6)x1x2x3+

k1k2k6x2
1x3 + (k1k3k5− k1k5k6− k3k4k5 + k4k5k6)x1x2x2

3+

(k1k2k6 + k1k5k6 + k2k46− k4k56)x2
1x2x3+

(k1k5k6− k4k5k6)x2
1x2x2

3 + (k3k4k5− k4k5k6)x1x2
2x2

3+

(k3k4k5− k2k4k6− k4k5k6)x1x2
2x3 + (k2k4k6 + k4k5k6)x2

1x2
2x3 + k4k5k6x2

1x2
2x2

3 =
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(k1k2k3 + 2k2k3k4)x1x2x3 + (k1k2k3 + k2k3k4)x1x3 + (k1k2k6 + 2k2k4k6)x2
1x2x3

+(k1k2k6 + k2k4k6)x2
1x3 + k2k3k4x1x2

2x3 + k2k4k6x2
1x2

2x3+

(k1k3k5 + 2k3k4k5)x1x2x2
3 + (k1k3k5 + k3k4k5)x1x2

3 + (k1k5k6 + 2k4k5k6)x2
1x2x2

3+

(k1k5k6 + k4k5k6)x2
1x2

3 + k3k4k5x1x2
2x2

3 + k4k5k6x2
1x2

2x2
3,

from which we obtain the following system of equations having the coefficients as

unknowns:

k1k2k3− k1k3k5− k1k2k6 + k1k5k6 = k1k2k3 + k2k3k4

k1k5k6− k1k3k5 = k1k3k5 + k3k4k5

k1k2k3 + k1k3k5− k1k2k6− k1k5k6− k3k4k5− k2k4k6 + k4k5k6 = k1k2k3 + 2k2k3k4

k1k2k6 = k1k2k6 + k2k4k6

k1k3k5− k1k5k6− k3k4k5 + k4k5k6 = k1k3k5 + 2k3k4k5

k1k2k6 + k1k5k6 + k2k46− k4k56 = k1k2k6 + 2k2k4k6

k1k5k6− k4k5k6 = k1k5k6 + 2k4k5k6

k3k4k5− k4k5k6 = k3k4k5

k3k4k5− k2k4k6− k4k5k6 = k2k3k4

k4k5k6 = k4k5k6

k2k4k6 + k4k5k6 = k2k4k6

−k1k5k6 = k1k5k6 + k4k5k6

(59)

It’s easy to notice, by looking at the last two equations, that k4k5k6 = 0 and k1k5k6 = 0.

This is possible if:

• k5 = 0

• k6 = 0

• k4 = 0 and k1 = 0

However all cases are in contradiction with the existence of such a CRN.

Then necessarily η(s2(x)) , 1 and so the complete set is not Γ-balanced.
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4.3 A new and more general form of balancing

Inspired by the definition of a measure Γ-balanced in 52 and by the generalized

balancing defined in 25, we’ll define in this section a more general type of stochastic

balancing.

Definition 4.3.1. Let (G,Λ) be a stochastic reaction system and suppose that π is a

measure defined on Zn. π is said to be generalized rate balanced if there exists a set of

tuples of subsets of R, {(Li,Ri)i∈A}, with⋃
i∈A

Li =
⋃
i∈A

Ri = R, (60)

and can be defined ∀ y→ y′ ∈ R, and ∀ x some weights which satisfies:

qLi

y→y′(x) , 0 if and only if y→ y′ ∈ Li, ∀ i ∈ A

qRi

y→y′(x) , 0 if and only if y→ y′ ∈ Ri, ∀ i ∈ A

such that
∑
i∈A

qLi

y→y′(x) =
∑
i∈A

qRi

y→y′(x) = λy→y′(x),

(61)

and ∑
y→y′∈R

π(x + y− y′)qLi

y→y′(x + y− y′) = π(x)
∑

y→y′∈R

qRi

y→y′(x). (62)

Figure 4.9

Generalized rate balanced

Notice that in (60) it is no longer required for the sets Li (and respectively Ri) to

form a partition of the space of reactions R. In other words we are allowing the same

reaction to be present in more than one set and, if this happens, we divide it among the

sets in which it is present. An example of this idea is shown in Figure 4.9.
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Proposition 4.3.2. Let (G,Λ) be a stochastic reaction network and let Υ ⊆ Zn
≥0 be a

closed set. Let moreover Γ be a complete set of reaction vector loops on Υ and let µ be

a Γ-balanced measure with supp(µ) = Υ. Then µ is generalized rate balanced.

Proof. Consider the following set of tuples of subsets of R, {(L j
i ,R

j
i )1≤i≤n j,1≤ j≤m},such

that:

L j
i = {y→ y′ ∈ R | y′− y = ξ

j
i , ∀1 ≤ i ≤ n j, 1 ≤ j ≤ m},

and

R j
i = {y→ y′ ∈ R | y′− y = ξ

j
i+1, ∀1 ≤ i ≤ n j, 1 ≤ j ≤ m},

with ξ j
n j+1 = ξ

j
1. It is obvious to see that:⋃

1≤i≤n j,1≤ j≤m

L j
i =

⋃
1≤i≤n j,1≤ j≤m

R j
i = R.

Recall now that we have supposed µ to be Γ-balanced:

µ(x− ξ j
i )p j

i (x− ξ j
i ) = µ(x)p j

i+1(x), ∀ x ∈ Υ, 1 ≤ j ≤ m, 1 ≤ i ≤ n j.

Therefore, if we define ∀ y→ y′ ∈ R, ∀ x the following weights:

• If y→ y′ ∈ L j
i we associate for each x ∈ Υ a weight qL j

i
(x) , 0 such that∑

y→y′∈L j
i

qL j
i
(x) = p j

i (x), ∀1 ≤ i ≤ n j, 1 ≤ j ≤ m}, (63)

otherwise if y→ y′ < L j
i , qL j

i
= 0.

• If y→ y′ ∈ R j
i we associate for each x ∈ Υ a weight qR j

i
(x) , 0 such that∑

y→y′∈R j
i

qR j
i
(x) = p j

i+1(x), ∀1 ≤ i ≤ n j, 1 ≤ j ≤ m}, (64)

otherwise if y→ y′ < R j
i , qR j

i
= 0,

we obtain:

µ(x− ξ j
i )

∑
y→y′∈R|y′−y=ξ

j
i

qL j
i
(x− ξ j

i ) = µ(x)
∑

y→y′∈R|y′−y=ξ
j
i+1

qR j
i
(x).
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Summing all over ξ j
i ∈ R

S it results:∑
y→y′∈R

µ(x+y−y′)qL j
i
(x+y−y′) =

∑
y→y′∈R

µ(x)qR j
i
(x), ∀1≤ i≤ n j, 1≤ j≤m}, (65)

so µ is generalized rate balanced.

Notice that the definition of qL j
i

and qR j
i

is consistent with (61) because Γ is a complete

set of reaction vector loops and so (51) holds. �
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5

A new perspective: loops defined on reactions

In this chapter we aim to extend the previous results. In particular we will define a

different type of loops, based not any more on reaction vectors but on specific

reactions and we will give for this loops a new definition of balancing. Then we will

try to see the connections between this new balancing form and the Γ-balancing

previously introduced, looking for cases for which the new formalization could

guarantee, differently than before, the existence of a stationary measure.

5.1 New models

Definition 5.1.1 (Weighted reaction loop). Let (G,Λ) be a stochastic reaction network

and let Υ ⊆ Zn
≥0 be a closed set. We define weighted reaction loop:

δ =
(
(yi→ y′i ,qi)

)n

i=1
, (66)

such that the following hold:

1. yi→ y′i ∈ R, ∀ i and
n∑

i=1

y′i − yi = 0;

2. qi : Υ→ R≥0, ∀ i and

qi(x) ≤ λyi→y′i
(x) ∀ x ∈ Υ; (67)

3. ∀ 1 ≤ i ≤ n, x ∈ Υ it must hold that qi(x) , 0 if and only if qi+1(x + y′i − yi) , 0,

with qn+1 = q1.

If the CRN is weak-reversible we say that the loop is graph-related if it holds:

y′i = yi+1, i = 1, ...,n−1 and y′n = y1
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Definition 5.1.2 (Complete set of reaction loops). Let (G,Λ) be a stochastic reaction

network and let Υ ⊆ Zn
≥0 be a closed set. We define complete set of reaction loops for

S on Υ the finite set ∆ = {δ j}
m
j=1 of weighted reaction vector loops such that:

δ j =
(
(y j

i → y′i
j,q j

i )
)n j

i=1
,

and for each y→ y′ ∈ R it holds:
m∑

j=1

∑
i=1

q j
i (x)1(y j

i =y,y′i
j=y′) = λy→y′(x), ∀ x ∈ Υ. (68)

The set is called graph-related if all the reaction loops in it are graph-related.

Definition 5.1.3 (∆-reaction balanced). Let (G,Λ) be a stochastic reaction network and

let Υ ⊆ Zn
≥0 be a closed set. Let moreover ∆ be a complete set of reaction loops on Υ

and let µ be a measure with supp(µ) = Υ.

We say that µ is ∆- balanced if:

µ(x)q j
i (x) = µ(x + y′i

j− y j
i )q j

i+1(x + y′i
j− y j

i ), ∀ x ∈ Υ, 1 ≤ j ≤ m, 1 ≤ i ≤ n j, (69)

where q j
i+1(x + y′i

j− y j
i ) = 0 if x + y′i

j− y j
i < Υ.

Proposition 5.1.4. Let (G,Λ) be a stochastic weak-reversible reaction network and let

Υ ⊆ Zn
≥0 be a closed set. Let moreover ∆ be a complete set of graph-related reaction

loops on Υ and let µ be a ∆-balanced measure with supp(µ) = Υ. Then µ is complex

balanced.

Proof. First of all notice that if the network is weak-reversible, then necessarily each

reaction is included in at least one loop and so it is obviously always possible to build

a complete set of reaction loops. Secondly fix x ∈ Υ and y ∈ C.

Then, for each y′ ∈ C, if y′→ y is active in x+y′−y, then it necessary belongs to a loop

of the complete set of graph-related reaction loops by definition of completeness. So

using the hypothesis on µ we can write:

µ(x− y′i
j + y j

i )q j
i (x− y′i

j + y j
i ) = µ(x)q j

i+1(x),

where y′i
j = y and y j

i = y′.

Notice that if this holds then there necessarily exists a complex y′′ ∈ C such that y j
i+1 = y
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and y′i+1
j = y′′. Moreover the reaction y→ y′′ is also active by condition 3. in Definition

5.1.1.

Now sum over y′ ∈ C and i, j such that y′i
j = y and y j

i = y′. We have:∑
y′∈C

∑
i, j

µ(x− y′i
j + y j

i )q j
i (x− y′i

j + y j
i )1(y j

i =y,y′i
j=y′) =

∑
y′∈C

∑
i, j

µ(x)q j
i+1(x)1(y j

i =y,y′i
j=y′).

(70)

Now by definition of q j
i for a complete set of reaction loops and by renominating the

y′′ mentioned before as y′ (this is possible because we are summing all over y′ so we

are considering all possible reactions ∗ → y and so on the other hand all the possible

reactions y→ ∗ active in x) we obtain:∑
y′∈C

µ(x + y′− y)λy′→y(x + y′− y) =
∑
y′∈C

µ(x)λy→y′(x),

which is exactly the definition of a complex balanced measure. �

5.2 Reaction loops and Reaction vector loops

We study now the connection between reaction loops and reaction vector loops.

Notice first that by Definition 4.2.1 it could happen that in a complete set of reaction

vector loops Γ the same cycle appears more than once (that is the same sequence of

ξi appears in more than one loop, obviously with different weights associated for each

loop). Then we could rewrite the set ∆ expressed with reactions using reaction vectors

as follows:

γ̂ j =
(
(ξ j

i ,q
j
i )
)n j

i=1
, ξ

j
i = y′i

j− y j
i .

In addition notice that for each i, j it holds:

q j
i (x) ≤ λy j

i→y′i
j(x) ≤

∑
y→y′∈R|y′−y=ξ

j
i

λy→y′(x),

and
m∑

j=1

∑
y→y′∈R|y′−y=ξ

n j∑
i=1

q j
i (x)1(y j

i =y,y′i
j=y′) =

∑
y→y′∈R|y′−y=ξ

λy→y′(x), ∀ξ ∈ RS (71)

So ∆ = {δ j} j could be mapped in a complete set of reaction vector loops and definition

5.1.3 corresponds to (52) with weights q j
i .
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Hence, for ∆, Theorem 4.2.9 holds and so we can check the existence of a ∆-

balanced measure by computing the score of all minimal paths in ∆. Moreover if this

measure exists we know which form it takes.

Notice that when we rewrite the complete set of reaction loops in terms of reaction

vectors, we get a complete set of reaction vector loops that contains unnecessary

redundancies. Therefore the following definition naturally follows:

Definition 5.2.1. Let (G,Λ) be a stochastic reaction network and let Υ ⊆ Zn
≥0 be a

closed set. Let also ∆ = {δ j}
m
j=1 be a complete set of reaction loops on Υ. We can build

what we call a natural complete set of reaction vector loops, Γ = {γs}s on Υ,

corresponding to ∆ in the following way:

Set s = 1, j = 1

while ( j ≤ m)

if ∃ s′ ≤ s |

γs′ =
(
(ξs

t , p
s′
t )

)n j

t=1
such that

ξs′
1 = y′1

j− y j
1, ξ

s′
2 = y′2

j− y j
2, ..., ξ

s′
n j

= y′n j
j− y j

n j

j = j + 1;

else

set γs =
(
(ξs

t , p
s
t )
)
t

such that

ξs
1 = y′1

j− y j
1, ξ

s
2 = y′2

j− y j
2, ..., ξ

s
n j

= y′n j
j− y j

n j;

s = s + 1;

j = j + 1;

end

end,

with arbitrary weights ps
t chosen so as to meet the conditions in (4.2.1).

Notice that this is a different type of mapping from that in (5.2), even if it also

describes a correspondence between the set of complete set of reaction loops and the

set of complete set of reaction vector loops.
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Figure 5.1

Example:5.2.2

After these considerations we would therefore like to study the relations between a

complete set of reaction loops ∆ and its own arbitrary corresponding natural complete

set of reaction vector loops Γ, focusing in particular on the possible relations between

the existence of a ∆-reaction balanced measure and that of a Γ-balanced measure.

5.2.1 Γ-balanced does not imply ∆-balanced

In this regard let’s consider the following example.

Example 5.2.2. Let (G,Λ) be again the stochastic weak-reversible mass action reaction

network based on the CRN in Figure 5.1 and let be ∆1 a complete set of reaction

loops and ∆2 a graph-related complete set of reaction loops, both with corresponding

complete set of reaction vector loops Γ defined as follows:

1.

∆1 = {δ1
1 = ((r1

1,1,q1
1,1), (r2

1,1,q2
1,1), (r3

1,1,q3
1,1));

δ1
2 = ((r1

1,2,q1
1,2), (r2

1,2,q2
1,2), (r3

1,2,q3
1,2))}

r1
1,1 = A + B→ 2B

r2
1,1 = B→C

r2
1,1 = C→ A

r1
1,2 = A→ B

r2
1,2 = 2B→ B+C

r3
1,2 = B+C→ A + B
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q1
1,1 = λA+B→2B

q2
1,1 = λB→C

q3
1,1 = λC→A

q1
1,2 = λA→B

q2
1,2 = λ2B→B+C

q3
1,2 = λB+C→A+B

2.

∆2 = {δ2
1 = ((r1

1,1,q1
2,1), (r2

2,1,q2
2,1), (r3

2,1,q3
2,1));

δ2
2 = ((r1

2,2,q1
2,2), (r2

2,2,q2
2,2), (r3

2,2,q3
2,2))}

r1
2,1 = A→ B

r2
2,1 = B→C

r2
2,1 = C→ A

r1
2,2 = A + B→ 2B

r2
2,2 = 2B→ B+C

r3
2,2 = B+C→ A + B



q1
2,1 = λA→B

q2
2,1 = λB→C

q3
2,1 = λC→A

q1
2,2 = λA+B→2B

q2
2,2 = λ2B→B+C

q3
2,2 = λB+C→A+B

3.

Γ = {γ = ((ξ1, p2), (ξ2, p2), (ξ3, p3))}, with
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ξ1 = ξA→B,A+B→2B

ξ2 = ξB→C,2B→B+C

ξ3 = ξC→A,B+C→A+B
p1 = λA→B +λA+B→2B

p2 = λB→C +λ2B→B+C

p3 = λC→A +λB+C→A+B

Now we want to know if these complete sets are balanced or not. Hence, by 4.2.9,

we have to compute the score of all minimal paths for each complete set and check if

they are all equal to 1. We have:

1. In this case the corresponding redundant complete set of reaction vector loops to

∆1 is:

Γ1 = {γ̂1
1 = ((ξ1

1,1,q1
1,1), (ξ2

1,1,q2
1,1), (ξ3

1,1,q3
1,1));

γ̂1
2 = ((ξ1

1,2,q1
1,2), (ξ2

1,2,q2
1,2), (ξ3

1,2,q3
1,2))}, with

ξ1
1,1 = ξ1

1,2 = ξA→B,A+B→2B

ξ2
1,1 = ξ2

1,2 = ξB→C,2B→B+C

ξ3
1,1 = ξ3

1,2 = ξC→A,B+C→A+B

It is easy to see that the minimal path

s1(x) =
(
(x,1,2), (x + ξ1

1,2,2,1), (x + ξ1
1,2 + ξ2

1,1,3,1)
)

have score different from one. Indeed:

s1(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,3,1



η(s1(x)) =
q1

1,2(x)
q21,2)(x + ξ11,2)

q2
1,1(x + ξ1

1,2)
q31,1)(x + ξ11,2 + ξ21,1)

q3
1,1)(x + ξ1

1,2 + ξ2
1,1)

q11,1)(x)
=
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kA→Bx1

k2B→B+C(x2 + 1)x2

kB→C(x2 + 1)
kC→A(x3 + 1)

kC→A(x3 + 1)
kA+B→2Bx1x2

,

which is obviously not possible 1 if we look at the first and last denominator. So

the complete set of reaction vector loops ∆1 is not ∆-balanced.

2. In this case the corresponding complete set of reaction vector loops to ∆2 is:

Γ2 = {γ̂2
1 = ((ξ1

2,1,q1
2,1), (ξ2

2,1,q2
2,1), (ξ3

2,1,q3
2,1));

γ̂2
2 = ((ξ1

2,2,q1
2,2), (ξ2

2,2,q2
2,2), (ξ3

2,2,q3
2,2))}, with

ξ1
2,1 = ξ1

2,2 = ξA→B,A+B→2B

ξ2
2,1 = ξ2

2,2 = ξB→C,2B→B+C

ξ3
2,1 = ξ3

2,2 = ξC→A,B+C→A+B

In this case the complete set of graph-related reaction loops ∆2 is ∆-balanced

instead.

We show below the counts for the score of the two more particular minimal paths.

The others can be verified in a similar way.

Consider:

s2
1(x) =

(
(x,1,2), (x + ξ1

2,2,2,1), (x + ξ1
2,2 + ξ2

2,1,3,1)
)

s2
2(x) =

(
(x,1,1), (x + ξ1

2,1,3,1), (x + ξ1
2,1 + ξ3

2,1,2,1)
)

We have:

s2
1(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,3,1



η(s2
1(x)) =

q1
2,2(x)

q22,2(x + ξ12,2)
q2

2,1(x + ξ1
2,2)

q32,1(x + ξ12,2 + ξ22,1)
q3

2,1(x + ξ1
2,2 + ξ2

2,1)
q12,1(x)

=

(kA+B→2Bx1x2

k2B→B+C(x2 + 1)x2

kB→C(x2 + 1)
kC→Ax1(x3 + 1)

kC→A(x3 + 1)
kA→Bx1

,

which is obviously equal to 1.

s2
2(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,2,1
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Figure 5.2

Example:5.2.3

η(s2
2(x)) =

q1
2,1(x)

q22,1(x + ξ12,1)
q3

2,1(x + ξ1
2,1)

q12,1(x + ξ12,1 + ξ32,1)
q2

2,1(x + ξ1
2,1 + ξ3

2,1)
q32,1(x)

=

(kA→Bx1

kB→C(x2 + 1)
kC→Ax3

kA→Bx1

kB→C(x2 + 1)
kC→Ax3

,

which is also obviously equal to 1.

3. In this case the complete set of reaction vector loops is obviously Γ-balanced

since we have already proved it in Example 4.2.12.

So if a natural complete set of reaction vector loops is balanced, this does not

imply that the corresponding complete set of reaction loop it is. Moreover, it’s easy to

observe that if the network is weak-reversible, describing it using a complete set of

reaction loops is more restrictive then describing it with a complete set of

graph-related reaction loops, which in this case is on the contrary balanced as the set

of reaction vector loops.

This is because, if loops already naturally exist in the graph structure of the CRN, it’s

easy to think that as time goes by, reactions will trend to occur following the already

defined loops. So, defining a background structure which breaks this intuitive flow,

won’t fit well with the dynamic model.

Now we can ask ourselves: does natural and Γ-balanced complete set of reaction

vector loops imply ∆-balanced corresponding complete set of graph-related reaction

loops? Also in this case the answer is no and so the reaction loop model is not

equivalent to the reaction vector one. We prove our statement with the following

examples.

Example 5.2.3. Consider the weak-reversible CRN in Figure 5.2 and let be ∆ and Γ

a complete set of graph-related loops and its corresponding natural complete set of
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reaction vector loops, defined as follows:

∆ = {δ1 = ((r1
1,q1

1), (r2
1,q2

1));

δ2 = ((r1
2,q1

2), (r2
2,q2

2))}

r1
1 = ∅ → A

r2
1 = A→ ∅

r1
2 = 2A→ 3A

r2
2 = 3A→ 2A



q1
1 = λ∅→A

q2
1 = λA→∅

q1
2 = λ2A→3A

q2
2 = λ3A→2A

Γ = {γ = ((ξ1, p1), (ξ2, p2))}

ξ1 = ξ∅→A,2A→3A

ξ2 = ξA→∅,3A→2A


p1 = λ∅→A +λ2A→3A

p2 = λA→∅+λ3A→2A

Now we want to verify if these complete sets are balanced.

It is easy to see that the complete set of reaction vector loops is always Γ-balanced.

That is because the only minimal not basic path is s(x) = ((x,1,2), (x + ξ1,3)), which is

obviously a cyclic permutation of the basic path defined by moving on the loop in Γ.

So it is necessarily balanced.
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On the other hand we now verify the balancing of ∆.

In this case the corresponding redundant complete set of reaction vector loops to ∆1 is:

Γd = {γ̂d
1 = ((ξ1

d,1,q1
d,1), (ξ2

d,1,q2
d,1));

γ̂d
2 = ((ξ1

d,2,q1
d,2), (ξ2

d,2,q2
d,2))}, with

ξ1
d,1 = ξ1

d,2 = ξ∅→A,2A→3A

ξ2
d,1 = ξ2

d,2 = ξA→∅,3A→A

The minimal and not basic paths are:

s1(x) =
(
(x,1,1), (x + ξd,1

1 ,2,2)
)
,

s2(x) =
(
(x,1,2), (x + ξd,2

1 ,2,1)
)
,

and their cyclic permutations. The counts for the scores of these paths are really similar

between each other and they all lead to the same results, hence we will show only the

first one of them.

s1(x) = ((x,1,1) , (x + 1,2,2) , )

η(s1(x))) =
q1

d,1(x)
q2d,1(x + ξ1d,1)

q2
d,2(x + ξ1

d,1)
q1d,2(x)

=

k∅→A

kA→∅(x + 1)
k3A→2A(x1 + 1)x(x−1)

k2A→3Ax(x−1)
,

which is obviously equal to 1 only if k∅→A
kA→∅

=
k2A→3A
k3A→2A

.

So it is not true that a natural complete set of reaction vector loops Γ- balanced, implies

its corresponding complete set of graph-related reaction loops to be ∆-balanced.

Remark 5.2.4. We should notice two things about the above example:

1. The network has 4 complexes, 2 linkage classes and the rank of the network is

obviously 1. So the deficiency is 1.
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2. It’s easy to see that for the pair of reactions ∅� A, the only possible complex

balanced measure is µ(x) =
(

k∅→A
kA→∅

)x

x! . Moreover this measure is complex balanced

for the other pair of reactions if and only if:

( k∅→A
kA→∅

)x−1

(x−1)!
k2A→3A(x−1)(x−2) =

( k∅→A
kA→∅

)x

x!
k3A→2Ax(x−1)(x−2),

which holds exactly only if k∅→A
kA→∅

=
k2A→3A
k3A→2A

.

This is not only a practical confirmation of the validity of Proposition 5.1.4, but it also

means that thanks to reaction vector loops we have found the existence of a stationary

measure for cases in which the CRN which has one deficiency but is not complex

balanced, which is a case that does not fall under Theorem 3.3.1.Last but not least

notice that if we add more reactions of type αA→ (α+ 1)A, with α > 2, we found

CRN with deficiency greater then 1, for which is always possible to find a stationary

measure describing the network with a complete set of reaction vector loops, even in

not complex balanced cases.

In other words, with these examples we have shown that Γ-balanced does not

necessary imply ∆-balance. Then for sure the two balancing conditions are not

equivalent. We should however ask ourselves what happens about the other

implication, that is does ∆-balanced imply Γ-balanced?

We will show that in this case the answer depends on the definition of the complete

set of reaction loops.

5.2.2 When ∆-balanced implies Γ-balanced

Proposition 5.2.5. Let (G,Λ) be a generic stochastic reaction network and let Υ ⊆ Zn
≥0

be a closed set.

Let moreover ∆ = {δ j}
m1
j=1:

δ j =
(
(y j

i → y′i
j,q j

i )
)n j

i=1

be a complete set of reaction loops containing all possible loops in Υ and let µ be a ∆-

balanced measure on Υ.
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Moreover let be:

Γ = {γs}
m2
s=1,

γs =
(
(ξs

t , p
s
t )
)ns
t=1 ,

one natural complete set of reaction vector loops in Υ corresponding to ∆, with weights

defined as follows for each s and t∗ fixed:

ps
t∗(x) =

1
M

∑
γ̂ j|{y′i

j−y j
i }i=σ({ξs

t }t)

∑
y′i

j−y j
i =ξ

s
t∗

q j
i (x),

where M is the number of all reactions in {γs}s ∈ Γ which have reaction vector ξ = ξt∗
s ,

and σ is a cyclic permutation.

Then µ is also Γ-balanced.

Proof. We have to show that the Γ-balanced equation holds for µ for each γs. So we

write:

µ(x)ps
t∗(x) =∑

γ̂ j|{y′i
j−y j

i }i = σ({ξs
t }t)

1
M

∑
y′i

j−y j
i = ξs

t∗

µ(x)q j
i (x) =

∑
γ̂ j|{y′i

j−y j
i }i = σ({ξs

t }t)

1
M

∑
y′i

j−y j
i =ξ

s
t∗+1

µ(x + y′i
j− y j

i )q j
i+1(x + y′i

j− y j
i ) =

where the last equality derives from writing the first summation extensively, applying

the definition of ∆- balanced, from the type of set we chose for pick up the q j
i in the

definition of ps
t and from Proposition 4.2.4.

This is equal to:

µ(x + ξs
t∗+1)

1
M

∑
γ̂ j|{y′i

j−y j
i }i = σ({ξs

t }t)

∑
y′i

j−y j
i =ξ

s
t∗+1

q j
i+1(x + ξs

t∗) =

µ(x + ξs
t∗+1)ps

t∗(x + ξs
t∗+1)

The same reasoning holds ∀ s, t. So the natural complete set of reaction vector loops is

Γ-balanced with respect to measure µ. �

Notice that if we have a ∆-balance CRN, with ∆ complete set of reaction loops, not

graph related and which does not contain all possible closed paths in the network, then
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∆-balance does not necessary imply Γ-balance.

Suppose indeed that:

∆ = {lδ1 = {(r1
1,q

1
1), (r1

2,q
1
2), (r1

3,q
1
3)},

δ2 = {(r2
1,q

2
1), (r2

2,q
2
2), (r2

3,q
2
3)}},

where

q1
1(x) = a1λr1

1
(x),

q1
2(x) = a2λr1

2
(x),

q1
3(x) = a3λr1

3
(x),

q2
1(x) = bλr2

1
(x),

q2
2(x) = λr2

2
(x),

q2
3(x) = λr2

3
(x),

(72)

with ai,b ∈ [0,1]. Suppose now that r1
1 and r2

1 lead to the same state change, that is they

have same reaction vector ξ. Moreover suppose that ξ1
i , ξ

2
j , i, j ∈ {2,3} instead.

Consider now the corresponding complete set of reaction vector loops:

Γ = {γ1 = {(ξ1
1, p

1
1), (ξ1

2, p
1
2), (ξ1

3, p
1
3)},

γ2 = {(ξ2
1, p

2
1), (ξ2

2, p
2
2), (ξ2

3, p
2
3)}},

where:

ξ1
1 = ξ2

1 = ξr1
1 ,r

2
1

= ξ,

ξ1
2 = ξr1

2
,

ξ1
3 = ξr1

3
,

ξ2
2 = ξr2

2
,

ξ2
3 = ξr2

3
.
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p1
1(x) = λr1

1
(x) +λr2

1
(x),

p1
2(x) = λr1

2
(x),

p1
3(x) = λr1

3
(x),

p2
1(x) = λr1

1
(x) +λr2

1
(x),

p2
2(x) = λr2

2
(x),

p1
3(x) = λr2

3
(x).

Notice that the network could be Γ-balanced, only if, for the following closed path

s∗(x) =
(
(x,1,1) ,

(
x + ξ1

1,3,1
)
,
(
x + ξ1

1 + ξ1
3),2,1

))
,

it also holds:

η(s∗(x)) =
p1

1(x)

p1
2(x + ξ1

1)

p1
3(x + ξ1

1)

p1
1(x + ξ1

1 + ξ1
3))

p1
2(x + ξ1

1 + ξ1
3)

p1
3(x)

=,

λr1
1
(x) +λr2

1
(x)

λr1
2
(x + ξ1

1)

λr1
3
(x + ξ1

1)

λr1
1
(x + ξ1

1 + ξ1
3)) +λr2

1
(x + ξ1

1 + ξ1
3))

λr1
2
(x + ξ1

1 + ξ1
3))

λr1
3
(x)

= 1.

Now came back to the complete set of reaction loops. We supposed that ∆ is

balanced and so the score of all closed paths on the network is necessarily 1. Then, if

we take the paths:

s1(x) =
(
(x,1,1) ,

(
x + y′1

1− y1
1,3,1

)
,
(
x + y′1

1− y1
1 + y′3

1− y1
3),2,1

))
,

s2(x) =
(
(x,1,2) ,

(
x + y′1

2− y2
1,3,1

)
,
(
x + y′1

2− y2
1 + y′3

1− y1
3),2,1

))
,

the following must hold:

η(s1(x)) =
a1λr1

1
(x)

a2λr1
2
(x + y′1

1− y1
1)

a3λr1
3
(x + y′1

1− y1
1)

a1λr1
1
(x + y′1

1− y1
1 + y′3

1− y1
3)

a2λr1
2
(x + y′1

1− y1
1 + y′3

1− y1
3)

a3λr1
3
(x)

= 1.

η(s2(x)) =
bλr2

1
(x)

a2λr1
2
(x + y′1

2− y2
1)

a3λr1
3
(x + y′1

2− y2
1)

a1λr1
1
(x + y′1

2− y2
1 + y′3

1− y1
3)

a2λr1
2
(x + y′1

1− y1
1 + y′3

1− y1
3)

a3λr1
3
(x)

= 1.

It is easy to see, recalling

y′1
1− y1

1 = y′1
2− y2

1 = ξ = ξ1
1 = ξ2

1

y′2
1− y1

2 = ξ1
2
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y′3
1− y1

3 = ξ1
3

that η(s1(x)) = η(s2(x)) = 1 does not imply η(s∗(x)) = 1. And so we can state that

∆-balanced does not imply Γ-balanced.

In addition it is possible to show that this depends on how the complete set of reaction

loops is defined. Indeed suppose to take ∆ = {δ1, δ2, δ3} with δ1, δ2 defined as before

and

δ3 = {(r3
1,q

3
1), (r3

2,q
3
2), (r3

3,q
3
3)}

r3
1 = r2

1

r3
2 = r1

2

r3
3 = r1

3

q3
1(x) = c1λr2

1
(x),

q3
2(x) = c2λr1

2
(x),

q3
3(x) = c3λr1

3
(x),

with ci ∈ [0,1].

Then it is possible to take the following closed path:

s3(x) =
(
(x,1,3) ,

(
x + y′1

3− y3
1,3,3

)
,
(
x + y′1

3− y3
1 + y′3

3− y3
3),2,3

))
,

with score

η(s3(x)) =
c1λr2

1
(x)

λr1
2
(x + y′1

2− y2
1)

λr1
3
(x + y′1

2− y2
1)

c1λr2
1
(x + y′1

2− y2
1 + y′3

1− y1
3)

λr1
2
(x + y′1

1− y1
1 + y′3

1− y1
3)

λr1
3
(x)

= 1,

because we have supposed ∆ to be balanced.

It is easy to see that, under specific rate coefficient conditions, in this case ∆-balanced

implies Γ-balanced. Notice in particular that we are exactly in the case presented in

Proposition 5.2.5.

5.2.3 ∆-balanced with graph-related reaction loops does not imply Γ-balanced

Notice that in Proposition 5.2.5 we have considered a generic Chemical Reaction

Network. In addition, the hypothesis which leads to the validity of the proposition
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itself, implies that the chosen complete set of reaction loops it is necessarily not graph

related.

We would like then to know what happens in the case the CRN is weak-reversible and

so when a graph-related complete set of reaction loops could be defined.

We provide in this regard the following examples.

Figure 5.3

Example:5.2.6

Example 5.2.6. Consider the CRN in Figure 5.3. Remembering Example 4.2.14 it is

obvious to see that the network is not Γ-balanced. We will show on the contrary that it

is ∆-balanced on a graph-related complete set of reaction loops.

We define:

∆ = {δ1 = ((r1
1,q1

1), (r2
1,q2

1), (r3
1,q3

1));

δ2 = ((r1
2,q1

2), (r2
2,q2

2));

δ3 = ((r1
3,q1

3), (r2
3,q2

3));

δ4 = ((r1
4,q1

4), (r2
4,q2

4))}
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r1
1 = A→ B

r2
1 = B→C

r3
1 = C→ A

r1
2 = A + B→ 2B

r2
2 = 2B→ A + B

r1
3 = B+C→ 2C

r2
3 = 2C→ B+C

r1
4 = C + A→ 2A

r2
4 = 2A→C + A



q1
1 = λA→B

q2
1 = λB→C

q3
1 = λC→A

q1
2 = λA+B→2B

q2
2 = λ2B→A+B

q1
3 = λB+C→2C

q2
3 = λ2C→B+C

q1
4 = λC+A→2A

q2
4 = λ2A→C+A

The minimal, not basic closed paths are:

s1(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,2,1



s2(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,3,1
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s3(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,2,1



s4(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,1,3
 ,



x1−1

x2

x3 + 1

 ,3,1



s5(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,1,3



s6(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,1,4



s7(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,1,4
 ,




x1

x2 + 1

x3−1

 ,2,1



s8(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,1,3
 ,



x1−1

x2

x3 + 1

 ,3,1



s9(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,1,3



s10(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 1

 ,1,4



s11(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,1,4
 ,




x1

x2 + 1

x3−1

 ,2,1
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s12(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,1,3
 ,



x1−1

x2

x3 + 1

 ,1,4



s13(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,1,4
 ,




x1

x2 + 1

x3−1

 ,1,3



s14(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,1,3
 ,



x1−1

x2

x3 + 1

 ,1,4



s15(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,1,4
 ,




x1

x2 + 1

x3−1

 ,1,3



s16(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,2



s17(x) =




x1

x2

x3

 ,2,1
 ,




x1

x2−1

x3 + 1

 ,2,3



s18(x) =




x1

x2

x3

 ,3,1
 ,



x1 + 1

x2

x3−1

 ,2,4



Below we compute the score for the most identifying paths. The other ones have

similar structure and so the counts are almost the same and lead to similar results and

same conditions.

η(s2(x)) =
kA+B→2Bx1x2

k2B→A+B(x2 + 1)x2

kB→C(x2 + 1)
kC→A(x3 + 1)

kC→A(x3 + 1)
kA→Bx1

,

which is equal to 1 if and only if kA+B→2B
k2B→A+B

=
kA→B
kB→C

.

η(s3(x)) =
kA+B→2Bx1x2

k2B→A+B(x2 + 1)x2

kC→Ax3

kA→Bx1

kB→C(x2 + 1)
kC→Ax3

,
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which is equal to 1 if and only if kA+B→2B
k2B→A+B

=
kA→B
kB→C

.

η(s8(x)) =
kA+B→2Bx1x2

k2B→A+B(x2 + 1)x2

kB+C→2C(x2 + 1)x3

k2C→B+C(x3 + 1)x3

kC→A(x3 + 1)
kA→Bx1

,

which is equal to 1 if and only if kA+B→2B
k2B→A+B

kB+C→2C
k2C→B+C

kC→A
kA→B

= 1.

η(s9(x)) =
kA+B→2Bx1x2

k2B→A+B(x2 + 1)x2

kC→Ax3

kA→Bx1

kB+C→2C(x2 + 1)(x3−1)
k2C→B+C x3(x3−1)

,

which is equal to 1 if and only if kA+B→2B
k2B→A+B

kB+C→2C
k2C→B+C

kC→A
kA→B

= 1.

η(s14(x)) =
kA+B→2Bx1x2

k2B→A+B(x2 + 1)x2

kB+C→2C(x2 + 1)x3

k2C→B+C(x3 + 1)x3

kC+A→2A(x3 + 1)(x1−1)
k2A→C+Ax1(x1−1)

,

which is equal to 1 if and only if kA+B→2B
k2B→A+B

kB+C→2C
k2C→B+C

kC+A→2A
k2A→C+A

= 1.

η(s15(x)) =
kA+B→2Bx1x2

k2B→A+B(x2 + 1)x2

kC+A→2Ax3(x1−1)
k2A→C+Ax1(x1−1)

kB+C→2C(x2 + 1)(x3−1)
k2C→B+C x3(x3−1)

,

which is equal to 1 if and only if kA+B→2B
k2B→A+B

kB+C→2C
k2C→B+C

kC+A→2A
k2A→C+A

= 1.

η(s16(x)) =
kA→Bx1

kB→C(x2 + 1)
k2B→A+B(x2 + 1)x2

kA+B→2Bx1x2
,

which is equal to 1 if and only if kA+B→2B
k2B→A+B

=
kA→B
kB→C

.

η(s17(x)) =
kB→C x2

kC→A(x3 + 1)
k2C→B+C(x3 + 1)x3

kB+C→2C x2x3
,

which is equal to 1 if and only if kB+C→2C
k2C→B+C

=
kB→C
kC→A

.

η(s18(x)) =
kC→Ax3

kA→B(x1 + 1)
k2A→C+A(x1 + 1)x1

kC+A→2Ax1x3
,

which is equal to 1 if and only if kC+A→2A
k2A→C+A

=
kC→A
kA→B

.

Then if the conditions hold the score of all minimal closed paths is 1 and the network

is ∆-balanced. Hence we can build a stationary complex balanced (remember

Proposition 5.1.4) measure for the system in the following way.

The closed irreducible sets for this model are given by:

ΥN = {x ∈ Z3
≥0 | x1 + x2 + x3 = N, N ∈ Z≥0}. (73)

For each ΥN we set x∗ = (N,0,0). Then if we chose as path from x∗ to x the one in

which transition A→ B occurs x2 + x3 times and then transition B→C occurs x3 times,

by (55) we have:

µ(x) = η(x∗, x) =

∏x2+x3−1
l=0 kA→B(x1 + x2 + x3− l)∏x2+x3

l=1 kB→Cl

∏x3−1
l=0 kB→C(x2 + x3− l)∏x3

l=1 kC→Al
=

77



kx2+x3
A→B

kx2
B→Ckx3

C→A

(x1 + x2 + x3)!
x1!x2!x3!

.

Remark 5.2.7. Notice that we prove the existence of a stationary measure for a

complex-balanced, weak-reversible and conservative CRN with deficiency

δ = |C|− l− s = 9−4−2 = 3.

Figure 5.4

Example:5.2.8

Example 5.2.8. Consider the CRN in Figure 5.4. Also in this case it is obvious to see

that the network is not Γ-balanced. Indeed if we consider the complete set of reaction

vector loops:

Γ = {γ1 = ((ξ1
1, p1

1), (ξ2
1, p2

1), (ξ3
1, p3

1));

γ2 = ((ξ1
2, p2

2), (ξ2
2, p2

2), (ξ3
2, p3

2), (ξ4
2, p4

2))},

with:

ξ1
1 = ξ1

2 = ξA→B,A+B→2B

ξ2
1 = ξ2

2 = ξB→C,2B→B+C

ξ3
1 = ξC→A

ξ3
2 = ξB+C→B+D

ξ4
2 = ξB+D→A+B,
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and

p1
1 = α(λA→B +λA+B→2B)

p1
2 = (1−α)(λA→B +λA+B→2B)

p2
1 = β(λB→C +λ2B→B+C)

p2
2 = (1−β)(λB→C +λ2B→B+C)

p3
1 = λC→A

p3
2 = λB+C→B+D

p4
2 = λB+D→A+B,

with α, β ≥ 0. And if we compute the score of the closed path:

s(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−1

 ,2,1

 ,

we have:

η(s(x)) =
kA→Bx1 + kA+B→2Bx1x2

kB→C(x2 + 1) + k2B→B+C(x2 + 1)x2

kC→Ax3

kA→Bx1 + kA+B→2Bx1(x2 + 1)

kB→C(x2 + 1) + k2B→B+C(x2 + 1)x2

kC→Ax3
,

which is obviously different from 1.

On the other hand we want to verify if the network is ∆-balanced on a graph-related

complete set of reaction loops.

We define:

∆ = {δ1 = ((r1
1,q1

1), (r2
1,q2

1), (r3
1,q3

1));

δ2 = ((r1
2,q1

2), (r2
2,q2

2), (r3
2,q3

2), (r4
2,q42))}

79



r1
1 = A→ B

r2
1 = B→C

r3
1 = C→ A

r1
2 = A + B→ 2B

r2
2 = 2B→ B+C

r3
2 = B+C→ B+ D

r4
2 = B+ D→ A + B



q1
1 = λA→B

q2
1 = λB→C

q3
1 = λC→A

q1
2 = λA+B→2B

q2
2 = λ2B→B+C

q3
2 = λB+C→B+D

q4
2 = λB+D→A+B

The minimal, not basic closed paths are:

s1(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

x4


,3,1


,





x1

x2 + 1

x3−1

x4


,2,1





s2(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

x4


,2,1


,





x1−1

x2

x3 + 1

x4


,3,1
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s3(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

x4


,3,1


,





x1

x2 + 1

x3−1

x4


,2,1





s4(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

x4


,2,2


,





x1−1

x2

x3 + 1

x4


,3,1





s5(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

x4


,3,1


,





x1

x2 + 1

x3−1

x4


,2,2





s6(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

x4


,2,2


,





x1−1

x2

x3 + 1

x4


,3,1





s7(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

x4


,3,1


,





x1

x2 + 1

x3−1

x4


,2,2





s7(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

x4


,3,1


,





x1

x2 + 1

x3−1

x4


,2,2





s8(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,2,2


,





x1−1

x2

x3 + 1

x4


,4,2


,





x1

x2

x3 + 1

x4−1


,3,2




,
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s9(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,2,2


,





x1

x2

x3 + 1

x4−1


,3,2




,

s10(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,3,2


,





x1

x2 + 1

x3−1

x4


,2,2




,

s11(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,4,2


,





x1

x2 + 1

x3−1

x4


,2,2




,

s12(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,2,2


,





x1−1

x2

x3

x4 + 1


,4,2




,

s13(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,2,2


,





x1−1

x2

x3 + 1

x4


,4,2


,





x1

x2

x3 + 1

x4−1


,3,2




,

s14(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,2,2


,





x1

x2

x3 + 1

x4−1


,3,2




,

s15(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,3,2


,





x1

x2 + 1

x3−1

x4


,2,2




,
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s15(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,4,2


,





x1

x2 + 1

x3−1

x4


,2,2




,

s17(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,2,2


,





x1−1

x2

x3

x4 + 1


,4,2




,

s18(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,2,1


,





x1−1

x2

x3 + 1

x4


,4,2


,





x1

x2

x3 + 1

x4−1


,3,2




,

s19(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,2,1


,





x1

x2

x3 + 1

x4−1


,3,2




,

s20(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,3,2


,





x1

x2 + 1

x3−1

x4


,2,1




,

s21(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,4,2


,





x1

x2 + 1

x3−1

x4


,2,1




,

s22(x) =







x1

x2

x3

x4


,1,2


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,2,1


,





x1−1

x2

x3

x4 + 1


,4,2




,
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s23(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,2,1


,





x1−1

x2

x3 + 1

x4


,4,2


,





x1

x2

x3 + 1

x4−1


,3,2




,

s24(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,2,1


,





x1

x2

x3 + 1

x4−1


,3,2




,

s25(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,4,2


,





x1

x2 + 1

x3

x4−1


,3,2


,





x1

x2 + 1

x3−1

x4


,2,1




,

s26(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,4,2


,





x1

x2 + 1

x3−1

x4


,2,1




,

s27(x) =







x1

x2

x3

x4


,1,1


,





x1−1

x2 + 1

x3

4


,3,2


,





x1−1

x2 + 1

x3−1

x4 + 1


,2,1


,





x1−1

x2

x3

x4 + 1


,4,2




,

Below we compute the score for the most identifying paths. The other ones derive

from similar counts or were already computed in previous examples.

η(s23(x)) =
kA→Bx1

kB→C(x2 + 1)
kB→C(x2 + 1)
kC→A(x3 + 1)

kB+D→A+Bx2x4

kA+B→2Bx1x2

kB+C→B+Dx2(x3 + 1)
kB+D→A+Bx2x4

,

which is equal to 1 if and only if kA+B→2B
kB+C→B+D

=
kA→B
kC→A

.

η(s24(x)) =
kA→Bx1

kB→C(x2 + 1)
kB+C→B+D(x2 + 1)x3

kB+D→A+B(x2 + 1)(x4 + 1)
kB→C(x2 + 1)

kC→Ax3

kB+D→A+Bx2(x4 + 1)
kA+B→2Bx1x2

,

which is equal to 1 if and only if kA+B→2B
kB+C→B+D

=
kA→B
kC→A

.

η(s25(x)) =
kA→Bx1

kB→C(x2 + 1)
kB+C→B+D(x2 + 1)x3

kB+D→A+B(x2 + 1)(x4 + 1)
kB+D→A+B(x2 + 1)(x4 + 1)

kA+B→2Bx1(x2 + 1)
kB→C(x2 + 1)

kC→Ax3
,
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which is equal to 1 if and only if kA+B→2B
kB+C→B+D

=
kA→B
kC→A

.

η(s26(x)) =
kA→Bx1

kB→C(x2 + 1)
kB+D→A+B(x2 + 1)x4

kA+B→2Bx1(x2 + 1)
kB+C→B+D(x2 + 1)x3

kB+D→A+B(x2 + 1)x4

kB→C(x2 + 1)
kC→Ax3

,

which is equal to 1 if and only if kA+B→2B
kB+C→B+D

=
kA→B
kC→A

.

η(s27(x)) =
kA→Bx1

kB→C(x2 + 1)
kB+D→A+B(x2 + 1)x4

kA+B→2Bx1(x2 + 1)
kB→C(x2 + 1)
kC→A(x3 + 1)

kB+C→B+Dx2(x3 + 1)
kB+D→A+Bx2x4

,

which is equal to 1 if and only if kA+B→2B
kB+C→B+D

=
kA→B
kC→A

.

Then carrying out the counts, if the conditions kA+B→2B
k2B→B+C

=
kA→B
kB→C

, k2B→B+C
kB+C→B+D

=
kB→C
kC→A

,
kA+B→2B

kB+C→B+D
=

kA→B
kC→A

hold, the score of all minimal closed paths is 1 and the network is

∆-balanced. Hence we can build a stationary complex balanced (remember Proposition

5.1.4) measure for the system in the following way.

The closed irreducible sets for this model are given by:

ΥN = {x ∈ Z3
≥0 | x1 + x2 + x3 + x4 = N, N ∈ Z≥0}. (74)

For each ΥN we set x∗ = (N,0,0,0). Then if chose as path from x∗ to x the one in which

transition A→ B occurs x2 + x3 + x4 times, then transition 2B→ B +C occurs x3 + x4

times and then transition B+C→ B+ D occurs x4 times, by (55) we have:

µ(x) = η(x∗, x) =

∏x2+x3+x4−1
l=0 kA→B(x1 + x2 + x3 + x4− l)∏x2+x3+x4

l=1 kB→Cl∏x3+x4−1
l=0 k2B→B+C(x2 + x3 + x4− l)(x2 + x3 + x4− l−1)∏x3+x4

l=1 kB+C→B+Dl(x2 + x3 + x4− l))∏x4−1
l=0 kB+C→B+D(x3 + x4− l)x2∏x4

l=1 kB+D→A+Blx2
=

kx2+x3+x4
A→B kx3+x4

2B→B+C

kx2+x3+x4
B→C kx3

B+C→B+Dkx4
B+D→A+B

(x1 + x2 + x3 + x4)!
x1!x2!x3!x4!

.

Remark 5.2.9. Notice that we prove the existence of a complex-balanced stationary

measure for a complex-balanced, weak-reversible and conservative CRN with

deficiency δ = |C|− l− s = 7−2−3 = 2.
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Figure 5.5

Example:5.2.10

Example 5.2.10. Consider the CRN in Figure 5.5. We would like to know if we can

find and build a stationary measure for the system.

Let’s consider the following graph-related complete set of reaction loops:

∆ = {δ1 = ((r1
1,q1

1), (r2
1,q2

1), (r3
1,q3

1));

δ2 = ((r1
2,q1

2), (r2
2,q2

2), (r3
2,q3

2))}

r1
1 = A→ B

r2
1 = B→ 2C

r3
1 = 2C→ A

r1
2 = A + B→ 2B

r2
2 = 2B→ B+ 2C

r3
2 = B+ 2C→ A + B
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q1
1 = λA→B

q2
1 = λB→2C

q3
1 = λ2C→A

q1
2 = λA+B→2B

q2
2 = λ2B→B+2C

q3
2 = λB+2C→A+B

The minimal, not basic closed paths are:

s1(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,1



s2(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 2

 ,3,1



s3(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,1



s4(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,2
 ,



x1−1

x2

x3 + 2

 ,3,1



s5(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,2



s6(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 2

 ,3,2



s7(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,1
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s8(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,2
 ,



x1−1

x2

x3 + 2

 ,3,1



s9(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,2



s10(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 2

 ,3,2



s11(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,1



s12(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,2
 ,



x1−1

x2

x3 + 2

 ,3,2



s13(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,2



s14(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,2



s15(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,2
 ,



x1−1

x2

x3 + 2

 ,3,2



s16(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,2
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s17(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 2

 ,3,2



s18(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,1



s19(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,2
 ,



x1−1

x2

x3 + 2

 ,3,1



s20(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,2



s21(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 2

 ,3,2



s22(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,2
 ,




x1

x2 + 1

x3−2

 ,2,1



s23(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,2,2
 ,



x1−1

x2

x3 + 2

 ,3,1



s24(x) =




x1

x2

x3

 ,1,1
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,2



s25(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,2,1
 ,



x1−1

x2

x3 + 2

 ,3,1
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s26(x) =




x1

x2

x3

 ,1,2
 ,



x1−1

x2 + 1

x3

 ,3,1
 ,




x1

x2 + 1

x3−2

 ,2,1



Below we compute the score for the most identifying paths.

η(s1(x)) =
kA→Bx1

kB→2C(x2 + 1)
k2C→Ax3(x3−1)

kA→Bx1

kB→2C(x2 + 1)
k2C→Ax3(x3−1)

kB+C→B+Dx2(x3 + 1)
kB+D→A+Bx2x4

,

which is equal to 1.

η(s8(x)) =
kA+B→2Bx1x2

k2B→B+2C(x2 + 1)x2

k2B→B+2C(x2 + 1)x2

kB+2C→A+Bx2(x3 + 2)(x3 + 1)
k2C→A(x3 + 2)(x3 + 1)

kA→Bx1
,

which is equal to 1 if and only if kA+B→2B
kB+2C→A+B

=
kA→B
k2C→A

.

η(s14(x)) =
kA+B→2Bx1x2

k2B→B+2C(x2 + 1)x2

kB+2C→A+B(x2 + 1)x3(x3−1)
kA+B→2Bx1(x2 + 1)

k2B→B+2C(x2 + 1)x2

kB+2C→A+Bx2x3(x3−1)
,

which is equal to 1.

Then carrying out the counts, if the conditions kA+B→2B
k2B→B+2C

=
kA→B
kB→2C

, k2B→B+2C
kB+2C→A+B

=
kB→2C
k2C→A

hold, the score of all minimal closed paths is 1 and the network is ∆-balanced. Hence

we can build a stationary complex balanced measure for the system in the following

way.

The closed irreducible sets for this model are given by:

ΥN = {x ∈ Z3
≥0 | 2x1 + 2x2 + x3 = N, N ∈ Z≥0}. (75)

For each ΥN we set x∗ = (0,0,N). Then if chose as path from x∗ to x the one in which

transition 2C→ A occurs x1 + x1 times, then transition A→ B occurs x2 times, by (55)

we have:

µ(x) = η(x∗, x) =

∏x1+x2−1
l=0 k2C→A(2x1 + 2x2 + x3−2l)(2x1 + 2x2 + x3−2l−1)∏x1+x1

l=1 kA→Bl∏x2−1
l=0 kA→B(x1 + x1− l)∏x2

l=1 kB→2Cl

kx1+x1
2C→A

kx1
A→Bkx2

B→2C

(2x1 + 2x2 + x3)!
x1!x2!x3!

.
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Remark 5.2.11. Notice that we prove the existence of a complex-balanced stationary

measure for a complex-balanced, weak-reversible and conservative CRN with

deficiency δ = |C|− l− s = 6−2−2 = 2.

Then we proved that ∆-balancing on a graph-related complete set of reaction loops

does not imply Γ-balancing for the corresponding natural complete set of reaction

vector loops.

Moreover we found that ∆-balancing on graph-related complete set of reaction vector

loops makes it possible to find complex-balanced (then stationary) measures, for

Chemical Reaction Networks with deficiency greater then 1.

Remark 5.2.12. Notice that there is a specific reason because of which the previous

balance conditions are verified, that is the score of all closed paths are ones.

Let (G,Λ) be a stochastic weak-reversible mass-action reaction network and let

Υ ⊆ Zn
≥0 be a closed set. Let moreover ∆ be a graph-related complete set of reaction

loops on Υ.

Let’s take δ1 =
(
(y1

i → y′1i ,q
1
i )
)n1

i=1
, δ2 =

(
(y2

j → y′2j ,q
2
j)
)n2

j=1
∈ ∆ and suppose that:

• the CRN restricted to δ1 is balanced

• there exist k ∈ {1, ...,n1} and h ∈ {1, ...,n2} such that y′1k − y1
k = y′2h − y2

h = ξ, with:

y1
k → y′1k equal to

∑
s∈S

y1
k,sS s→

∑
s∈S

(y1
k,s + ξs)S s (76)

and

y2
h→ y′2h equal to

∑
s∈S

y2
h,sS s→

∑
s∈S

(y2
h,s + ξs)S s. (77)

• q1
i (x) = aiλy1

i→y′1i
(x), i = 1, ...,n1 and q2

j(x) = b jλy2
j→y′2j

(x), j = 1, ...,n2,

with ai,b j ∈ [0,1], ∀ i, j

Now fix x ∈ Υ and consider a generic closed path build on γ1:

s(x) = {(xl, il,1)}n1−1
l=1 , with x1 = x.
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We have that, by hypothesis:

η(s(x)) =

n1−1∏
l=1

q1
il
(xl)

q1
il+1(xl + y′1il − y1

il
)

= 1.

Now we know that necessarily there exists l∗ ∈ {1, ...,n1−1} | il∗ = k, with corresponding

factor:
q1

k(xl∗)

q1
k+1(xl∗ + y′1k − y1

k)
=

∏
s∈S

akky1
k→y′1k

xs!
(xs− y1

k,s)!
1

ak+1ky′1k →y′1k+1

(xs + ξs− (y1
k,s + ξs))!

(xs + ξs)!
=

∏
s∈S

akky1
k→y′1k

ak+1ky′1k →y′1k+1

xs!
(xs + ξs)!

,

with this holding because of the definition of graph-related complete set and of rate

coefficients for a stochastic mass-action network.

Now, since y2
h → y′2h leads to the same system change ξ, we can build a new path as

follows:

ŝ(x) = {(x1, i1,1), (x2, i2,1), ..., (xl∗−1, il∗−1,1), (xl∗ ,h,22), (xl∗+1, il∗+1,1), ..., (xn1−1, in1−1,1)},

with x1 = x.

We want to prove that also η(ŝ) = 1.

If we consider the definition of η(ŝ) and the more general definition of score for a path,

it’s easy to see that η(ŝ) differs from η(s) only for the l∗th factor, which in this case is:

q2
h(xl∗)

q2
h+1(xl∗ + y′2h − y2

h))
. (78)

Notice that we haven’t changed xl∗ because the two reactions lead to the same state

change, and so the state succession remains the same.

Then exactly as before (78) is equal to:∏
s∈S

bhky2
h→y′2h

xs!
(xs− y2

h,s)!
1

bh+1ky′2h →y′2h+1

(xs + ξs− (y2
h,s + ξs))!

(xs + ξs)!
=

∏
s∈S

bhky2
h→y′2h

bh+1ky′2h →y′2h+1

xs!
(xs + ξs)!

.

Then, under the condition

akky1
k→y′1k

ak+1ky′1k →y′1k+1

=
bhky2

h→y′2h

bh+1ky′2h →y′2h+1

, (79)
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the factor has the same value of the one before, and then η(ŝ) = η(s) = 1.

In the end notice that the same reasoning could be used when more then one reaction

in one loop could be replaced with reactions belonging to other loops in the set. This

because as we have just proved, each reaction will lead to a different factor in the score

which however will have same value of the previous one. Hence, the total score will

remain unchanged.
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Conclusion

We showed that, for some Chemical Reaction Networks, it is possible to build a set

of loops defined on the network reactions and, through them, characterize the state

space of the corresponding Continuous Time Markov Chain. Starting from such a set

of loops, a new balance condition has been defined for a system measure under which

the measure has been proven to be both stationary and complex balanced.

Finally the thesis analyzed different CRNs, focusing in particular on conservative

mass-action networks with deficiency greater than one. For these networks the

existence and analytic form of a stationary measure, even if already known, were

obtained again through the previous results, offering a new point of view from which

to observe the problem. Examples were also provided as support.

94



Appendix A: On a generator of a Continuous time Markov chain

In this appendix we want to clarify the definition of generator for the CTMC

modelling the underling network.

Consider a CTMC with rate matrix Λ and transition matrix of the underling DTMC

Π. Firstly we introduce the following tools:

Definition 6.0.1 (Transition operator). Let f : E → R be a measurable function, with

f ∈ B(E) Banach space.

We define the transition operator Pt of f as:

(Ptf )(i) = E
[
f (Xt)0 = 0

]
= Ei

[
f (Xt)

]
=

∑
j∈E

f ( j)Πi j(t).

Definition 6.0.2 (Generator). We call generator of the Markov chain, the operator A

defined as follows:

Af (i) = lim
t→0

Ptf − f
t

(i). (80)

Proposition 6.0.3. The following properties hold:

1. (Ps ◦Pt) = Ps+t

2. P0 = I

3. (Pt)t is strongly continuous

4. Af (i) =
∑

j Λi j
[
f ( j)− f (i)

]
5. since Pt is strongly continuous we have

d
dt

Ptf = A(Ptf ) = Pt(Af )

Proof. 1.

((Ps ◦Pt)f ) (i) = (Ps(Ptf )) (i) =

Ei
[
Ptf (Xs)

]
=

∑
k∈E

Ptf (k)Πik(s) =
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∑
k∈E

∑
j∈E

f ( j)Πk j(t)

Πik(s) =

∑
j∈E

f ( j)
∑
k∈E

Πik(s)Πk j(t) =

∑
j∈E

f ( j)Πi j(s + t) =

Ei
[
f (Xt+s)

]
= Ps+tf (i),

where we have used the Chapman-Kolmogorov equation on the transition matrix

of the underling DTMC.

2.

P0f (i) = E
[
f (X0)dim X0 = i

]
= f (i)

Notice that 1.+2. implies that the set of Pt is a semi-group.

3.

lim
t→0

(Ptf )(i) = lim
t→0
Ei

[
f (Xt)

]
=

lim
t→0

∑
j∈E

f ( j)Πi j(t) =

∑
j∈E

f ( j) lim
t→0

Πi j(t) =

∑
j∈E

f ( j)δi j = f (i).

So (Pt)t is strongly continuous.

4.

Af (i) = lim
t→0

Ptf − f
t

(i) =(
d
dt

Ptf
)
|t=0(i) =

lim
t→0

∑
j∈E

f ( j)
Πi j(t)−δi j

t
=

∑
j,i

(
f ( j) lim

t→0

Πi j(t)
t

)
− f (i) lim

t→0

Πii(t)−1
t

=

∑
j,i

f ( j)Λi j− f (i)

−∑
i, j

Λi j

 =
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∑
j

Λi j
[
f ( j)− f (i)

]
.

�
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