
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Extractive Timeline Summarization
based on Unsupervised Techniques

Supervisors

Prof. Luca CAGLIERO

Dr. Moreno LA QUATRA

Candidate

Stefano MUNNA

December 2020

Abstract

With the increasing importance of internet during time, a huge amount
of news article about several arguments are published in several websites:
users that are interested in a particular event could use an automatic
system that presents to him the most important aspects of the event
and/or its evolution across time. These two problems are addressed by:

• Multi-document Summarization, with the aim of condensing news
from several articles in a complete and non-redundant summary

• Temporal Summarization, with the aim of keeping the user informed
about the developing of an event,providing non-redundand and
significant updates as soon as new articles arrives (or at prefixed
time intervals)

• Timeline Summarization, with the aim of providing the end-user
with the history of a concluded event along a timeline that highlights
the most significant dates for the event and the most significant
happenings for each date.

We analyzed the State-of-the-Art in text, temporal and timeline sum-
marization presenting several algorithms that have been proposed in
the past years: the aim of this thesis is to create a framework that per-
forms timeline summarizzation following a pipeline (date selection,date
summarization,timeline visualization), extracting, from an input set
of document about a specific topic, the most important dates and
then applying text summarization to select the most important aspects
(sentences) for each date. The aim is to explore the performance of
several text summarization algorithms used in the date summarizzation
step (in which a summary is extracted, for each date, from the input
sentences associated to that date), comparing at the end the results
obtained by testing the several algorithms on CRISIS and T17 datasets
and evaluating the output timelines using some ROUGE variants. To
ease the exploration of the generated summaries, we developed a Web
application tailored to date summary visualization. It provides a visual
extract of the summary content together with a representative image
crawled by Google. It constitutes the last block of the pipeline,aimed
at providing end-user with a more friendly tool to explore the timeline
generated by the system.

ii

i

Acknowledgements

ii

Table of Contents

List of Tables vi

List of Figures viii

Acronyms x

1 Introduction 1

2 Preliminaries 5

3 Related Works 12
3.1 Text Summarization 13
3.2 Temporal Summarization 30
3.3 Timeline Summarization 35

4 Timeline Summarization Framework 43

5 Visual Summary Exploration 51
5.1 Possible extensions of the visual interface 54

6 Experimental Results 55
6.1 Evaluation metrics . 55
6.2 Datasets description 58
6.3 T17 results . 59
6.4 CRISIS Results . 65

iv

7 Conclusion and Future Work 72
7.1 Future works . 74

Bibliography 76

v

List of Tables

6.1 Results obtained testing algorithm on T17 and evaluating
results using concat-Rouge-1. * indicates that result
obtained by the best performing algorithm is statistically
relevant against the current algorithm’s result. 60

6.2 Results obtained testing algorithm on T17 and evaluating
results using concat-Rouge-2. * indicates that result
obtained by the best performing algorithm is statistically
relevant against the current algorithm’s result. 61

6.3 Results obtained testing algorithm on T17 and evaluating
results using agreement-Rouge-1.* indicates that result
obtained by the best performing algorithm is statistically
relevant against the current algorithm’s result. 62

6.4 Results obtained testing algorithm on T17 and evaluating
results using agreement-Rouge-2. * indicates that result
obtained by the best performing algorithm is statistically
relevant against the current algorithm’s result. 63

6.5 Results obtained testing algorithm on T17 and evaluating
results using Date-content alignment many to one (align+
m:1) ROUGE 1. * indicates that result obtained by the
best performing algorithm is statistically relevant against
the current algorithm’s result. 64

6.6 Results obtained testing algorithm on T17 and evaluating
results using Date-content alignment many to one (align+
m:1) ROUGE 2. * indicates that result obtained by the
best performing algorithm is statistically relevant against
the current algorithm’s result. 65

vi

6.7 Results obtained testing algorithm on CRISIS and eval-
uating results using concat-Rouge-1. * indicates that
result obtained by the best performing algorithm is sta-
tistically relevant against the current algorithm’s result.
. 66

6.8 Results obtained testing algorithm on CRISIS and eval-
uating results using concat-Rouge-2. * indicates that
result obtained by the best performing algorithm is sta-
tistically relevant against the current algorithm’s result. 67

6.9 Results obtained testing algorithm on CRISIS and eval-
uating results using agreement-Rouge-1.* indicates that
result obtained by the best performing algorithm is sta-
tistically relevant against the current algorithm’s result. 68

6.10 Results obtained testing algorithm on CRISIS and evalu-
ating results using agreement-Rouge-2. * indicates that
result obtained by the best performing algorithm is sta-
tistically relevant against the current algorithm’s result
(We considered TextRankBM25 as the best performing
in terms of Precision and F-Measure). 69

6.11 Results obtained testing algorithm on CRISIS and eval-
uating results using Date-content alignment many to
one (align+ m:1) ROUGE 1. * indicates that result
obtained by the best performing algorithm is statisti-
cally relevant against the current algorithm’s result (We
considered TextRankBM25 as the best performing in
terms of F-Measure). 70

6.12 Results obtained testing algorithm on CRISIS and eval-
uating results using Date-content alignment many to
one (align+ m:1) ROUGE 2.* indicates that result ob-
tained by the best performing algorithm is statistically
relevant against the current algorithm’s result (We con-
sidered TextRankBM25 as the best performing in terms
of F-Measure). 71

vii

List of Figures

4.1 Timeline summarizaton pipeline of the proposed system 44
4.2 For each important date,the framework follow the il-

lustrated steps to select, among the input sentences
associated to the current date, the sentences that will
form the summary for that date,using for each date the
same summarization algorithm. 46

4.3 Graphical representation of the framework: for each im-
portant date,extracted in the date selection step, the
same algorithm ALG is applied to create the final time-
line by extracting sentences from the input ones using
the date summarization block of Figure 4.2 50

5.1 textual file containing the list of sentences extracted for
each date. 51

5.2 homepage of TimelineVisualization 52
5.3 final timeline visualization 53
5.4 popup showing the finanl summmary extracted for the

selected date . 53

viii

Acronyms
NLP

Natural Language Processing

NLG
Natural Language Generation

DUC
Document Understanding Conference

TS
Temporal Summarization

TLS
Timeline Summarization

TF-IDF
Term Frequency - Inverse Document Frequency

KLD
Kullback Leibler divergence

LDA
Latent Dirichlet allocation

IR
Information Retrival

x

MDS
Multi-document Summarization

MSC
Multi-Sentence-Compression

AP
Affinity Propagation

SVM
Support Vector Machines

SVD
Singular Values Decomposition

EHDP
evolutionary Hierarchical Dirichlet process

TDT
Topic Detection and Tracking

CBSU
Cluster-based sentence utility

CSIS
Cross-sentence informational subsumption

CBS
Centroid-based Summarization

SOTA
State of the Art

xi

Chapter 1

Introduction
Due to the increasing importance of Internet over the last decades,
people have the possibility to access a large amount of news articles
about several topics. The readers interested in a specific topic will be
forced to read several articles to have a complete overview of specific
events. It will be useful to provide readers with a concise summary
that highlights the most important aspects of the event he is interested
in by removing redundant information. Addressing this problem is the
main task of automatic text summarization.

Text summarization is a branch of Natural Language Processing that
comprises extractive techniques, aimed at extracting the most important
sentences from the input documents and abstractive ones, whose goal
is to generate new content according to end-user needs, combining
sentences of the original text. Text summarization can be divided into
several subtasks: Single-Document Summarization techniques, whose
aim is to generate a shorter version of a document, and Multi-document
Summarization techniques, whose goal is to condense information about
a topic of interest from different documents (articles) into a short
summary that cover all the important information contained in the
original documents. Since the input documents typically evolve over
time, text summarization has evolved into new tasks, namely temporal
summarization and timeline summarization.

Temporal summarization aims at providing the user of updates about
the developing of an event by selecting, as soon as new articles are

1

Introduction

available or at specific time intervals, sentences from these articles
that are relevant with respect to the event of interest and that are not
redundant with respect to the already emitted updates.

Timeline summarization, instead, aims at summarizing the key in-
formation about an event by creating a timeline including the most
significant dates and content for each date.

In this thesis we propose a new pipeline for timeline summarization
task relying on a date-wise approach. Unlike the other two approaches,
direct summarization (that consider the input as a unique set of dated
sentences among which the most important ones are extracted along
with their dates) and event detection (in which sentences are clustered
based on events and dates and then the most representative sentences
are extracted from the most important clusters) the proposed method
consists of two main steps: the date selection step, which selects the most
important dates, and the date summarization step, which extracts the
important sentences from the text of the selected date. The framework
takes as input a set of timestamped news articles ranging over a specific
topic and extracts the most relevant sentences describing the key events
occurred on the considered dates. The thesis work focuses on the
overview of several state-of-the-art methods for date selection and news
article summarization.

The “Date Selection” step receives as input a stream of documents
annotated with their publication date and associates to each sentence,
extracted from the input stream, a date that is the publication date
or it is computed exploiting temporal reference in the sentence and
using several tools (we used heideltime) to obtain the final date: then
the importance of each date is computed: state-of-the-art methods use
several criteria such as mention count, number of times the sentence
is mentioned, or publication date, number of articles/sentences pub-
lished on that date: our framework exploits techniques that are not
object of this thesis. The “Date summarization” step receives as input
the important dates, extracted in the previous step, and iterates each
date to extract the important sentences among the ones associated
to the current date: in first place, too short sentences and duplicated
sentences are filtered out and the remaining sentences are processed.

2

Introduction

The “Date summarization” step integrates various state-of-the-art text
summarization algorithms: graph-based algorithms, such as the popular
Text Rank and LexRank algorithms, the CoreRank algorithm, which
relies on core decomposition to extract the most salient keywords from
the input sentences, and clustering-based approaches; finally, we also
integrates some methods based on Maximal Marginal Relevance: the
main contribution of this thesis is exploring the performance of the
employed methods and make a comparison between them. Another con-
tribution of this thesis work concerns the visualization of the automatic
timelines. To this purpose, we built a Web application, called Timeline
Visualization, that takes as input the output timeline and processes the
file to provide a visual explanation of the result: the timeline consists
of several entries that contain the important dates and a preview of the
summary for that date, which can be shown in a separate window con-
taining the entire summary and a representative image. The proposed
picture is obtained querying Google using the corresponding summary.
We tested our methods on two benchmark datasets: Timeline17, which
is a corpus of document constructed starting from 17 different timelines,
and CRISIS, which is a corpus of documents covering several crises such
as war and revolutions. Authors in both cases retrieved the articles
that compose the datasets querying the Google search engine: for the
Timeline17 corpus authors made a research based on the topic or event
described by each timeline, while for CRISIS authors made a document
research based on events (crisis, war, revolution) and locations (Syria,
Egypt, Libya, Yemen), filtering out the retrieved documents that were
not in the temporal range of any initial timeline. We evaluated the
quality of the summarization process using the standard Rouge metrics.
The results show that graph-based algorithms were the best performing,
in particular the TextRank (employed along with BM25) algorithm was
the best performing, on both datasets, among all the text summariza-
tion algorithms, according to the most part of used metrics, but also
CoreRank and cluster-based algorithms obtained good performance
according to some of the used metrics, in particular the algorithms that
exploit k-means clustering. The future developments of this work could
move to the employment of other unsupervised text summarization

3

Introduction

algorithms based on the latest advancements of deep language models,
trying to improve the performance of the already implemented ones.
As future extension we could integrate into the date summarization
step some supervised techniques. Those methods could exploit default
pre-trained models or can exploit human annotated data to fine-tune
the models for the summarization objective. Another possible extension
of the system could involve the selection of images from the original
dataset, providing them as input for the implemented web application.
It could be modified to accept a separate file including relevant images
for each selected date. In conclusion we can assert that we proposed a
system for timeline summarization whose performance are fairly good
and strongly depends on the algorithms used in the summarization
phase; after exploring and comparing performances of the employed al-
gorithms we identified TextRankBM25, i.e. the summarizer that exploit
the graph-based TextRank algorithm integrating BM25 as similarity
measure, as the algorithm that performed significantly better than all
the other algorithms according to the most part of exploited evaluation
metrics. The system could potentially benefit from the integration of
new deep learning methodologies. Finally, we provide users with a
user-friendly way of graphically exploring the timeline content.

4

Chapter 2

Preliminaries

With the passing of years the Internet has assumed an increasingly
important role in every day life: people have now the possibility to
access a huge set of information about several topic, written by several
authors and published in several websites.

It would be useful for the reader, that is interested in a specific
topic, to have several information and news about that specific ar-
gument gathered into a summary that is short enough to allow the
user not to waste a lot of time in reading several articles and at the
same time detailed enough to illustrate to the reader the complete
development of the event that he is interested in. This is the aim of
Natural Language Processing (NLP) and in particular of Text
Summarization (Document Summarization).

NLP is a subfield of linguistics, computer science, information en-
gineering, and artificial intelligence concerned with the interactions
between computers and human (natural) languages, in particular how
to program computers to process and analyze large amounts of natural
language data. Challenges in natural language processing frequently
involve:

• Speech recognition: also known as Speech to Text (STT), it
consists in recognition and translation of spoken language into text
by computer.

5

Preliminaries

• Natural language understanding: it deals with machine Read-
ing comprehension (the ability to process text, understand its
meaning, and to integrate with what the reader already knows)
and finds applications in automated reasoning, machine translation
from a language to another,question answering,news-gathering, text
categorization and others.

• Natural language generation (NLG): it is a software process
that transforms structured data into natural language. It can be
used to produce long form content for organizations to automate
custom reports, as well as produce custom content for a web or
mobile application. It can also be used to generate short blurbs
of text in interactive conversations (chatbot) which might even be
read out by a text-to-speech system.

Among the tasks involved into NLG one of the most important is
Text Summarization, starting point of this thesis.

Summarization is the task of condensing a piece of text to a shorter
version preserving key informational elements and the meaning of con-
tent [1]: since in the big data era, given a specific topic, we can find an
inestimable volume of information about that specific topic, automatic
text summarization is assuming a very important role. The aim of
Text Summarization is to extract a summary from one ore more input
documents avoiding redundancy: text summarization processes the
input dataset, i.e. a collection of documents about several topics, to
obtain the final summary for a specific topic of interest: the document
in text summarization is treated as a set of sentences that talks about
the same topic, identified as the topic of the entire document: the
input dataset could condense several collection of document, where a
collection is a set of document speaking about the same topic. The
aim of text summarization is to extract a summary given a specific
topic: a summary is a short representation of the input text, which
provide a shorter version of a text, extracting the most salient passages,
or that condense information about the topic of interest extracted from
different sources, maintaining the informational content and semantic

6

Preliminaries

meaning of the original text while avoiding time consuming redundan-
cies. To obtain the summary typically intermediate representation of
sentences are computed: these representations see sentences as set of
terms, from which are excluded most recurrent terms that don’t add
significant information to sentence representations, such as conjunc-
tions, articles and punctuation, classified as stopwords. Usually the
documents employed in text summarization are news articles and a
collection is a stream of news article about a specific topic.

We can identify two macro subsets of Text Summarization:
• Single-Document Summarization: the input of all single doc-

ument summarization algorithms is a set of sentences extracted
from the same input document: the aim is to automatically gen-
erate a shorter version of the input document that contains the
same information of the original text, or to automatically generate
an abstract for the input document selecting the most significant
sentences avoiding information repetition.

• Multi-document summarization: in this case the input is a
set of sentences extracted from several documents about the same
topic: the aim is to put in a single summary the information that
can be found in several documents or articles, obtaining in this
way a shorter text that contains information of several articles (so
points of view and opinions of different authors about the same
event) that cover all the most important sub-event about the event
of interest, maintaining the information richness of the input text
but decreasing searching and reading time avoiding redundancies
in the final summary.

We can distinguish two approaches to text summarization:

• Extractive Summarization: sentences are directly extracted
from the original text: it can be summarized in the following three
steps:

1. the original text is represented as a set of sentences that are
transformed into their intermediate representation: typically a
sentence is represented as a vector;

7

Preliminaries

2. assign a score to each sentence (the way the score of each sen-
tence is computed depends on the used algorithm, but usually
sentence is represented as a set of terms and each term is a vec-
tor cell whose value is based on term frequency in the document
or in the input collection);

3. extract the top-k most scored sentences that will form the sum-
mary (also in this case the score of each sentence is computed
in several way, depending on the used algorithm).

In short, the summmary is generated by copying sentences from
the original text,rearranging them to obtain the final summary[1].
In this way sentences could be extracted from different part of
the input text or from different document so they are likely to be
totally unrelated, causing the final summmary to appear gram-
matically incorrect, but this is the most simple approach to text
summarization.

• Abstractive Summarization: Abstractive methods build an in-
ternal semantic representation of the original content, and then use
this representation to create the final summary, with the goal of
generating new content according to end-user needs.Abstraction
may transform the extracted content by combining sections of the
source document, to condense a text more strongly than extrac-
tion. This transformation, however, is computationally much more
challenging than extraction but the final summary will look like
a human-written summary. In short, abstractive summarization
systems generate new phrases, combining input sentences and using
words that were not in the original text [1], so sentences of the final
summary probably will be combination of the input sentences that
will appear related to each other.

Whatever the approach to text summarization is, the final summary
should have some features to be considered a good summary [2]:

• it should be the more human readable as possible, so it should not
contain datelines, system internal formatting or ungrammatical
sentences;

8

Preliminaries

• it should not contain unnecessary repetition of entire sentences or
of noun where pronouns could be used to refer to a previously used
noun

• nouns or pronouns references should be clear

• sentences must be related to each other in terms of informational
content (as previously seen is unlikely to see sentences grammati-
cally related if the extractive approach is used)

• summary should be well structured and organized and must provide
a complete and informationally coherent representation of the topic
of interest

Several algorithm that approach text summarization in several way have
been presented in past years: among them we can find the graph-based
algorithms that organize sentences in a graph and find relationship
between sentences based on their similarity as we will see in TextRank
[3],CoreRank [4], or LexRank [5]; cluster-based algorithm perform in-
stead text summarization clustering sentences based on their similarity
or topic and then selecting the most representative sentencs, as we will
see more in detail in [6] and [7], or clustering by topic and summa-
rizing simoultaneously, as in [8] and [9]; other techniques have been
exploited such as MMR-based ([10]) or LSA-based ([11], [12], [13]) or
text-mining based, in particular itemset-mining-based, such as ItemSum
[14], MWISum [15] and ELSA [16]. We will get more in detail in the
next chapter, in which we make a discussion about the SOTA methods
and a comparison between them. Text summarizzation is moreover
exploited in other tasks:

• Update summarization: presented in DUC2007, given a topic
query and two (or more) set of document A and B related to that
query (they may have been obtained through a filtering step) the
aim is to extract a summary of A for the reader and then a summary
of B assuming that the reader has already read A (so the extracted
sentences must not express a concept already expressed in A: the
concept of novelty is introduced).

9

Preliminaries

• Temporal summarization: introduced in TREC2013, the aim
of this task is to keep the reader informed about a specific topic or
event across time: given a set of sentences already provided to the
reader and a set of new document, the aim is to extract a set of
sentences that are relevant to the topic and that have an high level
of novelty with respect to the previously extracted sentences, in
order to avoid redundancy, as soon as the new document arrives. In
this case the summary is a set of already selected sentences that are
available to the reader: as the event of interest is not concluded and
the reader is interested in its developing the summary is dynamic,
i.e. it is updated with new sentences that are extracted from the
stream of documents that become available in the meanwhile and
are emitted as updates: in this case text summarization is used to
identify the most important sentences among new sentences and to
identify the ones that are non redundant with respect to the already
selected ones. In order to take into account temporal information,
sentences are usually annotated with a timestamp which could be
the publication date of the article in which the sentence is contained
or it is computed through temporal references contained in the
sentences: the timestamp is used to check if a sentence refers to
a date that is before the last emission date: in this case sentence
will probably contain information already described and so it is
discarded.

• Timeline summarization: the aim of this task is to create a
timeline to show to the user the history of an already concluded
event: this is the main difference from TS: user is interested in
the main sub-event that characterized the developing of the event
and so how the event started, how it evolved and how it concluded;
for this purpose TLS aims to select dates on which the most
significant events occurred and then highlight that events: timeline
summarization can so be divided into two sub-task: the first is the
date selection, in which text summarization can be used to select
the dates that contain the most relevant sentences, and then, for
each date, the date summarization sub-task aims to extract the
most important sentences using a text summarizzation algorithm.

10

Preliminaries

Also in this case sentences are annotated with a timestamp that
in this case identify a specific date in the year,month,day format:
from the input sentences are extracted the candidate dates, which
are scored according to several criteria based on counting how
much times a date is mentioned or how many sentences have been
published on that date or other combination or variants of this
criteria, obtaining in this way a set of dates and a set of sentences
from each date, among which the most important ones, according to
text summarization criteria, will be extracted: the final timeline will
be composed by a set of date and a short summary for each selected
date.Also in this case several algorithms have been presented in
the past years: as we will see more in detail in the reserved section,
all these algorithms approach the problem in three different ways:
treating the dataset as an single set of dated sentences that are
extracted using text summarization and whose dates will form the
timeline (direct summarization), as in [17], [18], [19]; [20], [21],
[22] use clustering to gather sentences into time-constrained event
clusters and generate timeline selecting sentences from the most
important clusters (event-detection approach); the last aproach
is the date-wise approach, that separates date selection and text
summarization for each date to generate the final timeline: it is
the approach that we adopted in our framework, as we will see in
the dedicated chapter.

In this thesis we will present in Chapter 3 several Text summarization,
temporal and timeline summarization techniques (that we consider as
the related work of the framework that we developed), then in Chapter
4 we will speak about the implemented framework, that performs the
timeline summarization task, focusing on the summarization algorithms
used in the framework; in Chapter 5 we present "Timeline Visualization",
which is a minimal web application used to show the extracted timeline,
then we will compare the results obtained by the several summarization
algorithms, evaluated with some variants of ROUGE metrics (Chapter
6) and in the last chapter we will summarize our work, draw conclusions
and briefly describe some possible extensions to our framework.

11

Chapter 3

Related Works
As described in the previous chapter, Text Summarization find ap-
plication in several task, among them we will analyze the Temporal
Summarization and Timeline Summarization tasks.

The standard Text Summarizzation fails in the description of un-
expected event such as natural disaster or accidents: an event like
these requires updates to be emitted during time, as soon as new and
relevant information become available, to the reader that is interested
in its development. Text summarization fails because even if a good
summary is provided in output, if the event is developing, informa-
tion that become available after the emission of the summary are not
provided to the reader. Temporal Summarization (TS) has the aim
of following the real-time development of the event: in particular, the
goal is to develop systems which can detect useful, new, and timely
sentence-length updates about the developing event to return to the
end-user [23].

Unlike TS, Timeline Summarization (TLS) is instead a special case
of multi-document summarization (MDS), which organizes events by
date. Basically, TLS can infact be generated by MDS systems by using
summarization algorithms on sentences, extracted from news articles,
for every individual date to create a corresponding daily summary: the
aim is to show to the reader the development of an event during time,
selecting a subset of important dates to be considered as the major
points of the timeline and generating a good daily summary for each of

12

Related Works

these dates [18], after the event is concluded.
In this chapter we will present several algorithms for Text Summa-

tization, TS and TLS that we consider as the related work for our
framework that, as we said, performs the TLS task.

3.1 Text Summarization
It is impossible to present TS and TLS algorithm without before talking
about Text Summarization and the several algorithms that perform
this task. As previously said, text summarization has the aim to
extract an abstract for a document (Single document summarization)
or to condense information from different articles in a short summary
avoiding redundancy (MDS). In this section we will present several text
summarization algorithms, in particular extractive methods and among
them we will introduce the algorithms that have been implemented for
the text summarization step of the TLS framework, objective of this
thesis work.

Analyzing the stat-of-the-art in text summarization, several classes
of methods can be identified:

• Graph-based: these methods identify text units and consider
them as vertices of a graph in which two vertices are connected
by an edge if there is a relationship between the text units that
they represent to compute the score of each text unit based on the
"votes" expressed by neighbours: in text summarization text units
are sentences (or terms in some cases) and the relationship between
two sentences is their similarity.

• Cluster-based: these methods divide sentences into clusters, try-
ing to gather sentences that talk about the same sub-event, relying
on similarity between sentences and then extracting centroids or
sentences near to centroids of each cluster: differences between
cluster based methods consist of the used clusterization algorithm
or the method used to compute similarity between sentences.

• Itemset-based: these methods consider the input documents

13

Related Works

as a transactional dataset in which each sentence is a transaction
composed by a set of item (usually terms): the aim of these methods
is to identify the frequent k-itemsets, i.e. the set of k items whose
support, total number of transactions in which the itemset is
contained divided by the total number of transaction, is above a
given threshold.

• LSA-based: latent semantic analysis is a technique of NLP aimed
at identifying relationship between documents (in terms of de-
scribed concepts) using a matrix that contains words count for
each document and using SVD (Singular value decomposition) to
reduce the matrix and to obtain a vector representation for each
document that will be compared using cosine similarity: in text
summarization LSA is tipically aimed at extracting all the latent
concept from the input text, gathering sentence based on described
concept (using similarity between sentences) and extracting the
most representative sentences for each concept (that identify a
sub-event or nugget of the original event).

• Deep learning-based: these methods exploit deep learning tech-
niques, in particular neural network, and apply them to supervised
techniques to predict the importance of a sentence based on the
previously trained model, typically using a binary classification
model that tries to predict if a sentence is important or not.

The following algorithms belongs to the graph-based methods class:
one of the best text summarization algorithm in terms of performance is
TextRank, introduced by authors of [3]: it is a graph-based algorithm
that create a ranking for sentences using a graph in wich score/impor-
tance for a vertex (sentence) is not computed through information of
the single vertex but combining information of the entire graph (set of
sentences); the main concept of TextRank is that the score of a vertex in
the graph is computed in terms of number of "votes"/"recommendations"
the "neighbour" vertices cast for the vertex in analysis (when a vertex v1
is linked to v2 it is casting a vote to v2). In order to apply this kind
of algorithm to text summarization authors define four steps: "identify
text units that best define the task" [3], in this algorithm they can be

14

Related Works

Keywords or Sentences but we will focus on TextRank for sentences,
"identify relations that connect such text units" [3], such as similarity,
"iterate the graph based ranking algorithm until convergence" [3], "sort
vertices based on their final score" [3]. Tipically graph-based algorithms
(such as PageRank) use directed unweighted graph but authors, in
order to apply the graph-based algorithm to text, use weighted and
undirected graph in which if a vertex v1 cast a "weighted vote" for v2,
also v2 cast the same "weighted vote" for v1. The aim of TextRank for
sentences extraction is to identify the most important and "representa-
tive" sentences for the given text: for each sentence in the original text a
vertex is introduced in the graph; two vertices/sentences Si and Sj are
linked by a weighted undirected edge if the similarity score computed
is greater than 0; this similarity score, which will be the weight of the
edge, constitutes the vote that Si casts for Sj and viceversa: it can be
computed using overlap of two sentences, i.e. number of common tokens,
but also semantic overlap, i.e. sentences express the same concept, or
cosine similarity between two sentences representation; after running
the ranking algorithm to compute importance of each sentence in the
graph as the dumped summation of the neighbour votes, sentences are
sorted based on their score and the top-N ranked are selected to form
the final summary.

Another graph-based algorithm for Text Summarization is LexRank
presented by authors as a graph-based approach to compute sentence
importance based on the concept of centrality of a sentence in a graph,in
which each vertex represent a sentence, calculated using a connectivity
matrix in which each entry M(ij) is computed as cosine similarity
between Si and Sj representation [5], i.e to create clusters of sentences
and to calculate the centrality of each sentence in order to extract
the most important (central) ones to include into the summary. A
cluster of document is a set of sentences that are similar (more or less)
to each other: the sentences that are similar to many of the other
sentences are considered as central and so salient (Centrality-based
Sentence Salience): the first step is to build the cosine similarity matrix
where Mij is the CosSim between Si and Sj (it can be seen also as a
undirected weighted graph like in TextRank): then, given the similarity

15

Related Works

matrix, sentence centrality must be computed: authors introduce three
different ways to do this: Degree Centrality only consider as edge of the
undirected graph the similarity score that are above a chosen threshold:
then Degree centrality of a sentence is the Degree of the corresponding
vertex, i.e. the number of vertices (sentences) the vertex (sentence) is
linked to with a weight over the threshold (each edge is considered as
one vote,not depending on his weight); this score does not take into
account where the vote comes from, i.e. sentences from documents
that are not related to the interest topic could get an high score if they
are central into that document: LexRank score take into account this
problem and use a centrality propagation function based on eigenvectors
to propagate the centrality of a sentence to the neighbours, considering
in this way where a vote come from: this score take into account the
Degree score and the Centroid score for each sentence; LexRank does
not consider the weight of the edge of the graph so authors introduce
another score measure that is continuous LexRank which add the weight
of the edges of the graph in the computation.

Zheng and Lapata[24] present an unsupervised approach to Single
Document Summarization which relies on a graph-based algorithm
and modifies how sentence centrality is computed in two ways, i.e.
using BERT or using tf-idf to calculate how two sentences influence
their respective centrality. The purpose of this system is to modify
LexRank by using BERT to better capture sentence meaning and
compute sentence similarity and then to use a directed graph, starting
from the assumption that a sentence A could give more centrality to a
sentence B than B could give to A: this verifies for example with two
sentences that are linked because A contains an opinion about an event
described in sentence B, that, different from A that would not have any
sense without B, could be a central sentence also without A: according
to authors, this is influenced by sentence position in the original text.
Authors aim is to identify "nuclei" sentences and "satellites" sentences:
in order to do this authors assume that sentences that come first in
the document order are candidate to be "nuclei" so a sentence should
receive an higher score from the sentences that follow it in the original
text and that is similar to it and a lower score frome sentences that

16

Related Works

preceed it in the text. A sentence score is given by the following
formula: W1 · Sumj<i(eij) + W2 · Sumj>i(eij) where eij is the similarity
between Si and Sj and W1 < W2 (authors experimented that the
optimal W1 tends to be negative, so sentence that appears before
seems to have negative impact referencing the sentence in analysis).
In order to compute similarity between two sentences can be used
BERT, which use a pretrained model to predict if a sentence is likely
to refer to another sentences, or Cosine similarity applied to sentence
representations obtained through tf-idf score for each non-stopword
contained in the sentence.

Tixier et al. [4] propose an unsupervised system that performs
extractive text summarization using a greedy approach to preserve
near-optimal performance. The system is based on a "Graph-of-words"
representation in which each node is a unique unigram contained in
the original text, two nodes are linked by an edge if the unigrams
represented by that nodes co-occur in the text in a window of W
words: the edge is undirected and its weight represents the times the
unigrams that it connects co-occur in the input text. The algorithm
is based on k-core decomposition of the graph: a k-core of a graph G
is a maxumal connected subgraph whose vertices has at least degree
(i.e. the sum of the weights of the incident vertex) k. The k-core
decomposition is obtained extracting all the core of the graph from k=
0 (or 1) to k= kmax. The proposed system is divided into four steps:

• Text preprocessing: the input of the system are utterances,
i.e. fragments of speech transcrippts or traditional documents:
utterances that are shorter than a threshold are removed and also
incomprehensible sounds: stemming and stopwords removal are
performed (copies of the original sentences are kept to be selected
in the last step). The remaining words will be the nodes of the
graph.

• Graph building: the graph is built as previously described.

• Keyword extraction and scoring: CoreRank is used to compute
the score of each node of the graph, summing the core numbers
(the highest order k of a core that the node belongs to) of the

17

Related Works

neighbours of the node in analysis: at the end a fixed percentage
of nodes are selected (the ones that have the highest scores).

• Extractive summarization:a submodular and monotone func-
tion is used to compute the concept coverage of a candidate sum-
mary S (set of sentences from the original input text: several sets are
generated in a combinatorial way combining the input sentences):
the score of a candidate summary is computed as the summation of
the score of each keyword contained in S, multiplied by the number
of times that keyword appears in S. To promote non redundancy a
Diversity reward is computed for each candidate summary: it is
computed as the number of contained unique keyword divided by
the total number of keywords (the more keywords are contained
the more a summary cover several concepts and so it will receive
an higher score).

As we can see from the description of the previous algorithms, dif-
ferences between them, and in particular between their performance,
can be identified in the methods used to commpute sentence represen-
tation, the method used to build the graph and to compute sentence
importance using relationship between vertices of the graph.

The authors in [25] start from a simple model based on word frequency
and construct a sequence of models that inject more structure into the
text representation. This method can bee seen as a combination of
LSA based and deep learning based techniques. The aim is to extract
a summary, long at most L words, composed by sentences extracted
from the original documents set. Authors introduce several models
for MDS: SumBasic algorithm select sentences iteratively by scoring
them in terms of number of high-frequency non-stop words that they
contain: in order to discourage redundancy the set of "already included
words" is updated with words contained in the just selected sentence;
KLSum select sentences greedyly in order to minimize the Kullback-
Lieber divergence between the document set unigram distribution and
the final summary unigram distribution; TopicSum uses LDA, useful
to find the latent topics contained in the input corpus, to identify
the significant content in the original set of document that the final

18

Related Works

summary should contain: the aim is to apply KLSum between the
learned content distribution (in place of unigram distribution) and
the final summary distribution; in all these models the content of the
document set is treated as a single unigram (or topic) distribution:
HierSum, the last model that authors introduce, allow to model the
several sub event: so instead of drawing a single general CONTENT
distribution, also several SPECIFIC distribution are extracted for each
sub-story. HierSum can extract general summary by plugging the
GENERAL distribution into KLSum criterion or it can produce a
summary for each topic by extracting a summary for each SPECIFIC
distribution.

Carbonell et Al. approach the text summarization problem introdic-
ing MMR, Maximal Marginal Relevance, a criterion that select sentences
from the original text combining query-relevance and information-
novelty, combination called by the authors "relevant novelty" [10] : the
aim is to maximize the "marginal relevance" of the input documents, i.e.
the linear combination between the similarity of the current document
to the input query (positive influence in the final score of the docu-
ment) and the maximum similarity of the document to a document
of the previous selected ones(negative inflience in the final score): "a
document has high marginal relevance if it is both relevant to the query
and contains minimal similarity to previously selected documents" [10].
This criterion is applied to Single Document Summarization considering
passages of the input document (sentences) as "document" in the MMR
algorithm and calculating for each passage its relevance to the input
query and its similarity to the previous selected sentences, trying to
maximize the linear combination of these two factors.

Among the LSA based algorithms we can find [11] presents a term-
based summarization system that uses LSA to identify the most im-
portant information of the text, represented by terms and their combi-
nation ("topics"): for this purpose a term to sentence matrix is built,
in which each column is the representation of a sentence, given by the
weighted frequency of each one of the contained sentences: then SVD
is used to extract the singular vetors, representing each one a latent
topic, whose importance is given by their magnitude: the sentences

19

Related Works

that have the longest terms pattern expressed in the final matrix are
selected to be part of the final summary: this algorithm is applied
both in single-document and in multi-document summarization, with
the difference that in multi-document summarization sentences that
are considered into the matrix come from several documents and so
important sentences could be similar to each other: cosine similarity
is used to evaluate similarity of a candidate sentence to the already
selected ones. The disadvantages of SVD-based summarization are
highlighted by authors of [13]: according to authors there are two
different disadvantages: the first is that the higher is the dimension of
the reduced space, the less is the coverage of the selected topics (this
could become an advantage if the total number of topics of the original
documents are known and then the number of sentences to sentences to
select is made equal to this number); the second disadvantage is that
sentences that have an high single value score could be discarded by
the process just because they have not the longest pattern of terms:
authors propose an enhanced LSA summarization system to remove
these disadvantages by multiplying each sentence to corresponding sin-
gular values to favour sentences that correspond to the highest singular
values. Moreover authors in [12] use LSA in Update summarization,
building the previous mentioned matrix for the set of old document
and new document separately: SVD is applied to both the matrices to
obtain topics of the old set of document and topics of the new set of
document (as combination of terms, or terms patterns as in LSA based
summarization): the novelty score of each new topic is computed as
1−red(t), where red(t) is the similarity between the new topic and the
most similar old topic: the score of each sentence is the combination of
the longest contained pattern lenght and the novelty score: each time
a new sentence is selected novelty scores of the remaining sentences are
updated.

Now we will introduce some cluster-based state-of-the-art methods:

Radev et Al. [7] introduce MEAD, a system that applies TDT (Topic
Detection and Tracking) to generate clusters of sentences, given an
input corpus of documents, and to extract centroids to be part of

20

Related Works

the final summary. The proposed technique, called CBS (centroid-
based summarization), receive as input the centroids of the clusters,
generated gathering documents regarding the same event. Each cluster
produced by the TDT system is a set of chronologically ordered news
articles describing the development of the same event, so that the
centroids of the cluster are central sentences for all the articles of the
cluster; to determinate the relevance of a sentence in the cluster CBSU
(cluster-based sentence utility) is used to determinate the degree of
relevance of the sentence to the general topic of the cluster; CSIS
(Cross-sentence informational subsumption) is used to gather sentences
in equivalence classes: two sentences that contain the same information,
i.e. two sentences subsuming each other, belong to the same class.
MEAD uses CBSU in the Centroid-based algorithm in which a centroid
is considered as a pseudo-document, i.e. a set of words, extracted from
the document of the cluster (and updated each time a document is
inserted into the cluster), that have an IDF score above a given threshold,
and CBSU score is computed based on the number of "centroid words"
that the sentence contains: sentence are scored and then the top N
sentences are returned as output in the document order. MEAD uses
instead CSIS in the Redundancy-based algorithm in which CSIS between
two sentences constitutes a "redundancy penalty" to subtract from the
SCORE of the sentence (obtained by the centroid-based algorithm):
this two algorithm are used as step of the general algorithm to extract
the final summary avoiding redundancy.

Miller [6] proposes a RESTfull service that performs extractive text
summarization receiving as input transcripts of lectures and using BERT
for sentence embedding and K-Means clustering to identify sentences
that will be part of the summary, i.e. sentences that are near to centroids
of the generated clusters. Also in this case the algorithm follow different
steps: the first is "Textual Tokenization" in which NLTK python library
is used to split the input text in sentences, then sentences that begins
with conjunction (that tipically are not significand if not preceded by
other sentences) are removed and so sentences that are too small or
too large. Then sentence embedding is performed and embeddings are
computed for the input sentences using BERT, exploiting the default

21

Related Works

pretrained model to generating an NxE matrix in which N is the number
of sentence and E is the embedding dimension (so each row represent
the embedding of a sentence Si). The output matrix is passed to the
next step in wich K-Means clustering is performed (in wich K is the
desired dimension of the output summary in terms of sentences): K
clusters are generated and from each cluster the closest to centroid
sentence is selected to be part of the summary.

Authiors in [26] propose a system that take as starting point the
Markov Random Walk Model, in which sentences are vertices of a
graph and each sentence score is computed as the "votes" expressed by
neighbours (as we have seen i graph-based described methods), and
extend this method by clustering sentences by described topic and
considering cluster-level information (in particular the importance of
the topic described by the cluster): the proposed system is based on
link analysis, usually used to compute relationship between web pages
but considered in this case as link between two documents, which is
the similarity between two documents. The system is based on two
main concepts: a sentence in an important theme cluster should have
an high score and an important sentence in an iportant theme cluster
should have an higher score: the algorithm is so divided into subtasks:

• Theme cluster detection: in this step sentences are grouped into
topic clusters, using a clusterization algorithm (the authors used
K-means, agglomerative and divisive clustering)

• Sentence score computation: for this purpose two methods have
been proposed by authors, both combining graph-based and cluster-
based score for each sentence: the first method, Cluster-based
Conditional Markov Random Walk Model, is a two-layer method
in which the first layer is the sentence graph and the second layer
contains the theme clusters: the weight of an edge is computed as
the combination of similarity between two sentences, importance
of each sentence in the belonging cluster, and similarity between
the two cluster (considered as probability to go from a cluster to
the other): the final score of each sentence is computed through
Markov Random Walk. The second method is instead based on

22

Related Works

relationship between each sentence and each cluster and the score
of each sentence is given by the combination between the AuthScore
of the sentence and the HubScore of the cluster it belongs to.

• Sentence selection: as in all the summarization algorithms the last
step is sentence selection in which the most important sentences
are selected avoiding redundancies.

Authors in [8] propose a system that perform text summarization by
performing simultaneously document clustering, exploiting a document-
term matrix and a sentence-term matrix, and text summarization with
the aim of obtaining a better document clustering method with more
meaningful interpretation of sentences, and a better summarization
method that takes into consideration document context information.
The system receives as input the document set: stop words removal is
performed and then the document-term and sentence-term matrices
are obtained,using the unigram language model, in the preprocessing
step: the sentence-term matrix is used as basis for the proposed FGB
(Factorization with given basis) model: the model uses nonnegative
factorization on the document-term matrix, using the sentence-term
matrix as basis, to obtain, upon convergence, the document-topic(for
each document a cell is the probability of the document to belong to
a topic) and sentence-topic matrices(for each sentence a cell is the
probability of the sentence to belong to a topic): at this point clusteri-
zation and summarization of each cluster are performed simultaneously
assigning each document to the topic to which the document belongs
with the highest probability and then extracting the sentences the with
highest probability for each topic to form the final summary.

A similar approach is proposed by authors in [9] in which they
perform sentence clustering and ranking simultaneously, based on the
spectral analysis: the aim is to explore the "clustering structure" of
each sentence, "structure of beams", extracting the spectral features of
sentence similarity networks: the network is constructed used a classical
graph approach in which each vertex is the TFISF, term frequency
inverse sentence frequency, representation of a sentence and an edge’s
weight is the cosine similarity between two sentences; this process is

23

Related Works

aimed at revealing the natural relationship between sentences that is
useful to clustering and ranking at the same time; each sentence is then
projected on each beam(representing a cluster) and then only the beam
with the highest projection length is kept as belonging cluster of the
sentence in analysis: so sentence projected (highest projection length)
to the same beam will belong to the same cluster ant at the same time
sentence importance is computed as the length of the projection on the
corresponding bean: so in this way clustering and ranking are obtained:
sentence extraction is performed extracting the most ranked sentences
from each clustering, iterating clusters starting from the one with the
highest order of size.

As previously mentioned differencies between these algorithms can be
identified in the used clusterization method and in the way sentences are
compared, scored and so extracted: it is different instead the approach
proposed in [9] and [8] in which sentence extraction is performed
simultaneously with clustering.

All the previous algorithms are the classic algorithm used in auto-
matic text summarization: now we will introduce some interesting and
more recent system that perform the text summarization task.

The first is called SummaRuNNer [27], which is a system that perform
extractive text summarization applying a Recurrent Neural Network
(RNN) to a single document. It can be classified as a deep learning
based algorithm: the algorithm is a classification algorithm based on a
bidirectional GRU-RNN which has two hidden layers: the first operates
at word level within the input sentences, computing the hidden state
word representation based on the current word embedding and the
previous hidden state, doing this from the first to the last word and
then from the last to the first word (bidirectionally). The second
hidden layer receive as input the concatenated hidden states of the
previous level and operates bidirectionally at sentence level, encoding
the representations of the sentences of the input document, obtaining
in this way the encoded representation of the input document. In
the top layer the classification algorithm "predict" whether to select a
sentence or not according to its content richness, salience with respect
to the document, novelty with respect to the already selected sentences

24

Related Works

and positional features; in order to apply this classification algorithm
a model must be trained in order to classify sentences to select and
sentences to discard: two training method has been proposed by authors:
the first, the "Extractive Training", is based on the idea that selected
sentences should maximize the Rouge score, so sentences from the
training set are selected greedly as long as they could maximize the
Rouge score and then return this set of sentences as ground-truth to
train the model; the second method, the "Abstractive Training",uses a
decoder to model the generation of abstractive summaries at training
time only.

The last category of algorithm to be described is the itemset-based:
we present for this purpose the description of the following algorithms.

Authors in [14] propose a system named ItemSum that performs text
summarization based on frequent itemset mining selecting sentences
with an high level of coverage with respect to an itemset-based model
and with an high sentence relevance score based on tf-idf score. The
algorithm performs stopwords ans ULR removal and then stemming to
obtain a set of sentences represented through the classic BOW (Bag of
words) representation in which each sentence j belonging to document
k is the set of stems occurring in that sentence; sentence are then
seen as transaction of a transactional dataset (the union of all the
sentences of all the documents in the original dataset) composed by
items, i.e. unique stems contained in the sentence, whose importance
is at the same time computed as the tf-idf score of the stem against
the whole collection. ItemSum generates an itemset-based model of
size ms that contains the ms most representative and non-redundant
frequent itemset, where a frequent itemset is a set of items (stems),
co-occurring in at least one of the input sentences, whose support (given
by the number of transactions,i.e. sentences, in which the itemset is
contained divided by the total number of transaction) is above a given
threshold; sentences are selected combining the sentence relevance score,
computed as the summation of the tf-idf score of each distinct term
that is contained into the sentence, and sentence model coverage score,
whose computation is a set covering problem: for each transaction
(sentence) a coverage binary vector is built: the vector has dimension

25

Related Works

ms and each cell represent an itemset of the model and it has value 1
if the corresponding itemset is supported by the current transaction
(i.e. it is contained into the sentence), 0 otherwise. ItemSum applies a
greedy strategy, that prefer sentences with the highest coverage level
(high number of 1’s into the coverage vector) and the highest relevance
score, to solve the set covering problem to obtain the minimal set of
high-scored sentences whose logic OR of the coverage vectors of each
sentence gives as output a binary vector with the maximum number of
1’s.

Authors of [15] presents a multilingual summarizer, called MWI-Sum,
based on "frequent weighted Itemsets": different from the previous
described ItemSum [14], MWI-Sum consider weighted itemsets and is
applicable to any language for which a stemmer and a stop words list
can be found. A frequent weighted itemset is a set of terms, having
an high relevance score in the analyzed collection, that co-occur many
times into the original collection: the algorithm is divided into several
steps:

• Document preprocessing: stop words removal (using NLTK) and,
optionally, stemming (to reduce terms to their root form) are
performed and a relevance score is assigned to each term: for this
purpose tf-df (term frequency-document frequency) is used: it is
a variant of tf-idf, proposed by authors, that assign a score to a
sentence term of a specific document directly proportional both to
frequency into the document and frequency into the collection. At
the end of this step a set of transaction (sentences) is obtained and
each sentence will be a set of weighted item.

• Sentence Filtering: in this step authors assume that sentence that
are more relevant will appear at the beginning of each document
and that other sentences will contain repeated information: only the
top-K (in terms of order into document, K user-driven) sentences
reach the next step;

• Itemset-Based Model Generation: in this step an itemset model
is generated: the model will be composed by frequent itemset

26

Related Works

that contain relevant terms; starting from the transactional repre-
sentation of the dataset (each sentence is a transaction of scored
terms/items) the weighted support value of each transaction is
computed as the summation of the matching values of all the item-
set contained in the transaction (i.e. the lowest tf-df value of each
contained itemset) divided by the summation of the maximum item
weights of each transaction: in this way support increases with the
number of "high scored itemsets" contained in the transaction; the
transactions whose weighted support is above or equal to a given
threshold are kept as part of the model.

• Frequent Weighted Itemset Mining: a variant of the FP-Tree index
is proposed in which the weighted support of each transaction
is stored instead of the classic support: then each sentence is
associated to other sentences having the same support weight
and an FP-growth-like itemset mining is performed to obtain the
frequent weighted itemsets.

• Sentence Evaluation and Selection: sentences are selected con-
sidering their relevance score, computed as the sum of the tf-df
score of the contained terms, and coverage of the generated model,
computed as the total number of 1’s contained in the coverage
vector, computed as specified in [14]’s description. Also in this
case the sentence selection problem is approached as a set covering
problem aimed at selecting the minimal set of sentences with max-
imal coverage score, i.e. maximal number of 1’s in the summary
coverage vector, i.e. vector obtained from the logic OR between
all the coverage vector of all the sentences in the "summary": this
problem is solved using a greedy approach that prefers sentences
with an high number of 1’s in the coverage vector and an high
relevance score: at the beginning the summary coverage vector
is initialized as vector of 0’s : at each step the sentence with the
highest number of one’s in the coverage vector and with the highest
tf-df score is selected and added to the summary, updating the
summary coverage vector and the coverage vector of the remaining
sentences, setting to 0 the bits of the already covered itemsets:

27

Related Works

in this way one’s in remaining coverage vectors will represent the
covered itemset that has not been covered in the summary yet and
so at each step, selecting the sentence with the highest number of
one, the best complementary vector with respect to the summary
coverage vector is selected: the algorithm stops when the summary
coverage vector becomes a vector of one’1, i.e. all the itemset of
the model have been covered by the summary.

Authors of "ELSA: A Multilingual Document Summarization Algo-
rithm Based on Frequent Itemsets and Latent Semantic Analysis"[16]
propose ELSA, a system for multilingual document summarization
that exploits Latent Semantic Analisys (LSA), which derives concept
by modeling them as a combination of single-document (limitation of
this approach) terms and applying Singular Value Decomposition to a
term-by-sentence matrix that stores per-sentence terms frequency, and
then exploits frequent itemset (combination of terms that co-occurs
together) mining to extract sentences that contain the largest number
of frequent itemsets. In ELSA frequent itemset is used to describe
all of the latent concepts contained in the input documents and LSA
to avoid redundancy in the itemsets: the summarizer aims to select
sentences,trying to maximize the latent concepts coverage while min-
imizing redundancy [16]. The aim of ELSA is to exploit itemset to
consider the relationship among multiple terms and LSA to summarize
textual content to obtain meaningful concepts, avoiding the limitations
of the two technique. ELSA receive as input a collection of multilingual
textual document and extract a summary following four main step:

• Document Preparation: in this step the textual content is pre-
pared for the itemset mining by removing stopwords, i.e. words
such as articles, preposition, conjuctions that are the most frequent
but that don’t represent significant information,stemming words,
bringing them to their original form in order to not differentiate
for example verbs based on their tens or the same term in singular
or plural form, and by trasforming documents into a transactional
form, i.e. all documents are gathered in a single dataset and each
sentence is represented as a transaction formed by a set of "stems".

28

Related Works

• Frequent Itemset Mining: the aim of this step is to identify the
itemsets that potentially describe significant concepts, i.e. the most
frequent itemsets: "a k-itemset is a set of k stems that co-occur
in any transaction in the transactional dataset" [16], and frequent
itemsets are the itemsets whose support, i.e. the number of trans-
action (sentences in the transactional dataset) in which the itemset
is contained divided by the total number of transactions, exceed a
given threshold minsup: in order to identify the frequent itemset
an FP-Growth algorithm is used: output itemset are presented in
a Itemset-by-Sentence matrix in which MIS is equal to 1 if I is
contained in S (S covers I) or 0 on the contrary.

• Singular Value Decomposition: the aim is reducing IS matrix
to a CS (Concept-by-Sentence) matrix using SVD to obtain for each
frequent itemset a subset of latent concepts and for each sentence
the subset of correlated concepts, associating to each concept a
degree of importance.

• Sentence Selection: the summary will include the sentences that
cover the most important and relevant concepts identified through
SVD (sentence significance) and that are not similar (in the space
of concepts identified by LSA) to already selected sentences (sen-
tence redundancy); the significance of a sentence is calculated as
the combination of relevance of the corresponding concepts and
relationship degree between the sentence and each of the related
concepts; two sentences will have an high score of redundancy if
their coverage of all LSA concepts is similar: according to this
assumption, Sim(Sx, Sy) will be equal to 1 if the similarity score
is over a pre-defined threshold, it will be 0 otherwise; sentence
selection step can be summed-up as follow: for each sentence the
significance is computed, the sentence with maximal significance is
included in the summary and sentences that are similar (according
to Sentence redundancy measure) to the already included sentences
are discarded from the set of sentences; these two passages are re-
peated until maximal summary size is reached or no more sentences
are available.

29

Related Works

The analyzed algorithms perform text summarization: as previously
specified the framework proposed for this thesis performs, instead,
timeline summmarization: nevertheless, the main contibution of this
thesis is to introduce text summarization into timeline summarization
task, to extract the most significant sentences for each one of the selected
dates and to explore performances of state-of-the-art summarization
algorithms in terms of quality of the generated timeline: for this purpose
we employed some of the previously described algorithms.

3.2 Temporal Summarization
Presented as a challenge in TREC2015, the aim of this task is to emit
a series of sentence updates, relevant to the input topic and with an
high degree of novelty with respect to the already emitted sentences,
over time about a named event, given a high volume stream of input
documents. In particular, the temporal summarization task focuses on
large events with a high impact, such as protests, accidents or natural
disasters. Each event is represented by a topic description, a textual
query that represent that event is provided, along with start and end
timestamps defining a period of time within which to track that event
[23]; this task could contain a sub-task that is filtering (given a set of
document, only the ones related to the topic in analysis are selected).
A lot of paper and algorithms have been published, approaching in
different ways the problem of TS: Wan [28] propose an algorithm
based on the classical TextRank: it is a graph-based algorithm that
"makes use of the relationships between sentences and selects sentences
according to the “votes” or “recommendations” from their neighboring
sentences" [28]: the documents are split in a set of sentences, then
each sentence is represented as a vector using tf-idf to calculate the
weight of each term that is contained in the sentence itself: sentences
are considered as the vertices of a weighted undirected graph in which
two vertices/sentences Si and Sj are linked by an edge (weighted wij

) only if wij = CosSim(Si, Sj) > 0: this weight represent the "vote"
that Si "express" for Sj and the score of Si is the summation of all
the "votes" expressed for it by all the other sentences; TimedTextRank

30

Related Works

is based on the concept that sentences in more recent document are
more important, and so their "expressed vote" is more important, than
the earlier ones: so a weight is introduced into the summation in order
to take account of the temporal information and the more the sentence
that express a vote is recent (it belongs to a more recent document)
the higher is the expressed vote; a postprocessing step is performed in
order to remove redundancies.

Authors of "Online Temporal Summarization of News Events" [29]
propose a system that applies temporal summarization to a stream
of news document, with the aim to detect real-time if a document is
relevant to a topic query and to extract updates as soon as possible:
authors approach this task dividing it into three steps: in the first step
each document that arrives in the stream is filtered (only documents
that are relevant to the selected topic are kept) applying BM25 to
the document and the input query (query espansion is applied to the
query); then in the "Relevant Update Retrival" step, sentences that
are relevant to the query are identified: in order to do this, a dynamic
language model LMQ is calculated for the query (aggregating the
terms of the top-100 BM25 scored article extracted from wikipedia for
the topic query in analysis) which is updated with the terms of the
already selected sentences, and a language model LMS is calculated
for each Sentence: then KLD-score between LMQ and LMS of each
sentence extracted from a relevant document is calculated in order
to detect the topic-relevant sentences; in the last step only the novel
sentences are chosen as updates: a sentence is selected if it is a "Novel
Update by Number Occurrence", i.e. it contains at least one "Number-
ContextTerm" pair (e.g. 40 death, 100 Km/h, 30 wounded) that appears
in the current document enaugh times- greater than a chosen threashold
Tnum - to be considered as an update, or if it is a "Novel Update by
Term Frequency", i.e. it contains at least one term that is novel and
significant (IDFnow(term) < IDFwithoutCurrDoc(term), it appears at
least tterm times into the document, it has never been selected as novel
and significant before).

BJUT [30] at TREC2014 proposed a multi-level system that receives
as input a set of temporally-ordered documents and a topic query and

31

Related Works

performs temporal summarization through two modules: the "Informa-
tion Retrival Module" exploits Lemur and BM25 to extract sentences
that are relevant to the expansed (in order to take account that in
the text synonims of the terms of the original query could be used)
input query; these sentences are processed by the "Information Process
Module" that in an initial step select only the sentences that are in the
temporal range of the event, then k-means clustering is applied and
from the central cluster the top-100 scored sentences (score based on
time and similarity) are extracted to compose the final summary and
obtain temporal summarization.

The representatives of university of Glasgow presented at TREC2014
a system [31] that performs, among several tasks, temporal summariza-
tion with three principal aim: issue updates as soon as a new document
arrives (unlike the rank-than-select systems that issue updates each
hour), increase the coverage of the nuggets (sub-events of the original
event), avoid to issue sentences that have semantic intersection with
the query (obtained through "sentence proximity"); the algorithm is
divided in three step: in the first step a machine learned document
classifier is used in order to compare the document to the expansed
topic query and decide if the document is on-topic: in this case the
document reach the next step in which sentences are extracted from
the document and a series of classification heuristics and a supervised
sentence classification model (trained on a set of sentence extracted
from TREC TS topics, uses emergency related terms an quality fea-
tures, such as the presence of capital letters) in order to selected the
relevant sentences, i.e. sentences that are neither too long neither too
short, sentences that contain named entities, sentences that are "well
written" according to the previously trained classification model: these
candidate sentences are compared, in the last step, with a greedy cosine
similarity heuristic, to the already extracted ones and only the most
different are issued as updates.

Tabitz et Al. [32] presents a system that has the aim of covering
several (the more the better) aspects (nuggets) of the topic of interest:
the algorithm receives as input a set of document E, a topic query Q
and a temporal range that goes from the start date to the end date of

32

Related Works

the event and that is divided in intervals Hts− > Hte; the algorithm
iterates the time interval and perform summarization as follow: given
the current interval H, it iterates all the documents and select only
the documents that are on-topic (BM25) and in the range H(ts, te);
at this point relevant sentences are selected as candidates updates for
interval H according to the following criteria: lenght of the sentence
(4 < l < 40),similarity with the query, presence in the sentence of
terms that are contained in the language model generated for the event
of interest (that contains terms that are typical of the kind of event in
analysis): this step is called "double filtering"; then, given the candidate
sentences, LDA is applied to extract from the sentences the set of topics
T (H) and to compute for each sentence the probability to belong to
each topic P (s, Ti) (soft clustering); then topics are sorted in order
of importance (number of sentences contained, i.e. sentences that
have P (s, Ti) > 0) and sentences are sorted in order of importance
(probability to belong to the topic) into the topic; in the last step
the Nt most important topic are selected and for each topic the Ns

most important sentences are extracted to form the summary for that
interval H.

In [33] the authors presents a system whose aim is to select, at a
certain time instant T sentences that are considered "Vital Sentences"
and that are novel with respect to the already extracted ones: given
a topic query Q, a summary composed by the sentences extracted
in the previous time instants T0...Tn−1, a new time instant Tn and
a set of new documents arrived between Tn−1 and Tn the proposed
algorithm extracts the documents that contain "vital sentences" and
extract that vital sentence from the previously selected documents: a
sentence is considered a "Vital" one if it has a CosSim(S, Q) higher
than a threshold or/and it contains at least one "trigger word" (e.g. for
a natural accident these words could be "deahts","wounded"...); at this
point not novel sentences are filtered out and only novel sentences are
kept: novelty score is computed as the combination of Text Divergence
score (computed using Cosin Similarity) and presence in the sentence
of event-related entities that can be considered as updates.

In [34], Kedzie and the other authors present a system that combine

33

Related Works

"Salience prediction" and clustering in order to extract, given a stream
of temporally-ordered documents, a topic query, a time interval of
interest, sentences as updates: in the first part of the algorithm "Salience
prediction" is applied: the salience score of a sentence is calculated
using a Gaussian Process Regression Model, influenced by four kind of
"Features": first, the "Query features" i.e. the similarity with the query
based on the number of terms that the sentence and the query have
in common or the number of terms in the sentence that are synonyms
of the ones in the query; second, the "Language Model Features", i.e
the likelihood that a sentence has been generated from a Language
Model that contains terms specific for the topic of the input query
(the topic of interest of the analysis); then "Geo-location" (the sentence
refers to a geographic location that is near to the event location) and
"Time" features are considered; "Salience Prediction" is combined with
the Affinity Propagation clustering algorithm and the most salient
sentences are extracted: at this point the extracted sentences are
compared with the sentences extracted from the previous documents
and only the less similar are selected and "emitted" as updates.

In [35] the authors describe their system which try to issue updates
from a stream of news articles periodically (e.g. each hour, at the
beginning of each day...) and before the next group of news article
arrives: it receive as input a stream of news and a topic of interest, that
is considered as a set of topic-related events: each sentence is analyzed
and considered on-event (related to one of the event that compose
the topic) or off-event; then the system aim to recognize the "Useful"
sentences by scoring them using IR and computing the probability of
the sentence to be generated from a Language Model containing typical
words for the events of the topic of interest(expressed as the percentage
of word of the sentences that belong to the LM); in order to compute
the "Novelty" of a sentence, all the sentences (even the off-topic ones)
are processed: if a sentence generate a new cluster it will have an high
score of novelty, if it belongs to an already existing cluster (with a
certain probability) his score will be lower: doing that, the system
will assign an high score to the off-topic sentences that will probably
generate a new cluster: at the end this score is neutralized becouse only

34

Related Works

sentences that have an high total score (score(s) = U(s) · N(s)) will
be selected.

In [36] Zhang et Al. approach the TS problem as a sequential update
summarization problem: the algorithm receives as input a stream of
document chronologically ordered (from Ts to Te of the event) and
issue useful, novel and time-related updates using three modules and
an input set of keyword K for the topic: the "Preprocessing and
IR Module" exploit Indri to perform IR between documents and the
expansed query and select only the important (on-topic) documents;
the "Keyword Mining Module" uses LDA to find the latent topics in
the document and to find the representative words for these topic
and update K with these keywords; the third module, the "Sentence
Scoring Module", uses three different approaches to score sentences: (1)
KLP: an update is a long sentence which contains keywords for the
topic and that is at the begining of the paragraph; (2) SKD: an update
is a short sentence with an high degree of keyword diversity; (3) KS:
an update is a sentence with an high degree of keyword diversity; in
the post-processing step sentences with the best score (according to
one method between KLP, SKD, KS), that are in the temporal range
(Ts, Te) of the event and that are not redundant with respect to the
already issued updates are selected to be issued as updates.

3.3 Timeline Summarization
In the previous section we spoke about Temporal summarization, now
we will put the focus of the discussion on Timeline Summarization:
there is an abundance of reports on events, crises and disasters, timelines
summarize and date these reports in an ordered overview; the aim of
TLS task is to create a timeline, an overview of a long-running event, to
follow the evolution of that event across time via dated daily summaries
(generated from a corpus of dated documents) for the most important
dates; so the TLS task can be divided into two sub-task: the first is the
"date selection" sub-task, in which text summarization can be used to
select the dates that contain the most relevant sentences: the importance
that this sub-task assumes in TLS costitutes the main difference from

35

Related Works

MDS (a date can be selected as important one even if the summary
for it is shorter than other date’s summaries); in the second sub-task,
"date summarization", for each date, the most important sentences are
extracted through text summarizzation. As we will see this two step
could be united in a single step or performed sequentially. This thesis
will focus on the "date summarization" step, but before talking about
it several TLS methods, considered as the related work for this thesis,
will be presented in this chapter.

In "Examining the State-of-the-Art in News Timeline Summariza-
tion"[37] the authors examinate several TLS state-of-the-art methods
and classify the several approaches used in TLS in three classes:

• Direct Summarization Approach, in which the set of time-
ordered news articles is treated as a single set of dated sentences
and most important sentences are extracted and their dates will
form the timeline.

• Date-wise Approach, in which l dates are selected and then for
each date k sentences are selected to form the summary for that
date; in the first step a set of candidate dates are extracted from
the articles selecting the publication dates of the several article and
resolving date references (e.g. ’last Friday’, ’October 21th’...) that
are found in the text of the articles; then the l most important dates
must be selected: in order to do this several method have been used,
we will analyze them in the framework description chapter.For the
date summarization step authors propose an heuristic that select as
candidate sentences for each date Di all the sentences of an article
published in that date and all the sentences that refer to that date
and try to find the sentence that are likely to mention important
events for Di (sentences are represented as vector,applying TF-
IDF, and a date vector is generated, then CosSim between each
sentence vector and date vector is computed); then each date
is "summarized" separately using a MDS algorithm (TextRank,
Centroid, Submodular are analyzed by authors in this paper).

• Event Detection Approach, in which a timeline is considered
as a sequence of event, so clustering is used to gather documents in

36

Related Works

"event", adding temporal constraint (each cluster is built around a
representative date) and then select the l most important events/-
clusters (by Size of the cluster, Date Mention Count i.e. how
often the date of the cluster is mentioned in the input articles,
Regression to predict the importance of the cluster); then each
cluster among the l selected ones is summarized separately (using
a MDS algorithm).

Chieu and Lee in their "Query Based Event Extraction along a
Timeline" [17], use a Direct Summarization approach, performing TLS
as extraction of events relevant to a query extracting one representative
sentence for each event, starting from the assumption that an important
event is widely cited into the input corpus of document. In order to
perform this task authors propose an algorithm that can be divided in
five steps: in the first step the algorithm try to get the set of sentences
from the corpus C that are relevant to the input query q: authors
define the "interesting events" as events that are reported in many
sentences and so "interesting sentences" the sentences that talk about
"interesting events": the algorithm consider a sentence "important" if
it is an interesting one and if it is related to the query, more precisely
if it reports an event that is query related; in the second step a date
is assigned to each sentence with a date resolution process (that for
example assign to "Yesterday" the day before the publication date of
the article which the sentence belongs to, assign to "Sunday" the date of
the Sunday that preceed the publication date and so on): the authors
assume that "the first time expression detected in a sentence is the
date of the event mentioned in s" [17] and if no temporal reference is
detected into a sentence the date of that sentence will be the publication
date of the article to which it belongs (reasonable assumption for news
article). In the third step the sentence are ranked according to their
importance expressed in terms of "Interest" which is considered as the
number of "interesting sentences" that reports the same event of the
sentence in analysis: to do these sentences are represented as terms
vectors and each term is scored with iDf which is a variation of
traditional idf based on date instead of document: CosSim is used
to determinate if two sentences speak about the same event ("could

37

Related Works

be paragraphed"); then the most "Interesting" sentences are selected
(duplicated are removed in the fourth step) and in the last step sentences
are ordered in chronological order to form the final timeline, according
to the dates previously assigned to the sentences.

Tran et Al. [21] see the TLS task as the task of "extracting impor-
tant points of the story, both in temporal and content dimension" and
propose a supervised approach that takes as input a set of article Aq

related to a specific topic q, applies machine lerning to predict impor-
tance of each date and of each sentence to return as output the m most
important sentences for each of the n most important dates previously
selected. The importance of a date d is calculated computing the
number of articles published on d (PUBCOUNT) or befor/after d
but containing reference to d (MENTIONCOUNT) and the number
of sentences that refer to d (MENTIONCOUNT) or published on d
(PUBCOUNT). Sentences importance (for each of the selected dates) is
calculated according to several features: Surface (length, position, pres-
ence of stop-words/non stop-words), coherence (temporal and logical
reference), topic and time-related features: the score of each sentence
is calculated by measuring their semantic similarity to the manually
created summary.

Steen and Markert [22] propose an unsupervised abstractive system to
perform the TLS task: the main objective of this system is to generate a
timeline by selecting a fixed number of date and generating a summary
(defining a maximum number of sentence) for each date, combining the
sentences of the original text to generate new sentences (abstractive)
with the same semantic content, differently from the systems analyzed
so far that extract sentences directly from the text. The algorithm
perform the task in three steps: in the first step (Clustering) sentences
that describe the same event are gathered in a cluster: AP (Affinity
Propagation) clustering is used for this purpose: it automatically and
dynamically choose the number of clusters to generate for the input
dataset, select an exemplar sentence for each cluster (it will be cluster’s
center) and then for each non-exemplar sentence select one of the
exemplars to form a cluster with. Sentences of the same cluster must
refer to the same date: each sentence can refer to the document creation

38

Related Works

date, if it has some time reference it can refer to more dates and if
it refers to a range of date it may refer to any date of the range. A
sentence S2 may select S1 as exemplar to cluster with if S2 refers
to an exact date d2 that contains d1 referenced in S1 (i.e. d1 and
d2 refer to the same day or d2 refers to a range that contains d1
that must be an exact date); at the end of this step, for each cluster,
the date that is the most referenced by the sentences of the cluster
is selected as representative date for the cluster. In the second step
Multi-Sentence-Compression (MSC) is used to generate new sentences
for each cluster; in the last step a score is assigned to each sentence of
each cluster using three scoring function: a linguistic quality score is
computed to encourage a readable output (assigning an higher score to
the sentences generated from a shorter path in the MSC algorithm);
then a date importance score is computed, i.e. the nummber of times
the date that the sentence in analysis refers to is mentioned in the input;
the last score is informativeness, calculated using TextRank; the score
of a sentence is the product of theese three score. In the second part
of this last step sentence selection is performed: sentence are greedily
selected starting from the one with the highest score, selecting at most
one sentence from each cluster (so a cluster may not be included in
the final timeline), skipping sentences with an high CosSim with the
previously selected one and sorting them, when the maximum number
of sentences has been reached, in chronological order along the final
timeline.

Authors in [18] propose a TLS system that focus on generating
a good daily summary starting from news article’s headlines: the
main reason of this choice is that extracting sentences from the whole
text of the huge amount of articles related to the topic of interest,
according to the authors, does not guarantee good results in terms of
"understandability" (due to the fact that often there is not continuity
between the selected sentences) and also "relevance" (because it is hard
to extract the right sentences, i.e. the sentences that are actually the
most important, from the huge amount of sentences that are received
as input by a TLS system); moreover headlines are good candidates
for timeline generation because they are complete (in terms of time

39

Related Works

and contained information about the event that the article talks about)
and "comprehensible to the reader without requiring too much reading
time" [18]: the aim is to identify informing headlines, i.e. headlines that
tells what happens and not background opinions about the event, then
remove duplicate headlines and at the end extract the most relevant ones
to build informative daily summaries; starting from a set of headlines
Hd, extracted from articles published on d, the system compute for
each headline the Informing value, the Spread and the Influence. An
headline is informing if it describes what happened, so it contains
event related information: an SVM(support vector machines) machine
learning algorithm (trained on a set of relevant headlines and a set of
non-relevant headlines) is used to determinate if an headline is relevant
(Score=1) or not (Score=0); the influence of an headline I(h) compute
"how much" an event described by the headline is influential in the
event that will happen in the future: it is determined by calculating the
similarity between the word representation of the headline published
in d and the word representation of the set of sentences of articles
published in d1 > d that refer to date d; the Spread score represent
the relevance score of an headline based on the number of headlines
that are likely to report the same event of the headline in analysis
(considered as duplicated): a weighted graph is built in which vertices
are headlines and they are linked by an edge if they are likely to be
duplicated (the weight is the similarity score); then a random walk
approach based on a Logistic Regression model is used to compute
the Spread of the headlines. At the end the headlines that have high
Informing, Influence and Spread score are selected to form the daily
summary for a date d.

Jiwei Li and Sujian Li [20] see Timeline Summarization as showing to
the reader the evolution of topics in an event of interest, by extracting
the most important topics from articles published in different "epochs":
authors propose a evolutionary Hierarchical Dirichlet process (EHDP)
for TLS: an HDP is built at each epoch (the time aspect makes it
evolutionary) and topic popularity and topic-word distribution are
inferred from a Chinese Restaurant Process: sentences will be selected
in the timeline considering relevance,coverage and coherence. For each

40

Related Works

epoch is selected a Corpus of query related documents and the CRP
is applied: each document is a "restaurant", each topic is a "dish"
associated to a "table" and each sentence is a "customer" that sit in
the "corresponding table": so for each epoch sentences are gathered
according to the topic they talk about: in order to select sentences
KL is used to compute score for each topic that will influence three
sentence scoring criteria: Relevance, i.e. the summary should be related
to the input query, Coverage, i.e. for each epoch all the important topic
happened in that epoch should be included in the summary, Coherence,
a good summary should be coherent do the neighbour summaries in the
timeline: in the last step of the algorithm of sentence selection MMR
is used to avoid aspect redundancy.

Martschat and Markert [19] in their system highlight the importance
of date selection in timeline summarization and how it is the main
difference between TLS and standard MDS: however the aim of this
paper is to show how MDS techniques can be extended and adapted to
TLS adding time constraints and designing objective functions through
submodular functions and if the result is a scalable, well-performing
TLS model that keeps the advantages of MDS. The aim of the proposed
system is to generate a timeline (d1, s1)...(dn, sn) starting from a set
of dated (by a date expression or the publication date) sentences
extracted from the corpus associated to the input query. Authors
first define summarization as an optimization (in a greedy algorithm
that tries to build a good summary) of an objective function that
must be, in order to guarantee performance and good results for the
generated summary, monotone and submodular and that, tipically
in MDS, tries to maximize Coverage and Diversity in the summary;
moreover constraints, such as the number of sentences, are introduced
to define the summary’s structure and so to increase the performance
(in terms of quality of the summary) of the greedy algorithm. This
model is applied to TLS by temporalizing coverage function, looking
at the temporally local neighborhood of the date d in analysis, by
temporalizing diversity functions, i.e. passing from MDS semantic
criteria for sentence partitioning to TLS temporal criteria to obtain
date-based partitions (a partition will contain sentences related to

41

Related Works

a date that probably will be related to the same sub-event of the
principal event), and then adding date selection function, integrating
date importance, calculated using the number of reference to a date
in the original corpus, into the objective function: the final objective
function is the sum of the coverage, diversity and date importance
criteria. Moreover constraints are introduced in terms of cardinality of
dates to select and cardinality of sentences to select for each date to
obtain the final timeline.

As we can see from related works description, the most part of the
state-of-the-art methods performs timeline summarization trying to
extract important sentences and then sorting them in temporal order
based on the associated date (Direct timeline summarization) or trying
to identify the most important events by clustering sentences based on
their date and/or content (event-detection based timeline summariza-
tion): the contribution of our work is a system that instead performs
the timeline summarization task using the date-wise approach: as we
will see more in detail in the next chapter, our system divides the
main task in two sub-task, date selection, in which the most important
dates are selected according to counting and mentioning critaria, and
date summarization, in which for each date the most representative
sentences are selected as daily summary,unlike [17],[18],[19] that use
the direct summarization approach or from [22] and [21] that use an
event detection approach: unlike [20] and [19], that use a MMR-based
heuristic to select sentences and avoid redundancies, in our method
we applied (and compared) several summarizer based on several sum-
marization algorithms and techniques; moreover,differently from [21]
we use the unsupervised approach in text summarization and the ex-
tractive summarization approach, unlike [22] that performs abstractive
summarization.

42

Chapter 4

Timeline
Summarization
Framework

In this chapter we will present the implemented framework, focusing
on the "Date Summarization" step: the picture below show an high
level representation of the proposed system: as we can see the proposed
pipeline consists of three blocks: the first block aims to select the
most important dates from the input sentences obtaining as output a
list of candidate sentences for each important date; the second block
performs, for each important date, sentence selection, applying a text
summmarization algorithm: the output file will contain the timeline,
as we will see, in a specific format: the user will upload the timeline
file into the final block, TimelineVisualization, that will show to the
user the final timeline in a user-oriented way.

43

Timeline Summarization Framework

Figure 4.1: Timeline summarizaton pipeline of the proposed system

In this chapter we will discuss about the first two blocks, providing
a brief description of the first and describing more in detail the second
block, while in the next chapter we will present the web application,
TimelineVisualization, that constitutes the third block of the pipeline.
To get more in detail, our framework performs the TLS task using
the previously mentioned Date-wise Approach in which a predefined
number of dates are selected as important dates, that will be the
"timepoints" of the final timeline, and then for each "important" date
a fixed number of sentences are selected to form the final summary
for that date. In particular our framework aims to generate a textual
file that will be read, as we will see, from a minimal web application
that will show to the user the final timeline. The framework receives
as input a stream of news about a specific topic (i.e. a set of document
associated with their publication date), the number of dates to select,
the minimum length (in terms of number of words) that a sentence
should have to be considered as a candidate sentence for the final
date summary, the maximum number of sentences to select for each
date summary; in the first step date selection is performed: news are
annotated with a date using the publication date of the article in which

44

Timeline Summarization Framework

they are reported and using heideltime, which is a multilingual system
that performs temporal tagging by finding temporal reference in the
text; at this point sentences are assigned to a date, obtaining for each
date a set of associated sentences: several methods can be found in
SOTA for date selection, most of them are based on counting how often
a date is mentioned in sentences: authors of [37] present three main
methods, proposed by Tran et al.[21]: in PUBCOUNT the score of a
date is computed as the number of articles published on that date,in
MENTIONCOUNT the score of a date is the number of sentences
that mention that date, in SUPERVISED date features (based on
publication count and different variants of date mentions) are used
together with classification or regression to predict if a date is likely to
appear in a ground-truth timeline; in our framework methods that are
not object of this thesis are applied to detect the most L important
dates that will reach the following step; the second step is the "Date
Summarization" step that performs,for each date, text summarization
to extract N sentences for each important date as in Figure 4.2: the
illustrated diagram presents the Date summarization process which is
repeated for each important date: the date summarization block
receive as input a set of date-related sentences, the minimum length
TH of the candidate sentences, the maximum number of sentences to
select: in the first step sentence preprocessing is performed to remove
duplicates (in this case with "duplicate sentence" we refer to sentences
that are identical to each other and not similar in terms of content,
we bring just one of them to the next step) and to discard sentences
whose length is below the given, user driven, input threshold TH;
the next step is the date summarization step: this step is performed
in our framework by a Summarizer: we introduce in this step several
Summarizers that have the same structure but exploit several python
libraries that implement several summarization algorithms:

• TextRank [3]: graph-based algorithm that assign score to sentences
according to their neighbours’ votes: sentences are vertices of the
graph while edges represent the weighted vote that two sentences
cast to each other: the weight of the edge is the similarity score
computed between the sentences linked by that specific edge; the

45

Timeline Summarization Framework

Figure 4.2: For each important date,the framework follow the il-
lustrated steps to select, among the input sentences associated to
the current date, the sentences that will form the summary for that
date,using for each date the same summarization algorithm.

score of a sentence is the summation of all the votes cast for it by its
"neighbour" sentences; in our framework we use implementations of
Text Rank that use tf-idf to compute sentences representation and
cosine similarity to compute similarity score between two sentences.
We exploit two different implementations contained in Sumy [38]
and Sumpy[39], which are python libraries which contains several
baseline text summarization methods implementation. We also
employed the implementation of a variant of TextRank described
in [40] that exploit BM25, which is a variation of TF-IDF usually
used for Information Retrival, to score sentences, instead of the
cosine similarity.

• LexRank [5]: another graph-based algorithm that computes sen-
tence importance as sentence centrality in the graph, computed

46

Timeline Summarization Framework

using a similarity matrix between sentences, using a centrality prop-
agation function to take into account into LexRank score where
a vote cast to a sentence comes from (in order to avoid selecting
sentence that are central locally to the belonging document which
instead is not relevant to the input topic). Also for LexRank we
propose two different Summarizers that exploit Sumy and Sumpy
implementation respectively.

• KLSum [25]: add sentences greedyly to the summary, as long as
it decrease the Kullback-Lieber divergence, in order to minimize
the KL-divergence between the document set unigram distribution
and the final summary unigram distribution; even in this case we
exploit Sumy implementation of KLSum.

• tf-idf based summarizer [24]: based on the concept that two sen-
tences don’t influence each other in the same way: "nuclei", self-
contained sentences that are meaningful, and "satellites", sentences
that are meaningful only because they refer to another sentence,
influence another sentence’s score differently: "nuclei" (usually
appearing before "satellites" in the text) influence referenced "satel-
lites" with a negative score, on the contrary "satellites" influence
referenced "nuclei" with a positive score: the score of each sen-
tence is the linear combination of all the votes expressed by other
sentences; the vote that a sentence express to another one is the
similarity between two sentences: in our summarizer we exploit
the "PacSum" [41] python implementation of [24], based on tf-idf
and cosine similarity for sentences representation and scoring. Pac-
Sum contains also the implementation based on BERT that we
don’t exploit because we focused on unsupervised summarization
methods.

• Centroid based summarizer [7]: sentences are gathered into event-
based cluster, i.e. set of sentences that talk about the same sub-
event: the method uses CBSU(cluster-based sentence utility) to
compute sentence score according to the number of contained
"centroid words" (words that have an high IDF score), while it

47

Timeline Summarization Framework

uses CSIS(Cross-sentence informational subsumption) between the
sentence and the already selected ones, to compute the "redundancy
penalty" to remove from the sentence in analysis. We exploit the
Sumpy implementation of this algorithm.

• MMR summarizer[10]: the aim is to maximize marginal relevance
of the input by choosing sentences whose similarity with the input
query is high and whose redundancy, similarity with the already
selected sentences, is low: the score of each sentence at each passage
is so computed as the linear combination of similarity score with
the query(positive contribution) and similarity score with already
selected sentences (negative contribution): at each iteration the
sentence with the maximum score is selected and added to the
summary. We exploited the "Vishnu" [42] implementation of the
described algorithm.

• CoreRank summarizer [4]: graph-based algorithm in which each
node of the graph is a unique unigram from the original text; nodes
are connected from a weighted edge representing the number of
co-occurrences in a fixed dimension window of the represented
unigrams; k-core decomposition is performed and the score of each
node is computed as the summation of the core numbers of
neighbors, where the core number is the highest order of a core
that the node belongs to. Top p percent of nodes are selected
as keywords and then candidate summaries (combination of N
sentences from the input text) are evaluated in terms of total
number of keyword multiplied by each one score and in terms
of Diversity or "Keyword coverage", i.e. the number of unique
keywords contained with respect to the total number of unique
keywords. Also in this case we propose a python implementation
of this algorithm.

• Clusterization based summarizers [6]: algorithm that receives as
input lecture transcriptions and uses BERT, using the default
pre-trained model, to generate sentence embeddings and gathers
them into clusters using K-Means clustering, to extract at the end

48

Timeline Summarization Framework

from each cluster the sentence that is the nearest to the centroid
of the cluster: the sentences from the k clusters will generate a
summary of k sentences. We propose two different python imple-
mentation of this algorithm: they both use RoBERTa [43], which
is an extension of BERT that train the model longer,over more
data and on longer sequences, removing with respect to BERT the
next sentence prediction objective training on longer sequences [44],
in combination with SBERT [45] in order to obtain semantically
meaningful sentence embeddings that can be compared,thanks to
this,using cosine similarity[46]; both Summarizers exploit K-Means
to perform clusterization as in the cited paper [6] and then they
use respectively cosine distance (ClusterCosine summarizer) and
Euclidean distance (ClusterEuclidean summarizer) to compute,for
each cluster, distance between the centroid and all the other sen-
tences of the cluster, in order to extract, as previously described,
sentences that will form the final summary.

Our framework performs date summarization using a "Summarizer"
that internally uses an actual summarizer that is the implementation
of one of the previously mentioned algorithms; we developed several
"Summarizers": all of them have the same structure. i.e. they receive
as input the set of sentences for the current date, the minimum sen-
tence lenght with a default value of ten words, optionally a model (but
we only use unsupervised approach so we never pass a model to the
Summarizer) and the maximum number of sentences to extract, they
perform "Short Sentence Removal" and then text summarization on
the filtered sentences using a summarizer (that implements a summa-
rization algorithm) to give N sentences (or all the sentences if their
total is minus than N) as output for the current date: the difference
between the "Summarizers" is that each one of them exploit a differ-
ent summarizer so a different algorithm; the final output is a textual
file that contains each important date (received as input of this step)
followed by the selected sentences for that date; note that all the date
contained in the output file will have been summarized using the same
"Summmarizer" (Figure 4.3): we can obtain several output files by
repeating the date summarization step using different "Summarizers":

49

Timeline Summarization Framework

Figure 4.3: Graphical representation of the framework: for each
important date,extracted in the date selection step, the same algorithm
ALG is applied to create the final timeline by extracting sentences from
the input ones using the date summarization block of Figure 4.2

each of the textual output file will represent a timeline obtained with
a specific text summarization algorithm. The output file is given as
input to a web application that performs, as we will see in the next
chapter, timeline visualization.

50

Chapter 5

Visual Summary
Exploration
In this chapter we will present the web application that we developed
to show the output file’s content in a timeline. TimelineVisualizaton
is a minimal web application that receive as input the file containing
the timeline obtained as output from our framework: in the output
file each timeline entry is characterized by a date, a list of sentences
(extracted to be the summary for that date) and a separator string to
identify the beginning of a new timeline entry:

Figure 5.1: textual file containing the list of sentences extracted for
each date.

the aim of this application is to provide users with a comfortable
way of exploring the content of the generated timeline, providing a
visual representation of the timeline that highlights the dates, the time
distance between two sub-events and that enrich the timeline with
representative photos, of the less user-oriented textual representation
of the timeline contained in the output file.

51

Visual Summary Exploration

TimelineVisualization consists of an initial homepage that, as we
can see in figure 5.2, contains one input button used to insert the file
containing the timeline, and a button to start files processing: the
timeline file is mandatory (an error popup is shown if we try to proceed
without inserting a file) and it must have the structure showed in Figure
5.1, i.e. it must contain the timeline to visualize.

Figure 5.2: homepage of TimelineVisualization

Once we select the timeline input file, it is processed and for each
date in the file a vis.js (library that we exploited to construct the
timeline) compatible object is created to be inserted in the final list of
"Timeline entries" to show: the final result is a size scalable (to show
timeline in a more compact way or to higlight the date corresponding
to each entry) timeline in which for each date an entry,containing the
selected sentences for that date, is created and put in the corresponding
timepoint in the timeline; the result is illustrated in Figure 5.3.

As we can see in figure 5.3 each timeline entry is a block that contains
the date, a preview of the summary for that date and a button: clicking
on that button appears a popup, realized exploiting sweetalert library,
that contains the entire final summary extracted for that date (Figure
5.4). Moreover, the popup will show a representative image obtained
using "PHP Simple HTML DOM Parser" [47] to get from Google the
most correlated image associated to the input query which, in our
case, is the full summary associated to the timeline entry whose "Show
Content" button has just been clicked.

As previusly mentioned,in order to realize the timeline we exploited

52

Visual Summary Exploration

Figure 5.3: final timeline visualization

Figure 5.4: popup showing the finanl summmary extracted for the
selected date

vis.js [48] which is an open source dynamic, browser based visualization
library that contains several component: in particular we exploited the
"Timeline" component [49] which is an interactive visualization chart
to visualize data in time, choosing one of the proposed templates [50]

53

Visual Summary Exploration

as starting point for the visualizzation: we adapted the template to
our purpose in order to build the timeline entry as in figure 5.3. We
exploited SweetAlert [51] to show the final summary for each date:
SweetAlert is a library that provides to developers several template to
customize popups in web applications.

5.1 Possible extensions of the visual inter-
face

The presented application could be improved in future works: as pre-
viously said it receive a single file containing the summary for each
date: the summary is used as searching query for a Google research
that is performed runtime while graphically constructing the timeline:
this could be more ore less computationally expensive depending on
the number of timeline entries: so the first future extension that we
identified is a modification that involve also the previous blocks of the
pipeline: it consists in a system that extracts from the input documents
also urls of the contained images and associates them to a date, ob-
taining a second file structured as a list of couples (date, image url)
that can be read as second file from the application: while processing
the first file to build the timeline entry, the application will search in
the second file the image url that is eventually associated to the date
in analysis and it will associate the found url to the timeline entry of
the same date: so an image will be showed in the pop-up as in figure
5.4 only if it has been previously extracted and associated to the date
reported in the popup (the date in analysis); moreover, in the current
implementation of the application we take the first image obtained from
google for the input query: a future extension could perform search
optimization to obtain an image that respects some constraints such as
dimension or publication date constraints.

54

Chapter 6

Experimental Results
As previously said we propose several Summarizer for date summa-
rization task, each one of them exploiting a specific implementation
of a specific summarization algorithm: the goal of this chapter is to
compare the performance of the summarization algorithms used in the
date summarization step: for this purpose we will provide the results
obtained evaluating the timeline generated by each algorithm, tested
on two different dataset, T17 and CRISIS, using some variant of the
ROUGE metric adapted to timeline evaluation.

6.1 Evaluation metrics
Martschat and Markert [52] present an innovative method to evaluate
timelines obtained by the TLS process: it takes origin from the most
diffused evaluation metrics, i.e. ROUGE, in particular ROUGE-N which
uses N-gram (the most used are ROUGE-1 and ROUGE-2 that work
with unigram and bigram respectively) overlapping between the system
generated summary and a set of reference summaries to evaluate the
summary, assigning to it a recall, precision and f-measure (harmonic
mean of recall and precision) score. ROUGE [53] is a metric used
to evaluate a single summary extracted from a text summarization
algorithm against a set of ideally summaries, manually created by
humans: several metrics have been introduced by authors in [53]:

55

Experimental Results

• as previously anticipated, the most used Rouge metric is ROUGE-N
that is computed as the maximum number of N-grams that co-occur
in the generated summary and in reference summary, divided by
the total number of N-grams that occurs in the reference summary
(if the number of reference summary is greater than one, the
ROUGE-N score is computed against each reference summary and
the highest is kept as ROUGE-N score of the generated summary:
this criterion is used also for other rouge metrics)

• ROUGE-L (longest common subsequence): summary sentences are
seen as a sequence of words: the longer is the LCS score between
two sentences the higher two sentences will be similar: the total
score of the summary is the summation of all the LCS score between
each sentence of the generated summary and each sentence of the
reference summary

• ROUGE-W, is weighted LCS: in this case the LCS score will
be higher if the n-gram co-occur near to each other, i.e. if we
have a reference sentence [A B C D E F G] and we consider
unigrams and two generated sentences S1 = [ABZKLCD] and
S2 = [ABCDKLM] then even if the longest unigram common
subsequenc is equal to 4, S2 is more similar to the reference and
so it will receive an higher score.

As we just described, ROUGE compare the generated summary to
one (or more) reference summary: in TLS we will have a summary for
each date, so several adaptation of ROUGE to TLS have been proposed
to evaluate the overall timeline:

• Concatenation-based ROUGE: this metric computes ROUGE
score between two summaries obtained concatenating respectively
the summaries computed by the system for each date of the gen-
erated timeline (summary to evaluate) and the summaries of the
reference timeline (reference summary): in this way the overall
summary is evaluated but all time-related information are lost.

• Date-agreement ROUGE: this method evaluates the quality of
each date summary by computing recall, precision and f-measure

56

Experimental Results

between the generated summary for date Dgen and a set of reference
summaries for date Dref : the advantage is that temporal dimension
is taken into account, while the disadvantage is that Dref and
Dgen must match exactly (otherwise 0 is assigned as score for Dgen

generated summary)

Authors propose a third variant of ROUGE called Alignment-
based ROUGE: the aim of this variant of ROUGE is to take into
account the temporal similarity and semantic similarity of daily sum-
mary between the generated timeline and a set of reference timelines:
the idea is that each generated daily summary should be compared
to a set of reference daily summaries that are close in time to the
generated daily summary in analysis: so Date Alignment is performed:
each date of the reference timelines is assigned to one date of the
generated timeline according to time distance(in terms of number of
days that separate the two dates)- Date Alignment- and also content
similarity (similarity between the daily summaries) can be considered
(Date-content Alignment), assigning a reference date to a computed
date (through an injective function, so there will be a 1:1 relationship
between aligned dates) with the aim of minimizing the cost of Date
Alignment (the more will be the time distance between the dates the
higher will be the alignment cost, the more the date-content will be
different the higher will be the date-content alignment cost). Then the
ROUGE precision, recall and f-measure score will be computed between
each date summary and the reference summary, i.e. the summary of
the date aligned to the date in analysis: the score will be influenced by
a weighting factor that is inversely proportional to the time distance of
the two dates involved in the computation. A variant of this method
is Many-to-one Date-content (align+ m:1) that remove the injectivity
from the alignment function.

We used these metrics to evaluate timelines extracted by our Summa-
rizers from two different datasets: 17 Timelines (T17) and CRISIS. In
particular the most appropriate metrics to evaluate the generated time-
lines are concatenation-based Rouge, optimal to evaluate the content
of the summaries (even if the time information is, in this case, lost),
date-agreement, that take, instead, into account temporal information

57

Experimental Results

and date-content alignment many-to-one that compares the summary
of a date to a set of reference daily summary "aligned" to the date
in analysis based both on date nearness and content similarity: in
particular we used these metrics using Rouge-1 and Rouge-2.

6.2 Datasets description

Dataset "17 Timelines" (T17) is the corpus of documents introduced by
Tran et al. [21]: authors collected several timelines published by popular
news agency about famous topics: among these timelines only the ones
in which timestamps was explicit dates (i.e. dates including at least
day,month,year) was kept as starting point for dataset construction: 17
timelines have been obtained in this first step: then for each timeline
authors used Google to look for articles published in the temporal
range of the timeline in analysis by the news agency that published
the timeline in analysis: the top 400 returned articles was kept as
part of the corpus, obtaining, after the duplication removal step, 4650
news articles that have been split, in the last step, according to their
topic, into training and testing sets: we used the testing sets of T17 to
evaluate the score of timelines generated by our Summarizers using the
previously mentioned metrics.

Dataset CRISIS, proposed by Tran et al.[18] is a corpus composed
of news article, published by some important news agency and used
as input, and of several expert timeline summaries used as reference
in evaluation: the articles talk about several crisis: wars in Lybia and
Syria, crisis in Yemen and revolution in Egypt. Authors started from
the timelines and constructed some queries, specifying location, long-
running event such as crisis or war, to use for a Google time-filtered
research obtaining in this way 15.534 articles about the four previously
mentioned events in the temporal range of the events; 25 timelines have
been extracted from 24 popular news agency (the same of the previous
step) to be considered as ground-truth timelines, while the retrieved
document are used as input.

58

Experimental Results

6.3 T17 results

Each of the tables reported in this section represent the scores obtained
by all the Summarizers used to obtain a timeline from the T17 corpus:
as we can see in the tables below the Summarizer that exploit the im-
plementation of TextRank in combination with BM25 [40] obtained the
best result in term of Precision according to all the metrics except for
concat-Rouge-1 (Table 6.1) in which SummarizerSumpyLede obtained
a Precision score of 0.403 which is the best according to this metric;
CoreRank obtained the second best result according to all metrics
except for concat-Rouge-1, in which TextRankBM25 was the second
best result; the "Sumpy" [39] implementation of the Centroid Based
Summarizer [7] obtained the best result in terms of Recall according
to all of the metrics except for agreement-Rouge-2 (Table 6.4) and in
date alignment Rouge-2 (Table 6.6) in which TextRankBM25 was the
best performing in terms of Precision. TextRankBM25 was the best
performing Summarizer (F-Measure) according to all the adopted met-
rics. The second best performing Summarizer is SummarizerCoreRank
that defeated all the other Summarizers (except for TextRankBM25)
in terms of F-Measure according to each one of the adopted evaluation
metrics, except for concat-Rouge-1 (Table 6.1), according to which the
Sumpy [39] implementation of LexRank [5] obtained the second best
result (0.379 against 0.367 of CoreRank that is the fourth best result
according to this metric). Good results have been obtained by Sumpy-
TextRank [3] that obtained,according to concat-Rouge metrics (Table
6.1 and Table 6.2) a score of 0.370 against 0.379 of SumpyLexRank
using concat-Rouge-1 (the best, TextRankBM25, obtained 0.397) and
0.077 against 0.082 of SumpyLexRank and 0.083 of CoreRank using
concat-Rouge-2 (the best,TextRankBM25, obtained 0.091). As we can
see from Tables from 6.3 to 6.6 SumpyLexRank obtained the third
best result using all these metrics (following TextRankBM25 and Cor-
eRank); good results have been obtained also by clusterization based
summarizers (ClusterCosine, ClusterEuclidean and Centroid) and by
SumpyTextRank.

59

Experimental Results

concat-Rouge-1

Summarizer Precision Recall F-Measure
SumyLexrank 0.354* 0.329* 0.341*
SumpyTextRank 0.307* 0.467* 0.370*
SumpyLede 0.403 0.242* 0.302*
SumpyCentroid 0.282* 0.505 0.362*
VishnuMMR 0.394 0.330* 0.359*
SumpyLexRank 0.320* 0.464* 0.379*
SummarizerCorerank 0.384* 0.350* 0.367*
SummarizerClusterCosine 0.361* 0.353* 0.357*
SummarizerClusterEuclidean 0.364* 0.361* 0.363*
TextrankBM25 0.390* 0.404* 0.397

Table 6.1: Results obtained testing algorithm on T17 and evaluating
results using concat-Rouge-1. * indicates that result obtained by the
best performing algorithm is statistically relevant against the current
algorithm’s result.

60

Experimental Results

concat-Rouge-2

Summarizer Precision Recall F-Measure
SumyLexrank 0.066* 0.062* 0.064*
SumpyTextRank 0.064* 0.097* 0.077*
SumpyLede 0.073* 0.042* 0.053*
SumpyCentroid 0.058* 0.104 0.074*
VishnuMMR 0.083 0.069* 0.075*
SumpyLexRank 0.069* 0.101* 0.082*
SummarizerCorerank 0.087 0.079* 0.083
SummarizerClusterCosine 0.075* 0.073* 0.074*
SummarizerClusterEuclidean 0.075* 0.076* 0.076*
TextrankBM25 0.089 0.092* 0.091

Table 6.2: Results obtained testing algorithm on T17 and evaluating
results using concat-Rouge-2. * indicates that result obtained by the
best performing algorithm is statistically relevant against the current
algorithm’s result.

61

Experimental Results

agreement-Rouge-1

Summarizer Precision Recall F-Measure
SumyLexrank 0.067* 0.063* 0.065*
SumpyTextRank 0.066* 0.104* 0.080*
SumpyLede 0.076* 0.042* 0.054*
SumpyCentroid 0.063* 0.117 0.082*
VishnuMMR 0.086* 0.072* 0.078*
SumpyLexRank 0.072* 0.108* 0.086*
SummarizerCorerank 0.093* 0.087* 0.090*
SummarizerClusterCosine 0.086* 0.083* 0.084*
SummarizerClusterEuclidean 0.087* 0.085* 0.086*
TextrankBM25 0.104 0.107 0.106

Table 6.3: Results obtained testing algorithm on T17 and evaluating
results using agreement-Rouge-1.* indicates that result obtained by the
best performing algorithm is statistically relevant against the current
algorithm’s result.

62

Experimental Results

agreement-Rouge-2

Summarizer Precision Recall F-Measure
SumyLexrank 0.012* 0.012* 0.012*
SumpyTextRank 0.014* 0.024* 0.018*
SumpyLede 0.016* 0.010* 0.012*
SumpyCentroid 0.014* 0.028 0.019*
VishnuMMR 0.020* 0.017* 0.018*
SumpyLexRank 0.018* 0.028 0.022*
SummarizerCorerank 0.024 0.024* 0.024*
SummarizerClusterCosine 0.020* 0.020* 0.020*
SummarizerClusterEuclidean 0.021* 0.021* 0.021*
TextrankBM25 0.030 0.031 0.031

Table 6.4: Results obtained testing algorithm on T17 and evaluating
results using agreement-Rouge-2. * indicates that result obtained by the
best performing algorithm is statistically relevant against the current
algorithm’s result.

63

Experimental Results

align+ m:1 ROUGE-1

Summarizer Precision Recall F-Measure
SumyLexrank 0.071* 0.064* 0.067*
SumpyTextRank 0.072* 0.109* 0.086*
SumpyLede 0.082* 0.046* 0.059*
SumpyCentroid 0.068* 0.124 0.088*
VishnuMMR 0.096* 0.076* 0.085*
SumpyLexRank 0.078* 0.112* 0.092*
SummarizerCorerank 0.103* 0.090* 0.096*
SummarizerClusterCosine 0.090* 0.084* 0.087*
SummarizerClusterEuclidean 0.092* 0.087* 0.089*
TextrankBM25 0.112 0.113 0.112

Table 6.5: Results obtained testing algorithm on T17 and evaluating
results using Date-content alignment many to one (align+ m:1) ROUGE
1. * indicates that result obtained by the best performing algorithm is
statistically relevant against the current algorithm’s result.

64

Experimental Results

align+ m:1 ROUGE-2

Summarizer Precision Recall F-Measure
SumyLexrank 0.010* 0.008* 0.009*
SumpyTextRank 0.014* 0.020* 0.016*
SumpyLede 0.015* 0.009* 0.011*
SumpyCentroid 0.014* 0.025 0.018*
VishnuMMR 0.021* 0.016* 0.018*
SumpyLexRank 0.018* 0.025 0.021*
SummarizeCorerank 0.024 0.020* 0.022*
SummarizerClusterCosine 0.019* 0.017* 0.018*
SummarizerClusterEuclidean 0.019* 0.017* 0.018*
TextrankBM25 0.029 0.029 0.029

Table 6.6: Results obtained testing algorithm on T17 and evaluating
results using Date-content alignment many to one (align+ m:1) ROUGE
2. * indicates that result obtained by the best performing algorithm is
statistically relevant against the current algorithm’s result.

6.4 CRISIS Results
In this section we report, as we did with T17 in the previous section, ta-
bles illustrating the results in terms of Precision, Recall and F-Measure
obtained by the developed Summarizers: VishnuMMR, the Summarizer
that exploits the implementation of a MMR summarizer, was the best
performing in terms of Precision according to concat-Rouge-1 (Table
6.7), obtaining a Precision score of 0.259 against 0.245 of Sumpylede and
0.240 of CoreRank, which obtained the best Precision result according to
all the other metrics: as we can see in Table 6.10 the ClusterCosine sum-
marizer [6] obtained the same result of CoreRank and TextRankBM25
(0.009); SumpyCentroid obtained the best result in terms of Recall score
according to concat-Rouge-1 (Table 6.7) and concat-Rouge-2 (Table
6.8), defeating TextRankBM25 Summarizer that instead obtained the
best Recall score according to all the other metrics; the best performing

65

Experimental Results

algorithm is VishnuMMR according to concat-Rouge-1, in which it
obtained the best score in terms of F-Measure(0.331) followed by Cor-
eRank (0.322) which is the best performing algorithm according to all
the other metrics, obtaining the same results of TextRankBM25: only
according to agreement-Rouge-1 TextRankBM25 is the only best per-
forming. ClusterCosine and ClusterEuclidean summarizers, obtained
good results, obtaining the second and third best result (F-Measure) in
all the metrics except for concat-Rouge-1 (6.7) and concat-Rouge-2 (6.8)
in which the second best result was obtained by TextRankBM25; good
results was obtained also by the Sumpy implementation of TextRank.

concat-Rouge-1

Summarizer Precision Recall F-Measure
SumyLexrank 0.224* 0.437* 0.296*
SumpyTextRank 0.167* 0.616* 0.263*
SumpyLede 0.245 0.295* 0.268*
SumpyCentroid 0.149* 0.653 0.243*
VishnuMMR 0.259 0.458* 0.331
SumpyLexRank 0.178* 0.591* 0.273*
SummarizerCorerank 0.240* 0.491* 0.322
SummarizerClusterCosine 0.232* 0.498* 0.317*
SummarizerClusterEuclidean 0.232* 0.502* 0.318*
TextrankBM25 0.230* 0.546* 0.324

Table 6.7: Results obtained testing algorithm on CRISIS and eval-
uating results using concat-Rouge-1. * indicates that result obtained
by the best performing algorithm is statistically relevant against the
current algorithm’s result.

66

Experimental Results

concat-Rouge-2

Summarizer Precision Recall F-Measure
SumyLexrank 0.033* 0.064* 0.043*
SumpyTextRank 0.032* 0.117* 0.050*
SumpyLede 0.028* 0.032* 0.030*
SumpyCentroid 0.029* 0.128 0.047*
VishnuMMR 0.046* 0.082* 0.059*
SumpyLexRank 0.035* 0.118* 0.054*
SummarizerCorerank 0.053 0.109* 0.071
SummarizerClusterCosine 0.042* 0.088* 0.057*
SummarizerClusterEuclidean 0.042* 0.090* 0.057*
TextrankBM25 0.046* 0.109* 0.065*

Table 6.8: Results obtained testing algorithm on CRISIS and eval-
uating results using concat-Rouge-2. * indicates that result obtained
by the best performing algorithm is statistically relevant against the
current algorithm’s result.

67

Experimental Results

agreement-Rouge-1

Summarizer Precision Recall F-Measure
SumyLexrank 0.025* 0.049* 0.033*
SumpyTextRank 0.024* 0.090* 0.038*
SumpyLede 0.019* 0.022* 0.020*
SumpyCentroid 0.021* 0.094 0.034*
VishnuMMR 0.037 0.068* 0.048*
SumpyLexRank 0.025* 0.088* 0.040*
SummarizerCorerank 0.043 0.088 0.057
SummarizerClusterCosine 0.038 0.080* 0.051*
SummarizerClusterEuclidean 0.038 0.081* 0.051*
TextrankBM25 0.041 0.098 0.058

Table 6.9: Results obtained testing algorithm on CRISIS and evaluat-
ing results using agreement-Rouge-1.* indicates that result obtained
by the best performing algorithm is statistically relevant against the
current algorithm’s result.

68

Experimental Results

agreement-Rouge-2

Summarizer Precision Recall F-Measure
SumyLexrank 0.003* 0.005* 0.004*
SumpyTextRank 0.004* 0.018* 0.007*
SumpyLede 0.001* 0.001* 0.001*
SumpyCentroid 0.004* 0.019 0.006*
VishnuMMR 0.008 0.015* 0.011
SumpyLexRank 0.006* 0.021 0.009*
SummarizerCorerank 0.009 0.020 0.013
SummarizerClusterCosine 0.009 0.017 0.011
SummarizerClusterEuclidean 0.008 0.016 0.011
TextrankBM25 0.009 0.022 0.013

Table 6.10: Results obtained testing algorithm on CRISIS and evalu-
ating results using agreement-Rouge-2. * indicates that result obtained
by the best performing algorithm is statistically relevant against the
current algorithm’s result (We considered TextRankBM25 as the best
performing in terms of Precision and F-Measure).

69

Experimental Results

align+ m:1 ROUGE-1

Summarizer Precision Recall F-Measure
SumyLexrank 0.037* 0.062* 0.047*
SumpyTextRank 0.036* 0.114* 0.055*
SumpyLede 0.030* 0.031* 0.030*
SumpyCentroid 0.032* 0.119 0.051*
VishnuMMR 0.055* 0.085* 0.067*
SumpyLexRank 0.038* 0.110* 0.057*
SummarizerCorerank 0.062 0.106* 0.078
SummarizerClusterCosine 0.053* 0.097* 0.069*
SummarizerClusterEuclidean 0.054* 0.098* 0.069*
TextrankBM25 0.058 0.120 0.078

Table 6.11: Results obtained testing algorithm on CRISIS and evalu-
ating results using Date-content alignment many to one (align+ m:1)
ROUGE 1. * indicates that result obtained by the best performing
algorithm is statistically relevant against the current algorithm’s result
(We considered TextRankBM25 as the best performing in terms of
F-Measure).

70

Experimental Results

align+ m:1 ROUGE-2

Summarizer Precision Recall F-Measure
SumyLexrank 0.004* 0.007* 0.005*
SumpyTextRank 0.006* 0.021* 0.009*
SumpyLede 0.002* 0.003* 0.002*
SumpyCentroid 0.006* 0.022 0.009*
VishnuMMR 0.010 0.017* 0.013
SumpyLexRank 0.008* 0.024 0.011*
SummarizerCorerank 0.013 0.023 0.017
SummarizerClusterCosine 0.011 0.020 0.014
SummarizerClusterEuclidean 0.011 0.018* 0.014
TextrankBM25 0.012 0.025 0.017

Table 6.12: Results obtained testing algorithm on CRISIS and evalu-
ating results using Date-content alignment many to one (align+ m:1)
ROUGE 2.* indicates that result obtained by the best performing
algorithm is statistically relevant against the current algorithm’s result
(We considered TextRankBM25 as the best performing in terms of
F-Measure).

71

Chapter 7

Conclusion and Future
Work
The increasing amount of news article about several topics/events force
the reader, that is interested in a specific event, to look for information
from several sources, published in several website: it would be useful
for the reader to be provided with a complete and concise summary,
that highlights the main information about an event, or to be kept
updated about the developing of an event with novel updates, or to
have a panoramic visualization of the developing of a concluded event
during time: these are the reasons that made the research in NLP field
move to text summarization, temporal summarization and timeline
summarization. In this thesis we focused our attention on timeline
summarization and text summarization; text summarization is the
branch of NLP that aims to extract a summary from an input text
(that can be a single document or a set of document in case of Multi-
document summarization) and it comprises extractive techniques, aimed
at extracting the most important sentences from the input documents,
and abstractive ones, whose goal is to generate new content according
to end-user needs. Text summarization does not take into account
temporal information, timeline summarization has instead the aim of
solving this text summarization issue, providing to the user a cross-
temporal representation of the developing of an event along a timeline
that highlights the most significant dates in a range that goes from the

72

Conclusion and Future Work

beginning to the end of the considered event.
In first place we examined the state of the art in text, temporal

and timeline summarization, describing several algorithm that have
been presented in past years but the contribution brought with this
thesis is a new pipeline for timeline summarization, that use a date-wise
approach so from the extracted dates it then selects the important
sentences: the proposed pipeline is composed by three blocks: the first
is the date selection block, but in this thesis we focused on the second
block, which is the date summarization block, and the third block,
which is the timeline visualization block: the first block extract, from
the input sentences, the most significant dates and then the second
block perform text summarization to extract, for each date, the most
important sentences: we implemented several Summarizers each one of
them exploiting one of the state-of-the-art methods that we previously
described: in our work we used, as in most of the SOTA works, the
extractive summarization approach and all ours summarizers were
unsupervised.

One of the goal of this thesis is to compare the performance of the
several state-of-the-art algorithm that we re-implemented: for this
purpose we tested our framework on two different datasets using all the
proposed Summarizers: we discarded some of them and we summarized
in some tables the results obtained by the good-performing algorithms
evaluated using several variants of rouge metrics: as conclusion we can
say, as highlighted in the previously mentioned tables, that graph-based
algorithms were the best performing but also clusterization based sum-
marizers obtained good results: in particular TextRankBM25, i.e. the
summarizer that exploit the graph-based TextRank algorithm integrat-
ing BM25 as similarity measure, was the algorithm that performed
significantly better than all the other algorithms according to the most
part of exploited evaluation metrics.

Another contribution of the thesis is the visualization of the produced
timeline: the output of the date summarization step could be given as
input to the web application that we propose, which show the content of
the file given as output by the date summarization block in a graphical
timeline.

73

Conclusion and Future Work

We can conclude saying that we presented a timeline summarization
framework that obtained fairly good results depending on the used text
summarization algorithm for the date summarization step and that
provide an user-friendly way of visualizing and exploring content of the
generated timeline.

7.1 Future works
In this section we propose several possible future extensions, aimed at
improving the performance of the overall pipeline.

The first possible future variant of the system that we propose could
move to the Direct Summarization approach, in which dates are conse-
quences of the selected sentences: the intuition behind the proposed
framework consists in selecting dates and then selecting important
sentences for each date: the proposed extension would perform text
summarization directly on dated sentences to select the most important
sentences and then extract from each sentence the corresponding date
that will constitute one entry of the timeline,along with all the sentences
associated to that date.

Remaining instead in the date-wise approach field, the first possible
future extension consist in the the employment of other unsupervised
text summarization algorithms or in the development of a new summa-
rization algorithm from scratch or combining techniques of the state of
the art, trying to improve the performance of the already implemented
ones.

Another possible future extension could instead integrate into the
date summarization step the usage of supervised technique, that could
exploit default pre-trained models or that could train model on the
training sets provided by the datasets that we employed, maybe using
deep learning techniques based on Neural Network; all our summarizers
are already predisposed to accept a model as input, for text summa-
rization algorithm that would use a model to guess if a sentence would
be or not an important sentence.

The last proposed extension involves also the developed web ap-
plication: in current version our application receive as input a single

74

Conclusion and Future Work

file containing the summary for each date: the summary is used as
searching query for a Google research that is performed at runtime
while graphically constructing the timeline: this could be more ore less
computationally expensive depending on the number of timeline entries:
the future extension that we propose consists in integrating into the
sysetm a component that extracts from the input documents also urls
of the contained images and associates them to a date, obtaining a
second file structured as a list of couples (date, image url) that can be
read as second file from the application: while processing the first file
to build each timeline entry, the application would search in the second
file the image url that is eventually associated to the date in analysis,
in order to show the image in the popup representing the relative date,
if it is an important date.

75

Bibliography
[1] Luìs Gonçalves. Automatic Text Summarization with Machine

Learning — An overview. Apr. 2020. url: https://medium.com/
luisfredgs/automatic-text-summarization-with-machine-
learning-an-overview-68ded5717a25# (cit. on pp. 6, 8).

[2] url: https://www-nlpir.nist.gov/projects/duc/duc2007/
tasks.html (cit. on p. 8).

[3] Rada Mihalcea and Paul Tarau. «TextRank: Bringing Order into
Text». In: Proceedings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing. Barcelona, Spain: Associa-
tion for Computational Linguistics, July 2004, pp. 404–411. url:
https://www.aclweb.org/anthology/W04-3252 (cit. on pp. 9,
14, 15, 45, 59).

[4] Antoine Tixier, Polykarpos Meladianos, and Michalis Vazirgiannis.
«Combining Graph Degeneracy and Submodularity for Unsuper-
vised Extractive Summarization». In: Proceedings of the Workshop
on New Frontiers in Summarization. Copenhagen, Denmark: As-
sociation for Computational Linguistics, Sept. 2017, pp. 48–58.
doi: 10.18653/v1/W17-4507. url: https://www.aclweb.org/
anthology/W17-4507 (cit. on pp. 9, 17, 48).

[5] G. Erkan and D. R. Radev. «LexRank: Graph-based Lexical
Centrality as Salience in Text Summarization». In: Journal of
Artificial Intelligence Research 22 (Dec. 2004), pp. 457–479. issn:
1076-9757. doi: 10.1613/jair.1523. url: http://dx.doi.org/
10.1613/jair.1523 (cit. on pp. 9, 15, 46, 59).

76

https://medium.com/luisfredgs/automatic-text-summarization-with-machine-learning-an-overview-68ded5717a25#
https://medium.com/luisfredgs/automatic-text-summarization-with-machine-learning-an-overview-68ded5717a25#
https://medium.com/luisfredgs/automatic-text-summarization-with-machine-learning-an-overview-68ded5717a25#
https://www-nlpir.nist.gov/projects/duc/duc2007/tasks.html
https://www-nlpir.nist.gov/projects/duc/duc2007/tasks.html
https://www.aclweb.org/anthology/W04-3252
https://doi.org/10.18653/v1/W17-4507
https://www.aclweb.org/anthology/W17-4507
https://www.aclweb.org/anthology/W17-4507
https://doi.org/10.1613/jair.1523
http://dx.doi.org/10.1613/jair.1523
http://dx.doi.org/10.1613/jair.1523

BIBLIOGRAPHY

[6] Derek Miller. Leveraging BERT for Extractive Text Summarization
on Lectures. 2019. arXiv: 1906.04165 [cs.CL] (cit. on pp. 9, 21,
48, 49, 65).

[7] Dragomir R. Radev, Hongyan Jing, Małgorzata Styś, and Daniel
Tam. «Centroid-based summarization of multiple documents».
In: Information Processing Management 40.6 (2004), pp. 919–
938. issn: 0306-4573. doi: https://doi.org/10.1016/j.ipm.
2003.10.006. url: http://www.sciencedirect.com/science/
article/pii/S0306457303000955 (cit. on pp. 9, 20, 47, 59).

[8] Dingding Wang, Shenghuo Zhu, Tao Li, Yun Chi, and Yihong
Gong. «Integrating Document Clustering and Multidocument
Summarization». In: ACM Trans. Knowl. Discov. Data 5.3 (Aug.
2011). issn: 1556-4681. doi: 10.1145/1993077.1993078. url:
https://doi.org/10.1145/1993077.1993078 (cit. on pp. 9, 23,
24).

[9] Xiaoyan Cai and Wenjie Li. «A spectral analysis approach to
document summarization: Clustering and ranking sentences si-
multaneously». In: Information Sciences 181.18 (2011), pp. 3816–
3827. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.
2011.04.052. url: http://www.sciencedirect.com/science/
article/pii/S0020025511002386 (cit. on pp. 9, 23, 24).

[10] Jaime Carbonell and Jade Goldstein. «The Use of MMR, Diversity-
Based Reranking for Reordering Documents and Producing Sum-
maries». In: Proceedings of the 21st Annual International ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR ’98. Melbourne, Australia: Association for
Computing Machinery, 1998, pp. 335–336. isbn: 1581130155. doi:
10.1145/290941.291025. url: https://doi.org/10.1145/
290941.291025 (cit. on pp. 9, 19, 48).

[11] Josef Steinberger. «LSA-Based Multi-Document Summarization».
In: (Jan. 2007) (cit. on pp. 9, 19).

77

https://arxiv.org/abs/1906.04165
https://doi.org/https://doi.org/10.1016/j.ipm.2003.10.006
https://doi.org/https://doi.org/10.1016/j.ipm.2003.10.006
http://www.sciencedirect.com/science/article/pii/S0306457303000955
http://www.sciencedirect.com/science/article/pii/S0306457303000955
https://doi.org/10.1145/1993077.1993078
https://doi.org/10.1145/1993077.1993078
https://doi.org/https://doi.org/10.1016/j.ins.2011.04.052
https://doi.org/https://doi.org/10.1016/j.ins.2011.04.052
http://www.sciencedirect.com/science/article/pii/S0020025511002386
http://www.sciencedirect.com/science/article/pii/S0020025511002386
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025

BIBLIOGRAPHY

[12] Josef Steinberger and Karel Ježek. «Update Summarization Based
on Latent Semantic Analysis». In: Text, Speech and Dialogue.
Ed. by Václav Matoušek and Pavel Mautner. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 77–84. isbn: 978-3-642-04208-
9 (cit. on pp. 9, 20).

[13] Josef Steinberger and Karel Jezek. «Using Latent Semantic Anal-
ysis in Text Summarization and Summary Evaluation». In: Jan.
2004 (cit. on pp. 9, 20).

[14] Elena Baralis, Luca Cagliero, Saima Jabeen, and Alessandro Fiori.
«Multi-Document Summarization Exploiting Frequent Itemsets».
In: Proceedings of the 27th Annual ACM Symposium on Applied
Computing. SAC ’12. Trento, Italy: Association for Computing
Machinery, 2012, pp. 782–786. isbn: 9781450308571. doi: 10.
1145/2245276.2245427. url: https://doi.org/10.1145/
2245276.2245427 (cit. on pp. 9, 25–27).

[15] Elena Baralis, Luca Cagliero, Alessandro Fiori, and Paolo Garza.
«MWI-Sum: AMultilingual Summarizer Based on Frequent Weighted
Itemsets». In: ACM Transactions on Information Systems 34 (Sept.
2015), 5:1–. doi: 10.1145/2809786 (cit. on pp. 9, 26).

[16] Luca Cagliero, Paolo Garza, and Elena Baralis. «ELSA: A Multi-
lingual Document Summarization Algorithm Based on Frequent
Itemsets and Latent Semantic Analysis». In: ACM Trans. Inf.
Syst. 37.2 (Jan. 2019). issn: 1046-8188. doi: 10.1145/3298987.
url: https://doi.org/10.1145/3298987 (cit. on pp. 9, 28, 29).

[17] Hai Leong Chieu and Yoong Keok Lee. «Query Based Event Ex-
traction along a Timeline». In: Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. SIGIR ’04. Sheffield, United
Kingdom: Association for Computing Machinery, 2004, pp. 425–
432. isbn: 1581138814. doi: 10.1145/1008992.1009065. url:
https://doi.org/10.1145/1008992.1009065 (cit. on pp. 11,
37, 42).

78

https://doi.org/10.1145/2245276.2245427
https://doi.org/10.1145/2245276.2245427
https://doi.org/10.1145/2245276.2245427
https://doi.org/10.1145/2245276.2245427
https://doi.org/10.1145/2809786
https://doi.org/10.1145/3298987
https://doi.org/10.1145/3298987
https://doi.org/10.1145/1008992.1009065
https://doi.org/10.1145/1008992.1009065

BIBLIOGRAPHY

[18] Giang Tran, Mohammad Alrifai, and Eelco Herder. «Timeline
Summarization from Relevant Headlines». In: Advances in Infor-
mation Retrieval. Ed. by Allan Hanbury, Gabriella Kazai, Andreas
Rauber, and Norbert Fuhr. Cham: Springer International Publish-
ing, 2015, pp. 245–256. isbn: 978-3-319-16354-3 (cit. on pp. 11,
13, 39, 40, 42, 58).

[19] Sebastian Martschat and Katja Markert. «A Temporally Sensi-
tive Submodularity Framework for Timeline Summarization». In:
Proceedings of the 22nd Conference on Computational Natural Lan-
guage Learning. Brussels, Belgium: Association for Computational
Linguistics, Oct. 2018, pp. 230–240. doi: 10.18653/v1/K18-1023.
url: https://www.aclweb.org/anthology/K18-1023 (cit. on
pp. 11, 41, 42).

[20] Jiwei Li and Sujian Li. «Evolutionary Hierarchical Dirichlet Pro-
cess for Timeline Summarization». In: Aug. 2013, pp. 556–560
(cit. on pp. 11, 40, 42).

[21] Giang Binh Tran, Mohammad Alrifai, and Dat Quoc Nguyen.
«Predicting Relevant News Events for Timeline Summaries». In:
Proceedings of the 22nd International Conference on World Wide
Web. WWW ’13 Companion. Rio de Janeiro, Brazil: Association
for Computing Machinery, 2013, pp. 91–92. isbn: 9781450320382.
doi: 10.1145/2487788.2487829. url: https://doi.org/10.
1145/2487788.2487829 (cit. on pp. 11, 38, 42, 45, 58).

[22] Julius Steen and Katja Markert. «Abstractive Timeline Summa-
rization». In: Proceedings of the 2nd Workshop on New Frontiers in
Summarization. Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 21–31. doi: 10.18653/v1/D19-5403.
url: https://www.aclweb.org/anthology/D19-5403 (cit. on
pp. 11, 38, 42).

[23] Javed Aslam, Fernando Diaz, Matthew Ekstrand-Abueg, Richard
McCreadie, Virgil Pavlu, and Tetsuya Sakai. «TREC 2015 Tempo-
ral Summarization Track Overview». In: (). url: https://trec.
nist.gov/pubs/trec24/papers/Overview- TS.pdf (cit. on
pp. 12, 30).

79

https://doi.org/10.18653/v1/K18-1023
https://www.aclweb.org/anthology/K18-1023
https://doi.org/10.1145/2487788.2487829
https://doi.org/10.1145/2487788.2487829
https://doi.org/10.1145/2487788.2487829
https://doi.org/10.18653/v1/D19-5403
https://www.aclweb.org/anthology/D19-5403
https://trec.nist.gov/pubs/trec24/papers/Overview-TS.pdf
https://trec.nist.gov/pubs/trec24/papers/Overview-TS.pdf

BIBLIOGRAPHY

[24] Hao Zheng and Mirella Lapata. «Sentence Centrality Revisited
for Unsupervised Summarization». In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics, July
2019, pp. 6236–6247. doi: 10.18653/v1/P19-1628. url: https:
//www.aclweb.org/anthology/P19-1628 (cit. on pp. 16, 47).

[25] Aria Haghighi and Lucy Vanderwende. «Exploring Content Mod-
els for Multi-Document Summarization». In: Proceedings of Hu-
man Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics. Boulder, Colorado: Association for Computational
Linguistics, June 2009, pp. 362–370. url: https://www.aclweb.
org/anthology/N09-1041 (cit. on pp. 18, 47).

[26] Xiaojun Wan and Jianwu Yang. «Multi-Document Summariza-
tion Using Cluster-Based Link Analysis». In: Proceedings of the
31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’08. Singapore,
Singapore: Association for Computing Machinery, 2008, pp. 299–
306. isbn: 9781605581644. doi: 10.1145/1390334.1390386. url:
https://doi.org/10.1145/1390334.1390386 (cit. on p. 22).

[27] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. SummaRuNNer:
A Recurrent Neural Network based Sequence Model for Extractive
Summarization of Documents. 2016. arXiv: 1611.04230 [cs.CL]
(cit. on p. 24).

[28] Xiaojun Wan. «TimedTextRank: Adding the Temporal Dimension
to Multi-Document Summarization». In: Proceedings of the 30th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’07. Amsterdam,
The Netherlands: Association for Computing Machinery, 2007,
pp. 867–868. isbn: 9781595935977. doi: 10.1145/1277741.12779
49. url: https://doi.org/10.1145/1277741.1277949 (cit. on
p. 30).

80

https://doi.org/10.18653/v1/P19-1628
https://www.aclweb.org/anthology/P19-1628
https://www.aclweb.org/anthology/P19-1628
https://www.aclweb.org/anthology/N09-1041
https://www.aclweb.org/anthology/N09-1041
https://doi.org/10.1145/1390334.1390386
https://doi.org/10.1145/1390334.1390386
https://arxiv.org/abs/1611.04230
https://doi.org/10.1145/1277741.1277949
https://doi.org/10.1145/1277741.1277949
https://doi.org/10.1145/1277741.1277949

BIBLIOGRAPHY

[29] T. Schubotz and R. Krestel. «Online Temporal Summarization
of News Events». In: 2015 IEEE/WIC/ACM International Con-
ference on Web Intelligence and Intelligent Agent Technology
(WI-IAT). Vol. 1. 2015, pp. 409–412 (cit. on p. 31).

[30] Yun Zhao, Fei Yao, Huayang Sun, and Zhen Yang. «BJUT at
TREC2014 Temporal Summarization Track». In: (2014) (cit. on
p. 31).

[31] Richard McCreadie, Romain Deveaud, M-Dyaa Albakour, Stu-
art Mackie, Nut Limsopatham, Craig Macdonald, Iadh Ounis,
and Thibaut Thonet. «University of Glasgow at TREC 2014:
Experiments with Terrier in Contextual Suggestion, Temporal
Summarisation and Web Tracks». In: (2014) (cit. on p. 32).

[32] Ahmed Tazibt and Farida Aoughlis. «Latent Dirichlet allocation-
based temporal summarization». In: International Journal of Web
Information Systems 15 (Nov. 2018). doi: 10.1108/IJWIS-04-
2018-0023 (cit. on p. 32).

[33] Rafik Abbes, Nathalie Hernandez, Karen Pinel-Sauvagnat, and
Mohand Boughanem. «Détection d’informations vitales pour la
mise à jour de bases de connaissances». In: June 2015 (cit. on
p. 33).

[34] Chris Kedzie, Kathleen McKeown, and Fernando Diaz. «Predicting
Salient Updates for Disaster Summarization». In: Proceedings of
the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Beijing, China:
Association for Computational Linguistics, July 2015, pp. 1608–
1617. doi: 10.3115/v1/P15-1155. url: https://www.aclweb.
org/anthology/P15-1155 (cit. on p. 33).

[35] James Allan, Rahul Gupta, and Vikas Khandelwal. «Temporal
Summaries of New Topics». In: Proceedings of the 24th Annual
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval. SIGIR ’01. New Orleans, Louisiana,
USA: Association for Computing Machinery, 2001, pp. 10–18.

81

https://doi.org/10.1108/IJWIS-04-2018-0023
https://doi.org/10.1108/IJWIS-04-2018-0023
https://doi.org/10.3115/v1/P15-1155
https://www.aclweb.org/anthology/P15-1155
https://www.aclweb.org/anthology/P15-1155

BIBLIOGRAPHY

isbn: 1581133316. doi: 10.1145/383952.383954. url: https:
//doi.org/10.1145/383952.383954 (cit. on p. 34).

[36] Chunyun Zhang, Zhanyu Ma, Weiran Xu, Jiayue Zhang, and Jun
Guo. «A Multi-level System for Sequential Update Summariza-
tion». In: Jan. 2015. doi: 10.4108/eai.19-8-2015.2260848
(cit. on p. 35).

[37] Demian Gholipour Ghalandari and Georgiana Ifrim. Examining
the State-of-the-Art in News Timeline Summarization. 2020. arXiv:
2005.10107 [cs.CL] (cit. on pp. 36, 45).

[38] url: https://github.com/miso-belica/sumy (cit. on p. 46).
[39] url: https://github.com/kedz/sumpy (cit. on pp. 46, 59).
[40] Federico Barrios, Federico López, Luis Argerich, and Rosa Wachen-

chauzer. Variations of the Similarity Function of TextRank for
Automated Summarization. 2016. arXiv: 1602.03606 [cs.CL]
(cit. on pp. 46, 59).

[41] url: https://github.com/mswellhao/PacSum (cit. on p. 47).
[42] url: https://github.com/vishnu45/NLP-Extractive-NEWS-

summarization-using-MMR (cit. on p. 48).
[43] url: https://ai.facebook.com/blog/roberta-an-optimize

d-method-for-pretraining-self-supervised-nlp-systems/
(cit. on p. 49).

[44] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. 2019. arXiv: 1907.11692 [cs.CL] (cit. on
p. 49).

[45] url: https://www.sbert.net/ (cit. on p. 49).
[46] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Em-

beddings using Siamese BERT-Networks. 2019. arXiv: 1908.10084
[cs.CL] (cit. on p. 49).

[47] url: https://simplehtmldom.sourceforge.io/ (cit. on p. 52).
[48] url: https://visjs.org/ (cit. on p. 53).

82

https://doi.org/10.1145/383952.383954
https://doi.org/10.1145/383952.383954
https://doi.org/10.1145/383952.383954
https://doi.org/10.4108/eai.19-8-2015.2260848
https://arxiv.org/abs/2005.10107
https://github.com/miso-belica/sumy
https://github.com/kedz/sumpy
https://arxiv.org/abs/1602.03606
https://github.com/mswellhao/PacSum
https://github.com/vishnu45/NLP-Extractive-NEWS-summarization-using-MMR
https://github.com/vishnu45/NLP-Extractive-NEWS-summarization-using-MMR
https://ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/
https://ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/
https://arxiv.org/abs/1907.11692
https://www.sbert.net/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://simplehtmldom.sourceforge.io/
https://visjs.org/

BIBLIOGRAPHY

[49] url: https://visjs.github.io/vis-timeline/docs/timelin
e/ (cit. on p. 53).

[50] url: https://visjs.github.io/vis-timeline/examples/
timeline/ (cit. on p. 53).

[51] url: https://sweetalert2.github.io/ (cit. on p. 54).
[52] Sebastian Martschat and Katja Markert. «Improving ROUGE for

Timeline Summarization». In: Proceedings of the 15th Conference
of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 285–290. url: htt
ps://www.aclweb.org/anthology/E17-2046 (cit. on p. 55).

[53] Chin-Yew Lin. «ROUGE: A Package for Automatic Evaluation of
Summaries». In: Text Summarization Branches Out. Barcelona,
Spain: Association for Computational Linguistics, July 2004, pp. 74–
81. url: https://www.aclweb.org/anthology/W04-1013 (cit.
on p. 55).

83

https://visjs.github.io/vis-timeline/docs/timeline/
https://visjs.github.io/vis-timeline/docs/timeline/
https://visjs.github.io/vis-timeline/examples/timeline/
https://visjs.github.io/vis-timeline/examples/timeline/
https://sweetalert2.github.io/
https://www.aclweb.org/anthology/E17-2046
https://www.aclweb.org/anthology/E17-2046
https://www.aclweb.org/anthology/W04-1013

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Preliminaries
	Related Works
	Text Summarization
	Temporal Summarization
	Timeline Summarization

	Timeline Summarization Framework
	Visual Summary Exploration
	Possible extensions of the visual interface

	Experimental Results
	Evaluation metrics
	Datasets description
	T17 results
	CRISIS Results

	Conclusion and Future Work
	Future works

	Bibliography

