POLITECNICO DI TORINO

III Facolta di Ingegneria dell’Informazione
Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Magistrale

VIRTUAL PROTOTYPIN IN
AUTOMOTIVE EMBEDDED
SYSTEMS

Relatore: Candidato:
prof. Massimo Violante Ladan Karimzadeh

November 2020

1

Contents

IIETOUCTION ..ttt sttt e a et e bt et e bt e st et e s bt e m e tesbe et e ebeeneenteeneenee 5
LT WRY AUTOSART .ttt ettt ettt et et e st e st e s st enseeseensesseennensenneensas 5
1.2 AUTOSAR TOOL ...ttt ettt et sbe et sbe et e e sae s 5

TeChNICAl DIELAILSc.eeetieiiieie ettt ettt sb e st st e e e te et e s beesaeeeas 8

AUTOSAR ...ttt ettt et s b e e et et e et e e te st eseesesseensesseestanseeseensaseensensesseensansesnnans 9
3.1 AUTOSAR INTOQUCTION ...ttt ettt ae et sne s 9
32 AUTOSAR IMPOITANCE.....eeeceriiieiieiiieeiieeectteeeteeereeestteesreeestaeessseeessseessseeassseesssessssseesssesanes 10
3.3 AUTOSAR GOALS ..ottt sttt ettt et beeaesteeneens 10
34 AUTOSAR MO VIBW....ocuiiiieiieiieiieieie ettt ettt ettt ettt e sesseesseseesaessesseensansensnens 11

34.1 ECU Software ATChItECUIEcoiuiieieieiieiieeeie et 11
3.5 SOFtWare COMPONEGNLSeeiieiieitieeiieeie ettt et et e seeeteete e bt e steesteesateeabeebeesbeesseesseesnseenseas 15

3.5.1 LD I 1SRRI 15

352 INEETTACES ...ttt ettt sttt ettt e b e e et et be b as 15

353 POTES ettt sttt e 16

354 SOFtWAre COMPONEILSeeeiieitieeiieeiteieeieest e riteeete ettt esteesteeeateeabeebeebeesbeesseesaneeneeas 16

355 Software Components SHIPMENTc.oooeeeeeeoeeeeeeeeeeeeeeeee e 18

3.5.6 Virtual Functional Buscooiiiiiiiiie s 19

3.5.7 Runtime Environment System (RTE)ccccooiiiiiiiiiiiiieeeeeeee e 20

3.5.8 RUNNEDIES......coeeeeee ettt et et eneas 20

3.5.9 AUTOSAR MethOdOLOZYcoviriiiiiiiiiiienieeesieetee ettt 24

VSX - Volcano (Mentor GIaphiCs)......c..ccvievrieriereeiieiireerieeseessesseeseaseessesssessssesssesssesssesssessnenes 26
4.1 Principles of the Mentor VSX TOOl SUILE.......cccevirieriinieieniieieeeteeseeteeee e 26
4.2 ImMPlementation @SPECLS......cueivverrveerreerreertiertierreereareasseesseesseesaessseesseesseesseesssesssesssesssessseesens 26
4.3 RV 1 207 4 .4 SRR 26
4.4 VSI(Virtual Systems INtEErator)ccvevierieiiierieriieriereeseeereereesreesreesreseressnessseesseesees 28

4.4.1 Why an AUTOSAR System Level Simulator?........c..cocevenirveninienineniineneeeneen 28
4.5 VISX WOTKOW .ttt ettt ettt ettt st e ate et e et e e s st e sntesaseenseeseeseennes 29
O YA 7 SRS 30
4.7 Using VSI With CONMNEXI0Mcccvieiireriieriienienieeieeteeieesteeseeseesseeseeseesseesseesssesnsesnseenseennes 31

4.7.1 conneXion for STMUINKocciiiiiii e 31

The Starting MOAELocciiiiieiieiee ettt sttt et e e taessaessbeenseenseenseenes 33
5.1 L€ 13 13 1 IR0 1) SRS 33

AUTOSAR Architecture creation using SIimulink...........cccoccvevieriiiiiiieiierieece e 34
6.1 IMPlementation CROICESccveiieiiiiiicieete ettt ettt et e st e erreebeesbeesteeseneseveeeveesseenens 34

6.1.1 Start 0N STMULINK ..coviiiiiiiii ettt 35

6.1.2 STATT ON VSA .ttt ettt e b e s bt e sttt et e b e nbeesbe e et e enee s 35

6.2 DefiNiNg Data TYPES ..eccveerrieriierieeiierieieesieesieestestessesseesseesseesssesssessseasseesseessessssesssesssesssens 37

6.3 DefiNing INtEITACES. ... cccuiiitieieieeiie ettt ettt ettt ettt b e bt e st eaeeeneean 38
Y B 1< 1111 Ve oo - OO 38
6.5 Defining Software COMPONENLS.........eeuiirtieriiertierie et et et e steesteeteete e ebeesbeesseesaeesaeeeneeas 39
6.5.1 Composition Software COMPONENL.........c.cccverveerieerieereerierreeteereereesseesseesseesseeseesses 39
6.5.2 Applications Software COMPONENLS..........cccueeeiriierieerciieerieeeieeeereeeereeesreeesereeeeeeesereeas 40

6.6 Defining the Behavior for the Application Software Components.............ccevverververcreennenn 40
6.6.1 Using Simulink for a Model Based Approach with Auto-Generated Code.................. 41
6.6.2 Importing Back the Auto-Generated Code in VSI........ccocoriiiiiiiiiiniiniiiceceeeeee 47

6.7 Use of the conneXion (SVX) Components in the AUTOSAR Model..........cccovevvvrrennnnnnnn. 48
6.7.1 Using conneXion Components with Sender/Receiver Interfacesccocceeveeneennn. 49
6.7.2 conneXion Components ConfigUIation..........c.cccveerreereerieriiercreeereereereeseeeseesnesseeses 51

7 Plant Creation using STMUINKcccuiiiiiiiiiiieiee ettt st 53
7.1 PLant OVEIVIEW....ceutiiieieitieee ettt ettt ettt ettt et et e e aeseeeseeaeeneeseeaeenes 53
7.2 Using conneXion Blocks in SIMUlink.........cccccoooiiriiiiiiiiiinii e 54
7.3 Configuring the PLant..........ccccveiiiiiiiiiiieeeestese sttt e e e e sraeseaeseseesneesseesees 54

8 ValIAALING V SKu ittt ettt ettt st et ettt e h e e at e e be et et e e bt e sbteeateentean 56
8.1 DEDUZ 1N VST ..ottt ettt s e ettt e te e s tbessbeesbaessaesssessseasseenseenseesens 56
8.2 Integration of The Previous Validation Modelcccoeiieiiiiiiniiniiiiieeee e 57
8.2.1 LSS U ettt e h ettt et 57

8.3 TEST CASES ..ttt ettt ettt ettt ettt ettt et e sa bt e s bt e e s ab e e s bt e ebteeeabteesbbeesabeeebeeeeabeeebas 58

L 0703 1 To] 113 o) 4 USSP 59
10 DefINitions, ADDIEVIATIONSccuvviiiiiiiieeceiiiee ettt e et e e et e e e erareeesesnaeeessnaeeesssnnreas 61
| R o)l 2 e U1 1SS 62
5) 0 I o) PRSPPI 63
L2310 TT07ea 21 o) 1 USRS 64

Introduction

1 Introduction

1.1 Why AUTOSAR?

Innovative vehicle functions lead to a steady increase in the complexity of
the E / E (electrical/electronic) vehicle architecture. The requirements for the
development are often contradictory. Additional driver assistance systems
should support critical driving maneuvers, while at the same time consumption
values should be reduced and environmental standards should be adhered to.
The ever deeper integration of infotainment and communication with the direct
vehicle environment and online services result in further challenges.

In order to continue to meet these requirements in the future, a new
technological approach is required for the software architecture of the control
units. Otherwise, the increasing demands on the part of customers, but also of
the legislature, cannot be met.

1.2 AUTOSAR Tool

Software tool which supports one or more tasks in the AUTOSAR
methodology. Depending on the supported tasks, an AUTOSAR tool can act as
an AUTOSAR authoring tool, an AUTOSAR converter tool, an AUTOSAR
processor tool or as a combination of those.

According to the AUTOSAR-paradigm "Common standard, concurring
implementations", several software suppliers offer software implementations of
the AUTOSAR standard. Some of the suppliers of AUTOSAR standard software
are:

Table 1-1 several software suppliers offer sofiware implementations of the AUTOSAR standard’

ArcCore Arctic Core - Open BSW Builder RTE Builder SWC

source AUTOSAR Builder and Extract
Builder
COMASSO eV | BSW BSWDT No No
Continental Yes Yes Yes Yes
Engineering
Services
dSPACE No No SystemDesk RTE SystemDesk
Generator
wikipedia:Elektr | EB Tresos AutoCore EB Tresos Studio EB Tresos studio No
obit

ETAS Yes Yes RTA ISOLAR-A

http://www.arccore.com/
http://www.arccore.com/products/arctic-core/
http://www.arccore.com/products/arctic-core/
http://www.arccore.com/products/bsw-builder/
http://www.arccore.com/products/rte-builder/
http://www.arccore.com/products/swc-builder/
http://www.arccore.com/products/swc-builder/
http://www.arccore.com/products/test-product-page/
http://www.arccore.com/products/test-product-page/
https://www.comasso.org/
https://www.comasso.org/comasso_downloads
https://www.comasso.org/comasso_downloads
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_overview_en.html
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_overview_en.html
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_overview_en.html
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_software_en.html
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_tooling_en.html
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_tooling_en.html
http://www.conti-online.com/generator/www/de/en/continental/engineering_services/themes/autosar/autosar_tooling_en.html
http://en.wikipedia.org/wiki/DSPACE_GmbH
http://www.dspace.de/en/pub/home/products/sw/system_architecture_software/systemdesk/rte_generation_module_.cfm
http://www.dspace.de/en/pub/home/products/sw/system_architecture_software/systemdesk/rte_generation_module_.cfm
http://www.dspace.de/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm
http://en.wikipedia.org/wiki/Elektrobit
http://en.wikipedia.org/wiki/Elektrobit
http://automotive.elektrobit.com/ecu/autosar
http://automotive.elektrobit.com/ecu/eb-tresos-studio
http://automotive.elektrobit.com/ecu/eb-tresos-studio
http://en.wikipedia.org/wiki/ETAS_Group
http://www.etas.com/en/applications_autosar_solutions.php
http://www.etas.com/en/applications_autosar_solutions.php
http://www.etas.com/en/products/rta_software_products.php
http://www.etas.com/en/products/isolar_a.php

Freescale

Dassault
Systémes
Hyundai-Autron
wikipedia:KPIT
Technologies
Ltd.
wikipedia:Mecel
Mentor Graphics

OpenSynergy

wikipedia:Renes
as Electronics
wikipedia:see4s
yS

Vector
Informatik
GmbH

Yes http://www.freescal
e.com/webapp/sps/site/
prod_summary.jsp?cod
e=AUTOSAR_CS&tid=v
anAutoSAR

No

Yes

K-SAR Suite

Yes

Volcano VSTAR
COQOS (OS and BSW
Scheduler only)

Yes

Yes

MICROSAR

Introduction

GCE

Yes

K-SAR Editor
Yes

Volcano VSTAR
coQos

No

Yes

DaVinci Configurator

Pro

Yes

RTEG

Yes

Yes

Yes

Volcano VSTAR
COQO0s

No

Yes

MICROSAR Rte
Generator

Unknown

AAT
Yes

K-SAR Editor

Unknown

Volcano Vehicle
Systems Architect
No

No
ECU-Designer

PREEvision / DaVi
nci Developer

The purpose of this thesis is to evaluate Volcano (Mentor graphics) by Creating a
simple model using AUTOSAR standard with Mentor Graphics Volcano (VSx), Matlab

and Simulink.

The starting system is based on implementation of a Mathematical function,
using the Model Based Software Design Techniques.

e This thesis is focused on the following steps:

o FIRST PART

e Creating a simple filter in Simulink
e Defining the structure and the elements of new AUTOSAR
Architecture (Software Components, Interfaces, Ports,

Data Types, etc.)

e Creating missing parts in the starting model (timers, trigger
events, etc.)

e AUTOSAR Consistency check in VSx

e Exporting the skeleton to Simulink (arxml files)

e Creating the behavior for the Application Software
Components with Model Based Software Techniques
using Simulink

e Validation and Automatic Code Generation in Simulink

e Export code in VSx (C, C++, h, arxml, etc.)

e Configuring Runnables

" https://automotive.wiki/index.php/AUTOSAR_Tool

http://www.freescale.com/
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=AUTOSAR_CS&tid=vanAutoSAR
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=AUTOSAR_CS&tid=vanAutoSAR
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=AUTOSAR_CS&tid=vanAutoSAR
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=AUTOSAR_CS&tid=vanAutoSAR
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=AUTOSAR_CS&tid=vanAutoSAR
http://www.3ds.com/products/catia/portfolio/geensoft/geensoft-product-lines/autosar-builder/
http://www.3ds.com/products/catia/portfolio/geensoft/geensoft-product-lines/autosar-builder/
http://www.3ds.com/products/catia/portfolio/geensoft/geensoft-product-lines/autosar-builder/
http://www.3ds.com/products/catia/portfolio/geensoft/geensoft-product-lines/autosar-builder/
http://www.3ds.com/products/catia/portfolio/geensoft/geensoft-product-lines/autosar-builder/
http://www.hyundai-autron.com/
http://en.wikipedia.org/wiki/KPIT_Technologies_Ltd.
http://en.wikipedia.org/wiki/KPIT_Technologies_Ltd.
http://en.wikipedia.org/wiki/KPIT_Technologies_Ltd.
http://www.kpit.com/engineering/automotive/autosar-in-vehicle-networks#tab-1
http://www.kpit.com/engineering/automotive/autosar-in-vehicle-networks#tab-3
http://www.kpit.com/engineering/automotive/autosar-in-vehicle-networks#tab-3
http://www.kpit.com/engineering/automotive/autosar-in-vehicle-networks#tab-3
http://en.wikipedia.org/wiki/Mecel
http://www.mecel.se/products/mecel-picea
http://www.mecel.se/products/mecel-picea
http://www.mecel.se/products/mecel-picea
http://www.mentor.com/
http://www.mentor.com/products/vnd/autosar-products/volcano-vstar
http://www.mentor.com/products/vnd/autosar-products/volcano-vstar
http://www.mentor.com/products/vnd/autosar-products/volcano-vstar
http://www.mentor.com/products/vnd/autosar-products/volcano-system-architect/
http://www.mentor.com/products/vnd/autosar-products/volcano-system-architect/
http://www.opensynergy.com/
http://www.opensynergy.com/Products/COQOS
http://www.opensynergy.com/Products/COQOS
http://www.opensynergy.com/Products/COQOS
http://en.wikipedia.org/wiki/Renesas_Electronics
http://en.wikipedia.org/wiki/Renesas_Electronics
http://www.renesas.eu/products/tools/middleware_and_drivers/c_autosar/mcal_pkg/mcal_pkg_tools_product_landing.jsp
http://en.wikipedia.org/wiki/see4sys
http://en.wikipedia.org/wiki/see4sys
http://www.see4sys.com/
http://www.see4sys.com/
http://www.see4sys.com/
http://www.see4sys.com/
http://en.wikipedia.org/wiki/Vector_Informatik
http://en.wikipedia.org/wiki/Vector_Informatik
http://en.wikipedia.org/wiki/Vector_Informatik
http://vector.com/vi_microsar_en.html
http://vector.com/vi_autosar_tools_en.html
http://vector.com/vi_autosar_tools_en.html
http://vector.com/vi_preevision_en.html
http://vector.com/vi_davinci_developer_en.html
http://vector.com/vi_davinci_developer_en.html

Introduction

e Adding conneXion Software Components

e Creating the missing Application Software Components for
using Sender/Receiver with conneXion Software
Components (with hand written code for Runnables)

e Configuring the conneXion SWCs using Module
Configuration Parameters

e Creating the Plant in Simulink (adding and configuring the
conneXion blocks)

o SECOND PART

¢ Integrating the two systems in the Plant (VSx model and
Starting model)

e Importing the old test cases in the new model (script code
and model optimization/integration)

e Building the model (virtual RTE and OS will be generated)

e Debugging using VSI (on Architecture elements and/or on
code)

e Start Simulating with both models

e Comparing testing results

Technical Details

2 Technical Details

The following tools are used:

- Matlab - Version 7.9 (2012a)

- Volcano Vehicle System Integrator (VSI) - Release 2013.4.2

using AUTOSAR 4.

0.3

Menior
raphics

G

Volcang V8X, Yolcano Venicle System Integrator (VSI)

Vi | Release: 201342

Vaicano St

Copyright 2004-2013 Mentor Graphics Corporation

Al rights reserved
Wisit http://www.mentor.com.

eseoEe e ™

@) | instaliation Details| oK.

valcanﬂgvsx - @ Volcano Vehicle System Integrator

Version: 201342
Build id: 2014-08-12_15-25-41-234

() Copyright 2004-2013 Mentor Graphics Corporation
All rights reserved
Visit hitpy//www.mentor.com

This offering is based on technology from the Eclipse Project.
Visit http//www.eclipse.org

AUTOEOSAR

SIMULINK'

Version 7.9 (R2012a)
December 29, 2011

—

4\ MathWorks

AUTOSAR

3 AUTOSAR

Exchangeability
between suppliers’

Platform Platform
g al1,a2 an i b.1,b.2,b.n

solutions
! Supplier A Supplier B Supplier C
Platform = Chassis = Chassis + Body/Comfort Platform
o ff2fn + Safety » Safety + Powertrain < cl.c2,cn
= Body/Comfort « Telematics + Telematics

Exchangeability
between vehicle
platforms

Exchangeability
between manufacturers’
applications

Platform Platform
el.e2 en d.1,d.2,dn

Figure 1.2-1 AUTOSAR exchangeability

3.1 AUTOSAR Introduction

In Automotive electronics, the growing increase in the number of ECUs and
network components has led to an increase in the overall complexity of the
hardware, thus in-creasing the costs related to hardware and introduction of
new features.

The goal is to reduce these costs and AUTOSAR (AUTomotive Open
System ARchitecture) is an attempt to solve this kind of problems in
automotive.

Also with the market full of different car makers, there is the urge to use a
common architecture to share systems that can be used as platforms for
future applications.

In 2003, vehicle manufacturers and suppliers joined forces to form the
AUTOSAR initiative to work on this new approach. The aim of the initiative
is to curb the constant new development of the same or similar software
components.

AUTOSAR is:

- An open and standardized automotive software architecture 2, that
has been developed by a group of automotive vendors and
stakeholders

- A framework that helps the software developer to handle the
complexity of systems and networks

- A consortium that generated a specification for this software
architecture.

"https://www.all-electronics.de/ http://www.autosar.org

AUTOSAR

3.2 AUTOSAR Importance

As we mentioned the increasing complexity of modern vehicles and
especially their E/E systems was the main motivation behind the
development of AUTOSAR. Furthermore, today’s vehicles have more than
a hundred ECUs each. Every one of them has thousands of functions.
Without this standard, they often have to be completely rewritten when the
hardware is changed.

This has made it urgent for automotive manufacturing giants to come
together and make software independent from hardware. To make that
possible they set AUTOSAR as an industry-wide standard, which was a
core solution for software to become reusable.

3.3 AUTOSAR Goals

AUTOSAR aims to standardize the software architecture of Electronic
Control Units (ECUs). AUTOSAR paves the way for innovative electronic
systems that further improve performance, safety and security.

e Hardware and software widely independent of each other.

e Development can be decoupled (through abstraction) by horizontal layers,
reducing development time and costs.

¢ Reuse of software enhances quality and efficiency

Proprietary AUTO SAR'
Application Application Software
Software Standardized
Standardized Middleware Methodology
Standardized Basic
Software

HW-specific
(ECUs)

Figure 3.3-1 Autosar

10

AUTOSAR

The main goals of AUTOSAR are:
- Standardization
Flexibility and Maintainability
- Availability
- Safety
- Scalability
- Software updates and upgrades

- Commercial of the shelf increased
Improve quality

Improve efficiency

Preserving competitiveness

3.4 AUTOSAR Model View

Automotive ECUs having the following properties:

e Strong interaction with hardware (sensors and actuators)

e Connection to vehicle network via CAN, LIN or FlexRay

e Microcontrollers from 16 to 32 bit with limited resources of Flash and RAM
(compared with Enterprise Solutions)

e Real Time Operating System

e Program execution from internal or external flash memory

AUTOSAR is based on the concept of distinction between Infrastructure (BSW)
and Application (SWC), where the infrastructure includes all services for providing
an execution environment to abstract HW details, instead the application is the
vehicle function of interest.

Infrastructure: Services providing an execution environment to abstract HW details
Application: Vehicle function of interest

An application consists of interconnected Software Components, developed by
different software suppliers, they are atomic and cannot be distributed over several
ECUs.

The Software Components implementation is independent from the Infrastructure. The
AUTOSAR software development is independent from the hardware, but not totally, in
fact even if no knowledge is required about the ECU used or the network, the

software developer needs to know about Sensors and/or Actuators in the system.

3.4.1 ECU Software Architecture

11

AUTOSAR

The ECU software architecture is based on a layered structure, in fact the software
stack contains multiple layers, abstracted from the hardware.
In Figure 3.3.1 is possible to see the layered architecture:

Application Actuator Sensor Application
AUTOSAR Software Software Software AU TO S AR Software
Software Component Component Component Software Component
Component - AUTOSAR - AUTOSAR : - AUTOSAR
- Interface - - Interface - .
“Interface - . .
S AUTOSAR Runtime Environment (RTE)
Standard ——
Software Standardized : Heaniend Standardized ~ AUTOSAR | | AuTOsAR
Interface SRR o Interface - Interface - Interface -
APIZ PP S R SR Y
X veB & RTE Services Communication EcU
relevant Abstraction
API 1 » Standardized Standardized Standardized
II RTE = Interface Interface Interface
=23
relevant Operating | 8 & cl:?::lf?cl::x
System § =1 Drivers
T ario 8 Standardized
e = Interface
"B“'“i:"m Microcontroller
possible Abstraction

ECU-Hardware

Figure 3.4-1: AUTOSAR Components [from http://www.autosar.org |

Figure 3.4.1: AUTOSAR Components [from http://www.autosar.org]

In which we have:
- Application layer
- AUTOSAR Runtime Environment (RTE)
- Basic Software Layer
Hardware

The first two important layers are the Application layer and the RTE.

e The Application Layer is the only layer that is not composed of
standardized software, it is also the layer where the actual functionality is
implemented. The layer is composed of Application Software Components
that interact with the RTE.

e The RTE Environment implements a sequence of operations to establish the
communication for inter and intra ECU information exchange, using the same
interfaces and services for intra and for inter ECU communication. The RTE is able
to understand when the communication go through shared memory, pipes or
whatever inside the ECU or through one of the vehicle networks to get or deliver
the data. The RTE is responsible even to trigger Runnables at events and to
provide all the necessary functions for all the configured mechanism. The RTE is
generally tool generated and statically configured.

12

AUTOSAR

It's task is to make AUTOSAR Software Components independent from the
mapping to a specific ECU.

o The Basic Software Layer can be subdivided, and is composed by:

o Microcontroller Abstraction Layer
o ECU Abstraction Layer
o Service Layer

Application Layer

s U
[——

Microcontroller

Figure 3.4-2 Basic software layer

AUTOSAR Runtime Environment (RTE)

e The Microcontroller Abstraction Layer contains the internal drivers and
handle microcontroller specific operations to provide an abstraction of the
microcontroller.

It's task is to Make higher software layers independent of uC

e The ECU Abstraction Layer interfaces the drivers of the Microcontroller
Abstraction Layer. It also contains drivers for external devices. It offers an
API for access to peripherals and devices regardless of their location (uC
internal/external) and their connection to the uC (port pins, type of interface).
It's task is to Make higher software layers independent of ECU hardware
layout

e The Services Layer is the highest layer of the Basic Software which also
applies for its relevance for the application software: while access to 1/0
signals is covered by the ECU Abstraction Layer, the Services Layer offers:

o Operating system functionality

o Vehicle network communication and management services

o Memory services (NVRAM management)

o Diagnostic Services (including UDS communication, error memory and

fault treatment)

o ECU state management, mode management
It's task is to Provide basic services for application and basic software
modules.

AUTOSAR

The Basic Software can be subdivided into the following types of services:

Application Layer

AUTOSAR Runtime Environment (RTE)

et

Microcontroller

Figure 3.4-3 Basic software layer detailed

. Microcontroller Abstraction Layer : Abstract from specific microcontroller
on the ECU and provides interfaces for ECU Abstraction layer.

I/O drivers
Communication drivers
Memory drivers
Microcontroller Drivers

. ECU Abstraction Layer : Abstract from the location of the controller

I/O Abstraction Layer
Communication HW Abstraction
Memory HW Abstraction
Onboard Device Abstraction

. Service Layer : Provides basic services for the application
Communication Services
Memory Services
System Services

AUTOSAR

In this layered vision the developer do not need to know what is happening in the

lower levels, using the interfaces provided by them.

It is possible to subdivide the Basic Software layer again in different stacks
underlying the software functionality, and more precisely in five different stacks:

e System stack : Provides standardized access to services and operating
system functions

Memory Management stack : Provides standardized access to memory

Communication stack : Provides standardized access to network system

1/0 stack : Provides standardized access to sensor or actuators or to others
peripherals

Complex Driver stack : Is used to bypass the basic software layer and to
access directly to the hardware

3.5 Software Components

3.5.1 Data types

Before data object creation, it is necessary to create the correspondent data type,
that defines the type of the data used.

They are divided into three different level:
. Application data types: Data type description used by the application
. Implementation data types: Data abstraction of the programming code

. Base type: Description of the primitive elements

3.5.2 Interfaces

The interfaces represent the protocol used by the Software Components to
communicate through ports.

Different ports can share the same interface and there are different types of
interfaces:

. Client/Server: The server provides the data and the client can invoke them.

. Sender/Receiver: The sender distributes the data and one or more receiver
can gets them.

. Parameter Interface: For accessing to parameter data: volatile, constant or
fixed

. Non volatile Data Interface: to access to non volatile data.

15

AUTOSAR

. Trigger Interface: To trigger the execution of another Software Component.

. Mode Switch Interface: To notify the mode to a Software Component.

3.5.3 Ports

As AUTOSAR application is an interconnection of Software Components, we need
ports to provide connections.

The ports are the point of contact for a Software Component with others
Software Components or with Basic Software modules and they can be:

. PPort (Provide port)
. RPort (Require port)

The PPort provides the service of the correspondent interface, instead the RPort
requires the service described in the interface, and depending on the interface used
there are different kind of ports:

| PortType | InterfaceUsed |
PPort Sender/Receiver
RPort Sender/Receiver
PPort Client/Server
RPort Client/Server
PPort Parameter
RPort Parameter
PPort Sender/Receiver (Service)
RPort Sender/Receiver (Service)
PPort Client/Server (NV)
RPort Client/Server (NV)
PPort Trigger (Source)
RPort Trigger (Sink)
PPort Trigger (Source - Service)
RPort Trigger (Sink - Service)
PPort Mode Switch (Manager)
RPort Mode Switch (User)
PPort Mode Switch(Manager - Service)
RPort Mode Switch(User - Service)

Table 3-1 AUTOSA Ports types

3.5.4 Software Components

Software Components are atomic and cannot be distributed over several ECUs.

16

AUTOSAR

The generation of the Software Components is not specified in the AUTOSAR

standard, in fact it can be written or auto generated using a tool like Simulink.
The AUTOSAR standard is composed by many types of Software Components:

Table 3-2 SWC types in AUTOSAR

Name Description
Application Atomic Software
Software Component that
Component implements the vehicle
function of interest (part of
an application)
Sensor- Atomic Software
Actuator Component that acts like a
Software sensor or an actuator,
Components reading a sensor or setting
the state of an actuator
Parameter Provide parameters data
Software (variable, fixed o const)
Components
Composition | Encapsulates a collection of
Software Software Components that
Components communicate with the
outside world using the
delegation connectors
ECU- Provides access to the ECU
Abstraction IO capabilities, using a
Software client/server PPort
Components
Complex It is a generalization of the
Device Driver | ECU-Abstraction Software
Software Component, but it can
Components defines ports for
communication
NVBIlock Used for access to non
Software volatile data from the other
Components Software Components

In Figure 3.6 is shown a detailed view of the Software Component in VFB View
and RTE View, where it is possible to see the difference between VFB and RTE,
the mapping of the Software Components in the ECUs and the communication bus

between the ECUs.

17

AUTOSAR

SW-C SW-C SW-C SW-C
Ddscriptipn Déscriptipn Ddscription Description
E > -3
w
- ~Z=0 @ g s g g
é, g h . b g
a ol

Virtual Functional Bus :

ECU I Tool supperting deployment S TJ 'S':: ﬁ;t'f:.r:im
Dekcriptigis of SW components

Mapping
ECUI ECUN ECUm
51| .23 : 5
. % 12 i g @ & % g & §)

A A A
e) | e |
| Basic Software | ‘ Basic Software | | Basic Software

Gateway

Figure 3.5-1 Software Components detailed view

3.5.5 Software Components shipment
A Software Component Shipment is a phase in which SWC will be released, consist of:
. SWC-implementation

. SWC-description

3.5.5.1SWC-implementation

Represents the source code or the object code that will be created.

This code is independent from the underlying hardware in which the component
is mapped, it is AUTOSAR duty to provide a standardized view of the hardware to
the Software Component.

The code is independent from other components location and from the number of
times it will be instantiated in the system or in the same ECU.

Generally the programming language used for SWCs is C/C++ and inside there
are all the functions that are mapped with the related Runnables Entities.

18

AUTOSAR

3.5.5.2 SWC-description

The SWC-description describes how the infrastructure should be configured for
the Software Component.
There are three different Software Components description levels:

. VFB level: Communication properties and how the components are
connected

. RTE level: Behavior of the single Software Components

. Implementation level: Behavior of each Runnable

3.5.6 Virtual Functional Bus

A

Figure 3.5-2 VFB view

The Virtual Functional Bus is a virtual bus that contains the description of all the
connection for all the components and how the components are connected between them.

It is just a virtual representation and by means of this, the Software Components
can exchange data.
Is a logical entity that:

. Provides a virtual infrastructure independent from the underlying hardware
. Permits interactions between Software Components, using various services

. Separates the Application Layer from the Software Layer

19

AUTOSAR

3.5.7 Runtime Environment System (RTE)

ECU2

Figure 3.5-3 RTE view

The Runtime Environment System is the real communication implementation of the
topology and Software Components interaction, for one single ECU.

Instead of having a single RTE for all the ECUs, like in VFB, there is one RTE
customized for each ECU, which is generated during the ECU configuration phase.

One ECU can contain more than one component, so in that case if the
components on the same ECU need to communicate they will use an intra-ECU
communication, instead for communication between components on different ECU,
an inter-ECU communication will be used, for instance a communication bus.

3.5.8 Runnables

Software Component behavior is provided by Runnables.

Runnables are the smallest part in an application, a sequence of instructions, and
since the unit of execution in AUTOSAR is the OS task, they need to be mapped to
an OS task to be executed, and this operation is done during the ECU
Configuration phase.

As the SWCs do not have any direct interactions with the underlying hardware,
no process or thread artifacts can exist.

An OS task can contain one or more Runnables and they can be executed concurrently.

The scheduling to execute Runnables is done by the OS scheduler, which decides which
task can run on the ECU CPU during runtime.

The scheduling strategies adopted can be priority-based preemptive or round-
robin or time triggered, etc.

For having a clear vision of the Runnables inside a SWC, imagine a SWC
partitioned into threads where each of these is a Runnable.

20

AUTOSAR

SHCFrontLeft: SeatHeatingControl D

Implementation

: g 1

3 % z §§] O

AHY{a]HaHa = =
§ 3

)— getSeatSwitch_PassengerDetected()

Figure 3.5-4 Runnables

The execution of the Runnable is invoked by the RTE through various different
mechanisms:

. Fixed time schedule
. Events related to communication mechanisms
. Events related to physical occurrences

Each Runnable has a behavior that is defined, and the developer can create it
manually or using external tools to generate automatically.
Generally the programming language used for Runnable behavior is C/C++.

Since the RTE is responsible for invoking Runnable to execute, some information
are needed, which are the requirements for the RTE, that generally are:

« Runnables Event types

. other resources required by the component, such as local memory or
AUTOSAR services

21

AUTOSAR

This requirements generally are present in the SWC-Description.

Since the RTE is responsible to invoke Runnables, they have to declare the type
of defined events.

The events available in AUTOSAR are:
. TimingEvent
. DataReceivedEvent
. DataReceivedErrorEvent
. DataSendCompleteEvent
. OperationinvokedEvent
. AsynchronousServerCall Event

. ModeSwitchEvent

These events are capable of activating a Runnable instance and/or waking it up,
that means that the instance has a waiting point for synchronization purposes.

In the generated code, each Runnable has a function, which has the behavior of
the Runnable, for example in figure 3.5.7 where the function convGeninteger_run
contains the behavior for a Runnable Entity.

#include<stdio.h>
#include "Rte_convGeninteger . h"

FUNC(void , RTE_APPL_CODE)
convGenlnteger_run (P2CONST(struct Rte_ CDS_convGeninteger,
AUTOMATIC,
RTE_APPL_CONST) instance){

dt SVX Integer c input;
lgetthe input
Rte Read rp IfConv_op set(instance,&input);

llsetthe output
Rte_Call_rp_in_ISVXCompSigGenDouble_op _set(instance, input);

Figure 3.5-5 Example of Runnable behavior code in C

Different aspects of AUTOSAR are involved in Runnable concepts, in fact, there
is a different view for each of them: the OS view, the RTE view and the VFB view.

22

AUTOSAR

The OS view does not work directly with Runnables, because they are mapped
into OS tasks.

These OS tasks can be scheduled by the OS scheduler with the chosen algorithm.

The RTE view is responsible for mapping Runnables into OS tasks.
RTE code manage Runnable inside the OS task.

The VFB view is the design Runnables time view, and in this view, Runnables
are considered a sequence of instructions(execution or integration).

Mapping Runnables into OS tasks depend on many factors, like the event type (e.g.

Timing or DataReceivedEvent), the type of Runnable and etc.

For example a Timing Event Runnable can be mapped to a single OS task
instead of sharing the same OS task with other Runnables 2.

Since the AUTOSAR components are not allowed to communicate with ECU com-
munication facilities at runtime, the RTE Source Code Generator provides an API.

The API syntax follow a general rule for the function name generator, that generally
is:

[CommunicationType]_[PortType] [Value](arg1, arg2, ..., argn)

(e.g. RTE_Read_SignalReading_Value(arg1)).

The available communication types can be:
. RTE_Read

. RTE_Write

. RTE_Invalidate

. RTE_Receive

. RTE_Send

. RTE_Feedback

. RTE_IRead

. RTE_IWrite

2 [6, Robert Warschofsky, AUTOSAR Software Architecture, Hasso-Plattner-Institute fur
Softwaresys-temtechnik]

23

AUTOSAR

3.5.9AUTOSAR Methodology

System per ECU

System
Configuration
Description

. Information/Database (no files)

Generation step:
complex algorithm or engineering work

Figure 3.5-6 AUTOSAR Methodology [from http://www.autosar.org |

Up to know, there is not any common methodology to develop AUTOSAR systems.
The most common method is composed of four steps that starts from the software
and hardware description to generating executable for each ECU.

The alternatives in methodology are in the ECU configuration and in the code
generation.
The four main steps in the most common methodology are:

. Configure the system
. Extract ECU Specific Information
. Configure ECU

. Generate executable

| System System ECU ECU Ecu

Configuration Configuration Extract of System Configuration £ bl
| Input:System Description: System Configuration:System Description kecutable
| =)) =)
| 1. Configure 2. Extract 3. Configure 4. Generate

System ECU-Specific ECU Executable
| Information
B T i St s ™l i Sl ™ W™ el it il | i - i il s s el il S’ | el Vo’ SO

Figure 3.5-7 AUTOSAR Methodology Steps

AUTOSAR

3 AUTOSAR

» The first step, “Configure the system”, is related to the whole system.

The input is an instance of the System template called System configuration
input, that contains info about the Software Components, the hardware and about
all the system constraints.

The output will be an instance of the System template which is called System
Configuration Description that contains SWC to ECU mapping and information
about bus topology.

o The next step is to Extract ECU-Specific information, that generates
information for a specific ECU.
The Output will be the ECU Extract of System Configuration that is considered as
an input for the next step Configure ECU for configuring RTE and Basic Software.
The output from this step will be used for building the ECU software, that will be

generated in the next step Generate executable in which there will be code
generation, code compilation and code linking phases.

25

VSx - Volcano (Mentor Graphics)

4 VSx - Volcano (Mentor Graphics)

4.1 Principles of the Mentor VSx Tool Suite
e Design Process covered by a set of point tools, deployable step by step,
according to customer’s needs.
e Supporting:
o early verification and late binding of solutions as opposed to the
more common “early binding / late verification” style.
o Real industrial development process
= Parallel Processes
= |terative development
= Distribution of Roles and Responsibilities
in today's multi-company, modular supply chain
e Based on standards as AUTOSAR and EAST-ADL
e Enable shifting validation effort from physical prototypes to a virtual
environment

4.2 Implementation aspects
e Based on the Eclipse framework
o All VSx tools are Eclipse "plugins”
e The VSx infrastructure adds AUTOSAR awareness on top of Eclipse.
e Open interfaces to enable integration with other tools, thirdparty or
customer specific.

4.3 VSx Platform

System Design

Figure 4.3-1 AUTOSAR Methodology Steps

VSx is a tool suite composed by:

. VSA (Volcano Vehicle System Architect): Authoring tool for design part

26

VSx - Volcano (Mentor Graphics)

. VSB (Volcano Vehicle System Builder): ECU software configuration tool

. VSA Com Designer (Volcano VSA Communication): A network design tool

. VSI (Volcano Vehicle System Integrator): Simulation environment for
software design

. VSTAR (Volcano VSTAR): AUTOSAR 4.0 basic software for ECU integration

Volcano VSl is a part of VSx, focusing on the simulation part, having the possibility
of 3 validation levels: xml, model and code.

The main VSI goal is to provide the validation without using a real hardware, by
the AUTOSAR RTE generated code.

The resultant application will be 100% AUTOSAR compliant and with this
approach the developers can focus on developing the application instead of
focusing on AUTOSAR software architecture rules and tools.

Generally the main procedure for creating an AUTOSAR application is to start with
VSA for creating the architecture and then pass to VSI for:

. Set breakpoints on architecture elements
. Inspect data and control execution

. Build the system

. Other debugging features

While debugging the C/C++ code, it is even possible to step through the execution
for inspecting purposes.

This tool family permits the developer to create an automotive architecture using
AUTOSAR standard, starting from scratch or using other external tools, and then
through the internal debugging system, validate the compliance of the system
specifications.

There are other tools on the market with the same functionality, but this tool is
focused on the debugging part and the most interesting part is in fact the possibility
to run the developed software on a simulated RTE and OS, without the necessity to
use the real hardware.

To do that we can even use the build model with some external tools, for example it is
possible to use Matlab/Simulink or Labview, or even compiled applications developed in
programming languages like C/C++ and others, for providing stimuli for the model.

The AUTOSAR application is composed of Software Components interconnected
between them, and each Software Component has a behavior.

For defining this behavior there are two main ways:

1. Writing the code manually.

2. Using external tools.

In this thesis, both approaches are tested and used.

In the first method the developer has the full control of the system, and the
simpler the system is, the better this solution works.

27

VSx - Volcano (Mentor Graphics)

The other solution is the Model Based Design approach in which even complex
system can be simply developed using the graphical editor, offered by the tool, and
the code will be generated automatically by the tool.

Sometimes the generated code is difficult to read, and if some changes are
required it is necessary to do the whole process again (modifying the model in the
external tool and importing back again in the AUTOSAR architecture system).

This is only the first part of the whole workflow with Volcano, in fact next steps are:

- Defining the topology of a network
- Mapping the Runnables to the correspondent OS tasks
- Proceed with the integration part in the real hardware.

But in this thesis | have focused only on the creation of the architecture and on
debugging and validate the system, using not all the tools in the VSx family, but
only VSA for authoring and VSI for simulation and debugging/testing tool.

4.4 VSI (Virtual Systems Integrator)

The main goals of VSI are:

e Validate SWC/composition behavior at VFB level

e Design verification and validation of embedded software from multiple
sources in distributed systems

e AUTOSAR is initial target

e |DE, debugger and profiler in AUTOSAR environment, etc.

4.4.1 Why an AUTOSAR System Level Simulator?

e AUTOSAR SWCs coming from different sources must be integrated to
perform vehicle functionality

e Allows verification of SWC compositions long before ECUs are available

e Models use code generated from BridgePoint UML, Simulink, etc. or hand
coding.

28

VSx - Volcano (Mentor Graphics)

B Et Neagsle Sewch Gt Bun Tooh Widoe b

Y=Y ¥ R BeQ-Qe | 4 L L Y
B B 5w comporant 3 EDGE Tabug (s Resowte | S, autasan bebug
S T —— [| LIE3 D E T T 0 e vaiables D1 |G Expressiors | ¥ie Braskpoints. L " B
= B Anthar_Simpls [ALTCSAR Applcation] Al Name ake
= I Ecul: Host Process (P 3456] = i CaseShucy 1 Comgoskon
4 Winchows Thresd : S04 (Susendsd) = [servtmrinstance
% P Ussr Thrend : 3572 (Sunded) B k H t 4 A osTriggered RN
2 2 e T 430 e reakpoints st
= (UMM Sorcer_C8Trigomred{sek) - secer.c, Ine: 18 # CaseStudhDere u
E DO0MOTS0R omek_Lask_s_taskAl .) - taskA.c, ine:39 @ ExenbonCo L]
= namezee 5 [l fecoertrtance
4P Lser Trrosd - 2709 (Suspendsc) % G IrputPort_CaseShudybata T0_BE_STARTED
Bl Comstucy Compont 5 B g
B senderinstana
=P os i [PID,4oe] [User Thised :
B 00407480 Servder_CTrigperndisal ySereier ¢, Ine: 18
i serderc £ e 3" B
* | Properties® H
opertie
I r——— Fropertiog Profiler, Code and Data
SIntif message_sent:

ype object

Trace

® CsTriggend e

* Ldentihabl

e _poirk

denlntance Ser o)) [le(enerlnsu:e:ﬂecefi‘:

Software Component View
SWC and Composition

Runnable and Task

IDE, Debugger

Figure 4.4-1 VSI Tool Suite

4.5 VSx Workow

Generally AUTOSAR software development workflow is:

1. Creating an AUTOSAR architecture

a) from scratch (using VSA)
b) from existing model/code
2. Then pass the AUTOSAR system (application) description to VSI, that

automatically map it to an ECU and creates the required RTE, OS and BSW.
In the end it will generate an executable application.

After creating the described software system the VSI workflow can starts, and in
the end an executable will be generated that can be execute in VSI or even in a
standalone build like in an interactive console or in a batch.

29

VSx - Volcano (Mentor Graphics)

VSA /7 Simulink

|

T

2. Import SWC

W —
arxml e — T

Create Executable

i Y

" 1. Define '
the architecture

3. Define
the internal behavior

Create BSW

A

Create OS

&

Create RTE

|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
\
\

6. Merge

7. Build

Figure 4.5-1 VSx workow

VSI uses some builders during all the workflow:

e VSI ECU Extract Builder

e VSI Default ECU Configuration Builder
e VSI RTE Builder

e VSI OS Builder.

The VSI ECU Extract takes as input the generated system (AUTOSAR files and
generated code), and generates the ECU Extract with information about mapping of
the software system.

The VSI Default ECU Configuration Builder takes the ECU Extract and returns
the ECU Configuration.

Next is the RTE Builder that using the RTE Generator and taking the ECU
Configuration as input in the end produces a VFB.

The last step is the OS Builder using the OS Generator for producing an
Operating System for execution of AUTOSAR application.

4.6 VSA

VSA is the authoring tool and give permission to:

e Create the architecture of the system in terms of Software Components
and connections between them.

e Define data types, ports, interfaces and to assign those element to the
right Soft-ware Component for creating the AUTOSAR application.

30

VSx - Volcano (Mentor Graphics)

The architecture created with VSA is only a skeleton, and it lacks the behavior.

In this skeleton there are only a set of components with ports and correspondent
interfaces associated and connected between them.

4.7 Using VSI with conneXion

conneXion is a tool that allows the communications between different models
and/or applications (e.g. Java, C/C++) and giving the permission to use external
models with the VSI generated models.

The external model can be a sequencer or an acceptor, and communicates with
the VSI model during execution.

For adding the conneXion Software Components to the VSI model we need the
Configuration phase to define the below information:

e Channel name

e Signal name

These Software Components are all inside an ARPackage (svx_connexion)
available in VSx, and the developer can use it by importing the package, or starting
a new Project in VSI and selecting the correspondent item.

With conneXion is possible even to stop the execution of one model, for example
the Simulink model, change something, and then start again the execution with the
changes for viewing the results.

conneXion is available to use with different external software like Matlab Simulink
or Labview.

In this thesis the focus is on conneXion for Simulink.

4.7.1 conneXion for Simulink

conneXion as a tool that allows the communications between different models, in
this case we use conneXion for communication between a model in VSX and other
one in Simulink (the Plant).

It works like a virtual communications bus between parts, as we can see in the
example in figure 4.4 where the Simulink model is a Sequencer and the VSx model
is an Acceptor.

31

VSx - Volcano (Mentor Graphics)

Simulink model
(Sequencer)

VSx model
(Acceptor)

Figure 4.7-1 Connexion communications

Using conneXion for Simulink is simple, the developer just need to use the
package present in the Simulink library named SystemVision SVX.

See 7 for more info.

The data types available for use in the SVX library are:

e Boolean
e Integer

e Real

e Unsigned

It is possible to use these data types for both block types: Consumer and Generator. For
using the SVX blocks in a model it is necessary to configure them, and in particular

the Channel, the Communications block (Acceptor or Connector) and the SVX
block to configure the role of the model whether it is a Sequencer or not.

32

The Starting Model

5 The Starting Model

5.1 General view

- -
B Appl v
File Edit Wiew Simulation Format Tools Help
NeH&| +B2R|E= 4|52 » =0 [Nomal || & &
rp_Ifinput_ocp_get pp_lfCutput_op_set
J= in %% ot
Chart

Figure 5.1-1 Starting model

As explained in the previous chapters, the work of this thesis is to implement an
AUTOSAR version of a very simple filter, and comparing the testing results

between the two implementations.

The starting model is created using Simulink with Model Based Design

Technique.

33

AUTOSAR Architecture creation using Simulink

6 AUTOSAR Architecture creation
using Simulink

6.1 Implementation choices

To create a model using AUTOSAR architecture, it is important to decide in which
method you want to create the skeleton of the model.

In this case the chosen tool for building the architecture are VSA and Simulink.
either Simulink or VSA can be used as starting point.

. Start on Simulink

. Start on VSA

The created AUTOSAR architecture is based on the model discussed in the
previous chapter which is created in Simulink.

To determine the best way to convert this model to AUTOSAR architecture, a
precise analysis of elements we need to use is required, for instance the type of
Software Components, interfaces, ports etc.

The goal is to make the architecture similar to the starting model, for reusing the
modeled system already created.

Since the starting model is only one system, the decision taken was to maintain
this structure and create one application Software Components in AUTOSAR that
will have the same behavior as the subsystem.

In this way there is no necessity to redo the behavior for the defined Software
Component in AUTOSAR.

The same for the used data types, because having the same behavior it
comports to have the same input and output ports.

In this case the starting model was using only the uint8 type.

For the interfaces, instead, the solution adopted is to use the sender/receiver
type, because the starting system is event driven.

Then the ports used were PPort for outputs and RPort for inputs.

In figures 6.5.1 is shown a general overview of the architecture created in
AUTOSAR using Volcano VSx, in which in the end we have a Root Software
Component that contains the two Software Components that are the core of the
system: Lock/Unlock (6.5.3) and Protocol (6.5.2).

34

AUTOSAR Architecture creation using Simulink

6.1.1 Start on Simulink

Potentially it is possible to start creating a model using Simulink, and defining the
behavior of the Application Software Components, using a Model Based Software
Design approach and then importing them in VSx.

Simulink can do an initial validation on the model for checking all the AUTOSAR
constraints, and can auto generate the code for the behavior of the SWC using the
chosen code like for example C or C++.

This kind of approach seems simple, but there is one thing that must be taken in
consideration, not all the Simulink blocks can be exported correctly in AUTOSAR,
there could be some incompatibilities and in that case it will be necessary to re-
analyze the system and to exchange the incompatible block with others.

The validation of the model before the generation of the AUTOSAR code, is
extremely useful in which allows the developer to check if the model follows the
AUTOSAR specifications and if all the used components are fully compatible.

This work is done completely by Simulink through an interface that shows useful
information.

6.1.2 Start on VSA

The chosen solution, instead is to use VSA for creating the starting model, to avoid
possible incompatibility problems due to any Simulink block not fully compatible
with AUTOSAR standard.

This method is more difficult than the other one, in which there are more steps to
do and the procedure is longer, but in the end the result will be a fully compatible
model.

The procedure can be divided in two main steps:

1. Creating the skeleton of the model, in which all the needed Data Types,
Interfaces, Ports, Software Components and everything related to the main
structure of the model will be defined.

2. Defining all the necessities for the right functionality for vehicle function of
interest.

6.1.2.1 Exporting From VSx

Once the architecture skeleton is created, it is ready to be exported to Simulink and
defining the behavior.

To export the skeleton model in VSx we need to have the data in arxml format,
that is an AUTOSAR file format which contains the whole architecture description,
in fact it is possible to export the data in arxml files for one or more ARPackages.

An ARPackage contains the description about Data Types, Software
Components, Interfaces, Ports, etc.

These files can be imported back in Matlab using the integrated functions for

importing the arxml files and the relatives dependencies ', for recreating the model

skeleton in which will be added the behavior.

' http://it. mathworks.com/help/rtw/examples/import-and-export-an-autosar-software-
component.html

35

AUTOSAR Architecture creation using Simulink

The arxml file is an xml file and it is possible to do an early validation on it before

exporting it, for checking the compatibility with the AUTOSAR standard.

@ Export
Select

Export resources to AUTOSAR XML

Select an export destination:
type filter text
= General
4 (= ARText
2 Export to AUTOSAR XML
= AUTOSAR Export
& C/Ce+
= Install
= Java
= Plug-in Development
= Run/Debug

&

Exporting in -
AUTOSAR XML (arxml)

Ngx} > J F Cancel

Figure 6.1-1 ARPackage exporting from VSI

6.1.2.2 Importing back in VSx

After creating the behavior and the code validation, it is possible to export the code
again, using the automated code generation (e.g. using Simulink).

Several files will be generated, like: new arxml files, C or C++ files, and they can

be imported back in VSx to integrate them in the previous project.

3 @ Import

Select

Select an import source:
type filter text
4 = General
B Archive File

— File System
=L Preferences
= AUTOSAR Import
& C/C++
&= Install
= Plug-in Development
& Run/Debug
& Team
& VSA - NDT
= XML

Import resources from the local file sys

1 Existing Projecyflinto Workspace

Import 745
From File System (All files)

| Next > ‘ 2 Cancel

Figure 6.1-2 ARPackage importing from external source

36

AUTOSAR Architecture creation using Simulink

.—@ Import
File system

Import resources from the local file system.

¥ |2 SweProtacol bat
71 [SweProtacol.c
V| [£ SweProtocol.h
¥llaSweProtocol.mk

Filter Types... | | Select All Deselect All

Into folder: immabilizerConnexion/models/Pratocol | Browse..

Options
| Overwrite existing resources without waming
"I Create top-level folder

Advanced >

@ < Back

Finish | Cancel

Figure 6.1-3 ARPackage importing from external source

6.2 Defining Data Types

= Files to
import back

|W* | &= SweProtocol_autosar_rtw V| |2 SweProtocol_refrsp
¥ [& SweProtacal_typesh Destination
V| [SweProtacol.arml Folder

Initially it is necessary to study the model to find out which and how many inputs
and outputs the system needs, and after that it is possible to create the data types

needed with the relative constraints.

= DataType Editor
B AppPrimitive B App.Compasite. B Implementatio Data Type ataTypes| [£] Conr
Application Data Types Category

+ Constraint

Name Category CoffiguMet_ Constraint AddrMethod ImplPolicy Display Virtual
® ApplicationStateType 4
® Applicationlype
® AppModeType

® CoumerType

® 41SVX Boolean BODLEAN

= dt SVX_Double VALUE ® dc_SVX_Double
® an SV Integer Latd B de SVX Integer
® i SVX_Name

| 4t SVX_PartNurber Data Type

B gt SVX Single Name B dc_SVX Single
" oSV Status o | g SVX Stans

® 41 SVX String
= 4LSVX_Time Ran VALUE

VALUE P g SWX Unsigned

VALUE £ Uints
VALUE ® Uintg

® Uinia
® Uind

| [# appor| [

Figure 6.2-1 Data types Editor

~ | [et] (]

Y

Available Items

& CompuMethod | ® DataConstraint. ® Unit & VText
Name
Name Categery / -

& M BootTargetType TEXTTABLE
& M _ShutdownCauseTyp TEXTTABLE
i CM_StateType TEXTTABLE
¥ m_SVK_Time.Range_C: TEXTTABLE

™ot [an
Display /|

37

AUTOSAR Architecture creation using Simulink

The data types used in this model, using as reference the uint8 data type, and all
inputs and outputs are of the same type with the constraint: Physical [0,255].

For implementing that in Volcano, it is necessary to open the SWC Architecture
perspective and then go to the DataType Editor for adding the new data type.

The important values to set for data types are the Category and the Constraints
that characterize the data.

In the DataType Editor are shown all the data types available for the entire
project. For using them a Data Type Mapping Set must be created with the
associations

between the Application Data Types and the Implementation Data Types.

6.3 Defining Interfaces

It is necessary even to define the interfaces to determine the data types that will be
pass through the various ports.

= Port Interface Editor

¥ Sender Receiver # Nv Data| B Parameter b Mode Switch 03 Client Server 3 Trigger

Interfaces HWEED Data Types

Name = | [ext| [0 ® AppDataType & ImplDataType| = VText

>

vevvsaf ?

Category Service / Type ServiceXind.. Calibration - £ text 1a find. Name - [t (a0

| 0 e
s esssssEsEEsEEEEERER]

"
=

5535
EEE

= Uintg VALUE

FI T EIT TN ITNTTF Y

& Interface| T | X »

Figure 6.3-1 Port Interface Editor

In my solution | have used many different kinds of interfaces (sender/receiver).

6.4 Defining Ports

The ports are the Software Components point of contact with the outside and it
allows the component to send/receive data.
In this model sender/receiver ports are used.

38

= SWC Editor

SWC | immabilizerConnexian/mySWCs/SweProtocal

AUTOSAR Architecture creation using Simulink

== General [¥] Ports| # Port Groups| # CamM| # NvM | % Diagnostic| 8 Wrght

Port Prototypes

type text ta find

Name Port Type
[pp _IfBCM ControlEncading Provided

[pp_IfBCM_ENQ VariableDataPtl Provided
[pp_I1BCM_PRA VariableDataPtl Provided
[po Tfcance! timer.T_wait BCM Provided

[pp_ffcancel_timer_T_wait_rec Provided
] pp_ifPretocalsts Provided
[i Iset timer_T_wait_BCM Provided
[pp Ifset timer T wait rec Provided
@] pp_ifsetEStLockUninddCmad Provided
[rp_tacx Requested
® mpreoTp Requested
¥ rp 62 Requested
™ rpamrg Requested
[rpmiackp Requested
[® rp.ifProtocolStart Requested
[® rp_T_wait_ BCM Requested
(¥ rp T _wrait_rec Requested
B rp_ymen Requested
4 rp_in_SViMode Requested
»

Name

Portinterface
¥ [fBCM_ControlEncoding

¥ pp_IBCM_ENQ VariableDataPtl
- po_IIBCM_PRA VariableDataRtl
icancel timer T wait BCM

¥ Ifcancel_timer_T_wait_rec

® [fProtocolsts

> [fset_timer_T_wait BCM

¥ [fset_timer_T_wait_rec

> [fSetESLLockUniockCmd

" HACK

® [fE0Tp

1152

® IRD

" [INACKD

[fProtocolStan

B [T _wait BOM

- IfT wait_rec

= IfTEN

B in_SVXMode

Interface Ty._.

SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
SenderReceiver
ModeSwitch

T Available Port Interfaces

B~@~d

-) oo] (%) 2]

¥ Sender Receiver| 8 Ny Data | 55> Parameter| b Mode Switch 0> Client Server 3 Trigger

type text to find

Name IsService/C...

® [fACK
% [fBCM _ControlEncoding

¥ fBCM_REQ_LocklnlockESL
® licanced_t
licancel 1

* [icancel
¥ lfcancel
> Hcancedt
¥ licancel t
¥ [fcancel
¥ licancel_timer
® Ifcancel_timer_T
¥ [Cmdlgnt

® 1E0Tp

® [ESL_RESP_CodeChck
¥ [fESL_RESP_ Faillock
¥ [fESL_RESP_FailUniock
¥ {ESL_RESP_Fobk

® G2

> [faylgnt

¥ [1Keylgnt Validity

> I1WRQ

® [fNACKD

& IfProtacolStart

® [iProtocolStan

2

~ | et Al

Figure 6.4-1 Defining ports using Software Component Editor for Protocol SWC

6.5 Defining Software Components

The Software Components used in this project are Composition and Application type.
The Application SWCs contain the behavior, that is part of the logic of the

application. The Composition Software Components are like a container for all the
other types of SWCs.

6.5.1 Composition Software Component

The model is divided into different Composition Software Components, following
some screenshots:

I

Targetco_SVXCompTarget

| pt_initin_SVXMode pr_SVXModein_SVXMode |
L |

Channel:co_SvXCompChanne! [l

pt_SVXModein_SVXMode

ContainerAppSw:CentainerAppSw

Acceptorco_SVXCompAcceptor .

4}? pt_SVXMode:in SVXMode

Figure 6.5-1 Root Composition Software Component

targetDin_SvXMode

op_set

]
LT}
PPonPrototype LIfSetESLLockUnlockCmad

RPortPrototypeLifProtocolStart

* op_set

The Root Composition Software Component contains not only the Composition SWCs,
but also some other SWCs necessary for conneXion, like the Target, the Channel and the

Acceptor, because in this case the Plant in Simulink is the sequencer.

39

AUTOSAR Architecture creation using Simulink

This Composition SWC contains the main Application Software Component
Protocol, in which most of the inputs/outputs are connected to others Composition
Software Components that contain the conneXion Consumers and Generators.

These Consumers and Generators are connected through a delegation to the
Target in the upper level.

Different kind of delegations are connected to the associated ports, for input/output,
to make the communication between two Application Software Component.

6.5.2 Applications Software Components

In this project different Application Software Components are used.

Other SWCs are used for example to handle the port connection between the
conneXion SWCs and the other SWCs.

In the next picture a collection of some Application Software Components used
are shown.

Figure 6.5-2 Example of Applications SWCs Used

6.6 Defining the Behavior for the Application Software
Components

As mentioned before, we used the approach of creating the model skeleton in VSA,
export it in AUTOSAR xml, and then import it in Simulink to define its behavior using
Model-Based Approach.

Once the system architecture is created, the next step is to create the behavior of
the two main Software Components.

Because the architecture created in VSA is only a skeleton and the Application Soft-
ware Components do not contain the behavior.

The way to define this behavior is to write it manually or to use external tools to auto
generate the code.

In this case | used Simulink to create the behavior of the Application Software
Components using the Model Based Software Design technique and do an Early
Validation before auto generate the code.

40

AUTOSAR Architecture creation using Simulink

6.6.1 Using Simulink for a Model Based Approach with Auto-
Generated Code

Using Simulink makes it possible to define the behavior of the Application Software
Component, without writing the code manually, using the auto code generation tool.

In Simulink the support for AUTOSAR Software Component is offered by the
Embedded Coder Support Package for AUTOSAR Standard.

It is possible to use Stateflow and then exploit the concept of states and
transitions of its FSM, in order to:

. Facilitate the work to the designer.

. Provide easier maintainability

. Avoid possible errors through the validation and testing phase, without having to
write any line of code.

This is more useful in complex and articulated systems, allowing even faster editing
of the model.

As mentioned before, after the data is exported from the architecture created in
VSI, in this case arxml files can be imported in Matlab, and according to
Matlab/Simulink documentations, the main steps are:

1
2 >imp=arxml.importer('FILENAME. arxml")

3
4 imp =
5 The file " SwcAppSw.arxml" contains:
6 1 Application Software Component Type :
7 ' ImySWCs/APPLICATION_SWC_NAME'
8
9 0 Sensor Actuator Software Component Type .
10 0 CalPrm Component Type .
11 0 Client Server Interface.
12
13 imp.setDependencies ('DEPENDENCIES FILENAME. arxml ')
14

15 >>imp . createComponentAsModel (' /mySWCs/APPLICATION_SWC_ NAME'")
Figure 6.6-1 E.g. importing code in Matlab

The last command will generate the model skeleton in which will be implemented
the behavior.

41

AUTOSAR Architecture creation using Simulink

B SwcProtocol * e e —— . . —.
File Edit View Simulation Format Tools Help
DeE&S| 2R 4| » = 100 [Nomal Vl|n|z-|.@li‘

5 B
rp_If32_op_get pp_lfFrotocolSts_op_set
2 r—»a
rp_fT_wait_BCM_op_get pp_IfBCM_ControlEnceding_op_set
B =
rp_IfT_wsit_rec_op_get pp_fBCM_ENG_VariableDataPt1_op_set
5 @
rp_IfProtocolStart_op_set pp_IfBCM_PRA_VarisbleDstaPt1_op_set
rp_iTEM_op_get pp_liset_timer_T_wait_ BCM_op_set
= = (&)
rp_IfMRQ_cp_get pp_lfcancel_timer_T_wait BCM_op_set
(T r——»8 =
rp_ITACK_op_get pp_lfset_timer_T_wait_rec_op_set
= = (&)
1p_IfNACKE_op_get pp_lfcancel_times_T_wsit_rec_op_set
Info &= {5
p_fEOTp_op_get pp_liSetESLLodUnlodkCmd_op_set
Ready [100% \ \ \FixedStepDiscrete]

< e

Figure 6.6-2 Example of Imported Architecture

In Figure 6.6.2 it's shown that it is possible to exchange the “Put you
implementation here” block with the desired behavior, and then connect the

inputs/outputs.

AUTOSAR Architecture creation using Simulink

After creation of the behavior and all the inputs/outputs ports connections, it is
possible to proceed with the automatic code generation, that will generate some
files, in which the most important files are the C/C++ and arxml files.

All of them must be imported in VSI, and for doing that it is necessary to set
some parameters, showed in the next figures, and in detail:

- Select the schema version for the xml Is that will be generated

Choose the exporting options (e.g. exporting on single file or on multiple files)

- Validate the model Xml schema
version

Configure

"'{g Configuration Parameters: SwelodkdUnlock/Configuration (Active) & AUTDSAR

e . ; . interface
- | Generate XML file for schema version 4.0 el

Solver

Data Import/Export Maximum SHORT-NAME length: 32
#-Dptimization
+-Diagnostics

Hardware Impleme... Support root-level matrix [/O using one-dimensional arrays

| Use AUTOSAR compiler abstraction macros

Model Referencing Configure AUTOSAR Interface ...
- Simulation Target

Code Generation
Report
i-Comments
| Symibols
i~ Custom Code
I Debug
- Interface
i~5IL and PIL Verifi...
Code Style
i~ Templates
i Code Placement
| Data Type Repla...
Mamory Sections

AUTOSAR. Code ...

2

J Lok || Cancel || Help

e |

Figure 6.6-3 Select the XML file for schema version

B Configure AUTOSAR Interface: SwelLockniods il |
Description
AUTOSAR compliant specification supports single rate and multirate single-tasking medels.
Press Get Default Configuration to populate the initial oo XML Qutput
Any runnable, event or XML option that is left blank will be .
Qptions
Configure 1/0 for server operation

Companent type: [Application /4 -
Get Default Configuration (*invokes updgle diagram)
; Configure AUTOSAR Interface 4
Input/Output | Runnables | XML Optiond’"

Exported XML file packaging: |Single file

e

| Intertace package JmySWes
Companent name: JmySWCs/Swel ockUnlock
Internal behavior name: /mySWCs/Swcl ockUnlodk_ib
Implementation name: /mySWCs{SwclockUnlock_imp
Data type package: I mySWCs{Swel ockUnlock_dt |
Validation

oK Cancel | Help || Apply

Figure 6.6-4 Exporting options

43

AUTOSAR Architecture creation using Simulink

e R ————— o5t
Description Type -

| AUTOSAR compliant spedification supports single rate and multirate single-tasking models.
i Press Get Default Configuration to populate the initial 1/0 configuration.
Any runnable, event or XML option that Is left blank will be filled with the default value. Selected
| Configure 1/0 for server operation Port
Companent type: ‘Aowiication *| Properties
ot e g g <
Configure AUTOSAR Interface Paris
I 7 nputjoutput | xML0,
| - ruperties - r_IfKeylgnt_op_get (Inport 1) //’ =
| AUTOSAR port:
p_IfkeyIgnt
Interface:
Tkeylgnt
2| Data element:
op_get
Interface type: | Application software =
& R
|8 Swvel Ifkeyiont op get
_info_op._get (Inp
Consumers
5 Subsystem
[ok || cancel Help Apply

Figure 6.6-5 Validation Succeeded in Simulink model

44

AUTOSAR Architecture creation using Simulink

In the Figure 6.6.5 you can see that Simulink provides us with a useful tool, it is
able to make an initial validation, useful to see if there are any errors in the model,
or if the blocks we are used are not compatible with the AUTOSAR standard, and
possibly correct them before re-importing in VSI.

If the validation passed it is possible to generate the code for the behavior.
The Simulink generated les are:

- C/C++, h
arxml

other files

C/C++ les contain the functions with the behavior, and each function's name will be
mapped with a Runnable entity in AUTOSAR, for example:

AppSwecl.c Graphical Runnable Editor
* Model step function *
void AppSwCl_Step(void)
: int32 T tmp; " Properes. B = X
DIG2UG2 [E] ppsw_init &4 . :I:;;_e of longhame e
* op_get [. A_‘::"W”.; Tex
=] .’;.f mppswcl_l.).wcrk.is_active_cl_AppS',:Cl = 0) {

* Entry: Chart
AppsSwCl_DWork.is_active cl AppsSwCl =

APDSWCl_DWork.is_cl_AppSwCl = AppSwCl_IN_RUN;

* Entry "RUN' "<51>:6" *
tmp = AppSwCl_B.count + 1;
E if (tmp > Y

tmp = :
}

AppSwCl_B.count = (uint8_T)tmp;
else |

AppSwCl_DWork.is_cl_AppSwCl = AppSwCl_IN RUN;

* Entry '"RUN': "<S1>
tmp = AppSwCl _B.count + 1;
E if (tmp > Y
tmp = :

}

AppSwCl_B.count = (uintB8_T)tmp;
}

* sig n: <R ignal ConversionAtpp IfUi
Rte_IWrite AppSwCl_Step pp IfUint8_count (AppSwCl_B.count);

}

/* Model initialize function */
void AppSwCl_Init(void)

Figure 6.6-6 Relation between generated code and Runnable Entities

45

AUTOSAR Architecture creation using Simulink

But because the OS view do not works directly with the Runnables, they have to

be mapped into OS tasks 6.6.8, that will be contained in the Rte_Core generated
file.

TASK(tc_ev timerd)
H

Rte_Task Dispatch(tt_ev_timerd):

if (FALSE != Rte IsStarted Default)
ok
1

* Prologue for Runnable entity 'ru timer'

Rte_Runnable_ co SVXCompTarget ru_ timer Start(Rte_Inst Targetl):
ib_SVXCompTarget ru Timer (Rte_Inst TargetO):
Rte_Runnable co SVXCompTarget ru timer Return(Rte_Inst Target():

* Epilogue for Runnable entity 'ru timer®

Figure 6.6-7 Runnables mapped into OS tasks

6.6.2 Hand written Code

It is possible to generate the code for the Application Software Components
behavior using a manual approach, in fact some behavior in this project are
realized using some hand written code (C in this case), only for curiosity than
necessity, for exploring different approaches offered by the tool.

1
2 #include<stdio.h>
3 #include "Rte_convGeninteger . h"

4

5

6 FUNC(void , RTE_APPL_CODE)

7 convGeninteger_run (P2CONST(struct Rte_CDS_convGeninteger,

8 AUTOMATIC,

9 RTE_APPL_CONST) instance){

10

11 dt SVX Integer c input;

12 llgetthe input
13 Rte Read rp IfConv_op set(instance, & input);
14

15 Ilsetthe output
16 Rte_Call_rp_in_ISVXCompSigGenDouble op set(instance, input);
17 }

Figure 6.6-8 Example of hand written code in C

46

AUTOSAR Architecture creation using Simulink

6.6.2 Importing Back the Auto-Generated Code in VSI

After the behavior creation phase in Simulink, is
possible to re-import all the auto generated files
back in VSI.

In this way we will have not only the skeleton
model, but even the behavior for the components.
For doing that it is necessary to import all the

generated files from Simulink.

AppSwCl1 _autosar_ rtw

stub

|| AppSwCl.armml

[&] AppSwCl bat

el AppSw(Cl.c

\h] AppSwCl.h

2] AppSwCl.mk

\h] AppSwCl_private.h

|| AppSwCl_refrsp

] AppSwl_types.h
buildInfo.mat
codelnfo.mat

|| defines.td

| modelsources.bdt

|| rtw_proj.trmw

] rtwtypes.h

% rtwtypeschksum.mat

Figure 6.6-9 Example of Simulink generated files

After importing back the auto generated code, the new components with new

behavior will be available.

With the used version of Matlab (2012a), all the Runnable entities could have

only two possible entity event:

. Timing Event

. Data Received Event

Newest version of Matlab introduced other types of entity events, but in this case
and for this project only this two types of events are used, considering the

constraint on the Matlab version.

The Timing Event repeat the operation based on the configured period, instead the Data
Received Event starts the Runnable when an input presents in the associated port.
In VSx is possible to see a graphical representation of the Runnable Entities
using the Graphical Runnable Editor in which we can create or modify easily the

Runnable Entities.

The tools are divided in below categories:
. Communication Among Runnables
. Sender/Receiver Communication

. Client/Server Communication

47

AUTOSAR Architecture creation using Simulink

. External Trigger Event Communication
. Parameter Access

. Mode Communication

In this categories, we can find the tools for creating Runnable Entities and Events like
Timing Event, Background Event, DataReceived Event, SynchronousServerCallPoint
and even the tools for create connections between the Runnable Entities and Ports.

Each Event can be configured properly to meet the specications, gure 6.6.11, for
example for the Timing Event, it is possible to set timing period instead for the
DataReceived Event to set the ContextRPort and the targetDataElement.

Event
B appswel_ib 8T FEEEr Propertfes
AppswCi_init Fa “longName:
~ | [Remove]|
= [Fvents Event
»! SweModeSwitchEvl r—
— Swegtocol_Step
£ Events ~ RTEEvent &
[eteve appswer step | startOnEvent | /mySWCs/ appswet/appswet, b [l fax]
az : ‘ﬂﬁmdAr ~ variationPoint]
"% IN_rp_HT_wait_B53e7c9800a9386%:Data shortLabel
T " IN_rp HT _wait_Sfal7aafd00e76ba:Datal « desc =

s IN_rp_IfProtoco_28cacc2bbb52b805:Dat
*a IN_rp_IfTEN_VariableDataPtl:DataRead
——— "= IN_rp_IfMRQ VariableDataPtl:DataReac
*a IN_rp_IfACK VariableDataPtl:DataRead
s IN_rp_IfMACKp_VariableDataPtL:DataRe
— *s IN_rp_IfEQTp_VariableDataPtl:DataRea
s OUT_pp_IfProtoc_98f5abc740026d20:D:
& OUT_pp_IfBCM_Co_2297a0a2121230al:
& OUT_pp_IfFBCM_EN_cb79365746e20739

%u NIIT An FOCA DO SORTSANFRAARTAATL T
»

(= TimingEvent

period 0.2

Language of desc:
[Create]
Text:

Figure 6.6-10 Example of Timing Event Properties

6.7 Use of the conneXion (SVX) Components in the

AUTOSAR Model

For using conneXion it is necessary to introduce some particular Software
Components that will manage the communication between the VSx model and the
outside world, in this case the Plant created using Simulink.

The main conneXion Software Components are:

48

AUTOSAR Architecture creation using Simulink

Table 6-1 Main conneXion Software Components

| Name | Description

Target Manage conneXion resources and is
responsible of synchronization in
distributed applications

Channel Used for define the channel name

Acceptor | Used for specify the role for a node, this in
particular passively waits

Connector | Used for specify the role for a node, this in
particular actively connects

Generator For generating outputs for the rest of the
- system

Consumer For retrieving inputs from the rest of the
system

‘m

Each component can be configured properly and in some cases like for the
generators or for the consumers, there are several versions of them based on
different data types, for having coverage on the major data types used.

6.7.1 Using conneXion Components with Sender/Receiver
Interfaces

With the version of VSx used, the only conneXion components available are the
ones showed previously in the table 6.1, and all that components for connecting
with the application Software Components use the client-server interfaces, and
there's no other connection ports available.
There's no way to use components with different interfaces other than
client/server. So for instance to use sender-receiver interfaces we need to
introduce another Software
Component which behave like a bridge between the two SWCs.

RPortPrototypelin_SVXMode |E|

PPortPrototypeLIfSVXIntegerCons E

+ op_get

| Consonieice SVXCompSigCondiéger =] | | coniCanscony SVECONSntegerExt]
1 pt SVXMode:in_SVXMode pt_SVXSigConsintegerin_ISVXCompSigConsinteger rp_in_ISVXCompSigConsintegerin_ISVXCompSigConsinteger pp_IfSVXIntegerConsIfSVXIntegerCons L]

k]
@ op_get © op_get * op_get
1 L

Figure 6.7-1 Consumer SWC Bridge

49

AUTOSAR Architecture creation using Simulink

{3 rp in ISVXCompSigGenlntegerin I

op_get
®op set

Figure 6.7-2 Generator SWC Bridge

The introduced Software Component has a simple behavior, practically takes the
data from one port and sends it to the output door for permitting the communication
between the two SWCs with ports that using different interfaces.

This surely introduce a delay in the system, particularly in the Consumer,
because the system have to request the data from the client-server interfaces, and
for doing that a timer event is used.

The timer event have a period t, so the delay introduced is at least equal to t.

The behavior of this Software Component is different in the Consumer and in the
Generator, but they are quite similar.

The Consumer is composed by a Runnable entity with a timing event, and in
each cycle, the value in the input port is checked, using a client RPort and
requesting the data from a Server PPort, so in this case the delay is present.

On contrary in the Generator the Runnable entity does not have the timing event,
but the Data Received Event. because the data comes from a sender-receiver port
and then it will be sent to the output port that uses the client-server interface.

rp_in_ISVXCompSigConsintegerin_ISVXCompSigConsinteger

pp_IfSVXintegerConsIfSVXIntegerCons m
© op_get

RUN o -opget

Events
@l TimingEventl

VariableAccess1:DataSendPoint
% SynchSrvCallPointl:SynchronousServerCallPoint

Figure 6.7-3 Consumer Runnable

rp_lfSVXIntegerGenIfSVXIntegerGen m rp_in_ISVXCompSigGenInteger:in_ISVXCompSigGenlnteger

 op_set © op_get

© op_set

RUN &

Events

#{ TimingEventl

4 VariableAccess1:DataReceivePointByArgument
IS SynchSrvCallPointl:SynchronousServerCallPoint

Figure 6.7-4 Generator Runnable

50

AUTOSAR Architecture creation using Simulink

6.7.2 conneXion Components Configuration

After placing and connecting all this components that are necessary for the
communication between the Plant in Simulink and the VSI model, we need to configure
them.

So for doing that it is necessary to use the Module Configuration Parameters,
present in VSI.

Therefore it is necessary to create a new ECUCModuleConfigurationValues to
which will be given as definitions the file /pkg_svx_autosar/mdef SVX, that
contains all the definitions of the components used by conneXion.

After adding the definitions it is possible to insert the EcucContainerValues that
we need and then configure them using the Module Configuration Parameter
Editor.

In this model the following EcucContainerValues are created:
. 1*svxTarget
. 1 *svxChannel

1 * svxAcceptor

n * svxGenerators

m * svxConsumers

The Target is configured to indicate that the model is an acceptor instead of a
sequencer, the Acceptor contains the indication about the port used and the
Channel contains the name of the chosen channel.

Also for each inputs and outputs we need to define:

- channelName: channel name

- initialValue: starting value of the signal (default 0)
- period: signal rate

- signalName: unique signal name

In addition to each of these parameters we must also give the reference target,
i.e. to whom Component relate, and if necessary to indicate the path, starting from
the root component.

Below a screen about the configuration of the used parameters:

51

AUTOSAR Architecture creation using Simulink

Module Configurati

type text 1 find.

Name
* Acceptor

@ pont

® componentinstanceRef
prote_input ACK
= channelName
2 initialValue
@ period
B agnalName
% componentinstanceRet
 prota input EOTp
B channeiName
@ initialValue
2 period
B signalName
= componentinstanceRet
* proto_input G2
= channelName
@ initialValue
@ perieo
B signaiName
® componentinstanceRet
' proto_input MRQ
 channeiName
2 initialValue
@ period
B ggnaiName
€ componentinsianceRef
~ proto_input NACKp
B channeiN:

ConneXion
Components

arameter Editor T2T /MyCSWC/modclg (version: AUTOSAR 40.3)

Definition: /pko_Sv_autasar/maef_SVX BRFBI-~E=D
Hame - e (]
Value Definition Status Definition Path -
scAccepton [mdel_SVX/svaAcceptor |
7818 Default
svxChannel fmdet SWVX/svxChanne!
DEFAULT_CHANNE Default =
siSignalConsumerint /mdet SVX/sveSignalConsumelnteger
DEFAULT CHANNE Default
= cea -
— 3 Definition L
ACK 13 Path
Values

fmdet SVX/sveSignalC

DEFAULT, CHANNE wEiaun
o Default
00010, Not Generatec
EOTp Not Generatec
sexSignalConsumerint /mdef_SVX/svxSignaiConsumerinteger
DEFAULT_CHANNE Default
o Default
00010 Not Generatec
(v Not Generatec
svxsignalConsumerint /mdet_ SVA/svxsignalConsumerinteger
DEFAULT_CHANNE Default
0 Defaull
00010 Mot Generatec
MRQ Not Generatec
svxSignalConsumerTnt /mdel_SVi/svSignalConsumerinteger

DEFAULT_CHANNE Default

Figure 6.7-5 Module Configuration Parameter Editor

52

Plant Creation using Simulink

7 Plant Creation using Simulink

7.1 Plant Overview

The first image 7.0.1 shown below, is the upper level of the system in which we can see
two subsystems, one contains the two models: the conneXion model and the starting
model, instead the other subsystem contains the timers.

The other elements are necessary for taking the input data from the workspace do a
conversion and send them to the system at a defined rate.

D EHS| eR|at (oo s |[em S EDaBSE REES

Scope

=]
h 4
%
|
R_A
o

plstiorm

svae_simuling

Ready [100% [[|odeds

Figure 7.1-1 Plant Overview

The conneXion blocks to establish the connection with the VSx model

The Generators subsystem that contains all the conneXion Generator blocks for
generating inputs for VSx model

The Consumers subsystem that contains all the conneXion Consumer blocks for
receiving outputs from VSx model

Scope for comparing tests data from the two systems

The subsystem that contains the starting model

53

Plant Creation using Simulink

7.2 Using conneXion Blocks in Simulink

To connect the two models, it is necessary to use the blocks in the SVX library, which as
previously seen for SVX for Simulink The main blocks are:

Plant Creation in Simulink

| Name | Description
Target Used for specify if the model is a sequencer
or an acceptor
7\
Channel Used for define the channel name
(=1
Acceptor | Used for specify the role for a node, this in
2 particular passively waits
Fon
Connector | Used for specify the role for a node, this in
@ particular actively connects
£
Generator For generating outputs for the rest of the
SRS system
Consumer For retrieving inputs from the rest of the
R system

Table 7-1 Main conneXion Blocks for Simulink

7.3 Configuring the Plant

Obviously even these blocks must be configured, like the others in the VSI model,
to permit the communication with the model.

The first thing to do is to decide the role of the model, if is a sequencer or an
acceptor, checking the box in the settings of the Target block.

In this case this model is a Plant and it provides the inputs, so it is a sequencer.

After the role of the model is chosen for the connection, it is necessary to add the
right block, whether it is Acceptor or Connector and configure these blocks,
defining the port number used.

Next it is possible to add the Channel block into the model, to indicate the name
of the channel to be used, but this block it can be omitted, because in this case is
possible to indicate the name of the channel to be used also in the blocks of
Consumer and Generator.

At this point the connection settings are configured and the two models can
communicate, it is only necessary to insert the blocks for sending or receiving the data.

54

Plant Creation using Simulink

The blocks used for this are the Consumers and the Generators, choosing the
right data type like the one used in the VSI model.

Like the counterpart in the VSI, there are different types for using in Consumer and
Generator:

. Boolean

. Integer
o int8
o int16
o int32

. Real
o single
o double

. Unsigned

o uint8
o uint16
o uint32

In every block, it is possible to set the signal precision, the channel name, the
signal name, minimum and maximum consumption period and the consumption or
generation latency.

Obviously you have to set these values according to the values in the VSI model.

55

Validating VSx

8 Validating VSx

8.1 Debug in VSI

VSI provides the facility to debug the created architecture, using breakpoints on
architecture elements or directly on the behavior code and to use the step by step
debug execution.

In VSI there are two different types of breakpoints: the AUTOSAR breakpoints
and the regular C/C++ breakpoints.

Creating an AUTOSAR breakpoint means that the developer can put a
breakpoint directly in the AUTOSAR architecture elements.

For example, it is possible to put a breakpoint on a component or on a port, and
generally in any other parts of the system.

During a debug session, if there are AUTOSAR breakpoints, the execution will be
stopped when the RTE execution reaches the point in which there is involved a
component with breakpoint on it, or another component is triggered by the
component with the breakpoint.

What VSI do when there are AUTOSAR breakpoints is to map the breakpoint to
one or more C/C++ function breakpoints.

The developer can even sets breakpoints directly in the Runnable code, these
are the C/C++ breakpoints.

The C/C++ breakpoints supported by VSI are:
. Function breakpoints

. Line breakpoints

. Address breakpoints

In VSI the breakpoints are divided into implicit and explicit.

The implicit breakpoints are the AUTOSAR breakpoints mapped to C/C++ break-
points, that appear only during a debug session, and they are placed implicitly by VSI.

The explicit breakpoints are the ones that the developer sets, they exists even
outside the debug session and can be AUTOSAR or C/C++ breakpoints.

56

Validating VSx

8.2 Integration of The Previous Validation Model

after integrating the VSI Plant and the starting mode, the output data is
compared and the output results are the same in each system, therefore the two
systems are similar, in which with the same inputs they show the same outputs,
they have the same behavior.

8.2.1 Issues:

e The two output signals were not identically the same, but the one created in
VSx using AUTOSAR presents a little delay that can be minimized acting on the
various component speeds (e.g. Runnable entities event or period in the conneXion
ports configuration).This problem exists mainly because we need to use conneXion
instead of a real hardware.

e Another problem with conneXion is the impossibility to connect the Software
Components with other kind of ports, different from the Client/Server type. This
leads to use other software components for acting like a bridge for taking the input
and sending the outputs to the right port. Because the conneXion Software
Components are divided in Consumers and Generators, there are two main
scenarios using these kind of bridges: Taking the input from the Consumer and
providing the output to the Generator.

These two different kind of components have different behaviors, in this case one
is implemented using a Timing Event, instead the other one using a DataReceived
Event.

For the case of the Consumer, the input comes from a component with a server
port that must be connected to a client port that have to ask for the input at a
certain rate.

The Generator case is different because in this case the data starts from the
model and it can be used with DataReceived Event that sends the data to the right
output port when the data is available.

This bridge, particularly in Consumer case, introduces a delay in the system, that
in the worst case is equal to period of the Timing Event.

In any case, the delay problem is presented only in the simulation phase without
real hardware.

The solution is to increment the speed of the ports and modeling the system
taking in consideration the delay problem.

57

Validating VSx

8.3 Test cases

5 @ SWC Architecture [T AUTOSAR Debug |
® Do

o [&UTCRAR Application]

inGi odib (/18715 3130 PM)

2. Run VSI
builded executable

SIMULINK

Figure 8.3-1 Testing Flow

To show the signals better, a delay in the two signals is introduced, like shown in
the next figure 8.3.2:

Figure 8.3-2 Delay added for showing the two signals

58

Conclusion

9 Conclusion

As mentioned before in the introduction, the main goal of this thesis is creation a
simple filter using AUTOSAR standard, creating a Plant for sending/receiving
inputs/outputs and validation test phase to compare the obtained results with the
available ones from the previous implementation.

The obtained results are the same for both models, it means that the two

systems are similar and with the same inputs they will generate the same outputs.

The only problem occurred was the delay, introduced by conneXion 8.2, but is
solved by increasing the sampling rate for the conneXion signals.

Regarding AUTOSAR, the standardization will result in increasing the quality of
the software components and reuse of them.

But even other benefits for manufacturers, suppliers and tool developer *:

General benefits:

Increased re-use of software
Increased design flexibility
Clear design rules for integration

Reduction of costs for software development and service in the long term

Specific benefits for OEMs:

Functions of competitive nature can be developed separately
Later sharing of innovations is accessible

Standardized acceptance tests

Specific benefits for suppliers:

Reduction of version proliferation
Development sharing among suppliers
Increase of efficiency in functional development

New business models

Thttp://www.autosar.org/about/fag/general/

59

Conclusion

. Preparation for upcoming increase in software volume
Specific benefits for tool developers:
. Common interfaces with development processes

. Seamless, manageable, task-optimized (time-dependent) tool landscape

In conclusion the Volcano tool is substantially an Eclipse plugin, and have some
advantages, for examples the possibility to validate and debug the system and
using it concurrently with others models created with different others tools (e.g.
Simulink or Labview), but there are also other tools that do the same.

The biggest disadvantage, instead, is that the tool is still in development, so for
the moment there are missing functionality and a lot of problems, and in many
cases using this tool is more time consuming compared to others.

The obtained results, showing that using this tools is possible, but for the
moment is not reliable as it's "unstable" (unhandled exceptions, continuous blocks
and subsequent reboots resulting in loss of stored data) , maybe after a stable
version will be released, it would be more practical.

60

Definitions, Abbreviations

10 Definitions, Abbreviations

- BSW: Basic Software

- ECU: Electronic Control Unit

- HW: Hardware

- SWC: Software Component

- RTE: Real Time Environment

- VFB: Virtual Functional Bus

- XML: eXtensible Mark up Language
- VSx: Volcano tool family

- SVX: Old name for conneXion tool

61

List of Figures

List of Figures

Figure 1.1-1 AUTOSAR eXchangeability.........ccceeiiiiiiiiiieiieee ettt 9
FAGUIE 3.3-1 AULOSAT ...cuvvieiieiiieiieieesieeette et et e ete e teesteessaessbeesseessaesaesssessseasseasseesseesseesssesssesssessseessennses 10
Figure 3.4-1: AUTOSAR Components [from http://WWWw.autoSar.org |cccevveerververcrescreerreereeenens 12
Figure 3.4-2 Basic SOtWAIe LAYccoiiiiiiiieiieie ettt ettt st et 13
Figure 3.4-3 Basic software layer detailed...........cccveriiriieiieciieieriecie e 14
Figure 3.5-1 Software Components detailed VIEWccoccuveeiierierienieiie e sne e 18
FAGUIE 3.5-2 VEB VIEW ...ttt ettt sttt ettt be e it e eateeabeebeebeeas 19
FAgUIE 3.5-3 RTE VIBW ..ottt ettt st ettt et e sbe e e it e eateeabeebeebeees 20
Figure 3.5-4 RUNNADIEScccuiiiiiiieiiecie ettt sttt et essaeess e et e essaessaessseseneanseenseenseessns 21
Figure 3.5-5 Example of Runnable behavior code in C..........coooiiiiiiiiniiiiiiecee e 22
Figure 3.5-6 AUTOSAR Methodology [from http://www.autosar.org J........ccceeveereerieriiercieeseenieenes 24
Figure 3.5-7 AUTOSAR MethodOlOZY StEPS......eecuierieriieiieiieieereesresresteereesteesteesenesenesnseesseesseesens 24
Figure 4.3-1 AUTOSAR MethOdOIOZY StEPS......eecrieriiriieiieiieiieseeseesresteereesseesteessnesenesnseesseesseesens 26
Figure 4.4-1 VST TOOI SUILE....ccueiiiiiiiiiieeit ettt ettt ettt sttt et e sbe e st esateeabeebeeseenes 29
FAZUIE 4.5-1 VSX WOTKOW.....cviiiiiiiiiiieiieiie et et esitestteseresreesseessaessaessaesssessseessaesseesseesssesssesssesssessseensns 30
Figure 4.7-1 Connexion COMMUNICALIONSeervierrrerrerreereereesseesseessessesseesseesseessessssessessessseesseeses 32
Figure 5.1-1 Starting mOdelcc.ooiiiiiiiiie ettt et 33
Figure 6.1-1 ARPackage exporting from VSccoiiiiiiiiiiieeeee e 36
Figure 6.1-2 ARPackage importing from external SOUICEccevververrieieerieeneesee e e e ere e 36
Figure 6.1-3 ARPackage importing from eXternal SOUICEcccevvverierieeiiiesieeneeseesee e e ere e 37
Figure 6.2-1 Data types EdItOr........cooiiiiiiiieiieeeeee ettt ettt st e 37
Figure 6.3-1 Port Interface EdItOr.........cc.iiviieiiiiiiiieciecie ettt ae e e e 38
Figure 6.4-1 Defining ports using Software Component Editor for Protocol SWCcccceeienincee. 39
Figure 6.5-1 Root Composition Software COMPONENLcceerueerierierieiieeieerieesee et 39
Figure 6.5-2 Example of Applications SWCS USed..........cecuveiiieiiinienieiieeieeeee et 40
Figure 6.6-1 E.g. importing code in Matlab..........c.ceccviiiiiiiiiieieiecie e 41
Figure 6.6-2 Example of Imported ArcChit@Cture...........cccueeiieiiieriieiieie et 42
Figure 6.6-3 Select the XML file for schema Version...........c.cceeceeriiniiniiiiieereeeeseeeee e 43
Figure 6.6-4 EXPOTtING OPLIONScvveiuieeireiieereesieesteestteseresteesseeseesseesseesssesssesssesssesssessssssssesssesssessseesns 43
Figure 6.6-5 Validation Succeeded in Simulink modelc.cooveviiiiiiiiiiiiieecee e 44
Figure 6.6-6 Relation between generated code and Runnable Entities..........cccccoovvevieniiniiniiieneenenne. 45
Figure 6.6-7 Runnables mapped into OS tasKSc.cccveevieciiiciieiienieiee e e ere e seeesnesveeereeveeseeesens 46
Figure 6.6-8 Example of hand written code in C..........cccoeeiiieiieciiinieiiecie e 46
Figure 6.6-9 Example of Simulink generated filescoceevieiiniiniiiiiiniiceeeeeeseene 47
Figure 6.7-1 Consumer SWC Bride........cocueiiiiiiiiiiinieiiiieeieetee ettt 49
Figure 6.7-2 Generator SWC BIidZecccviviiiiiiiiieiiecie ettt ste e s ae e sebeesreessaeses 50
Figure 6.7-3 Consumer RUNNADIEcoiiiiiiiiiiiiiiiciieeete ettt s 50
Figure 6.7-4 Generator RUNNabIe...........cooiiiiiiiiiiiiiiiciee ettt 50
Figure 6.7-5 Module Configuration Parameter EditOr........c..cccveviiviiiieiiiiiecieeseeceecre e 52
FIigure 7.1-1 Plant OVEIVIEWcccveiieeieeiieieesieesieesttesvesereesseesseesseesssesssessseessesssessssesssssssesssesssessseesens 53
Figure 8.3-1 TeStiNG FIOW.......oooiiiiiiiiiie ettt sttt ettt et e e e s ate et e be s e ees 58
Figure 8.3-2 Delay added for showing the two signals...........cceceeiiiniiriiiniiiiiieeeee e 58

62

file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509139
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509140
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509141
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509142
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509143
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509144
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509145
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509146
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509147
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509148
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509149
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509151
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509152
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509153
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509154
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509155
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509156
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509157
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509158
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509159
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509160
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509161
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509162
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509163
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509164
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509165
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509166
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509167
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509168
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509169
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509170
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509171
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509172
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509173
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509174
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509175
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509176
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509177
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509178
file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55509179

List of Tables

List of Tables

Table 1-1 several software suppliers offer software implementations of the AUTOSAR standard....... 5
Table 3-1 AUTOSA POTES LYPES .eeuveerurerereiieeiiesieesieesiestesreesseeseesseesseesssesssessseessesssessssesssessessseessessses 16
Table 3-2 SWC types in AUTOSAR ..ottt ettt et 17
Table 6-1 Main conneXion SOftware COMPONENLS........cceeerveeririeeriireerieerieerreeeereeesreeereeesereeesreeesanes 49
Table 7-1 Main conneXion Blocks for SImulink............ccocoeiiiiiiiniiiieeeeee e 54

63

file:///C:/Ladan/Improvements/Thesis/Thesis.docx%23_Toc55508793

Bibliography

[11 The MathWorks, Matlab Documentation, Import and Export and
AUTOSAR Software Component,
[http://it. mathworks.com/help/rtw/examples/import-and-export-an-autosar-
software-component.html]

[2] Mentor Graphics, Volcano Vehicle System Integrator User Manual

[3] Mentor Graphics, VSx User and Reference Manual

[4] Salvatore Grasso, Model Based Design Of An Immobilizer System,
Politecnico di Torino, Torino, Italy

[6] Robert Warschofsky, AUTOSAR Software Architecture, Hasso-Plattner-
Institute fur Softwaresystemtechnik

[6] Nico Naumann, AUTOSAR Runtime Environment and Virtual Function
Bus, Tech-nical report, Hasso-Plattner-Institute fur
Softwaresystemtechnik, 2009

[7] AUTOSAR GbR, [http://www.autosar.org]

[8] Massimo Violante, Introduction to AUTOSAR, Politecnico di Torino,
Dipartimento di Automatica e Informatica, Torino, Italy

[9] An introduction to AUTOSAR -
[http://retis.sssup.it/sites/default/les/lesson19_autosar.pdf]

[10] Mike Gem“unde, Evaluation Environment for AUTOSAR - Autocode in
Motor Control Units, Embedded Systems Group, Department of
Computer Science, Uni-versity of Kaiserslautern

[11] The MathWorks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098 ,
RealTime Workshop Embedded Coder 5 User’s Guide,
(www.mathworks.com,

http://www.manualslib.com/manual/392874/Matlab-
Real-Time-WorkshopEmbedded-Coder-5.html)

[12] The MathWorks, Inc. 3 Apple Hill Drive, Natick, MA 01760-2098,
RealTime Workshop 7 Getting Started Guide, (www.mathworks.com,
http://www.manualslib.com/manual/392856/Matlab-Real-Time-
Workshop7.html)

[13] Mentor Graphics, VSA Getting Started Guide
[14] Mentor Graphics, conneXion User's Guide

[15] Mentor Graphics, conneXion User's Guide for AUTOSAR

[16] Mentor Graphics, conneXion User's Guide for Simulink

64

http://it.mathworks.com/help/rtw/examples/import-and-export-an-autosar-software-component.html
http://it.mathworks.com/help/rtw/examples/import-and-export-an-autosar-software-component.html
http://it.mathworks.com/help/rtw/examples/import-and-export-an-autosar-software-component.html
http://www.autosar.org/
http://retis.sssup.it/sites/default/files/lesson19_autosar.pdf

