
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Autocalibration of monocular
cameras for autonomous driving

scenarios

Supervisor
prof. Massimo Violante

Candidate
Luigi Ferrettino

Internship Tutor
Luxoft (Objective Software Italia SRL)

ing. Stefano Moccia

December 2020

To those who I love,
they helped me during
this journey

Abstract

Object identification, detection and distance calculation are crucial topics for the
autonomous driving world. Different technologies are used in the automotive field
to reach the expected results. LIDAR and radar technologies are widely used for
distance measurement, but they are quite expensive and rather not able to cover
all the use cases (e.g. road lanes or traffic signs identification). For this reason,
those sensors are often used in conjunction with algorithms where also camera
data is integrated. A possible alternative to LIDAR and radars is the usage of
stereo cameras. The stereo camera is a sensing technology using two cameras
to capture images. Since stereo cameras acquire images with multiple cameras,
they estimate the distance between the camera itself and the object surface by
exploiting points triangulation, which is not possible with a monocular camera
system. In this way, stereo vision has a broad range of applications. This work aims
at proposing a method to self-calibrate four monocular cameras in order to retrieve
with an acceptable approximation the positions of the cameras in the real-world
coordinates. This will be an important step in order to exploit future achievements
with the growing availability of stereo cameras.

4

Acknowledgements

A special thanks goes to Dr. Marco Bottero, responsible for the organization of
the Italian Branch of the Luxoft Group in terms of business development, sales,
human resources, operational structure and results. He helped me during my stay,
even in the particular circumstances generated from the smart working situation.
Furthermore, a general thanks goes to Dr. Mattia Raffero and all the members
of the MINERVA team group during my extracurricular stage, which were always
available to help me when needed, even in an indirectly manner.

5

Contents

List of Tables 8

List of Figures 9

1 Introduction 11

2 Background 13
2.1 Pinhole camera model . 13

2.1.1 Camera matrices . 14
2.1.2 Camera calibration . 16

2.2 Perspective-n-Point . 17
2.2.1 RANSAC . 18

2.3 Epipolar geometry . 20
2.3.1 Epipolar constraint . 21
2.3.2 Fundamental matrix . 23

2.4 Multi-view geometry . 24
2.4.1 Structure from motion (SfM) 26

3 Research 29
3.1 Calibration methods . 29

3.1.1 Tsai’s calibration technique 30
3.2 Object detection . 31

3.2.1 Fast/Faster R-CNN . 31
3.2.2 YOLO . 32
3.2.3 3D object detection . 33

3.3 Features extraction and matching 35
3.3.1 Extraction . 35
3.3.2 Matching . 39

3.4 Perspective-n-Point . 40
3.4.1 Gao’s P3P solver . 41
3.4.2 Lambda twist . 41
3.4.3 PnP-Net . 41

6

3.5 Structure from motion . 42

4 Design and development 44
4.1 Introduction . 44
4.2 Design . 44

4.2.1 Custom pipeline . 44
4.2.2 OpenCV’s pipeline . 47

4.3 Development . 49
4.3.1 Frameworks and requirements 49
4.3.2 Intrinsic calibration . 50
4.3.3 Custom pipeline . 50
4.3.4 OpenCV’s pipeline . 56

5 Results 61
5.1 Introduction . 61

5.1.1 Initial calibration . 61
5.1.2 Datasets . 64

5.2 Custom pipeline . 64
5.3 OpenCV’s pipeline . 69

6 Conclusions 73
6.1 Future works . 73

A Build and install OpenCV 75
A.1 Dependencies . 75

A.1.1 Ceres solver . 75
A.1.2 CUDA . 76
A.1.3 VTK . 76

A.2 Build and install . 76

7

List of Tables

2.1 Conditions needed for metric upgrade based on the number of views. 27
5.1 Performance comparison from n number of views between different

methods for features extraction and matching 66
5.2 Performance comparison from n number of views between different

methods for features extraction and matching on raw data 68

8

List of Figures

1.1 Use case scenario . 11
2.1 Pinhole camera model. Source: Fei-Fei Li - Stanford Vision Lab (2011) 13
2.2 From retina plane to pixels plane 15
2.3 Projection of a point from the world reference system. Source: Fei-

Fei Li - Stanford Vision Lab (2011) 16
2.4 Camera calibration scenario. Source: Fei-Fei Li - Stanford Vision

Lab (2011) . 17
2.5 PnP problem scenario. Source: OpenCV Docs 18
2.6 Triangulation scenario. Source: Fei-Fei Li - Stanford Vision Lab (2011) 20
2.7 Epipolar geometry. Source: Wikipedia.org 21
2.8 Stereo vision dimensions. Source: Fei-Fei Li - Stanford Vision Lab

(2011) . 22
2.9 Disparity calculation from two views. 25
2.10 The structure for motion problem. Source: Fei-Fei Li - Stanford

Stereo Lab (2011) . 26
3.1 Faster R-CNN architecture, Source: Girshick et al. ICCV2015 . . . 32
3.2 YOLO steps. Source: Redmon et al. CVPR2016 33
3.3 Stereo R-CNN architecture. Source: Li et al. 34
3.4 Frustum PointNets architecture. Source: Qi et al. 35
3.5 DoF for each octaves in Gaussian Pyramid. Source: OpenCV Docs 36
3.6 SIFT local extrema. Source: OpenCV Docs 37
3.7 SuperGlue architecture. Source: Sarlin et al. 2020 40
3.8 PnP-Net architecture. Source: Sheffer et al. ECCV2020 42
3.9 Representation of the sliding-window with bundle adjustment method 43
4.1 Custom pipeline’s flow . 46
4.2 OpenCV pipeline’s flow . 48
4.3 mAP and average loss at 1000/6000 epochs 52
5.1 Chess board calibration process (first) 62
5.2 Chess board calibration process (second) 63
5.3 Samples from the Multi-View Car Dataset 64
5.4 Raw sample from the Android camera 65
5.5 panda_2.jpg, panda_4.jpg and panda_6.jpg 66

9

https://docs.opencv.org/4.5.0/
https://en.wikipedia.org/

5.6 panda_8.jpg and panda_10.jpg . 66
5.7 Common filtered matches on panda_2.jpg with panda_4.jpg and

panda_6.jpg by exploiting SuperPoint+SuperGlue 67
5.8 Pose estimation on panda_2 with n = 3 67
5.9 Common filtered matches on on the first camera from the n = 3 raw

images . 68
5.10 Pose estimation on the first and second view on raw data 69
5.11 Cameras pose estimation with n = 8 on the Multi-View Car Dataset 69
5.12 Cameras pose estimation with n = 3 on raw data taken from the

Android camera . 70
5.13 Cameras pose estimation with n = 3 on the Multi-View Car Dataset 71
5.14 Images used for a n = 8 views reconstruction 72

10

Chapter 1

Introduction

The research topic aims at developing a solution to self calibrate four monocular
cameras in an outdoor area where in future autonomous cars will be driven. By
following the generic steps:

1. Automatically identify from the scene some fixed objects

2. Calculate the relative positions of the cameras

Figure 1.1. Use case scenario

The method will output the final positions of the four cameras. To achieve
the abovementioned steps, a research activity on state of the art computer vision
algorithms needs to be conducted with a specific focus on techniques to identify
from the scene the pose of fixed reference points and use those points to calculate the
positions of the four cameras. Expected result would be to develop a fully-automatic
calibration program, suitable for obtaining extrinsics parameters (relative transform

11

1 – Introduction

matrices) between multiple monocular cameras. Extrinsics parameters are required
for fusing the 3D data of multiple sensors, since the data must be processed in the
same geometrical frame. This is often needed in applications where, for instance,
the cameras are used for an highway, a parking area or a production facility. The
program will employ multiple computer vision algorithms, for detecting feature
in the images, match them and evaluate their alignment. The use case scenario
(Fig. 1.1) is the ending point of the script, with all the four camera positions
retrieved.

In order to better understand and then solve the problem in its entirety, the
divide et impera approach is well suited. The functional decomposition in sub-
problems would be:

• Identify from the scene a fixed object.

• Choose the reference points.

• Retrieve from the reference points the extrinsic parameters.

• Output the camera positions.

12

Chapter 2

Background

In order to explore and better understand the proposed methods in the literature,
some basic knowledge of computer vision is fundamental, starting from the camera
model and its subsequent implications.

Figure 2.1. Pinhole camera model. Source: Fei-Fei Li - Stanford Vision Lab (2011)

2.1 Pinhole camera model

It is the simplest, yet one of the most effective, camera models. It can be easily
built by having a little aperture (the pinhole) in a box so that the light of the
scene passes through it and project an inverted scene in the opposite side of the
box. From a geometrical point of view (Fig. 2.1), the model introduces a non-linear
transformation between the point P in world-coordinates and the point P’ on the
camera film:

13

2 – Background

P =

⎡⎢⎣x
y
z

⎤⎥⎦ − > P ′ =
[︄
x′

y′

]︄
from a simple geometrical derivation

{︄
x′ = f ′ x

z

y′ = f ′ y
z

Since that the aforementioned transformation is not linear (because of the divi-
sion), the homogeneous coordinates are used. In particular, 2.1 are used to trans-
form to homogeneous coordinates, while 2.2 are used to transform from homoge-
neous coordinates.

(x, y) =>

⎡⎢⎣x
y
1

⎤⎥⎦ , (x, y, z) =>

⎡⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎦ (2.1)

⎡⎢⎣x
y
ω

⎤⎥⎦ => (x/ω, y/ω),

⎡⎢⎢⎢⎣
x
y
z
ω

⎤⎥⎥⎥⎦ => (x/ω, y/ω, z/ω) (2.2)

The homogeneous coordinates have the advantage that the coordinates of points
(even points at infinity) can be represented using finite coordinates. They allow
affine transformations and, in general, projective transformations to be easily rep-
resented by a matrix. The perspective projection transformation is used in the
homogeneous coordinates to retrieve the image point starting from the scene point
by a matrix multiplication, as showed in 2.3.

P ′ =

⎡⎢⎣fx
fy
z

⎤⎥⎦ =

⎡⎢⎣f 0 0 0
0 f 0 0
f 0 1 0

⎤⎥⎦
⎡⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎦ , P ′ = MP (2.3)

2.1.1 Camera matrices
The next step is to obtain the image as pixels from the projected image film by a
using bottom-left coordinate system (Fig. 2.2). This transformation must take into
account two important parameters:

• Off-set addition. The center C’ of the film could not be aligned with the center
C = [cx, cy] of the pixel image. The geometrical derivation must then take this
into account by adding the two C’ coordinates:
(x, y, z)− > (f x

z
+ cx, f y

z
+ cy)

• Metric to pixel conversion. Since that each pixel could capture an area and
could not be necessarily be non-square, two scale parameters are added: k and

14

2 – Background

l. They depends on the physical properties of the captured pixel and they are
implicitly used with α = fk and β = fl (focal length in terms of pixels):
(x, y, z)− > (αx

z
+ cx, β y

z
+ cy)

• Skew parameter. This parameter is used to represent how the angle between
the x and y axes is distorted in the pixel representation. It is a simple param-
eter s that multiplies y in the x coordinate transformation:
(x, y, z)− > (αx

z
+ cx + sy

z
, β y

z
+ cy)

Figure 2.2. From retina plane to pixels plane

The M matrix form of the discovered translation is extrapolated in 2.4.

P ′ =

⎡⎢⎣α x + sy + cxz
β y + cyz

z

⎤⎥⎦ =

⎡⎢⎣α s cx 0
0 β cy 0
0 0 1 0

⎤⎥⎦
⎡⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎦ (2.4)

From the transformation 2.4, the intrinsic camera matrix is retrieved as:

P ′ =

⎡⎢⎣α s cx 0
0 β cy 0
0 0 1 0

⎤⎥⎦
⎡⎢⎢⎢⎣
x
y
z
1

⎤⎥⎥⎥⎦ = K[I 0]P => K =

⎡⎢⎣α s cx

0 β cy

0 0 1

⎤⎥⎦ (2.5)

The intrinsic matrix has 5DoF and it is essential in order to project a pixel
point into the image film plane point. This mapping is defined within the camera
reference system: what if a point is represented in world reference system? A
possible scenario is shown in Fig. 2.3. In particular, in 4D homogeneous mapping,
some external parameters are needed: the translation matrix T and the rotation
matrix R. In order to retrieve the P’ pixel point now, two transformations are
needed:

15

2 – Background

• Translation and rotation from world coordinates to camera local coordinates
(2.6).

• Projection from local camera coordinates to pixel coordinates (2.7).

Figure 2.3. Projection of a point from the world reference system. Source: Fei-Fei
Li - Stanford Vision Lab (2011)

P = [R T]Pw (2.6)

P ′ = K[I 0]P (2.7)

By using 2.6 into 2.7, the direct transformation will be:

P ′ = K[R T]P (2.8)

Where the matrix [R T] represents the extrinsic camera matrix and the matrix
M = K[R T] defines projective cameras.

2.1.2 Camera calibration
The goal of camera calibration is to estimate intrinsic and extrinsic parameters
from one or (better) multiple images. As shown in Fig. 2.4, starting from n corre-
spondences:

• P1...Pn of known position in [Ow, iw, jw, kw].

• p1...pn of known position in the image system.

The two matrices can be retrieved. Since the M matrix has 11 unknown, 11
equations and about 6 points are required in order to retrieve a result.

16

2 – Background

Figure 2.4. Camera calibration scenario. Source: Fei-Fei Li -
Stanford Vision Lab (2011)

There are many methods to estimate M, the most immediate one is a simple
Singular Value Decomposition (SVD). Knowing that the general problem is pi− >
MPi:

pi− >

[︄
ui

vi

]︄
=

[︄
m1·Pi

m3·Pi
m2·Pi

m3·Pi

]︄
, M =

⎡⎢⎣m1
m2
m3

⎤⎥⎦ (2.9)

By dividing the coordinates, 2.9 would be rewritten as:

ui = m1Pi

m3Pi

− > ui(m3Pi) = m1Pi− > ui(m3Pi) − m1Pi = 0 (2.10)

vi = m2Pi

m3Pi

− > ui(m3Pi) = m2Pi− > vi(m3Pi) − m2Pi = 0 (2.11)

And finally, the equation system can be written as P m = 0, where P is known
and m is not. The SVD has to be performed on P − > U2nx12D12x12V

T
12x12 in order

to retrieve a solution.

2.2 Perspective-n-Point
It is the problem of estimating the pose of a calibrated camera given a set of 3D
points in world coordinates and the correspondent projections in 2D points of the
image (Fig. 2.5).

The pose of the camera has 6DoF and it is defined by the rotation (roll, pitch,
yaw) and the translation of the camera with respect to the world. The n parameter
represents the number of correspondences used, with the particular case of n=3 that
is called P3P, representing the minimal form. An important aspect to underline is

17

2 – Background

Figure 2.5. PnP problem scenario. Source: OpenCV Docs

that the estimation is up to a scalar multiplier, since the subject dimensions may
be under-scaled or up-scaled during the caption.

The PnP problem could be seen as a simplification to the general camera cal-
ibration problem, by assuming known calibration parameters (i.e. the K matrix),
since they depends only on the camera physical properties. During the years, many
methods have been developed for finding a reliable and rapid solution, but an im-
portant common aspect is the use of the RANdom SAmple Consensus (RANSAC)
as an outlier detection method [1].

2.2.1 RANSAC
This algorithm is categorized as "non-deterministic", since it does produce a rea-
sonable result only with a certain probability, that increases as iterations increase.
It works by random sampling the observed data exploiting a voting scheme to find
outliers in a dataset with both outliers and inliers. By iterating, the bigger consen-
sus set is saved, giving as stopping conditions only the number of iterations (defined
as input). In the listing below (2.1) is possible to distinguish two main actions:

1. In the first step, a sample subset containing minimal data items is randomly
selected from the input dataset. A fitting model and the corresponding model
parameters are computed using only the elements of this sample subset. The
cardinality of the sample subset is the smallest sufficient to determine the
model parameters.

2. In the second step, the algorithm checks which elements of the entire dataset
are consistent with the model instantiated by the estimated model parameters
obtained from the first step. A data element will be considered as an outlier
if it does not fit the fitting model instantiated by the set of estimated model

18

https://docs.opencv.org/4.5.0/

2 – Background

parameters within some error threshold that defines the maximum deviation
attributable to the effect of noise.

The use of RANSAC in many computer vision problems is very useful in order to
remove the outliers (i.e. wrong point correspondences 3D-2D) increasing robustness
and precision. In particular, the Perspective-n-Point algorithm would be too much
sensitive to outliers without it.

1 Given:
2 data − A set of observations.
3 model − A model to explain observed data points.
4 n − Minimum number of data points required to estimate model parameters.
5 k − Maximum number of iterations allowed in the algorithm.
6 t − Threshold value to determine data points that are fit well by model.
7 d − Number of close data points required to assert that a model fits well to data.
8

9 Return:
10 bestFit − model parameters which best fit the data (or null if not found)
11

12 iterations = 0
13 bestFit = null
14 bestErr = something really large
15

16 while iterations < k do
17 maybeInliers := n randomly selected values from data
18 maybeModel := model parameters fitted to maybeInliers
19 alsoInliers := empty set
20 for every point in data not in maybeInliers do
21 if point fits maybeModel with an error smaller than t
22 add point to alsoInliers
23 end for
24 if the number of elements in alsoInliers is > d then
25 // This implies that we may have found a good model
26 // now test how good it is.
27 betterModel := model parameters fitted to all points in maybeInliers and alsoInliers
28 thisErr := a measure of how well betterModel fits these points
29 if thisErr < bestErr then
30 bestFit := betterModel
31 bestErr := thisErr
32 end if
33 end if
34 increment iterations
35 end while
36

37 return bestFit

Listing 2.1. RANSAC Algorithm

19

2 – Background

2.3 Epipolar geometry
The problem of recovering structure from a single view lies in the fact that there
is intrinsic ambiguity of the mapping between 3D and 2D. That is why the trian-
gulation from at least two views of the same scene is required (Fig. 2.6). By using
triangulation it is possible to recover a really good approximation of the point
distance from the stereo camera system center.

The optimal triangulation problem can be described as follows:

min
X

d2(x1, P1X) + d2(x2, P2X) (2.12)

Figure 2.6. Triangulation scenario. Source: Fei-Fei Li - Stanford Vision Lab (2011)

The geometry described by a stereo vision system (Fig. 2.7) is called epipolar
geometry. Before digging into the topic, some useful keywords are presented:

• Epipole: Since that the centers of the cameras lenses are distinct, each center
projects onto a distinct point into the other camera’s image plane. These two
image points, denoted by eL and eR, are called epipoles or epipolar points.
Both epipoles eL and eR in their respective image planes and both optical
centers OL and OR lie on a single 3D line.

• Epipolar line: The line OL − X is seen by the left camera as a point because
it is directly in line with that camera’s lens optical center. However, the right
camera sees this line as a line in its image plane. That line (eR − xR) in
the right camera is called epipolar line. Symmetrically, the line OR − X seen
by the right camera as a point is seen as epipolar line eL − xL by the left
camera. An epipolar line is a function of the position of point X in the 3D

20

2 – Background

space (i.e. as X varies, a set of epipolar lines is generated in both images).
Since the 3D line OL − X passes through the optical center of the lens OL, the
corresponding epipolar line in the right image must pass through the epipole
eR (and correspondingly for epipolar lines in the left image). All epipolar lines
in one image contain the epipolar point of that image. In fact, any line which
contains the epipolar point is an epipolar line since it can be derived from
some 3D point X.

• Epipolar plane: As an alternative visualization, the points X, OL and OR can
be considered. They form a plane called epipolar plane. The epipolar plane
intersects each camera’s image plane where it forms lines (i.e the epipolar
lines). All epipolar planes and epipolar lines intersect the epipole regardless
of where X is located.

Figure 2.7. Epipolar geometry. Source: Wikipedia.org

2.3.1 Epipolar constraint

Starting from two views of the same scene and knowing the camera matrices and
positions, how it is possible to find the correspondent right point, given the left
point? The epipolar constraint assures us that potential matches from xL have to
lie on the corresponding epipolar line xR − eR, while potential matches from xR

have to lie on the corresponding epipolar line xL − eL (Fig. 2.7). This means that,

21

https://en.wikipedia.org/

2 – Background

thanks to the epipolar constraint:

p− > MP =

⎡⎢⎣u
v
1

⎤⎥⎦ <=> p− > M ′P =

⎡⎢⎣u′

v′

1

⎤⎥⎦ (2.13)

And consequently, by using the projection matrices (with known K matrices):

M = K[I 0], M ′ = K[R T]− > M = [I 0], M ′ = [R T] (2.14)

In order to project the point from left to right, a translation and rotation must
be applied: T × (Rp′). So:

pT · [T × (Rp′)] = 0− > pT · [[Tx] · Rp′] = 0 (2.15)

Where [Tx] is the skew matrix of T and [Tx] · R represents the essential matrix
E. In Fig. 2.8 some of the most important properties are explained:

• Ep2 is the epipolar line associated with p2 (l1 = Ep2)

• ET p1 is the epipolar line associated with p1 (l2 = ET p1)

• E is singular (rank two)

• Ee2 = 0 and ET e1 = 0

• E is 3x3 matrix; 5 DoF

Figure 2.8. Stereo vision dimensions. Source: Fei-Fei Li - Stanford Vision Lab (2011)

22

2 – Background

E estimation

Given the absolute importance of this matrix, an estimation algorithm was proposed
by Longuet-Higgins in 1981. The eight-point algorithm [2] is a method widely used
for retrieving the E matrix given at least eight correspondences between the two
stereo pairs of images. The basic eight-point algorithm consists of three principal
steps:

1. First, it formulates a homogeneous linear equation, where the solution is di-
rectly related to E.

2. Then, it solves the equation, taking into account that it may not have an exact
solution.

3. Finally, the internal constraints of the resulting matrix are managed.

The first step is described in Longuet-Higgins’ paper, while the second and third
steps are standard approaches in estimation theory.
The constraint defined by the essential matrix E is 2.14, so

pT Ep′ = 0 (2.16)

For corresponding image points represented in normalized image coordinates.
The problem which the algorithm solves is to determine E for a set of matching
image points. In practice, the image coordinates of the image points are affected
by noise and the solution may also be over-determined (which means that it may
not be possible to find E which satisfies the above constraint exactly for all points.
This issue is addressed in the second step of the algorithm.

2.3.2 Fundamental matrix
What happens if K matrices are unknown? The problem would involve not only
the point p, but p− > K−1p. Following this idea and substituting it into 2.15, the
new equation will be:

(K−1p)T · [T × (RK ′−1p′)] = 0− > pT K−T · [Tx] · RK ′−1p′ = 0 (2.17)

It is clear that a new relation between p and p′ is found: the fundamental matrix
F = K−T · [Tx] · RK ′−1.

pT Fp′ = 0 (2.18)

The equation 2.18 has many important consequences and implications. By look-
ing at the Fig. 2.8, some properties can be described:

23

2 – Background

• Fp2 is the epipolar line associated with p2 (l1 = Fp2)

• F T p1 is the epipolar line associated with p1 (l2 = F T p1)

• F is singular (rank two)

• Fe2 = 0 and F T e1 = 0

• F is 3x3 matrix; 7 DoF

F captures information about the epipolar geometry of two views and camera
parameters together. It gives constraints on how the scene changes under viewpoint
transformation (without reconstructing the scene). It is a powerful tool in:

• 3D reconstruction

• Multi-view object/scene matching

F estimation

An estimation algorithm was proposed by Hartley, by modifying the eight-point
algorithm in normalized eight-point algorithm [3]. The adopted procedure is near
the same as for the E estimation. His analysis of the problem showed that the it
is caused by the poor distribution of the homogeneous image coordinates in their
space. In order to address this issue, Hartley added another step: normalization.
He proposed that the coordinate system of each of the two images should be trans-
formed, independently, into a new coordinate system. According to the following
principle:

• The origin of the new coordinate system should be centered (have its origin)
at the center of gravity of the image points (a translation of the original origin
to the new one).

• After the translation, the coordinates are uniformly scaled so that the mean
distance from the origin to a point equals

√
2.

2.4 Multi-view geometry
The next and final step is to extend the epipolar geometry to multi-view camera
system. In order to understand and categorize this project work and explore the
multiple-view geometry problem, a necessary step is defined by the resolution of
the triangulation problem in stereo vision. The estimation of the distance between
the stereo system and an object surface is divided into two sub-problems:

• Solve the correspondence problem.

24

2 – Background

• Use corresponding observations to triangulate.

The depth estimation can be obtained by analyzing the disparity (inversely
proportional to depth). By using Fig. 2.9 as reference, the disparity is:

p − p′ = B · f

z
(2.19)

Figure 2.9. Disparity calculation from two views.

For what concerns the correspondence problem, the solution is a little bit more
elusive. One of the most used families of methods are the correlation methods.
These methods use a fixed sliding window in both the images, trying to maximize
the dot product between the w vector (vectorization of the pixels in the sliding win-
dows of the first image) and the w′ vector (vectorization of the pixels in the sliding
windows of the second image). These methods suffer of occlusions, fore shortening
effects and other problems, but during the years they have been improved with
some non-local constraints addition:

• Uniqueness: For any point in one image, there should be at most one match-
ing point in the other image.

• Ordering: Corresponding points should be in the same order in both views.

• Smoothness: Disparity is typically a smooth function of x (except in occlud-
ing boundaries).

25

2 – Background

Finally, after solving the triangulation problem, the very objective of this first
chapter can be categorized in a particular multi-view geometry problem: structure
from motion.

2.4.1 Structure from motion (SfM)
The structure from motion problem (Fig. 2.10) can be formalized as follows.
From the m × n correspondences pij , estimate:

• m projection matrices Mi (motion).

• n 3D points Pj (structure).

SfM can be solved up to a N-degree of freedom ambiguity. In the general case
(nothing is known) the ambiguity is expressed by an arbitrary affine or projective
transformation. When the cameras are calibrated though, the ambiguity is reduced
to a scaled factor (similarity). The scale (for calibrated cameras) will be the one
and only ambiguity. That is why, when the reconstruction is up to scale, it is called
metric.

Figure 2.10. The structure for motion problem. Source: Fei-Fei Li -
Stanford Stereo Lab (2011)

In order to recover camera and geometry up to an ambiguity, the first thing to
do is to use the camera affine approximation (if possible), since it simplifies a lot
the problem. Then, the factorization method comes to help:

1. Given: m images and n features pij

2. For each image i, center the feature coordinates

26

2 – Background

3. Construct a 2m × n measurement matrix D:

- Column j contains the projection of point j in all views
- Row i contains one coordinate of the projections of all the n points in

image i

4. Factorize D:

- Compute SVD: D = UW V T

- Create U 3 by taking the first 3 columns of U

- Create V 3 by taking the first 3 columns of V

- Create W 3 by taking the upper-left 3 × 3 block of W

5. Create the motion and shape matrices:

- M = M = U 3 and S = W 3V
T
3 (or U 3W

1
2
3 and S = W

1
2
3 V T

3)

Conditions N. Views
Constant internal parameters 3
Aspect ratio and skew known
Focal length and offset vary 4*

Aspect ratio and skew known
Focal length and offset vary 5*

Skew =0, all other parameters vary 8*

Table 2.1. Conditions needed for metric upgrade based on the number of views.

Once that both camera and geometry are recovered, an metric upgrade can
be performed in order to have only scale ambiguity and remove perspective or
affine ambiguity. Some prior knowledge on cameras or scene can be used to add
constraints and remove ambiguities. In table 2.4.1 are shown some of the possible
conditions (prior knowledge) with the respective number of views.

Bundle adjustment

It is used as non-linear method for refining structure and motion. Since it can be
applied before or after the metric upgrade, it is flexible. It refines the structure and
motion by minimizing the re-projection error:

E(M, P) =
m∑︂

i=1

n∑︂
j=1

D(pij, MiPj)2 (2.20)

27

2 – Background

On one hand, it can be very useful, since it handles large number of views while
handling missing data. On the other hand, it is a large minimization problem
(parameters grow with number of views) and requires a good initial condition.

28

Chapter 3

Research

This chapter is devoted to the research on the state-of-the-art methods and ap-
proaches that can be found in literature. In particular, for each problem encoun-
tered in this project, some deep learning or computer vision solutions are presented.
The research has been developed in order to solve sequentially camera calibration’s
problems, object detection and pose estimation, features detection and structure
from motion. Once that each positive and negative aspect of each method has been
analyzed, a final solution is proposed (that better suits the needs and the available
tools in order to implement it).

3.1 Calibration methods
The first problem encountered faces the initial calibration of the camera’s intrinsic
parameters (see 2.4). This step must be performed before using any cameras, since
this matrix is fundamental in order to recover the local coordinates of the pinhole
camera model from the pixel ones. A common behaviour is to save these parameters
in a persistent storage.

The previously used approach for camera calibration (linear regression and SVD)
directly estimates 11 unknowns in the M matrix using known 3D points (Xi, Yi, Zi)
and measured feature positions (ui, vi) (see 2.10 and 2.11). As advantages it is
true that all the specifics of the camera are summarized in one matrix and that it
can predict where any world point will map to in the image. Unfortunately, since
it mixes up internal and external parameters, it can not tell about any specific
parameter. This approach is pose-specific.

A better approach is given by a probabilistic view of least square: the non-linear
least square methods. They are the most used methods for intrinsic matrix camera
calibration. In particular, they refer to the General Calibration Problem:

Xmeasurement = f(Pparameter) (3.1)

29

3 – Research

In this scenario, the most used optimization algorithms are:

• Newton method.

• Levenberg-Marquardt Algorithm (LMA)1. Is used in many software applica-
tions for solving generic curve-fitting problems. However, as with many fitting
algorithms, the LMA finds only a local minimum, which is not necessarily the
global minimum. The LMA interpolates between the Gauss–Newton algorithm
(GNA) and the method of gradient descent.

Both of them are iterative algorithms and start from an initial solution. The
estimated solution may be function of the initial solution and the initial solution is
crucial for the speed of the algorithm. Since a good initial solution is required, a
possible algorithm for the camera calibration could be summarized as follows:

1. Solve linear part of the system to find approximated solution.

2. Use this solution as initial condition for the full system.

3. Solve full system (including distortion) using Newton or LMA.

Where the typical assumptions for computing initial condition are:

- Zero-skew, square pixel.

- u0, v0, known center of the image.

- No distortion.

3.1.1 Tsai’s calibration technique
The technique is implemented with a two-stage algorithm that first estimates the
pose and then it computes the focal length, distortion coefficients and the z-axis
translation by the optimization of the re-projection error [4].

First stage

The goal of the first stage is the estimation of m1 and m2:

pi =
[︄
ui

vi

]︄
= 1

λ

[︄
m1Pi

m3Pi
m2Pi

m3Pi

]︄
− >

ui

vi

= m1Pi

m2Pi

(3.2)

1Donald Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters,
in SIAM Journal on Applied Mathematics, vol. 11, n. 2, 1963, pp. 431–441, DOI:https:
//dx.doi.org/10.1137%2F0111030.

30

https://dx.doi.org/10.1137%2F0111030
https://dx.doi.org/10.1137%2F0111030

3 – Research

The equation 3.2 can be rewritten as an equations system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v1(m1P1) − u1(m2P1) = 0
vi(m1Pi) − ui(m2Pi) = 0
...
vn(m1Pn) − un(m2Pn) = 0

(3.3)

Then, the estimation of m1 and m2 can be performed by solving this equation
system.

Second stage

In the second stage the Tsai’s algorithm computes the focal length, distortion coef-
ficients and the z-axis translation. This is done by estimating m3, given λ, m1 and
m2 (m3 is a non linear function of λ, m1 and m2, see 3.2).

As it was already mentioned, LMA is of particular use in this kind of problems.

3.2 Object detection
The next sub-problem encountered is the object detection problem. This kind of
problems had in the last decade a big step. In the era of machine learning and
deep learning, there are many deep neural networks and solutions to solve object
detection, even directly in 3D (by performing a pose estimation too). During the
research process many deep learning architectures have been studied and analyzed,
until only some of them were chosen to possibly be integrated in the project solution.

3.2.1 Fast/Faster R-CNN
R-CNNs are the state-of-the-art object detection architectures using regions pro-
posal. In particular, the Fast and Faster revisions (Fig. 3.1) give really good results
[5]. In order to performs the detections, the network follows these steps:

1. Feed the image into a ConvNet.

2. Run selective search on the feature map for region proposals.

3. Pool the proposals into FC layers.

4. Use Softmax to classify and regression to draw the bounding boxes.

Even with recent revisions (Fast/Faster), R-CNNs are really precise, but heavily
slow in training and testing time.

31

3 – Research

Figure 3.1. Faster R-CNN architecture, Source: Girshick et al. ICCV2015

3.2.2 YOLO
You Only Look Once (YOLO) and all its v4 [6] are the state-of-the-art object
detection architectures that do not use regions proposal. In order to retrieve the
bounding boxes of the detected objects, the steps are as follows (Fig. 3.2):

1. SxS grid on input.

2. For each grid cell predicts B bounding boxes, C class probability and confi-
dence.

3. Encode as S x S x (5 * B + C) tensor.

4. Final predictions.

YOLO has a good precision, it is not really powerful with groups of objects
or far distance detection, but it is fast (real-time 30fps). Since the objective is
to recognize fixed objects in a relatively closed open-space (i.e. a parking area) in
order to filter out some features points of an image that do not belong to the object,

32

3 – Research

Figure 3.2. YOLO steps. Source: Redmon et al. CVPR2016

YOLO seems more suited: our interest is focused on close objects, not overlapped
between them and medium to big sized. Furthermore, the fact that YOLO doesn’t
recognize small or distanced objects is a “feature” for our problem, since it can
behave like a filter that discards spurious matches.

3.2.3 3D object detection
The 3D object detection uses the latest state-of-the-art research papers and tries to
detect the 3D object with its pose (in order to be recognized from different points of
view). This kind of networks were initially analyzed because of the potential given
by the stereo cameras. After some problems during the project, it was decided to
use simple monocular cameras. Those methods are not applicable on a monocular
camera, but they will be presented anyway in order to describe the entire conducted
process of research.

Stereo R-CNN

This first approach (Li, et al.) is an extension of R-CNN for Stereo Cameras2. The
network architecture (Fig. 3.3) is composed by two similar pipelines. Both of them
use ResNet-101 as CNN backbone, but the first one is used for keypoint prediction
while the second one for the stereo regression. The entire Stereo R-CNN outputs
stereo boxes, key points, dimensions, and the viewpoint angle, followed by the 3D
box estimation and the dense 3D box alignment module.

2Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo R-CNN based 3D Object Detection for
Autonomous Driving. 2020. URL: https://arxiv.org/abs/1902.09738

33

https://arxiv.org/abs/1902.09738

3 – Research

Figure 3.3. Stereo R-CNN architecture. Source: Li et al.

Frustum PointNets

This second network is a hybrid approach: since a stereo cameras can behave (with
some approximation) like a LiDAR, giving the point cloud and a starting RGB-
D image, there are in the literature many 3D object detection algorithms that
uses Deep Learning Networks on point clouds to retrieve the region and the 3D
representation of the objects (e.g. Qi, et al.)3.

The network architecture (Fig. 3.4) woks as follows:

• First, it leverages a 2D CNN object detector to propose 2D regions and classify
their content.

• 2D regions are then lifted to 3D and thus become frustum proposals.

• Given a point cloud in a frustum (n × c with n points and c channels of XY Z,
intensity etc. for each point), the object instance is segmented by binary
classification of each point.

• Based on the segmented object point cloud (m × c), a light-weight regression
PointNet (T-Net) tries to align points by translation such that their centroid
is close to amodal box center.

• At last, the box estimation net estimates the amodal 3D bounding box for the
object.

3Charles R. Qi, , Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frustum PointNets
for 3D Object Detection from RGB-D Data. 2018. URL: https://arxiv.org/abs/1711.08488

34

https://arxiv.org/abs/1711.08488

3 – Research

Figure 3.4. Frustum PointNets architecture. Source: Qi et al.

3.3 Features extraction and matching
Once that the bounding boxes of the reference object have been found by exploiting
one of the previous object detection methods, it is now necessary to apply some
features detection algorithm on the photos. This is done in order to retrieve from
the n monocular cameras as much features points as possible, filter out the ones that
are not in the bounding box and try to match those features among the different
photos so that at the end of this step we will have the 3D points of the object and
the corresponding pixel coordinates for each photos (i.e. cameras).

In the literature, a lot of features detection and matching algorithms are avail-
able. The research process produced as candidates the most efficient and used ones
for features extraction (SIFT, SURF) and features matching (Brute-force, FLANN)
with the most innovative and performing SuperPoint (extraction) and SuperGlue
(matching).

3.3.1 Extraction
The features extraction process takes as input one or multiple images and returns
as output the keypoints (as list of pixel coordinates) that represent the features of
the image. Based on the specific algorithm used, these keypoints could be more
or less robust or more or less difficult to retrieve (by means of the computational
complexity).

Scale-invariant feature transform (SIFT)

The SIFT algorithm is widely used nowadays. A peculiar property of this algorithm
is the scale-invariant factor, that allows to retrieve the same points even if the scale
of the image was changed [7]. This algorithm is composed by mainly four steps:

• Scale-space extrema detection

• Keypoint localization

35

3 – Research

• Orientation assignment

• Keypoint descriptor

Figure 3.5. DoF for each octaves in Gaussian Pyramid. Source: OpenCV Docs

Scale-space extrema detection From the image above, it is obvious that we
can’t use the same window to detect keypoints with different scale. It is OK with
small corner, but to detect larger corners we need larger windows. For this, scale-
space filtering is used. In it, Laplacian of Gaussian is found for the image with
various σ values. LoG acts as a blob detector which detects blobs in various sizes
due to change in σ. In short, σ acts as a scaling parameter. For example, in the
above image, Gaussian kernel with low σ gives high value for small corner while
Guassian kernel with high σ fits well for larger corner. So, we can find the local
maxima across the scale and space which gives us a list of (x, y, σ) values (which
means there is a potential keypoint at (x, y) at σ scale.

But this LoG is a little costly, so SIFT algorithm uses Difference of Gaussians
which is an approximation of LoG. Difference of Gaussian is obtained as the differ-
ence of Gaussian blurring of an image with two different σ, let it be σ and kσ. This
process is done for different octaves of the image in Gaussian Pyramid (Fig. 3.5).

Once this DoG are found, images are searched for local extrema over scale and
space. For example, one pixel in an image is compared with its 8 neighbours as

36

3 – Research

Figure 3.6. SIFT local extrema. Source: OpenCV Docs

well as 9 pixels in next scale and 9 pixels in previous scales. If it is a local extrema,
it is a potential keypoint. It basically means that keypoint is best represented in
that scale (Fig. 3.6).

Regarding different parameters, the paper gives some empirical data which can
be summarized as:

• number of octaves = 4

• number of scale levels = 5

• initial σ = 1.6,

• k =
√

2

Keypoint localization Once that potential keypoints locations are found, they
have to be refined to get more accurate results. It is used the Taylor series expansion
of scale space to get more accurate location of extrema, and if the intensity at this
extrema is less than a threshold value (0.03 as per the paper), it is rejected.

DoG has higher response for edges, so edges also need to be removed. For this,
a concept similar to Harris corner detector is used: a 2 × 2 Hessian matrix (H) to
compute the principal curvature. It is known from Harris corner detector that for
edges, one eigen value is larger than the other. So here it is used a simple function:
if this ratio is greater than a threshold, that keypoint is discarded. With this step

37

3 – Research

any low-contrast keypoints and edge keypoints are removed and what remains are
strong interest points.

Orientation assignment An orientation is assigned to each keypoint to achieve
invariance to image rotation. A neighborhood is taken around the keypoint location
(depending on the scale), and the gradient magnitude and direction is calculated in
that region. An orientation histogram with 36 bins covering 360 degrees is created
(it is weighted by gradient magnitude and gaussian-weighted circular window with
σ = 1.5 × scale). The highest peak in the histogram is taken and any peak above
80% of it is also considered to calculate the orientation. It creates keypoints with
same location and scale, but different directions. This is done in order to contribute
to the stability of matching.

Keypoint descriptor The keypoint descriptor is created. A 16 × 16 neighbour-
hood around the keypoint is taken. It is divided into 16 sub-blocks of 4×4 size. For
each sub-block, 8 bin orientation histogram is created. So, a total of 128 bin values
are available. It is represented as a vector to form keypoint descriptor. In addi-
tion to this, several measures are taken to achieve robustness against illumination
changes, rotation and so on.

Finally, during the keypoint matching, keypoints between two images are matched
by identifying their nearest neighbours. In some cases, the second closest-match
may be very near to the first (due to noise or some other reasons). In that case,
ratio of closest-distance to second-closest distance is taken. If it is greater than 0.8,
they are rejected. This step eliminates around 90% of false matches while discards
only 5% correct matches (as per the paper).

Speed-up robust features (SURF)

As the name suggests, it is a speeded-up version of SIFT. SIFT uses Lowe approx-
imated Laplacian of Gaussian with Difference of Gaussian for finding scale-space.
SURF, goes a little further and approximates LoG with Box Filter. One big ad-
vantage of this approximation is that convolution with box filter can be easily
calculated with the help of integral images (even in parallel for different scales).
Also, the SURF algorithm relies on determinant of Hessian matrix for both scale
and location [8].

In short, SURF adds a lot of features to improve the speed in every step. Analysis
shows it is 3 times faster than SIFT while performance is comparable to SIFT.
SURF is good at handling images with blurring and rotation, but not good at
handling viewpoint change and illumination change.

38

3 – Research

3.3.2 Matching
The features matching step is done after the features extraction one. In particular,
when the features are extracted in two images, the matching algorithms try to
associate each feature of the first image to each feature of the second one. The
output of the matching is a list of matches that contains the pixel coordinates of
the first keypoint, the pixel coordinates of the corresponding keypoint in the second
image and the confidence of the match.

This step is crucial, since it allows to retrieve the same real-world points from
different angles in two different photos.

Brute-force

The most simple and accurate matcher is the brute-force matcher. It takes the
descriptor of one feature in the first set and it matches it with all other features
in the second set using some distance calculation (e.g. L2/L1 norm, Hamming
distance). The closest one is returned.

Unfortunately, for big set of features, this algorithm is really slow, since it its
computational complexity is really demanding.

FLANN-based

In order to solve the computational complexities of the brute-force for large-scale
datasets, this is a new method that uses approximation when retrieving the dis-
tance measurement between features. In fact, FLANN stands for Fast Library for
Approximate Nearest Neighbors [9].

A good matching routine would uses the Lowe’s ratio test too. Lowe proposed
to use a distance ratio test to try to eliminate false matches. The distance ratio
between the two nearest matches of a considered keypoint is computed and it is a
good match when this value is below a threshold. Indeed, this ratio allows helping
to discriminate between ambiguous matches (distance ratio between the two nearest
neighbors is close to one) and well discriminated matches.

SuperGlue

SuperGlue can be seen as deep learning applied on features matching. It is a neural
network that matches two sets of local features by jointly finding correspondences
and rejecting non-matchable points. Assignments are estimated by solving a differ-
entiable optimal transport problem (whose costs are predicted by a graph neural
network). As the researchers states [10]:

"We introduce a flexible context aggregation mechanism based on attention, en-
abling SuperGlue to reason about the underlying 3D scene and feature assignments

39

3 – Research

jointly. Compared to traditional, hand-designed heuristics, our technique learns pri-
ors over geometric transformations and regularities of the 3D world through end-
to-end training from image pairs. SuperGlue outperforms other learned approaches
and achieves state-of-the-art results on the task of pose estimation in challenging
real-world indoor and outdoor environments. The proposed method performs match-
ing in real-time on a modern GPU and can be readily integrated into modern SfM
or SLAM systems."

Figure 3.7. SuperGlue architecture. Source: Sarlin et al. 2020

The architecture (Fig. 3.7) is composed by:

• Attentional graph neural network. It maps keypoint positions with their de-
scriptors into a vector in order to create a more powerful representations of
them.

• Optimal matching layer. The representations f are passed to this layer that
creates a matrix with each scores and tries to find the optimal partial assign-
ment by exploiting the Sinkhorn-Knopp algorithm4

Basically, SuperGlue is a matcher that can use any local features detector (like
SIFT), but it works really good with the SuperPoint detector: a fully-convolutional
neural network architecture for interest point detection and description, trained us-
ing a self-supervised domain adaptation framework called Homographic Adaptation
[11].

3.4 Perspective-n-Point
The already analyzed Perspective-n-Point can be seen as a sub-problem of the more
general calibration problem. Given an image, the pixel features coordinates and
the world coordinates in 3D, PnP tries to estimate the pose of the camera with

4From Wikipedia: "A simple iterative method to approach the double stochastic matrix by
alternately re-scale all rows and all columns of A to sum to 1."

40

https://en.wikipedia.org/wiki/Sinkhorn's_theorem

3 – Research

respect to the world, giving as output the rotation and translation. Fischler and
Bolles [1] summarized the problem as follows:

“Given the relative spatial locations of n control points, and given the angle to
every pair of control points from an additional point called the Center of Perspective
(CP), find the lengths of the line segments joining CP to each of the control points.”

3.4.1 Gao’s P3P solver
The Gao’s P3P solver is one of the most implemented and tested methods for the
PnP problem [12]. The algebraic approach of this method uses Wu-Ritt’s zero
decomposition algorithm to give a complete triangular decomposition for the P3P
equation system. This decomposition provides the first complete analytical solution
to the P3P problem.

Then, a complete solution classification for the P3P equation system is also pro-
posed (i.e. give explicit criteria for the P3P problem to have one, two, three, and
four solutions). By combining the analytical solutions with the criteria, the Com-
plete Analytical Solution with the assistance of Solution Classification (CASSC)
algorithm is built, which may be used to find complete and robust numerical solu-
tions to the P3P problem.

The P3P problem is a particular case of the more generic PnP one. More in
details, the P3P solves the problem by using only 3 points (plus one for retrieving
the correct solution). Obviously, the P3P algorithms can be used with more than
three points in order to achieve better results.

3.4.2 Lambda twist
In 2018, Persson and Nordberg [13] proposed a new method for the P3P problem:
lambda twist. This method does not find all roots to a quartic and discard geo-
metrically invalid and duplicate solutions in a post-processing step, but it exploits
the underlying elliptic equations (which can be solved by a fast and numerically
accurate diagonalization). This diagonalization requires a single real root of a cu-
bic, which is then used to find the solutions. Unlike the direct quartic solvers, this
method never computes geometrically invalid or duplicate solutions.

Since it is a novel approach, the implementation and the integration in major
libraries (e.g. OpenCV) is not extensively tested.

3.4.3 PnP-Net
Sheffer et al. in 2020 [14] proposed an application of deep neural networks on the
PnP problem. The PnP-Net exploits an initial phase implemented by a neural net-
work that estimates the coarse pose, followed by a second stage that uses the coarse

41

3 – Research

pose and solves the leas-squares problem of non-linear parameters by exploiting the
already discussed Levenberg–Marquardt algorithm.

Figure 3.8. PnP-Net architecture. Source: Sheffer et al. ECCV2020

The architecture (Fig. 3.8) could be improved by adding a detection and match-
ing stages before the PnP-Net itself and training the pipeline end-to-end. Moreover,
another improvement could be the training of another network that will output the
likelihoods of each correspondence being wrong. These outputs could be used in the
LM stage as informative weights and improve the overall precision and robustness.

Unfortunately, since this approach is relatively recent, at this time there is no
implementation proposed by the authors.

3.5 Structure from motion
The more generic problem of Structure from Motion (SfM) refers to the entire
pipeline needed in order to recover the correspondences between images and the
reconstruction of the 3D objects. The general flow is described by the following
steps:

1. Features extraction on multiple images (see 3.3.1).

2. Features matching between multiple images (see 3.3.2).

3. RANSAC filter for outliers (see 2.2.1).

4. Place the world-coordinates as the first image local coordinates (first camera).

4. For each new image:

– Retrieve the point cloud produced by the previous images.
– Retrieve the pose of the new image with P3P using the point clouds (see

3.4).

42

3 – Research

5. Optimize the re-projection error:

– Sliding-window with bundle adjustment (Fig. 3.9, see 2.4.1).

Figure 3.9. Representation of the sliding-window with bundle adjustment method

Each step has its own set of dedicated methods. The SfM problem requires
complex theories and algorithms to support it, and it needs to be improved in
accuracy and speed, so there are not many mature commercial applications.

43

Chapter 4

Design and development

4.1 Introduction
As it was already mentioned before, in order to build a program capable of imple-
menting an autocalibration technique, it is necessary to follow a fixed pre-defined
design and development steps.

The design of the solution (or solutions) aims at structuring the logical flow of
the general pipeline with the singular implementation of the chosen algorithm in
order to solve a particular step. During the design, the best algorithms and methods
are chosen from the literature (see 3), based on their pros&cons with respect to the
contextualization of the method itself in our particular situation. This is done so
that the core of the project work (i.e. the development process) can be focused
only on the code and not on how it works or why or when.

The development of the solution aims at building the designed logical flow with
the chosen algorithms and methods in order to retrieve some experimental results
on the proposed solutions.

4.2 Design
Two solutions are proposed: a custom pipeline and an OpenCV pipeline. The
first one uses all the latest and state-of-the-art computer vision algorithms found
in the literature with deep learning’s object detection techniques. The second one
implements the standard techniques defined in the sfm library from OpenCV.

4.2.1 Custom pipeline
The custom pipeline (Fig. 4.1) is:

1. Features extraction on multiple images.

44

4 – Design and development

2. Features matching between multiple images.

3. Filters for outliers.

4. Place the world-coordinates as the first image local coordinates (first camera).

5. For each image:

– Retrieve the point cloud produced by the previous images.
– Retrieve the pose of the image with P3P using the point clouds.

6. Optimize the re-projection error:

– Sliding-window with bundle adjustment.

By looking at the generic proposed pipeline, the first encountered problem to
solve is features extraction on multiple images. As demonstrated in DeTone et al.
[14], the SuperPoint network is best suited for the task, since it is far more precise
than the standard methods (i.e. ORB, Harris, SIFT) and has good performances
thanks to the CUDA GPU acceleration. It is obvious that, with this choice for the
first step, the choice for the features matching between multiple images is automat-
ically defined by SuperGlue. The SuperPoint+SuperGlue end-to-end solution for
features extraction and matching will be combined with more classic approaches
like SURF+FLANN. This is done in order to study the contextualization of the
problem and validate the two methods to choose the best one.

The next step is filtering. In particular, two level of filters are applied:

• YOLOv4

• RANSAC

It is clear that YOLOv4 is properly defined as a neural network for object detec-
tion tasks, but here is used to retrieve the bounding boxes around the car tires (i.e.
tires object detection) and filter out all the points that are not fixed on them. This
is done because the external area of the tires may be simplified in the 3D space and
seen as a coplanar object1. This is an important aspect for future steps in order
to convert the coordinates between different systems. In addition, the RANSAC
algorithm is used as second level for general outliers removal.

The results of the two-staged filter would ideally be pixel points of a coplanar
object without spurious matches. In order to convert the pixel coordinates in
real world coordinates, the pipeline needs the intrinsic parameters of the camera
(previously estimated and saved persistently). By exploiting the intrinsic matrix,

1All the points lie on the same plane

45

4 – Design and development

Figure 4.1. Custom pipeline’s flow

the pixel coordinates are converted into local coordinates (X, Y). Since that all the
points lie on the same area (i.e. plane), the Z coordinate (the distance between
the camera and the point in local camera coordinates) can be simplified with an
arbitrary and equal value (e.g. Z = 1), giving the complete 3D local coordinates
(X, Y, Z). Finally, the first camera’s local coordinates system is placed as the world
coordinates system.

Since that all the pixel correspondences are known in each image (thus, the 3D
world coordinates points too), the point cloud is used to force the pose estimation

46

4 – Design and development

from the other n − 1 images with respect to the first image by exploiting the Gao’s
P3P method.

Finally, for each image, the extrinsic parameters matrix (rotation and translation
up to a scale factor with respect to the first image) is estimated, thus the position
of each camera (i.e. image).

The final optimization is devoted to the Levenberg-Marquardt algorithm running
as a sliding window in each pair of images.

This custom method uses the first image as reference image and confront it with
each one of the other n − 1 images in order to find the common matches and build
the point cloud.

4.2.2 OpenCV’s pipeline
A more classic approach can be exploited with OpenCV (Fig.). In particular, the
pipeline would be:

1. Estimates a precise initial reconstruction using the matches of two views:

– Select common matches of the two images
– Robustly estimate the fundamental matrix
– Estimate the essential matrix from the fundamental matrix
– Extract the relative motion from the essential matrix
– If the first image has no camera, create the camera and initialize the pose

to be the world coordinate frame
– Estimate the absolute pose of the second camera from the first pose and

the estimated motion.
– Create and add the cameras to the reconstruction
– Reconstruct only the inliers matches (point triangulation)
– Perform a metric bundle adjustment

2. Estimates the pose of the keyframes using the already reconstructed points.
For every keyframes (starting the first_keyframe_index th):

– The keyframe is localized (by resection)
– If the resection has not failed, the inliers tracks are reconstructed by point

triangulation
– If new points are created, a global bundle adjustment is performed

In order to reconstruct an initial solution for the first two images, the epipolar
geometry is used. In particular:

47

4 – Design and development

Figure 4.2. OpenCV pipeline’s flow

• ORB+FLANN are used to get the matches.

• The fundamental matrix is then estimated by using the normalized eight-point
algorithm.

• The essential matrix is retrieved from the fundamental matrix using the in-
trinsic parameters matrix of the camera.

• The relative motion (rotation and translation up to a positive scale) with
respect to the first camera is retrieved from the essential matrix [Longuet-
Higgins].

48

4 – Design and development

• The pose of the first camera is set as world coordinates and the absolute pose
of the second camera is recovered:

R2 = R1 × dR (4.1)

t2 = R1 × dt + t1 (4.2)

Where dt and dR are the relative pose (rotation and translation) of the second
camera with respect to the first camera retrieved in the previous step.

• Triangulate the inliers matches and perform a bundle adjustment

This first solution would be the final one only if the number of views are equal
to two. If the views are greater than two, the pipeline estimates the pose using the
already reconstructed points:

• The pose is simply tried to be retrieved by resection and then intersection.

• A final metric bundle adjustment is performed to reduce the re-projection
error.

With respect to the custom pipeline this one is incremental (i.e. it analyzes
images by images and one at the time), while the custom one uses the first image
as reference and matches it with all the other n − 1 ones.

4.3 Development
The development section is the true core of the project work. Here is explained
how the designed flows are implemented and what are the choices that have been
made at this level to reach the final objective.

In particular, first they have been analyzed libraries and frameworks used and
then a exhaustive analysis of the two implemented pipelines is proposed. The code
is available on GitHub2.

4.3.1 Frameworks and requirements
In order to develop the two flows, some prerequisites are required. The used oper-
ating system is Ubuntu 20.04.

An important aspect (in particular for the custom pipeline) is the availability of
a CUDA capable device (NVIDIA discrete card), because of the faster inferences

2https://github.com/nopesir/thesis-project

49

https://github.com/nopesir/thesis-project

4 – Design and development

on YOLOv4 and SuperGlue. CUDA Toolkit 11.13 has to be installed and fully
functional (see A). Furthermore:

• OpenCV with OpenCV non-free enabled and CUDA enabled must be compiled
from scratch and installed (see A).

• Other libraries (a requirements.txt file is available for the pip3 Python
environment).

4.3.2 Intrinsic calibration
The first essential step is the development of a script used to calibrate the intrinsic
parameters of the camera (or the cameras). The chess-board_calibration.py
script uses the built-in OpenCV libraries and methods to perform a classic chess-
board calibration.

The important input data needed for calibration of the camera is the set of 3D
real world points and the corresponding 2D coordinates of these points in the image.
2D image points can be easily found from the image (i.e. the locations where two
black squares touch each other in chess boards).

For the 3D correspondent points, since the chessboard is a coplanar object (i.e.
Z = 0), only (X, Y) values are needed. The simplest way is to pass the points as
(0,0), (1,0), (2,0), . . . which denotes the location of points. In order to find the pat-
tern in the chess board, it can be used the function cv.findChessboardCorners()
with the kind of pattern of the grid (e.g. 8 × 8).

Once that a pattern is obtained, the corners are stored in a list and the corners
are found (increasing their accuracy using cv.cornerSubPix()). The pattern is
also drawn using cv.drawChessboardCorners(). The final step is the calibration:

1 ret , mtx , dist , _, _ = cv. calibrateCamera (objpoints , imgpoints ,
gray.shape [:: -1] , None , None)

Then, if ret is True (i.e. the matrices are valid), mtx (i.e. the camera matrix)
and dist (i.e. the distortion coefficients) are saved in a .npz file persistently, ready
to be used in the two pipelines.

For a rapid test in order to check the results, the photo is undistorted and shown.
Furthermore, the script chess-board_test.py can be run in order to draw a cube
for each image that is placed exactly on the chessboard.

4.3.3 Custom pipeline
Since the custom pipeline is built by exploiting the latest methods found in litera-
ture, its algorithms and components must be optimized accordingly. In particular,

3https://developer.nvidia.com/cuda-toolkit

50

https://developer.nvidia.com/cuda-toolkit

4 – Design and development

YOLOv4 has to be firstly trained in order to detect the tires. The output of this
training will be a .weights file that represent the trained network, ready to be
used to test and recognize the tires. Moreover, the SuperGlue network must be
configured and implemented in the pipeline too, alongside with the lambda twist
P3P and the global main program flow.

YOLOv4

Training The platform used for the training stage is the Google Colaboratory
(Colab) platform4 on the Darknet framework [15]. As training dataset, a subset
of the Open Images V4 dataset is used5 [16], that contains only photos and an-
notations of the car’s tires. In order to download 15k images from Open Images,
OIDv4_ToolKit is used [17].

Once that the dataset is ready and uploaded to Google Drive, an .ipynb is cre-
ated in order to download the Darknet source code, build with CUDA acceleration
and prepare the dataset from the uploaded .zip. More in details, darknet.zip
contains:

• The Darknet source code.

• The configuration of the network (i.e. epochs, learning rate, layers definition).

• The train dataset (≈ 15k images from Open Images).

• The validation dataset for mAP (≈ 1.5k images from Open Images, about 10%
the train set).

The code copies the entire darknet.zip and extracts it. Then, some changes
are done into the Makefile in order to enable CUDA and finally the source is ready
to be built:

1 %cp / content /drive/My\ Drive/Tesi\ Luigi/ darknet .zip / content /
2 !unzip darknet .zip
3 %cd darknet /
4 !sed -i ’s/ OPENCV =0/ OPENCV =1/ ’ Makefile
5 !sed -i ’s/GPU =0/ GPU =1/ ’ Makefile
6 !sed -i ’s/CUDNN =0/ CUDNN =1/ ’ Makefile
7 !sed -i ’s/ CUDNN_HALF =0/ CUDNN_HALF =1/ ’ Makefile
8

9 !make -j4

4A cloud SaaS that enables Python execution in the browser without any configuration, free
GPU access and simple sharing.

5https://storage.googleapis.com/openimages/web/index.html

51

https://storage.googleapis.com/openimages/web/index.html

4 – Design and development

The configuration of the training parameters is left as the default YOLOv4
paper. Then, the training phase starts. In particular, they have been used as
starting weights the already pre-trained convolutional layers (yolov4.conv.137)
in order to speed up the whole process:

1 %cd / content / darknet
2 !chmod +x darknet
3 !./ darknet detector train obj.data yolov4 - thesis .cfg \
4 / content /drive/My\ Drive/ yolov4 .conv .137 -dont_show -map

This step will require about 8-10 hours of training, during which the mean
average precision (mAP) was already past the 85% after 1

6 of the process (Fig. 4.3).
The final output of the training is the yolov4-thesis_best.weights file, safely
stored on Google Drive and ready to be used for the tires detection.

Figure 4.3. mAP and average loss at 1000/6000 epochs

Since that the weights file was too big for the remote repository, an automates
script weights-download.sh is created in order to automatically download and
save the required weights into the required folder. The script uses curl, that can
be installed by simply typing on the bash /terminal’s command line (Ubuntu 20.04):

1 $ sudo apt install curl

52

4 – Design and development

Integration In order to integrate YOLOv4 into the pipeline, the first step is
the creation of a Darknet’s shared object (.so) library starting from the source
code. Then, in order to adapt the compiled code to be used from Python, a ctypes
Python wrapper wrapper.py is created. This wrapper contains all the function
redefinitions, types redefinitions and object redefinitions used in the main code
to retrieve the bounding boxes of a specific tire in an image. For example, the
load_network() function is used to load the weights into the CUDA cores and
wait for a detection to start:

1 def load_network (config_file , data_file , weights , batch_size =1):
2 """
3 load model description and weights from config files
4 args:
5 config_file (str): path to .cfg model file
6 data_file (str): path to .data model file
7 weights (str): path to weights
8 returns :
9 network : trained model

10 class_names
11 class_colors
12 """
13 network = load_net_custom (
14 config_file . encode ("ascii"),
15 weights . encode ("ascii"), 0, batch_size)
16 metadata = load_meta (data_file . encode ("ascii"))
17 class_names = [metadata .names[i]. decode ("ascii") for
18 i in range(metadata . classes)]
19 colors = class_colors (class_names)
20 return network , class_names , colors

By using the developed wrapper, the YOLOv4 network can retrieve the two
bounding boxes of the two lateral tires of the car that can be used to filter out the
matched points that do not lay on them. This particular task is fundamental for
the next reconstruction, since it guarantees that all the matches are on a coplanar
object.

SuperGlue

The SuperPoint+SuperGlue end-to-end network is used to extract and match the
image pairs. In particular, the implementation uses the already trained weights
of both the GNNs (i.e. graph neural networks) to perform the inferences and
save persistently the matches as .npz files. Unfortunately, the researchers did not
publish the code for the training process, so no fine-tuning technique has been
conducted to optimize the final solution.

The original implementation of SuperGlue is then used by exploiting the
match_pairs.py script and passing the configuration (indoor/outdoor weights,

53

4 – Design and development

maximum number of keypoints, minimum threshold, and so on). This configura-
tion is stored alongside all the other configuration variables as a globally accessible
config.py script. Here, the path variables are stored too, alongside the YOLOv4
configuration (e.g. weights file).

While YOLOv4 is retrieving the bounding boxes from an image pair, Super-
Glue retrieves and saves the matches. With respect to YOLOv4 and its Darknet
Python wrapper, SuperGlue is already written in Python using Pytorch as deep
learning library6, thus no wrapper is needed. Due to this, the script is called by a
subprocess.call(). Since that the output pairs are stored in files, a custom func-
tion deserializes the matches and the keypoints and outputs the common matches
between multiple pairs. Each pair file is formatted as follows:

1 >>> npz.files
2 [’keypoints0 ’, ’keypoints1 ’, ’matches ’, ’match_confidence ’]
3 >>> npz[’keypoints0 ’]. shape
4 (382 , 2)
5 >>> npz[’keypoints1 ’]. shape
6 (391 , 2)
7 >>> npz[’matches ’]. shape
8 (382 ,)
9 >>> np.sum(npz[’matches ’]>-1)

10 115
11 >>> npz[’match_confidence ’]. shape
12 (382 ,)

For each keypoint in keypoints0, the matches array indicates the index of the
matching keypoint in keypoints1, or -1 if the keypoint is unmatched.

In order to compare the SuperGlue with a more classical approach, a SURF +
FLANN features matching function is implemented too, that does the same thing as
the GNNs, but in a very different way (i.e. without exploiting neural networks the-
ory). In order to distinguish the two implemented matchers, two different functions
are developed in the utils.py script:

• run_surf(images, network), that accepts the loaded YOLOv4 network and
the images and returns the common matches.

• run_superglue(pairs_folder, network, images), that accepts the loaded
network, the images and the folder containing the pairs info and returns the
matches.

6https://pytorch.org/docs/stable/

54

https://pytorch.org/docs/stable/

4 – Design and development

Main

The main program, represented by the run.py script, implements the already
explained custom pipeline (see Fig. 4.1). In particular, it imports all the con-
figuration from the config.py file and uses the implemented methods from the
utils.py script. Furthermore, it loads the defined images in images.txt and
images-sg.txt. The first text file contains the relative path of the images to
analyze, one for each row:

1 images /1. jpg
2 images /2. jpg
3 images /3. jpg

While the second text file contains the same data in another format (this is done
in order to adapt the features to SuperGlue):

1 1. jpg 2. jpg 0
2 1. jpg 3. jpg 0

Where the relative path is not used, only the names of the images organized as
pair for each row with an ending 0.

The generic algorithm retrieves the images as pairs by taking the first image
as the image given by the principal camera. For example, for n images, the
images.txt file would be:

1 images /1. jpg
2 images /2. jpg
3 images /3. jpg
4 ...
5 images /n.jpg

And the images-sg.txt:
1 1. jpg 2. jpg 0
2 1. jpg 3. jpg 0
3 1. jpg 4. jpg 0
4 ...
5 1. jpg n.jpg 0

Once that the two tires are recognized with YOLOv4 and SuperGlue has re-
trieved the matches, the matches are filtered based on the bounding boxes and
then by using the RANSAC algorithm provided by the OpenCV library. Once that
the main pipeline has the common matches, it creates the 3D correspondences by
positioning the world coordinates as the first camera’s local coordinates and solving
the P3P problem of each camera and between each pair.

The final outcome of the algorithm is the position of the n cameras, retrieved
from the rotation and translation with respect to the real world coordinates (the
first camera). Starting from R (rotation matrix) and t (translation vector), the
point C of the camera can be extracted as follows:

55

4 – Design and development

1 R = cv. Rodrigues (rvecs)[0]
2 C = -R.T.dot(t)

Where rvecs is the rotation vector given as output from the PnP function, that
must be converted to a rotation matrix R. In particular, by using a math notation,
the point is retrieved as follows:

C = −RT · t (4.3)

Obviously, the point does not take into account a positive scale factor δ (impos-
sible to obtain from a metric reconstruction without stereo cameras). The complete
solution would be:

C = (−RT · t)δ (4.4)

4.3.4 OpenCV’s pipeline
The second implemented pipeline exploits the standard algorithms and methods in
order to perform the reconstruction and obtain the relative positions of the cameras.
As shown in Fig. 4.2, the general flow operates in one or more stages, depending
on the number of cameras (images) given as input to the pipe.

The minim number of views is obviously two. With two views, the first stage
performs an initial reconstruction (i.e. initial cloud point solution). Afterwards,
starting from the third one, the reconstruction uses only the second stage of the
pipeline by trying to perform resectioning in order to localize the new keypoints on
the new image. The code is separated from the custom pipeline and it is written
in C++ exploiting the OpenCV library [18].

Initial reconstruction

The initial reconstruction is implemented in OpenCV through the libmv library7.
In particular, the function that reconstruct the structure from two views is:

1 bool InitialReconstructionTwoViews (const Matches &matches ,
2 Matches :: ImageID image1 ,
3 Matches :: ImageID image2 ,
4 const Mat3 &K1 ,
5 const Mat3 &K2 ,
6 const Vec2u & image_size1 ,
7 const Vec2u & image_size2 ,
8 Reconstruction * recons);

7Library for Multiview Reconstruction, https://developer.blender.org/tag/libmv/

56

https://developer.blender.org/tag/libmv/

4 – Design and development

As features detection algorithm, ORB is used [19], while FLANN is the choice
for features matching. This is done before calling the aforementioned function,
where the matches are passed as input params.

At first, some default parameters are set (e.g. epipolar threshold and outliers
probability) and the matches are converted into a matrix representation in order
to better find the correct matches. Then, obviously, if the common points are less
then 7, the method cannot proceed because of the requirements of the subsequent
algorithm used for the Fundamental matrix F estimation: the normalized eight-
point algorithm. This method takes the previously saved params and the matches
returning the estimated matrix. In order to retrieve only the inliers (since the
interest is on the estimation of the relative motion), a filter is applied to the output
of the estimation:

1 FundamentalFromCorrespondences7PointRobust (x0 ,x1 ,
2 epipolar_threshold ,
3 &F, & feature_inliers ,
4 outliers_probability);
5 // Only inliers are selected in order to estimate the relative

motion
6 Mat2X v0(2, feature_inliers .size ());
7 Mat2X v1(2, feature_inliers .size ());
8 size_t index_inlier = 0;
9 for (size_t c = 0; c < feature_inliers .size (); ++c) {

10 index_inlier = feature_inliers [c];
11 v0.col(c) = x0.col(index_inlier);
12 v1.col(c) = x1.col(index_inlier);
13 }

From the Fundamental matrix, the essential matrix is recovered by using the
two cameras intrinsic parameters represented by K1 and K2 (see [20], section 9.6):

E = KT
2 × F × K1 (4.5)

Finally, the motion from the Essential matrix and the correspondences is re-
covered. More in details, the rotation and translation are extracted by following
a single value decomposition (SVD) in the MotionFromEssential function (see
[20], result 9.19). Since that multiple solutions are possible, another function
MotionFromEssentialChooseSolution chooses one of the four possible motion
solutions from an essential matrix. It decides the right solution by checking that
the triangulation of a match x1−−x2 lies in front of the cameras ([20], section 9.6.3,
Geometrical interpretation of the 4 solutions). The whole process is implemented
in the function:

1 bool MotionFromEssentialAndCorrespondence (const Mat3 &E,
2 const Mat3 &K1 ,
3 const Vec2 &x1 ,
4 const Mat3 &K2 ,
5 const Vec2 &x2 ,

57

4 – Design and development

6 Mat3 *R,
7 Vec3 *t) {
8 std :: vector <Mat3 > Rs;
9 std :: vector <Vec3 > ts;

10 MotionFromEssential (E, &Rs , &ts);
11 int solution = MotionFromEssentialChooseSolution (Rs , ts , K1 , x1 ,

K2 , x2);
12 if (solution >= 0) {
13 *R = Rs[solution];
14 *t = ts[solution];
15 return true;
16 } else {
17 return false;
18 }
19 }

That returns true if the saved R and t are valid, based on the previously explained
functions.

Once that the initial motion estimation is done, the algorithm tries to perform
the initial point intersection by triangulation in order to reconstruct the points by
using the following function:

1 uint PointStructureTriangulationCalibrated (const Matches &matches ,
2 CameraID image_id ,
3 size_t minimum_num_views ,
4 Reconstruction * reconstruction ,
5 vector < StructureID > * new_structures_ids = NULL);

That Reconstructs unreconstructed point tracks observed in the image image_id
using theirs observations (matches) when the intrinsic parameters are known.

To be reconstructed, the tracks need to be viewed in more than minimum_num_views
images. The method consists of the following steps:

1. Selects the tracks that haven’t been already reconstructed.

2. Reconstructs the tracks into structures.

3. Remove outliers (points behind one camera or at infinity).

4. Creates and add them in reconstruction.

Finally, the number of structures reconstructed is returned and the list of tri-
angulated points is modified accordingly (*reconstruction). If new points are
added, the last step of the initial reconstruction is a metric bundle adjustment.
The initial reconstruction is finished.

58

4 – Design and development

Resectioning

If the total keyframes (i.e. images) in input are n > 2, after the initial recon-
struction, the resectioning is performed n − 2 times (see Fig. 4.2) by exploiting the
following function:

1 bool IncrementalReconstructionKeyframes (const Matches &matches ,
2 const vector < Matches :: ImageID > &kframes ,
3 const int first_keyframe_index ,
4 const Mat3 &K,
5 const Vec2u &image_size ,
6 Reconstruction * reconstruction ,
7 int * keyframe_stopped_index)

That implements an euclidean resection algorithm with the previously recon-
structed structures and new structures are estimated (by points triangulation). A
bundle adjustment is performed on all the reconstruction each time a keyframe is
localized.

In a final step, non-keyframes are localized using the resection method imple-
mented in the following function:

1 bool ReconstructionNonKeyframes (const Matches &matches ,
2 const Mat3 &K,
3 const Vec2u &image_size ,
4 std ::list < Reconstruction *> *

reconstructions);

With an important specification on the input that the images must be ordered
(i.e. like video frames). This last step estimates the pose of non already localized
frames using the already reconstructed points by resection. It performs also a bun-
dle adjustment when X = 10 new cameras are localized. The method automatically
detect the reconstruction the frame may belongs.

SfM

As already specified, all the previous methods were originally implemented in libmv.
In order to use the library in C++ through OpenCV, the sfm’s OpenCV pipeline
is implemented in the reconstruct method. Moreover, the third party library viz
from OpenCV is used in order to output a simple 3D mapping of the reconstructed
points alongside the cameras with their positions and orientations.

The code is listed in sfm.cpp. This main code takes as inputs the text file with
all the absolute paths of the images to be reconstructed (ordered), the focal length
f and the image principal point x coordinates and y coordinates (cx and cy). The
method only works for projective cameras, since no affine models have been created.

After loading the specified images by looking at the file, the code starts the
pipeline of Fig.4.2 by calling the reconstruct method:

1 reconstruct (images_paths , Rs_est , ts_est , K, points3d_estimated ,
is_projective);

59

4 – Design and development

That returns the cameras and the 3D points. The viz library is the configured
and prepared in order to simulate the 3D scene:

1 viz :: Viz3d window (" Coordinate Frame");
2 window . setWindowSize (Size (600 , 600));
3 window . setWindowPosition (Point (150 , 150));
4 window . setBackgroundColor (); // black by default

While the path (the affine 3D transformation that represents a camera) is built
using the translation and rotation vectors retrieved from the reconstruction:

1 cout << " Recovering cameras ... ";
2 vector <Affine3d > path;
3 for (size_t i = 0; i < Rs_est .size (); ++i)
4 path. push_back (Affine3d (Rs_est [i], ts_est [i]));
5 cout << "[DONE]" << endl;

The positions of the estimated cameras are printed, while the clound points and
the paths are passed to the viz library:

1 if (point_cloud_est .size () > 0)
2 {
3 cout << " Rendering points ... ";
4 viz :: WCloud cloud_widget (point_cloud_est , viz :: Color :: green ());
5 window . showWidget (" point_cloud ", cloud_widget);
6 cout << "[DONE]" << endl;
7 }
8 else
9 {

10 cout << " Cannot render points : Empty pointcloud " << endl;
11 }
12 if (path.size () > 0)
13 {
14 cout << " Rendering Cameras ... ";
15 window . showWidget (" cameras_frames_and_lines ",
16 viz :: WTrajectory (path , viz :: WTrajectory ::BOTH ,
17 0.1, viz :: Color :: green ()));
18 window . showWidget (" cameras_frustums ",
19 viz :: WTrajectoryFrustums (path , K, 0.1, viz :: Color ::

yellow ()));
20 window . setViewerPose (path [0]);
21 cout << "[DONE]" << endl;
22 }
23 else
24 {
25 cout << " Cannot render the cameras : Empty path" << endl;
26 }

Finally, a window frame appears, centered on the first camera position. This
window can be explored by the user in order to see the structure of the scene with
the cloud point and the cameras correctly positioned and aligned.

60

Chapter 5

Results

5.1 Introduction
After the design and the implementation of the two solutions, a testing phase is
required (with validation) in order to contextualize the results, confront them and
evaluate their performances.

The test scenario has been developed according to the following specifications:

• The n cameras from n different positions are simulated with one camera (an
Android smartphone) and n photos from different positions.

• Each camera must "see" the same two lateral tires of the car (same side).

• All the pipelines estimate the positions with an unknown positive scaling factor
δ.

• The used camera must be previously calibrated.

• It is preferable that only one car is placed in the scenario. If more cars are
visible, only the closest one is taken into account.

Before looking and comparing the results, some important words about the
calibration process and the used datasets are required.

5.1.1 Initial calibration
In order to use the camera in the depicted scenario, an initial calibration for the
intrinsic parameters (see 2.1.1) must be performed.

The calibration is performed by exploiting the chessboard pattern, a well-known
and detectable object that can be used (with the help of OpenCV) to obtain an
estimation of the K matrix (i.e. the intrinsic matrix).

61

5 – Results

Figure 5.1. Chess board calibration process (first)

In order to achieve an initial calibration, a 8 × 8 chessboard is used. The
Python scripts implemented for this purpose are chess-board_calibration.py
and chess-board_test.py. As shown in the figures (Fig. 5.1 and Fig. 5.2), the
initial photo (first on the left) is the input of the calibration process. The sec-
ond column of images represents the output of the first script, that matches the
chessboard corners (6 × 7) with the 3D points (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 2, 0)

62

5 – Results

. . . (2, 0, 0) . . . (5, 6, 0). The calibration script tries to perform a sub-pixel refine-
ment too in order to iterate and find the sub-pixel accurate location of corners or
radial saddle points as described in [21]. The calibration is then run by using stan-
dard algorithm and the output of the script is camera.npz with all the estimated
parameters stored.

Figure 5.2. Chess board calibration process (second)

This file will be the input of the chess-board_test.py script, that uses the
estimated matrices in order to draw a cube centered in (0, 0, 0) of dimension 3 (i.e.

63

5 – Results

three chessboard squares). The output of the second script would be the third
images to the right (Fig. 5.1, Fig. 5.2). The test script is a validation that is done
in order to see if the calibration process was performed good enough. From the
images, it is clear that it is not precise to the pixel, but really acceptable. Clearly,
with much more images (100-1000) and different poses, the precision should grow.

Once that the parameters file is saved persistently, the matrix can be used in
both the two pipelines.

5.1.2 Datasets
During the validation and the testing phase (apart from the Open Images subset
for YOLOv4), only one dataset has been used: the Multi-View Car Dataset [22].
In particular, this dataset is used as initial test scenario for both the pipelines. It
contains 20 sequences of cars as they rotate by 360 degrees (one image every 3-4
degrees) at it is best suited to retrieve some initial results before the final test on
raw and new data. In Fig. 5.3 some images samples are shown.

Figure 5.3. Samples from the Multi-View Car Dataset

The camera parameters are fixed, so that no calibration is needed in order to use
the dataset. Moreover, since that not every photos is strictly in compliance with
the above-mentioned specifications (i.e. they do not capture the two side tires at
the same time), the dataset is reduced to a subset.

In addition, some raw images (Fig. 5.4) were taken with the same Android
camera from different views in order to explore the performances and precision of
the two pipelines in a real-world application.

5.2 Custom pipeline
The custom pipeline has been tested by exploiting the available methods for features
extraction/matching in order to retrieve the best combination so far (with and
without GPU CUDA acceleration). In particular, the analyzed methods are:

64

5 – Results

Figure 5.4. Raw sample from the Android camera

• SURF for features extraction and BF (brute force) for features matching.

• SIFT for features extraction and FLANN for features matching.

• SuperPoint for features extraction and SuperGlue for features matching.

The important parameters to take into account are surely the general number
of common matches (retrieved among n images) and the number of common fil-
tered matches after running YOLOv4 and RANSAC (a method can give as result
many common matches, but poor matching on the tires of the car). Those pa-
rameters can estimate some experimental results in order to choose which features
extraction/matching method is best suited for the real-world task.

In Tab. 5.1, the three possible algorithms are compared for different number of
images (i.e. n from 2 to 5 views). The comparison is performed by using the subset
of Multi-View Car Dataset exploiting the images (Fig. 5.5 and Fig. 5.6):

• panda_2.jpg and panda_4.jpg for n = 2

• panda_2.jpg, panda_4.jpg and panda_6.jpg for n = 3

• panda_2.jpg, panda_4.jpg, panda_6.jpg and panda_8.jpg for n = 4

• panda_2.jpg, panda_4.jpg, panda_6.jpg, panda_8.jpg and panda_10.jpg for
n = 5

65

5 – Results

Figure 5.5. panda_2.jpg, panda_4.jpg and panda_6.jpg

Figure 5.6. panda_8.jpg and panda_10.jpg

common matches common filtered matches n

SIFT+FLANN

268 21 2
146 11 3
96 6 4
96 2 5

SURF+BF

463 20 2
185 6 3
80 3 4
80 3 5

SuperPoint
+ SuperGlue

241 22 2
140 15 3
82 13 4
78 12 5

Table 5.1. Performance comparison from n number of views between different
methods for features extraction and matching

From the retrieved results, it is clear that the classic methods have much more
common matches on the entire image (SIFT+FLANN wins for 4 and 5 views). On
the other hand, SuperPoint+SuperGlue has much more robust and filtered matches
(on the two tires) as shown in Fig. 5.7.

So far, the SuperPoint+SuperGlue method is the more suited one. In order to
retrieve the positions of the n cameras, the entire pipeline is run, giving as output
the positions and image itself with the pose estimation represented by a cube. The

66

5 – Results

Figure 5.7. Common filtered matches on panda_2.jpg with panda_4.jpg and
panda_6.jpg by exploiting SuperPoint+SuperGlue

pipeline has some problems when the number of views is greater than 3 (sometimes
only the first image pose is correctly estimated), since that the number of common
matches drastically decreases.

Figure 5.8. Pose estimation on panda_2 with n = 3

As the number of matches decreases, the PnP method is less accurate. In the
Fig. 5.8, the first view is correctly estimated, since that the drawn cube has the
correct pose. It is true that the accuracy is not as good as expected. The cause

67

5 – Results

can be found on the poor matches and especially on the unknown dimensions (i.e.
the distances of each point from the camera). Unfortunately, the used camera is a
monocular one and it does not have the possibility to estimate it (like it is done
with a stereo camera).

Obviously, in order to extensively test the pipeline, some other data has been
fed to it. In particular, another test scenario is represented by some more raw
photos taken directly from the Android camera (previously calibrated). The images
(Fig. 5.4) have been tested with the same features matching/extraction algorithm
as the previous dataset (Tab. 5.2)

common matches common filtered matches n

SIFT+FLANN 268 16 2
134 7 3

SURF+BF 463 67 2
194 29 3

SuperPoint
+ SuperGlue

241 26 2
154 17 3

Table 5.2. Performance comparison from n number of views between different
methods for features extraction and matching on raw data

In this new scenario, the combination of SURF+BF gives the best results (Fig. 5.9),
while the pose estimation from each cameras is still a little bit failing due to lacks
of matches and dimensionality. Unfortunately, the estimation is not all failed. On
the first image (i.e. the first view) the pose is correctly retrieved, but on the second
one it fails (Fig. 5.10).

Figure 5.9. Common filtered matches on on the first camera from the
n = 3 raw images

68

5 – Results

Figure 5.10. Pose estimation on the first and second view on raw data

5.3 OpenCV’s pipeline
The OpenCV pipeline (Fig. 4.2) exploits epipolar geometry to obtain the cam-
era positions from multiple views. As the only features extraction and matching
algorithm, ORB+BF is used.

Figure 5.11. Cameras pose estimation with n = 8 on the Multi-View Car Dataset

Test have been run on the two datasets (i.e. the Multi-View Car Dataset and raw
images). In particular, on the first one for n = 2 to n = 8 with really good estima-
tions. For instance, taking as views panda_2.jpg, panda_4.jpg and panda_6.jpg,
the estimation gives as output the 3D viz in Fig. 5.13.

Moreover, the OpenCV pipeline has gone even further with the number of views
(i.e. cameras): eight cameras estimation. As shown in Fig. 5.11, the eight cam-
eras represented by the eight images in Fig. 5.14 have been correctly placed and
estimated.

Until now, the OpenCV pipeline performs better than the custom pipeline. A
final test would be on the raw Android camera images that, for comparison, will

69

5 – Results

Figure 5.12. Cameras pose estimation with n = 3 on raw data taken
from the Android camera

be the same used with the custom pipeline’s tests. By exploiting n = 3 views
represented by the first three images in Fig. 5.9, the pipeline correctly estimated
the three camera’s positions (Fig. 5.12).

Under those circumstances and in this particular scenario, the OpenCV pipeline
seems to perform better. The truth is that it would perform better in any other
scenarios, with some exceptions caused by the specific favorable custom pipeline
features. The reliability of the epipolar geometry would be difficult to reproduce
with deep learning techniques, but it surely can be improved.

70

5 – Results

(a)

(b)

Figure 5.13. Cameras pose estimation with n = 3 on the Multi-View Car Dataset

71

5 – Results

(a) panda_2 (b) panda_4

(c) panda_6 (d) panda_8

(e) panda_10 (f) panda_12

(g) panda_14 (h) panda_16

Figure 5.14. Images used for a n = 8 views reconstruction

72

Chapter 6

Conclusions

The two implemented pipelines represents two different approaches for the auto-
calibration. It is clear that the OpenCV pipeline is more robust, since it exploits
the epipolar geometry concepts. On the other hand, the custom pipeline tries to
elude the epipoles by implementing a deep learning object detection filter and the
coplanar property. Since that the custom pipeline relies on DL models, it can be
too specific (i.e. the models performs well only in specific conditions).

The standard approach used in the OpenCV pipeline demonstrates that it is not
true that "newer is better", because this experimental results proves the opposite.
During the testing phase, some other minor checks have been made on other data,
showing literally different behaviours for the custom pipeline, strongly dependent
on the particular model of the car or on light conditions, hue, contrast and so on.

Moreover, the pipelines are particularly limited because of the monocular cam-
eras, that does not provide depth information and automatically distance measure-
ments. The analyzed scenarios is really restricted in terms of specifications and
limitations, but that is not the objective of this thesis work. With this work, two
possible approximate solutions are proposed for multiple camera pose estimation.
Unfortunately, the performances are not the state-of-the-art, but the original goal
relies on analyzing this particular kind of problems and reach a solution.

6.1 Future works
During the experimental results evaluation it has been proved that the epipolar
geometry could lead to more accuracy when analyzing structure from motion sce-
narios. An interesting future work could be based on more state-of-the-art deep
learning techniques that exploits the epipoles and the theory behind it. More-
over, some more advanced 3D object pose estimation models could be used with
an adequate hardware like stereo cameras or LiDAR technologies (see 3.2.3).

There is a wide range of possibilities for future development and this work can

73

6 – Conclusions

be seen as an exploring step in order to lay the foundations for them. Furthermore,
with the help of hybrid approaches to the Perspective-n-point problem [14], the
path should lead to a stable and reliable unified solution soon.

74

Appendix A

Build and install OpenCV

This appendix is devoted to the custom build and installation of OpenCV v4.5.0
with all the necessary tools and dependencies on Ubuntu 20.04.

A.1 Dependencies
Before compiling and installing, cmake must be installed on the machine.
From the terminal:

1 $ sudo apt -get update
2 $ sudo apt -get install cmake cmake -qt -gui

A.1.1 Ceres solver
Ceres solver [23] is a large scale non-linear optimization library that can be used
in some of the implemented algorithms in OpenCV. Before compiling it, some
dependencies are required:
From the terminal:

1 $ sudo apt -get update
2 $ sudo apt -get install libeigen3 -dev libgflags -dev \
3 libgoogle -glog -dev libatlas -base -dev \
4 libsuitesparse -dev

Then, the code must be downloaded and extracted:
1 $ cd $HOME
2 $ wget https :// github.com/ceres -solver/ceres -solver/

archive /1.14.0. tar.gz
3 $ tar xf ceres -solver -1.14.0. tar.gz

Finally, a folder for the build is created and the code is built and installed:

75

A – Build and install OpenCV

1 $ mkdir ceres -build
2 $ cd ceres -build && cmake ../ ceres -solver -1.14.0 .
3 $ make -j4
4 $ make -j2 test && sudo make install

Now ceres-solver is finally installed and ready.

A.1.2 CUDA
Another important dependency is the NVIDIA CUDA Sdk [24] that enables the
GPU for general purpose applications in order to use the acceleration provided by
NVIDIA’s multiple cores.
From the terminal:

1 $ wget https :// developer . download . nvidia .com/ compute /cuda/repos/
ubuntu2004 / x86_64 /cuda - ubuntu2004 .pin

2 $ sudo mv cuda - ubuntu2004 .pin /etc/apt/ preferences .d/cuda -
repository -pin -600

3 $ sudo apt -key adv --fetch -keys https :// developer . download . nvidia .
com/ compute /cuda/repos/ ubuntu2004 / x86_64 /7 fa2af80 .pub

4 $ sudo add -apt - repository \
5 "deb https :// developer . download . nvidia .com/ compute /cuda/repos/

ubuntu2004 / x86_64 / /"
6 $ sudo apt -get update
7 $ sudo apt -get -y install cuda

The process is a little bit long and it requires some time. When it is finished, the
CUDA Toolkit is finally available.

A.1.3 VTK
The VTK library is required for the compilation and use of viz OpenCV’s library,
necessary in order to visualize the reconstructed cameras as outputs.
From the terminal:

1 $ sudo apt install libvtk7 -dev libvtk7 -qt -dev

A.2 Build and install
OpenCV is widely available already compiled and ready-to-use. Unfortunately,
some third-party libraries are required (available in OpenCV’s contrib modules
collection). In order to build OpenCV with those external libraries, CUDA and
Ceres Solver are required.
First, the source code of both must be downloaded and extracted:

76

A – Build and install OpenCV

1 $ cd $HOME
2 $ wget https :// github .com/ opencv / opencv / archive /4.5.0. tar.gz
3 $ wget https :// github .com/ opencv / opencv_contrib / archive /4.5.0. tar.

gz
4 $ tar xf 4.5.0. tar
5 $ tar xf 4.5.0. tar .1

In order to configure OpenCV, the WITH_CUDA and OPENCV_ENABLE_NON_FREE flags
must be set. Moreover, the OPENCV_EXTRA_MODULES_PATH has to be set with the
path of the modules folder in the opencv_contrib folder.
Finally, the build folder is created and OpenCV is build and installed:

1 $ cd $HOME/opencv -4.5.0
2 $ mkdir build && cd build
3 $ cmake ../ .
4 $ make -j4
5 $ make -j2 test && sudo make install

To check that all went well, from the terminal:
1 $ opencv_version
2 4.5.0

77

Bibliography

[1] Martin A. Fischler and Robert C. Bolles. «Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography». In: Readings in Computer Vision (1987), 726–740. doi:
10.1016/b978-0-08-051581-6.50070-2.

[2] H.C. Longuet-Higgins. «A computer algorithm for reconstructing a scene from
two projections». In: Readings in Computer Vision. Ed. by Martin A. Fischler
and Oscar Firschein. San Francisco (CA): Morgan Kaufmann, 1987, pp. 61
–62. isbn: 978-0-08-051581-6. doi: https://doi.org/10.1016/B978-0-
08-051581-6.50012-X. url: http://www.sciencedirect.com/science/
article/pii/B978008051581650012X.

[3] R. I. Hartley. «In defense of the eight-point algorithm». In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 19.6 (1997), pp. 580–593. doi:
10.1109/34.601246.

[4] R. Tsai. «A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf TV cameras and lenses». In: IEEE
J. Robotics Autom. 3 (1987), pp. 323–344.

[5] Shaoqing Ren et al. «Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks». In: CoRR abs/1506.01497 (2015). arXiv:
1506.01497. url: http://arxiv.org/abs/1506.01497.

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934
[cs.CV].

[7] D. G. Lowe. «Object recognition from local scale-invariant features». In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision.
Vol. 2. 1999, 1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410.

[8] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. «SURF: Speeded Up
Robust Features». In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Springer Berlin Heidelberg, 2006. isbn: 978-3-
540-33833-8.

78

https://doi.org/10.1016/b978-0-08-051581-6.50070-2
https://doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50012-X
https://doi.org/https://doi.org/10.1016/B978-0-08-051581-6.50012-X
http://www.sciencedirect.com/science/article/pii/B978008051581650012X
http://www.sciencedirect.com/science/article/pii/B978008051581650012X
https://doi.org/10.1109/34.601246
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/ICCV.1999.790410

BIBLIOGRAPHY

[9] Marius Muja and David Lowe. «Fast Approximate Nearest Neighbors with
Automatic Algorithm Configuration.» In: vol. 1. Jan. 2009, pp. 331–340.

[10] Paul-Edouard Sarlin et al. «SuperGlue: Learning Feature Matching with Graph
Neural Networks». In: CVPR. 2020. url: https://arxiv.org/abs/1911.
11763.

[11] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. SuperPoint:
Self-Supervised Interest Point Detection and Description. 2018. arXiv: 1712.
07629 [cs.CV].

[12] Xiao-Shan Gao et al. «Complete solution classification for the perspective-
three-point problem». In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 25.8 (2003), pp. 930–943. doi: 10 . 1109 / TPAMI . 2003 .
1217599.

[13] Mikael Persson and Klas Nordberg. «Lambda Twist: An Accurate Fast Ro-
bust Perspective Three Point (P3P) Solver». In: Proceedings of the European
Conference on Computer Vision (ECCV). Sept. 2018.

[14] Roy Sheffer and Ami Wiesel. PnP-Net: A hybrid Perspective-n-Point Network.
2020. arXiv: 2003.04626 [cs.CV].

[15] Joseph Redmon. Darknet: Open Source Neural Networks in C. http : / /
pjreddie.com/darknet/. 2013–2016.

[16] Alina Kuznetsova et al. «The Open Images Dataset V4: Unified image clas-
sification, object detection, and visual relationship detection at scale». In:
arXiv:1811.00982 (2018).

[17] Angelo Vittorio. Toolkit to download and visualize single or multiple classes
from the huge Open Images v4 dataset. https://github.com/EscVM/OIDv4_
ToolKit. 2018.

[18] G. Bradski. «The OpenCV Library». In: Dr. Dobb’s Journal of Software Tools
(2000).

[19] E. Rublee et al. «ORB: An efficient alternative to SIFT or SURF». In: 2011
International Conference on Computer Vision. 2011, pp. 2564–2571. doi: 10.
1109/ICCV.2011.6126544.

[20] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Second. Cambridge University Press, ISBN: 0521540518, 2004.

[21] W. Förstner et al. ”A fast operator for detection and precise location of dis-
tinct points, corners and centres of circular features”. In: ISPRS Intercommis-
sion Workshop, June 1987.

79

https://arxiv.org/abs/1911.11763
https://arxiv.org/abs/1911.11763
https://arxiv.org/abs/1712.07629
https://arxiv.org/abs/1712.07629
https://doi.org/10.1109/TPAMI.2003.1217599
https://doi.org/10.1109/TPAMI.2003.1217599
https://arxiv.org/abs/2003.04626
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://github.com/EscVM/OIDv4_ToolKit
https://github.com/EscVM/OIDv4_ToolKit
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544

BIBLIOGRAPHY

[22] Mustafa Özuysal, Vincent Lepetit, and Pascal Fua. «Pose Estimation for Cat-
egory Specific Multiview Object Localization». In: Cvpr: 2009 Ieee Confer-
ence On Computer Vision And Pattern Recognition, Vols 1-4. IEEE Confer-
ence on Computer Vision and Pattern Recognition (2009), pp. 778–785. doi:
10.1109/CVPR.2009.5206633.

[23] Sameer Agarwal, Keir Mierle, and Others. Ceres Solver. http://ceres-
solver.org.

[24] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. CUDA, release: 11.1.X.
2020. url: https://developer.nvidia.com/cuda-toolkit.

80

https://doi.org/10.1109/CVPR.2009.5206633
http://ceres-solver.org
http://ceres-solver.org
https://developer.nvidia.com/cuda-toolkit

	List of Tables
	List of Figures
	Introduction
	Background
	Pinhole camera model
	Camera matrices
	Camera calibration

	Perspective-n-Point
	RANSAC

	Epipolar geometry
	Epipolar constraint
	Fundamental matrix

	Multi-view geometry
	Structure from motion (SfM)

	Research
	Calibration methods
	Tsai's calibration technique

	Object detection
	Fast/Faster R-CNN
	YOLO
	3D object detection

	Features extraction and matching
	Extraction
	Matching

	Perspective-n-Point
	Gao's P3P solver
	Lambda twist
	PnP-Net

	Structure from motion

	Design and development
	Introduction
	Design
	Custom pipeline
	OpenCV's pipeline

	Development
	Frameworks and requirements
	Intrinsic calibration
	Custom pipeline
	OpenCV's pipeline

	Results
	Introduction
	Initial calibration
	Datasets

	Custom pipeline
	OpenCV's pipeline

	Conclusions
	Future works

	Build and install OpenCV
	Dependencies
	Ceres solver
	CUDA
	VTK

	Build and install

