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Abstract

Additive manufacturing also known as 3D printing is an emerging technology as it has great potential in

a large variety of applications in aerospace, biomedical and automotive industry. Additive manufactur-

ing enables the production of complicated designs, lightweight structures and novel functional features

by joining materials in a layer by layer fashion to make the objects from 3D models. Nowadays there are

various technologies which can implement AM using different kinds of materials, such as Powder Bed

Fusion (PBF) which includes, selective laser sintering (SLS) and Electron Beam Melting (EBM). With the

rapid development of AM, more complex structures with more materials can be fabricated.

Specifically the Electron beam used to melt the powder in EBM is much more powerful than the laser

and can result in strong mechanical properties of manufactured part with high density, offering minimal

waste. However, ensuring AM part quality in EBM still remains the big challenge in the major industrial

breakthrough of additive manufacturing technologies.

Recently, the machine learning (ML) that is a growing field of artificial intelligence (AI) is becoming

more and more important not only in Additive manufacturing but in overall manufacturing industry,

mainly because of ability of ML to perform the complex task such as regression and classification. The

basic purpose of Machine Learning is to make a system able to learn useful features from a data set

identify the patterns and accordingly make the decisions. Currently, ML is applied in various processes

of additive manufacturing like for monitoring of the AM process and making it able to take decisions

on the basis of data coming from different cameras and sensors, like for defects and anomaly detection.

In this thesis a framework of optimizing the influential parameters impacting on the final part qual-

ity of EBM produced parts has been implemented. First, all of such important parameters have been

identified by different analysis techniques. Afterwards, the co-relation analysis of these parameters was

carried out in order to find the impact of variance of these parameters on different part qualification

categories. Finally, using this data a regression model was developed by comparing different machine

learning algorithms to find a network that could predict the process parameter anomaly, before going

towards the failure of the part.
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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Additive manufacturing AM represents a novel manufacturing paradigm capable of completely revo-

lutionizing conventional technologies, thanks to the ability of producing complex shapes, innovative

lightweight structures, internal features and functional surface patterns that can not be produced with

traditional approaches. Its origins move from Austin, TX, where Deckard obtained in 1986 the first SLS

(Selective Laser Sintering) patent. AM technologies allows the manufacturing industry to go beyond

the limits of conventional processes providing the so-called “complexity for free” but also a completely

new approach for the management of the overall value chain. Additive Manufacturing uses produces

the part by adding many layers of a material. As per ASTM F42 standard [1] Additive manufacturing

has seven types: Binder jetting, Direct Energy Deposition, FDM, Material Jetting, Powder Bed Fusion

(SLS/SLM/EBM), Sheet Lamination (LOM) and Vat Photopolymerization. The first application of AM

was in Rapid Prototyping applications on polymers. Thanks to continuous technological development,

AM passed from prototyping to industrial production, by expanding the range of materials. Recently,

industrial discrete-part manufacturers focused their interest onto metal additive manufacturing. Ac-

cording to the ASTM standard above mentioned [1], only four processes of the seven listed pertain to

metal additive manufacturing: binder jetting, direct energy deposition, sheet lamination and powder

bed fusion. All these processes bond together the feedstock into a final 3D object. Binder jetting pro-

duces 3D objects through the iterative deposition of a liquid binder over powder material (spread over

a build platform) layer by layer [27]. Direct energy deposition encompasses different processes, similar

to that of material extrusion, where the feedstock (powder or wire) is deposited directly into a melt pool

generated by a focused energy. Sheet lamination process uses sheets of metal to form parts. Metal sheets

are bond together through ultrasonic welding. Finally, powder bed fusion processes use a focused en-

ergy (laser beam or electron beam) in order to selectively melt a layer of powder. Powder is spread and

selectively melted layer by layer until the part is complete. Selective Laser Melting (SLM) and Electron

Beam Melting (EBM) can be differentiated on the basis of the power source. Figure 1 shows AM pro-

cesses for metals on the basis of classification done by ASTM [2].

1



1.1. OVERVIEW

Figure 1.1: Metal Additive Manufacturing processes: ISO-ASTM 52900 [2]

Generally speaking, powder bed fusion processes are able to produce parts with a minimum fea-

ture size smaller than other AM processes. In particular this thesis work will focus on Electron Beam

Melting, which has the peculiarity to exploit an electron beam as source of power. With respect to other

processes, EBM presents the advantage of being hot, enabling the processing of materials that require

extremely high temperature to be worked. A remarkable rapid development has to be noticed for EBM,

which was first patented in 2000 by Larsson Anderson and now is becoming a standard process in the

aeronautic sector, e.g., for turbine blade production. EBM finds many other applications in the med-

ical sector (in the production of medical prosthesis) and in the automotive sector as well. Despite its

potentialities, the process presents many issues. The interaction of the electron beam with the metal

is regulated by complicated physical principles that are connected with the emission of many relevant

by-products (like charged particles and different kind of radiations). Very few materials have been de-

veloped for the production in EBM due to the difficulties in defining optimum process parameters. Fur-

thermore one of the most important process issues is related to the capability of achieving high quality

and repeatability performances. In this sense, some very recent papers related to in-situ process mon-

itoring have been published. This thesis provides a state of the art analysis for EBM that encompassed

all the above-mentioned issues.

The work starts with a detailed analysis of system properties and performances, in the perspective

of providing a comparison with SLM, considering technical parameters, pros and cons. A physical de-

scription of the electron beam interaction with the part is provided, with the aim to point out the nature

of the signal emitted during the process: process by-products are potential process information for fu-

ture in-situ process monitoring strategies. A state of the art concerning major defects and EBM process

2



1.2. EBM THE PROCESS

monitoring is provided.

The thesis is organised as follows. The first section presents a description of the technology and a

comparison with SLM. The second section discusses the physical issues related to electron beam and

matter interactions, going on with an analysis of the materials developed for EBM manufacturing. In

section three, reported is the review of state the of the art of EBM process monitoring. Section three

expands the analysis of the previous section. Section four the application of Neural Networks to optimize

the process parameters.

1.2 EBM THE PROCESS

A generic description of Electron Beam Melting technology is provided is this section. Electron Beam

Melting technology along with system configuration is reviewed in the sub-section 1.1. Finally, dvan-

tages and drawbacks of EBM with respect to SLS based PBF are discussed in sub-section 1.2.

1.2.1 EBM TECHNOLOGY

Fig. 1.2 shows a generic EBM based additive manufacturing hardware setup.

Figure 1.2: Schematic of an EBM apparatus (Source: Arcam)

3



1.2. EBM THE PROCESS

The hardware consists of many parts. The most important part is the power source that is the elec-

tron gun in our case. Electron beam is generated by the electron gun that is further directed towards

the build platform with the help of a setup of electromagnetic lens. A start plate is housed in the build

platform which is moved down after each scanning cycle in order to add the layers. Powder hoppers

setup is responsible of storing the needed powder for manufacturing of the part. A powder handling

system joins hand s with the power hoppers and it takes the required amount of powder to be laid as a

layer. A powerful vacuum is generated with the help of a pump. To protect the internal assembly of the

machine from high temperature machine is done with a shielding internally. Moreover, to protect the

human around the machine from the toxic radiations , an x-ray shielding is also constructed [3]. Figure

1.3 shows the iportant parts of build chamber.

Figure 1.3: Schematic of important parts of EBM build chamber (Source: Arcam)

To start with the process, a design of the required part is created in the CAD. Advantage of this tech-

nology is that the required part can be directly build after the cade process without any need of compli-

cated planning of process. There is no need of different tooling and complex fixtures. Therefore additive

manufacturing is cheaper than the conventional manufacturing techniques in many ways. A generic

overview of the additive manufacturing production cycle is shown in figure 1.4.
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Figure 1.4: Flow chart of a general AM production cycle

The CAD file is converted to a STL file before manufacturing the part in the machine. To facilitate

the acceleration of the electrons, the system consists of a hot cathode which is a tungsten filament most

of the time and one or more anodes. Underneath the anode cathode system there exists two levels of

electromagnetic focusing lenses. The purpose of first level of focusing lenses is to focus the electron

beam into a concentrated spot. The required beam pattern is deflected by the second level of lenses.

In the build platefore a layer of metallic poweder is laid on a table, the layer thickens use to be from 0.1

mm to 0.01. Thermionic effect is responsible to produce the free electrons in the cathode. The electrons

generated by the electctric field are deflected by the deflection lenses after being focused into to a bean

by the first level of lenses and directed towards the table carrying the metallic powder. After initiation

of the process the first phase comes is the pre-heating where the the electron beam heats the powder

to a desired temperature level [4]. As per the work done of [5]the target temperature during this phase

is usually half of fusion point. The residual stresses are greatly reduced as the powder upto the pre-

heating phase is only partially melted and the gradient in-between the lower layer and the pool of melt

is lowered. The melting phase is followed by pre-heating. In this phase the scanning speed is reduced nd

the power of electron beam is increased. The powder is melted during the scan and converted to solid

form in a quick time. After the completrion of the scane the height of platformed is adjusted in such a

way that it moved down equal the thicknes of the layer that is added. In a same ways many layers are

added until the final product is achieved. This cycle repeats layer by layer until the final product. Also

some helium pressure is present in the vacuum chamber [6]. The phases involved in the EBM process

are shown in the figure figure 1.5.

5



1.2. EBM THE PROCESS

Figure 1.5: Phases of EBM process (Galati and Iuliano, [57])

1.2.2 ELECTRON BEAM PARAMETERS

There are many process parameters that can effect the quality of the finished producr, some relevant

parameters are given by [7].

Sr. Nr. EBM PARAMETERS

1 Current to generate the beam
2 The current that is used to focus the position by the lens
3 The scanning speed
4 The current that is used to deflect the beam
5 The pulsing of the beam
6 No. of repetition cycles of the scan
7 Offset present in.between the lines of scan
8 The sequence of line in order to generate hatch pattern

Table 1.1: Some EBM Parameters

The total beam power can be evaluated by the multiplication of beam current and accelerating

voltage. Considering that the phenomenon of electron back scattering causes the repulsion of a pre-

determined percentage of electrons according to specific material, in order to increase the heat transfer

it results more effective to manage the current intensity than voltage.Scanning parameters influence

also an important quantity: Andrews’s number, a.k.a. applied energy density (simplified model):
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E A = P

V ∗SP

P = beam power V = scan velocity SP = scan distance between parallel lines [20]

According to above expression, the supplied energy density increases by decreasing the scanning

velocity and scan spacing. Scan velocity can be optimized considering this formula and the optimal

energy quantity estimated through experiments considering also that the scan velocity influences the

probability of balling effect and smoking effect occurrence.

COMPARISON BETWEEN EBM AND SLM After having an insight of the process descripton it is im-

portant to describe the key difference between both the PBF technologies, i.e; EBM and SLM. Table 1.2

provides this comparison on the basis of some major technical parameters [3].

DRIVER EBM SLM

Thermal source Electron beam Laser
Atmosphere Vaccum Inert gas
Scanning Deflection coils Galvanometer
Energy absorption Conductivity limited Absorptivity Limited
Power pre-heating Uses electron beam Uses infrared heaters
Scan Speeds Very fast ->magnetically driven Limited by galvanometer inertia
Energy costs Moderate High
Surface finish Moderate to poor Excellent to moderate
Feature resolution Moderate Excellent
Materials Metals (conductors) Polymers, metals and ceramics
Layer thickness (um) 50 um 10-50 um
Min wall thickness (mm) 0.6 0.2
Accuracy (mm) +−0.3 +−0.1
Build rate (cm3/h) 80 5.20
Surface roughness 20-30 5.15

Table 1.2: EBM Vs SLM

The most basic difference between the two is the power source, that is laser beam for SLM and elec-

tron beam for EBM. It is the power source that determines the overall environment of carrying out the

process. For EBM scanning system is electro-magnetic lens while SLM utilizes the galvano meter. This

causes the EBM to be at an advantage as building speed in EBM is way higher than the SLM. As for as the

power consummation is concerned, both the techniques are at par to each other standing at 5 kW/h. The

finished quality of the product greatly relies on the powder parameters that include composition, size,

porosity, shape and the morphology of the surface [8]. EBM uses powder particles of larger dimensions

as compared to the SLM. It is pertinent to mention here that the smaller the size of powder grains, better

the final finish of surface, therefore, SLM is better as far as surface finish is concerned of the obtained

part from the machine. However the smaller is the powder particle size, higher is the cost. Therefore, the

powder dimensions of size that is in-between the two sizes is preferable. The most significant property

of EBM is that it’s a hotter process that makes us enable to work with the materials that are very difficult
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to process with the common conventional technologies and the SLM. Due to preheating and then the

high temperature the chance to develop residual stresses in EBM is lower as compared to SLM. Generic

benefits and drawbacks for both EBM and SLM are summarized in the tables 1.3 and 1.4.

EBM

BENEFITS DRAWBACKS

High productivity The choice of material is very limited as
only those materials can be processed
which are conductive in nature

Stacking of parts is possible which en-
ables the mass production

Powder sintered cake makes the powder
removal tricky (specially from the inner
chambers)

Residual internal stress is avoided due
to the constant high build temperature
(680-720 Degree Celsius)

Eight hours are required to cool the ma-
chine in between two productions (its
long time)

Parts are embedded in a powder cake
that is sintered before. Therefore gives a
better thermal conductivity and the sup-
ports required are less

Powders finer than 40 micro meter are
difficult to work with

As the build chamber remains in a vac-
uum therefore, the powder do not catch
any sort of contamination

The maintenance of the machine is rela-
tively expensive

It gives mechanical and microstructure
properties at par or greater than the tra-
ditional manufacturing processes

If the machine goes to breakdown for
maintenance, the under process part can
not be processed further, hence it be-
comes useless

Table 1.3: EBM: Benefits and Drawbacks

SLM

BENEFITS DRAWBACKS

It provides flexibility in case a new mate-
rial is to be introduced

SLM is not for bigger parts as it purely de-
pends on the thickness of the walls

In SLM it is possible to use finer powder
like 1o micro meter

The finished parts has the internal
stresses and it required further heat
treatment like annealing

Parts are not embedded in a sintered
powder cake. Therefore to remove the
powder is easy

For proper fastening of the part, SLM
needs very powerful supports

The dead time is very short as compared
to EBM as SLM needs only 2 hours to cool
down in between two manufacturing cy-
cles

Build plates should be made of the same
material

It is possible the start the process again if
it was stop due to any reason

Cutting tools are required in order to re-
move the manufactured part from the
build plate

Table 1.4: SLM: Benefits and Drawbacks
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1.3 ELECTRON BEAM-MATTER INTERACTION

The comprehension of EBM process dynamics and by-products emission requires a comprehension

of the material-electron beam interaction. In the EBM literature, a few thermal models of the process

were discussed [9] but there is a limited literature devoted to the physical principles that drive such

interaction. The interaction in-between electrons and matter occurs at an atomic level, involving energy

interactions described by the quantum physics laws. This chapter reports a general description of the

physic behind the process. Sub-section 2.1.1 provides a general discussion about electrons.

1.3.1 ELECTRONS AND MATTER

According to Shultz [10], even though the physical description of electron beams is known since the six-

ties, the microscopic processes are so complex that they still do not have a full quantitative description.

The basic electron beam principles are discussed in various EBM papers [9] whereas a deeper analysis

of the beam interaction, from a physical point of view, is provided in the electron-microscopy literature

[11]. The electron beam is focused against the target in a small spot and the electrons impact the surface

at a speed near the speed of light. The electrons transfer their kinetic energy to the part, but the mech-

anism is quite complex as it involves several phenomena at different levels. According to Shultz [10],

since electrons mass is very small (9.109382 × 10 pow(-31)), they cannot transfer momentum directly to

the heavier nuclei in the lattice’s atoms. The collisions, more likely, involve the electrons of the crystal

lattice in the outermost atomic shells, in particular the free conduction electrons. The conduction elec-

trons transfer the energy gained after the impact with the lattice by subsequent collisions, interacting

with the lattice phonons (quantised lattice vibration), leading to an energy increase of the lattice atoms.

Phonons are “quasi-particles” (or equivalently, waves, according to the dualism wave-particle of the

quantum mechanics) associated to the vibration motion of atoms in the crystal lattice. In other words,

atoms oscillate around their equilibrium point and this vibration, according to classic mechanics, is as-

sociated to a wave with specific wavelength and frequency. This particular wave is defined as phonon

and the transfer of energy occur due to an interaction between the electron beam and the phonons [12].

As a result, the solid material starts warming reaching extremely high temperatures [13]. Moreover, the

process is accompanied by emission of by-products as illustrated in Fig 1.6: scattered and backscattered

electrons, second charged particles (electrons and ions).

Figure 1.6: By products of electron beam – matter interaction
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These by-products are considered un-desirable by an efficiency perspective. Actually, they corre-

spond to energy losses, which do not contribute to the melting process. However, they can be consid-

ered signals of interest, considering the fact that they are potential information carrier of the on-going

process. In the following sections a deeper analysis of all these aspects is carried out.

1.4 REVIEW OF PROCESS DEFECTS IN EBM

Most of defects that may occur during the EBM process are typical defects of metal powder bed fusion

processes, regardless of the nature of the energy source (laser or electron beam) [27]. They include:

pores and un-fused powder within the part, balling phenomenon, surface defects, geometric defects,

residual stresses, cracking and delamination [14], [15]. Material inclusions and contaminations, which

are largely discussed in the SLM literature, are poorly discussed in the EBM literature. A specific EBM

problem, source of defects, consist in the “smoking” effect. Understanding how defects arise, which

are their characteristics and how they impact the mechanical properties of the final part, may help to

improve the process reliability and the final part quality. Beyond the defects listed and discussed in

the following paragraphs, it is important to point out that instability in the final micro structure is a

criticality of particularly interest for the industry. In-situ monitoring of the micro structure would be

one of the major goal that would definitely boost the industrial breakthrough of the technology. The

following sub-sections describe in more detail each type of defect.

1.4.1 POROSITY AND LACK OF FUSION

Porosity is a major defect in additive manufacturting including EBM also. The main causes of are powder

quality or poorly optimized parameters [8]. Types of porosity are shown in Fig 1.7 During the process of

quick solidification the gas remains trap in the form of bubbles or spherical voids.

Figure 1.7: Process induced Vs gas induced porosity [8]

1.4.2 BALLING

Balling effect that is sometimes called Melt ball formation, takes place when meolten powder do not

solidifies into solid layers instead it solidifies in spheres melted metal solidifies into spheres as shown in
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Fig 1.8 ([8],[16]).

Figure 1.8: Example of Balling Effect [8],[16]

1.4.3 RESIDUAL STRESS, DELAMINATION AND CRACKING

Residual stress is very natural in additive manufacturing process. It mainly occurs because the material

undergoes through different temperature levels hence the change temperature gradient induced the

residual stresses in the manufactured parts. Although residual stresses are linked to all AM process, but

its level of intensity is quite low in EBM when we compare it with SLM, mainly due to the fact that the

EBM undergoes from a very high temperature being a hot process as compared to SLM [8].

The defect of delamination is associated with residual stresses [8],[16]. The residual stresses are in-

duced during the heating of the powder mainly because of difference in thermal gradient. Basically

delamination is caused when the tensile stress in-between the two layers become more than their ca-

pacity of binding. Another cause of delamination is improper fusion of the metal powder and the partial

melting of the layer underneath. This phenomena is depicted in figure 1.9.

Figure 1.9: Example of Delamination [8],[16]
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Cracking mainly depends on the material and there may be many causes of its occurrence. One type

of cracking is known as solidification cracking and it is caused by the residual stresses. The main cause

of this type of cracking is the application of access energy creating the forces in-between the liquid area

of the pool and the areas that have been solidified.

1.4.4 SURFACE DEFECTS

The two major indicator of the roughness of the finished part are the powder size and the diameter of

the heating spot. There are two main phenomena that are responsible of the roughness of the surface,

that are: Irregular edges of layers and the material surface roughness [8]. This phenomena is shown in

the figure 1.10.

Figure 1.10: Example of Surface Defects [8]

1.4.5 GEOMETRICAL DEFECTS

The access application of heat may cause the material to deform from its shape. The important geom-

etry’s are manufactured by using the supports either thermal or mechanical. Swelling effect may also

occur that is mainly responsible of solidification of the melt pool over the surface of the part. Warping

is another type of geometrical defects. This is because the heating effect warp the substrate during the

process, as shown in figure 1.11.

Figure 1.11: Example of Warping [8]
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1.4.6 SMOKING

As in EBM the beam consists of electrons therefore, upon striking with the powder, it not only produces

the heal but also the electric charge. Therefore, it is utmost important to optimize the electron beam

before the start of the process because it is so crucial to avoid the static charge. When the electrostatic

force exceeds the binding force in power, it causes the powder particles to disperse from the bed [7], [8]

causing the smoking effect as shown in the figure 1.12.

Figure 1.12: Smoking effect of one powder layer [4],[8]

To avoid the smoking effect the pre-heating is applied in the EBM, that elevates the temperature

of the powder making it to partially sinter. The helium gas that is present in the chamber also helps

dissipation of the electrical charge.

1.5 REVIEW OF PROCESS MONITORING IN EBM

The main problem that hinders the major industrial breakthrough of Additive manufacturing specially

EBM is the lack of stability, repeat ability and precision. [14], [15]. Considerable research efforts are

expected in order to develop new strategies for in-situ process monitoring and data gathering to enable

quick detection of material discontinuities and process defects. Despite continuous RD efforts of major

SLM and EBM system developers, there is still a lack of both automated defect detection capabilities

and for defect prevention or repair strategies. In this section the literature related to the in-process

monitoring of EBM process will be discussed.

1.5.1 IN-PROCESS MONITORING METHODS IN EBM

The literature of in process monitoring for EBM is comparability less than SLM. This is also due to the

fact that EBM is still a proprietary technology, with one single system developer on the market. More-

over, EBM process characteristics make the process monitoring more challenging than SLM. Inside the

electron gun are housed the electron magnetic coils due to which co-axial sensor installation is not pos-

sible in the EBM machine [17]. In the method of co-axial sensing the main concept is to exploit the

source of power and consequently the powder melt pool on the working table can be measures along

with the thermal intensity of the melt area. As the EBM process don’t consists of optical path as the

beam is made of electrons, hence, the co-axial sensing is not possible in the case of EBM. Therefore,
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the only way of monitoring in the EBM process is the off- axial methods. In off-axial monitoring the

basic concept is the mounting of sensors off the path of the beam at an angular position so that the

targeted area can be monitored. EBM machine has a window at the front face and another window at

the bottom side. Therefore, off-axial monitoring is possible EBM. However one of the major problem

in off-axial monitoring in the EBM is the metallization of the window that is caused by the vaporization

and condensation of the byproduct coming from the melt pool [18]. Monitoring sensor integration on

EBM machines is made more difficult also by the vacuum environment in which the process takes place

and X-ray emissions. Infrared (IR) cameras are the most studied technology for in-situ monitoring of

EBM. As a matter of fact, the possibility of measuring the temperature map during the process provides

much information about the process stability and quality [19]. Two different setups of the IR camera are

made possible thanks to the two windows just described. Fig. 1.10 shows the possible IR camera set up

on Arcam machines. These two set up enable the monitoring of the entire power bed. Set up monitoring

by the window on the top of the chamber, close to the beam vertical, allows a quasi-coaxial monitoring

of the powder bed, thanks to the small mounting angle respect the beam column.

Figure 1.13: Two possible camera arrangements: First one at the top [17], the second at front [20]
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A detailed classification of the literature is reported in the table 1.5.
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Table 1.5: Review of Process Monitoring in EBM

Rodriguez et al [5] used an IR camera to study the temperature distribution over the entire build

area. A Flir SC645 at high resolution was chosen for the installation in an Arcam A2, not without many

machine modifications to make the installation itself feasible. The angle between the camera and the

surface normal is 25°. A specific system was also installed to automate the image acquisition process.

The main problems addressed are the IR camera calibration for an accurate temperature measurement

and image analysis in order to find correlation between thermal images and metallographic images for

defect detecting. The camera allows the in-process detection of over melting, temperature distribution,

temperature gradient control and internal flaws detection. Fig. 1.14 show the image obtained.

Figure 1.14: Detected defect in thermal image [5]
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Shwerdtfeger et al [17] installed at the top of an Arcam A2 a Flir A320 IR camera with a resolution of

320 x 240 pixels, at a 15° angle to the bed. IR images of the powder bed surface, after the completion of

each layer, were collected together with the corresponding metallographic images, in order to provide

a comparison. In IR images colder regions appear with darker colour. Comparing IR images with the

corresponding metallographic is possible to see a clear pattern correlation as shown in Fig. 1.15.

Figure 1.15: Metallographic images Vs IR images [17]

The image shows a clear correlation between areas of higher heat radiation and material flaws. Au-

tomating image processing and flaw detection gives the possibility to move from the online flaw detec-

tion to the online healing. In [5] Rodriguez et al addressed in detail the problem of IR camera calibration.

They produced a step-by-step procedure to obtain precise emissivity data of Ti6Al4V pre melting and

post melting. An original analytical model is presented for view factors associated with the Arcam A2’s

thermal enclosure. Such theory is claimed by the authors to potentially contribute to future works in

establishing correlation among process parameters, IR surface temperature measurements and micro

structure properties of EBM fabricated parts.

Price at al [20] carried out similar experiments in order to evaluate the feasibility and capability of

a NIR camera for thermal analysis of EBM process. They installed a NIR MCS 640 from LumaSense

onto an Arcam S12. The thermal camera was placed on a sturdy tripod, close to the glass window at a

vertical tilt angle of 55°. The camera has a spectral range between 780 and 1080 nm, with a detectable

temperature from 600 °C up to 3000 °C. The researches demonstrated the possibility to employ a NIR

camera to capture 2D images of the temperature profile over the melt pool and along the scan path.

Dinwiddie et al [21] used a Flir SC-8200 IR camera aiming it through the front window of Arcam

system discussing the possibility to obtain thermal images capable to provide information about EBM

focus, porosity detection and over-melted regions. They also illustrated two shutters less systems able

to avoid window metallisation, which allow a continuous infrared monitoring of the process. Details

are provided regarding the possibility to detect over melting regions during the preheating via thermal

images.

Gong et al [19] carried out similar experiments to those reported in [20]. The camera is a LumaSense

MCS640 NIR IR vertically inclined at 35° ahead the front window of the machine. Camera parameters

are the same as those disclosed in [20]. In the paper is presented a Ti6Al4V characterization regarding

thermal conductivity of partial sintered powder. They came up to a similar results of [20] producing a 2

dimensional temperature profile of the scan path for each hatch melting frame, result is shown in Fig.

17



1.5. REVIEW OF PROCESS MONITORING IN EBM

1.16 and Fig. 1.17.

Figure 1.16: Temperature profile in hatch melting [19]

Figure 1.17: Average temperature profiles at different build heights [19]

The main information given by this data is that the cooling rate is greater at higher build heights.

Other relevant results have been obtained in defining thermal properties of metal powder; in particular

it has a much lower thermal conductivity; more over, it is highly thermal dependent (0.63 W/m•K at

room temperature but less than 2.44 W/m•K at 750 °C).

Cheng et al [22] developed a comprehensive thermal model of EBM process using finite element

software (Abaqus). They used a NIR camera with the same parameter above discussed to acquire tem-

perature measures for model validation. The model is applied also to obtain information about the

correlation between powder porosity and temperature profile and melt pool size. Experimental data

were collected in order to validate the model built. Ridwan et al [23], used a FLIR SC645 (IR) camera

(same set up parameter described in[24]) installed at the top window of an Arcam machine (model not
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specified), developed an algorithm to compare the thermal data gathered from the operation chamber

with an input layer derived from CAD. The algorithm was coded in Matlab and it provides an analysis on

the basis of colours and on the basis of edge detection technique. The output of the method employed

provides information about porosity together with geometrical data, which give a rough approximation

of the process precision.

Mireles et al [24] developed an automatic feedback control system to monitor and control the build

temperature. The aim of this control system is to address the problem of microstructure differences

throughout the part due to thermal gradient inside the chamber during the building process. In order to

guarantee the production of mechanical isotropic parts, the automatic feedback control loop monitors

the part, layer by layer, adjusting the process parameters (relevant for grain size control) to attempt

temperature optimization. The system is also able to detect porosity during a build.

Raplee et al [25] settled a Flir 7200 by the front window of an Arcam s12. They developed a method to

calibrate the temperature data in order to monitor how the thermal conditions affect the grain structure.

Cordero et al [26] introduced beside IR camera the use of a pyrometer in order to gain more infor-

mation about the thermal situation in the build chamber. A multi wavelength pyrometer was mounted

inside the Arcam S12 to record surface temperature during the process. Respect IR camera, pyrom-

eters have the advantage that do not depend by emissivity. Nevertheless, the disadvantage is that it

is able to measure a fixed spot size. Both the instruments at the end of the study were found able to

identify thermal differences related to process parameters modifications, capable to influence the final

microstructure.
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CHAPTER 2

MACHINE LEARNING IN ADDITIVE

MANUFACTURING: STATE OF THE ART

In this modern time of Industry 4.0 also called FIR (the Fourth Industrial revolution), the overall sector

of manufacturing is producing piles of data for production and assembly lines. Also the 3-D printing

or additive manufacturing is equally contributing to this data. According to Alabi et al [35] Additive

manufacturing technologies and ML are an important sub set of the industry 4.0.

In recent times many research activities has been carried out to implement the machine learning

techniques in the additive manufacturing in order to manufacture the simple as well as complex parts.

State of the art of machine learning in additive manufacturing is described in the following sections.

Machine learning is a technique of artificial intelligence (AI). ML makes a system able to automat-

ically learn from a given data and accordingly take the decisions or predictions without being pro-

grammed again and again. Recently the research in the field of machine learning is gaining pace in

the fields of smart manufacturing [36], object recognition, medical, processing of natural language, pre-

diction of material properties and auto driving.

2.1 MACHINE LEARNING TECHNIQUES

There are three categories of machine learning techniques that are supervised learning, unsupervised

learning and reinforced learning. These three techniques have their own specific algorithms. For ex-

ample clustering is the most common algorithm for unsupervised machine learning technique and its

purpose is to search for the hidden pattern [37].

In the subsections below some details of categories of ML are described.

2.1.1 SUPERVISED LEARNING

In this method, data has a described relation between ground truth output and input. This means

data is labeled: for example if we have several text-documents and we know their genre we can pre-

dict the similar document relation for others. This approach is widely used in sentiment analysis, text
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classification and spam filtering. Some most common algorithms are Support Vector Machine, Naïve-

Basedand Nearest Neighbor for classification and Linear Regression, Decision Trees, Neural Networks

for Regression [38].

2.1.2 UNSUPERVISED LEARNING

Contrary to supervised learning, data is unlabelled here which defines the main objective of arrang-

ing data in structures and identify patterns. Unsupervised Machine Learning has three basic objectives,

dimensional reduction, Clustering, and Association. This technique is simply used in Sentence seg-

mentation, Machine Translation, and Dependency Parsing. Some common algorithms are fuzzy logic,

Bayesian Clustering, Hidden Markov Model, PCA (Principal Component Analysis and LDA (Linear Dis-

criminant Analysis) [38].

Semi-supervised learning techniques are a blend of the previous two exhibited above. This approach

address problem where majority samples of the training are unlabeled, even though only limited data

points with label are available. Advantage of this is that in several areas a huge amount of unlabeled data

points is willingly available. Applications, where semi-supervised learning is used, are nearly the same

as supervised learning [38].This type of learning is most beneficial when the labeled data points we have

are not too common or so exclusive to get then using that unlabeled available data points can raise the

performance. It has a common application of speech analysis and web-content classification.

2.1.3 REINFORCEMENT LEARNING

This approach is widely used in robotics, record management, and finance where the prime goal is to

develop a policy. For instance: in games where a correct step gives some rewards and wrong movement

penalize the score. The Reinforcement Learning helps agents to learn by witnessing the available behav-

iors and their conduct by using only an evaluative response, called the return. The policy‘s ultimate goal

is to increase its long-term success. Few well-known algorithms are Q-learning, SARSA, Deep-QNetwork

[39].
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Figure 2.1: Description of Machine Learning types, taken from https://cleanpng.com/Rusbert

2.2 NEURAL NETWORKS

Neural networks are the algorithms that are inspired by the brain of human. When we see something or

touch anything the data is sent to the brain, where it is processed by the neurons. Neural Networks are

commonly known as Artificial Neural networks (ANN), because of their artificial capacity to mimic brain

were primarily used in computer vision tasks. Neural networks is a type of supervised machine learning,

while other all forms of machine learning are un-supervised learning. In a neural network algorithm the

data is pre-labeled i.e; the system has been trained about to what answer should be given to the inputs.

The NN is ideal for additive manufacturing because we have the clear targets and qualification criteria

before hand in this techniques.

Neural networks algorithm has the strongest decision capability having the complex relationship

between inputs and the outputs. There are three type of layers in a neural network, i,e; input layer,

hidden layer, and output layer. Each layer consists of nodes or neurons, so as to copy the human mind.

Weights are the coefficients of the NN and connection magnitude in-between neuron and adjacent layer

is represented by the weights as illustrated in figure 2.2.
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Figure 2.2: A simple NN

The values of weights are determined by training the NN iteratively, the most famous method for

updating weights is called back propagation, which uses the mathematical chain rule to iteratively com-

pute gradients for each layer. Once training is achieved, the NN will have the capacity to infer the outputs

based on previously unseen inputs.

2.2.1 CONVOLUTION NEURAL NETWORKS

Neural networks are composed of human brain-inspired algorithms. Generally, when you open your

eyes, what you see is called data and is processed in your brain by the Neurons (data processing cells)

and knows what’s around you. Alex Waibel et al (1987) [59] introduced convolution networks inspired

by the visual cortex of the human brain . Applicative CNN by Yan LeCun et al (1998) were class of deep,

feed-forward artificial neural networks used for banking systems to recognize numbers on cheques [58].

Neural Networks are commonly known as Artificial Neural networks (ANN), because of their artificial

capacity to mimic brain were primarily used in computer vision tasks. Artificial Neural Networks are

universal approximators whichmeans they can formany function. Nevertheless, most recently, Convo-

lutional Neural Networks have found prominence in addressing NLP-related issues such as Sentence

Classification, Text Identification, Sentiment Analysis, Text Summarization, Machine Translation, and

Answer Relations. This is because CNN has the capability of dealing with data parallelly. CNN among its

other variants like RNN is preferred on account of fast response and possible implementation on GPU

units.
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Figure 2.3: Architecture of Convolution Neural Network [59]

2.3 ML APPLICATIONS IN REAL WORLD

Due the the rapid growth of machine learning it is now possible to resolve small or complex problems

from data set of whatever size coming from different sensors, or from a data base. In the table 2.1, some

real world applications of machine learning are described.

S/N ML Applications in
the Real World

Description of the Application

1 Computer Vision
and Image Process-
ing

ML used for facial recognition, signal processing,
object detection, speed detection.

2 Computational Biol-
ogy and Health Care

ML applied to data collected from the health care
sector, i,e; sequencing of DNA, detection of tu-
mor etc.

3 Aerospace, Man-
ufacturing and
Automotive

In manufacturing it is being used in real time de-
tection, predictive maintenance, in situ monitor-
ing etc.

4 Energy Used for price and load forecasting etc.
5 Natural Language

Processing
To process the text and speech data exactly ac-
cording to human writing or speech.

6 Computational
Finance

Used for algorithmic trading and to score credit
etc.

7 3D Printing Additive
Manufacturing

ML is being used in ML such as detection of ma-
licious defects, sensor data analysis and classifi-
cation, cyber attacks etc.

Table 2.1: Real world application of ML techniques (MathWorks, 2016)
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2.4 APPLICATION OF MACHINE LEARNING IN AM

The involvement of machine learning into additive manufacturing can be broadly devided into three

categories, i,e; Additive Manufacturing Process, Design for Additive Manufacturing (DfAM) and Additive

Manufacturing Production. The schematic representation of this classification in shown in the figure 2.3

([54]).

Figure 2.4: Involvement of ML in different AM domains [54]

Application of machine learning in AM has become an active research are both in industry and in

education sector [40]. In this section three additive manufacturing techniques are discussed because in

these three AM techniques the machine learning has been widely applied. There techniques are Powder

Bed Fusion (PBF), Material extrusion and Direct energy deposition (DED). These are the most important

AM techniques and are greatly used in the industry and academia. However, the PBF processes will be

discussed more specifically in this section.

A graphical representation correlation between additive manufacturing data and machine learning

is shown in the figure. It presents the data collection process, the data feeding process into machine

learning algorithm, based on the prediction and the classification the resultant data from the input and

lastly the optimization of data to be used as a fresh parameter for the further manufacturing through the

additive manufacturing process [40].
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Figure 2.5: Additive manufacturing data Vs Machine learning (Baumann et al [40])

In the following subsections the application of machine learning in AM processes is described,

specially for In- process defect monitoring, powder spread characteristics and process parameters opti-

mization.

2.4.1 APPLICATION OF ML IN THE IN-PROCESS DEFECT MONITORING

In process monitoring and control is the most worked on area in AM where the machine learning tech-

niques have been applied. In situ monitoring is growing day by day; it includes different sensors like

pyrometers, photo-detectors, thermocouples, highs speed optical cameras and many more [14]. But

perfectly achieving the control in real time is still in early stages. This is because yet it is not fully clear

that the data coming from a specific sensor is the exactly required data for that specific parameter con-

trol. Also, data-fusion strategies must also take into account the data that is not coming from the sensors.

Furthermore, the fused data must be incorporated in the machine learning techniques, though recently

is has been incorporated in the ML techniques.

A research was carried out by Roberson III [41] on the real time quality monitoring of additive man-

ufacturing process in FDM. In his research, a desktop 3D AM machine was attached with sensors while

the data was continuously gathered during the build process. The main objective of his research was to

specify the causes that can impact on the quality of the finished product and cause the printing failure.

Roberson III [41] used the machine learning for the classification to detect the failure of printing. The

initial modeling showed that the surface roughness was below 8 percent. Roberson III [41] identified

two machine learning algorithm that were most suitable and these algorithms are random forecast and

support vector machine (SVM). His study is important to understand the future possible endeavors on

using machine learning in the AM processes.

Wu et al [42] applied image classification and machine learning for the detecting malicious defects

during the build process in additive manufacturing. The high resolution cameras were used at the left,

top and front side of a desktop printing machine. Images was gathered for each layer from the top

view. The images with defect and images with no defects were used for the further process to check the

defects. After getting the data from the captured images, they applied two machine learning algorithms

namely J48 decision tree and the Naïve Bayes classifier.
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Gobert et al [43] used high resolution images to detect the defects in the PBF process using the su-

pervised learning technique of MI. Process monitoring was mainly focused in their study. By using a

high resolution digital camera many images were collected layer by layer during the PBF build process.

The most relevant information was extracted from the images with the help of machine learning. SVM

(support vector machine) algorithm was used. In situ detection of defect accuracies they obtained was

more than 80 percent. A demonstration of it was also carried out by [43] for verification.

Scime and Beuth [44] used a trained computer vision technique to detect the defect in the laser

powder bed fusion process. At this point of time most of the laser bed fusion machine do not provide the

real time feedback during the build process as they are single loop machines. There are some laser PBF

machine that provide the real time feed back but still they can not monitor the process automatically.

Scime and Beuth [44] focused on this problem and they carried out the analysis of laser PBF for the in

situ monitoring and finally to fabricate on the laser PBF machine a real time controller. They technique

used was the unsupervised machine learning technique and a reasonable set of data was used that was

collected from the patches of images.

Liu et al. [33] realized a real time feedback control system for Fused Deposition Modeling. Their

proposed methodology included a system that was able to capture the images in real time, a technique

that was able to analyze the images and a PID controller that was responsible for feedback control. Two

types non conformances were found by them firstly the under fill secondly the over fill. They used the

technique of SVM in order to divide the features in two groups i.e.; defective features and normal features

after getting the texture features of the images. After that the defect severity was identified again by an

SVM for the second time. Finally the PID controller was responsible to provide a feedback to the system

in order to remove the defects.

Yao et al. [34] worked on an optimal feedback control system for the laser based PBF. The multiracial

analysis was used on each layer to find the defect condition. After that the upcoming defects were pre-

dicted in the layers to come. Finally, in order to derive the policy of optimal control, they used a Markov

decision process for the modeling of stochastic dynamics of different layers.

Grasso et al. [32] worked on the technique of data fusion to manipulate the data coming from many

sensors in EBM. In order to classify the the process signals that are out of control and the process sig-

nals that are under control, they used SVDD that is the Support Vector Data Description strategy in

ML. They used this technique in order to stabilize the process signal as this technique is able to detect

autonomously the errors and unwanted data form the data coming from the sensor. However, their

proposed methodology is suitable where only one part is being produced in bulk quantity.

Xinbo Qi et al [45] used acoustic emission and neural networks for the quality monitoring of in situ

SLM process. The schemed used is shown in the figure. A fiber based bragg gratin sensor was used to

record the acoustic emission signals. The neural network algorithm used was a SCNN (Spectral convo-

lution neural networks. SCNN is an extension of the convolutional neural networks (CNN). The packet

transform of the wavelet and narrow frequency band’s relative energies were the inut features used. The

output of the system was the information that either the quality is poor, high or medium of the printed

layer. Xinbo Qi et al [45] reported that the accuracy of the CNN was 83 percent, 85 percent for medium

and 89 out of hundred for poor part quality.
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Figure 2.6: Additive manufacturing monitoring system (Xinbo Qi et al [45])

Because of the potential major breakthrough of additive manufacturing technologies by imple-

mentation of machine learning into AM, two of the world’s most known companies , Autodesk and the

General Electric (GE) has worked on the application of ML to additive manufacturing technologies. Net-

fabb 2018 is a software that was launched by the Autodesk. With this software it is possible to put the

designs into a software that is design regenerative. Digital models are being evaluated by Autodesk with

the use of ML for advance level additive manufacturing. Autodesk has worked on the generative design

software for AM part manufacturing for some giant engineering firms like the Under Armour and the

AirBus [46].

2.4.2 APPLICATION OF ML IN POWDER SPREADING CHARACTERIZATION

In the powder based fusion processes it is an equally important factor that the uniformity of the powder

that is spread layer wise should be uniform and as per already defined amount. It plays a very important

role in maintain the quality of the manufactured part. Some major defects like swelling and warping may

occur if the powder is not spread properly. It is very important not to use any physical anomaly detectors

on the machine. Therefore, an automatic system is very important to realize that can control the powder

spread mechanism and is able to control the in process defects that may occur due to improper powder

spread during the build process. Scime and Beuth [44], [47] used the computer vision technique of AI

and used multi scale convolutianl neural networks [47] and k mean clustering [44] for the training of the

system in order to classify the patches of powder bed fusion process images. The research of [44] and

[47] also provided a way forward to implement a feedback controller for the in situ rectification of the

anomalies.

W. Zhang et al [56] performed the experiments, simulation and a Back Propagation Neural Network

(BP-NN) ML approach to correlate the quality of the spread-layer, characterized by its roller (spreader)

rotational and translational speed to roughness.
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2.4.3 APPLICATION OF ML IN PROCESS PARAMETER OPTIMIZATION

In the past many simulations and experiments were carried out to optimize the parameters of additive

manufacturing processes. These traditional methods were solely based on the trial and error; as a con-

sequence these methods were so expensive and also so time consuming [48]. These physical simulation

processes can provide the info about the some feature like micro structure, geometry of the melt pool,

keyhole. Without any doubt the simulation that is carried out on a macro scale like FEM undergoes

from discrepancies in the results of experiments because of the assumption that are very simple. Thus

there has been so much research by different researchers in order to implement the machine learning

techniques to solve the problems encountered during the parameters optimization in the additive man-

ufacturing processes.

There have be applications of ML in every process of Additive manufacture, however the PBF process

is focused here.

The machine learning techniques in the additive manufacturing processes were basically used to

interlink the main process parameters and the indicators concerned to the ultimate quality of the part

at two distinct levels i.e; macro-scale level that is for example mechanical properties and the meoscale

level that is related to geometry of the meltpool and relative density or porosity. Furthermore, process

maps were also constructed by some researchers. The process maps can provide in depth visualization

of the process windows.

While the single track meoscale provide the basic building blocks for the high energy additive man-

ufacturing processes. The properties of the meltpool like the continuity, uniformity and geometry are of

major importance in the finished part quality. Keeping in view this fact, in order to make a prediction of

geometry of the meltpool like height, depth and width for PBF, the MLP technique that is the multi layer

perception technique was used by [49]. Here a strong linkage was created between the in-between the

meltpool geometry and the process-parameters. In a reverse way it can be said that by controlling the

process-parameters a required morphology of the meltpool can be obtained. To further carryout this

research Tapia et al. [50] worked on the Gaussian process (GP) based surrogated model in order to map

the process parameter against the depth of meltpool in order to make a response map in 3D. To avoid

the unwanted melting mode of the keyhole the process widow can be pre-determined. After using some

filters the obtained prediction error was around 6.023 micro meters that was acceptable when it was

compared to the error that occurred during the collection process of data. In some cases open porosity

is a demand, for example for energy absorption auxetic structures are needed and for implants in med-

ical science porous structure are needed. A. Garg and Jasmine Siu Lee Lam [51] explored the support

vector machine (SVM) and the multilayer perceptron (MLP) technique for the prediction of the open

porosity during the selective laser sintering PLA material.

The machine learning approach can also be employed in the macro-scale properties of AM-built

parts. ANFIS system (adaptive network based fuzzy inference system) has the capability to handle the

relative truths only. Therefore, keeping in view the uncertainties that are faced in the fatigue process ,

thus ANFIS is a good tool to assess the properties of the fatigue process. Zhang et al. [52] used the same

selective laser sintering machine and they gathered 139 data of fatigue from SS316-L-parts and they got
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this data by varying the conditions of processing 18 times. ANFIS was successfully applied for the pre-

diction of high-cycle fatigue-life with the RMS (root-mean-squared) error between 11 to 16 percent by

employing two models, i.e; the process-based-model that includes the temperatures for heat treatment

and the process parameters of printing, and the property-based model that includes the elongation and

the uts-ultimate tensile strength. According to Wang et al. [48], as described before, for EBM process

process window can be narrowed down by observing the surface condition of the top build. Its advan-

tage is that the SVM is good when there is a clear margin between the classes. But its disadvantage is

being prone to over-fit. Aoyagi et al. [53] suggested a relatively easy way by using only 11 samples for

constructing the process maps for electron beam melting EBM process. Process parameters; the speed

of the scan and the current of the electron-beam, were correlating with surface conditions, as shown in

the figure. In this work the sole purpose of SVM was to only do the fitting of the data for plotting of the

boundaries of decision. As the chosen set of data was very small, therefore, it was very difficult that a

test set could be allocated for the purpose of evaluation of the model.

Figure 2.7: SVM-prediction of macro properties of EBM built parts [53]. (i) For 12 different process-
parameters, top-surface conditioning the printed samples. (ii) Micrograph of cross section of each sam-
ple. (iii) Construction of the process map for optimization of process parameters to obtain good surface
finish and low porosity.

B. Kappes et al. [55] worked on the optimization of the process parameters of powder bed fusion

process using the INCONEL 718 by applying a Random-Forecast-Network Machine learning algorithm.

3600 samples were printed in their experiments and they correlated the porosity of the part to the ori-

entation of the part to the location of the part and usage of powder that was recycled.

Imani et al. [31] proposed system where the real time data was used from different sensors in order

the observe the conditions of the process causing the porosity with the help of a machine learning tech-

nique. This was sort of a ‘qualify as you build model’. Imani et al. [31] analyzed correlation between the

location and the frequency of the produced parts and the process parameters in a laser PBF process like

hatch spacing, power of laser and the velocity. Layer by layer images in this in situ process were used

to extract the statistical features. Afterwards, classification of these features was done by the machine

learning techniques i.e; k-NN, SVM and feed forward neural networks in order to find the conditions of

the process that were mainly responsible for producing the pores.

Mallikharjun et al [30] proposed a framework by using the ANN (Artificial Neural Networks) in the
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powder bed fusion process for the purpose of optimization of the process parameters. To different sets

of the experimentation was employed in this framework. The first set of experiments was mainly for nar-

rowing down the inputs (the process parameters) to push them to their optimum ranges. The second

set of experiments employs on the findings that how a specific set of parameters effect the outputs (ul-

timate properties. Then, they tested the final properties of manufactured part after performing the two

sets of DOE (Design of Experiments) in the next step. The authors at the end proposed a framework to

for the optimization of the process parameters in order to get the best final quality by using the acquired

resultant data in the previous step and training an intelligent system on the basis of this data. Figure 2,8

shows the schematic of the process.

Figure 2.8: Development of ANN model for the framework proposed by Mallikharjun et al [30]

The feed forward neural network model has been proposed in this study. In feed forward neural net-

work an multi in, out optimization is developed by using the back propagation algorithm. Scan speed,

beam diameter, laser power and hatch space are the inputs. The final properties of a manufactured part

like mechanical strength, dimensional accuracy, Porosity, surface roughness, and process time). Figure

2.8 and 2.9 show the Neural network model and algorithm for selection of process parameters.
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Figure 2.9: The employed Neural Network Model by Mallikharjun et al [31]

Figure 2.10: Algorithm of selection process parameters by Mallikharjun et al [31]

32



CHAPTER 3

METERIALS AND METHODOLOGY

Despite so much research, the quality improvement of EBM parts continues to be an open problem

that poses challenges in its major industrial breakthrough. Hundreds of parameters are involved in the

EBM process. The main problem of EBM process being sub- optimal is the lack of proper analysis and

understanding of the co-relation of major parameters impacting on the quality of the part.

Therefore, in this thesis the parameter analysis and co-relation was carried out in the first phase

and some important parameters were selected out of so many parameters by using different analytical

techniques both by physically observing the process behavior and parameter variation on the Arcam

LogStudio software that comes inbuilt in the Arcam machines and then by applying some software sta-

tistical analysis techniques.

In the second phase the machine learning algorithms like Support Vector Machine (SVM) and Arti-

ficial Neural Networks (ANN) were developed and compared in order to get the most precise prediction

of the final product quality qualification based on these selected parameters.

Below in section 3.1 the material used during the experiments to build all the parts of build passed

and failed categories is discussed. In section 3.2 the parameter analysis and correlation is discussed.

In the section 3.3 Pearson Correlation Coefficient and in section 3.4 the machine learning algorithms

developed for the prediction and validation purposes are discussed.

3.1 Material

A total of six parts were selected. Three of them were corresponding to successfully build done category

and three of them were corresponding to build failed category. The material used for manufacturing of

these parts was Ti-6Al-4V .

Ti-6Al-4V is sometimes also named as ASTM Grade 5 and Ti64 or TC4. It is an alpha-beta titanium

alloy. Ti-6Al-4V has the quality of high strength to weight ratio and also has an excellent corrosion resis-

tance.

Ti-6Al-4V is a very commonly used titanium alloy. As it provide low density and great corrosion

resistance, therefore, it is very largely used in the aerospace industry and in the biomedical applications.
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3.2 Parameter Analysis and Co-relation

Poor control of the EBM process parameters can lead to unacceptable variation in product quality, lead-

ing to the manufacturing of large amounts of out of specification production. This results in an increase

in both re-work and give-away and hence a significant increase in energy consumption and raw material

usage. The development of an industrially reliable manufacturing performance prediction scheme for

such processes, that is capable of detecting process changes and disturbances and providing relevant

diagnostic information, would be a major step towards improving manufacturing effectiveness in the

EBM process. The first step towards this accomplishment is the proper understanding, selection and

co-relation of the parameters. In this part, first the most important parameters were found by analysis

and then correlation techniques were applied on the dataset and finally results were plotted using the

Pearson’s Correlation Coefficient technique.

3.2.1 Arcam EBM® Log Studio

The Arcam EBM® Log Studio is a program used for analyzing and viewing the results from a build done

by the Arcam EBM® system.

Log Studio consists of three different parts: Report, Graph and Reader. The Report part generates a

Build Report that checks different pre-set values to see if the build is within limits. In the Graph part it

can be studied how selected parameters have changed during the build in an easy and simple way. The

Reader shows the selected parameters as numerical values and can be used for the parameters that are

not suitable to show on a graph, for example logical values. During the build the machine logs values to

log files and after the build is done and the machine is ventilated the log files are automatically zipped.

A log file cannot be viewed in Log Studio at the machine during build process, but it can be viewed on

another computer if the folders with the generating log files are shared.

Table 3.1: Most important categories of Log Studio (Arcam Log Studio)

There is a lot of information in every categories, but the most helpful to check is the OPC and the

Process categories. Under OPC we can find hardware values like vacuum, temperature and current for
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different things. Under Process the rake pulses and positions can be found together with the process

manager.The Graph tool is used to visualize the data stored in the log files as graphs. When the Graph

pane is selected, a number of predefined graph pages are displayed (see figure 3.1-2):

Figure 3.1: Viewing of graphs in Log Studio, example 1 (Arcam Log Studio)

Figure 3.2: Viewing of graphs in Log Studio example 2 (Arcam Log Studio)
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Below is a short explanation of the interface:

Rake: Displays pulse length and next position values of the left and right rake regulator.

Beam: Shows beam current, grid voltage, number of registered arc trips and filament current.

power Supply: Shows diagnostics about the power supply such as High Voltage , Arc trips,Remaining

Buffer and Focus value.

Vacuum: Displays the backing gauge pressure, the chamber pressure and the gun pressure.

Temperature: Displays the gun temperature and the temperature (registered by thethermo-couple) un-

der the start plate.

Table Rake Currents: Display rake and table current.

Layer: Shows the build height.

Diagnostics: Shows the performance and response time of the computer. The predefined pages are all

marked with in the header and cannot be deleted.

Parameters Selection for the data-set

The Comma Separated Values (CSV) files of many parameters were obtained from the LogStudio

software against each build category. In the CSV file of LogStudio against each parameter, its value is

stored with respect to mili second of time. Therefore, each CSV file contains thousands of rows indicat-

ing value of that parameter captured at each point of time. All the parameters were combined in such a

way that they are arranged with respect to the time.

After many experimental trials and analysis of the processes for both quality wise passed and re-

jected parts, the most significant parameters were selected for the data set and correlation was carried

out with different statistical techniques. The final correlation was calculated using Pearson’s Correlation

technique. The parameters selected to constitute the data set are described below:

3.2.2 Beam Current

Beam current is the most important parameter of the EBM process. The electron beam is generated

by the potential difference between the negatively-charged cathode and the positively-charged anode.

The beam current is the current of the electrons released in the electron beam. The beam current and

the focus offset jointly control the spot size. In order to improve the surface roughness, it’s needed to

decrease the beam current. The beam power is calculated as the product of the acceleration voltage and

the beam current, while the section of the beam depends on the spot size. The graph of beam current

from log studio is shown in the figure 3.3.
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Figure 3.3: Graph of Beam current (Arcam Log Studio)

3.2.3 Bottom Temperature

This is the temperature measured at the bottom of the build chamber. The graph of Bottom temperature

obtained from Log Studio is shown in figure 3.4.

Figure 3.4: Graph of Bottom Temperature (Arcam Log Studio)

3.2.4 Column Temperature

This is the temperature measured along the EBM machine column. The graph of Bottom temperature

obtained from Log Studio is shown in figure 3.5.
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Figure 3.5: Graph of Column Temperature (Arcam Log Studio)

3.2.5 Filament Current

It denotes the current intensity required to heat the tungsten filament. The graph of Filament current

obtained from Log Studio is shown in figure 3.6.

Figure 3.6: Graph of Filament Current (Arcam Log Studio)

3.2.6 Rake Current Feedback

The rake fetches powder from the powder slopes, which are formed by openings at the bottom of the

hoppers, and distributes the powder across the build table. The build platform moves vertically along

the z-axis, with each layer moving the component being built, the surrounding powder, and the start

plate downwards along with it. The graph of Rake current feedback obtained from Log Studio is shown

in figure 3.7.
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Figure 3.7: Graph of Rake Current Feedback (Arcam Log Studio)

3.2.7 Left/Right Regulator Pulse Length

The output pulse of two sensors located near the initial and the final position of the rake, with respect

to its zero position, are used to control the powder spreading. The reference pulse is 180 ms.

The graph of left and right regulator pulse length obtained from Log Studio is shown in figure 3.9.

Figure 3.8: Graph of Left/Right Regulator Pulse Length (Arcam Log Studio)

3.2.8 Current Height

Current Height indicates at which layer a particular problem occurs. This parameter is actually the

history of the height of the job that increases over time.

The graph of Current height obtained from Log Studio is shown in figure 3.9.
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Figure 3.9: Graph of Current Height (Arcam Log Studio)

3.2.9 Backing Vacuum Gauge Feedback

The parameter is the measure of feedback of the backing up vacuum. The graph of Backing Vacuum

Gauge Feedback obtained from Log Studio is shown in figure 3.10.

Figure 3.10: Graph of Backing Vacuum Gauge Feedback (Arcam Log Studio)

3.2.10 Chamber Vacuum Gauge Feedback

This parameter is the measure of the feedback of the vacuum created in the chamber. The graph of

Chamber Vacuum Gauge Feedback obtained from Log Studio is shown in figure 3.11.
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Figure 3.11: Graph of Chamber Vacuum Gauge Feedback (Arcam Log Studio)

3.2.11 Column Vacuum Gauge Feedback

Column Vacuum Gauge Feedback is the measure of vacuum feedback created in the column of the EBM

machine. The graph of Column Vacuum Gauge Feedback obtained from Log Studio is shown in figure

3.12.

Figure 3.12: Graph of Column Vacuum Gauge Feedback (Arcam Log Studio)

3.3 Pearson Correlation Coefficient

Prior to going towards networks the correlation between the parameters was calculated. This was done

in the Python environment using the Pearson correlation coefficient method.

Pearson Correlation coefficient is also called Pearson product moment correlation coefficient (PPMCC)
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or sometimes bi variate correlation and it determines the statistical relationship between the two vari-

ables. It calculates the value of relationship between +1 and -1. Plus or minus signs refer to either the

correlation is directly proportional or inversely proportional, while the value refers to the magnitude of

the relationship.

3.4 Prediction Models/Classifiers

The prediction was calculated with the help of two techniques. The Support Vector Machine (SVM) and

the Artificial Neural Networks (ANN).

A Support Vector Machine (SVM) is a discriminate classifier defined by a separating hyper-plane.This

technique belongs to supervised learning. Given training data , the algorithm gives us an optimal hyper-

plane which categorizes new examples. In 2-dimensional space this hyper-plane is basically a line di-

viding the plane in 2 parts where, each class lay in each side side.

Basic concept of separation through SVM classifier hyper-plane is shown in figure 3.13.

Figure 3.13: SVM classifier separating hyper-plane (https://developer.xilinx.com/en/articles/exploring-
support-vector-machine-acceleration-with-vitis.html)

Algebraic techniques are basically used for the transformation of the problem for the purpose of

learning of the hyper-plane in the SVM . The basic role of he Kernel is to perform this separation task.

For linear-kernel the new output is predicted by using the dot-product in between each support

vector xi and each input x. The equation is given below.

f (x) = B(0)+X
(ai ∗ (x, xi ))
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In the equation above, the inner products of all the support vectors with a new vector x in the training

data are calculated. With the help of the learning algorithm ,the co-efficient represented by ai and B(0)

are predicted against each input from the training data.

Polynomial and exponential kernels calculate separation line in higher dimension. This is called

kernel trick. The polynomial kernel can be represented as:

K (x, xi ) = 1+X
(x ∗xi )d

The exponential kernel can be represented as

K (x, xi ) = exp(−γ∗X
(x −xi 2)

The gamma tells us that how far is the influence of a training example. When gamma has a low value,

it means the influence has reached so far. Alternately if gamma is high, it means the influence is close.

To put it in another way, we can say that when the value of gamma is low, it means that the points that

lie too much away from the line of plausible separation become in the calculation range of the line of

separation. In other words the higher the gamma the more closer points are taken into the circulation.

Margin is very important characteristic of SVM classifier. This helps SVM to achieve good margins.

Separation of the line from the class points lying very close is called the margin. Larger this separation

the better the margin. When the margin is good, it helps the points to stay in their own class instead of

lying to other classes.

Artificial Neural Networks:

A block diagram of the development of artificial neural networks carried out in this thesis is shown

in figure 3.14.
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Figure 3.14: Process flow of artificial neural network
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Training Data set: Training data set is the sample of the data that is used to fit the model or classifier.

This is provided by the actual data set that we use to train the model. The model sees and learns from

this data through a repetitive process.

Validation Data set: Validation data set is the sample of the data that helps to provide realistic eval-

uation of a model fitted on the data set used for training while tuning model hyper-parameters. The

evaluation goes to be more biased because the skill on the validation data set is implemented on the

configuration of the model .

Test Data set: This is the collection of the data used to provide an realistic evaluation of a final model

fit over the data set of training.

Number of hidden layers: The model that is developed in this thesis contains four hidden layers:

the input layer has eleven neurons that is the equal to the number of input features, first hidden layer

contains 28 neurons, second hidden layer contains 17, the third one contains 12, the fourth one contains

5 neurons, while the output layer contains one neuron as we are predicting the binary classification

problem.

Activation function: This is a function that is nonlinear in nature and its purpose is to transform over

the input signal (x). The decision about the firing of neuron is carried out by the activation function.

Activation function holds very important place in the artificial neural network structure, this is because

if a network don’t has the activation function than its nothing more than a regression model that is

linear in nature thus it is unable to perform any task that is complex in nature. Some famous activation

functions are described below:

Si g moi d : f (x) = 1

(1+e−x)

ReLU : f (x) = max(0, x)

In practical applications, sigmoid gradient that is present on both sides of it and the ReLU negative

axis tends to approach to zero becoming smaller and smaller. Due to this reason the learning problem

occurs as weights become unable to learn because they cant be adjusted. Therefore, the it gives rise to

the disappearing gradient issue. To overcome this problem a function that keeps the input to a specific

range is used and that function is called Max–min normalization.

Loss function: The loss function can be interpreted like a real life problem. The exact problem is

used to find the the loss function. For instance the distance that persists between two vectors, vector

corresponding to target values and the vector of prediction is measured by two errors, i,e; mean absolute

error and the root mean square error. The mathematical expressions of mean absolute error and the root

mean square error are given here:
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RMSE : f (x) =
sPn

i=1(yi − yt )2

n

M AE : f (x) =
Pn

i=1(yi − yt )

n

In the above equations, i is index value, yi is the number that represents the predicted value, and yt

represents the predicted value. Also there exist some small differences between the mean absolute error

and the root mean square error: for example root mean square error corresponds to the L2 norm (the

Euclidean norm) that represents a common familiar distance, while mean square error belongs to the L1

norm where the distance is calculated in the shape of a regular grid that is started from the target origin.
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CHAPTER 4

Experiments and Results

The parametric data of three build done and three build failed parts was selected for the experiments.

All the parameters of data set were gathered against these parts from the log files of Arcam LogStudio. In

the section 4.1 the results of parametric analysis and co-relation are discussed, in section 4.2 the result

of SVM and in the section 4.3 the results of artificial neural networks are discussed. In section 4.4, the

python script is describe.
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4.1 Results of Parameter Analysis and Correlation

4.1.1 Build Done Case I

Figure 4.1: Results of Correlation analysis of build done case I, Part-1
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Figure 4.2: Results of Correlation analysis of build done case I, Part-2

The vacuum Backing vacuum gauge feedback, Chamber Vacuum gauge feedback and Column Vacuum

gauge feedback are co-related separately against Bottom and Column temperatures because realistically

no such relation exist between these vacuum feed-backs and currents.

It is quite logical and also visible from the result that the beam current and the filament current

have a very strong positive correlation between them. Its value is +0.77 which is indicates a very good

co-relation.

Bottom temperature and column temperature were also very strongly co-related with each other and

their value comes out to be +0.89.

The correlation among the beam current, the bottom temperature and the column temperature is

also very significant and comes out to be -0.36 and -0.30. The negative sign indicates an inverse correla-

tion between the parameters. Same is the case with the filament current and these temperatures.

Right and left regulator pulse lengths, which are responsible for controlling the amount of powder

spread in each layer is a little inversely correlated with filament current and column.

Current height of the build part has also very strong inverse co-relationship with the bottom and

the column temperature, that stands at -0.24 and -0.27 respectively. Figure 4.2 also indicates significant

co-relationships among the bottom and column temperatures and the vacuum feed-backs.
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4.1.2 Build Done Case II

Figure 4.3: Results of Correlation analysis of build done case II, Part-1

Figure 4.4: Results of Correlation analysis of build done case II, Part-2
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Again, in this case strong positive co-relationship exists between the beam current and the filament

current. Bottom temperature is very strongly correlated with the filament current, beam current and

current height. Beam current is inversely co-related with the Bottom temperature and Column tem-

perature. In this case Bottom temperature and column temperature are inversely co-related with each

other. Also bottom temperature and Backing vacuum feedback have a very strong inverse correlation.

4.1.3 Build Done Case III

Figure 4.5: Results of Correlation analysis of build done case III, Part-1
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Figure 4.6: Results of Correlation analysis of build done case III, Part-2

In this case a strong positive correlation was observed among the beam current and filament current as

well as beam current and the Rake current feedback. Moreover, there exist strong negative correlation

between beam current and bottom temperature and beam current and column temperature, valued at

-0.34 and -0.24. Apart from that a significant negative correlation was also observed between beam cur-

rent and current height. As far as the correlations between Vacuum feed-backs and temperatures are

concerned, there is a very strong negative relationship between Bottom temperature and backing vac-

uum gauge and its value is -0.66.
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4.1.4 Build Failed Case I

Figure 4.7: Results of Correlation analysis of build failed case I, Part-1

Figure 4.8: Results of Correlation analysis of build failed case I, Part-2
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In this case, apart from very strong correlation between beam current and the filament current, an-

other very strong correlation was observed that is between column temperature and left regulator pulse

length. Also in this case there is an unusual scenario to observe that was not present in the build done

cases, that is the correlations between temperatures and vacuum feed-backs. For example, there are very

strong positive correlations between backing vacuum gauge feed-back and column vacuum gauge feed-

back, also between backing vacuum gauge feed-back and chamber vacuum gauge feed-back, standing

at +0.73 and +0.72 respectively . While Column vacuum gauge feed-back and Chamber vacuum gauge

feed-back enjoy a correlation of exactly 1. Talking about the negative correlations, there is a correlation

of -0.99 between Bottom temperature and Backing vacuum feedback. While the correlation of bottom

temperature with column vacuum gauge feed-back and chamber vacuum gauge feedback stands at -

0.81 and -0.80 respectively. Column temperature and backing vacuum feedback are correlated as -0.51.

Furthermore, the correlation of Filament current and Bottom and Column temperature came out to be

-0.41 and .0.51 respectively.

4.1.5 Build Failed Case II

Figure 4.9: Results of Correlation analysis of build failed case II, Part-1
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Figure 4.10: Results of Correlation analysis of build failed case II, Part-2

In this case long with a positive correlation between the bean current and the filament current, there is

also a strongly positive correlation between column temperature and bottom temperature, that is +0.58.

Among other positive relationships are the correlations of column temperature with chamber vacuum

feedback and column vacuum feedback, standing at +0.61 and + 0.60 respectively. While column tem-

perature and backing vacuum feedback are correlated as +0.38. As far as the inverse correlations are

concerned, the correlation of column temperature with filament current and beam current stands at

-0.49 and -0.41. There is a very unusual scenario observed in this case that is between column and bot-

tom temperatures. Value of this correlation in figure (a) is +0.58 and in figure (b) is -0.78. This result is

very strange and may be the cause of the failure of the part.
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4.1.6 Build Failed Case III

Figure 4.11: Results of Correlation analysis of build failed case III, Part-1

Figure 4.12: Results of Correlation analysis of build failed case III, Part-2
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If we talk about the positive correlations as usual there is one between beam current and the filament

current. Second positive relationship is between column temperature and left regulator pulse length

and its value is +0.21. The column temperature is also positively correlated with the column vacuum

feedback and the backing vacuum feedback having the same value as +0.60. However filament current

and column temperature are negatively correlated with each other as -0.36. Rack current feedback and

bottom temperature as -0.34. Beam current is also negatively correlate with bottom temperature and

column temperature as -0.24 and -0.27 respectively. It is worth noting here the difference of correlation

between bottom temperature and column temperature between the two figures. It’s a huge difference

one at -0.23 and other stands at -0.89. May be something happened to these parameters to cause a

failure of the part.

4.1.7 Arc Trip Error Case

Figure 4.13: Results of Correlation analysis of arc trip error case, Part-1
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Figure 4.14: Results of Correlation analysis of arc trip error case, Part-2

In this case there is positive relationship in both the figures between the bottom temperature and the

column temperature, and its value stands at +0.6 and +0.5. While the thing to be noted is that the beam

current and the filament current are not as strongly positively correlated to each other as they were

in previous cases, as in this case its value turned out to be only +0.24. Among negative relationships,

there are two strongly inverse correlations. One is between backing vacuum gauge feedback and bottom

temperature standing at -0.68 while the other is between backing vacuum gauge feedback and column

temperature and is value is -0.61. Moreover, Column temperature and bottom temperature are also

negatively correlated to column vacuum gauge feedback and chamber vacuum gauge feed back.
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4.1.8 Correlation Analysis Conclusion

The summary of correlation analysis is shown in the table 4.1.

Table 4.1: Summary of Correlation analysis

The upper triangle represents the build done cases, while the lower triangle represents the build

failed cases.

The co-relation results obtained in the previous section provide an important insight about the most

important parameters that are responsible for the final part quality. It is worth nothing that for build

done parts all the correlations between the parameters are fairly moderate and in almost the same range

for all the build done cases. However for build failed cases the behavior of correlation between the pa-

rameters was so extreme and their value was so scattered when compared to other build failed parts or

build done parts. It is also pertinent to mention here that the beam current is by far the most significant

parameter that gives an idea about the build process. Similarly the bottom and column temperatures

are also very important. The results show that all the selected parameters have some sort of co-relation

between them and preserve some uniqueness when moving form build done to build failed category,

therefore they all can give important information regarding the prediction of the quality of the part un-

der production. Therefore, this data set is used for the Machine learning algorithm for prediction in the

next section
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4.2 Results of Support Vector Machine (SVM)

While implementing the SVM, three kernel fictions were applied separately, i.e; Polynomial, Gaussian

and Sigmoid kernel. The shape of the data set is summarized in the table 4.2.

Table 4.2: Shape of SVM data set

The results of all the three kernels applied are shown in the table 4.3.

Table 4.3: Results of SVM model

Gaussian kernel achieved a perfect 58 percent prediction rate while Sigmoid kernel achieved 51 per-

cent. Therefore the Gaussian kernel performed slightly better. Polynomial kernel showed the least ac-

curate results.

Overall the results obtained from SVM were absolutely not satisfactory. This is because the data set

was very huge and typically the state vector machine (SVM) model performs better when the data set is

small.

Therefore, other experiments were carried out by artificial neural network models and training and

testing them against the variance of different parameters to obtain the satisfactory prediction results.
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4.3 Results of Artificial Neural Networks (ANN)

The shape of data set used for training, testing and validation is summarized in the table 4.4.

Table 4.4: Shape of ANN data set

The best results were obtained by using this division of data into train, test and validate sets. 60

percent of the data was used for the training purpose, while for testing and validation 20 percent was

used for each. Overall the total features were 11 and the total number of entries were 1390885. Out of it

the total number of entries for build done parts were 972912 while for build failed parts the number was

528046. A total of 834531 entries of all the 11 features were used for training the model. for testing and

training 278177 entries were used for each.

The results of the model are shown in the table 4.5.

Table 4.5: Results of ANN model

The model was tested for two metrics. The Mean squared Error (MSE) and the Root mean Squared

Error (RMSE). The test set score for the mean squared error was achieved as 0.17810483276844025 while

for root mean squared error it was 0.425437629. Clearly the test score of mean squared error is much

more superior than the root mean aqua red error.

As far as the training score is concerned, it was 0.17890693247318268 in the case of mean squared

error, while it was 0.426165998 in the case of root mean squared error. Again the mean squared error

won over root mean squared error in the category of train score.
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Then the model was tested with tow sets of values against each feature. for the first set the predicted

result was 0 and 0.8948207 for actual values of 0 and 1 respectively in the case of mean squared error.

However, in the case of root mean squared error the predicted results were 0 and 0.7539 for the actual

values of 0 and 1. Again in this category the mean squared error predicted better results than the root

mean squared error.

4.4 Python Script

from sklearn . decomposition import PCA

from sklearn import preprocessing

import pandas as pd

import numpy as np

import matplotlib . pyplot as p l t

from sklearn . model_selection import t r a i n _ t e s t _ s p l i t

from sklearn . preprocessing import StandardScaler

from tensorflow . keras import Sequential

from tensorflow . keras . l a y e r s import Dense

from tensorflow . keras . optimizers import Adam

from tensorflow . keras . cal lbacks import EarlyStopping

from sklearn . model_selection import KFold

from sklearn . model_selection import cross_val_score

import datetime

import csv

import glob

import os

import pprint

import seaborn as sns

#Combining the data set

df1= pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_Bottom_Temperature (C ) . csv ’ )

df2=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_Column_Temperature (C ) . csv ’ )

df3= pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_Beam_Current (mA) . csv ’ )

df4=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_Filament_Current (A ) . csv ’ )

df5=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_Rake_CurrentFeedback (A ) . csv ’ )

df6=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \ CSV_RightRegulator_PulseLenght (ms) . csv ’ )

df7=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \ CSV_LeftRegulator_PulseLenght (ms) . csv ’ )

df8=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_CurrentHeight (mm) . csv ’ )

df9=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_BackingVacuumGaugeFB(mBar ) . csv ’ )

df10=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_ChamberVacuumGaugeFB(mBar ) . csv ’ )
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df11=pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Data Set \CSV_ColumnVacuumGaugeFB . csv ’ )

df1 . columns = [ ’ Time_Stamp ’ , ’ Bottom_Temperature ’ ]

df2 . columns = [ ’ Time_Stamp ’ , ’Column_Temperature ’ ]

df3 . columns = [ ’ Time_Stamp ’ , ’ Beam_Current ’ ]

df4 . columns = [ ’ Time_Stamp ’ , ’ Filament_Current ’ ]

df5 . columns = [ ’ Time_Stamp ’ , ’ Rake_CurrentFeedback ’ ]

df6 . columns = [ ’ Time_Stamp ’ , ’ RightRegulator_PL ’ ]

df7 . columns = [ ’ Time_Stamp ’ , ’ LeftRegulator_PL ’ ]

df8 . columns = [ ’ Time_Stamp ’ , ’ CurrentHeight ’ ]

df9 . columns = [ ’ Time_Stamp ’ , ’BackingVacuumGaugeFB ’ ]

df10 . columns = [ ’ Time_Stamp ’ , ’ChamberVacuumGaugeFB ’ ]

df11 . columns = [ ’ Time_Stamp ’ , ’ColumnVacuumGaugeFB ’ ]

df3 [ " Beam_Current " ] = df3 . Beam_Current . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

df4 [ " Filament_Current " ] = df4 . Filament_Current . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

df5 [ ’ Rake_CurrentFeedback ’ ] = df5 . Rake_CurrentFeedback . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

#df6 [ ’ RightRegulator_PL ’ ] = df6 . RightRegulator_PL . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

#df7 [ ’ LeftRegulator_PL ’ ] = df7 . LeftRegulator_PL . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

df8 [ ’ CurrentHeight ’ ] = df8 . CurrentHeight . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

df9 [ ’ BackingVacuumGaugeFB ’ ] = df9 . BackingVacuumGaugeFB . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

df10 [ ’ChamberVacuumGaugeFB’ ] = df10 . ChamberVacuumGaugeFB . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

df11 [ ’ColumnVacuumGaugeFB’ ] = df11 . ColumnVacuumGaugeFB . s t r . replace ( ’ , ’ , ’ . ’ ) . astype ( f l o a t )

r e s u l t 1 =pd . merge ( df1 , df2 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 2 =pd . merge ( df3 , df4 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 3 =pd . merge ( df5 , df6 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 4 =pd . merge ( df7 , df8 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 5 =pd . merge ( df9 , df10 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 6 =pd . merge ( result1 , result2 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 7 =pd . merge ( result3 , result4 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 8 =pd . merge ( result5 , df11 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

r e s u l t 9 =pd . merge ( result6 , result7 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

result10=pd . merge ( result8 , result9 , on= ’Time_Stamp ’ ,how= ’ outer ’ )

result10 . sort_values ( by =[ ’Time_Stamp ’ ] , inplace=True , ascending=True )

# result10 [ ’ Qualification_Category ’ ] = ’1 ’

result10= result10 [ [ ’ Time_Stamp ’ , ’ Bottom_Temperature ’ , ’Column_Temperature ’ ,
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’ Filament_Current ’ , ’ CurrentHeight ’ , ’ Rake_CurrentFeedback ’ ,

’ LeftRegulator_PL ’ , ’ RightRegulator_PL ’ , ’ Beam_Current ’ ,

’BackingVacuumGaugeFB ’ , ’ ChamberVacuumGaugeFB’ ,

’ColumnVacuumGaugeFB ’ ] ]

# result10 . f i l l n a ( 0 , inplace=True )

result11=result10 . drop ( [ " Time_Stamp " ] , axis =1)

result11 . to_csv ( r ’C: \ Users\ASUS\Desktop\Out\BD\BD1. csv ’ , index = False )

# S i m i l a r l y a l l the cases were combine .

# After combining a l l the data against d i f f e r e n t cases , data was merged into a single CSV f i l e .

path1 = r ’C: \ Users\ASUS\Desktop\Out\BD’ # path

a l l _ f i l e s 1 = glob . glob ( path1 + " / * . csv " )

d f L i s t 1 = [ ]

colnames1 = [ ’ Bottom_Temperature ’ , ’Column_Temperature ’ , ’ Filament_Current ’ ,

’ CurrentHeight ’ , ’ Rake_CurrentFeedback ’ , ’ LeftRegulator_PL ’ ,

’ RightRegulator_PL ’ , ’ Beam_Current ’ , ’ BackingVacuumGaugeFB ’ ,

’ChamberVacuumGaugeFB’ , ’ ColumnVacuumGaugeFB ’ ]

for filename in a l l _ f i l e s 1 :

df1 = pd . read_csv ( filename , index_col=None, header=0)

d f L i s t 1 . append( df1 )

concatDf1 = pd . concat ( dfList1 , axis =0 , ignore_index=True )

concatDf1 . columns =colnames1

newDf1= concatDf1 [ [ ’ Bottom_Temperature ’ , ’Column_Temperature ’ ,

’ Filament_Current ’ , ’ CurrentHeight ’ , ’ Rake_CurrentFeedback ’ ,

’ LeftRegulator_PL ’ , ’ RightRegulator_PL ’ , ’ Beam_Current ’ ,

’BackingVacuumGaugeFB ’ , ’ ChamberVacuumGaugeFB’ , ’ ColumnVacuumGaugeFB ’ ] ]

newDf1 [ ’ Qualification_Category ’ ] = ’1 ’

newDf1 . to_csv ( r ’C: \ Users\ASUS\Desktop\Out\Combined\2AllBD . csv ’ , index = False )

path2 = r ’C: \ Users\ASUS\Desktop\Out\BF’ # path

a l l _ f i l e s 2 = glob . glob ( path2 + " / * . csv " )

d f L i s t 2 = [ ]

colnames2 = [ ’ Bottom_Temperature ’ , ’Column_Temperature ’ , ’ Filament_Current ’ ,

’ CurrentHeight ’ , ’ Rake_CurrentFeedback ’ , ’ LeftRegulator_PL ’ ,

’ RightRegulator_PL ’ , ’ Beam_Current ’ , ’ BackingVacuumGaugeFB ’ ,
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’ChamberVacuumGaugeFB’ , ’ ColumnVacuumGaugeFB ’ ]

for filename in a l l _ f i l e s 2 :

df2 = pd . read_csv ( filename , index_col=None, header=0)

d f L i s t 2 . append( df2 )

concatDf2 = pd . concat ( dfList2 , axis =0 , ignore_index=True )

concatDf2 . columns =colnames2

newDf2= concatDf2 [ [ ’ Bottom_Temperature ’ , ’Column_Temperature ’ , ’ Filament_Current ’ ,

’ CurrentHeight ’ , ’ Rake_CurrentFeedback ’ , ’ LeftRegulator_PL ’ ,

’ RightRegulator_PL ’ , ’ Beam_Current ’ , ’ BackingVacuumGaugeFB ’ ,

’ChamberVacuumGaugeFB’ , ’ ColumnVacuumGaugeFB ’ ] ]

newDf2 [ ’ Qualification_Category ’ ] = ’0 ’

newDf2 . to_csv ( r ’C: \ Users\ASUS\Desktop\Out\Combined\1 AllBF . csv ’ , index = False )

path3 = r ’C: \ Users\ASUS\Desktop\Out\Combined’ # path

a l l _ f i l e s 3 = glob . glob ( path3 + " / * . csv " )

d f L i s t 3 = [ ]

colnames3 = [ ’ Bottom_Temperature ’ , ’Column_Temperature ’ , ’ Filament_Current ’ , ’ CurrentHeight ’ ,

’ Rake_CurrentFeedback ’ , ’ LeftRegulator_PL ’ , ’ RightRegulator_PL ’ , ’ Beam_Current ’ ,

’BackingVacuumGaugeFB ’ , ’ ChamberVacuumGaugeFB’ , ’ ColumnVacuumGaugeFB’ ,

’ Qualification_Category ’ ]

for filename in a l l _ f i l e s 3 :

df3 = pd . read_csv ( filename , index_col=None, header=0)

d f L i s t 3 . append( df3 )

concatDf3 = pd . concat ( dfList3 , axis =0 , ignore_index=True )

concatDf3 . columns =colnames3

newDf3= concatDf3 [ [ ’ Bottom_Temperature ’ , ’Column_Temperature ’ , ’ Filament_Current ’ ,

’ CurrentHeight ’ , ’ Rake_CurrentFeedback ’ , ’ LeftRegulator_PL ’ ,

’ RightRegulator_PL ’ , ’ Beam_Current ’ , ’ BackingVacuumGaugeFB ’ ,

’ChamberVacuumGaugeFB’ , ’ ColumnVacuumGaugeFB’ , ’ Qualification_Category ’ ] ]

newDf3 . to_csv ( r ’C: \ Users\ASUS\Desktop\Out\ A l l . csv ’ , index = False )

#Implementation of SVM algorithm

df= pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Out\ A l l . csv ’ )

print ( df . dtypes )

print ( len ( df ) )
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df . f i l l n a ( 0 , inplace=True )

print ( len ( df . loc [ ( df [ ’ Beam_Current ’ ] = = 0 ) ] ) )

df_bd=df [ df [ ’ Qualification_Category ’ ] = = 1 ]

df_bf=df [ df [ ’ Qualification_Category ’ ] = = 2 ]

print ( len ( df_bd ) )

print ( len ( df_bf ) )

df_bd_downsampled = resample ( df_bd , replace=False , n_samples=100000 ,random_state =0)

print ( len ( df_bd_downsampled ) )

df_bf_downsampled = resample ( df_bf , replace=False , n_samples=100000 ,random_state =0)

print ( len ( df_bf_downsampled ) )

df_downsampled = pd . concat ( [ df_bd_downsampled , df_bf_downsampled ] )

print ( len ( df_downsampled ) )

df_downsampled . to_csv ( r ’C: \ Users\ASUS\Desktop\Out\df_downsampled . csv ’ , index = False )

X=df_downsampled . drop ( ’ Qualification_Category ’ , ax is = 1 ) . copy ( )

print (X . head ( ) )

y=df_downsampled [ ’ Qualification_Category ’ ] . copy ( )

print ( y . head ( ) )

X_train , X_test , y_train , y _ t e s t = t r a i n _ t e s t _ s p l i t (X , y , t r a i n _ s i z e =0.7 , random_state=42)

X_train_scaled = scale ( X_train )

X_test_scaled = scale ( X_test )

clf_svm = svm . SVC( kernel = ’ l inear ’ )

clf_svm . f i t ( X_train_scaled , y_train )

y_pred = clf_svm . predict ( X_test )

plot_confusion_matrix ( clf_svm , X_test_scaled , y_test , values_format = ’d ’ ,

display_labels =[" Build Done" , " Build Failed " ] )

p l t . show ( )
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confidence = clf_svm . score ( X_test , y _ t e s t )

print ( confidence )

print ( confusion_matrix ( y_test , y_pred ) )

print ( c l a s s i f i c a t i o n _ r e p o r t ( y_test , y_pred ) )

print ( " Accuracy : " , metrics . accuracy_score ( y_test , y_pred ) )

#ANN for training accuracy

df= pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Out\ A l l . csv ’ )

df . f i l l n a ( 0 , inplace=True )

X=df . drop ( ’ Qualification_Category ’ , ax is =1)

y=df [ ’ Qualification_Category ’ ]

X_train , X_test , y_train , y _ t e s t = t r a i n _ t e s t _ s p l i t (X , y , t e s t _ s i z e =0.62 , random_state =0)

#standardize the dataset

sc = StandardScaler ( )

sc . f i t ( X_train )

X_train = sc . transform ( X_train )

X_test = sc . transform ( X_test )

’ ’ ’

print ( f "Shape of t r a i n set i s { X_train . shape } " )

print ( f "Shape of t e s t set i s { X_test . shape } " )

print ( f "Shape of t r a i n l ab el i s { y_train . shape } " )

print ( f "Shape of t e s t l a b e l s i s { y _ t e s t . shape } " )

’ ’ ’

model=Sequential ( )

model . add ( Dense(28 , input_dim=11 , act ivat ion = ’ relu ’ ) )

model . add ( Dense(17 , act ivat ion = ’ relu ’ ) )

model . add ( Dense(12 , act ivat ion = ’ relu ’ ) )

model . add ( Dense ( 5 , act ivat ion = ’ relu ’ ) )

model . add ( Dense ( 1 , act ivat ion = ’ sigmoid ’ ) )
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model . compile ( optimizer = ’adam’ , l o s s = ’ binary_crossentropy ’ , metrics =[ ’ accuracy ’ ] )

history = model . f i t ( X_train , y_train , epochs=20 , batch_size =200 , verbose =0)

print ( ’ accuracy : ’ , history . history [ ’ accuracy ’ ] [ −1 ] )

p l t . f i g u r e ( f i g s i z e =(7 , 3 ) )

p l t . plot ( history . history [ ’ accuracy ’ ] , lw =2 , l s = ’− ’ , l ab el = ’ Training accuracy ’ )

p l t . t i t l e ( ’ Training Accuracy ’ )

p l t . x label ( ’ Epochs ’ )

p l t . y label ( ’ Accuracy ’ )

p l t . legend ( )

p l t . show ( )

#ANN for MSE

df= pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Out\ A l l . csv ’ )

df . f i l l n a ( 0 , inplace=True )

print ( len ( df ) )

X=df . drop ( ’ Qualification_Category ’ , ax is =1)

y=df [ ’ Qualification_Category ’ ]

X_train , X_test , y_train , y _ t e s t =

t r a i n _ t e s t _ s p l i t (X , y , t e s t _ s i z e =0.25 , random_state =0)

#standardize the dataset

sc_X = StandardScaler ( )

sc_X . f i t ( X_train )

X_train = sc_X . transform ( X_train )

X_test = sc_X . transform ( X_test )

print ( f "Shape of t r a i n set i s { X_train . shape } " )

print ( f "Shape of t e s t set i s { X_test . shape } " )

print ( f "Shape of t r a i n l ab el i s { y_train . shape } " )

print ( f "Shape of t e s t l a b e l s i s { y _ t e s t . shape } " )

num_features = len ( X_train [ 1 , : ] )

# ANN with Keras
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c l a s s i f i e r =Sequential ( )

c l a s s i f i e r . add( Dense(28 , input_dim=num_features , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense(17 , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense(12 , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense ( 5 , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense ( 1 , act ivat ion = ’ sigmoid ’ ) )

c l a s s i f i e r . compile ( optimizer = ’adam’ , l o s s = ’ mean_squared_error ’ )

history_mse = c l a s s i f i e r . f i t ( X_train , y_train ,

epochs = 20 , batch_size =200 , verbose = 0 , v a l i d a t i o n _ s p l i t = 0 . 2 )

print ( ’ Loss : ’ , history_mse . history [ ’ loss ’ ] [ −1 ] ,

’\ nVal_loss : ’ , history_mse . history [ ’ val_loss ’ ] [ −1 ] )

# EVALUATE MODEL IN THE TEST SET

score_mse_test = c l a s s i f i e r . evaluate ( X_test , y _ t e s t )

print ( ’ Test Score : ’ , score_mse_test )

# EVALUATE MODEL IN THE TRAIN SET

score_mse_train = c l a s s i f i e r . evaluate ( X_train , y_train )

print ( ’ Train Score : ’ , score_mse_train )

#Converting the f i r s t l i n e of the dataset

linha1 = np . array ( [ 0 ,0 ,10.77546 ,0 , −0.5769 ,0 ,0 ,35.7982 ,0 ,0 ,0]) . reshape (1 ,−1)

linha2 = np . array ([27 , 3 3 ,1 1 . 3 , 0 . 0 5 , 0 .1 1 5 3 ,

560 ,0 ,0.260417 ,6 ,0.002108 ,0.00000388]) . reshape (1 ,−1)

# Scaling the f i r s t l i n e to the same pattern used in the model

linha1 = sc_X . transform ( linha1 )

linha2 = sc_X . transform ( linha2 )

# Predicted value by model

y_pred_mse_1 = c l a s s i f i e r . predict ( linha1 )

y_pred_mse_2 = c l a s s i f i e r . predict ( linha2 )

print ( ’ Predicted value mse 1 : ’ , y_pred_mse_1 )

print ( ’ Real value : ’ , ’ 1 ’ )

print ( ’ Predicted value mse 2 : ’ , y_pred_mse_2 )

print ( ’ Real value : ’ , ’ 0 ’ )

p l t . f i g u r e ( f i g s i z e =(6 , 4 ) )
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p l t . plot ( history_mse . history [ ’ loss ’ ] , lw =3 , l s = ’−− ’ , l a be l = ’ Loss ’ )

p l t . plot ( history_mse . history [ ’ val_loss ’ ] , lw =2 , l s = ’− ’ , l ab el = ’ Val Loss ’ )

p l t . x label ( ’ Epochs ’ , fonts iz e =15)

p l t . y label ( ’ Loss ’ , fo nts i ze =15)

p l t . t i t l e ( ’MSE’ )

p l t . legend ( )

p l t . show ( )

#ANN for RMSE

df= pd . read_csv ( r ’C: \ Users\ASUS\Desktop\Out\ A l l . csv ’ )

df . f i l l n a ( 0 , inplace=True )

df [ ’ Qualification_Category ’ ] = df [ ’ Qualification_Category ’ ] . astype ( f l o a t )

X=df . drop ( ’ Qualification_Category ’ , ax is =1)

y=df [ ’ Qualification_Category ’ ]

X_train , X_test , y_train , y _ t e s t = t r a i n _ t e s t _ s p l i t (X , y ,

t e s t _ s i z e =0.35 , random_state =0)

#standardize the dataset

sc_X = StandardScaler ( )

sc_X . f i t ( X_train )

X_train = sc_X . transform ( X_train )

X_test = sc_X . transform ( X_test )

print ( f "Shape of t r a i n set i s { X_train . shape } " )

print ( f "Shape of t e s t set i s { X_test . shape } " )

print ( f "Shape of t r a i n l ab el i s { y_train . shape } " )

print ( f "Shape of t e s t l a b e l s i s { y _ t e s t . shape } " )

num_features = len ( X_train [ 1 , : ] )

# ANN with Keras

c l a s s i f i e r =Sequential ( )

c l a s s i f i e r . add( Dense(28 , input_dim=num_features , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense(17 , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense(12 , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense ( 5 , act ivat ion = ’ relu ’ ) )

c l a s s i f i e r . add( Dense ( 1 , act ivat ion = ’ sigmoid ’ ) )
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def root_mean_squared_error ( y_true , y_pred ) :

return K. sqrt (K.mean(K. square ( y_pred − y_true ) ) )

c l a s s i f i e r . compile ( optimizer = ’adam’ , l o s s = root_mean_squared_error )

early_stopping_monitor = EarlyStopping ( monitor = ’ val_loss ’ , patience =50)

history = c l a s s i f i e r . f i t ( X_train , y_train , epochs = 20 ,

batch_size =200 , cal lbacks = [ early_stopping_monitor ] ,

verbose = 0 , v a l i d a t i o n _ s p l i t = 0 . 2 )

print ( ’ Loss : ’ , history . history [ ’ loss ’ ] [ −1 ] , ’\ nVal_loss : ’ ,

history . history [ ’ val_loss ’ ] [ −1 ] )

# EVALUATE MODEL IN THE TEST SET

score_rmse_test = c l a s s i f i e r . evaluate ( X_test , y _ t e s t )

print ( ’ Test Score : ’ , score_rmse_test )

# EVALUATE MODEL IN THE TRAIN SET

score_rmse_train = c l a s s i f i e r . evaluate ( X_train , y_train )

print ( ’ Train Score : ’ , score_rmse_train )

linha1 = np . array ( [ 0 ,0 ,10.77546 ,0 , −0.5769 ,0 ,0 ,

3 5 . 7 9 8 2 , 0 , 0 , 0 ] ) . reshape (1 ,−1)

linha2 = np . array ([27 ,33 ,11.3 ,0 .05 ,0 .1153 ,560 ,

0 ,0.260417 ,6 ,0.002108 ,0.00000388]) . reshape (1 ,−1)

# Scaling the f i r s t l i n e to the same pattern used in the model

linha1 = sc_X . transform ( linha1 )

linha2 = sc_X . transform ( linha2 )

# Predicted value by model

y_pred_rmse_1 = c l a s s i f i e r . predict ( linha1 )

y_pred_rmse_2 = c l a s s i f i e r . predict ( linha2 )

print ( ’ Predicted value rmse 1 : ’ , y_pred_rmse_1 )

print ( ’ Real value : ’ , ’ 1 ’ )

print ( ’ Predicted value rmse 2 : ’ , y_pred_rmse_2 )

print ( ’ Real value : ’ , ’ 0 ’ )

p l t . f i g u r e ( f i g s i z e =(6 , 4 ) )

p l t . plot ( history . history [ ’ loss ’ ] , lw =3 , l s = ’−− ’ , l a be l = ’ Loss ’ )

p l t . plot ( history . history [ ’ val_loss ’ ] , lw =2 , l s = ’− ’ , l ab el = ’ Val Loss ’ )
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p l t . x label ( ’ Epochs ’ , fonts iz e =15)

p l t . y label ( ’ Loss ’ , fo nts i ze =15)

p l t . t i t l e ( ’RMSE’ )

p l t . legend ( )

p l t . show ( )
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Conclusion of the experimental results are explained in section 5.1 and in section 5.2 the future possible

work in continuation to this thesis is discussed.

5.0.1 Conclusion

A large number of applications of artificial intelligence and machine learning are available in the liter-

ature, specially for the in-situ monitoring and edge detection for the additive manufacturing, however,

not much work has been done in the past for the characterization and classification using the predic-

tion models. This really can be a successful pro-active and predictive approach to detect the quality

flaws and defects before even they happen and can cause a major industrial breakthrough for the EBM

technique.

In this thesis work, the effort has been carried out to address the characterization issue and develop

some prediction models that are able to perform proactive and predictive task.

First of all the important parameters involved in the EBM additive manufacturing were analyzed.

Then correlation between the parameters was carried out and the most significant parameters were

selected to proceed towards the model development.

Two models were developed, one using the Support Vector Machine (SVM) and the second model

was Artificial Neural Network (ANN). As a comparison the results obtain by the ANN model are far more

superior than the SVM model. The main reason behind SVM not predicting good results can be the

fact that SVM can manage small data sets very well but when the dimension of the data set increases, it

decreases its accuracy. For larger data set ANN comes into play, and it is evident from the results of the

ANN model that is giving much better results than ANN.

Also withing the ANN approach the metrics were calculated using two different approaches, i.e; the

Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE). Upon comparison of these two

metrics it turned out that the MSE was giving the best results, that is to say, the loss of the MSE metric is

0.178 as compared to 0.426 for that of RMSE. Therefore, as a final result MSE metric was selected as the

best one.
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5.1 Future Work

Recent advancement in Artificial intelligence has a huge impact on the deployment of ML algorithms

in the manufacturing sector. Particularly for additive manufacturing which can now be done in a better

way than ever before. A significant leap can be achieved by improving the proposed model to further

accuracy level for prediction in order to attain a proactive approach towards the quality monitoring in

real time while manufacturing of the part with EBM. Several propositions can be presented for this work.

The accuracy of prediction can be improved to a further level by analysing and selecting more data

for the model training. It will be a good idea to collect the data from an industry on regular basis and try

to predict with more improved models.

Also the developed model can be tested in real time while getting the test data directly from the

machine.

Moreover, the predictions made by the model can be helpful to optimize the manufacturing param-

eters in the real time scenario during the manufacturing EBM process.
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