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Abstract

In this work, we investigate a novel approach to the Visual Question Answering task,

a research area where a system has to answer a question expressed in natural lan-

guage about an image. Most of the existing works have a standard limitation: they

are bounded by the poor ability to reason about the image’s context. Therefore, we

consider the use of scene graphs derived from images: a synthetic representation of

an image where graph nodes represent objects entities and the graph’s edges show

object relationships. Furthermore, we investigate the use of an ontological knowl-

edge base as a way of improving the reasoning capacity of the system. The dataset

used for our experiments is Visual7W, a collection of 40’000 questions related to

the Visual Genome dataset. These pictures are enriched with scene graphs and

further annotations. Our empirical studies show how scene graphs can enhance the

reasoning capacity of the system, especially in spatial terms. Moreover, the work

shows how the usage of an external knowledge base improves the capacity of our

system to infer the image’s context.



Chapter 1

Introduction

In the last decade, we observed a sensational development in Machine Learning

and Artificial Intelligence fields. Crowd-sourcing permitted fast advancements in

new research areas that started attracting great interest. Indeed, the availability

of high quality labeled data provided by crowd-sourcing platforms, favored the

discovery of new machine learning models. The ones related to computer vision

and Natural language processing shifted the focus on the possibility of creating

systems capable of answering natural language questions about surrounding words.

The studies conducted in this thesis examine in depth one of these multidisciplinary

research fields, called Visual question Answering. VQA is an Artificial Intelligence

research problem, which involves Natural Language Processing, Computer Vision

and Knowledge Reasoning. The main purpose of this task, is answering text-

based questions about the contents of images. Questions can be related to the

object’s features, relationships between objects and the image’s context. Current

architectures obtain acceptable results, indeed they can reasoning on a wide range

of question/answer pairs. These models obtain a high accuracy on the datasets

with which they are trained on. Nevertheless, the majority of them are limited by

the poor ability of reasoning about the image’s context, picking an answer among a

limited number of options. A robust VQA system should reason about the image’s
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Introduction

context and should learn a commonsense knowledge that humans give for granted.

Humans can easily locate objects inside an image, understanding their positions in

the space and the relationships that exist among them. With all these information,

we can understand the image’s context. This task is not trivial for an AI system.

A question asked in a different way or an unclear image can be misleading for the

algorithm. Therefore, this work aims at overcoming these limitations by enriching

our model with external data that could improve the image’s understanding.

1.1 VQA applications

Visual Question Answering has many real life and research applications. It pro-

vides information about real word and web images. Therefore, it can be integrated

into image retrieval systems, without using meta data or tags. VQA can also be

used for improving human interaction with computers, as it improves visual con-

tent comprehension. Abhishek Das et al for example, developed the chat-bot Visual

Dialog [8]. The latter is a AI model capable of holding a meaningful natural lan-

guage dialog about visual content with humans. Figure 1.1 shows an example of

conversation with Visual Dialog about an image. The latter depicts a cat drinking

water out of a coffee mug. The AI system is questioned about the visual features

contained in the picture (e.g., Which color is the mug?).

This type of visual intelligence system can be exploited for many purposes: they

can be integrated in the already existent AI assistant, like Alexa, asking questions

about visual contents (e.g., security cameras or baby monitors). Moreover, these

AI models can assist data analysts making decisions about surveillance data[24].

With the same purpose, these systems can be used for answering questions related

to a specific domain, like the ones gathered by Bigham et al. [3] to help visually

impaired people.

Regarding the research area, VQA is a way of evaluating AI models for both scene

understanding and reasoning capacity. Indeed, this task requires visual recognition,
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logical reasoning and external knowledge about the world. Abhishek Das et al. for

example studied in their work [7] how humans recognize objects or scenes and how

human attention works, analyzing the differences with the reasoning process of an

AI system. Figure 1.2 depicts an example of this work, where the attention system

highlights the pixels of the image that answer a specific question (e.g., blue for the

tennis racket and red for the floor).

Figure 1.1: A dialog with the chat-bot visual dialog. It is an example of how the
VQA task can improve human-machine interaction [8]

.
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Figure 1.2: A research area where VQA task is involved. The figure depicts human
attention regions concerning different questions [7]

.

1.2 Objective

This work aims at improving the way a VQA system makes commonsense in-

ferences. The existing state-of-the-art architectures achieve acceptable results, es-

pecially on questions that do not require a high grade of reasoning. Nevertheless,

enhancing the system’s ability to reason about the image’s context is still an open

research problem. To achieve this goal, we exploit graph-structured external knowl-

edge: instead of considering exclusively visual feature’s extraction, we propose both

to use scene graphs related to pictures and an external commonsense knowledge

base to extract new concepts and measure the relevance of the extracted knowl-

edge concerning to question context. Concepts extracted from the images and the

ones related to every Question/Answer couple are used to train a LSTM Network.

The input time series take into account both question/answer concepts and the

extracted knowledge.

In our work, the multiple choice task is turned into a binary classification fashion,

assigning to the right answer the label “1” and the label “0” to the other ones.
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At test time, the right answer is considered the one characterized by the highest

probability of belonging to “1” class.

The architecture is trained with Visual7W dataset (see Section 2.1.1). We made

this choice because of the possibility of using scene graphs related to the dataset’s

images. The model is trained only with why questions, the ones involving common-

sense knowledge the most. In proof of this, human performance without images on

this subset is remarkably high, indicating that many why questions encode a fair

amount of common sense that humans are able to infer without visual cues.

Our results demonstrate how scene graphs can infer essential information of im-

ages, improving the reasoning capacity of the system, especially in spatial terms.

Furthermore, the work shows how the usage of an external knowledge base im-

proves the capacity of our system to infer the image’s context. On the other hand,

this VQA-system has been created uniquely for answering why questions. More-

over, even if our technique shows an improvement in terms of reasoning capacity,

existing architectures adopt more sophisticated models that still achieve higher per-

formances. Nevertheless, after the study conducted in this work we will improve

performances by integrating our intuitions into further types of VQA-systems.
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1.2.1 Thesis outline

The following chapters in this thesis are organized as follows.

Chapter 2 (Preliminary Knowledge) provides the background knowledge re-

quired to understand the work and the implementation.

Chapter 3 (Related works and contributions) goes over some of the most

significant related works, which constitute a start point for our proposed

implementation. It briefly analyzes their advancements and their limitations.

Moreover, it explains the scientific contributions that our model provides.

Chapter 4 (Semantic aware VQA) provides a formal description of our ar-

chitecture, describing the modules of which it is composed.

Chapter 5 (Dataset) treats the preliminary analysis made on the dataset, the

evaluation methods adopted and the experimental setting.

Chapter 6 (Results) goes through an in-depth analysis of results, under a qual-

itative and quantitative point of view.
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Chapter 2

Preliminary knowledge

In the following sections, we will first analyze the main characteristics of VQA

models, then the different dataset openly available to work with this task. After-

ward, we will provide the main techniques for a quantitative evaluation. Then, we

will introduce the basic notions related to our architecture: the machine learning

network we adopted for this work and the external data exploited for our method:

Scene graphs and ConceptNet.

2.1 Visual question answering

As previously mentioned, VQA is a multidiscipline that combines Natural Lan-

guage Processing and Computer vision. Given a free-form question expressed in

natural language and related to an image, the VQA-system has to produce an an-

swer. The image is a generic picture, that can represent any kind of context. The

answers instead, can be expressed in two main forms that divide this research field

in two groups:

• Open-ended VQA: as Figure 2.1 (b) shows, the model has to produce a

free-form, natural language answer.
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• Multiple-choice VQA: as Figure 2.1 (a) depicts, the system has to choose

among multiple options.

Figure 2.1: Figures show an example of the two main types of VQA

The existing state-of-the-art architectures distinguish themselves for the algorithms,

the architectures and the type of VQA treated. Nevertheless, the systems are built

using a similar logic.

As Figure 2.2 shows, a typical VQA-system is composed of a series of key mod-

ules:

• Input: The system takes two inputs: one image and the related question.

• Feature extractors: These modules are used for extracting the key fea-

tures from the inputs. Then, these information are projected into a higher-

dimensional space: every feature is embedded into a vector, belonging to a

Rn space, where n is equal to the vector size.

• Algorithm: Input features are combined and used to train a machine learn-

ing algorithm.
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• Classifier: Finally, the previous output is used for predicting the correct

answer.

Figure 2.2: Standard VQA architecture [11]

2.1.1 Datasets for VQA

Starting from 2014, many VQA datasets have been created. These datasets are

employed for training and evaluating a VQA system. A VQA dataset must possess

some key characteristics. It needs to be large, in order to contain different images

and questions related to many contexts. Otherwise, the algorithm could be biased

by the distribution of the questions or answers. Furthermore, its evaluation scheme

has to be hard to outflank, it must be a proof that the system is able to answer

many types of questions.

The main datasets for VQA are:

• DAQUAR[22]: It is one of the smallest VQA datasets available. Indeed, it
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consists of 6795 training and 5673 testing Question/Answer couples. Images

are related to the NYU-DepthV2 Dataset and they contain exclusively indoor

scenes. This peculiarity limits the variety of questions related to the pictures.

• COCO-QA[27]: COCO-QA contains 78,736 training and 38,948 testing

Question/Answer pairs. The latters are created thanks to a Natural Lan-

guage Processing algorithm that extracts them from the COCO image cap-

tions. The Answers are characterized by a single word and there are 435

possible answers. Because of this characteristic, the evaluation procedure is

very simple.

• The VQA Dataset[1]: The dataset is composed of real images from COCO

and cartoon images. Every picture is related to three questions. The latters

are characterized by 10 possible answers. Many of them are subjective, indeed

they do not have a single objective answer. Simple algorithms achieved 49.6

% accuracy on the dataset. This score was obtained without exploiting the

images, but using only the question.

• FMIQA[10]: The Freestyle Multilingual Image Question Answering (FM-

IQA) dataset is composed of images from COCO. Questions/Answers pairs

are generated by humans. Furthermore, in this case the answers can be

represented by full sentences. Because of this characteristic, the answers

can’t be evaluated with common metrics.

Visual7W

Visual7W [15] contains 47,300 images from Visual Genomes. Questions belong

to seven different categories: How, Who, What, Where, When, Who, Why and

Which and they can be divided in two types: telling and pointing. The first

one is related to the first 6 categories and the answer is text-based. The pointing

questions are the ones that begin with Which, for these questions the algorithm has
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to choose the correct object among the ones in the picture. The dataset contains

both open-ended and multiple choice questions. In the second case, the algorithm

has to choose between four options, written in natural language. Choosing among

options is easier than generating a natural language answer. On the other hand,

the usage of multiple choice questions is challenging because they consist of at least

three answers that are possible for the given question.

As Table 2.3 shows, the main differences between these datasets rely on answer

diversity, the answer’s type and length. Another difference consists in the type

of annotations collected for every image. Visual Genome for example, includes

also regions description and scene graphs, data that we estimated to be useful for

training the VQA systems.

Figure 2.3: VQA datasets comparison [13]

2.1.2 Evaluation metrics

VQA are evaluated with different metrics, based on the the dataset structure

and peculiarities. Generally, metrics can be divided with respect to the VQA type:

• For open-ended VQA (see Section 2.1), many alternative methods have

been adopted. Among them, the basic one is accuracy metric. Neverthe-

less, this method is often too rigid because the same concepts can be ex-

pressed in different ways. Consequently, many dataset adopt different meth-

ods. DAQUAR and COCO-QA employ the Wu-Palmer Similarity index [32].
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Instead of comparing the given answer with the ground truth one, WUPS eval-

uates the similarity between word senses. In this way, this method overcomes

the limitations related to accuracy metric. Nevertheless, WUPS is charac-

terized by a series of imperfections. In some cases, it assigns high scores to

even distant concepts. Another problem with WUPS is the inability of un-

derstanding the sense of entire sentences or phrasal answers, often exploited

in the VQA Dataset and Visual7W. Therefore, this metric is often used in the

cases the answer is composed of one word. An alternative is to collect multi-

ple ground truth answers for the same question annotated by humans. This

procedure has been adopted by the VQA dataset and DAQUAR-consensus.

The final answer is obtained by evaluating the consensus among the human

annotated ones. Therefore, achieving a high accuracy is really hard. Indeed,

in these cases human agreement plays a key role, especially for questions

starting with the pronoun Why (e.g., Why the fork is on the table? ). Indeed,

in these cases the answer is often subjective.

• For multiple-choice VQA (see Section 2.1), the simplest method is adopted

and it is used by a part of the Visual7W, VQA Dataset and Visual Genome.

In this case, the VQA system is required to choose which of the possible

choices is the correct one.

2.2 Convolutional Neural Networks

VQA-system are generally composed of two main modules: an encoder (see

feature extractors in Section 2.1) and a decoder. The first one is often a Convolution

Neural Network (CNN), used for extracting from the image the most important

features for the task, the second one is represented by a Recurrent Neural Network,

responsible for generating the output sequence (i.e., the answer).

A CNN is a type of Neural Network that is able to take in input an image,
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assigning to its objects a weight in order to understand their semantics and dif-

ferentiate one from the others. These types of network provide a solution for the

feature extraction task. Indeed, thanks to a sequence of operations they process

the data present within an image, extracting its main characteristics. Figure 2.4

shows the general structure of a CNN, composed of a series of convolutional and

pooling layers.

Convolutional layers:

Convolutional layers are the main blocks of a CNN. They take as input a tensor,

condensing its information into a new one that is often characterized by a smaller

shape. This operation is done performing a dot product between the image’s tensor

and a small matrix of values, called filter, that is “slided” over the entire image.

Depending on the values contained within the filter, the convolution captures dif-

ferent types of information. Furthermore, while going deeper into the network, the

features assume a more abstract meaning.

Pooling layers:

This operation aims at reducing the dimension of the output, mapping the input

into a smaller space. It is exploited to diminish the computational power needed

to process the image.

Dense layers:

These layers are composed of neurons, a mathematical operation that takes an

input, multiplies it by a weight and then passes it through an activation function

to the other neurons. In this case, each input neuron is connected to each output

neuron.
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Figure 2.4: CNN architecture [6]

2.3 Recurrent Neural Networks

VQA task deals with sequences of words that compose both questions and an-

swers. In order to understand their meaning, it is important for a VQA model to

consider the order of the words inside a sentence. For these cases, where temporality

of inputs plays a key role, a special type of network called Recurrent Neural Net-

work (RNN) has been created. RNN recurs the output, that is handled together

with the new input. Considering as input the previous outputs, each step maintains

a relation with the previous and the following one. These architectures are trained

using an input structure called Time Series, a sequence of chunks of information

organized in steps. Time Series are often exploited for text sequencing tasks, but

they are also employed in many other fields like statistics and forecastings. RNN is

characterized by the presence of an internal state, called HiddenState. This part

of the network is fundamental because it introduces the concept of temporality.

Indeed, it can be considered as a memory unit that remembers what the network

has processed during the previous steps of the series. This state is employed in

order to provide a context for the computation of the input. To do so, together

with the new input and the previous output, the state is exploited for the training

18
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phase of the network. Figure 2.5 shows an example of RNN structure and its main

components:

• x: constitutes the input time series. The latter is composed of pieces of

encoded information (see xi in Figure 2.5).

• h: constitutes the hidden state of the network. For each at time step i, this

value is computed exploiting the state calculated in the previous time step

(hi-1) and the current input (xi).

• y: constitutes the output vector. Each part of the vector yi is obtained from

the computation of the input and the hidden state related to the time step i.

The capability of the network to deal with temporality can be enhanced, increas-

ing the number of hidden states. This technique provides a powerful network: the

model recognizes easily the temporal relations among input words. The downside

is an increasement of computational cost and a deeper architecture that affects the

computation of the gradients. Indeed, a deeper system enhances the probability

that during the training phase, the model’s weights assume a value near to zero.

Therefore, these procedure has often the opposite effect because the model is not

able learn anymore. To overcome this issue, called V anishing gradient, Long-Short

Term Memory (LSTM) Networks were created.
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Figure 2.5: RNN unfolded architecture [26]

2.4 Long Short Term Memory

Traditional RNNs are employed for tasks related to the understanding of short

temporal relationships. Indeed, they are unable to handle long ones because of how

they exploit the information related to their hidden state. Furthermore, in Sec-

tion 2.3 we explained why implementing a deeper network to face this problematic

causes vanishing gradient. Long Short Term Memory were created to deal with

tasks where long temporal relationships are required. This network shows a similar

architecture with respect to RNNs one. On the other hand, the principal differ-

ence relies on the way the internal state is stored and updated. Indeed, the main

problem of Recurrent neural networks is the absence of any filter for the chunks of

information that update the internal state.

LSTMs aim at overcoming this problem, providing a mechanism that is able to

keep or flush the hidden internal state. Figure 2.6 shows a high-view of this unit,

called cell. As it depicts, a cell includes sigmoid (σ) and tangent (tanh) functions.

The first one has an output value between 0 and 1. In case the information should
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be forgotten, the function outputs 0, otherwise the function outputs 1. The output

of tanh activation function instead, sweeps between -1 and 1. A LSTM cell is com-

posed of 3 sigmoid and 2 tanh activation functions. These functions are exploited

to update the internal state and generate outputs. The activation functions can be

subdivided into three main components called gates:

• Forget Gate: This gate decides if a piece of information will be removed

from the cell state (see ft in Figure 2.6).

• Input Gate: This gate decides if the information contained in the input xi

can flow into the cell state hi (see it in Figure 2.6).

• Output Gate: This part is related to the computation of the output (see ot

in Figure 2.6).

In the following section we describe in details these three components:

Forget Gate:

Figure 2.6 shows that this gate is the first one involved in the cell mechanism. It

decides which pieces of information remove from the cell state Ct-1 (i.e forget gate).

The code below shows that given the current input xt and the previous cell output

ht-1, a sigmoid activation function is exploited to compute an output value (i.e ft)

between 0 and 1:

f t = σ(W f ∗ [ht-1, xt] + bf) (2.1)

Wf and bf represent the internal parameters of the cell.

Input Gate:

A new vector Ct of candidates ready to be inserted into the cell memory is com-

puted exploiting the input xt and the previous cell output ht-1. As the code below

shows (2.3), this procedure adopts a tanh activation. Furthermore, the input gate
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removes some of the candidates employing another sigmoid function (2.2). This

step is applied to the candidates Ct before updating the internal state.

The input gate it and the candidates Ct are computed as:

it = σ(W i ∗ [ht-1;xt] + bi) (2.2)

Ct = tanh(WC ∗ [ht-1;xt] + bC) (2.3)

At this point, the forget gate removes the useless input data (ft) selected in the

previous step and the input gate selects the candidates that will be exploited for

the computation of the new cell state:

Ct = σ(f t ∗ Ct-1 + it ∗ Ct-1) (2.4)

Output Gate:

For every time step, this gate is employed for the computation of an output.

The latter is based on a filtered version of the hidden state Ct. Indeed, also in this

case a sigmoid activation function ot will compute the same operation performed in

the previous steps (2.1, 2.2). As (2.6) shows, this value will be multiplied with the

state Ct, passed through the activation function tanh. In this way, a new output

ht is computed.

ot = σ(W o ∗ [ht-1;xt] + bo) (2.5)

ht = ot ∗ tanh(Ct) (2.6)
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Figure 2.6: LSTM cell architecture [20]

Input structure and training

To train the network, input data is reshaped into 3-dimensional arrays. As

Figure 2.7 shows, the dimensions are the number of data features, the number

of time steps and the number of samples. This last dimension, called batch size,

represents the number of samples that the model processes before its parameters are

updated. In this case, batches are iteratively created sliding a window of a certain

dimension on input time series. A LSTM remembers only what happened within a

batch. Indeed, at the starting time point of every batch, states are initialized and

set again to 0. To overcome this characteristic and make the model remember what

happened in the previous batch, passing states from the previous batch to the next

one, Stateful LSTM are used. Figure 2.7 shows time series of a Stateful LSTM

having batches of dimension equal to 3 and series characterized by two features (x1,

x2).
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Figure 2.7: Stateful LSTM input time series [19]

The training phase requires also the choice of a gradient descent algorithm.

Thanks to this process, network parameters are modified in order to minimize the

error function of the model over the training data. There are many variants of

this gradient descent algorithm characterized by specific peculiarities. The biggest

difference among them is the momentum, a technique that adjust weight’s update.

Thanks to it, weight’s adjustement is biased by previous update and the best weight

setting is reached faster, preventing situations where the algorithm gets stuck into

a local minimum. Some of them are Adagrad [9], AdaDelta [34], Adam [14] and

Stochastic Gradient descent.

2.5 Scene graphs

One of the main problems of Visual Question Answering is to reason about

semantic and spatial indications related to a question. To fully understand the

visual semantics of images, we propose to integrate the data with which we train our

network with a structured visual representation of pictures: scene graphs. A scene

graph is a directed acyclic graph, that describes the relations among images objects,

that are any type of entities depicted in the image (e.g., car, person, guitar in Figure

2.8 ). The nodes in the graph may represent objects, attributes and relationships.

Objects are linked to their respective attribute nodes with a graph edge (e.g.,

car→black in Figure 2.8). The relationship’s nodes link one object to another,
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for example the Figure 2.8 shows the relation Person
driving−−−−→ car . Visual Genome

dataset provides the biggest and detailed scene graphs dataset. Scene graphs have

been shown to improve image retrieval, generation, video understanding [21] and

visual reasoning [28]. Nevertheless, VQA systems that use SG usually integrate

multiple techniques. Indeed, in a study of the Visual Genome dataset [25], only

40% of the questions could be answered with the usage of human annotated scene

graphs.

Figure 2.8: Scene graph [30]

2.6 External commonsense knowledge base

In this research area, we refer to ‘commonsense knowledge’ as the facts and no-

tions possessed by most people (e.g., car is a vehicle in Figure 2.9). In other words,

it is the most general kind of knowledge about the everyday world. ConceptNet

[18] is a freely available large-scale commonsense knowledge base. It can be seen as

a directed graph where nodes are represented by words and phrases in natural lan-

guage, connected by weighted relations. ConceptNet exploits a set of 42 relations
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(e.g., IsA, UsedFor, CapableOf, LocationOf in Figure 2.9). These relationships are

chosen because they are unrelated to the language or the source of the terms they

connect. In order to enhance the ability of reasoning beyond the image contents,

many recent frameworks [2, 17] tried to exploit this knowledge. In other cases, it

has been used as a way to extract reasoning paths among concepts.

Figure 2.9: A frame of ConceptNet, related to ‘Car’ [18]

2.7 Natural Language Processing

Natural Language Processing is an area of research that involves techniques of

linguistics and artificial intelligence. This field aims at studying the interaction be-

tween humans and computers. It focuses on how to adapt input data written into

natural language into a computationally digestible format. A VQA-system has to

both understand the sense of the question and generating a meaningful answer. For

this reason, the model should be able to process the inputs and generate outputs.

Of course, data have to be adapted to a format the VQA-system can elaborate.

Therefore, an initial procedure transforms the inputs, expressed in natural lan-

guage, into something that computer can understand: a vector of numbers. This

process is performed not only by VQA models but almost by every NLP system.
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To do so, a series of NLP procedures is adopted.

2.7.1 NLP pipeline

In the following section, we describe the preprocessing pipeline: a set of opera-

tions applied to translate a sentence in natural language to a vector of numbers.

Tokenization

The first step of the pipeline consists in the Tokenization of the input. The

sentences are split into pieces, called tokens (e.g., the questions “Why the fork

is on the table?” is tokenized as “Why”, “fork”, “on”, “table”). Thanks to this

operation, every token can be analyzed and elaborated separately. For the VQA

task, this phase is employed for both questions and answers.

Embedding

The second step of the pipeline consists in embedding the tokens. Word Embed-

ding is an encoding technique, consisting on mapping each token to a vector of a

predefined size of dimension n. In this way, tokens are projected into a multidimen-

sional space where every vector belongs to Rn. The extracted tokens are converted

into something that a model can understand: a vector of numbers. As the words

are turned into vectors, the model is able to reason about tokens meaning, measur-

ing their semantical distance. Word embeddings are usually learned using Neural

Networks. In our work for example, fastText projects into a 300-dimensional se-

mantic space. FastText is an artificial neural network that has been trained on a

large number of texts. This operation has been performed in order to extract, with

respect to its context, a word embedding for each word in the language vocabu-

lary. FastText has the capacity of inferring semantic relationships between words.

This method is employed not only to simplify computations, but also to exploit the

multidimensional space Rn, where mathematical operations such as addition and

multiplication hold. In this way, semantic vectors for sentences can be obtained.
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Related works

The most common VQA architectures exploits both textual and visual feature

extractors and feed their output to an answer generator (see Section 2.1). Most

of the times, these components are implemented with an encoder, a decoder (see

Section 2.2) and a classifier. In the following, we provide a review of previous works

in visual question answering, highlighting the differences with our work. We start

by reviewing VQA systems based on attributes to describe the image, then we move

to systems that exploit external knowledge bases to integrate the training process.

Finally, we review recent solutions for identifying the important information of

query images, called graph attention networks. At the end of this chapter, in

Section 3.4 we highlight the contribution of our work.

3.1 Attribute extraction and LSTM

The early VQA-system, stressed the importance of understanding which are the

relevant parts of the picture. In other words, “where to look” plays another key

role for answering correctly. To face this task, the first approaches consisted in

training ad-hoc networks [33]. Other methods, exploited the extracted information

to gather further data from external knowledge. In particular, the architecture

developed by Qi Wu et al. [31] paved the way to new original solutions. Their
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VQA-system, depicted in Figure 3.1, exploits an ‘internal representation’ of the

picture to extract attributes from the image. This attribute-based representation of

a picture is exploited for mining from a knowledge base, DBpedia, further captions

related to the context. This ensemble of information is embedded and used as input

for a LSTM. Inspired by this approach, for every image we exploited an ensemble

of key concepts to train our network.

Figure 3.1: Figure shows the architecture designed by Qi Wu et al. [31].

3.2 Usage of external Knowledge bases

The architecture presented in Section 3.1, showed how external knowledge bases

(KB) are used for the VQA task. In other cases, KBs are used to improve model’s

capability of commonsense reasoning. ConceptNet is often adopted for this pur-

pose and it has two fundamental usages. Many recent architectures [35, 16] use this
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ontology to extract concepts in order to integrate the ones related to questions and

answers. In other cases, this knowledge base is exploited as a way of connecting

concepts. As zhong affirms in its work [35], it is possible that the lack of common-

sense reasoning ability is caused by the absence of connections between concepts.

Therefore, recent systems [2, 17] use this external KB as a way of finding reasoning

paths that connect Questions and Answer tokens. In general, path extraction has

been shown to be very effective for this type of task. Figure 3.2 for example, depicts

the approach adopted in [2]. In this case, ConceptNet is employed for finding a

reasoning path among the question and answer concepts that is consistent with a

given context. In this work, we used this knowledge base in order to verify the exis-

tence of close relations between concepts. Leveraging on ConceptNet, we assigned

weights to extract additional attributes and extend the attribute-ensemble, picking

the ones that were more often present among the correlated terms.
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Figure 3.2: An example of ConceptNet usage [2]. In this case, this KB is employed
for finding a path among the question and answer concepts

3.3 Graph attention networks

To solve the “where to look” problem, recent systems tend to adopt attention

mechanisms. These approaches exploit mathematical operations with the aim of

evaluating how much an input element relates to the others, generating an output

that consider these interactions. Regarding graphs, a similar approach is used with

Graph convolutional networks, a way of creating an embedding of the graph. For

instance, Figure 3.3 depicts the technique adopted by Graph attention network

(GAT) [29], a type of graph convolutional network, for the graph node h1. GAT

computes a new representation of the node, defined as h01, that leverages on node

neighbors. Indeed, the Figure 3.3 shows that the computation of h01 involves a series
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of coefficients, called Attention Coefficients, related to hi neighbors. These terms

determine the importance of a node with respect to another one. These techniques

have been exploited in the most recent VQA architectures. For example, Marcel et

al. [12] attempted to use Graph attention networks on scene graphs for its VQA

model. With respect to this system, we tried to exploit a simpler Graph embedding

technique. In our work, we embedded every node considering its neighbors and the

relative weights that we assigned.

Figure 3.3: GAT convolutional mechanism [29]

3.4 Contribution

Recent frameworks focused their efforts toward the creation of complex archi-

tectures. We propose a straightforward approach (i.e., semantics-aware VQA) that

aims at incorporating external knowledge to the image, including common sense
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knowledge and scene graphs, into the VQA process. With respect to existing meth-

ods, we aim at solving the “where to look” (see Section 3.1) problem without at-

tention modules. Indeed, we exploit ConceptNet ontology [18] to evidence the most

pertinent image objects with the question.

Our contribution can be summarized as follows:

• We exploit a structure that consider as input: Questions/Answer concepts, an

ensemble of attributes related to the picture and a scene graph.

• We propose to exploit ConceptNet to weight the importance of the concepts

extracted from input pictures and the relations belonging to scene graphs.

• We propose a novel way of mining, from an external knowledge base, the most

pertinent concepts with the image context.

In the following chapter, we will describe in detail the architecture of our model.
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Semantics-aware VQA

This work investigates a novel approach to the Visual Question Answering task.

In particular, our goal is to improve the way a VQA model makes commonsense

reasoning. Our model is expected to answer multiple-choice questions related to

images, employing an architecture capable of exploiting many levels of knowledge.

Indeed, our VQA system utilizes both visual features and scene graphs: a graph-

structured external knowledge related to the image. A scene graph provides an

alternative representation of an image, capable of storing picture’s semantics (see

Section 2.5). In the following chapter, we will describe our architecture.

Figure 4.1 depicts a high level view of our model. The structure is composed of

several modules, that will be described in detail in these sections. The input data

used for training the model are the input images, the multiple choice questions and

the scene graphs. To mine data from these sources, we build 3 modules: (I) Answer

selector, (II) Attribute extraction and (III) Scene graph embedding. The Answer

selector module takes as input a multiple choice question, its purpose is selecting

one of the 4 answers and output a question/answer pair.

The Attribute extraction receives as input: the image, a question/answer pair and

external data mined from the knowledge base ConceptNet. This module extracts

from a picture a set of concepts related to its context that we ablate as Attributes.
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Figure 4.1: Network architecture

The selected answer and ConceptNet are exploited to mine further attributes and

to enrich every attribute with a value, called weight, that indicates the attribute’s

relevance in that context.

The Scene graph embedding module takes as input the Scene graph related to

the input image, the information from the knowledge base ConceptNet and a ques-

tion/answer pair. This part of the model computes a scene graph embedding. The

latter is formed by a set of data contained in the scene graph. Also in this case,

scene graph elements are enriched with a value called weight that indicates their

relevance in that context.

The attributes, the scene graph embedding, the question/answer pair constitute

the input data of the model’s backbone. The latter is represented by a LSTM

network (see Section 2.4). This particular type of architecture takes into account

the notion of input temporality, fundamental for the VQA task to understand the

sense of a question and formulate an answer. The model’s output is a binary

label assigned to the answer selected by Answer selector module to indicate if that

option is the correct one. As we explained in Section 2.4, this type of network is

trained exploiting an input structure called Time series, a sequence of pieces of
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information organized in steps. In our model, Time series encoding module has

the aim of computing the input time series. It processes the input data ensemble,

reshaping and adapting these information into a computationally digestible format.

4.1 Preliminary definitions

Multiple choice questions

They constitute the samples extracted from visual7W dataset. Every question

is expressed in natural language and it belongs to the type why. Furthermore,

it is characterized by 4 possible answers. Both questions and answers, written

into natural language, contain key concepts that we will extract and exploit in the

architecture. These concepts have to be converted into a computationally digestible

format. This operation is performed leveraging on FastText embedder (see Section

2.7) which projects a concept into a 300-dimensional semantic space.

Let Q be the question, we ablate [q1, ..., qi, ..., qn] the concepts extracted from

Q. We define [q̂1, ..., q̂i, ..., q̂n] the embedding of these concepts obtained leveraging

on FastText. Let [AN1, .., AN4] be the 4 answer options related to Q. We define

[an1, ..., ani, ..., ann] the concepts extracted fromAN i. We define [ân1, ..., âni, ..., ânn]

the embedding of these concepts obtained employing FastText.

Scene graphs

A scene graph is a directed acyclic graph, that describes the relations among

image objects, that are any type of entities depicted in the image being represented

(see Section 2.5). We decided to integrate this knowledge to the data related

to the Question and Answer couples to improve the model’s reasoning. Indeed,

relations could improve the inference of commonsense knowledge base related to a
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context. For example, Figure 4.2 shows that the depicted scene graph is sufficient

for inferring a part of the image’s context.

Scene graph nodes are divided into: vertices, relationships and attributes. Fur-

thermore, we also define relations with the triplets <vertex, relationship, vertex>

inside the graph. A vertex is a node of the graph that represents any entity or

object inside an image (e.g., child, shirt in Figure 4.2). An attribute is a node that

represents an object feature (e.g., blue in Figure 4.2). A relationship instead, is a

node that links two vertices corresponding to two objects. A relationship is charac-

terized by a label that describes the type of bound that connects the two vertices.

For instance, Figure 4.2 depicts the relation triplet <child, wear, shirt> where the

relationship label wear is an action. The Figure shows also that a relationship can

specify the mutual position of two entities (e.g., <child, on, snow>).

Let G = (V,E) be a scene graph where V is the set of nodes of any of the three

types (i.e., vertex, attribute, relationship). We refer to relations ri as the triplets

< vi, rl, vj > where vi ∈ V and vj ∈ V are two vertices (i.e., objects) and l is the

label of a relationship node connecting vi and vj with two edges in E . Also in this

case, we define v̂ and r̂l the embedding of these terms obtained exploiting FastText.

Figure 4.2: A scene graph example
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ConceptNet

ConceptNet is large-scale commonsense knowledge base. It can be seen as a

directed graph constituted by two main elements: nodes and edges. The nodes are

concepts, expressed in natural language. They are connected one to each other with

labeled edges. The labels specify the relationship that exists among two concepts.

Let CN = (C,E) be a ConceptNet graph. We define ci as a node in ConceptNet

graph and e0 as an edge’s label. We ablate N(ci) the set of concepts having a

direct link with ci (i.e., it’s neighbors). For instance, Figure 4.3 shows that given

ci = Car, we define N(ci)=[Drive, V ehicle, T ravel].

Figure 4.3: A frame of ConceptNet, related to ‘Car’
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4.2 Scene graph embedding

Figure 4.4: Scene graph embedding module

In our work, we created a part of the model with the aim of exploiting the scene

graphs related to images. The module is composed of 2 blocks: (I) Embedding

computation and (II) Scene graph weighting. The first is exploited for generating a

scene graph embedding. The latter is used for assigning a weight to every element of

the embedding. Weights indicate the importance of the elements with respect to the

question/answer pair that the block receives as input. In the following paragraphs,

we describe in depth the function of each block.

4.2.1 Embedding computation

In order to exploit scene graphs, we embedded them adopting two main ap-

proaches called (I) Element embedding, (II) convolutional embedding (CE). The

first aims at extracting and embedding the relations inside the scene graph. The

scene graph embedding will be composed of a set of embedded relations. The lat-

ter focuses on embedding every vertex individually. In this case, the scene graph
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embedding will be composed of a set of embedded vertex.

Element embedding

From Visual Genome’s scene graphs, we created a set containing the 35 most

common spatial relationship (e.g., ‘on’, ‘in front of’, ‘behind’, ‘in’, ‘next to’). Let

SR be the set of 35 relationship labels extracted from Visual Genome. For every

graph, we considered only these group of relationships. Let R be the set of relations

of a scene graph G = (V,E) and Ĝ be the embedding of G. We define the subset Rs

⊆ R, where each relation r=< vi, rl, vj > ∈ Rs satisfies rl ∈ SR. For every r ∈ Rs

we inspected two ways of embedding its content: (I) Element averaging embedding

(EAE) and (II) Element concatenation embedding (ECE).

Given a relation, the first approach computes the embedding of the elements

that constitute the triplet < vertex, label, vertex > using FastText. To create an

embedding of the relation, EAE performs the average embedding of these triplets.

The scene graph embedding will be a set composed of the embedding of spatial

relations. In the following, we formalize this process. For every triplet <vi, rl, vj>

∈ Rs EAE computes the embeddings v̂i, r̂l, v̂j. Let r̂ be the embedding of r ∈ Rs.

We define:

r̂ =
v̂i + r̂l + v̂j

3
(4.1)

We finally define Ĝ=[r̂1, ..., r̂i, ..., r̂n] the scene graph embedding, which is the time

series including the embedding of spatial relations. This approach is the simplest

one but it does not preserve relation’s semantic. Indeed, switching the two ver-

tices that constitute a relation, EAE computes the same result. For instance,

Child→On→Snow provides the same embedding of Snow→On→Child.

Given a relation, ECE retrieves the embedding of the elements that consti-

tute the triplet < vertex, label, vertex > using FastText. This approach separates

vertices from the relationship label. It computes the average of the vertices embed-

dings, concatenating the obtained vector with the embedding of the relationship
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label. Let v̂1 and v̂2 be two vertices embedding. We denote k the concatenation

operator of two embeddings. Let r̂ be the embedding of r. For every triplet vi, e,

vj ∈ Rs ECE computes v̂i, ê, v̂j. We define:

r̂ =
v̂i + v̂j

2
k ê (4.2)

We finally define Ĝ=[r̂1, ..., r̂i, ..., r̂n]. ECE does not preserve graph semantic.

On the other hand, it avoids performing a mean among vertices and relationships.

Convolutional embedding

Diffrently from element embedding, CE exploits the entire scene graph. This ap-

proach assigns a weight to every vertex employing the module Scene graph weight-

ing, whose functionality is explained in Section 4.2.2. For every vertex CE extracts

its neighbors, that are the vertices having a common relation with it (e.g., Child’s

neighbors are Snowsuite, Helmet, Pole and Snow in Figure 4.5). Neighbors are em-

bedded using FastText (see Section 2.7). The final vertex embedding is obtained

averaging the neighbors that are multiplied for their corresponding weights. Finally,

the scene graph embedding is constituted by a set of vertices s. In the following,

we formalize this embedding process. Let vx ∈ G be a vertex node. Considering

the subset Rs ∈ R, where each r ∈ Rs has the form < vx, rl, vi >. We denote N 0(vx)

the vertices ni belonging to each r ∈ Rs. Let W = [w1, ..., wi, ..., wn] be the set of

weights assigned to N 0(vx) elements. Let v̂x be the vertex embedding, defined as:

v̂x =

|N 0(vx)|X
i=1

win̂iP
i

wi

(4.3)

Where n̂i ∈ N 0(vx) is a neighbour of vx embedded with FastText and w00
i ∈W is the

weight assigned to the neighbour n̂i. The scene graph embedding Ĝ is defined as

Ĝ=[v̂1,...,v̂i,...,v̂n], which is the time series including the embedding of the vertices.
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Figure 4.5: Scene graph lookup

4.2.2 Scene graph weighting

To enhance the importance of the concepts directly related with the Ques-

tion/Answer couple, we created a set of weights. Leveraging on ConceptNet, this

module assigns a weight to every relation or vertex with the aim of focusing the

attention of the model on the relevant parts of the scene graph. This module re-

ceives as input the scene graph embedding, ConceptNet and the selected answer.

ConceptNet connects words with respect to their semantic meaning (see Section

2.6).

We verified the existence of a direct link between every relation’s vertex in the

scene graph and ones of the concepts related to both question and answer, assigning

a higher weight in case this link exists. To increase the differences among the

answers we assigned to their concepts a higher weight with respect to question’s

one.

The weights can assume 3 different values. The smaller one is assigned in case a

concept is related neither with question or answer ones. The second is used when

the attribute is related to a question. The third one is exploited when a relation
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with the answer’s concepts exists. We considered the latter the most important

case, therefore we assigned to it the higher value. In the following, we formalize

the weighting process.

Let G=(V,E) be a scene graph. We refer to each relation ri as the triplet

< vi, rl, vj >. Let W = [w1, ..., wi, ..., wn] be the set of weights assigned to the

graph relations (e.g., wi assigned to relation ri). Let CN = (C,E) be ConceptNet

graph. We define c as a concept in ConceptNet graph and N(c) the set of concepts

with 1 hop from c. Let Q be a question and AN one of its answers. Consider now

the relationship ri. If c is an Answer concept and vi or vj (in the triplets of ri)

belong to N(c) set, we assign to wi a value of 1. If c is a question concept and vi

or vj belong to N(c) set, we assign to wi a value of 0.50. If vi or vj do not belong

to N(c) sets of any question/answer concepts, we assign to wi a value of 0.25.This

reasoning can be formalized with:

wi =


1 if c ∈ AN ∧ (vi ∈ N(c) ∨ vj ∈ N(c))

0.5 if c ∈ Q ∧ (vi ∈ N(c) ∨ vj ∈ N(c))

0.25 if (c ∈ Q ∨ c ∈ AN) ∧ (vi /∈ N(c) ∨ vj /∈ N(c))

After this step, the output of the scene graph embedding module is composed of Ĝ

(i.e., graph embedding) and Ŵ (i.e., a weight for each relationship).
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4.3 Attribute extraction

Figure 4.6: Attribute extraction module

We created this part of our model with the aim of extracting generic concepts

related to an image. These data play a key role in our work, because they enhance

the ability of the network to reason about the image’s context. Therefore, we

exploited this knowledge in every attempt that we performed. This module is com-

posed of 3 building blocks: (I) Attribute computation, (II) Attribute weighting and

(III) Extra attributes computation. The Attribute computation block is exploited

for extracting concepts from the image, called attributes. The Attribute weight-

ing block is employed for assigning a weight to the extracted attributes. Weights

indicate the importance of the elements with respect to the question/answer pair

that the block receives as input. The Extra attributes computation block is ex-

ploited for mining further concepts from ConceptNet. In the following paragraphs,

we describe in detail the function of these blocks.
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4.3.1 Attribute computation

We employed an artificial neural network model called Clarifai [5], to obtain

concepts present in each image. The model receives as input a picture and it has

the ability of recognizing not only the objects (e.g., ‘boat’ in Figure 4.7), but also

emotions (e.g., ‘composure’ in Figure 4.7), actions and abstract concepts. The net-

work outputs a score for each of these terms which shows the likelihood that the

concept is represented in the image. Among the outputs, we decided to exploit the

ones characterized by a probability higher than 80%. We chose this threshold be-

cause the concepts characterized by a lower probability value are often too generic,

not providing any useful knowledge.

Figure 4.7: An example of attribute ensemble

4.3.2 Attribute weighting

This module aims at assigning a weight to the extracted attributes. These

values stress the importance of the attributes inside the image context. The module
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receives as input the attributes, ConceptNet and the selected answer. To assign the

weights, we exploited an external ontological knowledge base, ConceptNet, where

terms are connected with respect to their semantic meaning (see Section 2.6).

The adopted procedure is the same exploited in the module Scene graph Weight-

ing (see Section 4.2.2). The weights can assume 3 different values. The smaller one

is assigned in case a concept is not related neither with question or answer ones

(e.g., the attribute “Powder”, in Figure 4.8). The second is used when the attribute

is related with the question (e.g., the attribute “child” with the question concept

“boy”, child
synonim−−−−−→ boy, in Figure 4.8). The third one is exploited when a rela-

tion with the answer concepts (e.g., the attribute “skiing” with the answer concept

“snow”, skiing
requires−−−−→ snow in Figure 4.8). Also in this case, we considered the

latter the most important case, therefore we assigned to it the higher value. In the

following paragraph, we formalize the weighting procedure.

Let A = [a1, ..., ai, ..., an] be the set of attributes extracted with Clarifai from

an image and W 0 = [w0
1, ..., w

0
i, ..., w

0
n] be the weight set related to this ensemble

of concepts. Let CN = (C,E) be ConceptNet graph. We define c as a concept in

ConceptNet graph and N(c) the set of concepts with 1 hop from c. Let Q be a

question and AN an answer. If c is an answer concept and ai belongs to N(c), we

assign to w’i a value of 1. If c is a question’s concept and ai belongs to N(c), we

assign to w’i a value of 0.50. If ai does not belong to N(c) and it is not included in

either question or answer concepts, we assign to w’i a value of 0.25.This reasoning

can be formalized with:

w0
i =


1 if c ∈ AN ∧ (ai ∈ N(c))

0.5 if c ∈ Q ∧ (ai ∈ N(c))

0.25 if (c ∈ Q ∨ c ∈ AN) ∧ (ai /∈ N(c))
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Figure 4.8: An example of attribute weighting procedure for an answer concept
(i.e., skiing)

4.3.3 Extra attributes computation

This module aims at enriching the attribute set with further concepts extracted

from ConceptNet. It receives as input the attributes, the weights, the selected

answer and ConceptNet. The module extracts from Concetpnet the concepts cor-

related with the image attributes that are directly related with the answer concepts

(e.g., Skiing
requires−−−−→ snow in Figure 4.9). This module creates a set for every se-

lected answer. Each set stores the concepts extracted from the external knowledge

base by following a path starting from each attribute. The number of times every

concept is reached by a path is also stored. The procedure enriches the attribute

ensemble with the 10 concepts of the set that appeared to be more frequently re-

lated to the attributes. For instance, Figure 4.9 shows that the attributes Snow,

Winter and Sport are directly related to the answer. Furthermore, it depicts that
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the concept ‘Season’ is directly linked with these attributes. Hence, it will belong

to the set created for that answer, paired with the number of paths from which it

can be reached (i.e., 3 in this example).

Let Q be a question and AN be an answer. Let A = [a1, ..., ai, ..., an] be the

set of attributes extracted from an image and W 0
=[w0

1, ..., w
0
i, ..., w

0
n] the attribute

weights related to the answer. We define As = [a1, ..., ai, ..., an] ⊆ A the attribute

subset characterized by w0
i = 1. Let Mi be the set created for an answer. Mi is

obtained by merging the neighbors of every ci ∈ As. More formally, we define Mi=
kAskS
j=1

N(ci) where ci∈ As and N(ci) are its neighbors. Moreover, for each concept

mi,j ∈ Mi we store in count mi,j the number of times it occurs in N(ci) ∀ ci. For

every Question/Answer couple, we refer to extraattributes as the 10 more frequent

concepts in Mi.

Figure 4.9: The figure shows that the concept ‘Season’ is mined 3 times from
ConceptNet.
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4.4 Time series encoding

Input data have to be reshaped into a form that the network can understand.

Therefore, this module aims at creating time series, a data structure composed

of many pieces of information that we employ to train a LSTM network. Every

piece can be obtained exploiting an embedding or by averaging an ensemble of

embeddings. As previously described, an embedding is obtained by mapping a

piece of information to a vector of a predefined size, in this way, concepts are

projected into a different multidimensional space where they can be processed by

our model. The module receives as input a question, the selected answer, the

attributes and their weights, the scene graph embedding and its weights. Depending

on the architecture modules in use, the time series encoding phase models 3 main

types of Input time series: (I) Linear time series, (II) Contextual time series and

(III) Vertex time series.

Linear time series

It is the simplest one, formed by the concatenation of attributes embedding,

relations embedding, answer concepts embedding and question concepts embed-

ding. The first time step is computed exploiting the data provided by the Attribute

computation module: a set of attributes and their weights. Attributes are first

multiplied by their weights (see Section 4.3). The first time step is then formed by

averaging the embeddings of these attributes. The second time step is computed

exploiting the data provided by ECE and EAE embedding approaches in Scene

graph embeddings module: a set of relations and their weights (see Section 4.2.1).

Relation embeddings are multiplied by their weights and the time step is formed

by averaging the obtained values. The other time steps are computed embedding

question and answer concepts. Every concept is exploited for a single time step. In

the following paragraph, we formalize this process.
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Let A = [a1, ..., ai, ..., an] and W 0 = [w0
1, ..., w

0
i, ..., w

0
n] be the output of the At-

tribute computation module. Let R = [r1, ..., ri, ..., rn] and W = [w1, ..., wi, ..., wn]

be the output of Scene graph embedding module. Let AN be an answer and

[ ˆan1, ..., âni, ..., ˆann] the embedding of its concepts. Let Q be a question and

[q̂1, ..., q̂i, ..., q̂n] the embedding of its concepts. Let S be the time series we want to

generate and si=| | a time step. We define:

S = |

P
i

w0
iaiP

i

w0
i

|

P
i

wiriP
i

wi

| ˆan1 | ... | âni | ... | ˆann | q̂1 | ... | q̂i | ... | q̂n | (4.4)

Contextual time series

Every time step is created by stacking question/answer concepts with both at-

tributes and relations embeddings. In this way we enforce the scene graph infor-

mation by presenting it multiple times in the time series. We refer to these data

with the same notation exploited in Linear time series. Thanks to FastText, every

embedding is composed of 300 values. Therefore, every time step has dimension

900.

S = | âni k

P
i

w0
iaiP

i

w0
i

k

P
i

wiriP
i

wi

| ... | q̂i k

P
i

w0
iaiP

i

w0
i

k

P
i

wiriP
i

wi

| ... | (4.5)

Vertex time series

It is created by leveraging on CE Scene graph embedding procedure (see Section

4.2.1). In this case, Scene graph embedding module computes a set of embedded

vertices (each of them appearing in a distinct time step of the time series). Both

Questions/Answer concepts and vertices embedding are stacked with the one related

to attributes. Therefore, every time step has dimension 600. We refer to data with
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the same notation exploited in Linear time series. Let Ĝ=[v̂1,...,v̂i,...,v̂n] be the

scene graph embedding. The final time series will be:

S = | âni k

P
i

w0
iaiP

i

w0
i

| ... | q̂i k

P
i

w0
iaiP

i

w0
i

| ... | v̂i k

P
i

w0
iaiP

i

w0
i

| ... | (4.6)

4.5 LSTM backbone

Our neural network architecture is composed of two parts. The first one was

created stacking 2 LSTM layers, while the second is composed of two dense layers.

Figure 4.10 depicts our model, where the input (i.e., a time series) is character-

ized by the shape ([(None, None, 300)]). The first dimension refers to the batch

size (see Section 2.4). The ablation “None” indicates that this dimension does not

have any size constraint. The second dimension indicates the number of time steps

of every time series. Also in this case, the ablation “None” specifies the absence

of any size constraint. The last one indicates that the input series are composed

of embeddings of dimension 300. Figure 4.10 shows that both LSTM layers are

characterized by 721’200 parameters, a set of values that are modified during the

training phase of the network in order to minimize the error function of the model

over the training data. The number of parameters depends on the number of input

features that the layer handles. In this case, this value is 300. We estimated it as

a compromise between the computational time and the task complexity.

The second part of the backbone is composed of 2 dense layers (see Section 2.4)

that are employed to perform a prediction. As the problem is turned into a binary

classification one (Correct or Wrong), the last dense layer has only one neuron that

can output a value that sweeps between 0 and 1. If the value exceeds 0.5, the

sample belongs to the class Correct.
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Figure 4.10: LSTM backbone
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Dataset, evaluation and

implementation details

5.1 VQA dataset

Dataset’s choice is a fundamental step for building a VQA state-of-the-art. In-

deed, as we explained in Section 2.1.1, every dataset is characterized by a series of

characteristics that can easily bias the training phase of a model. In our case, our

goal was employing different types of external knowledge to face a VQA-multiple

choice task. Therefore, we tried to consider the datasets directly related to external

knowledge bases that provide high quality labeled data. Moreover, our objective

was improving reasoning ability of a VQA model. We found in visual7W the sweet

spot for all these prerequisites. Indeed, this dataset contains images related to Vi-

sualGenome [30], a knowledge base where every picture is enriched with semantic

annotations and scene graphs (see Section 2.5). We considered the latter a perfect

source for mining useful information able to improve the reasoning capacity of our

network.

Visual Genome’s scene graphs are biased toward the spatial description of a
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picture. Indeed, the most common relationships are related to the object mutual

position (see Figure 5.1). Moreover, Visual Genome’s pictures are often related to

people involved in some kind of activity (see Figure 5.2), the perfect scenario for

training the reasoning capacity of our model. To further focus on the reasoning

task, we considered visual7W’s questions that started with pronoun why. Indeed,

as Figure 5.3 shows, these are the questions the require the higher response time

for humans and so the most complex reasoning. Furthermore, human performance

without images on this subset is remarkably higher (44%) than the one obtained

answering the other types of questions (35%). This score indicates that many why

questions encode a fair amount of common sense that humans are able to infer

without visual cues. In the following sections, we will describe the dataset and the

knowledge base preparation steps.

Figure 5.1: The most frequent scene graphs relations
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Figure 5.2: On the left, we show the most frequent subjects included in Visual
Genome Scene Graphs. On the right, the most frequent objects.

Figure 5.3: Response time required for answering visual7W questions with respect
to their type. [36]
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Dataset preparation

We started considering only the multiple choice questions related to the type

why, obtaining a dataset of 8000 questions. To extract concepts, we exploited

Spacy: a python library for Natural language processing. This library lets us

obtain the main concepts of every sentence. The latters are embedded, with the

procedure we introduced in Section 4.4. Finally, a binary label is assigned to

every question/answer couple, ‘0’ for the wrong answers and ‘1’ for the right one.

Therefore, every question is related to 4 samples.

Dataset extension

Dataset is biased towards ‘0’ class samples. To increase the number of sam-

ples characterized by label ‘1’, we picked further 5000 open-ended questions from

visual7W , characterized by the same type why. Clearly, we used this extension

only on training time.

5.1.1 ConceptNet

In order to use this Knowledge Base, we exploited its local version provided

by Bauer et al. [2]. Moreover, we decided to consider only a subset of 15 relation

types, composed of the most pertinent relations with this task. As Figure 5.4 shows,

relation types can be grouped into various thematics. We exploited these groups

and the frequency of ConceptNet relations for choosing the 15 relations included in

our subset.
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Figure 5.4: The sizes of the rectangles are proportional to the number of assertions
belonging to each relation-type in ConceptNet. [4]

5.2 Evaluation and metric

In order to evaluate our model accuracy, we used the K-Fold-Cross Validation.

This procedure is very common when the amount of avaiable data is limited. During

this approach, the dataset is divided into k subsets. At this point, k algorithm

iterations are executed. Every iteration trains a model on k − 1 partitions and

evaluates it on the remaining one. In the end, the final score will be achieved

averaging the score obtained for the k test partitions. In this case, we chose k

equal to 3. Multiple-choice questions can be evaluated similarly to multi-class

classification tasks. Our model outputs a likelihood value for each answer. The

one with the highest score is picked as the final output and compared with the

ground-truth. We evaluate the result with the accuracy score (percentage of correct

answers). Other metrics, such as precision, recall and F1 are not considered as the
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4 possible answers cannot be interpreted as 4 meaningful class labels for which we

need separate analysis.

5.3 Implementation Details

In this section, we analyze the setting that we adopted for training our network.

As we faced a binary classification problem separately for each answer, we chose a

binary crossentropy loss. As optimizer, we employed Adam technique (see Section

2.4). Our input time series have not a fixed length but LSTM batches require an

input characterized by the same number of time steps (see Section 2.4). Instead

of using padding (i.e., empty time steps to create fixed length batches), we trained

the model with batches of dimension 1.

The hyperparameter setting varied with respect to the architecture we used.

Nevertheless, we executed a series of crucial steps. Regarding the parameter called

Learning rate, we performed an initial coarse tuning. Thanks to this starting phase,

we were able to focus on a smaller interval of values for a grid search. Leveraging on

the GPU provided by the Google’s cloud service GoogleColab, the training phase

requires several hours and a cross validation attempt almost a day. Therefore,

because of hardware limitations we tried to find a LR configuration that suited

for different cases. Probably, results are slightly biased by a coarse tuning, but

performing further tests we did not notice significant score variations.
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Results

In the following chapter, we will describe the results provided by our model.

As introduced in Section 4.3, a cardinal step of our work consists in the extraction

external concepts from images and from ConceptNet. Figure 6.1 describe the results

provided by these two methods. It is composed by 4 histograms, the first 2 depict

the most frequently extracted attributes and extra attributes. It’s notable that

these 2 methods provide a similar result, indeed the extracted terms are both the

same or semantically close. The last 2 histograms describe the semantic of the

extracted concepts. Indeed, we divided the concepts into 3 types: objects, object

features and actions. Attributes tend to represent uniquely the visual elements of

the image: its objects and their features. Indeed, the actions that can be involved

in that context are less than 0.01%. Hence, the downside of this approach could

be a scarce capacity of reasoning about the image. On the other hand, the second

method (i.e., extra attributes extraction) slightly overcomes this trend mining also a

small number of extra attributes related to actions. Therefore, these charts suggest

that by enriching our set of attributes with the ones extracted from ConceptNet

we can obtain a more comprehensive vision of the context.
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Figure 6.1: The first two histograms depict the most frequently extracted at-
tributes and extra attributes. The last two show the semantic of the extracted
concepts.

6.1 Comparison of the proposed methods

To analyze the contributions of each component of our model, we ablate our con-

figurations as follows. Baseline, Attributes, Attributes+weights and Attributes+Extra

Attributes only use question concepts, answer concepts and attributes. In addition,

scene graphs are used for Attributes+EAE, Attributes+EAE+Weights and Con-

textual time series. Finally ECE and CE introduce a more structured way of

exploiting scene graphs.
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Baseline

This configuration considers only Question and Answer concepts. No

information is used from the image scene graph. The concepts are encoded as

a Linear Time Series, not considering the time steps related with Attributes

and Scene graphs. We considered the result as a baseline to understand the

improvements every module brings. For this configuration, we performed a

coarse search on Learning Rate (LR) parameter with a range of [1e-2,1e-5].

Then, we ran a finer tuning with a LR of 1e-3, scaling it to a smaller value

after 5 epochs. The baseline achieves an accuracy of 53 %. Exploiting this

configuration, the model requires 2 hours to be trained.

Attributes

This configuration exploits the external concepts extracted from the im-

ages, the question and answer concepts. These ensemble of data is encoded

as a Linear Time Series ignoring the time step related with scene graphs.

During this case, we adopted the same learning rate of 1e-3 for 6 epochs,

reducing it to 1e-5 for 5 epochs. As Figure 6.1 shows, we obtained a slight

accuracy improvement.

Attributes+weights

To perform a weighted mean of concepts embedding, this configuration

enhances the “attributes” one by using the attribute weights. In this case,

61



Results

we maintained the same hyperparameters setting, obtaining an accuracy of

54.25%.

Attributes+Extra Attributes

During this attempt, in addition to question and answer concepts we em-

ploy both the attributes and the ones extracted from ConceptNet (i.e., extra

attributes). In this case these external concept are not weighted. The ensem-

ble of data is encoded as a Linear Time Series ignoring the time step related

with scene graphs. Maintaining the same hyperparameters, we obtained an

accuracy of 54.27%.

Attributes+EAE

This setting utilizes the question and answer concepts, attributes and re-

lations. For these cases, we adopted the graph embedding procedure EAE

(see Section 4.2.1). The ensemble of data is encoded as a Linear Time Series.

The architecture required a finer hyperparameter tuning. We tried different

configurations, noticing that varying learning rate in [1e-2, 1e-5] range did not

bring any notable improvement. Therefore, for this case and the ones that

require a bigger input structure we maintained the LR, varying the number

of epochs. We trained the system for 8 epochs with a LR of 1e-3 and 1e-5 for

15 epochs. With respect to the baseline, we obtained a score improvement

(55%). This configuration requires two hours and 30 minutes to be trained.
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Attributes+EAE+Weights

For both Attributes and Scene graphs embedding, this trial utilizes the

weights and performs a weighted mean as shown in Section 4.4. Weights

brought a further improvement to accuracy that let us obtain our best score:

56%. Later in this section, Figure 6.2 depicts the reason why this setting

achieves the higher accuracy. Indeed, it demonstrates how important is for

the model to be directed in the “where to look” process. Picture context is

full of noisy elements (e.g., kite, sandcastle, mountain), useless for reasoning

about the question. The bold attributes and relations instead, are the ones

characterized by a higher weight value. Indeed, they are directly related to

the question and answer concepts.

Contextual time series

During this attempt, we exploit Contextual time series (see Section 4.4).

We trained the system with the same parameters of the previous cases.

Thanks to this structure, we were able to obtain one of the highest scores:

55.9%. We further tried to employ this structure by enriching the attributes

with the ones extracted from ConceptNet. We refer to this configuration

using the ablation Contextual time series+Extra attributes. Because of the

input shape, the training phase requires 2 hours and 35 minutes.
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ECE

This setting exploits the graph embedding approach ECE (see Section

4.2.1). We adopted this method using both Spatial and All scene graph

relations. Maintaining the same two LR values, we trained the system for 20

epochs. This module achieves a score of 54.5%.

CE

This configuration exploits the CE approach, described in Section 4.2.1.

Probably because of its input structure, this case required a higher number of

training epochs. Maintaining the same two LR values, we trained the system

respectively for 10 and 15 epochs. Table 6.1 shows that this module achieves

a low accuracy value, very close to the baseline one (53.2%). In this case, the

model requires 2 hours and 55 minutes to be trained.
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Table 6.1: Table shows accuracy with respect to different attempts.

The Table 6.2 shows that the configurations Attributes+EAE+Weights and Con-

textual time series obtain the best results. The first biases the model attention on

the most important elements of the image. Concerning this attempt, Figure 6.2

depicts how important is for our model to exploit the weights that we assigned to

attributes and scene graphs. Being directed in the “where to look” process avoid

considering noisy elements, such as the object “Mountain” or “Kite”. On the other

hand, Contextual time series enforces both scene graph and attributes informa-

tion by presenting them multiple times in the time series. Probably, by exploiting

both attributes and relations we provide a more comprehensive view of image con-

text. Moreover, the tuning techniques that we adopted in these 2 attempts further

enhance the reasoning capacity of our model. In proof of this, the configuration

that exploits uniquely scene graphs and attributes (i.e., attributes+EAE) achieves a

lower accuracy score. The table shows also that the method CE performs poorly on

this dataset. It is possible that in this case, the scene graph embedding and encod-

ing procedures are too preponderant and they do not allow a generic comprehension
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of the context.

Figure 6.2: Picture shows how we faced the “where to look” problem. The
highlighted concepts are the ones characterized by a higher weight value. In-
deed, they are directly linked with the question/answer ‘Why is the kid wearing
a hat? Sun protection’.

6.2 Qualitative results

For a better understanding of the impact of each architecture module, we quanti-

tatively analyzed the results obtained on the different attempts. A group of answers

was always correctly predicted (e.g., Figure 6.3a), while another subset has always

been answered wrongly by all models (e.g., Figure 6.3b). Performing a coarse

analysis on these two sets in search of a possible structural cue of Question/An-

swer couples, we did not notice any significant difference related to tokens, answer

lengths and concepts. Moreover, assigning a “degree of difficulty” to questions or

inferring the reason why the model makes a mistake it’s not a trivial task. There-

fore, when comparing the results of different attempts we focused on which type

of improvement every component brings. Initially, we expected a progressive en-

hancement on questions predicted correctly, we supposed that questions answered
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correctly using the base model were included among the ones related to a higher

accuracy structure. Nevertheless, we noticed a difference among answers related to

different trials. In particular, the ones involving scene graphs embeddings remark-

ably differ from the others. Supposing that different modules improve the reasoning

capacity in different ways, we tried to divide questions with respect to the type of

reasoning required. In the following sections, we analyze the performance of the

architecture exploiting 2 different groups of questions.

Figure 6.3: The first question has always been predicted correctly, in the second
case our attempts never provided the right answer. It’s easy inferring that the
first sample requires trivial reasoning to be answered. On the contrary, the
second one can be misleading. Indeed, the model chooses always the wrong
answer (A).

Spatial Reasoning

In addition to accuracy, we wanted to observe how the modules improved the

capacity of reasoning of the system. Most of scene graphs edges, involve spatial
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relations. Therefore, by exploiting this external knowledge we expected an im-

provement on questions requiring spatial reasoning. For this experiment, among

the questions of our validation sets we picked the subset involving spatial relations

(behind, on, in front of, ...), analyzing the score variations on this subset. As Table

6.2 shows, by exploiting these questions the baseline model achieves an accuracy of

about 50%. As expected, modules involving scene graphs embeddings (highlighted

in bold in Table 6.2) are the ones that obtain the higher accuracy and the most per-

tinent answers (see Figure 6.4). It is interesting to note a slight worsening related

to modules that use only external attributes (i.e., 1-3). On the contrary, modules

related to the two more elaborated scene graph embeddings approaches (ECE and

CE ) brought a sensible improvement on this subset. It is also notable that CE and

ECE do not achieve good performances on the whole dataset, but in this case they

show a higher capacity of improving spatial reasoning, higher or equal to the one

obtained on the whole dataset.
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Table 6.2: Accuracy on questions involving spatial reasoning
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Figure 6.4: The figure shows two examples of Spatial reasoning questions.
They stress how the relation’s embeddings improves spatial reason capacity of
the system. Indeed, in this case the Baseline and “attribute” architectures
(i.e., 0-3) tend to answer wrongly.
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Context reasoning

In general, why questions are the ones that require a higher capacity of reasoning.

Nevertheless, we considered a further subset, different from the spatial reasoning

one, to analyze which module tended to improve the most the context reasoning

capacity. To do so, we considered the questions related to a subject doing an action

(i.e., presence of at least a sentence of type: subject + verb+ ‘-ing’ + object) as

the most appropriate for this task. This subset composes the 30% of the dataset

and it has only a small amount (15%) of common samples with the previous one.

As we exploited external concepts, we expected that they would produce the best

results on this task. In general, every module brought an improvement on these

questions. In contrast to the previous case, scene graph embeddings did not bring

any significant enhancement. As expected, modules related to external concepts

achieve a higher score with respect to the previous case (see Table 6.3). As Figure

6.6 shows, also in this case the Attributes+EAE+weights and Contextual time series

seems the best configuration for enhancing the capacity of the system to reason

about the image context. Also in this case, it is interesting to note a discrepancy

between the dataset score and the subset one. In conclusion, different modules

bring an improvement on different types of questions. Therefore, involving both

attributes and scene graphs and trying to find a sweet spot between these two

approaches could be the best way of improving the reasoning capacity. In proof

of this, the configuration related to their concurrent usage is the one that achieves

the higher accuracy.
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Table 6.3: Accuracy on questions involving context reasoning

Figure 6.5: The figure shows that the configurations that exploit only the
attributes provide always the right answer.
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Figure 6.6: The examples are related to Context reasoning. What we noticed is
that most of the times Answer is given correctly (D) 3 by “attribute” modules.
On the contrary, in some cases relations tend to bias the prediction (e.g.,
Figure (b) (B) 5 ).

Comparison to State-of-the-Art

Table 6.4 shows that our results are in line with the ones obtained with similar

approaches [23, 25]. On the other hand, we note that recent state-of-the-art exploit

different methods that outperform the ones based on LSTM networks. Even if our

model achieves an acceptable score on visual7W panorama, it must be said that

in contrast to the listed state-of-arts our architecture is trained uniquely on ‘why’

question. Therefore, further tests should be carried out in order to verify that the

model does not simply learn and exploit biases in the distribution of answers.
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Table 6.4: Table shows the accuracy achieved on ‘why’ questions by most
recent state-of-arts
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Conclusions and future works

In this work, we investigated a way of integrating external knowledge in a VQA-

system. In particular, we demonstrated how the concurrent usage of Scene graphs

and ConceptNet can improve the reasoning capacities of an architecture. Our

experimental results show that scene graphs can definitively benefit the Visual QA

task, especially if the reasoning requires the object spatial relationships. At the

same time, it shows how small tuning techniques with ConceptNet can “direct”

and improve the reasoning capabilities of our system.

Clearly, this work has not the aim of outclassing the recent VQA-models. We

neither exploited complex modules nor we disposed of the hardware required for

an exhaustive analysis. We tried instead to focus our efforts toward new computa-

tionally light mining approaches, capable of improving the way with which external

knowledge sources are employed.

In a recent conference [11], the authors of the VQA challenge affirmed that

future works must shift their focus on extracting more information from the images.

Nevertheless, we believe that a finer usage of external knowledge sources could still

benefit this research area.

Indeed, in the future our intuitions could be studied in depth and integrated into
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more sophisticated systems. For example, models that employ attention mech-

anisms could sharp the weighting methods that we adopted, paving the way to

new approaches able to exploit common knowledge bases for this purpose. Fur-

ther attempts could also improve the usage of encoders, combining them with the

extraction of contextually relevant concepts from ConceptNet.
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