
 
 

POLITECNICO DI TORINO 
Corso di Laurea Magistrale 

in Ingegneria Elettronica 

 

 

Tesi di Laurea Magistrale 
Differences between CUDA and OpenCL through a SAR focusing system 

 

 
 

 

Relatore             Candidato 

Prof. Claudio Passerone           Ten. Ing. Alberto Matta 

 

 

 

 

 

 

 

Anno Accademico 2019/2020 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

A mia moglie, 

per il continuo e fondamentale sostegno che mi ha dato, senza la quale non 

avrei raggiunto questo risultato. Lei è la ragione che mi spinge sempre a migliorarmi. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Index 
 
Introduction            1 

Chapter one: GPUs            

1.1 Introduction          2 

1.2 GPU Architecture         3 

1.3 CPU vs GPU          5 

1.4 GPGPU           7 

1.5 Stream Processing         10 

1.6 The future and challenges         14 

Chapter two: CUDA and OpenCL     

2.1 Introduction          17 

2.2 CUDA           17 

2.2.1 CUDA development model       22 

2.2.2 CUDA toolchain         22 

2.2.3 C for CUDA kernel programming       23 

2.3 OpenCL           24 

2.3.1 OpenCL development model       30 

2.3.2 OpenCL toolchain        30 

2.3.3 C for OpenCL kernel programming      30 

Chapter three: CUDA vs OpenCL 

3.1 Introduction          32 

3.2 Work environment         34 

Chapter four: SAR focusing system 

4.1 Introduction          54 

4.2 SAR ( Synthetic Aperture Radar)        54 

4.3 History           54 

4.4 The SAR system analyzed         56 

4.5 How it works          57 

4.6 How SAR pictures the world        62 

Chapter five: porting CUDA to OpenCL in SAR focusing system 

5.1 Introduction          66 

5.2 The initial work          66 

5.3 Achievable improvements         78 

5.3.1 Porting CUDA to OpenCL       78 

5.3.2 Modifying the code        93 

Conclusion            96 

References            97 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

Introduction 
 

The aim of this work is to highlight the differences and the similarities between two different 

platforms for GPUs’ coding, CUDA (Compute Unified Device Architecture) and OpenCL (Open 

Computing Language). The work will be explained further through a practical example, exposing 

how the code of an actual SAR (Synthetic Aperture Radar) focusing system is organized and showing 

the highlights and weaknesses of such system in comparison to a different coding of the same system. 

In conclusion, the main key points of the two different approaches applied to the SAR focusing system 

will be analyzed. 

Currently, both platforms are largely used and each of them has its highlights and weaknesses, 

so they are both used but for different aims and targets. The SAR focusing system which will be 

analyzed is written in CUDA, and an OpenCL code for it has not been written yet. 

In this work I will show why and when it is better to choose one platform or the other, and I 

will show which solutions have to be made to porting the CUDA code to OpenCL code for the SAR 

focusing system. 

Firstly, I will talk in a general way about GPUs, to better frame the topic of interest. 

Secondly, I will present in a deeper way the two different platforms, CUDA and OpenCL. 

Thirdly, I will compare the two platforms, showing their highlight and weaknesses, and why 

and when it is better choosing one or the other. 

Fourthly, I will talk in a general way about the SAR focusing system, to better understand the 

example and in such a way to better explain the following step. 

Fifthly, I will talk about how to porting the SAR focusing system’s CUDA code in OpenCL 

code and why doing it could be useful, and why not. 
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Chapter one: GPUs 
 

1.1 Introduction 
 

A GPU (Graphics Processing Unit) is a specialized electronic circuit designed to rapidly 

calculate high intensive tasks (as arithmetic ones) in parallel. It is present in very different scenarios, 

such as embedded systems, personal computers, smartphones, game consoles and workstations. The 

main reason to the rising presence and importance of GPUs is that they are very efficient in doing 

high stressful parallel computations; a CPU (Central Processing Unit) doing the same task will take 

a lot of more time to achieve the desired results. 

The first GPU models were introduced in the seventies, mainly for gaming purposes, in a form 

of specialized graphic circuits. The term GPU was introduced by Sony in 1994, in reference to their 

32 bit graphic unit (designed by Toshiba) which is part of the PlayStation gaming console. The GPUs 

obtained a boost in their performance and utilization starting from the new century. The main actor 

of this rising in importance is Nvidia, which in 2007 released the CUDA platform, the very first 

widely adopted programming model for GPU computing. The problem with CUDA was that Nvidia 

GPUs were the only ones that could run on CUDA, so Nvidia had the monopoly of GPUs.  Nowadays, 

OpenCL, released in 2009 from Khronos Group, is broadly supported. OpenCL is an open standard 

which runs on both CPUs and GPUs of different vendors, so its main feature is the portability. Intel, 

AMD, Nvidia and ARM cards are supported, in such a way that OpenCL became the first competitor 

of CUDA in GPUs programming. 

At the very beginning, GPUs job was intended for graphic processing purposes only. Through 

the years, CPUs became more powerful and with a lot of more transistors, more or less following the 

Moore’s Law, which says that every two years the number of transistors in a dense IC (integrated 

circuit) double up. This is an empirical law, based on observation of an historical trend. So, the 

transistors became smaller and smaller (nanometric order of magnitude), to be able to have more and 

more of them on the same IC (billions of transistors are present in modern ICs).  In addition to that, 

the traditional way of improving performance by increasing the microprocessor core clock frequency 

leaded to an increase of the energy consumption. The greatest problem with the above solution is the 

dissipation of heat: such a concentration of transistors and the increased clock rates lead to a very hot 

environment, which is difficult to cool down and dissipate, especially in consumer products with very 

tight cost constraints. The heat leads to other problems, such as anomalous behaviors from the IC or 

anomalous power consumptions. For these reasons, the market trend has changed and multicore 

processors ICs became the most popular solution. Instead of adding more transistors on the same IC, 
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this solution aims to rising the number of CPUs, called cores, in such a way to have an increase in 

speed mostly for multithreading and parallel computing techniques. In this scenario, GPU become 

more popular not only for graphic purposes, but also for high intensive computational ones. In fact, 

GPUs have a lot of space dedicated to arithmetical computations respect to CPUs, and they show a 

very big speed up in operations that requires such abilities. For this reasons, GPU which are used not 

only for graphic processing tasks are called GPGPU, which stands for General Purpose GPU. In the 

environment in which we work there are one or more CPUs, which have to communicate and 

collaborate among them, and one or more GPUs, which have to do the hard work to speed up the 

required operations. CPUs maintain the control of the environment, while the GPUs are directed on 

high parallel computational problems. So, the CPU is called host, while the GPU is called device. 

 

 

1.2 GPU Architecture 
 

Nowadays, GPUs communicate with the CPU through PCI-Express. Earlier generations used 

AGP (Accelerated Graphics Port), which is an extended version of the original PCI I/O bus. Graphics 

applications use OpenGL (Segal and Akeley, 2006) or Direct3D (Microsoft DirectX Specification) 

API (Application Programming Interface) functions, which is a computing interface that defines 

interactions between multiple software, that use the GPU as a coprocessor. The APIs send a variety 

of commands, instructions, and data to the GPU through a graphic device driver optimized for the 

particular GPU which is used. The graphics logical pipeline is described in the following image. It 

consists of different stages, which will be described below. 

 

 
Figure 1.1 Graphics logical pipeline 

 

 

An artificial image is synthesized from a model consisting of: 

- Geometric shapes and appearance descriptions (color, surface, texture, …) for each 

object in the scene 

- Environment descriptions, such as lighting, atmospheric properties, … 

The result of the synthesis is a 2D representation. 

Vertex shader consists in transforming a 3D polygonal (triangle) representation of the object’s 

surface to a 2D projection of triangles (translations, rotations and scaling are used). Output vertices 
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also include attributes, like color and surface orientation. So, we have a stream of vertices in 3D space 

as input and vertices positioned on screen as output. 

Geometry shader consists in assembling vertices into primitives. Additional operations, such 

as clipping primitives, are performed to avoid downstream processing that will not contribute to 

image. So, we have independent vertices in 2D as input and vertices grouped into primitives as output. 

Setup & rasterizer consists in converting each 2D triangle to a collection of pixel fragments, 

corresponding to a discrete sampling of the triangle over a uniform grid. Other operations are 

performed, such as compute covered pixels, sample vertex attributes and generate a parametric 

description of the triangle. So, we have triangles positioned on the screen as input and pixel fragments 

as output. 

Pixel shader consists in processing each pixel fragment to compute a final color value 

(shading). This also include geometric or appearance descriptions related to both object and 

environment (e.g. texture mapping to determine material properties or lighting). So, we have 

fragments as input and shaded fragments as output. 

Finally, resulting shaded pixel fragments are written to a buffer (frame buffer), where depth 

buffering is used to determine whether one fragment is closer to the viewer than another at a specific 

pixel location (occlusion). 

Unified GPU architectures, like the one described above, are based on a parallel array of many 

programmable processors, unlike their predecessors which had separate processors, each one 

dedicated to different processes. They unify all the shader processes described before and parallel 

computing on the same processors. The programmable processor array is firmly integrated with fixed 

function processors for texture filtering, rasterization, raster operations, anti-aliasing, compression, 

decompression, display, video decoding, and high-definition video processing. These fixed-function 

processors significantly outperform more general programmable processors in terms of absolute 

performance constrained by area, cost, power budget. In contrast to multicore CPUs, manycore GPUs 

are construct in a different architectural way, almost focused on executing many parallel threads 

efficiently on many processor cores. For that reason, in GPUs are present many simpler cores, 

optimized for data parallel computing among groups of threads. So, while CPUs transistor budget is 

balanced among computation, on-chip caches and overhead, GPUs transistor budget is mainly 

devoted to computation. Such a multitude of cores are typically organized into multithreaded 

multiprocessors, so many processors which each one able to provide multiple threads of execution 

concurrently. 
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1.3 CPU vs GPU 
 

Let’s take some initial considerations about these two different processors from one of the 

major vendors in that field, Intel[1]. Directly from its website we can make ourself a general idea about 

the main differences between CPUs and GPUs. 

Constructed from millions of transistors, the CPU can have multiple processing cores and is 

commonly referred to as the brain of the computer. It is essential to all modern computing systems as 

it executes the commands and processes needed for your computer and operating system. The CPU 

is also important in determining how fast programs can run, from surfing the web to building 

spreadsheets. 

The GPU is a processor that is made up of many smaller and more specialized cores. By 

working together, the cores deliver massive performance when a processing task can be divided up 

and processed across many cores. 

These two processors have a lot in common: both are critical computing engines, both are 

silicon-based microprocessors, both handle data. But CPUs and GPUs have different architecture and 

are built for different purposes. The CPU is suited to a wide variety of workloads, especially those 

for which latency or per-core performance are important. A powerful execution engine, the CPU 

focuses its smaller number of cores on individual tasks and on getting things done quickly. This makes 

it uniquely well equipped for jobs ranging from serial computing to running databases. GPU began 

as specialized ASICs developed to accelerate specific 3D rendering tasks. Over time, these fixed 

function engines became more programmable and more flexible. While graphics and the increasingly 

lifelike visuals of today’s top games remain their principal function, GPUs have evolved to become 

more general purpose parallel processors as well, handling a growing range of applications.  

To better understand how CPUs and GPUs are actually made we can have a look to both their 

architectures in the following figure, where there are the highlighted main differences between the 

two processors. 

 

 
[1] © Intel Corporation, “CPU vs. GPU: Making the Most of Both”, “CPU vs. GPU: What’s the Difference?”, 

https://www.intel.com/content/www/us/en/products/docs/processors/cpu-vs-gpu.html 
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Figure 1.2 CPU and GPU architectural comparison 

 

 

As we can see, the control and cache parts in the GPUs are undersized to exploit the 

computational parts, so the ALUs, due to the fact that GPUs and CPUs tasks are different and they 

give their best combined together. We can analyze in a deeper way the difference between the two 

electronic circuitries to have a better general overview and understanding: 
 

- Latency intolerance vs latency tolerance 

o CPUs are low latency low throughput processors 

o GPUs are high latency high throughput processors 

o This differences better highlight the two tasks of CPUs and GPUs; the first 

have to be very responsive, so they have large caches to minimize the latency, 

while the latter have to compute a lot of parallel data concurrently, so they have 

a lot of ALUs to maximize the throughput 

 

- Multithreaded cores vs SIMT (Single Instruction Multiple Threads) cores 

o In CPUs there are multiple tasks for multiple threads, while GPUs are based 

on SIMD (Single Instruction Multiple Data), so the same instruction operates 

on many different data 

o In CPUs there is a few number of heavy threads running on cores, while in 

GPUs there is an high number of lightweight threads running on cores 

o For the same chip size, GPUs can have a lot of additional ALUs thanks to the 

absence of branch prediction units, speculative units, out-of-order units and 

smaller cache sizes. GPUs do not need those units, but they have to be efficient 

in what they do: computation. 
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- Task parallelism vs data parallelism 

o In CPUs, different instructions operate on different tasks 

o In GPUs, the same instruction operates on different data 

 

 

1.4 GPGPU 
 

The term GPGPU (General Purpose computing on GPU) is the use of a GPU for high parallel 

tasks computation. So it can be considered as the exploit of the characteristics of a GPU, which 

traditionally was used to handle computations for only computer graphic applications, to perform 

computations which were usually handled by the CPU. In this way, the CPU is able to have less heavy 

work which takes a lot of time to be completed, giving it to the GPU which employs a lot less time 

to complete the same work. The combined use of a CPU with a GPU (or more than one GPU) has 

been proved to provide a lot of advantages in terms of performance and throughput. The use of GPUs 

as GPGPUs became a reality around 2001, with the advent of programmable shaders and floating 

point support on graphic processors. Problems which involved matrices and vectors (of different 

dimensions) were easy to translate to a GPU, and the scientific computing community decided to use 

GPUs to boost some operations which were computed by the CPUs. This change in analyzing the 

computational problems required to reformulate them in terms of graphic primitives, in such a way 

to allow the GPUs to handle them. This operation was required due to the fact that, at the beginning, 

the two major APIs for graphic processors were OpenGL and DirectX, which were not able to handle 

codes in different ways than graphic ones. These APIs were followed by CUDA, which allowed the 

programmers to ignore the underlying graphical concept to adopt an high performance computing 

concept, in such a way that modern GPGPUs can make use of the speed of a GPU without needing 

full and explicit conversion of the data in graphical form. GPGPUs are written through a framework, 

such as CUDA or OpenCL, which allows to the code running on a CPU to poll a GPU shader for 

return values. 

GPUs aim is oriented for graphic purposes, so they are very limited in operations and 

programming; for such a reason, they are only effective for problems which can be solved using 

stream processes and the hardware has to be set and utilized in specific ways. This stream processing 

nature of GPUs was valid in the past, with older APIs (OpenGL and DirectX), as much as it is today 

with modern APIs (CUDA and OpenCL), despite the change in programming, i.e. it is no longer 

needed to map the computation into graphic primitives. GPUs use stream processing (so they are 

called also stream processors, which are processors that can operate in parallel by running one kernel 
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on may records in a stream at once) because they can only process independent vertices and 

fragments, but they can do it with many of them in parallel, which become a winning way of work 

when is needed to process many vertices or fragments in the same way. A stream is a set of records 

which require similar computation processes, and, for their nature, they provide data parallelism. A 

kernel is a function which is applied to each element in the stream. To be better understandable, in 

GPUs vertices and fragments are the elements in streams and vertex and fragment shaders are the 

kernel which run on them. So, in GPGPUs is important to have an high arithmetic intensity (defined 

as the number of operations performed per word of memory transferred) to not limit the computational 

speedup due to the memory access latency. Ideal characteristics are then large data sets, high 

parallelism, minimal dependency between data elements. 

Due to the evolution of GPUs into GPGPUs, so with different aims from graphical ones (GPUs 

are anyway used also for them), their area of work has expanded in the last years. In particular, GPUs 

and GPGPUs are used in: 

- Automatic parallelization 

- Computer clusters or a variant of a parallel computing 

o High performance computing clusters 

o Grid computing  

o Load balancing clusters 

- Physical based simulation and physics engines 

- Statistical physics 

- Segmentation 

- Level set method  

- Ct reconstruction 

- Fast Fourier transform 

- GPU learning 

o Machine learning 

o Data mining 

- K-nearest neighbor algorithm 

- Fuzzy logic 

- Tone mapping 

- Audio signal processing 

o Audio and sound effects processing to use a GPU for DSP 

o Analog signal processing 

o Speech processing 
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- Digital image processing 

- Video processing 

o Hardware accelerated video encoding and pre processing 

o Hardware accelerated video decoding and post processing 

▪ Motion compensation 

▪ Inverse discrete cosine transform 

▪ Variable length decoding 

▪ Inverse quantization 

▪ In-loop deblocking 

▪ Bitstream processing 

▪ Deinterlacing 

▪ Noise reduction 

▪ Edge enhancement 

▪ Color correction 

- Global illumination 

- Geometric computing 

- Scientific computing 

o Monte Carlo simulation of light propagation 

o Weather forecasting 

o Climate research 

o Molecular modeling on GPU 

o Quantum mechanical physics 

o Astrophysics 

- Bioinformatics 

- Computational finance 

- Medical imaging 

- Clinical decision support system 

- Computer vision 

- Digital signal processing 

- Control engineering 

- Operations research 

- Neural networks 

- Database operations 

- Computational Fluid Dynamics 
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- Cryptography and cryptoanalysis  

- Performance modeling 

o Implementation of Message Digest Algorithm (MD6), Advanced Encryption 

Standard (AES), Data Encryption Standard (DES), Rivest-Shaver-Adleman 

(RSA), elliptic curve cryptography (ECC) 

o Password cracking 

o Cryptocurrency transactions processing 

- Electronic design automation 

- Antivirus software 

- Intrusion detection 

- Increase computing power for distributed computing projects  

 

 

1.5 Stream processing 
 

As mentioned in the previous sub-chapter, the GPUs (and so GPGPUs) use stream processing, 

which is the reason behind the fact that they are also called stream processors. Stream processing is 

a computer programming paradigm, which allows some applications to facilitate the exploit a limited 

form of parallel processing and structures programs in a way that allows high efficiency in 

computation and communication. These applications can use multiple and different computational 

units, e.g. the floating point unit on a GPU or on a FPGA (Field Programmable Gate Array), without 

explicitly managing allocation, synchronization, or communication among those units. The stream 

processing paradigm simplifies parallel software and hardware by limiting the parallel computation 

that can be performed. Given a sequence of data (called stream) of the same type, a series of 

operations (called kernel functions) is applied to each element in the stream. Kernel function are 

commonly pipelined, and optimal local on-chip memory reusage is attempted, in such a way to 

minimize the loss in bandwidth, associated with external memory interaction. Uniform streaming, in 

which one kernel function is applied to all elements in the stream, is commonly used. Since the kernel 

and stream abstractions are susceptible to data dependencies, compiler tools can fully automate and 

optimize on-chip management tasks. Stream processing hardware can use scoreboarding (a 

centralized method for dynamically scheduling a pipeline so that the instructions can execute out of 

order where there are no conflicts and the hardware is available), for example, to initiate a DMA 

(Direct Access Memory) when dependencies become known. The elimination of manual DMA 

management reduces software complexity, and an associated elimination for hardware cached I/O, 
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reduces the data area expanse that has to be involved with service by specialized computational units 

such as ALUs (Arithmetic Logic Units). Stream processing consists of a tradeoff, driven by a data-

centric model that works very well for traditional DSP or GPU-type applications (e.g. image, video, 

and digital signal processing) but that does not work with the same efficiency for general purpose 

processing with more randomized data access (e.g. databases). By sacrificing some flexibility in the 

model, the implications allow easier, faster and more efficient execution. Depending on the context, 

processor designed may be tuned for maximum efficiency or a tradeoff for flexibility. Stream 

processing is mostly suitable for applications that exhibit three application characteristics: 

- Compute intensity, which is the number of arithmetic operations per I/O or global 

memory reference. In many signal processing applications today it is well over 50:1 

and increasing with algorithmic complexity 

- Data parallelism, which exists in a kernel if the same function is applied to all records 

of an input stream and a number of records can be processed simultaneously without 

waiting for results from previous records 

- Data locality, which is a specific type of temporal locality common in signal and media 

processing applications where data is produced once, read once or twice later in the 

application, and never read again. Intermediate streams passed between kernels as well 

as intermediate data within kernel functions can capture this locality directly using the 

stream processing programming model 

Some examples of records within streams are: 

- In graphics, each record might be the vertex, normal, and color information for a 

triangle 

- In image processing, each record might be a single pixel from an image 

- In a video encoder, each record might be 256 pixels forming a macroblock of data 

- In wireless signal processing, each record could be a sequence of samples received 

from an antenna 

For each record we can only read from the input, perform some operations on it, and write to the 

output. It is allowed to have multiple inputs and multiple outputs, but it is never allowed to have a 

piece of memory that is both readable and writable. 

 In the stream programming model, applications are constructed by chaining multiple kernels 

together. For instance, implementing the graphics pipeline in the stream programming model involves 

writing a vertex program kernel, a triangle assembly kernel, a clipping kernel, and so on, and then 

connecting the output from one kernel into the input of the next kernel. In the following figure it is 

shown how the entire graphics pipeline maps onto the stream model. This model makes the 
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communication between kernels explicit, taking advantage of the data locality between kernels 

inherent in the graphics pipeline. 

 

 
Figure 1.3 Mapping the stream model 

 

 

The graphics pipeline is a good match for the stream model for several reasons. The graphics 

pipeline is traditionally structured as stages of computation connected by fixed data flow between the 

stages. This structure is analogous to the stream and kernel abstractions of the stream programming 

model. Data flow between stages in the graphics pipeline is highly localized, with data produced by 

a stage immediately consumed by the next stage; in the stream programming model, streams passed 

between kernels exhibit similar behavior. And the computation involved in each stage of the pipeline 

is typically uniform across different primitives, allowing these stages to be easily mapped to kernels. 

The stream model enables efficient computation in several ways. Most important, streams expose 

parallelism in the application. Because kernels operate on entire system, stream elements can be 

processed in parallel using data parallel hardware. Long streams with many elements allow this data 

level parallelism to be highly efficient. Within the processing of a single element, we can exploit 

instruction level parallelism. And because applications are constructed from multiple kernels, 

multiple kernels can be deeply pipelined and processed in parallel, using task-level parallelism. 

Dividing the application of interest into kernels allows a hardware implementation to specialize 

hardware for one or more kernels’ execution. Special-purpose hardware, with its superior efficiency 

over programmable hardware, can thus be used appropriately in this programming model. Moreover, 

allowing only simple control flow in kernel execution (such as the data-parallel evaluation of a 

function on each input element) permits hardware implementations to devote most of their transistors 

to datapath hardware rather than control hardware. Efficient communication is also one of the primary 

goals of the stream programming model. First, off-chip (global) communication is more efficient 

when entire streams, rather than individual elements, are transferred to or from memory, because the 



 

13 
 

fixed cost of initiating a transfer can be amortized over an entire stream rather than a single element. 

Next, structuring applications as chains of kernels allows the intermediate results between kernels to 

be kept on-chip and not transferred to and from memory. Efficient kernels attempts to keep their 

inputs and their intermediate computed data local within kernel execution units; therefore, data 

referenced within kernel execution do not go off-chip or across a chip to a data cache, as would 

typically happen in a CPU. And  finally, deep pipelining of execution allows hardware 

implementations to continue to do useful work while waiting for data to return from global memories. 

This high degree of latency tolerance allows hardware implementations to optimize for throughput 

rather than latency. 

The stream programming model structures a program in a way that both exposes parallelism 

and permits efficient communication. Expressing programs in the stream model is only half the 

solution, however. High performance graphics hardware must effectively exploit the high arithmetic 

performance and the efficient computation exposed by the stream model. The first strep to build a 

high performance GPU is to map kernels in the graphics pipeline to independent functional units on 

a single chip. Each kernel is thus implemented on a separate area of the chip in an organization known 

as task parallel, which permits not only task level parallelism (because all kernels can be run 

simultaneously) but also hardware specialization of each functional unit to the given kernel. The task 

parallel organization also allows efficient communication between kernels: because the functional 

units implementing neighboring kernels in the graphics pipeline are adjacent on the chip, they 

communicate effectively without requiring global memory access. Within each stage of the graphics 

pipeline that maps to a processing unit on the chip, GPUs exploit the independence of each stream 

element by processing multiple data elements in parallel. The combination of task level and data level 

parallelism allows GPUs to profitably use dozens of functional units simultaneously. Inputs to the 

graphics pipeline must be processed by each kernel in sequence. Consequently, it may take thousands 

of cycles to complete the processing of a single element. If a high latency memory reference is 

required in processing any given element, the processing unit can simply work on other elements 

while the data is being fetched. The deep pipelines of modern GPUs, then, effectively tolerate high 

latency operations. 

For many years, the kernels that make up the graphics pipeline were implemented in graphics 

hardware as fixed function units that offered little to no user programmability. In 2000, for the first 

time, GPUs allowed users the opportunity to program individual kernels in the graphics pipeline. 

Today’s GPUs feature high performance data parallel processors that implement two kernels in the 

graphics pipeline: a vertex program that allows users to run a program on each vertex that passes 

through the pipeline, and a fragment program that allows users to run a program on each fragment. 
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Both of these stages permit single precision floating point computation. Although these additions 

were primarily intended to provide users with more flexible shading and lighting calculations, their 

ability to sustain high computation rates in user specified programs with sufficient precision to 

address general purpose computing has effectively made them programmable stream processors, 

which is, processors that are attractive for a much wider variety of applications than simply graphics 

pipeline. 

 

 

1.6 The future and challenges 
 

The migration of GPUs into programmable stream processors reflects the culmination of 

several historical trends. The first trend is the ability to concentrate large amounts of computation on 

a single processor die. Equally important has been the ability and talent of GPU designers in 

effectively using these computation resources. The economies of scale that are associated with 

building tens of millions of processors per year have allowed the cost of a GPU to fall enough to 

make a GPU a standard part od today’s desktop computer. And the addition of reasonably high-

precision programmability to the pipeline has completed the transition from a hardwired, special 

purpose processor to a powerful programmable processor that can address a wide variety of tasks. 

 

- Technology trends: 

Each new generation of hardware will present a challenge to GPU vendors. 

New transistors will be devoted to increased performance, in large part through 

greater amounts of parallelism, and to new functionality in the pipeline. We 

will also see these architectures evolve with changes in technology. Future 

architectures will increasingly use transistors to replace the need for 

communication. We can expect more aggressive caching techniques that not 

only alleviate off-chip communication but also mitigate the need for some on-

chip communication. We will also see computation increasingly replace 

communication when appropriate. For example, the use of texture memory as 

a lookup table may be replaced by calculating the values in that lookup table 

dynamically. And instead of sending data to a distant on-chip computation 

resource and then sending the result back, we may simply replicate the resource 

and compute our result locally. In the tradeoff between communicate and 

recompute/cache, we will increasingly choose the latter. The increasing cost of 
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communication will also influence the microarchitecture of future chips. 

Designers must now explicitly plan for the time required to send data across a 

chip; even local communication times are becoming significant in a timing 

budget. 

 

- Power management: 

Ideas for how to use future GPU transistors must be tempered by the realities 

of their costs. Power management become a critical piece of today’s GPU 

designs as each generation of hardware has increased its power demand. The 

future may hold more aggressive dynamic power management targeted at 

individual stages; increasing amounts of custom or power-aware design for 

power-hungry parts of the GPU; and more sophisticated cooling management 

for high-end GPUs. Technology trends indicate that the power demand will 

only continue to rise with future chip generations, so continued work in this 

area will remain an important challenge. 

 

- Supporting more programmability and functionality: 

While the current generation of graphics hardware features substantially more 

programmability than previous generations, the general programmability of 

GPUs is still far from ideal. One step toward addressing this trend is to improve 

the functionality and flexibility within the two current programmable units 

(vertex and fragment). It is likely that we will see their instruction sets 

converge and add functionalities, and that their control flow capabilities will 

become more general as well. We may even see programmable hardware 

shared between these two stages in an effort to better utilize these resources. 

GPU architects will have to be mindful, however, that such improvements do 

not affect the GPU’s performance in its core tasks. Another option will be 

expanding programmability to different units. Geometric primitives 

particularly benefit from programmability, so we may soon see programmable 

processing on surfaces, triangles, and pixels. As GPU vendors support more 

general pipelines and more complex and varied shader computation, many 

researchers have used the GPU to address tasks outside the bounds of the 

graphics pipeline. The general purpose computation on GPUs (GPGPU) 

community has successfully addressed problems in visual simulation, image 
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processing, numerical methods, and databases with graphics hardware. We can 

expect that these efforts will grow in the future as GPUs continue to increase 

in performance and functionality. Historically, we have seen GPUs subsume 

functionality previously belonging to the CPU. Early consumer level graphics 

hardware could not perform geometry processing on the graphics processor; it 

was only a few years ago that the entire graphics pipeline could be fabricated 

on a single chip. Although since that time the primary increase in GPU 

functionality has been directed toward programmability within the graphics 

pipeline, we should not expect that GPU vendors have halted their efforts to 

identify more functions to integrate onto a GPU. In particular, today’s games 

often require large amounts of computation in physics and artificial 

intelligence computations. Such computation may be attractive for future 

GPUs. 

 

- GPU functionality subsumed by CPU (or vice versa): 

We can be confident that CPU vendors will not stand still as GPUs incorporate 

more processing power and more capability onto their future chips. The ever 

increasing number of transistors with each process generation may eventually 

lead to conflict between CPU and GPU manufacturers. The future may reserve 

us an environment with the CPU as the core of the newer computer systems, 

which could be eventually incorporate GPU or stream functionality on the CPU 

itself; or maybe it may reserve us an environment with a GPU as the core of 

the newer computer systems, which could be eventually be enhanced with CPU 

functionalities. 
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Chapter two: CUDA and OpenCL 
 

2.1 Introduction 
 

CUDA and OpenCL are two different parallel computing platforms and APIs created by two 

different vendors, Nvidia and Khronos Group. They are the currently most used interfaces for GPUs 

programming and their main difference are: 

- Proprietary vs open source 

- Homogeneous vs heterogeneous  

- Performance vs portability 

We will have a deeper look into each of them. 

 

 

2.2 CUDA 
 

CUDA[2], which stands for Compute Unified Device Architecture, is a parallel computing 

platform and API developed by Nvidia in 2007. It allows the programmers to use CUDA compatible 

GPUs for GPGPU tasks. It is designed to work with high level programming languages, such as C, 

C++ and Python. This peculiarity gives the opportunity to have a larger number of users, due to the 

fact that the previous APIs such as OpenGL (Open Graphics Library) required a specified language 

to write the programs to be run on GPUs. In this way CUDA increases its accessibility. The CUDA 

platform is accessed by programmers via CUDA-accelerated libraries, compiler directives such as 

OpenACC (Open Accelerators) and extension to the high level programming languages mentioned 

before, so C, C++, Python and others. In particular, C and C++ programmers can use “CUDA C/C++” 

compiled to PTX (Parallel Thread Execution) with NVCC (Nvidia CUDA Compiler), an Nvidia’s 

LLVM (Low Level Virtual Machine) compiler, used to develop a front end for the programming 

language and a back end for the ISA (Instruction Set Architecture). The platform supports also other 

interfaces, such as OpenCL and OpenGL. It also provides a low level API (called CUDA Driver) and 

an high level API (called CUDA Runtime). It works on all Nvidia’s GPUs (GeForce, Quadro and 

Tesla, to quote the most famous ones). It runs on all standard OS (Operating Systems) such as Linux, 

Windows and MacOS. Actually, the last released stable CUDA toolkit is the 11.0. 

 

 
[2] https://developer.nvidia.com/cuda-zone 
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Here below is a list of the main CUDA libraries: 

- cuBLAS, CUDA basic linear algebra subroutine library 

- CUDART, CUDA runtime library 

- cuFFT, CUDA fast Fourier transform library 

- cuRAND, CUDA random number generation library 

- cuSOLVER, CUDA based collection of dense and sparse direct solvers 

- cuSPARSE, CUDA sparse matrix library 

- NPP, Nvidia performance primitives library 

- nvGRAPH, Nvidia graph analytics library 

- NVML, Nvidia management library 

- NVRTC, Nvidia runtime compilation library 

 

Using CUDA has some advantages: 

- Scattered reads, i.e. the code can read from arbitrary addresses in memory 

- Unified virtual memory 

- Unified memory 

- Shared memory, which is shared among threads 

- Fast transfers from and to the GPU 

- Full support for integer and bitwise operation 

 

Unfortunately, CUDA has also some disadvantages: 

- CUDA source code is now processed according to C++ syntax rules, so older versions 

based on simple C could fail to compile or could have a not wanted behavior 

- Interoperability with rendering languages is limited; for example, OpenGL can have 

access to CUDA memory but not the opposite 

- Transfers between CPU (host) and GPU (device) memory could not be so efficient in 

terms of performance due to system bus bandwidth and latency 

- Threads should run in groups of at least 32 of them to better exploit the GPU’s 

performance 

- There are nor emulators or fallback functionality for newer revisions 

- CUDA-enabled GPUs are available only from Nvidia 
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The last point is the worst, because it means that Nvidia obliges users to buy their GPUs to be 

able to use CUDA. Through the years some attempts were made to run CUDA on other GPUs than 

Nvidia’s ones, such as: 

- Project Coriander, which converts CUDA C++11 to OpenCL 1.2 C 

- CU2CL, which converts CUDA 3.2 C++ to OpenCL 

- GPUOpen HIP, which converts CUDA from 4 to 11 C++ to AMD cards format 

 

In the following, a list of some applications that use CUDA: 

- Accelerated rendering of 3D graphics 

- Accelerated interconversion of video file formats 

- Accelerated encryption, decryption and compression 

- Bioinformatics 

- Distributed calculations 

- Medical analysis simulations 

- Physical simulations 

- Neural network training (machine learning field) 

- Face recognition 

- Distributed computing 

- Molecular dynamics 

- Mining (crypto currency field) 

 

A CUDA program consists of one or more phases which are executed on either the host or a 

device, as it could be the GPU. The phases that exhibit a lot of data parallelism are implemented in 

the device code, while the phases that exhibit little or no data parallelism are implemented in the host 

code. A CUDA program is a unified source code encompassing both host and device code. The 

NVIDIA_C compiler (nvcc) separates the two during the compilation process. The host code is 

straight ANSI C code; it is further compiled with the host’s standard C compilers and runs on an 

ordinary CPU process. The device code is written using ANSI C extended with keywords for labeling 

data-parallel functions, so kernels, and their associated data structures. The device code is typically 

further compiled by the nvcc and executed on a GPU device. In situations where no device is available 

or the kernel is more appropriately executed on a CPU, one can also choose to execute kernels on a 

CPU using the emulation features in CUDA SDK (Software Development Kit). The steps in executing 

CUDA programs are: 
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- Device initialization 

- Device memory allocation 

- Copies data to device memory 

- Executes kernel (calling _global_function) 

- Copies data from device memory (retrieve results) 

 

 
Fig. 2.1 CUDA Device model 
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Fig. 2.2 CUDA Execution model 

 

 

 
Fig. 2.3 CUDA Memory model 
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2.2.1 CUDA development model 
 

 A CUDA application consists of host program and CUDA device program. The host program 

activates computation kernels, which are data parallel routine programs, in the device program, and 

they are executed on the device for multiple data items in parallel by device threads. Computation 

kernels are written in C for CUDA or PTX (a low level parallel thread execution virtual machine and 

instruction set architecture used in Nvidia’s CUDA programming environment); the first adds 

language extensions and built-in functions for device programming. It is also present some support 

for other kernel programming languages. Then, the host program accesses the device with either C 

runtime for CUDA or CUDA Driver API: 

- C runtime interface is higher level and less verbose to use than the Driver API 

- With C runtime computation kernels can be invoked from the host program with 

convenient CUDA-specific invocation syntax 

- The Driver API provides more finer grained control 

- Bindings to other programming languages can be built on top of either API 

Finally, we can say that device and host code can be mixed or written on separate source files, that 

graphics interoperability is provided with OpenGL and Direct3D and that Nvidia provides also 

OpenCL interface for CUDA. 

 

 

2.2.2 CUDA toolchain 
 

 The device program is compiled by the CUDA SDK-provided nvcc compiler, which emits 

CUDA PTX assembly or device-specific binary code for the device code. PTX is an intermediate 

code specified in CUDA that is further compiled and translated by the device driver to actual device 

machine code. The device program files can be compiled separately or mixed with host code if CUDA 

SDK-provided nvcc compiler is used; moreover, the latter is also required if CUDA custom kernel 

invocation syntax is used. Finally, separate compilation can output C host code for integrating with 

the host toolchain. In the following image, we can see a generic scheme of the CUDA system 

architecture, in which we can recognize some of the features we have talk about previously. 
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Fig 2.4 CUDA System Architecture 

 

 

2.2.3 C for CUDA kernel programming 
 

C for CUDA kernel programming is based on C programming language with extensions and 

restrictions (to be noted that the C language standard version used as base is not defined). Here below 

a list of the extensions and restrictions included: 

 

- Extensions: 

o Built-in vector data types, but no built-in operators or math functions for them 

o Function and variable type qualifiers 

o Built-in variables for accessing thread indices 

o Intrinsic floating point, integer and fast math functions 

o Texture functions 

o Memory fence and synchronization functions 

o Voting functions (from CC 1.2) 

o Atomic functions (from CC 1.1) 
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o Limited C++ language features support: function and operator overloading, 

default parameters, namespaces, function templates 

- Restrictions: 

o No recursion support, static variables, variable number of arguments or taking 

pointer of device functions 

o No dynamic memory allocation 

o Access to full set of standard C library (e.g. stdio) only in emulation mode 

 

- Numerical accuracy: 

o Accuracy and deviations from IEEE-754[3] are specified 

o For deviating operations compliant, but slower software versions are provided 

 

 

2.3 OpenCL 
 

OpenCL[4], which stands for Open Computing Language, is a framework for writing programs 

which are executed in an heterogenous environment, e.g. composed by a CPU and one or more GPUs. 

It specifies both the programming languages to be used to setup the devices and  the APIs to have 

platform control and to execute programs on devices. OpenCL was born in 2009 from the non-profit 

technology consortium Khronos Group. It was created as the open source opponent of Nvidia’s 

CUDA, and today is its main competitor, not only from a moral point of view (proprietary vs open 

source software) but also from the market point of view. Its capability to run on different vendors’ 

GPUs, so to not be obliged to use an Nvidia’s one, is one of the main reasons of its success. 

Computing systems are seen by OpenCL as a collection of devices (CPUs or GPUs) attached to an 

host (CPU). Programs are written in a C-like language and the functions to be executed are called 

kernels. A single device usually consists of several compute units which, in turn, consists of different 

PEs (Processing Elements). So, a single kernel execution can run all the PEs or a substantial number 

of them. OpenCL also provides an API which allows host’s programs to launch kernels on the device 

and to manage their memory. A key point of OpenCL is its portability not only on devices (GPUs 

from different vendors) but also on hosts (CPUs from different vendors and with different 

characteristics), so programs in OpenCL are meant to be compiled in run-time (known also as JIT, or 

Just-In-Time execution). OpenCL gives also the opportunity to use SPIR (Standard Portable 

 
[3] https://standards.ieee.org/standard/60559-2020.html 
[4] https://www.khronos.org/opencl/ 
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Intermediate Representation, but actually named SPIR-V, which is natively incorporated in OpenCL 

and not more an external extension which used LLVM compiler), useful to programming in other 

languages and to protect the kernel source; moreover, now OpenCL supports also SYCL, an high 

level programming model used to improve productivity. 

The C-like programming language used to write kernels is called OpenCL C and is based on 

C99 (which is the informal name of ISO/IEC 9899:1999, an old version of the C language) with some 

changes to better run on devices. OpenCL functions are marked _kernel, instead of having a main 

function as in C, to indicate the starting point of the devices which have to be called by the host 

program. Pointers to the memory hierarchy are marked as _global, _constant, _local, _private, as 

seen before. Procedure pointers, bit fields and variable-sized arrays are omitted; moreover, recursion 

is not allowed. The C standard library is modified with a custom library to better exploit arithmetical 

programming. Currently, OpenCL framework is updated at version 3.0, with a propension to C++-

like programming language respect to C-like one. OpenCL is composed by a set of headers and a 

shared library which are loaded at run time. An additional ICD (Installable Client Driver) has to be 

installed for every different vendor’s card which has to be used, So, there is an ICD for Nvidia’s 

cards, an ICD for AMD’s cards and so on, in order to support different cards from different vendors. 

To make it possible, OpenCL headers are used by the consumer application and vendors have to 

update their drivers to implement OpenCL calls. 

Here below, a list of different implementations from different vendors to allow the OpenCL 

usage on their cards: 

- MESA Gallium Compute, also known as MESA Clover, implementation for AMD 

and Nvidia 

- BEIGNET, implementation for Ivy Bridge, Skylake and Android 

- NEO, implementation for Intel Ice Lake and Tiger Lake. This replaces the Intel’s 

implementation BEIGNET 

- ROCm, implementation for AMDs CPUs and APUs (Accelerated Processing Unit) 

and Intel CPUs from generation 7th and newer 

- POCL, portable implementation for some CPUs and GPUs using CUDA and HSA 

(Heterogeneous System Architecture, a cross vendor set of specifications for allowing  

integration of CPUs and GPUs on the same bus). It runs also on Mac OS 

- Shamrock, porting implementation of MESA Clover for ARM 

- FreeOCL, an implementation with an external compiler for a more stable platform 

- MOCL, implementation based on POCL for Intel Xeon Phi accelerators 
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As mentioned before, the most important feature of OpenCL is its portability, reached through 

its abstraction of memory and the execution model, so it is possible to run any OpenCL kernel on any 

implementation which is compliant with the required characteristics. As a trade off, to have such a 

portability some waivers have to be done. So performance is not comparable with ad hoc solutions, 

such as CUDA. Acceptable levels of performance across different devices have been reached, 

otherwise OpenCL would not be taken into account as one of the main platforms for GPU’s 

programming. The main reasons between CUDA and OpenCL performance are due to differences in 

programming model, different optimizations on native kernels, architecture related differences, and 

compiler differences. 

In a document of the Delft University of Technology of 2011[5], three researchers concluded 

that “there is no reason for OpenCL to obtain worse performance than CUDA under a fair comparison. Several 

benchmarks also show the interesting performance gaps. The reasons behind the gaps are analyzed thoroughly 

and they can all be essentially related to various behaviors of programmers, compilers and users. We also port 

all the real-world benchmarks to other platforms with minor modifications to show OpenCL’s potential for 

portability. Since it has been shown in this paper that OpenCL is a good alternative to CUDA, we would like 

to develop an auto-tuner to adapt general-purpose OpenCL programs to all available specific platforms to fully 

exploit the hardware”. 

In another document of D-Wave Systems Inc.[6], another team of researchers say that “the 

changing performance for different problem sizes are due to differences in data structure sizes and their 

placement in GPU memory. GPU performance is very dependent on these issues. However, these effects are 

specific to the algorithm used, so here we focus on the performance difference between CUDA and OpenCL. 

For all problem sizes, both the kernel and the end-to-end times show considerable difference in favor of CUDA. 

The OpenCL kernel’s performance is between about 13% and 63% slower, and the end-to-end time is between 

about 16% and 67% slower. As expected, the kernel and end-to-end running times approach each other in 

value with bigger problem sizes, because the kernel time’s contribution to the total running time increases.” 
So it is true that OpenCL has worse performance results compared to CUDA, but it is also 

true that is a matter of the youthfulness of the framework and the inexperience of the developers in 

that environment. 

An OpenCL program is similar to a dynamic library, and an OpenCL kernel is similar to an 

exported function from the dynamic library. Applications directly call the functions exported by a 

dynamic library from their code; however, they can not call an OpenCL kernel directly to a command-

queue created for a device. The kernel is executed asynchronously with the application code running 

on the host CPU. The OpenCL specification is defined in four parts, called models, which are: 

 
[5] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, “A Comprehensive Performance Comparison of CUDA and OpenCL”, Parallel and 

Distributed Systems Group, Delft University of Technology (Delft, Netherlands), September 2011 
[6] K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison of CUDA and OpenCL,” May 2010 
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- Platform model: 

o It specifies that there is one processor coordinating execution (the host) and 

one or more processors capable of executing OpenCL code (the devices). It 

defines an abstract hardware model that is used by programmers when writing 

OpenCL functions (the kernels) that execute on the devices. 

 

- Execution model: 

o It defines how the OpenCL environment is configured on the host and how 

kernels (the code for a work-item; basically a C function) are executed on the 

device. This includes setting up an OpenCL context (the environment within 

which work-items (the basic unit of work on an OpenCL device) executes, 

includes devices and their memories and command queues) on the host, 

providing mechanism for interaction between the host and any device, and 

defining a concurrency model used for kernel execution on devices. OpenCL 

application runs on a host which submits work to the compute devices. 

 

 
Fig 2.5 OpenCL Execution model 
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- Memory model: 

o It defines the abstract memory hierarchy that kernels use, regardless of the 

actual underlying memory architecture. The memory model closely resembles 

current GPU memory hierarchies, although this has not limited adoptability by 

other accelerators. 

▪ Global memory, shared by all PEs and with an high latency, marked as 

_global 

▪ Read only memory, writable only by the host and with a low latency, 

marked as _constant 

▪ Local memory, shared by only a group of PEs, marked as _local 

▪ Per element private memory, the elements’ registers, marked as 

_private 

It is not compulsory to implement all the hierarchy for all situations; in fact, it 

is possible to use only some levels of the hierarchy itself. Moreover, devices 

are not obliged to share their memory with the host but, in the case in which 

that happen, the host API provides handles to make the transfers from and to 

host and devices possible. 

 

 
Fig 2.6 OpenCL Memory model 
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- Programming model: 

o It defines how the concurrency model is mapped to physical hardware. 

OpenCL uses Dynamic/Runtime compilation model: 

▪ The code is compiled to an IR (Intermediate Representation), usually 

an assembler or a virtual machine, known as offline compilation 

▪ The IR is compiled to a machine code for execution; this step is much 

shorter and it is known as online compilation 

 

The steps in executing OpenCL programs are listed below: 

- Query host for OpenCL devices 

- Create a context to associate OpenCL devices 

- Create programs for execution on one or more associated devices 

- Select kernels to execute from the programs 

- Create memory objects accessible from the host and/or the device 

- Copy memory data to the device as needed 

- Provide kernels to command queue for execution 

- Copy results from the device to the host 

 

 
Fig 2.7 OpenCL Device model 
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2.3.1 OpenCL development model 
 

An OpenCL application consists of host program and OpenCL program to be executed on the 

computation device; the host program activates computation kernels, which are data parallel routine 

programs, in the device program, and they are executed on the device for multiple data items in 

parallel by device processing elements (also task parallel and hybrid models are supported). OpenCL 

kernels are written with the OpenCL C programming language: 

- OpenCL C is based on C99 with extensions and limitations 

- In addition the language, OpenCL specifies library of built-in functions 

- Implementations can also provide other means to write kernels 

The host program controls the device by using the OpenCL C API (bindings to other host 

programming languages can be built on top of the C API) and graphics interoperability is provided 

with OpenGL. 

 

 

2.3.2 OpenCL toolchain 
 

An OpenCL implementation must provide a compiler from OpenCL C to supported device 

executable code; that compiler must support standard set of OpenCL defined options. The kernels 

can be compiled either online (runtime) or offline (build time). In online compilation the host program 

provides to the OpenCL API a compiled OpenCL C source text. Runtime compilation is more flexible 

for the final application, but may be problematic in some cases: 

- Compilation errors need to be extracted through the OpenCL API at development time 

- The kernel source code is included in the application binaries 

Finally, the host program is compiled with the default host toolchain and OpenCL is used through its 

C API. 

 

 

2.3.3 OpenCL C kernel programming 
 

OpenCL C kernel programming is based on the C programming language with extensions and 

restrictions (it is based on the C99 version of the language standard). Here below a resuming list of 

the main extensions and restrictions: 
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- Extensions: 

o Built-in first-class vector data types with literal syntax, operators and functions 

o Explicit data conversions 

o Address space, function and attribute qualifiers 

o OpenCL-specific #pragma directives 

o Built-in functions for accessing work item indices 

o Built-in math, integer, relational and vector functions 

o Image read and write functions 

o Memory fence and synchronization functions 

o Asynchronous memory copying and prefetch functions 

o Optional extensions: e.g. atomic operations, etc. 

 

- Restrictions: 

o No recursion, pointer to pointer arguments to kernels, variable number of 

arguments of pointers to functions 

o No dynamic memory allocation 

o No double-precision floating point support by default 

o Most C99 standard headers and libraries cannot be used 

o extern, static, auto and register storage-class specifiers are not supported 

o C99 variable length arrays are not supported 

o Writing to arrays or struct members with element size less than 32 bits is not 

supported by default 

o Many restrictions can be addressed by extensions, e.g. double-precision 

support, byte addressing, etc. 

 

- Numerical accuracy: 

o Accuracy and deviations from IEEE-754[7] are specified 

o Some additional requirements specified beyond C99 TC2[8] 

 

 

 

 

 
[7] https://standards.ieee.org/standard/60559-2020.html 
[8] ISO/IEC 9899:TC2, http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf 
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Chapter three: CUDA vs OpenCL 
 

3.1 Introduction 
 

In this chapter, CUDA and OpenCL platforms will be analyzed to better highlight their 

differences and to better understand in which case it is better to use one or the other. Before starting 

the analysis on the main differences between the two APIs, let’s see some resuming table to better 

highlight the key points of the two platforms. 

 

 
Table 3.1 Main differences between CUDA and OpenCL 

 

 

 
Table 3.2 Toolchain comparison between CUDA and OpenCL 
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Table 3.3 Development model comparison between CUDA and OpenCL 

 

 

 
Table 3.4 Kernel programming differences between CUDA and OpenCL 
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3.2 Work environment 
 

Currently, CUDA is the standard platform for GPU programming; it is a largely tested and 

working environment which has been used and tried-out for years. Programmers are used to write 

through that platform and CUDA was the very first alternative to programming GPU in a more 

comfortable way. Moreover, it works well. So, it is clear the reason behind its success. The only 

problem is that it sacrifice portability (CUDA works only on Nvidia GPUs) to better exploit 

performances (and obviously it is also a matter of money for Nvidia). 

OpenCL was released some years after CUDA, and at the time the market was already used 

to work with the latter to writing GPUs’ programs. The main difference is that OpenCL was presented 

as an open source alternative with a great portability in such a way that every GPU programmer, not 

only the ones using Nvidia cards, could program in an efficient and more comfortable way. In fact, 

OpenCL shares the main ways of programming of CUDA, so it keeps its easiness with in addition the 

major portability. The other side of the coin is the lower performance compared to CUDA; in fact, 

the portability does not allow to have specific characteristics to have a more precise environment 

based only on one vendor. 

To validate the fact that OpenCL shares many things with CUDA, we can analyze the thread 

hierarchy of both of them: 

- In CUDA, the hierarchy goes in an ascending order through thread, warp, thread 

block, grid 

- In OpenCL, the hierarchy goes in an ascending order through work-item, work-group, 

NDRange 

The above items have been written in order, to show their correlation. The second item is a collection 

of a group of the first items, the third item is a collection of a group of the second items and so on, 

for both CUDA and OpenCL. Grid and NDRange are the macroblocks of all threads or work-items 

which are launched during a kernel execution. In OpenCL the correspondence of a CUDA warp is 

absent, due to the fact that it does not run on a specific vendor’s card; however, work-items work as 

a group, in such a way that we can consider that warps are only theoretically absent, but not in 

practice. It means that they work as they formed a warp without actually doing it. So, all the items 

work in a very similar way, with only name differences. Considering that, it is important to highlight 

that it is a priority considering on which card OpenCL has to run to better exploit the performance of 

the software accordingly to the specific vendor’s system (for example, with Nvidia we have warps 

and with AMD we have wavefronts; both have to be taken into account to have the better possible 

program). 
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CUDA can be used in two different ways, via the runtime API, which provides a C-like set of 

routines and extensions, and via the driver API, which provides lower level control over the hardware 

but requires more code and programming effort. Both OpenCL and CUDA define kernel as the code 

which runs on the GPU (or in a more general way on a device, so not on the host). Setting up the 

device for kernel execution differs substantially between CUDA and OpenCL. Their APIs for context 

creation and data copying are different, and different conventions are followed for mapping the kernel 

onto the device’s processing elements. These differences could affect the length of time needed to 

code and debug a device application. OpenCL aims at reaching a portable language for GPU 

programming, capable of targeting dissimilar parallel processing devices. Unlike a CUDA kernel, an 

OpenCL one can be compiled at runtime, which would add to an OpenCL’s running time. On the 

other hand, just-in-time compilation may allow the compiler to generate code that makes better use 

of the target GPU. CUDA, however, is developed by the same company that develops the hardware 

on which it executes, so it is reasonable to expect it to better match the computing characteristics of 

the GPU, offering more access to features and better performance. 

The OpenCL API is a C with a wrapper API that is defined in terms of the C API. There are 

third-party bindings for many languages, including Java, Python and .NET. The code that executes 

on an OpenCL device, which in general is not the same device as the host CPU, is written in the 

OpenCL C language, which is a restricted version of the C99 language with extensions appropriate 

for executing data-parallel code on a variety of heterogeneous systems. CUDA encourages the use of 

scalar code in kernels. While this works in OpenCL as well, depending on the desired target 

architecture, it may be more efficient to write programs operating on OpenCL’s vector types, such as 

float, as opposed to pure scalar types. This is useful for both, for example, AMD CPUs and GPUs, 

which can operate efficiently on vector types. OpenCL also provides flexible swizzle/broadcast 

primitives for efficient creation and rearrangement of vector types. CUDA does not provide rich 

facilities for task parallelism, and so it may be beneficial to think about how to take advantage of 

OpenCL’s task parallelism as you port your application 

OpenCL shares a range of core ideas with CUDA: they have similar platform models, memory 

models, execution models, and programming models. They share the user’s point of view, such as 

that to a programmer the computing system consists of a host (a traditional CPU) and one or more 

devices that are massively parallel processors equipped with a large number of arithmetic execution 

units. There also exists a mapping between CUDA and OpenCL in memory and execution terms. 

Additionally, their syntax for various keywords and built-in functions are fairly similar to each other. 

Considering that CUDA and OpenCL shares many concepts (also some of the fundamental 

ones), the best way to highlight their differences is to compare their performance. There has been a 
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fair amount of work on performance comparison of programming models for multi-core/many-core 

processors. 

Rick Weber et al.[9] presented a collection of Quantum Monte Carlo algorithms implemented 

in CUDA, OpenCL, Brook+, C++, and VHDL. They gave systematic comparison of several 

application accelerators on performance, design methodology, platform, and architectures. Their 

result show that OpenCL provides application portability between multi-core processors and GPUs, 

but may incur a loss in performance. 

Rob van Nieuwpoort et al.[10] explained how to implement and optimize signal-processing 

applications on multi-core CPUs and many-core architectures. They used correlation (a streaming, 

possibly real-time, and I/O intensive application) as a running example, investigating the aspects of 

performance, power efficiency, and programmability. This study includes an interesting analysis of 

OpenCL: the problem of performance portability is not fully solved by OpenCL and so programmers 

have to take more architectural details into consideration. 

In another work[11], the authors compared programming features, platform, device portability, 

and performance of GPU APIs for cloth modeling. Implementations in GLSL (OpenGL Shading 

Language, an high level shading language with a syntax based on the C programming language), 

CUDA and OpenCL are given. They conclude that OpenCL and CUDA have more flexible 

programming options for general computations than GLSL. However, GLSL remains better for 

interoperability with a graphics API. 

In one more work[12], a comparison between two GPGPU programming approaches (CUDA 

and OpenGL) is given using a weighted Jacobi iterative solver for the bidomain equations. The 

CUDA approach using texture memory is shown to be faster than the OpenGL version. 

Kamran Karimi et al.[13], compared the performance of CUDA and OpenCL using complex, 

near-identical kernels. They showed that there are minimal modifications involved when converting 

a CUDA kernel to an OpenCL kernel. Their performance experiments measure and compare data 

transfer time to and from the GPU, kernel execution time, and end-to-end application execution time 

for both CUDA and OpenCL. Only one application or algorithm is used in all the work mentioned 

above. 

 
[9] R. Weber, A. Gothandaraman, R. J. Hinde, and G. D. Peterson, “Comparing Hardware Accelerators in Scientific Applications: A Case Study,” 
IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 58–68, January 2011 
[10] R. van Nieuwpoort and J. Romein, “Correlating radio astronomy signals with Many-Core hardware,” International Journal of Parallel 
Programming, vol. 39, pp. 88–114, Feb. 2011 
[11] T. I. Vassilev, “Comparison of several parallel API for cloth modelling on modern GPUs,” in Proceedings of the 11th International Conference on 
Computer Systems and Technologies and Workshop for PhD Students in Computing on International Conference on Computer Systems and 
Technologies, CompSysTech ’10, (New York, NY, USA), pp. 131–136, ACM, 2010 
[12] R. Amorim, G. Haase, M. Liebmann, and R. Weber dos Santos, “Comparing CUDA and OpenGL implementations for a Jacobi iteration,” pp. 22–

32, June 2009 
[13] K. Karimi, N. G. Dickson, and F. Hamze, “A Performance Comparison of CUDA and OpenCL,” May 2010 
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Ping Du et al.[14] evaluated many aspects of adopting OpenCL as a performance-portable 

method for GPGPU application development. The triangular solver (TRSM) and matrix 

multiplication (GEMM) have been selected for implementation in OpenCL. Their experimental 

results show that nearly 50% of peak performance could be obtained in GEMM on both NVIDIA 

Tesla C2050 and ATI Radeon 5870 in OpenCL. Their results also show that goof performance can 

be achieved when architectural specifics are taken into account in the algorithm design. 

In another work[15], the authors quantitatively evaluated the performance of CUDA and 

OpenCL programs developed with almost the same computations. The main reason leading to these 

performance differences are investigated for applications including matrix multiplication from 

CUDA SDK and CP, MRI-Q, MRI-HD from the Parboil benchmark suite. Their results show that if 

the kernels are properly optimized, the performance of OpenCL programs is comparable with their 

CUDA counterparts. They also showed that the compiler options of the OpenCL C compiler and the 

execution configuration parameters have to be tuned for each GPU to obtain its best performance.  

The majority of the above quoted works have used very few applications to compare existing 

programming models. A different work[16] observed a large set of different applications to show the 

performance differences of CUDA and OpenCL, giving a detailed analysis of the performance gap 

from all possible aspects. We will analyze it to better understand the difference in CUDA and OpenCL 

from a performance point of view. 

 

 
Table 3.5 List of selected benchmarks in the [8] work 

 
[14] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From CUDA to OpenCL: Towards a Performance-portable Solution for 
Multi-platform GPU Programming,” tech. rep., Department of Computer Science, UTK, Knoxville Tennessee, September 2010 
[15] K. Komatsu1, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi1, “Evaluating Performance and Portability of OpenCL Programs,” in 

Proceedings of the Fifth international Workshop on Automatic Performance Tuning(iWAPT2010), (Berkeley, USA), June 2010 
[16] Jianbin Fang, Ana Lucia Varbanescu and Henk Sips, “A Comprehensive Performance Comparison of CUDA and OpenCL”, Parallel and 

Distributed Systems Group, Delft University of Technology (Delft, Netherlands), September 2011 
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In order to compare the performance of CUDA and OpenCL, it is defined a normalized 

performance metric, called Performance Ratio (PR), which can be described as: 

 

PR = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑂𝑝𝑒𝑛𝐶𝐿

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐶𝑈𝐷𝐴
 

 

For PR < 1, the performance of OpenCL is worse than CUDA; otherwise, OpenCL will give a better 

or same performance. In an intuitive way, if |1-PR| < 0.1, it can be assumed that CUDA and OpenCL 

have similar performance. When it comes to different domains, performance metrics have different 

meanings. In memory systems, the bandwidth of memories can be seen as an important performance 

metric. The higher the bandwidth is, the better the performance is. For sorting algorithms, 

performance may refer to the number of elements a processor finishes sorting in unit time. Floating-

point operations per second (Flops/sec) is a typical performance metric in scientific computing. 

Exceptionally, performance is inversely proportional to the time a benchmark that takes from start to 

end. For the above reasons, in the work [8], which we are now analyzing, the authors decided to select 

specific performance metrics for different benchmarks, as it can be seen in Table 3.1. 

 Benchmarks are selected from the SHOC (Scalable HeterOgeneous Computing) benchmark 

suite, Nvidia’s SDK, and the Rodinia benchmark suite. The authors also used some self designed 

applications. These benchmarks fall into two categories: synthetic applications and real-world 

applications: 

- Synthetic applications: 

o Synthetic applications are those which provide ideal instructions to make full 

use of the underlying hardware. The authors selected two synthetic 

applications from the SHOC benchmark suite: MaxFlops and DeviceMemory, 

which are used to measure peak performance (floating point operations and 

device-memory bandwidth) of GPUs in GFlops/sec and GB/sec. In their 

work[8], peak performance includes theoretical peak performance and achieved 

peak performance. Theoretical peak performance (or theoretical performance) 

can be calculated using hardware specifications, while achieved peak 

performance (or achieved performance) is measured by running synthetic 

applications on real hardware 
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- Real-world applicarions: 

o Real-world applications include algorithms frequently used in real-world 

domains. The real-world applications selected are listed in Table 3.1. Among 

them, Sobel, TranP in both CUDA and OpenCL, and BFS in OpenCL are 

developed by the authors (denoted by “SELF”); others are selected from the 

SHOC benchmarks suite (“SHOC”), Nvidia’s CUDA SDK (“NSDK”) and the 

Rodinia benchmark suite (only BFS in CUDA, denoted by “Rodinia”). 

 

The authors obtained all their measurement results on real hardware using three platforms, 

called Dutijc, Saturn, and Jupiter. Each platform consists of two parts: the host machine (one CPU) 

and its device part (one or more GPUs). The two following tables shows the detailed configurations 

of these platforms and of the attached GPUs. 

 

   
Table 3.6 Platforms detailed specifications 

 

 

    
Table 3.7 GPUs detailed specifications 
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Three different GPUs have been used, which are Nvidia GTX280, Nvidia GTX480, and ATI Radeon 

HD5870. Intel® Core™ i7 CPU 920@2.67 GHz (or Intel 920) and Cell Broadband Engine (or 

Cell/BE) are also used as OpenCL devices. For the Cell/BE, the authors used the OpenCL 

implementation for IBM. Fort the Intel920, they used the implementation from AMD (APP v2.2), 

because when they write their paper Intel’s implementation on Linux was still unavailable. In the 

following, the performance comparisons and analyses. 

 

- Comparing peak performance 

 

o Bandwidth of device memory: 

TPBW (Theoretical Peak Bandwidth) is defined as: 

 

TPBW = 𝑀𝐶 ∗ (
𝑀𝐼𝑊

8
) ∗ 2 ∗ 10−9 

 

where MC is the abbreviation for Memory Clock. Using the above equation 

the authors have calculated the TPBW of GTX280 and GTX480 to be 141.7 

GB/sec and 177.4 GB/sec, respectively. APBW (Achieved Peak Bandwidth) is 

then measured by reading global memory in a coalesced manner. Moreover, 

the experimental results show that APBW depends on work-group-size (or 

block-size), which has been set to 256. The result of the experiments with 

DeviceMemory in Saturn (GTX480) and Dutijc (GTX280) are shown in the 

following figure. 

 

 
Fig 3.1 Peak bandwidth comparison between GTX280 and GTX480 

mailto:920@2.67
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It can be seen that OpenCL outperforms CUDA in APBW by 8.5% on GTX280 

and 2.4% on GTX480, respectively. 

 

o Floating point performance: 

TPFLOPS (Theoretical Peak Floating Point Operations per Second) is calculated 

as: 

 

TPFLOPS = 𝐶𝐶 ∗ #𝐶𝑜𝑟𝑒𝑠 ∗ 𝑅 ∗ 10−9 

 

where CC is short for Core Clock and R stands for maximum operations 

finished by a scalar core in one cycle. R differs depending on the platforms: it 

is 3 for GTX280 and 2 for GTX480, due to the dual-issue design of the GT200 

architecture. As a result, TPFLOPS is equal to 933.12 GFlops/sec and 1344.96 

GFlops/sec for the two GPUs, respectively. APFLOPS (Achieved Peak FLOPS) 

in MaxFlops is measured in different ways on GTX280 and GTX480. In the 

first, a mul instruction and a mad instruction appear in an interleaved way (in 

theory they can run on one scalar core simultaneously), while only mad 

instructions are issued for GTX480. The experimental results are compared in 

the following figure. 

 

 
Fig 3.2 Peak FLOPS comparison between GTX280 and GTX480 
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It can be seen that OpenCL obtains almost the same APFLOPS as CUDA for 

GTX280 and GTX480, accounting for approximately 71.5% and 97.7% of the 

corresponding TPFLOPS. Thus, CUDA and OpenCL are able to achieve similar 

peak performance (to be precise, OpenCL even performs slightly better), which 

shows that OpenCL has the same potential to use the underlying hardware as 

CUDA. 

 

 

- Performance comparison of real-world applications 

 

The real-world applications already mentioned above are selected to compare the 

performance of CUDA and OpenCL. The PR of all the real-world applications without 

any modification is shown in the next figure. As it can be seen, PR varies a lot when 

using different benchmarks and underlying GPUs. Those performance will be 

analyzed using the following criteria: 

o Programming model differences 

o Different optimizations on native kernels 

o Architecture-related differences 

o Compiler and run-time differences 

 

 
Fig. 3.3 A performance comparison of selected benchmarks. When the top border of a rectangle lies in the area between 

Line {PR = 0.9} and Line {PR = 1.1}, it is assumed that CUDA and OpenCL have similar performance. (On GTX280 

the PR for Sobel is 3.2) 
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o Programming model differences: 

CUDA and OpenCL have many conceptual similarities. However, there are 

also several differences in programming models between them. For Example, 

NDRange in OpenCL represents the number of work-items in the whole 

problem domain, while GridDim in CUDA is the number of blocks. 

Additionally, they have different abstractions of device memory hierarchy, 

where CUDA explicitly supports specific hardware features which OpenCL 

avoids for portability reasons. Through analyzing kernel codes, the authors find 

that texture memory is used in the CUDA implementations of MD and SPMV. 

Both benchmarks have intensive and irregular access to a read-only global 

vector, which is stored in the texture memory space. The following figure 

shows the performance of the two applications when running with and without 

the usage of texture memory. 

 

 
Fig. 3.4 Performance impact of texture memory 

 

 

As it can be seen, after the removal of the texture memory, the performance 

drops to about 87.6%, 65.1% on GTX280 and 59.6%, 44.3% on GTX480 of 

the performance with texture memory for MD and SPMV, respectively. The 

authors compared the performance of OpenCL and CUDA after removing the 

usage of texture memory, which results can be seen in the following figure, 

showing similar performance between CUDA and OpenCL. It is the special 

support of texture cache that makes the irregular access look more regular. 
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Then, texture memory plays an important role in performance improvement of 

kernel programs. 

 

 
Fig. 3.5 Performance ratio before and after removing texture memory 

 

 

o Different optimizations on native kernels: 

In a document written by Nvidia[17], many optimization strategies are listed, 

such as: 

▪ Ensure global memory accesses are coalesced whenever possible 

▪ Prefer shared memory access wherever possible 

▪ Use shift operations to avoid expensive division and modulo 

calculations 

▪ Make it easy for the compiler to use branch prediction instead of loops 

▪ Other strategies 

One key optimization to be performed in kernel codes is to reduce the number 

of dynamic instructions in the run-time execution. Loop unrolling is one of the 

techniques that reduces loop overhead and increases the computation per loop 

iteration[18]. Nvidia’s CUDA provides an interface to unroll a loop fully or 

partially using the pragma unroll (a compiler optimization which replaces a 

piece of code into an unrolled one). When analyzing the native kernel codes of 

 
[17] Nvidia Inc., OpenCL Best Practices Guide, May 2010 
[18] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan, “A compiler framework for optimization of 
affine loop nests for gpgpus,” in Proceedings of the 22nd annual international conference on Supercomputing, ICS ’08, (New York, NY, USA), pp. 
225–234, ACM, 2008 
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FDTD, the authors found out that the two codes are the same except that the 

CUDA code uses the pragma unroll at both unroll points a and b, while the 

OpenCL code unrolls the loop only at point b. 

 

 
Fig. 3.6 Loop unrolling in a native kernel code of FDTD 

 

 

The performance of the application (in CUDA only) with and without the 

pragma unroll can be seen in Fig. 3.7. As can be seen, the performance without 

the pragma unroll drops to 85.1% and 82.6% of the performance with it for 

GTX280 and GTX480. The authors then have removed the pragma at point a 

from the CUDA version and have found out the performance comparison 

between CUDA and OpenCL, here showed in Fig. 3.8. It can be seen that they 

achieve similar performance on GTX480, while OpenCL outperforms CUDA 

by 15.1% on GTX280. Moreover, it can be observed that when adding the 

pragma unroll at unroll point a of the OpenCL implementation, the 

performance degrades sharply to 48.3% and 66.1% of that of the CUDA 

implementation for GTX280 and GTX480, once again shown in Fig. 3.8. 
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Fig. 3.7 Performance effects of loop unrolling (CUDA only) 

 

 

 
Fig. 3.8 Performance comparison of FDTD with and without loop unrolling at different points (CUDAx represents we 

execute loop unrolling at point x, and it is the same for OpenCL) 
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o Architecture-related differences: 

Since the birth of the original G80, the Fermi architecture can be seen as the 

most remarkable leap forward for GPGPU computing. It differs from the 

previous generations by, for example[19]: 

▪ Improved double precision performance 

▪ ECC (Error Correcting Code) support 

▪ True cache hierarchy 

▪ Faster context switching 

The introduction of the cache hierarchy has a significant impact on Fermi’s 

performance. Looking at Fig. 3.3, it can be seen that values diverge remarkably 

for Sobel on GTX280 and GTX480. On GTX280, the OpenCL version runs 

three times faster than the CUDA one, but it only obtains 83% of CUDA’s 

performance when the benchmark runs on GTX480. These differences are 

caused by the constant memory and the cache. In the implementation with 

OpenCL, constant memory is employed to store the “filter” in Sobel, while it 

is not in the CUDA version. After removing the usage of constant memory, the 

authors repeated the same experiments on the two GPUs. The execution time 

is showed in Fig. 3.9. On the one side, it can be seen that the kernel execution 

time drops to one quarter of that without using constant memory on GTX280. 

On the other side, there are few changes on GTX480 due to the availability of 

the global memory cache in the Fermi architecture. Overall, CUDA and 

OpenCL achieve similar performance with and without constant memory on 

GTX480. 

 

 
[19] NVIDIA Inc., NVIDIAs Next Generation CUDA Compute Architecture: Fermi, 2009 
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Fig. 3.9 Performance comparison for Sobel with and without constant memory on GTX280 and GTX480 

 

 

o Compiler and run-time differences: 

Among all the benchmarks, the performance gap between OpenCL and CUDA 

is the biggest for the FFT. Their native kernel codes are exactly the same. 

However, when looking into their PTX codes, can be found notable differences 

between them. A quantitative comparison of these two PTX kernels is 

presented in the following table. The statistics are gathered for the “forward” 

kernel of the FFT implementation. Again from the table, the differences 

between the two PTX codes become visible. The OpenCL front-end compiler 

generates two times more arithmetic instructions than its CUDA counterpart. 

There are rarely any logic shift instructions in CUDA, while there are 163 such 

instructions in the OpenCL kernel. A similar situation happens with the flow-

control instructions: there are many more for OpenCL than for CUDA. 

Although there are many more data movement instructions for CUDA, most 

of them are mov, simply moving data to or from registers or local memories. 

Finally, it can be noted that all time-consuming instructions such as ld.global 

and st.global are exactly the same. This situation can be explained by assuming 

that the front-end compiler for CUDA has been used and optimized more 
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heavily, thus is more mature, than that of OpenCL. As a result, when it comes 

to some kernels like “forward” in FFT, OpenCL performs worse than CUDA.  

 

 
Table 3.8 Statistics for PTX instructions 

 

 

BFS is also an interesting example here. It has to invoke the kernel functions 

several times to solve the whole problem. Thus, the kernel launch time (the 

time that a kernel takes from entering the command-queue until starting its 

execution) plays a significant role in the overall performance. The authors’ 

experimental results shows that the kernel launch time of OpenCL is longer 

than that of CUDA (the gap size depends on the problem size), due to the 

differences in the run-time environment. The longer kernel launch time may 

also explain why OpenCL performs worse than CUDA for applications like 

BFS. 
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- A fair comparison 

 

In the above descriptions, it has been shown that the performance gaps between 

OpenCL and CUDA are due to programming model differences, different 

optimizations on native kernels, architecture-related differences, and compiler 

differences. It has been shown that performance can be equalized by systematic code 

changes. Therefore, in the following it will be presented an eight step fair comparison 

approach for CUDA and OpenCL applications from the original problem to its final 

solution, which provides guidelines for investigating the performance gap between 

CUDA and OpenCL, if any. In the following figure a resuming flow is presented. 

 

 
Fig. 3.10 Development flow of GPU kernel programs (the ellipses are the entities such as a program or a description 

and the rectangles represent actions on the entities. There are three types of roles participating the whole process: 

programmers, compilers, and users 
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1) Problem description: 

This step describes what the problem is and what form the solution could be. 

2) Algorithm translation: 

How to address the problem which is given using certain algorithms. The 

algorithms can be described in pseudo-code which is environment-independent 

and easier for humans to understand. 

3) Implementation: 

In this step, the algorithms mentioned above are implemented with different 

programming models or languages. As for GPU programs, there are two parts: 

one is the host program and the other is the kernel code running on GPUs. On 

Nvidia GPUs, CUDA+C and OpenCL+C are usually adopted to implement 

GPU programs. If two implementations use similar APIs to access the same 

type of hardware resources, then the two implementations can be considered 

to be the same. Note that two implementations also have to use the same type 

of timers to measure performance. 

4) Native kernel optimization: 

After implementation, architecture-dependent optimizations on kernel 

programs are executed. For example, whether to use the shared memory (or 

local memory in OpenCL), whether to employ vectorization, whether to unroll 

loops, whether to reduce bank-conflicts, whether to use texture memory in 

CUDA, and whether to access global memory in a coalesced, way are decisions 

that should be taken into account. On the one side, optimizations on native 

kernels is a time-consuming and error-prone job; on the other side, it can 

contribute to performance improvement significantly. 

5) First-stage compilation and optimization: 

The first-stage compiler adopted in CUDA is called NVOPENCC. There is a 

similar front-end compiler for OpenCL in this stage. This stage compiles kernel 

codes into PTX codes, a low-level parallel thread execution virtual machine 

and instruction set architecture developed by Nvidia[20]. Some advanced 

optimizations are also executed in this stage.  

6) Second-stage compilation and optimization: 

PTXAS (the back-end compiler) translates PTX codes into binary format 

in this step and it may execute some additional optimizations. 

 
[20] NVIDIA Inc., PTX: Parallel Thread Execution ISA Version 2.2, October 2010 
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7) Program configuration and start-up: 

Before executing the program prepared so far, we need to configure two kinds 

of parameters: 

• Problem parameters (the parameters of the problem to be solved 

such as the size of the matrix) 

• Algorithmic parameters (for example, block-size or work-group 

size) 

Although these parameters do not change the correctness of final results, they 

can have a significant impact on the performance of the application. 

8) Running on GPUs: 

With the help of drivers, the binary codes are finally scheduled to run on the 

GPUs.  

These eight steps make up the application development flow from an original 

problem to its final solution. Based on this, it can be defined that a comparison 

between CUDA and OpenCL is considered “fair” when configurations in all 

the eight steps of the comparison are the same. According to the analysis in the 

previous pages, OpenCL can obtain similar performance to CUDA in the case 

of “a fair comparison”. In real-world, programmers are responsible for steps 

from (1) to (4) and compilers take charge of steps (5) and (6). Finally, users 

will employ the application through steps (7) and (8), as illustrated in Fig. 3.10. 

Each of the eight steps is probably executed by different programmers (they 

have different programming habits, abilities and choices) or different compilers 

(they have different optimizations) or different users (they have different 

requirements and investments). All those lead to the difficulty of making sure 

that a performance comparison is fair between CUDA and OpenCL. 

 

To final summarize this chapter, which the aim is to highlight the differences between CUDA 

and OpenCL, we have to clarify some points: 

- CUDA and OpenCL shares many concepts, but they are different APIs/platforms for 

GPU/GPGPU programming 

- Both of them have weak points and highlights, so not always one is better than the 

other 

- OpenCL strength is the portability 

- CUDA strength is performance on Nvidia’s cards 
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- They do not differ a lot under a performance point of view, if they are analyzed in a 

very similar environment 

- The best choice is to choose one platform or the other depending on the requirements 

of the work to be done 
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Chapter four: SAR focusing system 
 

4.1 Introduction 
 

In this section I will talk in a general way about the SAR (Synthetic Aperture Radar) focusing 

system. The system taken into account has been developed with CUDA platform, and in this chapter 

we will discuss about the environment in which our example is placed. 

 

 

4.2 SAR (Synthetic Aperture Radar) 
 

SAR is a typology of radar that allows creating two or three dimensional images of an object, 

such as Earth’s topography. It uses the motion of the radar antenna over a landscape to get the spatial 

data needed to create the two dimensional images of the landscape itself. For that reason, SAR is 

usually installed on a moving platform, e.g. a satellite, and its name derives from the fact that the 

radar pulses to return to the antenna the wanted data while the device is in movement over the target 

area for a certain amount of time. This is the difference between synthetic and physical aperture: the 

fact that the antenna itself is in movement. To create an image, many consecutive pulses are 

transmitted over the target area and the return pulses are received and recorded to be processed. While 

pulses are received and processed the antenna is in movement and other pulses from different points 

are continuously recorded and processed, to finally be merged all together to obtain an high resolution 

image of the target zone. 

 

 

4.3 History 
 

SAR was invented by Carl A. Wiley in 1951 while it was working for the Atlas ICBM program 

(ICBM stands for Intercontinental Ballistic Missile); the following year he constructed with some 

colleagues a concept validation system for that radar and in that decade the company in which he 

worked, the Goodyear Aircraft (than changed in Goodyear Aerospace) gave multiple contributions to 

SAR technology. At the same time and with no correlation with Wiley’s work, some trials were 

executed at the University of Illinois’ Control System Laboratory on a system very similar to the SAR 

one. Both works did the processing of the radar return’s data with electrical circuit filtering methods, 
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using Doppler frequency theory, but the results were not very good due to the limitations of the 

technology available in those years. The project was carried on by the Department of Defense, which 

was searching new techniques for military reconnaissance and collection of data for the intelligence. 

The University of Michigan and University of Illinois gave their contribution, showing new 

implementations as a Doppler assisted sub beamwidth resolution and a produced stripmap image. 

Later contributions were carried on again by the Defense system, in particular by the Army, Navy 

and Air Force combined together, which assigned a project to the University of Michigan. Here a 

group known as Radar and Optics Laboratory proposed to take into account not only some particular 

Doppler shifts but the entire history of all shifts; that would yield a better resolution quality. It was 

proposed to record the received signals useful to the final result in a cathode-ray tube, a vacuum tube 

used to display images. Those recording would be after processed in laboratory with a dedicated 

equipment. It was chosen a 35 mm film to do the recording, which, without premeditation, showed a 

final result with a great diffraction effect, not compatible with a sharp final focusing. A physicist 

recognize the opportunity to exploit that problem as an advantage and the recording, until that 

moment considered a scalar one, was changed into pairs of opposite sign vector ones of many spatial 

frequencies with the addition of a zero frequency bias quantity. This trick, in addition to some changes 

in the architecture of the focusing system to allow that, was the key to obtaining only the wanted 

beam to pass through a selected frequency band aperture. Moreover, to be coherent with that change, 

the light used to illuminate the area to be recoded had to be monochromatic and coherent, so a mercury 

vapor lamp passed through a color filter was chosen, the best then available technology; this resulted 

in a necessary long exposure to obtain a decent result, due to the weakness of the amount of light. 

The following problem was not how to create the radar, an already known topic at that time, but rather 

it was how to obtain signal linearity and frequency stability. Different approaches were found by the 

above quoted Universities, again with the help of the Department of Defense. Both of them installed 

the radar on a C-46 aircraft and they had the possibility to do many flights to continually test and 

debug the system. Some results were obtained (15m resolution), such as that an initial conclusion of 

the work by the Department of Defense was canceled due to the good news. In the following years 

other improvements were applied and in seventies a result of a 30,48 cm resolution was achieved. At 

the same time, technology increase in computer processing allowed to achieve finer results, 

considering also the possibility to illuminate better, in terms of time and power, the target area under 

different degrees, which was not possible before due to antenna limitations. This was called the 

spotlight mode. From here in after, it was clear that the SAR was very suitable for spacecraft systems; 

in fact, not only the Doppler effect was accurate also at such a distance, but the typical movement of 
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a satellite around an orbit was exactly what the researchers were searching to have specific results. In 

the years, technology  has scaled up and so has done SAR  

construction, whit the possibility to have now great results in term of focusing a certain target zone. 

 

 

4.4 The SAR system analyzed 
 

The SAR focusing system we are taking into account belongs to the COSMO-SkyMed 

(Constellation of small Satellites for Mediterranean basin Observation) Earth-observation satellite 

space-based radar system, which is commissioned and funded by the Italian Ministry of Research and 

the MoD (Ministry of Defense) and directed by the ASI (Italian Space Agency) for both civilian and 

military purposes. It aims to provide data and services for different reasons, such as defense purposes, 

environmental monitoring and surveillance applications for the management of exogeneous, 

endogenous and anthropogenic risks, provision of commercial products and services. 

The system is composed by four equal satellites which are named COSMO-SkyMed 1, 2, 3 

and 4 respectively and, obviously, they are all equipped with a microwave high-resolution SAR 

operating in X-band, and they operate at more or less 620 km of height over the Earth surface, 

repeating their ground track every sixteen days. The operating life of each satellite is estimated to be 

five years. 

From the COSMO-SkyMed official website are reported the driving mission requirements for 

the constellation development, which are: 

- Capability to serve at the same time both civil and military users through an integrated 

approach (dual use system) 

- Large amount of daily acquired images 

- Satellites worldwide accessibility 

- All weather and day/night acquisition capabilities 

- Very short interval between the acceptance of the user request acquisition and the 

release of the remote sensing product (system response time) 

- High image quality (e.g. spatial and radiometric resolution) 

- Intrinsic capability to be a cooperating, interoperable, expandable to the other EO 

missions, multimission-borne element providing EO integrated services to large user 

communities on a worldwide scale (concepts of expandability, interoperability and 

multisensoriality) 
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Figure 4.1 SAR satellite (deployed and stowed configuration) 

 

 

4.5 How it works 
 

A SAR is a radar for imaging purposes installed on a moving system, which is able to  provide 

a remote sensing in many situations (all-weather, day and night times) throughout the illumination of 

radar beam. Electromagnetic pulses are transmitted and the return pulses are recorded and collected 

for the following processing; in fact, unlike optical sensors, a post processing procedure is required 

to achieve the desired image from the data obtained. For achieving those purposes, COSMO-SkyMed 

satellites uses three different sensor imaging operating modes: 

- Two stripmap modes, for metric resolutions over tenth of km images; one mode is 

polarimetric with images acquired in two polarizations 

- A spotlight mode, for metric resolutions over small images 

- Two ScanSAR for medium to coarse (100 m) resolution over large swath 
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Figure 4.2 The three different imaging operating modes 

 

 

We will analyze all of them for a better understanding but, in the next chapter, only the 

stripmap mode and the spotlight will be present in the software analysis. 

The stripmap mode is the most common imaging mode and it is obtained by pointing the 

antenna towards a fixed direction with reference to the system flight path. The ground is illuminated 

continuously by the antenna as the system moves and operates. The acquisition is theoretically 

unlimited in the azimuth direction, but the reality is different due to duty cycle limitations of the SAR 

system (about 600s, allowing a strip length of 4500 km and more). Two different implementation of 

stripmap mode are provided: the Himage and the PingPong. In the first one, the radar transmitting 

and receiving configurations are time invariant, allowing to receive from each ground scatterer the 

full Doppler bandwidth allowed by the azimuth aperture of the antenna beamwidth. The main 

characteristics are a swath width of about 40 km, an azimuth extension for the standard product of 

about 40 km (6.5 seconds acquisition), PRF (Pulse Recurrence Frequency) values ranging from a 

minimum of 2905.9 Hz to a peak of 3874.5 Hz, a chirp duration in a range between 35 and 40 

microseconds, a chirp bandwidth accommodated along range on the basis of the required ground 

resolution, spanning from 65.64 MHz at the far range (with a sampling rate of 82.50 MHz) to 138.60 

MHz at the far range (with a sampling rate of 176.25 MHz). In the second one, a strip acquisition is 
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implemented by alternating a pair of transmitting and receiving polarization across bursts (cross-

polarization) obtained by mean of the antenna (which may be adjusted to be different on transmit and 

on receive). The acquisition is therefore performed in strip mode alternating the signal polarization 

between two of possible ones, so the combinations could be VV (vertical transmit and receive), HH 

(horizontal transmit and receive), HV (horizontal transmit and vertical receive) and VH (vertical 

transmit and horizontal receive). In this parametric burst mode only a part of the SAR length is 

available in azimuth and for that reason the azimuth resolution is limited. This mode provides a swath 

width value of about 30 km, an azimuth extension for the standard product of about 30 km (5.0 

seconds acquisition), PRF values ranging from a minimum of 2905.9 Hz to a peak of 3632.4 Hz, a 

chirp duration fixed at 30 microseconds, a chirp bandwidth accommodated along range on the basis 

of the required ground resolution, spacing from 14.77 MHz at the far range (with a sampling rate of 

18.75 MHz) to 38.37 MHz at the far range (with a sampling rate of 48.75 MHz. 

 

 
Figure 4.3 Stripmap imaging operating mode 
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In the spotlight mode the antenna is steered (both the azimuth and the elevation plane) during 

the total acquisition time to better illuminate the required target for a time period longer than the one 

of the standard strip side view, increasing the length of the synthetic antenna and therefore the azimuth 

resolution (at expenses of the azimuth coverage). In that configuration the acquisition is performed 

in frame mode, so it is limited in the azimuth direction due to the technical constraints deriving from 

the azimuth antenna pointing. The two different implementation allowed for this acquisition mode 

are SMART (only for defense purposes, not discussed here) and the Enhanced Spotlight. In the latter, 

the extension is achieved by an antenna electronic steering scheme requiring the centre of the beam 

steering to be located beyond the center of the imaged spot, so increasing the observed Doppler 

bandwidth for each target. This mode is characterized by an azimuth frame extension of about 11 km, 

a range swath extension of about 11 km, PRF values ranging from a minimum of 3148.1 Hz to a peak 

of 4116.7 Hz, allowed chirp duration in a range between 70 and 80 microseconds (depending on 

specific access area), a chirp bandwidth (accommodated along range on the basis of the required 

ground resolution) ranging from 185.2 MHz to 400.0 MHz and finally (due to the de-ramping 

processing) a sampling frequency equal to 187.5 MHz (same for each acquisition configuration. 

 

 
Figure 4.4 Spotlight imaging operating mode 
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In the ScanSAR mode a larger swath in range compared to the Stripmap mode is provided, 

but with a less spatial resolution, obtained by periodically stepping the antenna beam to closest sub-

swaths. Since only a part of the synthetic antenna length is available in azimuth, the azimuth 

resolution is hence limited. In this configuration the acquisition is performed in adjacent strip mode, 

so it is virtually unlimited in the azimuth direction, but the reality is different due to duty cycle 

limitations of the SAR system (about 600s). The two different implementations provided by this 

acquisition mode are WideRegion and HugeRegion. In the first one, acquisition is grouped with three 

adjacent sub-swaths which permits to achieve a ground coverage of about 100 km in the range 

direction. The azimuth extension for the standard product is about 100 km (so forecasted for the 

origination of a square frame) corresponding to an acquisition of about 15 seconds. This mode is 

characterized by a PRF values which goes from a minimum of 2905.9 Hz to a peak of 3632.4 Hz, a 

chirp duration in a range between 30 and 40 microseconds, a chirp bandwidth accommodated along 

range on the basis of the required ground resolution and which goes from 32.74 MHz at the far range 

(with a sampling rate of 41.25 MHz) to 86.34 MHz at the far range (with a sampling rate of 108.75 

MHz) In the latter, acquisition is grouped with up to six adjacent sub-swaths which allows to achieve 

a ground coverage of about 200 km in the range direction. The azimuth extension for the standard 

product is about 200 km (so forecasted for the origination of a square frame) corresponding to an 

acquisition of about 30 seconds. This mode is characterized by a PRF values which goes from a 

minimum of 2905.9 Hz to a peak of 3632.4 Hz, a chirp duration in a range between 30 and 40 

microseconds, a chirp bandwidth accommodated along range on the basis of the required ground 

resolution and which goes from 8.86 MHz at the far range (with a sampling rate of 11.25 MHz) to 

23.74 MHz at the far range (with a sampling rate of 30.0 MHz). 

 

 
Figure 4.5 ScanSAR imaging operating mode 
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4.6 How SAR pictures the world 
 

SAR system transmit microwave signals at an oblique angle and measure the backscattered 

portion of the sent signal to be able to analyze characteristics of the surface. This measurement can 

be described in a mathematic way with the Radar Cross Section (RCS) term σ, which is equal to the 

ratio between the incident and received signal intensity: 

 

σ = 
𝐼𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝐼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
∗ 4𝜋𝑅2 [𝑚2] 

 

The RCS recorded by a SAR for specific characteristics of a surface is not always easy to 

analyze, due to the fact that it is influenced both by a range of scene characteristics as well as by the 

parameters of the imaging sensor. The most important scene parameters driving RCS are surface 

roughness hrough and the dielectric properties of the imaged object quantified by its complex relative 

dielectric constant εr. While the first parameter describes how much of the scattered radar energy is 

directed back to the sensor, the dielectric properties guide whether or not signals may penetrate into 

the scattering surface. The fact that both of these parameters are a function of sensor wavelength 

explains why the characteristics of the sensor play a role when trying to interpret the measured 

signature of real-life objects in a SAR image. The dielectric properties of a medium decide how a 

microwave signal of wavelength λ interacts with a scattering medium such as the Earth’s surface. 

These properties decide how much of the incoming radiation scatters at the surface, how much signal 

penetrates into the medium, and how much of the energy gets lost to the medium through absorption. 

In Figure 4.6 an overview of the influence of sensor wavelength λ on signal penetration into a different 

surface typologies is provided. The radar signals penetrate deeper as sensor wavelength increases, 

due to the dependence of the dielectric constant εr on the incident wavelength, allowing for higher 

penetration at L-band (frequencies in the radio spectrum from 1 to 2 GHZ) than at C (frequencies in 

the radio spectrum from 4.0 to 8.0 GHZ) or X (frequencies in the radio spectrum from 7.0 to 11.2 

GHZ)  ones. The rule of increasing penetration with increasing sensor wavelength is valid for 

different surface typologies, such as high density vegetation and bar surfaces as alluvium soils and 

glacier ice. To quantify penetration depths δp into bare surfaces, information about the dielectric 

properties εr of the medium are requested; in that case, it can be approximated as: 

 

δp  ≈ λ√
ε𝑟

′

2𝜋ε𝑟
′′ 
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where εr’ is the real component and εr’’ is the imaginary one of the complex relative dielectric 

constant. In addition to soil density and sensor wavelength, these terms are strongly dependent on the 

moisture content of the medium. 

 

              
Fig 4.6  SAR signal penetration in terms of sensor wavelength λ 

 

 

With few exceptions, such as dry snow and dry sandy soils, most bare or low vegetation 

surfaces allow a very little penetration for microwave radiation, such that surface scattering dominates 

the measured radar response. In these cases, the roughness of the scattering surface is the main driver 

defining the observed RCS in a SAR scene. For a narrow-band imaging system as it is SAR, if a 

surface appears rough or not can only be decided by taking into account the sensor wavelength. If the 

scale of roughness of a randomly rough surface is characterized using the standard deviation of the 

height deviation h from some mean height ℎ̅ of the surface, then we know how large h has to be for 

a surface to appear rough to an observing SAR system. According to the Fraunhofer criterion, a 

surface is defined as rough if the height deviations exceed the value hrough, which is defined as: 

 

ℎ𝑟𝑜𝑢𝑔ℎ =
𝜆

32 ∗ 𝑐𝑜𝑠𝜃𝑖
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The above relationship depends on the signal wavelength λ and indicates that a surface with fixed 

height variations h may qualify as rough in X-band but possibly not in C or L ones. This concept of 

wavelength-dependent roughness is visualized in the following image, which shows increasing 

roughness conditions from left to right and identifies the transition from smooth, to intermediately 

rough, to rough surfaces, in accordance with the Fraunhofer criterion in the above equation. 

 

 
Fig. 4.7 Dependence of surface roughness on the sensor wavelength λ 

 

 

It can be seen that the amount of backscatter increases (length of blue arrows pointing toward 

the sensor) as roughness increases such that rough surfaces (at wavelength λ) have higher RCS than 

intermediately rough or smooth surfaces. The wavelength dependence also means that a surface will 

look increasingly darker as wavelength increases from X-band through C-band to L-band. 

A SAR is an active instrument with its own source of illumination and it is one of the few 

sensing instruments which allows the full control and exploit of the polarization of the signal on both 

the transmit and the receive paths. Polarization describes the orientation of the plane of oscillation of 

a propagating signal. In linearly polarized systems, the orientation of that plane of oscillation is 

constant along the propagation path of the electromagnetic wave. In other systems, such as circular 

or elliptical polarized SARs, the orientation of the oscillation plane changes, describing geometric 

shapes such as circles or ellipses. Today a lot of SAR sensors are linearly polarized and transmit 

horizontal and/or vertical polarized waveforms. Many of the heritage SAR satellites carry single-

polarized sensors, which support only one linear polarization. These sensors predominantly operate 

in HH (horizontal polarization on transmit; horizontal polarization on receive) or VV polarization 

(vertical polarization on transmit; vertical polarization on receive), while single-polarized sensors 

transmitting one linear polarization and receiving the other, such as HV or VH, are rare in practice. 
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More recent sensors provide either dual-polarization or quad-polarization capabilities. In the latter, 

the sensor alternates between transmitting H and V polarized waveforms and receiving both H and V 

simultaneously, providing HH, HV, VH and VV polarized imagery. Knowing the polarization from 

which a SAR image was acquired is fundamental, as signals at different polarizations interact 

differently with objects on the ground, affecting the recorded radar brightness in a specific 

polarization channel. Let’s see some rules of thumb which should aid in the interpretation of 

polarimetric SAR data. For simplicity, it is assumed that a natural scene can be described as a 

combination of three types of scatterers: rough surface scatterers, double-bounce scatterers, volume 

scatterers, as we can see in the following figure. The first category in made up of low vegetation fields 

and bare soils, as well as roads and other paved surfaces. The second category includes buildings, 

tree trunks, light poles, and other vertical structures that deflect an initial first forward reflection back 

to the sensor. The third and last category is composed by vegetation canopies, as the signals bounce 

multiple times as they propagate  through the vegetation structure. 

 

 
Fig. 4.8 Three main scattering types considered for SAR data 

 

 

It turns out that these scattering types do not contribute to all polarimetric channels equally. 

Instead, each polarimetric channel “prefers” certain scattering types such that the scattering power |S| 

in the individual polarimetric channels follows the following general scheme: 

- Rough surface scattering → |SVV| > |SHH| > |SHV| or |SVH| 

- Double bounce scattering → |SHH| > |SVV| > |SHV| or |SVH| 

- Volume scattering  → Main source of |SHV| and |SVH| 

These general rules should help when comparing the RCS in different polarimetric channels. They 

can be applied to perform an automatic classification of scattering types if data with all relevant 

polarizations (i.e. quad-polarization data) are available. 
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Chapter five: porting CUDA to OpenCL in SAR focusing system 
 

5.1 Introduction 
 

In this last section I will present the changes which have to be applied to porting the SAR 

focusing system written in CUDA to OpenCL. Moreover, I will present some improvements which 

could be applied to have better performance results in focusing acquisition. 

 

 

5.2 The initial work 
 

The SAR focusing system was already well working with a CUDA implementation. In 

particular, I am referring to the work presented by Prof. Claudio Passerone, together with two 

colleagues of his, in a paper called “High Performance SAR Focusing Algorithm and 

Implementation”. We will talk about this work and, after that, we will see the improvements which 

could be done to reach a finer work with the current technologies and instruments. They implemented 

the Stripmap and Spotlight imaging acquisition modes using the RDA (Range Doppler Algorithm) 

and the ω-k algorithms. They are both based on the compression of linearly frequency modulated 

signals (the so called chirp) along the range and azimuth directions, with the use of a matched filter 

in the frequency domain. The chirp in the range direction is generated by the radar antenna itself, 

while the chirp along the azimuth direction is generated by the Doppler effect, caused by the change 

of relative speed between the radar and the targets. 

  

 
Figure 5.1 The flow’s differences between the used algorithms 
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The Range Doppler Algorithm performs two separate compressions in the range direction and 

in the azimuth one, with the Range Cell Migration Correction performed in the Doppler domain. To 

achieve the finest accuracy and resolution the correct estimation of several parameters, such as the 

doppler frequency and the azimuth FM rate, is required. These values are not constant within an 

image, so polynomial models are used to characterize their variations, and the model parameters have 

been directly derived from the image data itself. The input to the algorithm is a W x H image with 

complex numbers in 32-bit floating point format (8 bytes for each pixel, 4 for the real part, and 4 for 

the imaginary part). This image corresponds to the samples received by the SAR system for each of 

the H transmitted pulses, with the high frequency carrier already removed on the spot in the space 

system. More auxiliary data are anyway present in the image file, and some of them are extracted for 

following processing phases. Among the available data there are biasing and antenna pattern values, 

which allow to correct the received samples to obtain a better quality signal with an higher signal to 

noise ratio. The corrections are realized using dedicated parallel kernels which operate on pixel values 

directly. The first step of the algorithm involves the convolution of each range row with a matched 

filter, that depends upon the chirp used during signal transmission. Chirp samples are contained in 

the raw image data, and are extracted during the loading phase and stored in the frequency domain, 

as the complex product of the spectrum of each range scan line with the conjugate of the spectrum of 

the chirp. Then for each line are required, and so performed, an FFT (Fast Fourier Transform), a 

complex multiplication, and an inverse FFT. To perform the above operations Nvidia CUDA comes 

in help, with a library named CuFFT which provides highly optimized functions to perform Fast 

Fourier Transforms. The library is widely used through the entire algorithm and requires the initial 

definition of a plan, with all the relevant information for the transformation, e.g. the number of 

samples and the direction of the transformation. An additional parameter is the number of concurrent 

FFTs to perform, called batch: computation is parallelized over hundreds of cores, so increasing the 

opportunities to exploit parallelism is a main target to improve performances. In particular, it emerged 

that an 8192 sample FFT takes more or less the same amount of time as a batch of 8 concurrent 8192 

sample FFTs; higher values for the batch parameter leaded to a linear increase in the running time. 

Thus, in their implementation they have defined three plans: two of them have the batch parameter 

equal to H, and differ only for the direction of the transformation (forward and inverse, respectively). 

The third one is a forward FFT of a single line, which is applied to a zero padded version of the chirp, 

extended to the same size of a range scan line. The whole image is initially forward transformed with 

a single call of the FFT library function and, as the raw data is not needed anymore, the transformation 

is in place to save memory. Then the complex multiplication takes place: a dedicated pointwise kernel 

has been developed to perform it in parallel. At last, a second in place FFT, an inverse one, is applied 
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to the entire image to return to the spatial domain. The original image is lost at this point, and only 

the range compressed image is kept for the subsequent processing phases. The SAR concept is based 

on the Doppler effect that changes the frequency of the transmitted signals as the system moves with 

respect to ground targets. For that reason, a good knowledge of Doppler parameters is a very 

important aspect to obtain the highest possible resolution along the azimuth direction. In theory, 

Doppler parameters can be computed from the relative geometry of the radar and target system. In 

practice, while this is a common practice for airborne SARs, the resulting accuracy for a satellite is 

often not adequate enough, as not only the satellite speed and altitude should be precisely known, but 

also Earth rotation and curvature should be taken into account. Hence, estimation of the Doppler 

parameters from the received data is required. 

Two main parameters are estimated, using three different procedures, which share many 

similar processing steps: 

- Doppler centroid: the Doppler frequency for a ground target when the satellite is at 

closest approach. This value is 0 for a SAR with antenna perfectly orthogonal to the 

flight path, and it is non-zero otherwise. The estimation is divided in two phases: first, 

the fractional part of the Doppler frequency with respect to the PRF is computed, then 

the integer part, also known as the ambiguity number Mamb is estimated 

- Azimuth FM rate: the rate of change of the Doppler frequency along the azimuth 

direction. This value is necessary to derive the correct matched filter for the subsequent 

azimuth compression step 

 

In all cases, the estimated values differ slowly with the image location. Hence, for the estimation 

process the image itself is divided into several contiguous small blocks, parameters are computed for 

each individual block, and smooth polynomial fitting surface is then obtained using the Nelder-Mead 

method (a commonly applied numerical method used to find the minimum or maximum of 

an objective function in a multidimensional space), initialized with data obtained from geometrical 

and orbital parameters. This procedure leads to a better accuracy due to the fact that any error in the 

estimation process on a block is averaged with the other blocks. Most computations in the estimation 

processes are carried out in the range-Doppler domain (the spatial domain for the range direction) 

and in the frequency domain for the azimuth direction. Unfortunately, FFT functions in the CUDA 

library did not provide a stride parameter (they used CUDA toolkit 3.5; nowadays, toolkit 11.0 is 

available), so the samples of the arrays to be transformed needed to be contiguous in memory. 

Transposition of individual blocks, or of the entire image, was hence needed before applying the FFT. 

In order to be efficient, parallel matrix should exploit the memory access capabilities of the GPU 

https://en.wikipedia.org/wiki/Numerical_method
https://en.wikipedia.org/wiki/Objective_function
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hardware in such a way to group many main memory transactions (also known as coalescing) in a 

single wider transaction to optimize access time. In a linear parallel implementation of transposition, 

each thread reads one piece of data from the source matrix, and writes it to the destination buffer. 

Anyway coalescing is possible either while reading data or while writing it, not both of them at the 

same time, due to the matrix memory layout. An alternative implementation uses shared memory to 

accomplish the same task, while exploiting coalescing in main memory in both reading and writing. 

Threads are divided in an n x n matrix, where each thread reads a value from an n x n block in the 

source image, and stores it transposed in a temporary buffer in shared memory, which is much faster 

than main memory, and coalescing is not needed, while reading from main memory enjoys coalescing 

because threads read contiguous data. Once the temporary buffer is completely filled in, the 

destination main memory image is written. The destination block is in a transposed location compared 

to the source block, and threads are organized to store data contiguous in memory, in such a  way to 

achieve coalescing also in writing. The idea behind this method is that a thread reads a value, but 

writes another one read by the transposed thread in the matrix. 

Three individual procedures can now be analyzed in a deeper way to better understand how 

the mechanism works: 

- Fractional Doppler centroid estimation: the range compressed image is divided into a 

number of blocks with a size defined by the user. For each block, the Doppler centroid 

fractional part is estimated as the peak of the Doppler magnitude spectrum. As the 

spectrum for a single azimuth line in a block is very noisy, the magnitude is averaged 

over all lines of the block; then, its maximum is found by convolving it with a power 

filter with a sinusoidal shape and by looking for the zero crossing. In the following, 

there are the detailed steps followed by each block: 

o The power filter is generated and its Fourier transform is computed (the power 

filter is identical for all blocks, and it is computed only once) 

o The block is transposed to get the azimuth direction in the rows, which are then 

transformed to the frequency Doppler domain using FFTs in batches equal to 

the block height 

o The magnitude of each azimuth line is computed, and the average of all lines 

gives the Doppler power spectrum. In both situations, pointwise parallel 

kernels were developed to increase performances 

o The power spectrum is then transformed using a forward FFT, multiplied with 

the power filter transform to perform the convolution, and finally inverse 

transformed to get back to the Doppler domain 
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o The zero crossing of the convolution is determined on the host, as this 

computation is not time critical because it involves a single line 

Once all blocks are completed, a first order polynomial surface is fitted to the fractional 

centroid values, such that the final outcome of the procedure is given by: 

 

dfrac = d0 +d1r + d2a + d3ra 

 

where r and a are respectively coordinates of the range and azimuth directions. A 

second order polynomial model can also be used, with very few modifications and a 

slightly higher running time. Before fitting, the signal to noise ratio of the average 

power spectrums are also computed, and potentially inaccurate values are removed. 

 

- Azimuth FM rate estimation: one more time, the range compressed image is divided 

into user defined blocks, possibly with a different size compared to the fractional 

Doppler centroid estimation procedure. Each block is transformed in the Doppler 

domain, and decomposed into two looks with non-overlapping spectrum. One by one, 

each look is separately compressed along the azimuth axis using a nominal FM rate 

Ka derived from orbital data. In the case in which the nominal FM rate is not precise 

enough, it results in a mis-registration of the two compressed looks, and the amount 

of mis-registrations gives the error on the FM rate. Averaging over all range lines in 

the block allows to reduce noise and achieve a better accuracy. The following are the 

implemented steps: 

o The block is transposed to get the azimuth direction in the rows, and then rows 

are transformed to the frequency Doppler domain using FFTs in batches equal 

to the block height (if the block size is the same as the one used for the 

fractional Doppler centroid estimation, this step can be shared with the second 

step of the previous procedure, with a considerable saving in running time) 

o The block is compressed along the azimuth direction, using a matched filter 

derived by the complex multiplication with the transformed matched filter, and 

the result is kept in the Doppler domain at this stage. The matched filter is 

computed for each azimuth line separately, as the coefficients change from one 

scan line to another 
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o The Doppler spectrum is divided in two looks, which are one by one inverse 

transformed  back to the spatial domain; the magnitude of each look is also 

calculated 

o The mis-registration along the range direction of the two magnitude looks is 

computed using their mutual cross-correlation. To be able to do so, looks are 

transposed, transformed, complex multiplied, and transformed back. The 

average of all range lines is computed to reduce noise 

o The maximum of the cross-correlation is computed on the host processor; its 

position gives the amount of FM rate error ΔKa for the block 

A first order polynomial model is used also in this case to get a smoothly varying FM 

rate over the entire image. The Nelder-Mead algorithm is started with the nominal FM 

rate, with the average FM rate error from all blocks already added to improve 

convergence. 

 

- Integer Doppler centroid estimation: the last Doppler parameter which is estimated is 

the integer part Mamb of the Doppler centroid. The procedure is similar to the FM rate 

estimation, as it is based on the detecting the mis-registration in the range direction of 

multiple looks. Anyway, in contrast to the technique described before, it starts from 

the range-Doppler image, rather than the range compressed one. Hence, the whole 

image needs to be transformed along the azimuth direction. To avoid allocating 

memory for the transposed image, the operation is carried out in vertical slices: a slice 

is first transposed in a temporary buffer, a batch of FFTs equal to the number of lines 

in the transposed buffer is applied, and then the slice is written back in its original 

position by transposing it again. After that, the integer Doppler centroid is estimated 

using the following steps: 

o The estimated fractional part of the Doppler frequency is used to determine the 

vertical location of the maximum of the Doppler power spectrum 

o The image is divided in slices (which are different and often larger than the 

slices used to transform the image in the range-Doppler domain), and for each 

one of them a set of pair looks, which are symmetric with respect to the 

maximum of the Doppler power spectrum, are defined at increasing distances 

from the estimated maximum 
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o Each look is compressed in the azimuth direction by multiplying it with the 

frequency domain matched filter and transforming it back to spatial domain; 

furthermore, the magnitude of each look is computed 

o Magnitudes of compressed looks are compared in pairs to determine the range 

mis-registration. The displacement is computed by finding the maximum of 

the cross-correlation, averaged over all the lines of the looks to reduce noise. 

The cross-correlation is upscaled  by a factor of 4 to get an higher accuracy. 

Pairs which are further away with respect to the maximum of the Doppler 

power spectrum show a linearly increasing displacement, where the rate of 

increase is related to the Doppler frequency 

o A fitting first order surface without the mutual r x a term is computed, and the 

integer part of the Doppler frequency is determined as the coefficient along the 

range direction, rounded to the lower integer value 

 

For all three estimation procedures, a magnitude based method has been adopted. The 

literature also contains several phase based methods, which were in some cases also implemented. 

Anyway, the ones presented in the paper “High Performance SAR Focusing Algorithm and 

Implementation” gave the best results from both an accuracy and a performance point of view, so 

only some of them had been analyzed, while the others are not discussed. 

 Let’s move on the Professor analysis. After estimations are over, the image is in the Range-

Doppler domain, as it was transformed during the evaluation of the Doppler ambiguity number. If 

estimations are skipped, the azimuth FFT using coalesced transposition and slicing is carried out 

anyway, as it is necessary for the next steps in the algorithm. 

 

- Range Cell Migration Correction (RCMC): Range cell migration occurs because the 

distance (range) between the antenna and the target changes along the flight path. This 

effect must be compensated, if that does not happen severe smearings appear in the 

final focused image. This is best achieved in the Doppler domain, as the spectrum for 

a target is also skewed, with the amount of skew depending on the effective Doppler 

frequency. Therefore, RCMS usually consists in a remapping of samples in the range-

Doppler domain, using some sort of interpolation mechanism. 

The most important detail to an accurate RCMC is the precise knowledge of the 

Doppler centroid, given by both the integer and fractional parts estimated in the 
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previous phases. Remapping is along the range direction only, and has been 

implemented in two user-selectable ways: 

o Using a nearest neighborhood method, to achieve high performance with a 

slightly less accurate correction 

o Using a weighted sinc interpolator, for maximum accuracy 

In both cases, a GPU kernel performs the correction one range line at a time, 

concurrently for all pixels of each line. The result overwrites the initial image, in such 

a way that at the end of processing a corrected range-Doppler array is available. 

 

- Azimuth compression: the last step in the algorithm performs the final compression 

along the azimuth direction. Differently to the matched filter in range, which is 

extracted from the chirp data, for azimuth compression the matched filter must be 

properly computed, and it depends on both the accurate estimations of the Doppler 

centroid and of the azimuth FM rate. Moreover, it changes with range, so different 

filters are used for each azimuth scan line. 

As the image is already in the Doppler domain, compression corresponds to a complex 

multiplication, followed by a last inverse FFT. To reduce the number of transpositions, 

the matched filter is computed directly in the frequency domain along range lines, and 

complex multiplication directly applied. This is performed using two successive 

parallel kernels, but they can in theory be grouped into a single one. 

 

The final IFFT uses the usual coalesced transposition, followed by a batch of IFFTs, and 

terminated with a last coalesced transposition which overwrites the initial data. The resulting image 

is hence in Slant-range projection, and all pixels carry a complex data. To visualize it, the magnitude 

for each pixel must be computed. 

 

Contrary to the RDA, the ω-k algorithm performs all compressions and corrections within the 

frequency domain in both range and azimuth directions, and it is able to achieve better accuracy for 

large antenna squint angles. The complexity is comparable to the RDA, and many of the processing 

steps are shared with it, so the authors of the paper “High Performance SAR Focusing Algorithm and 

Implementation” decided to reference them instead of repeat them. 

In theory, as before described, the ω-k algorithm consists in a two dimensional FFT, the 

product with the reference function followed by the differential Stolt interpolation, and a concluding 

two dimensional IFFT. However, their implementation of fractional and integer Doppler centroid 
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parameter estimations required a range compressed and a range-Doppler image respectively. While 

in RDA these images are readily available along the standard processing flow, they must be created 

ad hoc in the ω-k algorithm flow. Hence, the sequence of steps is different whether estimation of 

Doppler parameters from received data is performed or not; it will follow the flow which includes 

estimations, but is important to say that the other one is faster because it need less domain 

transformations. 

The ω-k algorithm starts with range compression (a range FFT, the chirp matched filter 

multiplication, and a range IFFT). It follows a fractional Doppler centroid estimation, as the image is 

now in the range compressed state. The integer Doppler centroid estimation requires the image to be 

in the range-Doppler domain, so a coalesced transposition and an azimuth FFT are executed before 

invoking the estimation procedure. Up to this stage, the algorithm is actually identical to the RDA, 

except that the Doppler rate estimation is not performed, as it is not needed in the following steps. 

The RDA and ω-k algorithm diverge at this point. As the image is currently in the range-

Doppler domain, a forward range FFT is needed to transform it from range time to range frequency. 

RDA does not need it, as both RCMC and azimuth compression are performed in the range-Doppler 

domain. The reference multiply and differential Stolt interpolation are then executed. 

- Reference function multiply: the complex reference function is computed for each 

scan line with a parallel pointwise kernel, using the estimated Doppler centroid two 

dimensional model at a reference range, corresponding to the middle of the image 

swath. This function consists of a phase term only (magnitude equal to 1), and its full 

formulation includes a square root; to improve performance, the square root is actually 

implemented using its second order Taylor approximation, with all intermediate 

computations carried out in double precision, and the final value converted to a single 

precision floating point complex value. 

After computing the reference function, a second pointwise kernel performs the actual 

complex multiplication, and this is repeated for all range lines in the image. The final 

output is an image in both the range and azimuth frequency domain, which is correctly 

focused at midrange, but still has a residual error along the range frequency direction, 

due to how the reference function has been computed. 

It has to be noted that the reference function multiplication is applied to an already 

range compressed image, rather than the original one transformed in the two 

dimensional frequency domain. The reason is that parameter estimations were carried 

out before this step. Anyway, this is acceptable, as this step is invariant with respect 
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to range compression, and it allows to save the memory required to store the original 

image, while keeping the compressed one only. 

- Stolt interpolation: as the residual error after the reference function multiplication 

depends on range frequency, rather than range time, it can be eliminated with a 

mapping interpolation along the range frequency dimension. This step, called Stolt 

interpolation, finally focuses the whole image. 

At first, a vector containing the value of range frequencies is computed. This is useful, 

as the interpolation is azimuth dependent, but range frequencies are not, so they can 

be stored and reused for all lines without modifications. 

Then, looping on all lines of the image, a parallel kernel computes the amount of 

displacement of each range frequency, as a floating point number, again using an 

approximation of the exact function, which includes a square root. All displacements 

are stored in a vector in the device memory, which is used as the input of an 

interpolation kernel, that generates the new line using a nearest neighborhood 

approach. A linear interpolation has also been implemented, but it did not show an 

appreciable better accuracy in the final result. 

Following the Stolt interpolation, the image is focused but still in the two dimensional 

frequency domain. A range IFFT, followed by a transposition and an azimuth IFFT 

brings the image back in the spatial domain, where each pixel is a complex value in 

the Slant-range projection. Similarly to the RDA, a visible image is obtained by 

computing the magnitude at each pixel. 

 

The whole system for focusing using both the RDA and the ω-k algorithm had been 

implemented on a Tesla C1060 GPU with 4 Gbyte of main memory, on an Intel i7 host processor 

with 8 Gbyte of memory, running a 64 bit Linux operating system. It had been used the CUDA toolkit 

version 3.5. The system performance is better highlighted as follows: 

- The transfer of a 1 GByte image from host to device memory (or  the opposite 

direction) takes around 270 ms, with a throughput of more than 3.5 GByte/s 

- The most used kernels are the one about Fourier transforms and transpositions. 

- The range compression of a 16384 x 8192 image takes 330 ms (including forward 

FFT, complex multiplication and IFFT). 

- The compression along the azimuth direction takes 3.9 s, with an initial transposition, 

forward FFT, matched filter multiplication, IFFT and final transposition 

- In general, the FFT library reaches more or less 140 Gflops performance. 
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- For a 400 Mpixel input image the system takes about 20 s to complete the processing, 

with an equivalent throughput of 20 Mpixel/s 

- The results show similar timing performance for both RDA and ω-k algorithms, with 

no very big differences between the two both in stripmap or spotlight mode. 

 

 

 
Fig. 5.1 Bulk compression without and with differential Stolt interpolation 
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Fig. 5.2 Focusing of a stripmap image using the ω-k algorithm 
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The images above are the result of the optimum work done and explained in the paper “High 

Performance SAR Focusing Algorithm and Implementation”. They are virtually indistinguishable to 

the ones from the Cosmo-SkyMed official processing toolchain. 

 

 

5.3 Achievable improvements 

 

The work which has be done is actually stunning, but some time has passed from that work 

so technology has improved and the same system could be improved not only to obtain a better 

performance but also to obtain a better portability. This is the key point of the thesis: how to improve 

both performance and portability all at once? 

The idea is to porting the actual CUDA software in OpenCL, adding new features such as the 

use of a pipeline for memory transfers and a pipeline among kernels, doing the padding of the image 

not only on powers of two, using the new cuFFT library which allows to do the stride also in the 

vertical direction, and using more than one GPU at the same time. 

 

 

5.3.1 Porting CUDA to OpenCL 
 

Porting CUDA to OpenCL could seem an easy task, since actually some little changes appears 

to be applied. The reality is quite different and consequently, two different approaches could be used. 

The first one is to use automatic converting tools which read the code and change it accordingly to 

the requested characteristics; the second one is to manually  change the code. 

The principal automatic converting tools actually known are Project Coriander, CU2CL, 

GPUOpen HIP. They are a reliable and quick method to convert an existing CUDA file in an OpenCL 

one, which allows programmers who already know CUDA to easily translate their job, but they have 

some disadvantages. The principal ones are that each one of them works with different versions of 

OpenCL and some of them do not have constant updates, so they do not run together with OpenCL 

updates. This is a limit to the potentiality of those methods. The first and the second methods are 

available on GitHub, while the third it is now called AMD ROCmTM Open Ecosystem which is 

property of AMD but anyway an open source tool. Let’s have a deeper look inside one of those tools, 

the CU2CL one. CU2CL, which stands for CUDA-to-OpenCL, is a translator implemented as a Clang 

tool, a C language family fronted for LLVM. The tool interface is able, with a single invocation, to 

translate all the CUDA source files which will create a complete and working executable. CU2CL 
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uses Clang’s CUDA front-end to perform preprocessing, parsing, and abstract syntax tree generation, 

using a certain number of Clang’s libraries through the translation process, which provide core 

functionalities to the translator such as file management, abstract tree traversal and information 

retrieval, the tool interface, preprocessor token access, and rewriting mechanisms. 

 

 
Figure 5.3 CU2CL architecture 

 

 

CU2CL performs a translation process called “AST-Driven, String Based Translation”, which 

uses the AST generated by Clang to identify sections of source code which contain CUDA code 

which has to be translated. After the identification, the translator recurses into each individual 

component of the code searching for further sub-code structures which may need translation. After 

that all the code has been checked, the translator performs highly localized string based rewrites of 

the CUDA code from the bottom up. In the following, an example of how it works explained through 

different images, directly taken from the CU2CL website[21]: 

 

 
A typical CUDA kernel math function, the native power. 

 

 

 
21 http://chrec.cs.vt.edu/cu2cl/overview.php#translation 
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CU2CL identifies that a CUDA kernel function has to be translated. 

 

 

 
CU2CL identifies which are present two children, for its first and second parameter. 

 

 

 
These are standard C arrays which do not need to be translated. Anyway, CU2CL has to check if their indices 

are CUDA structures which, in that case, are the CUDA specific threadIdx structures. 

 

 

 
As the array indices were structs, CU2CL recurses one step further to determine the specific fields which are 

referenced. 
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After reaching the AST leaf nodes, the translator must rewrite the text for each of these nodes that is either a 

CUDA structure or contains a child which is a CUDA structure. Upon returning from  each recursive call the 

rewritten text corresponding to child nodes is integrated with the rewritten text from the current node, and 

returned to the parent. So, for the native power translation, CU2CL first rewrites the threadIdx fields for each 

of the arguments. 

 

 

 
The rewritten zero and one are then passed upwards to their parent nodes, which rewrites the threadIdx 

structure into the corresponding OpenCL get_local_id call, using the zero and one as parameters to the call. 

 

 

 
This rewritten structure is the passed upwards to the parent nodes associated with the x and y arrays. No 

special rewriting is performed on the arrays themselves, but new strings are returned to the parent node with 

the original CUDA threadIdx indices replaced. 
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Finally, after receiving the rewritten strings for both function parameters, CU2CL translates the _powf function 

itself. 

 

 

 
Once the CUDA structure is fully translated it is then inserted into the source code as a direct replacement to 

the original structure, without modifying the surrounding code. By providing this highly localized translation 

mechanism, the original formatting and commenting in source code is preserved, significantly simplifying 

maintenance of the automatically translated OpenCL code. 

 

 

In a work done by Wu Feng[22], it has been highlighted how using CU2CL (or in general 

automatic porting tools) is far better than manually porting the code. He showed that OpenCL has a 

too low level API compared to CUDA, so it is much easier to start with CUDA. He concluded that 

automatic translated code and manually translated code from CUDA to OpenCL yields the same 

performance and that OpenCL performance is not as good as CUDA as implementations are not as 

mature (but he also pointed out that the performance could be raised thanks to optimization). 

On the other hand there is the manual porting of the code, which, in theory, allows to have 

always an updated code in correspondence to the last releases in such a way to have a final better 

result, but it takes time and it requires a certain knowledge in the porting itself. 

Actually, already having the no bug code in CUDA is a great news, because you have already 

worked out how to split up the problem you had to solve to run effectively. Nevertheless some 

changes are needed. The first ones to be done are the ones about the different terms in the code which 

have to be changed, as we can see in the following: 

 

 
[22] How To Run Your CUDA Program Anywhere - A Perspective from Virginia Tech’s GPU-Accelerated HokieSpeed Cluster, W. Feng and M. 
Gardner, November 2011 
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CUDA terms OpenCL terms 

Terminology 

Thread Work-item 

Thread block Work-group 

Global memory Global memory 

Constant memory Constant memory 

Shared memory Local memory 

Local memory Private memory 

Qualifiers 

_global_ function _kernel function 

_constant_ variable declaration _constant variable declaration 

_device_ variable declaration _global variable declaration 

_shared_ variable declaration _local variable declaration 

Indexing 

gridDim get_num_groups() 

blockDim get_local_size() 

blockIdx get_group_id() 

threadIdx get_local_id 

Synchronization 

_syncthreads() barrier() 

_threadfence_block() mem_fence() 

Import API Objects 

CUdevice cl_device_id 

CUcontext cl_context 

CUmodule cl_program 

CUfunction cl_kernel 

CUdeviceptr cl_mem 

Important API Calls 

cuDeviceGet() clGetContextInfo() 

cuCtxCreate() clCreateContextFromType() 

cuModuleGetFunction() clCreateKernel() 
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cuMemAlloc() clCreateBuffer() 

cuMemcpyHtoD() clEnqueueWriteBuffer() 

cuMemcpyDtoH() clEnqueueReadBuffer() 

cuParamSeti() clSetKernelArg() 

cuLaunchGrid() clEnqueueNDRangeKernel() 

cuMemFree() clReleaseMemObj() 

Table 5.1 CUDA vs OpenCL terminology changes 

 

 

Porting to OpenCL requires to change both host and device code. By default, CUDA initializes 

the GPU automatically, while OpenCL requires an explicit device initialization, due to its portability, 

so the code must know which device has to be used. Let’s start from the host program. 

The host program is the code which runs in the host to setup the environment for the OpenCL 

program and to create and manage kernels. In general, it is created in this way: first, you define the 

platform where you are operating, so how many and which devices are used, the context and the 

queues; then, you create and build the program (with dynamic libraries for kernels); after that, you 

have to setup the memory object and to define the kernel (to link arguments to kernel functions); 

finally, you submit the commands (and so it happens the transfer of memory objects and the execution 

of kernels). 

When you define the platform you have to build up also the context and the queues. The 

context is included in the program object, which includes also the program kernel source or binary 

and the list of target devices and build options. For that reason, you have to use the C API build 

process to create a program object, either clCreateProgramWithSource() or 

clCreateProgramWithBinary(). Note that OpenCL uses runtime compilation, due to the fact that the 

details of the target devices are not known from the beginning. The queues (command-queues) 

include the kernel execution, the memory object management and the synchronization. They are a 

main feature of the program, because the only way to send command to devices is through them. Each 

command-queue points to a single device within a context and multiple command-queues can feed a 

single device (e.g. to define independent streams of commands which do not require synchronization). 

They can be configured in two different ways to manage how commands execute. In the in-order 

queues the commands are enqueued and complete in the order they appear in the program, while in 

the out-of-order queues the commands are enqueued in program-order but can execute and complete 

in any order. Then you have to create and build the program, better if including some error messages 
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to perform a check on the creation itself. The following step is to setup memory objects; the difference 

between CUDA and OpenCL to perform this operation are listed in the following: 

 

 CUDA OpenCL 

Allocate float* d_x; 

cudaMalloc(&d_x, sizeof(float)*size); 

cl_mem d_x= 

clCreateBuffer(context, 

CL_MEM_READ_WRITE, 

sizeof(float)*size, NULL, NULL); 

Host to 

Device 

cudaMEMcpy(s_x, h_x, 

sizeof(float)*size, 

cudaMemcpyHosttoDevice); 

clEnqueueWriteBuffer(queue, d_x, 

CL_TRUE, 0, sizeoff(float)*size, h_x, 0, 

NULL, NULL); 

Device to 

Host 

cudaMemcpy(h_x, d_x, 

sizeof(float)*size, 

cudaMemcpyDeviceToHost); 

clEnqueueReadBuffer(queue, d_x, 

CL_TRUE, 0, sizeof(float)*size, h-x, 0, 

NULL, NULL); 
Table 5.2 Memory objects 

 

 

The following step is to define the kernel and, in contrast with CUDA where you have to 

specify the number of thread blocks and threads for each block, in OpenCL you have to specify the 

problem size and, optionally, the number of work-items for each work-group. The last step is to 

enqueue commands: once again, here is a table with the differences between CUDA and OpenCL. 

 

CUDA OpenCL 

dim3 threads_per_block(30,20); 

dim3 num_blocks(10,10); 

kernel<<<num_blocks, 

threads_per_block>>>(); 

const size_t global[2]={300,200}; 

const size_t local[2]={30,20}; 

clEnqueueNDRangeKernel(queue, &kernel, 2, 

0, &global, &local, 0, NULL, NULL); 
Table 5.3 Enqueue commands 

 

 

The host program is now complete and working. The last step is to modify the device program, 

which should be easier than the host one. This is true for simple programs, but usually it is the same 

also for more complex ones. To better understand and highlight the above concepts, I will attach here 

an example of a vector addition done from Piero Lanucara, from SCAI (SuperComputing 

Applications and Innovation) in a work called “From CUDA to OpenCL”. The vector addition is a 
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good example, such as it stands for parallel computing as the program “hello world” stands for basic 

language programming. At first, I will attach CUDA host and device program (this last one 

highlighted in bold inside the program), then the separate OpenCL host and device programs. 

 

CUDA host and device vector: 
/**  
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved. 
* 
* Please refer to the NVIDIA end user license agreement (EULA) associated 
* with this source code for terms and conditions that govern your use of  
* this software. Any use, reproduction, disclosure, or distribution of 
* this software and related documentation outside the terms of the EULA  
* is strictly prohibited.  
*  
*/  
 
/**  
* Vector addition: C = A + B.  
*  
* This sample is a very basic sample that implements element by element  
* vector addition.  
*/  
 
#include <stdio.h> 
 
// For the CUDA runtime routines (prefixed with "cuda_")  
#include <cuda_runtime.h> 
/** 
* CUDA Kernel Device code  
*  
* Computes the vector addition of A and B into C. The 3 vectors have the same  
* number of elements numElements.  
*/  
__global__ void  
vectorAdd(const float *A, const float *B, float *C, int numElements)  
{  

int i = blockDim.x * blockIdx.x + threadIdx.x;  
 
if (i < numElements)  
{  

C[i] = A[i] + B[i];  
}  

} 
/**  
* Host main routine  
*/ 
int  
main(void)  
{  

// Error code to check return values for CUDA calls cudaError_t err = cudaSuccess;  
 
// Print the vector length to be used, and compute its size int numElements = 50000;  
size_t size = numElements * sizeof(float);  
printf("[Vector addition of %d elements]\n", numElements);  
 
// Allocate the host input vector A  
float *h_A = (float *)malloc(size);  
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// Allocate the host input vector B  
float *h_B = (float *)malloc(size);  
 
// Allocate the host output vector C  
float *h_C = (float *)malloc(size);  
 
// Verify that allocations succeeded  
if (h_A == NULL || h_B == NULL || h_C == NULL)  
{ 

fprintf(stderr, "Failed to allocate host vectors!\n");  
exit(EXIT_FAILURE);  

}  
 
// Initialize the host input vectors  
for (int i = 0; i < numElements; ++i)  
{ 

h_A[i] = rand()/(float)RAND_MAX;  
h_B[i] = rand()/(float)RAND_MAX;  

}  
 
// Allocate the device input vector A float *d_A = NULL;  
err = cudaMalloc((void **)&d_A, size);  
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err)); 
exit(EXIT_FAILURE);  

} 
 
// Allocate the device input vector B  
float *d_B = NULL;  
err = cudaMalloc((void **)&d_B, size);  
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err));  
exit(EXIT_FAILURE);  

}  
 
// Allocate the device output vector C  
float *d_C = NULL;  
err = cudaMalloc((void **)&d_C, size);  
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));  
exit(EXIT_FAILURE);  

} 
 
// Copy the host input vectors A and B in host memory to the device input vectors in device memory  
printf("Copy input data from the host memory to the CUDA device\n");  
err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);  
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", 
cudaGetErrorString(err));  
exit(EXIT_FAILURE);  

}  
 
err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);  
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if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", 
cudaGetErrorString(err));  
exit(EXIT_FAILURE);  

} 
 
// Launch the Vector Add CUDA Kernel  
int threadsPerBlock = 256;  
int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;  
printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock); 
vectorAdd<<>>(d_A, d_B, d_C, numElements);  
err = cudaGetLastError();  
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));  
exit(EXIT_FAILURE);  

}  
 
// Copy the device result vector in device memory to the host result vector in host memory.  
printf("Copy output data from the CUDA device to the host memory\n");  
err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);  
 
if (err != cudaSuccess)  
{ 

fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", 
cudaGetErrorString(err));  
exit(EXIT_FAILURE);  

}  
 
// Verify that the result vector is correct  
for (int i = 0; i < numElements; ++i)  
{  

if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5)  
{  

fprintf(stderr, "Result verification failed at element %d!\n", i);  
exit(EXIT_FAILURE);  

}  
}  
 
printf("Test PASSED\n");  
 
// Free device global memory  
err = cudaFree(d_A); 
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err)); 
exit(EXIT_FAILURE);  

}  
 
err = cudaFree(d_B);  
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err)); 
exit(EXIT_FAILURE);  

}  
 
err = cudaFree(d_C);  
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if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err)); 
exit(EXIT_FAILURE);  

} 
 
// Free host memory  
free(h_A);  
free(h_B);  
free(h_C);  
 
// Reset the device and exit  
// cudaDeviceReset causes the driver to clean up all state. While not mandatory in normal operation, it is a  
// good practice. It is also needed to ensure correct operation when the application is being profiled. Calling  
// cudaDeviceReset causes all profile data to be flushed before the application exits  
 
err = cudaDeviceReset(); 
 
if (err != cudaSuccess)  
{  

fprintf(stderr, "Failed to deinitialize the device! error=%s\n", cudaGetErrorString(err)); 
exit(EXIT_FAILURE);  

}  
 
printf("Done\n");  
return 0;  

} 
 
 

OpenCL host vector: 
// Fill vectors a and b with random float values  
int i = 0;  
int count = LENGTH;  
for(i = 0; i < count; i++){  
h_a[i] = rand() / (float)RAND_MAX;  
h_b[i] = rand() / (float)RAND_MAX;  
}  
 
// Set up platform and GPU device  
 
cl_uint numPlatforms;  
 
// Find number of platforms  
 
err = clGetPlatformIDs(0, NULL, &numPlatforms);  
checkError(err, "Finding platforms");  
if (numPlatforms == 0)  
{  

printf("Found 0 platforms!\n");  
return EXIT_FAILURE;  

} 
 
// Get all platforms  
cl_platform_id Platform[numPlatforms];  
err = clGetPlatformIDs(numPlatforms, Platform, NULL);  
checkError(err, "Getting platforms");  
 
// Secure a GPU  
for (i = 0; i < numPlatforms; i++)  
{  

err = clGetDeviceIDs(Platform[i], DEVICE, 1, &device_id, NULL);  
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if (err == CL_SUCCESS)  
{  

break;  
}  

}  
 
if (device_id == NULL)  

checkError(err, "Finding a device");  
 
err = output_device_info(device_id);  
checkError(err, "Printing device output"); 
 
// Create a compute context  
context = clCreateContext(0, 1, &device_id, NULL, NULL, &err);  
checkError(err, "Creating context");  
 
// Create a command queue  
commands = clCreateCommandQueue(context, device_id, 0, &err);  
checkError(err, "Creating command queue");  
 
// Create the compute program from the source buffer  
program = clCreateProgramWithSource(context, 1, (const char **) & KernelSource, NULL, &err); 
checkError(err, "Creating program");  
 
// Build the program  
char options[] = "-cl-mad-enable";  
err = clBuildProgram(program, 0, NULL, options, NULL, NULL);  
if (err != CL_SUCCESS)  
{  

size_t len;  
char buffer[2048];  
printf("Error: Failed to build program executable!\n%s\n", err_code(err)); 
clGetProgramBuildInfo(program, device_id, CL_PROGRAM_BUILD_LOG, sizeof(buffer), buffer, &len); 
printf("%s\n", buffer);  
return EXIT_FAILURE;  

} 
 
// Create the compute kernel from the program  
ko_vadd = clCreateKernel(program, "vadd", &err);  
checkError(err, "Creating kernel");  
 
// Create the input (a, b) and output (c) arrays in device memory  
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, &err);  
checkError(err, "Creating buffer d_a");  
 
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * count, NULL, &err);  
checkError(err, "Creating buffer d_b");  
 
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * count, NULL, &err);  
checkError(err, "Creating buffer d_c");  
 
// Write a and b vectors into compute device memory  
err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0, sizeof(float) * count, h_a, 0, NULL, NULL); 
checkError(err, "Copying h_a to device at d_a"); 
 
err = clEnqueueWriteBuffer(commands, d_b, CL_TRUE, 0, sizeof(float) * count, h_b, 0, NULL, NULL); 
checkError(err, "Copying h_b to device at d_b");  
 
// Set the arguments to our compute kernel  
err = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &d_a);  
err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &d_b);  
err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &d_c);  
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err |= clSetKernelArg(ko_vadd, 3, sizeof(unsigned int), &count);  
checkError(err, "Setting kernel arguments"); 
 
double rtime = wtime();  
 
// Execute the kernel over the entire range of our 1d input data set  
// letting the OpenCL runtime choose the work-group size  
global = count;  
err = clEnqueueNDRangeKernel(commands, ko_vadd, 1, NULL, &global, NULL, 0, NULL, NULL); 
checkError(err, "Enqueueing kernel");  
 
// Wait for the commands to complete before stopping the timer  
err = clFinish(commands);  
checkError(err, "Waiting for kernel to finish");  
 
rtime = wtime() - rtime;  
printf("\nThe kernel ran in %lf seconds\n",rtime);  
 
// Read back the results from the compute device  
err = clEnqueueReadBuffer( commands, d_c, CL_TRUE, 0, sizeof(float) * count, h_c, 0, NULL, NULL );  
if (err != CL_SUCCESS)  
{  

printf("Error: Failed to read output array!\n%s\n", err_code(err));  
exit(1);  

} 
 
 
OpenCL device vector: 
const char *KernelSource = "\n" \  
"#pragma OPENCL EXTENSION cl_nv_compiler_options :  
enable  \n" \  
"_kernel void vadd(  \n" \  
"_global float* a,   \n" \  
"_global float* b,   \n" \  
"_global float* c,   \n" \  
" const unsigned int count)  \n" \  
"{     \n" \  
" int i = get_global_id(0);   \n" \  
" if(i < count)    \n" \  
" c[i] = a[i] + b[i];   \n" \  
"}    \n" \  
"\n";  
//------------ 
 
 

We have just seen a practical example of how the porting of a CUDA code into an OpenCL 

one has to be done. The presented example is very easy, but it can highlight at best the changes which 

have to be done in the software, which could appear quite simple but for longer and more difficult 

software are challenging, mostly due to the fact that a manual porting could probably lead to many 

typing errors. In the following, a table to compare the differences in the usage of the host API that 

can be also be seen in the code above. 
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Table 5.4 Host API usage compared 

 

 

Transporting the above analysis into the SAR focusing system software, there is the possibility 

to reach the portability achievement. It would be interesting to compare the two software at this state 

to see which one obtains the better performances, but maybe this reasoning is fallacious. I will explain 

myself better. To compare the two software under a performance point of view, we would have both 

of them running on the same architectures, so Nvidia’s ones because we are obliged by CUDA 

limitations. From that perspective, obviously CUDA would exit victorious, due to all the native 

arrangements made ad hoc for its GPUs. So, they can not simply be compared, but they are both good 

GPU’s programming platform which can do their best in different situations. If we have the need to 

program for different vendor’s architecture, then OpenCL is the better choice to take. If we aim to 

have the maximum performances and we are comfortable in using Nvidia’s architecture, then the 

better choice is CUDA. Now we can move on the implementations which could improve the actual 

work. 
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5.3.2 Modifying the code 
 

As said at the beginning of subchapter 5.2, there are some improvements which could be 

applied to the actual software, thanks to the improvements in technology, not only for the hardware 

part, so the GPU itself, but also for the updates to the APIs used to programming the environment. 

The listed improvements (using a pipeline for memory transfers and a pipeline among kernels, doing 

the padding of the image not only on powers of two, using the new cuFFT library which allows to do 

the stride also in the vertical direction, and using more than one GPU at the same time) are all 

correlated to CUDA platform, and it is not taken for granted that the same changes could be applied 

using OpenCL. 

Let’s take the first two improvements, so using a pipeline for memory transfers and one among 

kernels. As we can learn directly from Nvidia developer’s website, this is possible with CUDA. Some 

rules have to be followed and some constraints have to be applied, I quote them as it follows: 

- The device must be capable of “concurrent copy and execution”. This can be queried 

from the deviceOverlap field of a cudaDeviceProp struct, or from the output of the 

deviceQuery sample included with the CUDA SDK/Toolkit. Nearly all devices with 

compute capability 1.1 and higher have this capability. 

- The kernel execution and the data transfer to be overlapped must both occur in 

different, non-default streams. 

- The host memory involved in the data transfer must be pinned memory. 

 

The resulting code  is then obtained breaking up an array of a certain size N into many blocks 

of streamSize elements, which can be processed separately since the kernel operates separately on 

each one of them. The number of [non-default] streams used us nStreams=N/streamSize. Different 

approaches can be found to implement the domain decomposition of the data and processing as, for 

example, looping over all the operations for each block of the array. 

 
for (int i = 0; i < nStreams; ++i) 
{ 

 int offset = i * streamSize; 
   cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, cudaMemcpyHostToDevice, stream[i]); 
   kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset); 
   cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, cudaMemcpyDeviceToHost, stream[i]); 
} 
 

Or, for example, batching similar operations together, issuing all the host to device transfers 

first, then all kernel launches, and finally all device to host transfers. 
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for (int i = 0; i < nStreams; ++i) 
{ 

int offset = i * streamSize; 
cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, cudaMemcpyHostToDevice, 
cudaMemcpyHostToDevice, stream[i]); 

} 
 
for (int i = 0; i < nStreams; ++i) 
{ 

int offset = i * streamSize; 
   kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset); 
} 
 
for (int i = 0; i < nStreams; ++i) 
{ 

int offset = i * streamSize; 
cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, cudaMemcpyDeviceToHost, 
cudaMemcpyDeviceToHost, stream[i]); 

} 
 

The full code done by Mark Harris can be found on GitHub[23]. On the other hand, with 

OpenCL, the preferred way is to create separate command queues for data transfers and compute and 

to use events to create dependencies among steps. Then, at each iteration, have to be enqueued the: 

- Upload of N+1 (the fragment of data which will be processed) 

- Processing of N (the actual fragment) 

- Download of N-1 (the old fragment is sent back) 

So in both APIs it is possible to do this step, with some differences between the two platforms. 

Another improvement which could be done is using the new cuFFT library which allows to do the 

stride also in the vertical direction without transposing the data. Due to the fact that azimuth 

transformations are used quite extensively in the current implementation and constitute a main 

bottleneck, there should be a substantial decrease in running time by adopting the new toolkit. In 

CUDA this is directly appliable, while OpenCl has another library for operating with Fast Fourier 

transforms, which is called clFFT. Also this library supports vertical strides, as reported in the library 

description[24] “clFFT expects all multi-dimensional input passed to it to be in row-major format. This 

is compatible with C-based languages. However, clFFT is very flexible in the organization of the 

input and output data, and it accepts input data by letting you specify a stride for each dimension. 

This feature can be used to process data in column major arrays and other non-contiguous data 

formats. See clfftSetPlanInStride() and clfftSetPlanOutStride().” A further change in the software 

should be the possibility to use (so communicate and interact) multiple GPUs (so one host and 

multiple devices), in such a way to divide the whole work upon the devices to speed up the entire 

 
23 https://github.com/NVIDIA-developer-blog/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu 
 
24 https://clmathlibraries.github.io/clFFT/ 

https://clmathlibraries.github.io/clFFT/clFFT_8h.html#a917a9af0591da63e64434d11ef149e6c
https://clmathlibraries.github.io/clFFT/clFFT_8h.html#aac2e3c6cc25d7d2a2550d9c882d53411


 

95 
 

process. Divide et impera approach. This could be done by both platforms; in particular, in OpenCL 

the way to follow is to create a context, fetch all devices that you need, place them in an array, and 

use that array for building your kernels, and create one command_queue for every device in them. 

OpenCL (clBuildProgram) supports in fact multi-device compilation, so the whole job can be split 

among devices. The last point is about doing the padding of the image not only on powers of two. 

This point deserves an initial consideration, which is that it is necessary to do a study based on the 

right dimension based on the FFT performance. In theory, clFFT supports lengths that are any 

combination of powers of 2, 3, 5, 7, as well as cuFFT. The fact is that, in any case, FFT of any length 

is information preserving, but programmers tend to use radix 2 transforms due to they easiness. So, 

it is possible to use others padding compared to the one powered by two, but, first of all, it is necessary 

to see if the performance increases and, then, if the actual work works well, there is not a real necessity 

to change it.  
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Conclusion 
 

This thesis has been conceived as a work to highlight an actual existent software and see what 

types of changes could be applied to it to improve its performance and portability. The initial 

consideration are encouraging, and some work could be made on it to actual realize a new software 

with the new features. Which one to choose between CUDA and OpenCL? From the different works 

seen in Chapter three, in particular the last one, which has been massively explained, it has been 

shown that both platforms are able to obtain similar performance results under some constraints. So 

the real question is: which one to choose between CUDA and OpenCL for the SAR focusing system 

environment? On the one hand, choosing OpenCL may bring the advantage of an heterogeneous 

system, which could be the winning point due to the possibility to configure the best system possible 

to reach the best performance, and also the possibility to run the system onto different computing 

configurations, such as different computers or the same computer with different hardware 

configurations. On the other hand, choosing CUDA may bring the advantage of running on a platform 

which has great performance results and a lot of programmers which already know how to write it in 

a very efficient way. It is also true that, as it is written in Chapter three, CUDA works very well with 

the Fast Fourier Transform library, compared to OpenCL. The SAR focusing system uses a lot this 

library, which is of main importance in both the algorithm used for the focusing (the Range Doppler 

Algorithm and the ω-k algorithm). This last point is a very strong reason to prefer CUDA platform 

instead of OpenCL one. It is also true that automatic porting tools are becoming more efficient and 

more powerful. In particular, the idea of using already written CUDA software and the porting it into 

OpenCL could be a very efficient way to take the best features of both platforms. The growing of this 

tools could be, in the future, the turning point in the choice of which platform would be better to use. 

In conclusion, it is a matter of choice of what is really needed between the two different platforms, 

taking into account also the differences between them, and maybe considering the idea to use an 

automatic porting tool (which are becoming better and better) to use CUDA and porting it into 

OpenCL, in such a way to have already expert programmers able to write efficient codes, with also 

the strong point of CUDA platform and libraries, but having also the possibility to run that code on 

different architectures or an architecture with different hardware configurations. 
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