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Summary

Nowadays, applications such as Deep Learning Enabled Internet of Things have
become a new way to look to the future of monitoring, control and automation of
the reality around us. In this thesis, the focus is on Edge Computing IoT, that
pushes the analytic part from servers to sensors and portable devices by cutting
off the need for data transmission and broad bandwidth. However, a problem
has to be fixed in order to get the possibility to employ this new technology in
whatever application from Industry 4.0 to biomedical, from autonomous driving to
smart cities and so on. This important issue is the huge power consuming that this
kind of applications requires. In the previous work related to the Multi-Precision
Bit-Serial Hardware Accelerator IP for Deep Learning Enabled IoT designed in
collaboration with ETH of Zurich, this aim was reached, partially, thanks to the
utilization of the PULP system, elaborated from ETH of Zurich researchers, that
will be introduced better further in this thesis. This open source platform supports
the HWPE (Hardware Processing Engine) interface, which has been integrated as
SMAC Engine yet. It exploits the cache memory hierarchy in order to reduce the
latency and the power consuming related to the handling of a huge data quantity
during the convolution operations of multilayer neural networks, such as CNN
(Convolutional Neural Networks). The focus of this thesis is to get a Serial-MAC-
engine (SMAC Engine), that is a 65 nm hardware accelerator with 8 or 4 bits
parallelism for activations and 8, 6 or 4 bits for weights, optimized in terms of power
consuming, paying attention to the trade off with the performances. The bit serial
multiplication approach used before for this system respects the state-of-the-art
low-power standards. The consumption of 0.58Pj/MAC only makes the power
budget of the order of mW, suitable for IoT. However, there is the possibility to
achieve a lower power consuming focusing on a particular issue that involves the
matrices of data during the convolution process, that is sparsity. In this way, it
can be good to reduce the usage of data memory during the operations using some
compression techniques that will be explained further.
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Chapter 1

Introduction

1.1 General Principles

During the last years, the Artificial Intelligence took place in lots of applica-
tions fields, such as autonomous driving, object detection, speech recognition and
other tasks that normally are considered "human-only". The AI, in fact, gave the
possibility to computers to take intelligent decisions, and this is made possible
mainly thanks to two fundamental concepts inspired by this computer science
issue: Machine Learning and Deep Learning. These two methods have some
differences between them, mainly related to the application fields. However, the
Deep Learning is a sub-branch of Machine Learning and it is based on unsupervised
learning, while the other on supervised learning. The first concept means that
machines learn without the need of human instructions, but only by means of
neural network training. While the second one means that they use structured
data sets. The only similarity of these two branches of the AI is the huge quantity
of data on which the machines are trained to take decisions.

Nowadays, Deep Learning is the branch of AI attracting a very large number
of researchers and practitioners due to its extremely wide range of applications,
from 4.0 industry to healthcare, IT security and many others. The particularity
of the DL approach is that the system acts in multi-layer neural networks, such
as DNN (Deep Neural Networks), which combine different algorithms and have
been inspired by the human brain behaviour and structure. In fact, since a neuron
is considered to be the elementary computational element of our brain, which is
composed of billions of them, a DNN consists of several layers (the higher the
number the deeper the network), each containing some neurons contributing to
the computation of the output result. At each layer, the input is controlled for an
other characteristic and the system uses this practice to decide how to characterize
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the data concerned. This is useful when not all the aspects of the objects can be
categorized previously. In this way, only the system can recognize the adequate
distinguishing features and any related changes.
During the training process, a DNN tries to properly tune the weights and biases
parameters based on the so-called hyper-parameters, like the learning rate, the
number of hidden layers, the number of neurons and so on. The weights and biases
parameters are the ones that will ultimately be used during inference to perform
the specific tasks the DNN has been developed for.
The CNN (Convolutional Neural Networks), introduced by LeCun et al. from 1998,
is one of the most important typology of DNN, and has been designed to process
images. However, the computer vision application is not the only one in which
CNN operate, but many other areas are equally involved. The real change has
been introduced in 2012 with AlexNet which won the ImageNet Large Scale Visual
Recognition Competition (ILSVRC). Meantime, some conditions have changed
thanks to these type of multi-layer networks. In fact, a great quantity of labeled
training data are available now, such as ImageNet which contains millions of images
and ten thousands of classes. Moreover, the training of complex models, deep and
with lots of weights and connections, needs high computational power systems
like GPU, with millions of cores and GB of internal memory which reduced the
training time from months to days. An other change is the implementation of Relu
as activation functions instead of sigmoids, which could be problematic during
back-propagations of gradients.
Finally, the development of several open source frameworks tailored for DNN
applications, such as Tensorflow, Caffe, PyTorch, Keras and many others, further
enlarged the accessibility to newcomers thus broadening their evolution and diffu-
sion even more.
The use of DNNs brought to the possibility in optimizing new technologies such as
Internet of Things, where big data centers receive data from edge nodes sensors that,
typically, are further processed by the same data center. But these neural networks
introduced the new concept of elaborating directly in loco the images or other
informations they acquire, making a previous inference computation at the edge
node level. This brings to the possibility of getting higher performance transfers of
huge quantity of data, and in order to do it specialized hardware solutions, such as
ASIC, FPGA or complex SoCs, have been thought. For example, thanks to the
intrinsic post-fabrication programmability, FPGAs allow for a greater flexibility in
terms of workloads handling. In fact, this flexibility enables the user to reconfigure
the data path easily, even during run time, using partial reconfiguration. This
approach is completely different from the one used by GPU, in which there is a
parallel architecture (SIMT) that allows a reduced mapping of the workload if the
parallelism is not enough high. So, FPGAs result in lower performance efficiency,
besides the fact that the additional complexity around their compute resources to
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facilitate software programmability is power-hungry.
However, higher integration solutions such as SoC, where we can find processor

unit, memory hierarchies and elaboration unit all together, are more affordable. For
instance, the ETH of Zurich and the University of Bologna proposed a paradigm
where an ultra-low power multicore SoC called PULP (Parallel Ultra Low Power)
can be augmented by specialized accelerator units, called Hardware Processing
Engines (HWPE), to greatly accelerate specific functions such as the DNN inner
kernels.
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1.2 Introduction to chapters
The chapters of this thesis are organized in this way:

1. Deep Neural Networks and Convolutional Neural Networks. This chapter
gives an insight into DNNs and, more in particular, CNNs about which
hystorical origins and mathematical concepts are properly explained.

2. Sparsity. This chapter has been concerned in order to explain the work
process, from the study of jet exploited accelerator architectures for sparse
data to the one employed in this thesis work.

3. SMAC-Engine for sparse CNNs. In this chapter will be shown the hard-
ware architecture of this SMAC-Engine sparsity based, properly defining
structures and functions of its main blocks.

4. Integration on PULP HWPE. This chapter has been used to explain how
the SMAC-Engine with the new mechanism of handling sparse data has been
integrated inside the HWPE accelerator, taking place in the engine part.

5. Analysis results. This chapter introduces the analysis on timing, area and
power of this system.
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Chapter 2

Deep Neural Networks and
Convolutional Neural
Networks

2.0.1 Basic concepts

The Deep Learning is a branch of the Machine Learning, and it introduces respect
to the last one the possibility to extract from some objects, like images or texts,
informations which, typically, only the human perception can extrapolate. In fact,
the Deep Learning has some elements reminding the structure of a brain, with
neurons and axons. In the following figure is shown this analogy.
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Figure 2.1: Human brain’s neurons

Figure 2.2: DNN structure [14]

So, as it can be seen from Figure2.1 and from Figure2.2 the Neural Network
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has lot of processing units called neurons that are similar to the ones present in
the human brain. In particular, the input layer (features) is assimilated to the
dendrites in human brain’s neural network; while the hidden layer is considered as
the cell body and lies between the input layer and the output layer, which is like
the synaptic output in the brain. In the hidden layer the artificial neurons take
a set of inputs based on synaptic weight, which is the amplitude or strength of a
connection between nodes. These weighted inputs generate an output through a
transfer function to the output layer. The mathematical computation of the output
of a jth hidden neuron is the following one:

aj = f

AØ
ß
xiWij + bias

B
(2.1)

In the equation 2.5 there are 2 parameters, W (weight) and bias, important
for the definition of the output. In fact, the weights are used as multiplicative
factor applied to the input signal, and can be positive or negative (inhibitory and
excitatory synapses), greater or less than 1 (amplifying or attenuating synapse).
This makes clear the nature of this function, that is a weighted sum among all
the input features. The bias, instead, is important to adjust the working point of
the neuron itself. While xi are the input activations, the output activations are
obtained by means of a non-linear transfer function, called activation function.
There is the possibility to choose among different of these functions, and below are
listed some of them:

• Sigmoid function:
f(a) = σ(a) = 1

1 + exp(−a) (2.2)

• Hyperbolic Tangent function:

f(a) = tanh(a) = ea − e−a

ea + e−a
(2.3)

• Rectified Linear Unit (ReLU):

f(a) = max (0, a) (2.4)

• Leaky ReLU:

f(a) = max(0.1a, a) (2.5)

Nowadays, the ReLU is the most used activation function and is defined as the
positive part of its argument:

f(x) = x+ = max(0, x) (2.6)
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where x is the input to a neuron. This is a ramp function, and it was introduced
for the first time in a dynamic network by Hahnloser et al. in 2000, citing
strongly biological reasons (activation potential). In 2011 it has been proved
that this function is good to train deep neural network in an efficient way. This
because, throwing away the linearity part of the function that relates input to
outputs, the output activations reach a certain sparsity level that carries to a better
approximation of very complex and deep neural networks. From 2018, this function
is the most used in DNN.
Moreover, other activation functions like the sigmoid and the hyperbolic tangent
were a problem for the training of very complex deep neural networks, because of
the vanishing gradient descent and the slower back propagation. These, in fact, are
the most used algorithm during training process in order to derive the parameters
that work best for the designed network, so need to be optimized in order to obtain
good performances in terms of training.

Figure 2.3: Activation functions [5]

Thanks to this structure, the artificial neural networks can emulate the complex
functions that only human brain could implement.
Some models of deep learning are made of different elaboration steps, each one
extracting the representation of the step before. In the supervised deep learning,
which means that the machine can automatically make previsions about the output
of a system thanks to some previous examples of input – output obtained, the most
used neural network is the multi-layer one, so called Deep Neural Network.
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2.0.2 The origins of Convolutional Neural Networks
The most important typology of DNN for image classification is the CNN - Convo-
lutional Neural Network or ConvNet. This kind of Neural Network has its origin
in the studies carried out by the two neurophysiologists David Hubel and Torsten
Wiesel, who collaborated for several years during the last century. The object of
their studies was the responsivity of neurons in cat’s brain to some images projected
in precise locations on a screen. The discovery (1962) was that neurons in the early
visual system were excited more strongly by certain patterns of light respect to
others [6].
The part of the brain that inspired the CNN architecture was the primary visual
cortex, V1. This last one is the first area of the brain that elaborates input images,
which are then shaped by light arriving in the eye and stimulating the retina, the
light-sensitive tissue in the back of the eye. The image then passes through the
optic nerve and a brain region called the lateral geniculate nucleus. These two
anatomical regions carry the signal from the eye to V1.
Three properties of V1 have been used to inspire CNN:

1. V1 is arranged in a spatial map. While mirroring the image in the retina,
it has a two dimensional structure. So, convolutional networks capture this
property by having their features defined in terms of two-dimensional maps.

2. V1 contains many simple cells. A simple cell’s activity can to some extent be
characterized by a linear function of the image in a small, spatially localized
receptive field. The detector units of a convolutional network are designed to
emulate these properties of simple cells.

3. V1 also contains many complex cells. Differently from simple cells, complex
cells are invariant to small shifts in the position of the feature. This inspires
the pooling units of convolutional networks.

The neuroscience has not exposed precisely for the training of convolutional
neural networks. We can list different studies like the one carried on by Marr and
Poggio, 1976, in which was contemplated the model structures with parameter
sharing across multiple spatial locations date back to early connectionist models of
vision, but not using the modern back-propagation algorithm and gradient descent.
For example, the neocognitron (Fukushima, 1980) incorporated most of the model
architecture design elements of the modern convolutional network but relied on a
layer-wise unsupervised clustering algorithm.
Then, Lang and Hinton (1988) introduced the use of back-propagation to train
TDNNs (Time-Delay Neural Networks). These are one-dimensional convolutional
networks applied to time series, but this is not inspired by biological motivations.
After this success with back-propagation, LeCun et al. (1989) developed the modern
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convolutional network by applying the same training algorithm to 2D convolution
applied to images.

2.0.3 The Convolution Operation
As the name of Convolutional Neural Network suggests, the basic algorithm that
these networks employ is the convolution function. Convolution is a specialized
kind of linear operation. So, Convolutional Neural Networks are simply neural
networks that use convolution in place of general matrix multiplication in at least
one of their layers. In mathematics (in particular, functional analysis), convolution
is a mathematical operation on two functions (f and g) that produces a third
function (f * g) that expresses how the shape of one is modified by the other. It
is defined as the integral of the product of the two functions after one is reversed
and shifted. And the integral is evaluated for all values of shift, producing the
convolution function.

y = f ∗ g (2.7)
In the time domain, the convolution can be seen as a mathematical operation

that, given two functions, gives a third one computed as in the following:

y = (f ∗ g)(t) =
Ú
f(τ)g(t− τ)dτ (2.8)

However, in machine learning applications the input is usually a multidimensional
array of data, and the kernel is usually a multidimensional array of parameters
that are adapted by the learning algorithm. Typically, we use convolutions over
more than one axis at a time. For example, if we use a two-dimensional image I as
our input, we probably also want to use a two-dimensional kernel K:

S(i, j) = (I ∗K)(i, j) =
Ø
m

Ø
n

I(m,n)K(i−m, j − n) (2.9)

Convolution is commutative, meaning we can equivalently write:

S(i, j) = (K ∗ I)(i, j) =
Ø
m

Ø
n

I(i−m, j − n)K(m,n) (2.10)

The convolution operation is the basis for the invariant linear systems theory.
The meaning of this is explained in the following:

• Linear System. A system is linear when the transform function applied by
the system respects the "Principle of Superposition of Effects"; this property
is explained by the equation below:

L[a1x1(t) + a2x2(t)] = a1L[x1(t)] + a2L[x2(t)] (2.11)

10
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• Invariant System. A system is invariant when the variation in the input (in
time domain or in spatial coordinates) is repeated by the output in the same
way. If

T [x(t)] = y(t) (2.12)

then

T [x(t− ∆)] = y(t− ∆) (2.13)

Application of convolution to digital filters

The convolution is an operation that finds its functionality in different application
fields. In particular, among them there are the following two:

• digital elaboration of images (convolutional filters);

• digital signal processing, in which the filtering in the frequency domain results
in a convolution between two functions in the time domain, that is a multipli-
cation in the frequency domain.

Looking at the second one, doing a discretization of the time in which the signal
is sampled by the Linear System, the convolution becomes a simple sum between
the multiplications of a same weighting function with different time instants of the
signal in input to be elaborated. Doing the integral, instead, we obtain a smoothed
estimation of the signal, that after the filtering will be free from noise and other
less important informations [11].
So, in this case an analogy has to be done. In fact, in both the applications are
used filters to modify the signals or the images, but are both related to different
domains. While for digital signal processing are used some probability density
functions in the time domain to change the spectrum of the input signal maybe
filtering some noise, the filters used in the processing of images are called Kernels
and are used as masks for images in order to recognize borders, corners and so on.
Furthermore, going deeper with the features characterization in CNN it’s possible
to obtain detailed informations set about the images under filtering.

The other important analogy is that, as the digital filters for signal processing in
the frequency domain need to be done in an LTI (Linear Time Invariant) system,
digital filtering for images needs a Linear and Invariant System that brings to the
architecture of the Convolutional Neural Networks, that will be explained further
in this chapter.
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2.0.4 Convolutional Neural Networks basics
CNN took place in the computer vision field with higher strength in 2012, after
the challenge ILSVRC (ImageNet Large Scale Visual Recognition Competition),
which is an image classification competition. AlexNet was the Convolutional Neural
Network that won that competition, introducing some relevant conditions respect
to the previous CNN of LeCun (1989). These conditions are summarized below:

• Big Data: there was the availability of dataset of huge dimensions, like
ImageNet, which contains over 15 millions labeled high-resolution images with
around 22,000 categories. ILSVRC uses a subset of ImageNet of around 1000
images in each of 1000 categories. In all, there are roughly 1.2 million training
images, 50,000 validation images and 150,000 testing images [9].

• GPU computing: there is the need of using powerful computational systems,
and the GPU with multiple cores and GB of internal memory carried to reduce
the time of training from few months to few days.

• Vanishing (or exploding) gradient: the gradient back propagation is a problem
on very deep networks if the sigmoid function is used as activation func-
tion. So, the problem was solved with the introduction of ReLU activation
function, which make several times faster the training than the equivalent tanh.

Main Characteristics of CNN

There are three important motivations to choose CNN instead of other neural
networks, and below are defined which ones and why.
First of all, the fact that the kernel (filter) is smaller than the input image implies
that some connections between the output and all the inputs are sparse, so they
are not connected. This property is called sparse connectivity. Typically, the kernel
is used to detect corners, edges and other features that could be repeated over
all the image in input. This means that if we have to store in a memory the
parameters that are used to accomplish the convolution is not a problem for the
energy consumption and for the efficiency of the operation, because we need fewer
pixels of weights in order to do this over thousand of pixels of the input image.
So, also fewer operations need to be done. This is a good optimization respect to
traditional neural networks, where layers use matrix multiplication by a matrix of
parameters that connect all the inputs with all the outputs in a linear way, making
a dense connection between them.
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Figure 2.4: Dense Connections [15]

Figure 2.5: Sparse Connections [15]

The second important issue that brings to choose CNN better than traditional
neural networks is the parameter sharing, which is a consequence of the fact that
the same features are detected over all the image in input. In fact, while typically
in traditional NNs the same filter is not used for other inputs but only once, in
this case the weights of a kernel are tied to different input positions. So, the CNN
learns no more than one set of features each time it does the convolution.
The last motivation that makes CNN so efficient is the equivariance introduced
by the convolution operation, which is something we have seen yet reminding to
the concept of Invariant Systems. In this case, the domain is not time but space.
So, differently from the former where the changes at the output of the system
were related to time delay, here the variation we observe at the output is tied to
a spatial translation. So, the same change is obtained both in input and output
image. Mathematically, a function f(x) is equivariant to a function g if:

f(g(x)) = g(f(x)). (2.14)

2.0.5 Architecture of Convolutional Neural Networks
Typically, the input images of a CNN are composed of three layers, namely RGB
(Red, Green and Blue). Each pixel of these three layers contains values and are
arranged spatially along the width, height and depth (channels). The goal of the
architecture of CNN is to learn the classification of the image figured out by these
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pixels values with the features recognition. Operations like convolution, pooling
and ReLU are applied to squeeze and stretch them along the depth. An example
of this is shown in Figure2.6.

Figure 2.6: 2D convolution [1]

In fact, it is observable that after the convolution layer the channels at the
output are more than those of the input. These are called feature maps, and are
related to different filters applied at the same input activations. From their name
it figures out that each channel at the output extrapolates a different feature of
the input image over all the pixels that compose it.

Performing Convolution

The convolution operation consists, usually, in these three steps:

1. taking the input volume, superimposing a filter on it, starting from the upper
leftmost position;

2. performing the element-wise multiplication and adding up the result, which is
also known as a Multiply and Accumulate (MAC) operation, to obtain the
output value;

3. moving the filter by one position and repeat the operation until all the output
elements are calculated.
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The mathematical definition is reported below:

y[kout][wout][hout] =
n

[l−1]
cØ

kin=0

f lØ
i=0

f lØ
j=0

x[kin][wout + i][hout + j] ·W [kout][kin][i][j] (2.15)

where:
0 ≤ kout ≤ nl

c, (2.16)

0 ≤ wout ≤ nl
w, (2.17)

0 ≤ hout ≤ nl
h, (2.18)

The dimensions of the output, considering the 3D shape, follow a particular rule,
that is, if the input dimensions are nl−1

w x nl−1
h x nl−1

c and the number of filters of
dimensions f l x f l is nl−1

f , then the output volume will have dimensions nl
w x nl

h x
nl

c, where:

nl
w = n[l−1]

w − f l + 1 (2.19)

nl
h = n

[l−1]
h − f l + 1 (2.20)

nl
c = n

[l−1]
f (2.21)

Stride and Padding Techniques

This rule changes if we consider two techniques more:

1. Zero padding;

2. Striding.

The first is applied when there is interest in preserving informations on the
edge of the image. In fact, as we can see from Figure2.7, the dimensions of the
image is enlarged by a further crown of zeros that will be helpful in considering
the activations at the edge more than once, so including their values in more than
one output pixel.

Here, the rule for dimensions is the following one:

nl
w = n[l−1]

w + 2p− f l + 1 (2.22)
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Figure 2.7: Zero Padding Technique [13]

nl
h = n

[l−1]
h + 2p− f l + 1 (2.23)

nl
c = n

[l−1]
f (2.24)

where p can assume different values; if we don’t consider padding it will be 0
(valid convolutions), while in other cases (same convolution) the padding amount
is adjusted in order to have the same output size as the input; so,

p = f l − 1
2 (2.25)

The second technique we have nominated is the striding. It consists in doing a
larger step each time we want to slide the filter. So, instead of moving it by only
1 pixel at a time, it slides by s pixels. This is useful if we want to get a lower
overlapping of the output values in a layer. In Figure2.8 is represented graphically
how it operates.

The rule to obtain the output sizes is the following one:

nl
w =

E
n[l−1]

w + 2p− f l

s
+ 1

F
(2.26)

nl
h =

n[l−1]
h + 2p− f l

s
+ 1

 (2.27)

nl
c = n

[l−1]
f (2.28)
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Figure 2.8: Striding Technique

Architecture

Each layer of a Convolutional Neural Network is composed of the following stages:

1. Convolutional stage (CONV);

2. Pooling stage;

3. Fully Connected (FC) stage.

Typically, after the convolution step is introduced the non-linearity by means of
ReLU (Rectified Linear Unit) function, which has been introduced previously in
this chapter.

The Pooling layer is the one which helps to extrapolate well the features of the
image without taking care of the small translations of it. In fact, the operation
done by the Pooling is, typically after the ReLU, a statistical summary of the pixels
around a certain location. For example, the max pooling reports the maximum
output within a rectangular neighborhood. So, the pooling adds invariance to local
translations at the output of the layer in which lies, because after a translation
the most of the pooled outputs do not change. An other important motivation to
use pooling functions is to obtain output feature maps of the size required by the
network, regardless of the input size.

The last stage, the FC (Fully Connection), is a dense connection that is used
for the final classification of the image.
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Chapter 3

Sparsity

In Section 1.2 it was introduced the definition of ReLU function, that is used
to obtain activation values. An important characteristic that this last operation
adds to CNNs is the sparsity of its feature maps. So, starting from this last
concept a new kind of hardware architecture has been implemented in this the-
sis design respect to the previous one, in order to handle the sparse matrices of data.

Sparsity is the condition in which, for instance, a matrix of data could be if
most of its values are exactly at zero. So, considering the MAC (multiply and
accumulate) operations that typically are employed in the convolution operations
in CNNs, this attribute could come in handy while performing it, avoiding to
do multiplications with zero values. In this way, different techniques have been
explored during the last years by hardware accelerators supporting CNNs. In the
following paragraph these solutions will be explained properly.

3.1 Hardware Accelerators Sparsity Based in Con-
volutional Neural Networks

Typically, the huge amount of data that CNN and, more in general, DNNs should
use is really power-consuming and reduces performances of the hardware that
handle the inference process. In fact, in such systems typically there is an on-chip
engine that is involved in convolution operations and an off-chip main memory to
access each time is required by the algorithm. The bandwidth and the number of
loading cycles related to the accessing in memory could be very energy-consuming
and it’s the main motivation that brings to find solutions in order to make CNNs
accelerators affordable for the intended use, for example in the IoT field. For
instance, if it would be implemented in wearable devices for medical aims it should
be a low-power system in order to have a longer time-life.
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An other improvement, less important in terms of energy consumption but however
helpful, is the reduction of multiplications with zero values, which wouldn’t make
any contribution to the final results.

Sundry solutions for sparsity based accelerators have been implemented by
researchers in the CNNs field, but it’s still difficult to recognize the most affordable
one in terms of power consumption and performances, because it depends also on
the kind of Neural Network that is supported in the particular architecture.
Below, are reported the final results in terms of power consumption and throughput
reached by some hardware accelerators:

• Eyeriss processes convolution layers at 35 frames/s and 0.0029 DRAM ac-
cesses/MAC for AlexNet at 278 mW [4];

• EIE has a processing power of 102 GOPS/s working directly on a compressed
network, corresponding to 3TOPS/s on an uncompressed network, and pro-
cesses FC layers of AlexNet at 1.88x104 frames/sec with a power dissipation
of only 600mW [8];

• NullHop, exploiting sparsity, achieves an efficiency of 368%, maintains over
98% utilization of the MAC units, and achieves a power efficiency of over 3
TOPS/s/W in a core area of 6.3 mm2 [2];

• SCNN improves both performances and energy by a factor of 2.7x and 2.3x
respectively, over a comparably provisioned dense CNN accelerator [12];

Now, it will be explained in each case which kind of techniques have been im-
plemented for sparse data and how they should impact to the power consumption
and performances of the system.
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3.1.1 Eyeriss
This accelerator uses as sparsity solution the compression of data technique called
RLC (Run Length Compression), used in order to exploit zeros in feature maps
and save DRAM bandwidth. In Figure3.1 is shown an example of RLC, in which
the data is divided in 2 parts: Run and Level. The first encodes the length of
zero sequences, that in this case could reach 31 zeros, while the second term is
related to the value of non-zero activation that is separated from the next one by
the number of zeros in the Run term. In this case, the data are packed into a 64
bit word, where at the end there is a 0 term saying if the data compression comes
to the end.

Figure 3.1: RLC example [4]

The compression of data allows to reduce the necessary capacitance of data
volume in the DRAM, that is the main memory linked to the accelerator. The
input data of each layer of a CNN, except for the first layer, are written in the
DRAM in the compressed format.

How is the stream of data between the accelerator and the DRAM?
In order to recognize the real sequence of the activation values, the accelerator
needs an RLC decoder, which decompresses the data coming from the DRAM that
are, further, written into the GLB (Global Buffer). After the convolution is done,
the computed output feature maps are read from the GLB, processed by the ReLU
module where appropriate and compressed by the RLC encoder. This compression
is good in terms of communication bandwidth with the DRAM, where data are
then stored. In fact, this saves lot of energy linked to the loading and storing cycles
of data, as well as the space of the DRAM.

What is the role of Global Buffer?
The Global Buffer is a local memory that interfaces the external DRAM, and it
contains 100 kB of input feature maps and partial sums/output feature maps, while
8 kB of filter weights for the next processing step, in order to save the energy linked
to the external memory access and storage.
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The space is divided into 25 banks, each of which is a 512 bit x 64 bit (4 kB)
SRAM, where the PE array can access simultaneously input feature maps and
partial sums.

3.1.2 EIE
This is another hardware accelerator handling sparse data. Below, are reported
some important issues related to this kind of accelerator:

• dynamic input vector sparsity;

• static weight sparsity;

• weight sharing.

The basic idea is to compress the network by means of pruning, using the
technique of Deep Compression [7]. This technique consists in removing from
the network all connections with weights below a threshold, and then retraining
the sparsified network to lain with the final weights. This is useful to reduce the
accesses to cache memory during the multiplication of matrix by vectors that,
typically, are accomplished during CNNs.

Moreover, it could help bringing all the weights of the sparse network in an
on-chip SRAM. In fact, each processing element has its own SRAM with prestored
weights which processes the activations incoming.

The following results have been reached with this approach:

• Operating directly on compressed networks enables the large neural network
models to fit in on-chip SRAM, which leads to 120x energy savings compared
to accessing from external DRAM.

• Exploitation of the dynamic sparsity of activations to save computation. It
saves 65.16% energy by avoiding weight references and arithmetic for the 70
% of activations that are zero in a typical deep learning application.

• Method of both distributed storage and computation to parallelize a sparsified
layer across multiple PEs, which achieves load balance and good scalability.

3.1.3 NullHop
The technique used in this case is called Sparsity Map (SM), where a 3D mask
of ’0’ and ’1’, together with a Non-Zero Value List (NZVL), has the same number
of values as for the activations in input in the feature maps. The pixels that are
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equal to ’1’ indicate that the activations in that positions are non-zero values. The
length of NZVL can be variable and it contains all the non-zero activation values,
seeking the order reported in Figure 3.2.

Figure 3.2: SM example [2]

This accelerator can implement one convolutional stage followed by a ReLU and
max-pooling stage, which can be disabled if necessary.
An important feature that make this technique affordable it’s that it avoids the
redundant MACs and wasting of clock cycles skipping over zeros in the input CNN
layers.

How is the data stream handled on the NullHop architecture?
Two streams of data come from the external memory, with a parallelism of 32 bits.
One of them is for the input configuration that comes from microcontroller, while
the other one is for the output control signals like clock, reset and bus handshake
signals. The input feature maps and the kernel values for the current convolutional
layer are stored in two independent SRAM blocks. The output feature maps are
then pushed off-chip to the external memory, and streamed back to the local SRAM
for the next convolutional layer.
During the computation of the output maps, the values of the input features are
never decompressed but decoded.

In the following lines, it will be described how the processing pipeline is organized.
The Input Decoding Processor (IDP) generates pixels from the reading of a portion
of the compressed input feature maps, and these are then passed to the Compute
Core Module (CCM). These pixels are, typically, all non-zero and this helps in
skip over MACs with zero activations, that would give a negligible contribute to
the final result.
The IDP also forwards the pixels positions (row, column, input feature maps index)
to the CCM, where it’s placed the Pixel Allocator, which allocates each incoming
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pixel to a Controller. Each of these manages the operation of a subset of the MAC
blocks and submits the appropriate read requests to the Kernel Memory banks.
All MAC blocks under the same Controller receive the same input pixel from their
Controller, but weights from different kernels, producing pixels in different output
feature maps. Then, the pixel stream compression block streams off-chip the output
feature maps.

Figure 3.3: Format of the words in NullHop [2]

3.1.4 SCNN
The Sparse CNN accelerator architecture is an inference architecture that exploits
both weights and activation sparsity to improve the performance and power of
DNNs, and its usage is intended to optimize the computation of the convolutional
layers.
SCNN employs both an algorithmic dataflow that eliminates all multiplications with
a zero and a compressed representation of both weights and activations through
almost the entire computation.
The processing element (PE) has a multiplier that accepts a vector of weights
and a vector of activations (Cartesian Product). Moreover, in order to reduce
data accesses the activation vectors are reused in an input stationary fashion while
being multiplied with a series of weight vectors. Finally, only non-zero weights
and activations are fetched from the input storage arrays and delivered to the
multiplier.
Also SCNN, as CNN, accelerators can accumulate the partial products generated
by the multipliers. A scatter accumulator array, to which coordinates and products
are sent, is used to sum the partial products.
Final results obtained by the implementations of SCNN are:

• efficient compressed storage and delivery of input operands;

• high reuse of the input operands in the multiplier array;

• no time spent on multiplications with zero operands.
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The elimination of zero values multiplications is done by applying Cartesian
Product dataflow, which exploits both weights and activation reuse while delivering
non zero values to the multipliers. So, the choice of dataflow has an effect on area
and energy-efficiency of an architecture.
In this work, the dataflow used is called PlanarT iled-InputStationary-Cartesian
Product-sparse, or PT-IS-CP sparse, which enables reuse patterns that exploits
the sparsity of data involved.

In the microarchitecture of SCNN are present two types of RAMs for both input
activations and output activations, respectively IARAM and OARAM, and there
is the possibility to swap them when the output becomes the input for the next
layer of convolution. This permits to preserve energy and efficiency during the
operations because a reduced number of accesses to external DRAM are needed.
When the activations vector I and weights vector F in input to the processing
elements are fetched in their compressed form from their respective buffers, then
are dispatched to an F x I multiplier array which accomplish the Cartesian product
of these vectors. This means that a partial sum is obtained by the multiplication
of every activation with every weight.

Figure 3.4: Weights compression [2]

The compression algorithm consists in defining a vector of indices and a vector
of values, where the indices indicate the number of zeros that separate two non
zero activations, while the values are the non null activations itself. The Figure 3.4
represents an example of this kind of compression.
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3.2 Sparsity Based SMAC-Engine Basics
The previous implementations of sparsity based accelerator architectures have
inspired this thesis work. Despite the differences between them that will be
introduced in Section 3.2.1, mainly related to the kind of data flow implemented,
this accelerator handles the sparsity of feature maps in each layer of convolution
looking at the main techniques that brought the previous works to reach good
results in terms of power consumption and MACs operations per clock cycle. In
particular, as explained further in sections 3.2.2 and 3.2.3, the compression of data
(activations) and weights reuse are the two techniques taken into account.

3.2.1 Data flow
Typically, the operation of convolution in CNNs are accomplished by using 2D
maps of kernels sliding over the input feature maps, and the order with which data
are fetched from the activations memory is the following one:

for z in range(k_ch):
for x in range(f):

for y in range(f):
out_activation_value+ = act[z][x][y] * weight [z][x][y]

The difference in this thesis work is that the convolutions with weights are done
in the direction of the channels, so in the z direction. The convolution result is the
same but the difference is the data flow. The operations are carried on volumes of
data in input. In fact, the activations of a convolutional volume are read by the
memory TCDM in the z direction as shown in the following figure:

Figure 3.5: 2D convolution with 3D volumes of data

The order of the activation positions (x,y) inside the TCDM are contiguous,
and are saved here in the direction of ascending x, y and z. For the z values there
is an internal loop for the indexing of the TCDM. The outer loop is the one for x,
while the loop for y is the outermost, as reported below:
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for y in range(f):
for x in range(f):

for z in range(k_ch):
out_activation_value+ = act[z][x][y] * weight [z][x][y]

3.2.2 Compression of data
The compression of data used in this thesis work is something similar to the one
reported in Eyeriss accelerator, explained in paragraph 3.1.1.

This technique consists in compress data in the z ascending direction, as repre-
sented in Figure 3.5. The result from each compression is a data on 14 bits, where
the 8 bits in the MSB part are related to the non-zero activation, while the 6 bits
in the LSB part are related to the length of zero sequences. The number of zeros
in this last element defines the offset between two non-zero activations, that is
further decoded in order to obtain the convolution between the right values of both
activation and weights.

While reading the output of the convolution operation, the compression follows
this rule (shown also in Figure 3.6):

1. the first data considered is related to the position corresponding to z = 0, so
belonging to the first feature map, and it is reported in the MSB part of the
compressed data even if its value is zero;

2. the following data seek the compression algorithm, which defines that if there
is a sequence of zero higher or equal to 1, it is written in the LSB part of the
compressed word as "zero count";

3. if there is a zero sequence with length higher than 63, the sequence is divided
in more than one data compressed. For instance, if the length of zeros is 80
it will be distributed in 2 data compressed where the first one is "00000000
111111" and the second one is "00000000001111".

4. when two non-null activations are contiguous, the result of the compression
will be, for example, "01010101 000000" and "1010101 0000000".

Figure 3.6: Activations compression example
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3.2.3 Weights sharing

The concept of weights sharing was well exploited in the EIE work (Section 3.1.2),
where each PE has its own SRAM cache in which weights are reused for different
activation values. In our system, the reuse of weights on the internal engine was
thought with the idea of reducing the memory access, and to exploit the parallel
processing of the same weights position (x,y,z) for the activations shared between
all the processing elements.

Analysis of loading cycles from TCDM

A previous analysis for the affordability of weights sharing in terms of energy
consumption and performances has been done looking at the number of loading
cycles that would be involved during the computation. In fact, considering a
bandwidth of 224 bit for the interface with memory, and considering to load 64
filters or more at each convolution process, it was more affordable to consider a
caching system inside the SMAC-Engine in which the weights are loaded only once;
then, during the computation step in which the activation data compressed are
taken, these values of weights are fetched in parallel among all the filters shared by
the activations in input. Below, graphs and equations of this analysis have been
reported.

Figure 3.7
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nnomemlocal
cycles = nfil · dimx · dimy · dimz · 8bit · volconv

BW
(3.1)

where volconv is the number of convolution volumes to be computed over all the
input image, dimx, dimy, dimz are the dimensions of a single filter, 8 bit is the
parallelism of weights, and BW is the 224 bits bandwidth.

Figure 3.8

nmemlocal
cycles = nfil · dimx · dimy · dimz · 8bit

BW
+ dimx · dimy · dimz · volconv (3.2)

where the first addend is the one used to define the number of cycles that are
fetched directly from TCDM the first time, then are fetched all simultaneously
from the SRAM banks inside the SMAC-Engine, as defined by the second addend.

So, looking at Figure 3.8 and Figure 3.7, the number of loading cycles is much
lower for the second one of about 2 times. The CNN considered is the ResNet 18
and 34, that will be at the center of the further analysis as well.

For example, considering the third layer of ResNet 18, the following considera-
tions could be done; if the fetch was done always from the external memory:

1
2 · 3 · 3 · 128 · 256 · Pw

BW
· (dim_out · dim_out) = 1032192cycles (3.3)
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while, for the internal fetch:
1
2 · 3 · 3 · 128 · 256 · Pw

BW
+ 36 · (dim_out · dim_out) = 17588cycles (3.4)

where Pw is for 8 bits (weight parallelism), BW is the bandwidth of 224 bits
and dim_out is 14 (x and y size of output feature map).

3.3 Analysis of Sparsity for some Convolutional
Neural Networks

Considering now the neural networks that could be implemented by this hardware
accelerator, a previous analysis has been done on the sparsity of CNNs like ResNet,
where the input of each convolutional stage in each layer was taken by means of a
specific class in Python and analyzed in different ways. Moreover, the data set used
to make the inference of this neural network is the Tiny ImageNet [10], containing
200 classes of the 1000 in ImageNet.

As reported in Figure 3.9 and Figure 3.11, a first analysis has been carried
on about the percentage of zeros present in each feature map in input at each
convolutional layer. This values range between 20 % and 80 % for both ResNet 18
and ResNet 34, and from this first analysis it can be seen that an implementation
of the algorithm of compression could be useful for the activation values. In fact, a
great part of these layers has more than 50 % of sparsity.
For what concerns the weights, their sparsity is something fixed and we can exploit
better the sparsity coming from activations which are growing from the first layer
to the last one as reported in the following figures.

A second analysis has been accomplished on the sequences of zeros that, as sug-
gested before, are important in defining the offset between the non-null activations
and for the compression of the data volume. As reported in Figure3.10 and in
Figure3.12, the sequences are distributed among values between more or less 10
and 400, but in order to reach the final data on 14 bits, considering activations on
8 bits in the MSB part and the 6 bits of zero count, the following considerations
has been done:

1. interface bandwidth between the external memory and the SMAC-Engine;

2. with the following calculation

avg#zeros = sumseq

totalseq

(3.5)

where sumseq is the sum among the lengths of all the zero sequences and
totalseq is the number of zero sequences, both among all layers;
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Figure 3.9: Sparsity Analysis for ResNet 18

Figure 3.10: Average zero sequences in z direction
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Figure 3.11: Sparsity Analysis for ResNet 34

Figure 3.12: Average zero sequences in z direction

31



Sparsity

Starting from point 1, where it has been considered the architecture present in
the dense SMAC-Engine, the usage of 16 activations at each convolution operations
is maintained as well as the structure that handles it. So, considering a bandwidth
not too much higher respect 128 bit and that was a multiple of 32 bits, 224 bits was
perfect in order to consider activations on 8 bits and, as a consequence, 6 bits of zero
count result. Now, it is possible to connect to point 2, where from the calculation
came out that the value of 63 consecutive zeros was the best approximation as
average length of zero sequences.
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Chapter 4

SMAC-Engine for Sparse
CNNs

4.1 Hardware Design of the Accelerator for sparse
data volumes

The hardware implementation of what has been explained in Section 3.2 is prop-
erly defined in this chapter. The work on which this sparsity based system is
integrated is a SMAC-Engine which has the scope to accomplish convolutions,
so Multiply and Accumulate operations, in each layer of a convolutional neural
network like the ones of the analysis reported in Chapter 3, ResNet18 and ResNet34.

In the following paragraphs it will be exposed the design units of the system
handling sparse data volumes, that are the Decompressor Unit and the Compressor
Unit. The first unit is involved in the operations of new activations fetching and
decoding of the right position, obtaining also the right fetch of weights in the
internal SRAM banks system present in each SMAC-Block PE. The second unit is
the one which compress and obtain the data on 14 bits to be streamed off-chip to
the external memory TCDM, organized as explained in Section 4.1.1.

4.1.1 Data organization in TCDM
The TCDM is considered in this work as a 7 bank SRAM system, with size 232 x
32 bits, and is used to store kernel weights, input and output activations.
This kind of memory has been yet employed by the DORY (Deployment Oriented
to Memory) algorithm as a L1 cache in which the tiling on the memory hierarchy
(Li) of data such as input/output activations and weights is considered in relation
to a layer analyzer which optimizes and generates code to run the tiling loop,
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orchestrate layer-wise data movement and call a set of backend APIs to execute
each layer of the network, individually [3].

In this work, in order to test in a simpler way the whole system, this memory
has been organized as explained in the following points:

• The weights are stored in the part of TCDM with Base_Address = 0x0 and
Offset = 28 x 214, with the organization shown in Figure 4.1.

Figure 4.1: Weights Organization

• The activation inputs are stored in the region with Base_Address = 0x0 +
0x1c · 214 and Offset = 0x1c · 27;

• The activation outputs are stored in the remaining part of the memory, in the
region with Base_Address = 0x0 + 0x1c · (214 + 27);

The activation values belonging to each position (x,y) are considered in their
compressed form on 14 bits and the offset considered for them inside the memory is
0x70 in hexadecimal, so 112 in decimal value. This value has been get considering
the sparsity that characterizes the layer of ResNet18 (3x3x128 convolution volumes)
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Figure 4.2: Input Activations Organization

involved in this example, that is 50%. So, as reported in Figure 4.2, the activations
stored in TCDM are just the one related to a single convolution volume. This
choice motivation lies in a simpler test and control for the address generation. The
same volume is fetched until we obtain the final result, so the output activation
values in the last position.

4.1.2 Decompression System
The main scope of this Decompression Unit is to accomplish for a right convolution
operation, fetching the right weights and aligning them with the right activation
values. In order to guarantee the good behaviour of this block, the following data
path (Figure 4.3) has been implemented. Below, it will be explained the function
of each block present in this Unit.
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Figure 4.3: Decompression Unit
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REGS_SYSTEM_INPUT_FILTERS

The function of this block is to align the packets of weights coming from the TCDM
memory with a bandwidth of 224 bit, and dispatch them to the local memories
introduced for the contention of the Kernel of the layer involved in the convolution.
As reported in Figure 4.4 the data coming from the TCDM correspond to 28
weights belonging to a filter. The first of them is aligned with the MSB side of
the ”Reg_weights_align” register that has 896 bit of capacity. The last data
incoming is pushed in the LSB part. This design decision is due to how data have
been stored in the TCDM memory (Section 4.1.1). In fact, the weights of each
filter are positioned in the ascending order with x and y, and for these data the
compression has not been considered.

Figure 4.4: Input Weights Registers Block

SHIFTER_WR_TOKEN and SHIFTER_CS_TOKEN

During the writing of weights inside the SRAM banks system, an important role
has been assumed by the shifter of the write token that will allow the writing of
weights from SMAC_0 to SMAC_63. This operation, if the number of filters is
256, will be done 4 times and each time the write token goes to the 63rd PE the
CS token shifts to the next position in order to select the banks related to the next
filters group.
While for the writing stage the CS signal shifts until the end of the SIPO register,
in the reading stage the 4 CS signals are all at ’1’, because filters are read all
simultaneously.
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INPUT_ACTIVATIONS_FETCH

This block is used to select the activation values during the convolution algorithm
execution. In the DP_ACT_REG are saved the 224 bits containing 16 data in
their compressed format on 14 bits.
An important thing to underline is that the first activation value of the sequence
related to the first position of the convolution volume is shifted yet in the shift
register and the value of the first weight is read by the LSB byte at the 0x0000
address inside the RAM_INSTANCES block. This is due to how data have been
compressed and are read from TCDM.

Figure 4.5: Input Activation Fetch Block

The 8 bit in the MSB part is the activation value, that is shifted in the
SHIFT_ACT_REGS in Figure 4.5. The shift register is used in order to align the
activations with the right value of weight coming from all the filters involved in
the convolution. Below, is described the OFFSET_CALCULATION block that is
used to verify the right position of weights and activations.
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OFFSET_CALCULATION

As reported in Figure 4.7, the algorithm to calculate, for the present activation,
the offset respect the next activation value is implemented in this way:

1. the value of zero count is read at the output of the INPUT_ACTIVATIONS_
FETCH unit;

2. as said before, for the first activation read in the convolution volume, the first
weight is read by the first location in the local memory simultaneously in all
the filters that are involved in the convolution over all the input image.

3. For the subsequent activations compressed in the 14 bit format, the position
of weights to be fetched for the next activation value is calculated by means
of a system that is composed of 2 adders and 1 subtractor units. The first
adder sum the previous offset defined by the previous calculation saved in
OFFSET_PREC register and the zero sequence length that separate the
current activation read by the next one. Immediately after, this sum result is
sum again with an other value that is "1" (to help the calculation of the offset).
The 4 LSB of the last result are then read by the PRE_SEL_REG used to
store the offset for the next weight value to be fetched from the local SRAM.

4. The offset stored in OFFSET_PREC register is the one defined respect the
LSB byte at the current address of the SRAM instances, that could reach a
maximum of 16 weights. So, the selection goes from 0 to 15.

5. The choice of SRAM with 128 bits single port inside FILTERS_SMACi block
is due to the fact that the zero count is done until 63 and, using an offset of
16 it was more affordable for the algorithm.

In Figure 4.6 the yellow region represents the weights positions in the (x,y)
coordinate, for example, in the third level of ResNet18; the arrows define the order
with which they are stored, from position (x,y,0) to position (x,y,127).
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Figure 4.6: SRAM weights organization

FILTERS_SMACi

In this block, there is the same structure that is on the right side in Figure 4.7,
but repeated 4 times (SRAM with shift registers). This because, leaving intact the
structure of the dense SMAC-Engine where there was 4 accumulators for 4 different
filters in each SMAC-block, this could be affordable while doing the calculation
for each of these filters.
There are 64 units of this structure as reported in Figure 4.3, and in each of them
the filters are organized in the following way:

• The filter number 1 in each FILTER_SMACi is the one that, from the SMAC
0 to the SMAC 63, represents the positions from (x, y, 0) to (x, y, 63);

• The filter number 1 in each FILTER_SMACi is the one that, from the SMAC
0 to the SMAC 63, represents the positions from (x, y, 64) to (x, y, 127);

• The filter number 1 in each FILTER_SMACi is the one that, from the SMAC
0 to the SMAC 63, represents the positions from (x, y, 128) to (x, y, 191);

• The filter number 1 in each FILTER_SMACi is the one that, from the SMAC
0 to the SMAC 63, represents the positions from (x, y, 192) alla (x, y, 255);
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Figure 4.7: Offset Calculation Block

4.1.3 SMAC-Engine
This hardware architecture employs the convolution operation by means of an
array of AND ports, accumulators and an adder to accomplish the Multiply and
Accumulate operations but considering a serial input and not a parallel one. In
this case, the parallelism considered for both activations and weights is 8 bits, and
these shift from the LSB to the MSB during the convolution operations.
Moreover, inside each AC block there is one or more accumulator registers in which
are accumulated the partial results of the multiply and accumulate operations. In
particular, in the AC2 and AC3 blocks there are four accumulator registers that
are used to save results from four different filters at a time. While in the first are
accumulated the partial results during the shifting of bits, in the second one are
accumulated the partial results coming from the entire convolution between 16
activations and 16 weights, among all bits. In AC1, instead, there is just one register
to hold the results from the multiplication bit by bit of weights and activations.
The neg_block, moreover, is used to change sign of the activations in output while
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at the output of the SMAC block there is a ReLU function handler in which a
mux decides by means of the MSB of the output activation if the result must be
clamped to zero.
Before the data is streamed off the SMAC block, a quantization is done in order to
have a precision on 8 bits.

4.1.4 Compression System
In the compression system reported in Figure 4.8 the main scope is to execute
the compression of all the output activations for the position (x,y) of the output
feature map, that in a ResNet18, for instance, could variate between 64 and 512.
The compression rules are described in Section 3.2.2, reporting also some examples.
Below, are defined the blocks that constitute this system.

INPUT DATA ACTIVATIONS

The input is obtained by means of a 64 to 1 multiplexer that, a number of time
equal to the number of filters used in each SMAC-block, are fetched from 0 to 63
coming with the order described in Section 4.1.2.

ZERO COMPARATOR

The zero comparator is used to detect null activations. This is important for the
recognition of zero sequences and, when the zero count comes to 63, it stops and
the value is compressed and shifted in the shift register. If the zeros are less than
63, and a new non-null activation comes into the system, the zero count stops and
data are shifted.

ACTIVATION WRITING

Here, some ports are used in order to obtain the signal that enable the writing of
the compressed data in the shift register. The system is reported in Figure 4.8,
and it could be noticed that the output data come into a series of multiplexer in
which the first defines which one of the output data from REG14 or REG14_1 can
pass, and the second one chooses between a zero or the data compressed. This is
due to the fact that sometimes the shifting of data can finish before the 16th shift
in the shift register, so it must be filled until the end of shifting with zeros in order
to send the values in the right positions that then will be written in the TCDM
memory. In fact, the fetching of data is done, further, in a sequential order and no
zero values that have not been involved in the compression should be present in
the middle of this sequence.
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Figure 4.8: Compression Unit

43



SMAC-Engine for Sparse CNNs

Figure 4.9: SMAC Block
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4.2 Control Unit
The Control Unit is made up of two main components, whose functions are properly
described below.

4.2.1 COUNTERS
The counters are involved in both the generation of signals for the evolution of
FSM through its states and for some selection signal inside the data path.

COUNTERS-SMAC

• FILTERS_COUNTER: this counter is used to select the internal accumu-
lator in both the AC2 and AC3 blocks. In this case, it is used to select the
proper accumulator register in each of the AC blocks. In case all the 4 filters
in each SMAC Block are needed, the maximum value is set to "4".

• CTRL_CNT_DONE_QUANT : this counter has to be programmed with
the amount of shifting necessary to perform quantization. The shifting amount
will vary depending on the number of operations done on a subset of 16
activations in the total volume of convolution.

• CTRL_CNT_RELU_MUX: this counter is used as selector for the output
activations that need to be clamped to zero with ReLU function. The value this
counter is programmed with can be shared with FILTERS_COUNTER,
since the number of filter groups to deal with will be coincident with the
number of selection signal values the multiplexer, before the ReLU block, is
expected to switch among.

• CTRL_CNT_IN_V OL: this counter controls how many convolution vol-
umes have been computed and counts them each time the compression of each
output position has been done, until the full convolution of the input volume
is obtained.

COUNTERS-DECOMPRESSOR

• FILTERS_COUNTER: here, this counter is used to select the right filter
between the 4 RAM-instances in each FILTERS_SMACi. It is important
both in the writing stage and in the reading stage. In the last one, it is used
for the choice of the input data from RAM banks as well as for the selection of
the right accumulator register, important during the convolution computation.
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• ADDRESS_GENERATOR: this is used to index the Memory bank while
writing and reading it. The MAX_VALUE_ADDRESS could differs, depend-
ing on the convolution layer. For example, in case of a filter of 3x3x64 the
maximum address in the RAM-Instances is 36.

• SEL_ACTIV ATIONS_COUNTER: this is used for the selection of the
right 14 bit word in input from the "mac-streamer" block, that has a bandwidth
of 224 bit, so the maximum value of the counter is MAX_VAL_SEL_ACT =
"63".

• COUNTER_SEL_FILTERS_IN : this counter is used to select the input
values of weights, 16 at each selection, with the right direction. So, they are
selected from 0 to 6. These are selected from the output of the block described
in Subsection 4.1.2.

• SHIFT_FILTERS_COUNT : this is used to count the shift of 28 weights
in the input shift registers at the input of the block described in Subsection
4.1.2.

COUNTERS-COMPRESSOR

• FILTERS_COUNTER : in the compressor block, this counter is useful
for the selection of the groups of activations at the output at the end of the
convolution algorithm for the 16 activations involved. So, the counter recounts
from 0 to 3, so MAX_FILTER_GROUP = "3".

• ACTIV ATION_Z_SELECTOR_COUNTER: this is used to select the
output activation related to the channel z, belonging to one of the filters
group.

• COUNTER_ZERO_SEQUENCES: this is used in order to count the
zeros inside each sequence related to the offset that defines the position of the
non-zero activations.

• COUNTER_SHIFTS_REGS_OUT : this counter counts how many times
a 14 bit word is written in the shift register until a 224 bit stream to send
off-chip is obtained. So, the maximum value is "16".

4.2.2 FSM Low-Level
The FSM Low-Level is organized in the following groups of states:

• Writing Weights States: these states are the ones in orange in Figure 4.10,
and are S0, S1, S2, S3, S4, S5, S6 and S7. Through these states the data of
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weights belonging to different filters and coming from the TCDM are written
in the local memory that is a collection of SRAM 32x128bits used as further
cache system in order to make the less possible accesses to the TCDM memory.

• Reading Weights and Activations States: these states, the blue ones in
Figure4.10, are involved in the reading step of both activations and weights,
where only activations are read by the TCDM.

• Computation States: the computation states are similar to the ones in the
previous work; the only things that are changed are the input signals used as
controls to let the machine evolve through all states.

• Compression States: these are reported in Figure 4.11, and are involved in
the last step related to the compression algorithm. It has been implemented as
the last group of states before defining if the operations with the convolution
volume or with the entire input data volume of that layer is finished.
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Figure 4.1048
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Figure 4.11
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Chapter 5

Integration on PULP
HWPE

5.1 PULPissimo system and HWPE
The design of the SMAC-Engine sparsity based is now integrated in a HWPE of a
PULP platform, whose IPs are available open source.
An introduction of the HWPE’s communication protocol with internal engine and
with PULP is given in the next Sections, together with an explanation of how the
integration with SMAC-Engine has been carried on.

5.1.1 The Hardware Processing Engine
The HWPEs have been developed as special-purpose and memory-coupled accelera-
tors that live within the PULP system realized by Zurich ETH and the University
of Bologna. This integration has the scope to increase the system performances
and energy efficiency.

In figure 5.1 is shown the structure of an HWPE accelerator. The interfaces
that made up this module are reported below:

1. a streamer interface, needed to interface the HWPE internal engine with the
Tightly Coupled Data Memory (TCDM), a 64 kB memory organized in eight
word-interleaved SRAM banks that is directly used by all the resources of the
cluster without the need of an external DMA;

2. a control/peripheral interface, used to program the HWPE by means of a
register file, a microcode processor and a control FSM. The peripheral interface
is used to program the control unit.
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Figure 5.1

3. an internal engine, where the data path lies.

In the following, some further details regarding each of these sub-modules will
be provided.

The streamer

The streamer is the module that carries the flow of data from or to the TCDM
memory, so flowing from a source to a sink direction. This stream is handled
by means of a protocol based on a two signal handshake and a data payload
transferring. The protocol consists of the following rules:

1. At the clock cycle when both valid and ready signals are at ’1’, it occurs the
handshake.

2. The data (multiple of 32 bits) and strb (indicating which of the bytes in the
data are considered valid) can change their values or when the valid signal is
deasserted or when, although the valid signal is at ’1’, the current cycle is the
one following the handshake occurrence.

3. In order to avoid any deadlock while changing their states, the valid and ready
signals are linked to each other in this way: while the assertion of valid doesn’t
depend on the state of ready, the assertion of ready depends in a combinatorial
way on valid state.

51



Integration on PULP HWPE

4. The deassertion of valid can occur only in the cycle after a valid handshake
occurs, in order to assure the correct consumption of valid data.

The interface between the HWPEs and the TCDM shared external memory is
based, instead, on a TCDM protocol that connects a master to a slave by means of
a request/grant handshake following the rules below:
1. At the clock cycle when both valid and ready signals are at ’1’, it occurs the

handshake for both read and write transactions.

2. An r_valid must be asserted the cycle after a valid read handshake, and the
r_data must be valid on this cycle. This is due to the tightly-coupled nature of
memories: if the memory cannot respond in one cycle, it must delay granting
the transaction.

3. While the assertion of req doesn’t depend on the state of gnt, the assertion of
gnt depends in a combinatorial way on the req state, always to avoid deadlock.

The control

The control module embeds three different sub-modules:
1. a control FSM, which will need to be designed from scratch as it will be

specific for the developed accelerator;

2. a memory-mapped register file implemented with latches to save area and
power, which includes two different set of registers:

• generic registers (or job-independent): these registers store parameters
that should not change during the execution of multiple jobs by the control
module;

• job − dependent registers: in these registers, parameters such as base
addresses for each type of data (input activations, filters, output activa-
tions), controls for the engine such us the maximum value for the counters
and so on are stored; their peculiarity, respect to the others, is that they
can change at every new job and even when the HWPE is executing its
tasks.

3. a microcode processor: the processor supports 2 different type of registers:

• four R/W registers
• twelve R/O to store parameters

The microcode task is defined by the hwpe− ctrl − ucocode, which implements
the updating of the offsets respect to the base address of the type of data currently
fetched from TCDM.
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The engine

The current design of the accelerator is capable of handling sparse data of feature
maps, and it has been properly integrated inside the PULP platform. In fact, it
accomplishes the handshake with the streamer respecting the right protocol, defined
in subsection 5.1.1. This system has been integrated inside HWPE by means of
RTL description modules that let the interface with PULP be compliant with the
bandwidth defined for the SMAC-Engine.

5.1.2 Integrating SMAC-Engine sparsity based in a HWPE
The repository in which are stored the developed SMAC-Engine rtl files with the
ones describing the integration with HWPE is the hwpe-mac-engine/rtl. The other
folders called hwpe-stream and hwpe-ctrl hold the files in which are described
the resources of the HWPE, and have been changed in order to be used for the
particular interface of the sparsity based SMAC-Engine.
In the following subsections, a detailed description about the RTL files and the
HWPE files changes is reported, respect to the dense architecture of SMAC-Engine.

mac_engine.sv

In this module, there is the definition of two ports on 224 bits:

• source port a_i;

• sink port d_o.

Two source ports that were present in the standard implementation of the
engine have been removed, and they were b_i and c_i. In the top view of the
SMAC-Engine data path integrated as engine in the HWPE, the ports linked to
the interface with streamer are the input_activations_filters_data on 224 bits
(bandwidth of PULP), the a_i.valid, associated to the core_n_stall signal in
SMAC-Engine, that assert the handshake with the TCDM memory when the data
are valid to be elaborated by the engine, and the maximum value for counters that
constitute the control unit of the SMAC-Engine and the parallelism of data of
activations and weights, that have been set both to 8 bits for the test. In order
to wake up the SMAC-Engine, the core_n_stall has been used. Other signals
coming from the low level control unit have been reported in the port assignment
and communicate with the high level finite state machine described in mac_fsm.sv.
The evolution of the FSM through its states is described further in this chapter.
Finally, two processes to generate the output valid signal as well as sample the
output data in an output register have been defined before connecting them to the
output data d_o.
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mac_streamer.sv

In this module, the first change compared to the provided example was to extend
the FIFO depth from 2 to 8, to better decouple the producer and the consumer
and reduce the probability stall occurrence.
Furthermore, the DATA_WIDTH of source and sink stream interfaces have been
extended from 128 bits (of the dense matrices based SMAC-Engine) to 224 bits
(being always a multiple of 32 bits), that is the bandwidth of the new SMAC-Engine.
Another change, compared to the previous work, was to extend the "virtual" number
of ports to the TCDM from eight to fourteen. These are considered virtual as it is
like instantiating fourteen ports, but only seven of these are physically there: all
these fourteen ports seems to be attached to the TCDM physically but they are not.
This is necessary to handle 224 bits stream at the input and at the output. Indeed,
a TCDM multiplexer can then be used to drive more input virtual TCDM channels
into a smaller set of master ports (seven). Hence, together with the definition
of a virtual_tcdm interface, a hwpe_stream_tcdm_mux has been allocated to
handle this.
After defining the virtual_tcdm interface, the corresponding streams TCDM ports
have been connected to the input of the multiplexer instantiated above and their
DATA_WIDTH again extended from 128 bits to 224 bits. The unnecessary sources
(b and c) have been removed from the multiplexer input. Finally, for both streams’
FIFOs i_a_fifo and i_d_fifo, the DATA_WIDTH has again been extended to 224
bits, the FIFO_DEPTH to 8 and the parameter LATCH_FIFO has been set to 0,
as the latter was not needed.

mac_package.sv

In this module, there is the definition of the typedef_structures defining blocks
of signals that are employed to make possible the communication between the
different resources of the HWPE, such as the engine, the streamer and the fsm.
However, other parameters have been defined here. First of all, the MAC_CNT_LEN
definition has been left unchanged, as this will be a parameter employed by the
mac_ctrl.sv module to define the dimension of the transaction size for both the
weights and output activations. The transaction size is a quantity that is sent
to the mac_fsm.sv and that helps this high-level FSM generating the correct
information for the address generators in the streamer in order to obtain the right
number of 224 bits words to be streamed.
The following parameters define the job-dependent register file addresses (or indexes
to their content) and have been changed to match the quantities needed by the
SMAC-Engine.

• MAC_REG_X_ADDR: this is the address to a register in the register file
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storing the base address for the input activations in the TCDM;

• MAC_REG_W_ADDR: this is the address to a register in the register file
storing the base address for the input weights in the TCDM ;

• MAC_REG_Y_ADDR: this is the address to a register in the register file
storing the base address for the output activations in the TCDM;

• MAC_REG_CNT_PROG1: this is the address to a register in the register
file with values like max_val_in_vol;

• MAC_REG_CNT_PROG2: this is the address to a register in the register
file with values like max_pos;

• MAC_REG_CNT1: at this address are stored some of the maximum values for
counters in the control unit, which aremax_act,max_zeros,max_groups_act,
max_shifts, max_addr;

• MAC_REG_CNT2: at this address are stored some of the maximum values
for counters in the control unit, which are max_shift_28we, max_sel_act,
max_sel_fil, max_sel_we_in, max_selxx.

mac_fsm.sv

The FSM high level has been implemented in order to handle the addressing of the
TCDM, whose content has been defined by means of the tb_dummy_memory.sv.
The addressing is divided into 3 steps:

1. firstly, the weights are fetched all together and stored in the local memory in
SMAC-Engine;

2. secondly, during the computation of the convolution algorithm are fetched
just the activations in input to the layer;

3. finally, during the compression of the results related to one output position,
the 224 bits stream are sent off-chip to the TCDM memory until all the
activations have been compressed.

Accordingly to this kind of algorithm, the "hwpe − ctrl − ucode.sv" has been
implemented in order to define the offset during the updating of the address,
distinguishing between input activations, output activations and weights.

In the following figure is reported the FSM high-level control flow.
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Figure 5.2: FSM High Level

mac_ctrl.sv

In this module, there is the integration of two blocks that are mac_fsm.sv and
hwpe_ctrl_ucode. The first one has been described in the previous subsection,
while the second one is the control related to the address generation, and it is used
to change offset during the updating of the addresses.
It consists of just 2 states, IDLE and OFF_WORKING, respectively setting the
default value at ’0’ for the offset registers related to the three types of data and
updating them while the mac_fsm evolves through its states.

mac_top.sv

The mac_top.sv module is the top view of streamer, engine and control modules.
These have been changed in their port declarations and the DATA_WIDTH has
been set to 224 bits instead of 128 like in the previous work. The "enable" signal
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has been set to ’1’, and any further adjustment occurred to this module.
Then, a module called mac_top_wrap.sv has been instantiated in order to be
put inside the test bench to perform the needed simulations. In this module the
interfaces protocols have been inserted.
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Chapter 6

Analysis Results

In this chapter it will be reported both the analysis of the logic behaviour and the
logic synthesis of the architecture under test. Respectively, the tools used in order
to get the aimed results are QuestaSim 10.6c and Synopsys Design Compiler.

6.1 QuestaSim Simulation Results
In this Section, the simulations done with QuestaSim10.6 are reported and explained.
In particular, from these simulations came out the proper functionality of each block
described in Chapter 4, associated with the current states of the low level FSM.
During the writing phase, data with a BW of 224 bits are fetched from TCDM with
the address generation explained in Chapter 4. Then, the algorithm with which
weights are aligned with the activations coming in input to the accelerator can be
accomplished together with the one that implements the convolution operation
between 16 activations and weights. At the end, the compression for the output
activations at the position (x,y) can be carried on, sending to TCDM a 224 bits
compressed activations data every time is required.

6.1.1 Testbench Results
WRITING PHASE

In this phase, the weights related to all the filters involved in the convolution layer
are saved on a system of SRAM memory banks in which each SRAM of 1024 kB
is instantiated for each filter. In Figure 6.1 is reported the stage in which a fetch
of 224 bits of weights, so 28 weights, has been done. Then, they are aligned by
means of a shift register with 4 registers with the subsequent data loaded on chip as
reported in Figure 6.3, saved in a 896 bit register and then in 7 registers containing
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16 weights each one. Then, in order to save them in the local SRAM banks, they
are selected 16 weights by 16 weights from 0 to 6, so with a bandwidth of 128 bits.

Figure 6.1: Weights fetching from TCDM

Figure 6.2: Weights loading in REGS_INPUT_SYSTEM
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Figure 6.3: Weights loading in the SRAM banks

READING PHASE

During the reading stage, a particular algorithm is implemented and this is well
reported in the analysis of Figure 6.4. As it is possible to notice, only one of the
bytes in the 128 bits data at the output of the SRAM memory is read. This is
controlled by an algorithm in which, by means of the sum between the number of
zeros in the sequence and the offset respect to the first Byte at each address, the
next weight position is detect for the next value of activation. Taking an example
from the simulation in 6.4, in green are highlited the values of zero count and of
the selection signal for the next weight position in a memory instantiation (one
filter). The first is 30, so being the first data fetched from the first byte position in
the address 0x0000 the value fetched after is at position 15 that is also the selection
of the multiplexer at the output of the RAM.
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Figure 6.4: Offset detection

In Figure 6.5 the reading phase is shown from the memory point of view, and
as reported here the read signal and the chip select assertion occurs in the clock
cycle before the assertion of the shift enable signal.

Figure 6.5: Reading of weights and alignment with activation values
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COMPUTATION PHASE

After the alignment of 16 or less activations and weights have been done, the
algorithm of convolution is accomplished, and its functionality is properly reported
in Figure 6.6. The structure of the previous SMAC-Engine for dense matrices
has been let unchanged, but the control signal for the evolution of states and the
control of the data path are generated in a different way, maintaining the same
flow of data and the same algorithm.

Figure 6.6: AC blocks

COMPRESSION PHASE

In the compression phase, data after the convolution of an entire convolution
volume are compressed and, in the meanwhile, sent to the TCDM with 224 bits
bandwidth. In Figure 6.4 is reported an example of how this compression operates.
In fact, looking at the values signed in yellow, the sequence of the decimal digits "1
0 0 0" has been compressed in the 14 bit word "00000001 000011".
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Figure 6.7: Compression

6.1.2 Testbench Setup
In order to obtain this analysis in QuestaSim 10.6c, the following steps have been
followed:

1. set the rtl folder and load all the description files of the current architecture
written in System Verilog;

2. set the ips folder and load all the description files of the hwpe-streamer,
hwpe-control and hwpe-engine written in System Verilog;

3. set the Makefile in order to generate the libraries related to hwpe-streamer,
hwpe-control, hwpe-engine and tech-cells-clock;

4. set the sim folder, go there and initialize the QuestaSim environment with
the following command:

source /software/scripts/init_questa10.6c

5. then, issue:

make clean lib build
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in order to execute the Makefile, which erases and recreates the libraries for
the simulation;

6. finally, launch the simulation:

vsim -novopt -t 1ps hwpe_mac_engine_lib.tb_acc_top -L hwpe_ctrl_lib -L
hwpe_stream_lib -L tech_cells_generic_lib

6.2 Synopsys Design Compiler logic synthesis

6.2.1 Synthesis setup
In order to perform the logic synthesis with the software Synopsys Design Compiler,
some adjustments have to be done. Since the technology used was the umc-65 nm
in worst case, in order to clock gating cells to be correctly instantiated, the latch
process in cluster_clock_gating.sv file has been substituted with the respective
cell provided by the library, named LAGCEPM12R and to which the corresponding
signals have been connected.
The next step was to change the adopted script_syn.tcl scripts onto which the
commands given to the software tool are gathered. First of all, due to the IPs
consisting in several files whose hierarchical dependence is not always straightfor-
ward, to the analyze command the autoread attribute with the corresponding path
containing the ips has been added. In addition, the recursive attribute has been
added when also the files in the sub-directories of the provided path needed to be
analyzed. An example of this kind of command is the following:

analyze -f sv -lib WORK autoread -recursive ../ips/hwpe-stream/rtl

Another important constraint to add to this script was the one related to the
latches with the commands:

set_multicycle_path 2 -setup -through [get_pins
i_mac_top/i_ctrl/i_slave/i_regfile/

i_regfile_latch/hwpe_ctrl_regfile_latch_i/MemContentxDP_reg*/Q]

set_multicycle_path 1 -hold -through [get_pins
i_mac_top/i_ctrl/i_slave/i_regfile/

i_regfile_latch/hwpe_ctrl_regfile_latch_i/MemContentxDP_reg*/Q]
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These commands have been employed to specify to the synthesis tool that the
employed latches will always work as registers, so they will never be transparent
on the same cycle when their value changes.
Finally, to the compile_ultra command, the following attributes have been added:

compile_ultra -timing -gate_clock -no_autoungroup

to specify the software to use the clock gating cells and to not perform auto
ungrouping. For further insights on the employed script it is suggested to check
the provided script_syn.tcl script file.
As a side note, even though it has not been specifically employed for this last
synthesis, the area and frequency values reported in the area comparison in chapter
4 have been gathered after writing a simple bash script, named auto_syn_script,
able to iteratively perform the synthesis for a particular configuration, starting
from a very relaxed time constraint, 10 ns, and then proceeding downwards in steps
of 0.1 ns until the timing closure is violated. The violation triggers the stop of the
script execution and provides the final text files onto which the respective area and
timing values are reported.
For the logic synthesis of this system the following steps have been followed:

1. create the SYKA65_32X128X1CM2_tt1p2v25c.db for the library definition
of the SRAM with 512 kB;

2. create the .synopsys_dc.setup file, which search for the file.db in order to take
the synthesis components from the right libraries;

3. set the syn folder, go there and initialize the Synopsys environment issuing
the following command:

source /software/scripts/init_synopsys

4. issue the command to launch the logic synthesis:

dc_shell-xg-t -f script_syn.tcl |tee out.log

6.2.2 Synthesis Results
The results of timing and area are the ones reported below:

• Area = 4342765,509191 µm2;

• Tck= 1.6 ns;

65



Analysis Results

The throughput of the system is considered looking at the number of cycles
involved in the algorithm for the third layer of ResNet 18 with convolution volumes
of 3 x 3 x 128 for 256 filters:

#MACs

cycles
= 1

2 · 3 · 3 · 128 · 256
16044 = 9.19MACs/cycle (6.1)

# MACs

cycles · Tclk

= 5.7GMAC/s (6.2)

These values have been obtained considering only reading, computation and
compression phases involved in sparsity based convolution operations of a single
volume of convolution.
An other fact to higlight is that, considering the fetching phase from the internal
memory during convolution instead of the TCDM, the number of accesses to the
last one memory is reduced from 1032192 cycles to 10532 cycles, as reported in
chapter 3.
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Chapter 7

Conclusions and future
improvements

In this thesis work the convolution algorithm has been considered looking at the
sparsity of data, and the results are different from those of an architecture in which
dense matrices are involved. In fact, in the previous SMAC-Engine the result
in terms of throughput was around 7.79 GMACs/s, but here the value has been
reduced to 5.7 GMACs/s. Moreover, the area obtained of 4.34 mm2, higher than
the one for the system with dense data on 0.29 mm2, is something expected while
considering the algorithm of sparsity handling. However, the main aim in this work
was to obtain a further reduction in terms of power consumption and reduction of
the number of operations in which negligible values (zeros) would not contribute
in the final result of convolution. Moreover, the fact that the fetching operations
from memory have been reduced is good both for activations and, relatively, for
weights. The choice of instantiating a 512 kB local memory to store weights before
the convolution operation was related to the scope of reducing accesses to TCDM
in which we exploit just one port with a bandwidth of 224 bits. So, over all the
input convolution volumes it would be very high consuming to fetch data from
TCDM. While with this structure it is possible a parallel fetching of 256 x 8 bit
words. Finally, it is noticeable that the sparsity contribution is considered just
during the reading of the internal memory when data are read in parallel over 256
filters and then dispatched to the SMAC-Engine.
The structure considered has been employed in order to test the algorithm of
compression and the decoding of the compressed data, which reduce the memory
capacity so lowering the power consumption. But in a future work, the idea was
to obtain a structure in which the SMAC-Engine data path is doubled and there
is the possibility to accomplish convolution over all the layers in a Convolutional
Neural Network. The Neural Networks considered were ResNet 18, so dimensions
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considered in the example tested are the same of the third layer of this Neural
Network, but typically the dimensions of a Neural Network could reach 512 filters,
so here comes the need in doubling the structure of SMAC data path, in which the
activations shared are the same for all the filter weights stored in SRAM banks,
which will be doubled too. Another improvement to do is to make this structure
flexible for all the parallelism of weights (4 bits, 8 bits) and activations (4 bits, 6
bits, 8 bits) possible. This could be done yet in this structure, considering weights
also on 4 bits; so, instead of fetching just 28 weights each time it could be considered
56 number of weights. But, at the moment, with the bandwidth used no more
possibilities to make flexible this structure are available and the parallelism used is
8 bits for both data types.
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