Bias mitigation for automated decision-making systems

Alice Morano
Supervised by Dr. Antonio Vetrò
Co-supervised by Elena Beretta

Department of Control and Computer Engineering
Computer Science
Polytechnic University of Turin

December 2020
Summary

The increasingly widespread availability and use of digital data - including personal data or relating to sensitive information - has inevitably contributed to the development of automated decision systems, such as ranking systems, recommendations systems, matching systems etc. The application of AI and ML brings definitely many advantages, particularly due to simplification and speeding-up of human complex tasks. Nonetheless, it should not be overlooked the fact that these systems lead as well to a wide range of critical aspects, such as data availability, data quality and features selection: indeed, the outcomes of ML algorithms will surely reflects the input. Hence, that is why data preparation is a crucial factor for an automated model building process and it requires relevant amount of time and resources.

Previous research has made progress in identifying various types of bias that can lead to discrimination in machine learning. Bias are data imbalance, which may enclose cultural/historical stereotypes, sampling or collecting issues, inaccurate labeling etc. Namely sources of possible harmful information, that will be encoded by learning algorithms in the same way they gain and use helpful insights. Historical or cultural prejudices against some social groups are the kind of noxious information that we would not embed in automated processes, but at the same time we cannot help it, since they are inner part of data. For this reason and for the fact that nowadays ML and AI pervades many aspects of our society, it has been promoted the integration of ethical principles in the implementation of automated decision systems that may affect people's lives.

The contribution of our research to the delicate subject of fairness in ML lies in having structured an introductory synthesis of the principles of fairness, of bias types and tools needed to reduce discrimination in the use of data within these systems. Then we performed experiments on two known datasets in the ML fairness field: the COMPAS dataset (for criminal recidivism score attribution) and a dataset with information related to drug consumption. Based on these data, we focused on the study of the fairness metrics and how we could improve fairness by means of data balancing, which can be considered a bias mitigation technique. Our results confirm the findings of previous research and highlight a possible process to maximize fairness, or at least to direct towards the choice of the most suitable metric for the evaluation of fairness in these two specific cases. The approach of bias mitigation acts as countermeasure for social inequalities, addressing to a less discriminatory outcome.

Last but not least, this research also aims to achieve a noble goal, specifically to advocate for the moral integrity of every person of science, who must bear in mind to have powerful tools to deal with, which could both build defenses and destroy as weapons, even when these are intangible.
Contents

1 Introduction 1
 1.1 Motivation 1
 1.2 Aims and Objectives 2

2 Background & Literature Overview 3
 2.1 Fairness in Machine Learning 3
 2.1.1 Sensitive data 4
 2.1.2 Similarity-base measures 6
 2.1.3 Causal reasoning 6
 2.1.4 Preference-base measures 7
 2.2 Social discrimination in the digital context 8
 2.2.1 Automated Decision-making Systems (ADS or ADM) 9
 2.2.2 Examples 10

3 Bias & Fairness 15
 3.1 Bias taxonomy - past research 16
 3.1.1 A Framework for Understanding Unintended Consequences of Machine Learning [49] 16
 3.1.3 Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries [46] 18
 3.1.4 Search Bias, Language Bias and Genetic Programming [54] 20
 3.1.5 Bias amplification in Artificial intelligent systems [42] 21

4 Methodology background 23
 4.1 Metrics 23
 4.1.1 Diversity 23
 4.2 Fairness 24
Contents

4.2.1 Fairness - R library .. 24
4.2.2 Statistical metrics .. 24
4.2.3 Fairness metrics ... 26
4.2.4 Fairness criteria ... 31
4.3 Bias mitigation techniques ... 35
4.3.1 Pre-processing ... 36

5 Case studies ... 39
5.1 Datasets .. 39
5.1.1 COMPAS ... 39
5.1.2 Drugs .. 59

6 Conclusions ... 69
6.1 Achieved Aims and Objectives 69
6.2 Critique and Limitations ... 69
6.3 Future Work ... 70

Appendix A R code .. 71

Appendix B Data files .. 153

References .. 157
List of Figures

4.1 SMOTE visualisation - extract from [30] 37
5.1 COMPAS categorical variables distributions 43
5.2 IMAGE RECIDIVISM ON DIFFERENT COMBINATIONS 44
5.3 COMPAS Pearson's Chi-square test 45
5.4 COMPAS sensitivity and specificity curves 46
5.5 COMPAS linear regression confusion matrix 46
5.6 COMPAS predicted probabilities' densities 47
5.7 COMPAS fairness metrics Age ... 48
5.8 COMPAS fairness metrics ethnicity 49
5.9 COMPAS fairness metrics Female 50
5.10 Fairness metric values of ethnicity compared to: (a) Female and (b) Age 51
5.11 Shannon index comparison between original dataset and balances datasets 54
5.12 COMPAS fairness metric comparison between balanced datasets and original data . 56
5.13 COMPAS fairness metric comparison between: (a) balanced_data2-balanced_data4 and (b) balanced_data6-balanced_data7 ... 57
5.14 Mean deviations from complete fairness, for each fairness metric, for balanced classified datasets and original classified dataset 58
5.15 Drug dataset categorical variable distributions 60
5.16 % of coke consumption on: (a) total and (b) each sensitive attribute combination .. 62
5.17 % of crack consumption on: (a) total and (b) each sensitive attribute combination 62
5.18 Drug dataset Pearson's Chi-square test for Coke 62
5.19 Drug dataset Pearson's Chi-square test for Crack 62
5.20 Drug dataset Coke classification confusion matrix 63
5.21 Drug dataset Crack classification confusion matrix 63
5.22 Drug dataset Coke density probabilities 65
5.23 Drug dataset Coke fairness metrics comparisons between Ethnicity VS (a) Age and (b) Gender .. 65
5.24 Drug dataset Crack fairness metrics comparisons between Ethnicity VS (a) Age and (b) Gender. ... 65
5.25 Mean deviations from complete fairness, for each fairness metric in Coke case, for balanced classified datasets and original classified datasets 67
5.26 Mean deviations from complete fairness, for each fairness metric in Crack case, for balanced classified datasets and original classified datasets 68
List of Tables

2.1 Overview of fairness definitions, adapted from [51] and [23]. Yellow color stands for independence; pink color for sufficiency; green color for separation. Darkest colors for equivalence; lightest colors for relaxed version. See chapter 4 for details. 5
2.2 Table of possible discrimination grounds. ... 11
3.1 Simpson's paradox example - extract from [11] .. 18
5.1 COMPAS dataset first rows .. 41
5.2 COMPAS dataset Yes_recidivism frequent combinations (first rows) 42
5.3 COMPAS dataset No_recidivism frequent combinations (first rows) 42
5.4 COMPAS ethnicity VS Female fairness metrics mean signed deviations (% values) 51
5.5 COMPAS ethnicity VS Age fairness metrics mean signed deviations (% values) 51
5.6 Drug dataset first rows .. 61
1.1 | Motivation

In the era of big data, it is vitally important to take into consideration the social implications of the scientific research. The idea behind good science is the more discoveries made and more research done, the closer we will be to healing ourselves and the world. Hence, sometimes we are all so smitten by reaching results that we overlook the fact that progress could have consequences on the social sphere. In particular, it happens when science and technology deal with human sensitive data.

It is a fact that we live in a world of pervasive technology and we score a goal when we manage to replace human wearing efforts by automating tasks. However, the results of Artificial Intelligence and Machine Learning can bring us on the one hand to easier solutions, but on the other, to possible unequal conditions.

There are several well known cases - that became real scandals - of the combined use of data and technology, such as the Cambridge Analytica case in early 2018, for political advertising purposes [4]. Or the COMPAS software [5], used as a decision support tool by U.S. courts to determine criminal recidivism. Or again, the AI Amazon recruiting tool, biased against women [45].

In some cases, the outcomes were not intentionally discriminating categories of people, but they did, due to either data feedback loops or initial databases that reflected inner social prejudices.

Hence, when it comes to human factor, it is important to face the ethics implications of data analysis.

How we should implement algorithms for automated decisions or machine learning? Which data and which types of data should we take into account? Sometimes the legal, regulated aspects give us the answers (e.g. GDPR for data privacy), but in other circumstances, scientists should play a leading role in proper data usage and algorithms implementation, by using common sense.
We might think not to have any responsibility and treat data in the same way we treat any other bare ingredient of our work, as big black boxes, but this should not be the right approach towards sensitive data. What motivated us the most, is in fact the awareness that data are not only the “oil of the 21st century” [31], but also the identity of billions of human beings, on which we cannot speculate.

1.2 | Aims and Objectives

The aim of this thesis is to research cases of possible social inequalities, arose due to data usage in web platforms.
The objective is to give examples of bad data usage, in order to find some guidelines for avoiding indirect use of sensitive information in algorithms.
2.1 | Fairness in Machine Learning

Nowadays, artificial intelligence is getting more and more involved in fields that uses sensitive data, such as health care, hiring criminal justice, hence there has been a wider focus on the connections of bias and unfairness embedded in it. Some people may claim that using artificial intelligence for decision-making could get choices fairer, but this is a wrong assumption: indeed using massive data in automated systems has a double-edge. It may avoid procedural mistakes, but it reflects and amplify as well societal bias embedded in training datasets. In addiction, it has to take into consideration the human decisions made during the machine learning development process, and the complex feedback loops that arise when a machine learning model is used in a real context.

Fairness is an articulated concept that depends on social context, legal aspects, different stakeholders, thus culture. It is impossible to determine a single and unique definition of fairness and it is difficult to formalize and quantify fairness principles mathematically. Nevertheless table 2.1 summarize 13 statistical measures for fairness, other formal definitions and 2 possible other context for fairness research (rows 23 and 24), which focus on different aspects of fairness and can produce entirely different outcomes. [44] proposes another classification of these fairness policies into:

- **Group fairness**: similar predictions within different groups.
- **Individual fairness**: similar predictions to similar individuals.
- **Subgroup fairness**: obtain the optimal trade-off between best properties of the group and individual notions of fairness. It selects a group fairness constraint like true positive rate parity and asks whether this constraint holds over a large collection of subgroups.

We will treat more in detail and technically some of these fairness definitions (statistical measures) in 4, while other main fairness concepts (similarity-base measures and causal reasoning)
are explained in the current chapter.

In Machine Learning, there are three main ways to improve fairness, as described in [55]: the first one examines methods to improve fairness by **optimizing algorithms**, at different phases of machine learning pipeline; the second one is about using **interactive systems**, such as HypDB (understand causality and the Simpson paradox) or Northstar, or AnchorViz (for interactive visualization, advanced analytics, classification etc. without the need for technical tasks); the third one involves **hybrid automatic and interactive systems**, such as IBM AI Fairness 360 or Google’s What-If tool. In the latter case though, certain mechanisms implies assumptions that may not be appropriate in all data and model contexts. However, tools such as IBM AI Fairness 360 benefits from an open source library that can be used an customized for many different purposes.

2.1.1 | Sensitive data

The General Data Protection Regulation (GDPR) [1] is a regulation in EU law on data protection and privacy in the European Union (EU) and the European Economic Area (EEA), adopted on 14 April 2016, become enforceable on 25 May 2018.

The need of having a unified regulation for sensitive data in Europe takes its origin from the massive usage and request of personal or identifying data in online platforms. These data are commonly treated then with machine learning, artificial intelligence or big data tools.

A common sense is to quantify fairness via an associative relationship between the sensitive attributes and the outcomes of a classifier/predictor. For instance, in the United States, the Equal Employment Opportunity Commission defined the **four-fifths rule** [3] as a guideline (a good practice, not a legal definition) for comparing predicted positive outcome rates based on sensitive features (e.g. total number of hired people in a protected group, over total number of hired).

In GDPR we have a distinction between personal data and personal sensitive data. The first term is defined in Art. 4 and includes any information related to an identified or identifiable natural person, by means of which they can be directly or indirectly identified (name, identification number, location data, address, credit card, telephone number...). Sensitive personal data are instead defined in Art. 9 and they include genetic, biometric and health data, as well as personal data revealing racial and ethnic origin, political opinions, religious or ideological convictions or trade union membership. This kind of data are subject to higher level of protection.

In particular, according to the Italian privacy code [2], a narrow and closed list of data types was considered sensitive data:

- racial and ethnic origin
- religious, philosophical or other beliefs
Table 2.1: Overview of fairness definitions, adapted from [51] and [23]. Yellow color stands for independence; pink color for sufficiency; green color for separation. Darkest colors for equivalence; lightest colors for relaxed version. See chapter 4 for details.

<table>
<thead>
<tr>
<th></th>
<th>Fairness Measures</th>
<th>Based on Predicted Outcome</th>
<th>Statistical Measures</th>
<th>Similarity-base measures</th>
<th>Causal Reasoning</th>
<th>Preference-base measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group fairness / Statistical parity / Equal acceptance rate / Benchmarking / Demographic parity</td>
<td>Based on predicted outcome</td>
<td>Statistical measures</td>
<td>Individual fairness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Conditional statistical parity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Predictive parity / Outcome test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>False positive error rate balance / Predictive equality</td>
<td>Based on predicted and actual outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>False negative error rate balance / Equal opportunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Equalized odds / Conditional procedure / Accuracy equality / Disparate mistreatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Conditional use accuracy equality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Overall accuracy equality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Treatment equality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Test-fairness / Calibration / Matching conditional frequencies</td>
<td>Based on predicted probabilities and actual outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Balance for positive class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Balance for negative class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Well-calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Casual discrimination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fairness through unawareness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fairness through awareness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Counterfactual fairness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>No unresolved discrimination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>No proxy discrimination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fair Inference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Preferred impact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Preferred treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Equality of resources ↔ equity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Equality of capability of functioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2. Background & Literature Overview

2.1. Fairness in Machine Learning

- political opinions
- membership of parties, trade unions, associations or organizations of a religious, philosophical, political or trade union nature
- the state of health and sexual life

For example, it has been clarified that social status, social benefits received, educational qualifications, training and work experience, the debtor’s solvency, income received or assets owned are not included in the strict treatment reserved for sensitive data (but they are still protected by the privacy law).

2.1.2 | Similarity-base measures

On the account of table 2.1, we define the following similarity-base measures:

- **Causal discrimination**: a classifier satisfies this definition if it produces the same classification for any two individual with the exact same set of attributes.

- **Fairness through unawareness**: a classifier is said to achieve fairness through unawareness if sensitive attributes are not explicitly used in the prediction process. Satisfying this principle is not sufficient to avoid discrimination if other connected data are available, for instance in [20] is shown an heuristic method to retrieve ethnicity attribute given surname and geolocation.

- **Fairness through awareness**: a classifier satisfy this definition if it relies on the principle that similar subjects should have similar classification. In particular, the similarity is defined by a distance metric: for a set of subjects V, a distance metric between applicants $d_1 : V \times V \rightarrow \mathbb{R}$. We can formalize the awareness guideline by using the *Lipschitz condition* on the classifier, as in [18]: if we consider a classifier as a mapping from subjects to distributions D over outcomes with its own metric $d_2 : D \times D \rightarrow \mathbb{R}$, the *Lipschitz condition* requires that for any two individuals x, y that are at distance $d_1(x, y) \in [0, 1]$ mapped to distributions $D(x)$ and $D(y)$, respectively, holds the inequality $d_2(D(x), D(y)) \leq K \cdot d_1(x, y)$, for a certain constant value K. In other words, the distributions over outcomes observed by x and y are indistinguishable up to their respective space distances d_1 and d_2.

2.1.3 | Causal reasoning

Causal reasoning is the process of research for causality that leads to an effect. This process has a leading role in discrimination avoidance, because it covers all the non-observational fairness concepts (i.e. the ones that do not depend only on the joint distribution of predictor, protected attribute, features and outcome, as defined in [38]), which can allow us to resolve
fairness conclusively, overcoming the inherent limitations of observational criteria. However, some researches proved that counterfactual reasoning may generate hindsight bias and outcome bias \[8\], \[48\]. On the account of table 2.1, we define the following causal reasoning principles:

- **Counterfactual fairness**: this concept is strictly bounded to individual fairness, because it requires modeling counterfactuals on an individual level (e.g. answer to questions such as “What would have happened to me, if I had belonged to another subgroup?”). The formal definition of a counterfactually fair classifier is the following (adapted from \[39\]):

 The classifier \(C \) is **counterfactually fair** if under any context attribute \(X = x \), sensitive attribute \(A = a \) and actual outcome \(Y = y \)

 \[
 P(C_A = a = y | X = x, A = a) = P(C_A = a' = y | X = x, A = a) \quad \forall y \in Y \text{ and } a' \neq a \in A.
 \]

 where the \(C_A = a \) has to be interpreted as the outcome of the classifier \(C \) if \(A \) had taken value \(a \).

- **No unresolved discrimination**: it means avoiding discriminatory influences between variables and sensitive attributes. A **resolving variable** is a variable influenced by the sensitive attribute, in a manner that we accept as non-discriminatory. This implies that in a causal graph, any variable directly connected to the sensitive attribute should be non-resolving and any other variable should only be indirectly connected to the sensitive attribute by non-resolving variables.

- **No proxy discrimination**: it means avoiding proxy variables interference between possible sensitive attribute and predicted outcome connections. A **proxy variable** is a variable whose value can be used to derive a value of another variable. If there is no a direct connection between a proxy to a feature, unawareness can avoid proxy discrimination.

- **Fair inference**: it means avoiding illegitimate paths between sensitive attribute and predicted outcome. An **illegitimate path** is a connection between sensitive attribute and predicted outcome through another variable, that does not make a logic sense.

2.1.4 Preference-base measures

In \[6\] are defined two distinct notions concerning unfairness in a decision-making process: **disparate treatment** if the decisions are somehow based on the individual’s sensitive attributes and **disparate impact** if the decision process outcomes unequally treat people with certain sensitive attribute values. Hence, we introduce preference-base measures as a relaxation of
two statistical measures: preferred treatment is the relaxed version for treatment equality and preferred impact is a relaxed version for demographic parity (or better, proportional parity). Accordingly to [56], if we denotes with B_a as the fraction of benefits received by users sharing a certain value of the sensitive attribute $a \in A$, then we can define classifiers that satisfy these two fairness concepts as follow:

- **Preferred treatment**: a classifier C offers preferred treatment when $B_a(C_a) \geq B_a(C_{a'})$, $\forall a, a' \in A$. This means that the preferred condition is preserved if each group gets more benefits from its own group-conditional classifier than any other classifier. In this way no group members would feel treated better by switching their group membership. Note that, if a classifier C does not make group-base distinctions (i.e. $C_z = C, \forall a \in A$), as a group-conditional classifiers does, it by default satisfies preferred treatment.

- **Preferred impact**: a classifier C offers preferred impact over a classifier C' if it achieves higher group benefit for each sensitive attribute subgroup, namely $B_a(C) \geq B_a(C')$, $\forall a \in A$.

2.2 | Social discrimination in the digital context

How is it possible to have social discrimination in a digital context? It is a fact that when we use personal and sensitive data we may incur in discrimination. In particular, this issue occurs when data are mined and then processed by algorithms, which should relieve and speed up the manual human workload, as for artificial intelligence and, to be more specific, machine learning. In [7] Barocas and Selbst lists five mechanisms by which data mining may lead to disproportional outcomes; the sixth one is a human factor; the seventh one is a type that does not exclude the co-occurrence of the others:

1. Defining target variable, class labels and a model: indeed some of them could have a greater or lesser adverse impact on unprivileged groups. For instance, if we choose "arrive at work on time" as a label to predict if my employees are good, then people in disadvantaged economic conditions might be mistreated because they have to take public transports if they cannot afford a car. Besides, functional misspecification, such as choosing a linear model on a variable that depends quadratically on the inputs, could infer discrimination on the whole process.

2. Labelling examples for the training data: when data are labelled (as for spam emails identification), the labels might be given on a biased base or, if they are given manually, humans can make mistakes that can lead to deviated predictions.

3. Collecting training data: if we train our model on biased dataset, namely if we collected and used biased data, we may learn from a bias sample and reproduce the bias.
4. Feature selection: when we process data in AI, we have to make decisions about which attributes observe and involve in our analyses. This may have consequences on the protected groups if they are not well represented in the selected features.

5. Proxies: this is equivalent to the proxy discrimination in case of proxy variables, already described in this chapter.

6. Intentional discrimination: in some cases, it may happen that discrimination takes its origins from a malicious intent by the AI developers and this is not an aspect to be overlooked. For instance, if an organization wants to discriminate against pregnant women, it is pretty accurate a prediction of pregnancy based on women shopping purchases.

7. Feedback loops: a possible cause of unfair predictions, generated by the outcomes of a system, used again as inputs. If the first outputs are biased due to an algorithm systematic error or to one of the previous discrimination causes, then the second outputs will be biased at a higher rate. This cycle could be performed several times and increase exponentially the discrimination.

In [36], Kamiran et al. formalize a model of discrimination in decision making. We adapted it by using the same notation as in 4.2.2.

Kamiran claims that a classifier consists of three main parts:

1. A score function $r = R(X)$, where X does not include the sensitive attribute.

2. A discrimination bias function:

$$B(A) = \begin{cases}
 b & A = \text{privileged} \\
 -b & A = \text{unprivileged}
\end{cases}$$

3. The final decision function $Y = C(R(X) + B(A))$.

Therefore, the final score to which we submit the classifier will be $r^* = r \pm b$ and the final decision will be given by $C(r^*)$. The classifier C has to define a decision acceptance threshold θ and accept individuals for which $r^* \geq \theta$.

This discrimination model has a serious implications: the bias is more likely to affect subjects that are already close to the decision threshold by their individual score r. Then, if an subject is far from the decision boundary, it may lead to deceptive conclusions, because adding or subtracting the discriminatory bias b will not change the final decision.

We will focus on bias in the next chapter.

2.2.1 | Automated Decision-making Systems (ADS or ADM)

Many companies have sought to automate their processes to achieve greater responsiveness and lower costs. Anyway, processes that involve high-level decision-making are usually left
to managers who make decisions based on the interpretation of the data itself. They are procedures in which initial decisions (in whole or in part) are delegated to a person or corporate organization, then they would use automatically enforced decision-making models to perform an action. The aim of ADS is to minimize human intervention in ongoing decision-making. Their aim is to sense situations, use codified knowledge, and react properly in the presence of people. Existing systems are derived from both artificial intelligence and decision-support tools, where they often involve both business rule processing and statistical analysis or algorithms. The Automated decision making systems are mainly used in business analytics and informatics to make decisions, such as:

- Recommending a decision to the ultimate decision maker responsible.
- Guiding a user through facts, legislation, policy etc.
- Supporting decision systems, providing useful information for the ultimate decision maker, on the whole decision process.
- Providing preliminary assessment for individuals, as a self-assessment tool.
- Entirely substituting a decision process, by fully automatizing it.

The last case is, by far, the most critical one: decision making by machines can lead to discrimination of certain groups of people or negatively impact the consumer market by triggering lock-in effects. A major challenge is indeed how to protect people’s rights, especially with regard to data protection, and whether existing specific protection rules for the ones who use the ADS. Lastly, it should be discussed who is responsible if something does not work (algorithmic accountability) and who has the responsibility for supervising those who create and implement the algorithms (ADS auditing and control).

2.2.2 | Examples

The following table 2.2 summarizes cases of possible discrimination, related to direct or indirect use of sensitive data. For each ground, are listed known studies regarding cases of discrimination that actually happened and a brief description of them.
Table 2.2: Table of possible discrimination grounds.

<table>
<thead>
<tr>
<th>Ground</th>
<th>Type of discrimination</th>
<th>Description</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search engines</td>
<td>Political orientation</td>
<td>A study on 4,556 undecided voters with different demographic characteristics in United States and India. It demonstrates that biased search rankings can shift the voting preferences of undecided voters by 20% or more.</td>
<td>[21]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gender unequal distribution in photos retrieved by Bing for the query "person" and for queries based on 68 character traits (e.g., "intelligent person") in four regional markets.</td>
<td>[47]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A research that shows that cultural stereotyped biases from textual data propagate to artificial intelligence (AI) technologies in widespread use.</td>
<td>[12]</td>
</tr>
<tr>
<td>Freelance marketplaces</td>
<td>Gender and Race</td>
<td>Gender and race are significantly correlated with worker evaluations on TaskRabbit and Fiverr. This study is on 13,500 worker profiles: It gathers information about workers’ gender, race, customer reviews, ratings, and positions in search rankings.</td>
<td>[26]</td>
</tr>
</tbody>
</table>
Table 2.2 – continued from previous page

<table>
<thead>
<tr>
<th>Ground</th>
<th>Type of discrimination</th>
<th>Description</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resume search engines</td>
<td>Gender</td>
<td>Indeed, Monster, and CareerBuilder are tools that allow recruiters to proactively search for candidates based on keywords and filters. This study shows gender indirect discrimination that leads to disadvantage rankings for some candidates.</td>
<td>[14]</td>
</tr>
<tr>
<td>Ad delivery systems</td>
<td>Race</td>
<td>This study concerns the problem of raising questions as to whether Google's advertising technology exposes racial bias in society and how ad and search technology can develop to assure racial fairness.</td>
<td>[50]</td>
</tr>
<tr>
<td>Intimate platforms</td>
<td>Sexual orientation</td>
<td>Despite the fact that that romantic and sexual choices are understood as intensely personal, this article aims to analyse if intimate platform designers (such as Tinder, OkCupid or Grindr) can help alter troubling patterns of social interaction, without unduly interfering with individual intimate choices.</td>
<td>[32]</td>
</tr>
</tbody>
</table>

Continued on next page
Table 2.2 – continued from previous page

<table>
<thead>
<tr>
<th>Ground</th>
<th>Type of discrimination</th>
<th>Description</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social networks</td>
<td>Race</td>
<td>Twitter’s automatic cropping tool algorithm appeared to be systematically favoring white faces. There have not been conducted formal studies yet about this issue, but Twitter company declared to have checked the absence of algorithmic biases before using the tool. This discovery was made fortuitously by Twitter users.</td>
<td>[29]</td>
</tr>
<tr>
<td>Language translation tools</td>
<td>Race</td>
<td>This simple experiment is based on translating 11 occupation titles from one gender-inflected language to another, taking into consideration German, Italian, Polish, Spanish and French. It shows that Google Translate systematically changes the gender of translations when they do not fit with stereotypes, especially when it comes to single-words translations, not placed in a context.</td>
<td>[37]</td>
</tr>
</tbody>
</table>
In chapter 2 we introduced the bias function to depict how bias can affect discrimination in a decision-making process. The bias function is a formal concept that we find in every estimator or decision rule and it is an objective property of the estimator. However, there is a distinction between the statistical formalization of bias and bias that we find for decision systems. We could deeply analyse bias in the statistical sphere, but this is not the aim of our research: we will limited the mention of the statistical bias to show how it is related to the decision process in machine learning.

As written in [17], “The bias of a learning algorithm - if it can be formulated explicitly - provides a specification for the desired behavior of the algorithm and clarifies the design and implementation of machine learning algorithms. [...] The bias of a learning algorithm is the persistent or systematic error that the learning algorithm is expected to make when trained on training sets”. In [24] is demonstrated that, given a learning algorithm L, its average error at a point x on a sample of size m is equal to the squared statistical bias plus the variance:

$$\text{Error}(L, m, x) = \text{Bias}(L, m, x)^2 + \text{Variance}(L, m, x)$$

Therefore, a bias in a learning algorithm is an error and the objective should be to reduce it as much as possible. In the same paper, Dietterich an Kong distinguish between two types of ML algorithm bias:

- **Absolute bias**: an assumption by the learning algorithm that the target function to be learned is definitely a member of some designated set of functions (such as the set of linear discriminate functions or the set of boolean conjunctions).

- **Relative bias**: an assumption that the function to learned is more likely to be from one set of functions than from another (e.g. the decision tree algorithms consider small trees before larger ones).

There is a relationship between ML absolute-relative bias and statistical bias: if the relative bias is strong, then the algorithm will have low variance; on the opposite, if it is weak, the
algorithm will have high variance. If the absolute bias is inappropriate (it does not contain any good approximations to the target function), the algorithm will have high statistical bias. However, we cannot properly analyse discrimination and fairness in ML by focusing on statistical bias or algorithmic ML bias: even though they might have an impact on sensitive data and personal information, usually they are not the main cause of discrimination, then we have to move further, on other more specific biases that we find in previous ML fairness studies.

In this chapter, we will analyse where and when errors and bias can occur during a decision process in machine learning. We will research for the causes and we will try to give a schematic taxonomy of the types of bias we may encounter in our following experiments, based on past research.

3.1 | Bias taxonomy - past research

3.1.1 | A Framework for Understanding Unintended Consequences of Machine Learning [49]

In this paper are described 6 sources of bias that may be incurred at different steps of the ML process:

1. **Historical bias**: when there is a misalignment between real world expectations and model outcomes. It requires understanding and studying the application and generation of data over time. Even if we have perfectly-measured features, they might still reflect historical factors, for instance conditions that we find only in poorer neighborhoods. Accordingly to this, we can even reflect the world perfectly, but still inflict harm on a population.

2. **Representation bias**: when defining and sampling a population still under development, then certain part of the input space are underrepresented and others are overrepresented. This bias may be due to two main reasons: (1) the sampling methods reach only a part of the population and (2) the target population has changed or is anyway different from the original training population.

3. **Measurement bias**: when measuring features and labels in a prediction problem, we add random noise. This might be caused by three main reasons: (1) different measurement process for different groups or (2) different data quality for different groups and (3) oversimplification of the classification model (e.g. selecting or having available too few features for a good prediction).

4. **Aggregation bias**: when a single model is used for all groups, which require in fact different specific models, due to different conditional distributions, backgrounds, cultures
etc. Usually with this kind of bias the model will be optimal only for the dominant population.

5. **Evaluation bias**: when the evaluation and/or test data for an algorithm does not represent the target population. Misrepresented test data lead to the development of models that are optimized only for a subset of the population.

6. **Deployment bias**: when there is a misalignment between the problem a model is intended to solve and the way in which it is actually carried out after deployment (e.g. when we adapt a specific model to a generic task).

There are two well-known paradoxes in fairness theories that may introduce bias, due to wrong data interpretation:

1. **Simpson’s bias**: it is derived from Simpson’s paradox, which claims that it is possible to have $P(A|B) < P(A|B')$ and at the same time $P(A|BC) \geq P(A|B'C)$, $P(A|BC') \geq P(A|B'C')$, where C and C' are two distinct groups.

 To be more clear, in table 3.1 are shown data regarding a new medical treatment on local patients (C) and patients from Chicago (C'). If we look at the overall treatment data, we are prone to say that it is a bad treatment compared to the standard one (Table a: 11% vs 46% alive people), but if we look at data divided per groups, we would notice that the treatment seems paradoxically good (Table b: higher rate of alive people in both groups).

2. **Berkson’s bias**: this is based on the Berkson’s paradox, which says that given two independent events, if you take into account only outcomes where at least one occurs, then they become negatively dependent. In terms of probability it becomes: $0 < P(A) < 1$, $0 < P(B) < 1$ and $P(A|B) = P(A)$, then $P(A|B, A \cup B) < P(A|A \cup B)$.

 In general, Berkson says that if we only focus on a portion of data, we will be falsely tempted to say that there is a negative correlation between two attributes (e.g. the assumption that all Hollywood movies are bad, compared to their books, is due to the fact that we are just considering books and movies that overcome a certain "goodness" threshold, overlooking all bad movies and bad books).
Table 3.1: Simpson’s paradox example - extract from [11]

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead:</td>
<td>5950</td>
<td>9005</td>
</tr>
<tr>
<td>Alive:</td>
<td>5050 (46%)</td>
<td>1095 (11%)</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>C patients only</th>
<th>C’ patients only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>New</td>
</tr>
<tr>
<td>Dead:</td>
<td>950</td>
<td>9000</td>
</tr>
<tr>
<td>Alive:</td>
<td>50 (5%)</td>
<td>1000 (10%)</td>
</tr>
</tbody>
</table>

3.1.3 | Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries [46]

This paper defines biases that can be encountered when analyzing social data, in particular taken from social platforms. From 1 to 6 are listed biases of selection phase (selection bias), depending for instance on the choice of the social platform from which to collect data. We report here the exact definitions of the paper:

1. **Population bias**: differences in demographics or other user characteristics between a population of users represented in a dataset or platform and a target population.
 - Different socio-demographic groups behave differently on social platforms -> we cannot generalize the behavior of a group for the whole of society.
 - Some studies use proxy for prediction, but proxies for personal traits have different reliability across different demographic groups (e.g. if we use political twitter posts to understand political orientation, politicians will get much higher accuracy than normal users).

2. **Behavioral bias**: differences in user behavior across platforms or contexts, or across users represented in different datasets.
 - **Interaction biases**: concern the different ways users interact with each other in social platforms, due to different personalities and different generations.
3. **Bias taxonomy - past research**

- **Content consumption biases**: regard different kind of contents interactions for different users, due to disparate interests and pool of contents. They may be expressed as well as lexical, syntactic, semantic, and structural differences in the contents generated by users.

- **Linking biases**: behavioral biases that are expressed as differences in the attributes of networks obtained from user connections, interactions or activity. They regards external factors and attributes that may influence and change users’ behaviour.

- **Response biases**: are due to "missing" reports, inaccurate self-reports made by users. Most of the time, people lie about themselves or are not accurate regarding the information they provide.

3. **Temporal variations**: differences in populations or behaviors over time. This concept is similar to the historical bias. It is connected as well to behavioral biases, because over time users’ behavior change rapidly on social platforms.

4. **Functional biases**: biases that are a result of platform-specific mechanisms or affordances, that is, the possible actions within each system or environment. They are strictly related to behaviour or population, but through the social platform design.

 - introducing a new feature, or changing an existing feature on a platform, impacts usage patterns.
 - users react and behave in different ways, based on what they see and how they see, namely not only the contents, but also the order and disposition of the information they access (e.g. ranking algorithms).

5. **Normative biases**: biases that are a result of written norms or expectations about unwritten norms describing acceptable patterns of behavior on a given platform.

 - on different platforms we may face different terms and conditions and simply different codes of conduct, hence people have to act in different ways.
 - users might be influence by other users’ impact.
 - herding effect (influence of previous ratings and reviews), friendship paradox (popular individual can steer the behaviour of common users), anchoring effect (tendency to conform), male names for users and organizations could have a stronger an more positive impact...

6. **External biases**: biases resulting from factors outside the social platform, including considerations of socioeconomic status, ideological/religious/political leaning, education, social pressure, privacy concerns, topical interests, language, personality, and culture.

 - socio-cultural elements that are reflected on social platform data.
3.1. Bias taxonomy - past research

- elements with high social impact (e.g. media communications, disasters, global pandemics...) are reflected and have a strong influence on social media.
- different kind of contents are spread in different ways throughout social platforms, both due to automated mechanisms and human curation.

7. **Data collection biases**: biases introduced due to the selection of data sources, or by the way in which data from these sources are acquired and prepared.

 - data acquisition.
 - data querying (APIs).
 - data filtering.

8. **Data processing biases**: biases introduced by data processing operations such as cleaning, enrichment, and aggregation.

 - normalization of geographical references.
 - inserting default options.
 - automatic processes for data enrichment (e.g. made with machine learning).

3.1.4 | Search Bias, Language Bias and Genetic Programming [54]

As we already said at the beginning of this chapter, when bias regards ML sphere, it is a matter of choice an hypothesis over many other: we have to address a system towards a solution, even if we do not know whether it exists or not. This is called *heuristic knowledge* and it aims to reach reasonable generalisation, with limited information.

This paper defines three major kind of biases, with reference to the hypothesis choice:

1. **Selection bias**: it generates when we have to choose an hypothesis over another. For instance, in terms of evolutionary biology, this type of bias is the result of a fitness selection. Besides, every parameter and measure that we choose to represent an individual is a selection bias.

2. **Language bias**: in the article, Whigham claims that if we have an exiguous language pool, the hypothesis we can create might be restricted as well. By language here we mean all the descriptive tools we need to formulate a decision process.

3. **Search bias**: it consists in the process of turning one hypothesis into another, in order to search for the best one. It can be represented by the crossover during a random forest algorithm and the maximum depth of any created tree.
3.1.5 | Bias amplification in Artificial intelligent systems [42]

This paper divides bias in 5 main categories. We report here the exact definition the authors gave for each or them:

- **dataset bias**: it refers to bias that results from a too-small or too homogenous dataset, which then perpetuates inaccurate generalizations. This kind of bias concerns any preliminary issue related to the dataset.

- **association bias**: it occurs when data used to train an algorithm reinforces and multiplies cultural bias, when applied to a larger problem. (e.g. even due to unintentional discrimination, made by feedback loops based on cultural inference, it may be possible that some job advertisements are more likely to be shown to males than females).

- **automation bias**: describes situations in which the AI fails to take social or cultural factors into consideration (e.g. some machines may enforce the European stereotype of beauty by selecting greatly light skin rather than dark-skinned subjects).

- **interaction bias**: occurs when machines are empowered to learn without safeguards in place to identify and exclude harmful or pernicious beliefs (e.g. a bot that learns what to say by its users, may end up learning offensive or dangerous language if not controlled).

- **confirmation bias**: occurs when information is oversimplified or personified and makes improper generalizations or assumptions about a group or individual (e.g. in online purchasing there are often suggestion such as "you may also like these products...", but it is not rare that they mispredict what we like).
Methodology background

4.1 | Metrics

4.1.1 | Diversity

The diversity indicates abundance or lack of different species in a community (dataset) and we chose the Shannon index as a measure for it. The Shannon index takes its origin from ecology, where it is also known as Shannon’s diversity or Shannon’s entropy. The idea beyond this index is that the more different individuals there are and the more equal their proportional abundances (number of individuals per species) in the category/cluster of interest, the more difficult it is to correctly predict the next individual in the category. The aim of this index is indeed to quantify the entropy associated with this prediction.

The Shannon index takes into consideration both the species richness (number of species present) and species abundance.

\[
H' = -\sum_{i=1}^{s} p_i \ln p_i
\]

where \(p_i \) is the proportion \(n/N \) of \(n \) individuals of one particular species \(i \), divided by the total number of individuals found \(N \); \(\ln \) is the natural logarithm, is the sum of the calculations, and \(s \) is the number of species.

With this index we quantifies the uncertainty in predicting the species identity of an individual chosen randomly from the community.

The greater is the difference between the abundances of the types, the smaller is the corresponding Shannon index value. If hypothetically there is only one species in the dataset, Shannon diversity exactly equals zero (no uncertainty in predicting the type of the next randomly chosen individual). An important notice is that if the true diversity doubles between two experiments, it does not mean that the index doubles as well: we can only evaluate a comparative measure, indeed whether an experiment gets more or less diversity than another.
4.2 | Fairness

In this section we will give an outlook of the main fairness metrics we used in order to evaluate the fairness level of our classification algorithm. It is important to stress that fairness in ML could be evaluated in many different ways and it also depends on anti-discrimination laws that states in different countries, concerning the usage of sensitive attributes. In our case, we focused on the fairness metrics in "fairness" CRAN package.

4.2.1 | Fairness - R library

The fairness R package provides the calculation and comparison of commonly used fairness measures across population subgroups.

By using this library we could assessed our predictive model whether its results reinforce existing social biases. We identified the sensitive attribute that gave the highest disparate impact on the subjects of each dataset, then we evaluated and compared the fairness metrics values for this attribute.

In the below section 4.2.3 we listed all the fairness metrics offered in R Fairness package that are the ones we relied on for our research. For all the metrics, the ideal goal is to reach an equal value (parity) in each subcategory, which represents a perfect fairness situation. Since we are not virtually able to reach exactly the same values, we quantify how much a dataset lacks of fairness towards the sensitive attribute, by calculating the mean signed deviation of the subcategories values from the objective fair value.

4.2.2 | Statistical metrics

Sometimes it happens that, in order to avoid disparate treatment, we might be led to use a classifier with a distribution that does not take into account the sensitive attributes (this is called unawareness, i.e. $C = c(x, A) = c(X)$), but it has been proved that this strategy does not avoid discrimination. In fact, there could be variables strictly related or correlated to the sensitive ones (e.g. postal code related to ethnicity), that serves as proxies for the sensitive attributes.

All the following definitions refers to a binary classification under these assumptions:

- $X \in \mathbb{R}^d$: quantified features of the individual (e.g. number of priors, misdemeanor...).
- $A \in \{\text{unprotected}, \text{protected}\}$: a binary sensitive attribute (e.g. Male/Female).
- $C := c(X, A) \in \{\text{negative, positive}\}$: binary predicted outcome (e.g. rejected or hired, which makes decision based on a score $R := r(x, a) \in [0, 1]$).
- $Y \in \{\text{negative, positive}\}$: target variable with the actual outcome (e.g. if the individual truly rejected or hired).
X, A, Y generated from an elemental distribution \(D \), namely \((X, A, Y) \sim D\).

The best accuracy is gotten with \(C(X, A) = Y \in (X, A, Y) \sim D \).

We use the notation \(P_{\text{protected}}[c] := P[C = c | A = \text{protected}] \) for the conditional probability of being classified as \(c \), given that.

When we want to describe the performance of supervised learning classification model, we usually rely on a confusion matrix, which is a particular contingency table with rows and columns that represent respectively the instances of the predicted and actual classes. Predictive and actual classes can assume positive or negative value if we are using a binary classifier. On the main diagonal in the confusion matrix, we find the correct predictions, whereas on the secondary diagonal the prediction errors.

In the confusion matrix cells we find the following data, that will help understanding the fairness metrics:

- **TP** - true positive: both predicted and actual outcome are in the positive class.
- **FP** - false positive: predicted is in the positive class, but actual outcome is in the negative.
- **FN** - false negative: predicted is in the negative class, but actual outcome is in the positive.
- **TN** - true negative: both predicted and actual outcome are in the negative class.

From these four cases, we can derive the following metrics:

- **PPV** - positive predictive value: it is the probability of an individual with a positive prediction to truly belong to the positive class \(P(Y = \text{positive} | C = \text{positive}) \).
 Alternatively, it is the fraction of correctly predicted positive cases, out of all predicted positive cases \(\frac{TP}{TP+FP} \).
 It is also named precision.

- **FDR** - false discovery rate: it is a false acceptance, namely a wrong prediction of a truly negative case to be in the positive class \(P(Y = \text{negative} | C = \text{positive}) \).
 Alternatively, it is the fraction of incorrectly predicted negative cases (that truly belong to the positive class) out of all predicted positive cases: \(\frac{FP}{TP+FP} \).

- **FOR** - false omission rate: it is an incorrect rejection, namely wrong prediction of a truly positive case to be in the negative class \(P(Y = \text{positive} | C = \text{negative}) \).
 Alternatively, it is the fraction of incorrectly predicted positive cases (that truly belong to the negative class), out of all predicted negative cases: \(\frac{FN}{TN+FN} \).
NPV - negative predictive value: it is the probability of an individual with a negative prediction to truly belong to the negative class $\mathbb{P}(Y = \text{negative} \mid C = \text{negative})$. Alternatively, it is the fraction of correctly predicted negative cases, out of all predicted negative cases $\frac{TN}{TN+FN}$.

TPR - true positive rate: it is the probability of truly positive cases to be predicted correctly $\mathbb{P}(C = \text{positive} \mid Y = \text{positive})$. Alternatively, it is the fraction of correctly predicted positive cases, out of all actual positive cases $\frac{TP}{TP+FN}$. It is also named sensitivity or recall.

FPR - false positive rate: it is a false alarm, namely wrong positive prediction of an actual negative case $\mathbb{P}(C = \text{positive} \mid Y = \text{negative})$. Alternatively, it is the fraction of incorrectly predicted negative cases, out of all actual negative cases $\frac{FP}{FP+TN}$.

FNR - false negative rate: it is the probability of truly positive cases to be predicted incorrectly as negative $\mathbb{P}(C = \text{negative} \mid Y = \text{positive})$. Alternatively, it is the fraction of incorrectly predicted positive cases out of all actual positive cases $\frac{FN}{TP+FN}$.

TNR - true negative rate: it is the probability of a truly negative case to be predicted as negative $\mathbb{P}(C = \text{negative} \mid Y = \text{negative})$. Alternatively, it is the fraction of correctly predicted negative cases, out of all actual negative cases $\frac{TN}{FP+TN}$.

4.2.3 | Fairness metrics

4.2.3.1 | Demographic parity

Demographic parity (also known as Independence or Statistical parity) is achieved when the percentages or rates of the positive outcomes are equal for each group. This metric only relies on the predicted outcome, not the actual one. In terms of probability, it means that the classifier C is independent from the sensitive attribute A. We can get demographic fairness simply by equalize the number of classified positive (negative) outcomes for each subcategory of the protected attribute:

$$\#_{\text{protected}}[C = c] = \#_{\text{unprotected}}[C = c] \quad \forall c \in \{\text{negative, positive}\}$$

Usually both demographic parity and proportional parity are formulated in terms of positive predictions. However, since we do not have a comparison between actual and predicted outcome, the equality of positive predicted is equivalent to the equality of negative predicted. We can not formulate this principle in terms of statistical metrics (confusion matrix), because
it does not take into consideration a comparison between predicted and actual outcome.

4.2. Fairness

In fairness package:

This metric is evaluated by counting the sum of positive outcomes for each subcategory: the base category will get 1 as default value for positive outcomes, whereas all the other categories will be compared to this one, namely \[\frac{\text{# positive outcomes for category}}{\text{# positive outcomes for base category}}. \]

In this case, the different number of individuals per category has not been taken into account, then it makes sense to use this metric only when we have a perfectly balanced dataset in terms of the sensitive attribute. In fairness package, for all the following described metrics we will consider a base subcategory (e.g. 'Caucasian' for ethnicity attribute or 'Male' for gender attribute) and this base category will always get 1 as fairness metric value. All the other categories will get lower or higher values.

This R package will give us both the absolute value of the different metrics and the comparative value towards the base category, but it only gives a ready-plot with the comparative measures.

4.2.3.2 | Proportional parity

Proportional parity is similar to demographic parity (or another way to indicate demographic parity) because for both metrics we do not compare the predicted outcomes to the actual outcomes. The difference is that this metric is much more useful when we have an unbalanced dataset towards the sensitive attribute.

In fact, for this metric we consider also the number of individuals for each population. In terms of probability, we can formulate it as follow:

\[P_{\text{protected}}(C = c) = P_{\text{unprotected}}(C = c) \quad \forall c \in \{ \text{negative, positive} \} \]

In fairness package:

Instead of using the `sum()` function (as it is used for the demographic parity), the `mean()` function gives the metric value, so that the less populated subcategories could anyway reach the same metric value as the highest populated ones.

Differently from the previous two metrics, all the following ones take into account both the actual and the predicted values.

4.2.3.3 | Equalized odds

This metric is also known as Separation and it is achieved if the sensitivities (true positives divided by all positives) in the subgroups are close one another.
Chapter 4. Methodology background 4.2. Fairness

With a formal definition [27], we say that a predictor C satisfies equalized odds with respect to protected attribute A and outcome Y, if C and A are independent conditional on Y. That means equalized odds may allow C to depend on A but only through the target variable Y. In terms of probability:

$$P_{\text{protected}, Y=y}[C = \text{positive}] = P_{\text{unprotected}, Y=y}[C = \text{positive}] \quad \forall y \in \{\text{negative, positive}\}$$

Since we introduce dependency on the sensitive attribute, it goes without saying that we can not both satisfy equalized odds and demographic parity at the same time. Depending on the y value, we equalize true positive rates or false positive rates, hence this metric is quite restrictive because it requires that both rates should be equal in order to get fairness.

4.2.3.4 | Equality of opportunity

This metric is a weaker version of the Equalized odds.

4.2.3.5 | Predictive rate parity

This parity is also known as Sufficiency and it checks if the precision rates are equivalent for all subgroups under consideration [51], so that the fraction of correct positive predictions should be the same for each sensitive attribute value.

In terms of probability, this means:

$$P_{\text{protected}, C=\text{positive}}[Y = y] = P_{\text{unprotected}, C=\text{positive}}[Y = y] \quad \forall y \in \{\text{negative, positive}\}$$

A classifier with equal PPV has also equal FDR, that is why we can use indistinctly all y values to equalize the probabilities. Ineed, in terms of statistical measures (confusion matrix), we can formulate this metric as follow:

$$\text{PPV}_{\text{protected}} = \text{PPV}_{\text{unprotected}} \quad \text{or} \quad \text{FDR}_{\text{protected}} = \text{FDR}_{\text{unprotected}}$$

4.2.3.6 | Accuracy parity

The accuracy represents the fraction of predictions that a classifier gets correctly, therefore accuracy parity is obtained when all the sensitive attribute groups have equal prediction accuracy. The accuracy is the probability of a subject -in either positive or negative class - to be assigned to its respective class: namely, true negatives are as desirable as true positives for this fairness metric.

$$P[C = Y, \text{protected}] = P[C = Y, \text{unprotected}]$$

In terms of statistical measures (confusion matrix), we can formulate this metric as follow:

$$\left(\frac{TP + TN}{\# \text{ of predictions}}\right)_{\text{protected}} = \left(\frac{TP + TN}{\# \text{ of predictions}}\right)_{\text{unprotected}}$$
4.2.3.7 | False negative rate parity

This is also known as **Equality of opportunity** and it is considered as a weaker version of Equalized odds. This metric is satisfied if all the sensitive attribute groups have equal FNR (the probability of a subject in a positive class to have a negative predictive value). Since a classifier with equal FNR will get also equal TPR, we can use both indistinctly.

In terms of probability, we can formulate it as follow:

\[
P_{\text{protected}, Y=\text{positive}}[C = c] = P_{\text{unprotected}, Y=\text{positive}}[C = c] \quad \forall c \in \{\text{negative, positive}\}
\]

In terms of statistical measures (confusion matrix), we can formulate this metric as follow:

\[
\text{FNR}_{\text{protected}} = \text{FNR}_{\text{unprotected}} \quad \text{or} \quad \text{TPR}_{\text{protected}} = \text{TPR}_{\text{unprotected}}
\]

If the prevalence of positive outcome for both subcategories of the sensitive attribute is the same in the entire population and does not depend on the sensitive attribute itself, this definition becomes equivalent to the demographic or proportional parity.

4.2.3.8 | Specificity parity or False positive rate parity

This metric is also known as **Predictive equality**.

In Equalized odds we already introduced the FPR, but in that case it required to satisfy both TPR and FPR equality at the same time, then FPR parity is less restrictive.

This metric is satisfied if all the sensitive attribute groups have equal FPR (the probability of a subject in the negative class to have a positive predictive value). Since a classifier with equal FPR will get also equal TNR, we can use both indistinctly.

In terms of probability, we can formulate it as follow:

\[
P_{\text{protected}, Y=\text{negative}}[C = c] = P_{\text{unprotected}, Y=\text{negative}}[C = c] \quad \forall c \in \{\text{negative, positive}\}
\]

In terms of statistical measures (confusion matrix), we can formulate this metric as follow:

\[
\text{FPR}_{\text{protected}} = \text{FPR}_{\text{unprotected}} \quad \text{or} \quad \text{TNR}_{\text{protected}} = \text{TNR}_{\text{unprotected}}
\]

Specificity is also known as TNR (true negatives divided by all negatives), therefore it represents the probability of a subject in the actual negative class to be predicted as negative. This metric could be useful as it is ideally the opposite of Equalized odds.

4.2.3.9 | Negative predictive value parity

Negative predictive value parity is satisfied when the negative predictive values in the subgroups are equal. This metric could be useful as it is ideally the opposite of the Predictive rate
Chapter 4. Methodology background

4.2. Fairness

parity. In terms of probability, this means:

\[P_{\text{protected}, C = \text{negative}}[Y = y] = P_{\text{unprotected}, C = \text{negative}}[Y = y] \quad \forall y \in \{\text{negative, positive}\} \]

A classifier with equal NPV has also equal FOR, that is why we can use indistinctly all \(y \) values to equalize the probabilities. Indeed, in terms of statistical measures (confusion matrix), we can formulate this metric as follow:

\[\text{NPV}_{\text{protected}} = \text{NPV}_{\text{unprotected}} \quad \text{or} \quad \text{FOR}_{\text{protected}} = \text{FOR}_{\text{unprotected}} \]

In fairness package:

Negative predictive value parity and Predictive rate parity are only treated individually, but if we would require both to be satisfied, then the metric is called **Conditional use accuracy equality** [10] and it implies equivalent accuracy for sensitive attribute subcategories, from both positive and negative predicted classes.

4.2.3.10 | Matthews correlation coefficient comparison

Matthews correlation coefficient is a scalar metric used in binary classification, such as accuracy, precision, recall or F1-score. Unfortunately, these mentioned metrics are subject to some flaws: for instance, precision and accuracy are sensitive to class imbalance [35]. Instead, recall and F1-score only depend on the positive groups and do not consider the number of negative samples misclassified as positive (otherwise it could have been an issue in problems containing class imbalanced data with many negative samples), yet they are still not utterly effective when comparing performance between classifiers [28].

Then, according to Davide Chicco and Giuseppe Jurman [15], the most informative metric to evaluate a binary classifier is the Matthews correlation coefficient (MCC):

\[
\text{MCC} = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}
\]

or equivalently, in terms of rates

\[
\text{MCC} = \sqrt{\text{TPR} \cdot \text{TNR} \cdot \text{PPV} \cdot \text{NPV}} - \sqrt{\text{FPR} \cdot \text{FNR} \cdot \text{FDR} \cdot \text{FOR}}
\]

MCC is a more reliable statistical measure because it produces a high score only if the prediction obtained good results in every confusion matrix category (true positives, false negatives, true negatives, and false positives), in proportion to both the size of the positive and negative classes. It ranges from -1 to 1. Despite of these positive aspects, some studies claims as well that MCC is not suitable for imbalanced datasets: indeed, according to a recently published research paper, if we are working
4.2.3.11 | ROC and AUC comparison

The receiver operating characteristics (ROC) curve is a popular valuation that plots true positive rate over false positive rate, in order to provide a visualization of the offset between correctly classified positive samples and incorrectly classified negative samples. If the dataset we are working on is highly skewed (not equally distributed on both sides of the distribution, hence not symmetrical distributed), ROC curves can present overly optimistic results and we should use instead Precision–Recall (PR) curves [16].

The area under the ROC curve (AUC) can be used as a metric to compare classifiers performance: it is both scale-invariant and threshold invariant, which means respectively that it is independent from the predicted absolute values and from the classification cutoff. An excellent model has AUC near to the 1 which means it has good measure of (separability); on the other hand, an area of 0.5 corresponds to random guessing.

4.2.4 | Fairness criteria

The three main following fairness criteria [6] are based on the concept of statistical independence and they have been already mentioned in the previous fairness metric section 4.2.3. This definition will be helpful in the comprehension: definition "[section]

Definition 1 (Conditional independence) Given X, Y, Z three discrete random variables. If, when Z is known, the value of Y does not add any additional information about X, namely

$$P(X \leq x, Y \leq y|Z = z) = P(X \leq x|Z = z) \cdot P(Y \leq y|Z = z) \forall x, y, z.$$

we say that X and Y are conditionally independent given Z and it is written

$$X \perp Y \mid Z$$

In particular, if X and Y are conditionally independent given Z, then

$$P(X = x|Y = y, Z = z) = P(X = x|Z = z)$$

4.2.4.1 | Independence

It requires the sensitive attribute A to be independent from the classifier C, then we could say $R \perp A$, where R is the score variable we use for the prediction of our classifier C. We have already formally defined this as demographic parity or proportional parity in the previous section.

This principle is quite popular in data fairness, mainly due to the fact that in some realistic situations, such as hiring processes, we want to stress that human performance or qualifications
are totally independent from certain other innate attributes, such as gender or ethnicity. Anyway there is a drawback: it may happen that if we choose randomly people from a subcategory and qualified people from another subcategory, we can still satisfy independence, even though the random subjects might be people with far lower qualifications.

4.2.4.2 Separation

Since in practical contexts we often have a correlation between the target variable and the sensitive attribute (e.g. one age category may have lower or higher probability to get a loan, due to banks business reasons), then there could be allowed a correlation between the prediction and the sensitive attribute, conditionally to the target variable Y. Namely, $R \perp A \mid Y$. This principle implies both true positive rate parity and false positive rate parity and in some situations it is considered more helpful than independence because it aims to reduce errors uniformly in all subgroups. However, the main ethical compromise in achieving this principle is that it may arise gaps between subgroups: for instance, if we have high qualified subjects in one group and low qualified subjects in another, while satisfying separation, we will give better outcomes to the first group. This might lead to amplify social gaps between the two groups, because the first one could result in have more disposable income, which would be transferred to their children, who will reinforce the population of their parents’ group as adults. This is a sort of echo chamber that may lead to amplify social discrepancies.

4.2.4.3 Sufficiency

This principle is achieved if the target variable is independent from the sensitive attribute, conditionally to the prediction $Y \perp A \mid R$. In particular, when we work with a binary classification, we satisfy this condition by requiring a of positive/negative predictive value parity across all subgroups. Even sufficiency, as separation, may not help reducing the gap between two different groups, for similar reasons.

In a perfect situation, the best goal would be reaching all the three criteria at the same time, but they imposes complex constraints on the distribution D, therefore they are mutual exclusive, as we show below. But if all the criteria cannot be satisfied at the same time, how can we get fairness? The proper answer will be reaching an optimal trade-off between these three principles. We analyse pairwise the relationships between the criteria:
4.2.4.4 | Independence \iff Sufficiency

These two criteria cannot both hold, under the assumption that A and Y are not independent, hence $A \not\perp Y$. We have to bear in mind that this is not a restrictive assumption, but the most common situation in real cases: usually the sensitive attribute is related to the target, that means having higher positive outcomes in a subgroup than in another.

By this assumption, it is trivial the implication:

$$A \not\perp Y \implies A \not\perp R \mid Y \text{ or } A \not\perp R.$$

That means: if A depends on the target Y, then either A depends on the classifier conditionally to the target or it does not depend on the classifier at all (target and classifier are obviously always dependant).

proof: we can demonstrate it by reducing to absurd. Let assume that both sufficiency and independence holds, then

$$A \perp Y \mid R \text{ and } A \perp R \implies A \perp (Y, R) \implies A \perp Y$$

which is absurd due to our original hypothesis.

4.2.4.5 | Independence \iff Separation

Also in this case, Independence and Separation cannot both hold, but besides the previous assumption of $A \not\perp Y$ we have to add that Y is binary to prove the mutual exclusion. As before, it is also taken for granted that $R \not\perp Y$, like in realistic classification problems.

proof: let assume instead that both independence and separation holds

$$A \perp R \text{ and } A \perp R \mid Y$$

For the theorem of total probability,

$$P(R = r \mid A = a) = \sum_y P(R = r \mid A = a, Y = y) \cdot P(Y = y \mid A = a)$$

then by the assumption of independence and separation, it becomes

$$P(R = r) = \sum_y P(R = r \mid Y = y) \cdot P(Y = y \mid A = a)$$

As well for the theorem of total probabilities we can say

$$P(R = r) = \sum_y P(R = r \mid Y = y) \cdot P(Y = y)$$

Hence, we can equalize the summations

$$\sum_y P(R = r \mid Y = y) \cdot P(Y = y \mid A = a) = \sum_y P(R = r \mid Y = y) \cdot P(Y = y)$$ \hspace{1cm} (4.1)
but in case of a binary target, this equation is satisfied if $A \perp Y$ or $R \perp Y$ (this is not an exclusive or).

Indeed, on the one hand,

$$P(Y = y \mid A = a) = \frac{P(A = a \mid Y = y) \cdot P(Y = y)}{P(A = a)}$$

then the equation

$$\sum_y P(R = r \mid Y = y) \cdot \frac{P(A = a \mid Y = y) \cdot P(Y = y)}{P(A = a)} = \sum_y P(R = r \mid Y = y) \cdot P(Y = y)$$

holds if and only if

$$\frac{P(A = a \mid Y = y)}{P(A = a)} = 1$$

that means

$$P(A = a \mid Y = y) = P(A = a) \cdot P(Y = y)$$

namely $A \perp Y$.

On the other hand, since we considered Y as binary, we can develop the summation for $y = 0$ and $y = 1$. The left term will be

$$P(R = r \mid Y = 1) \cdot P(Y = 1 \mid A = a) + P(R = r \mid Y = 0) \cdot (1 - P(Y = 1 \mid A = a))$$

and the right

$$P(R = r \mid Y = 1) \cdot P(Y = 1) + P(R = r \mid Y = 1) \cdot (1 - P(Y = 1))$$

Then if we equalize these two terms as in 4.1, we get

$$P(Y = 1) \cdot k = P(Y = 1 \mid A = a) \cdot k$$

where $k = P(R = r \mid Y = 1) - P(R = r \mid Y = 0)$.

This equation can be satisfied if $A \perp Y$ (as we already said), because $P(Y = 1 \mid A = a) = P(Y = 1)$, or if $k = 0$, that is $R \perp Y$.

In both case, this result is absurd, since it denies the hypothesis, then it is not possible to assume both $A \perp R$ and $A \perp R \mid Y$.

4.2.4.6 | Separation \iff Sufficiency

Both Separation and sufficiency implies non-trivial restrictions for A, R and Y. If all the restrictions hold, we end up in a degenerate solution space.

proof: we already proved that, if either sufficiency or separation holds, then independence cannot hold, therefore $A \not\perp R$.

When both sufficiency and separation hold, the following property of conditional independence should be valid

$$A \perp R \ Y \quad \text{and} \quad A \perp Y \ R \implies A \perp (R,Y)$$
under the assumption that all events have positive probabilities, as it is showed in [52]. It is then trivial the implication

\[A \perp (R, Y) \implies A \perp R \text{ and } A \perp Y \]

but it cannot be possible due to implausible independence principle.

4.3 | Bias mitigation techniques

We have already analyzed in previous chapters the significance of biases, their types and how can they affect fairness in data science. In this section we will focus on some bias mitigation techniques: in particular, these are usually divided in three main groups, based on where in the machine learning pipeline they are exploited. Then we have pre-processing techniques when we apply the bias mitigation algorithm on the training data; in-processing techniques if we want to modify the model during its training and get a fairer machine learning algorithm; post-processing techniques to mitigate bias on the already predicted labels. Another way to classify the bias mitigation methods could be based on which fairness criterion or fairness metric they are trying to satisfy, but this might result in a categorization overlay.

In addition, we will not depict all the existing state-of-the-art techniques, so the following list will not be exhaustive, but we will mainly focus on balancing data and other methods that are implemented and available in IBM AIF360 R package.

There is a principle in information theory called data processing inequality that declares any data process as a possible source of loss of information. In no cases there is the possibility to get new information from a data processing. Moreover, in the best situation, you can only equalize the amount of information throughout the process. Thus, for all the following techniques we cannot expect not to lose information, by meaning with this term all the data characteristics that they had before the technique application.

On account of the high evolution rate of new algorithm and resources for big data, and due to the already remarkable quantity of possible techniques combinations, how can we optimally chose a bias mitigation strategy? First of all, we have to focus on the step of ML process where we can take action, since most of the time we can only modify our data in post-processing. However, if we have carte blanche, it might be a good strategy to combine different types of processing algorithms together, as for the Fairway method [13], which proposes a combination of pre-processing and in-processing bias mitigation.

Although we may think that the more strategies we put together, the highest fairness we get, this is a deceptive conjecture. Indeed, we have to bear in mind that some algorithms focus on different fairness criteria (e.g. reweighing algorithm is based on the independence criterion, whereas disparateimpactremover on separation) and we already showed how independence, sufficiency and separation are mutually incompatible. When we used multiple algorithms, we
should check their cumulative performance, compared to the individual one, because it could be possible they interfere one another.

As a rule of thumb, we should deal with post-processing algorithms only in case we are not allowed to interfere with the ML process in advance (the earliest intervention, the best results).

In conclusion, there are no unique effective strategies to be applied in terms of fairness: for each dataset we have to make specific and different considerations in order to take into account all the possible case limitations.

4.3.1 | Pre-processing

4.3.1.1 | Balancing

Providing unbalanced data to a classifier can make them biased towards the majority class, basically because the classifier does not have enough data to learn more about the minority. Since it is quite frequent to have an imbalanced dataset, we can many research in literature about this problem. Specifically, some studies [40] [41] have shown that for some classifiers a balanced dataset provides an enhancement in classification performance, rather than the imbalanced one. However, some other studies [9] [33] on the contrary, studies have also proved that classifiers modelled on some imbalanced datasets do not show performance differences (not even relevant performance decrease) to classifiers modelled on the same balanced data. Consequently, previous research suggests always to rebalance data when they are highly skewed, by using one of the several available resampling techniques, such as random sampling methods, cost-sensitive methods, kernel-based methods, and active learning methods [28]. In fact, these methods can be divided into two groups: (1) based on re-sampling or combinations and (2) based on algorithmic strategies, as cost-sensitive and boosting.

In particular, in our experiment we used two basic sampling methods, with no algorithmic approach: random sampling and synthetic minority oversampling technique (SMOTE), which include both undersampling and oversampling.

- **Random sampling**: it consists in the random removal or addiction of instances of the majority or minority class to achieve the exact number of individual for each group. Alternatively, it is possible as well to decide a specific and different proportion of subjects for each group, so that data will be amplified or reduced accordingly.

Basing on add or subtract instances, we call it upsampling/oversampling or downsampling/undersampling respectively.

This technique might have relevant side effects: downsampling can potentially lead to loss of information, while oversampling can result in overfitting, due to the fact that it exactly replicates the minority samples and it introduces redundancy.

- **SMOTE**: it is an re-sampling approach in which the minority class is oversampled by
creating synthetic examples instead of random over-sampling with replacement. The oversampling rests on generating synthetic examples by using k minority class nearest neighbors, in the following way:

1. Take the current feature vector (sample) and evaluate the difference between it and its k nearest neighbors.
2. Multiply these differences by a random number between 0 and 1, and add it to the current feature vector. This step can be interpreted as a selection of a random point along the line segment between two specific features.

Figure 4.1 offers a visualisation of how it works.

![Figure 4.1: SMOTE visualisation - extract from [30]](image)

See algorithm 1 for a SMOTE pseudo-implementation.
Algorithm 1 SMOTE algorithm

Require: \(n \) = number of minority class samples
\(perc \) = amount of SMOTE oversampling/undersampling % between 0 and 100
\(k \) = number of nearest neighbours

Ensure: \((perc / 100) \cdot n\) synthetic minority class samples

▷ If \(perc \) is less than 1, select randomly only a percentage of samples in the minority class

1: if \(n < 100 \) then
2: \(n = (N/100) \cdot n \)
3: \(perc = 100 \)
4: else
5: \(numAttributes = \) number of attributes
6: \(Sample[][] \) : array for original minority class samples
7: \(index \) : index for counting the number of new synthetic samples, initialized to 0
8: \(Synthetic[][] \) : array for new synthetic samples
9: \(\triangleright \) Compute \(k \) nearest neighbors for each minority class sample
10: for \(i = 1 \) to \(n \) do \(\triangleright \) Compute \(k \) nearest neighbors for \(i \); save the indices in \(nnArray \)
11: \hspace{1em} Populate(\(perc, i, nnArray \)) \(\triangleright \) See procedure below
12: end for
13: \(\text{procedure} \) Populate(\(perc, i, nnArray \))
14: \hspace{1em} while \(n \neq 0 \) do
15: \hspace{2em} \(\triangleright \) Choose a random number between 1 and \(k \), call it \(nn \), to randomly select one of the \(k \)
16: \hspace{2em} nearest neighbors of \(i \)
17: \hspace{1em} for \(j = 1 \) to \(numAttributes \) do
18: \hspace{2em} \hspace{1em} \(\text{diff} = Sample[nnArray[nn]][j] - Sample[i][j] \)
19: \hspace{2em} \hspace{1em} \(\text{gap} = \) random number between 0 and 1
20: \hspace{2em} \hspace{1em} \(\text{Synthetic}[index][j] = Sample[i][j] + \text{gap} \cdot \text{diff} \)
21: \hspace{2em} \hspace{2em} end for
22: \hspace{2em} \hspace{1em} index ++
23: \hspace{2em} \hspace{1em} \(perc = perc - 1 \)
24: \hspace{1em} end while
25: return
26: end procedure
The experiment is based on two datasets and its aim is to research on bias and bias mitigation. For each dataset we proceed in the following parallel way:

1. **Data exploration**: we firstly made data exploration for each dataset, then we used logistic regression to model the prediction on the binary attributes we were interested into (crime recidivism or drug consumption).

2. **Fairness metrics**: after classification, we analysed and compared the fairness metrics available in R\texttt{fairness} package. By means of this evaluation, we identified the sensitive attribute that got the mean worst performance in terms of fairness.

3. **Bias mitigation**: we performed on the dataset one or more bias mitigation techniques describes in chapter 4 and we evaluate again the fairness metrics, focusing on the identified attributed at step 2. Then we compared them to the ones of the original dataset.

4. **Comparisons**: we drew our comparative conclusions between the different types of mitigation and the different datasets.

5.1 Datasets

5.1.1 COMPAS

5.1.1.1 Context description

The COMPAS case is a scandalous case of software discrimination, which owns its notoriety to ProPublica, an independent no-profit organization that aims to produce investigative journalism in the public interest.

In 2016 ProPublica collected the risk scores assigned to more than 7,000 people arrested in Broward County, Florida, between 2013 and 2014. They conducted an accurate study \cite{34} in order to prove that the software used to evaluate risk assessment by the law enforcement...
was biased against black people. Their analysis showed that scores for white court defendants were skewed toward lower-risk categories, while scores for black defendants were not. Risk assessments are quite common yardsticks in U.S.A. courtrooms: they can have a relevant role in decisions about whether or not a criminal (or alleged criminal) can be set free in the criminal justice system, by giving the assessments results to judges during sentences. It is also frequent in many jurisdictions to adopt a risk assessment software before rigorously testing whether it works.

The risk assessment tool was developed by a for-profit company, Northpointe, which never made available to the public the algorithm source code or the calculations used to get defendants’ risk scores, hence it was impossible for the people involved in the case to assess what might have drawn the disparity. It assigns risk scores between 1 and 10, which indicate their likelihood of committing a violent crime based on more than 100 factors, including age, gender, and criminal history. In particular, ProPublica revealed that blacks were almost twice as likely as whites to be labeled as higher risk subjects, without in fact re-offend. On the other hand their research stand also that whites were much more likely than blacks to be labeled lower risk, with actual recidivism.

This tool had then a high impact on several people’s lives: some judges preferred to evaluate the cases without relying on it, but some other totally reckon on this automated tool, sentencing people for longer prison detention or releasing other in advance, regardless of fairness.

5.1.1.2 | Data exploration and classification:

We took an already cleaned COMPAS dataset, available in the package fairness for R. The dataset has 6172 entries and the following 9 variables:

- **Two_yr_ReCIDivism**: yes/no for recidivism or no recidivism. This is the outcome or target in this dataset.
- **Number_of_Priors**: number of priors, normalized to mean 0 and standard deviation 1.
- **Age_Above_FourtyFive**: yes/no for age above 45 years or not.
- **Age_Below_TwentyFive**: yes/no for age below 25 years or not.
- **Female**: female/male for gender.
- **Misdemeanor**: yes/no for having recorded misdemeanor(s) or not.
- **ethnicity**: Caucasian, African American, Asian, Hispanic, Native American or Other.
- **probability**: predicted probabilities for recidivism, results from a classification made by the authors of the fairness package, ranges from 0 to 1.
- **predicted**: binary predicted values for recidivism, 0/1 for no/yes.
Since the aim of this research is not to study Northpointe software fairness, nor any other already-existing algorithms fairness, we firstly deleted the columns 'predicted' and 'probability', because we want to use our own classification results.

Then, we merge the two age variables into one single column made of three options: under25/over45/between25_45.

We also substituted 'yes/no' in 'Two_yr_Recidivism' with 'Yes_recidivism' and 'No_recidivism' to be more clear: indeed, 'Yes_recidivism' will be our unfavorable outcome, and 'No_recidivism' the favorable one.

Now the dataset appears as in table 5.1.

<table>
<thead>
<tr>
<th>Two_yr_Recidivism</th>
<th>Number_of_Priors</th>
<th>Female</th>
<th>Misdemeanor</th>
<th>ethnicity</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>No_recidivism</td>
<td>-0.68</td>
<td>Male</td>
<td>yes</td>
<td>Other</td>
</tr>
<tr>
<td>5</td>
<td>Yes_recidivism</td>
<td>2.27</td>
<td>Male</td>
<td>no</td>
<td>Caucasian</td>
</tr>
<tr>
<td>7</td>
<td>No_recidivism</td>
<td>-0.68</td>
<td>Female</td>
<td>yes</td>
<td>Caucasian</td>
</tr>
<tr>
<td>11</td>
<td>No_recidivism</td>
<td>-0.68</td>
<td>Male</td>
<td>no</td>
<td>African_American</td>
</tr>
<tr>
<td>14</td>
<td>No_recidivism</td>
<td>-0.68</td>
<td>Male</td>
<td>yes</td>
<td>Hispanic</td>
</tr>
<tr>
<td>24</td>
<td>No_recidivism</td>
<td>-0.68</td>
<td>Male</td>
<td>yes</td>
<td>Other</td>
</tr>
</tbody>
</table>

There are three sensitive attributes to work on: Female, ethnicity and Age.

In addiction, we can visualise the subgroups distributions with the following pie charts (figure 5.1) we see how these attributes are balanced or imbalanced in the dataset. As we can notice, the dataset is imbalanced: there are evidently more male than female, more subjects between 25 and 45 years old and some ethnicity categories are underrepresented, such as Asian, compared to African American or Caucasian.

However, our target variable seems quite balanced: we have nearly the same amount of recidivists and non-recidivists in our data.

We would like to find the most common combination of the three attributes, both in terms of recidivism and non-recidivism. Hence, we prepared an ordered table in figure 5.2 for combinations on recidivists and another one 5.3 for combination on non-recidivists.

In these two tables we can read an absolute count of the rows with that specific sensitive attribute combination, but we still do not know which is the relative weight that the combination has on the entire dataset, or among all the recidivists/non-recidivists, yet the percentage of incidence of yes (respectively no) recidivism on that specific combination.

Therefore, we plotted, for each combination of these attributes, the percentages of recidivists and non-recidivists on the whole dataset (figure 5.2a and 5.2b), then on the total number of
Table 5.2: COMPAS dataset Yes_recidivism frequent combinations (first rows)

<table>
<thead>
<tr>
<th>Age</th>
<th>ethnicity</th>
<th>Female</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>between25_45</td>
<td>Male</td>
<td>855</td>
</tr>
<tr>
<td>14</td>
<td>below25</td>
<td>Male</td>
<td>427</td>
</tr>
<tr>
<td>27</td>
<td>between25_45</td>
<td>Male</td>
<td>371</td>
</tr>
<tr>
<td>2</td>
<td>above45</td>
<td>Male</td>
<td>176</td>
</tr>
<tr>
<td>17</td>
<td>below25</td>
<td>Male</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>above45</td>
<td>Male</td>
<td>135</td>
</tr>
<tr>
<td>23</td>
<td>between25_45</td>
<td>Female</td>
<td>123</td>
</tr>
<tr>
<td>26</td>
<td>between25_45</td>
<td>Female</td>
<td>112</td>
</tr>
<tr>
<td>29</td>
<td>between25_45</td>
<td>Male</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>below25</td>
<td>Female</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 5.3: COMPAS dataset No_recidivism frequent combinations (first rows)

<table>
<thead>
<tr>
<th>Age</th>
<th>ethnicity</th>
<th>Female</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>between25_45</td>
<td>Male</td>
<td>708</td>
</tr>
<tr>
<td>24</td>
<td>between25_45</td>
<td>Male</td>
<td>490</td>
</tr>
<tr>
<td>5</td>
<td>above45</td>
<td>Male</td>
<td>351</td>
</tr>
<tr>
<td>11</td>
<td>below25</td>
<td>Male</td>
<td>237</td>
</tr>
<tr>
<td>2</td>
<td>above45</td>
<td>Male</td>
<td>223</td>
</tr>
<tr>
<td>19</td>
<td>between25_45</td>
<td>Female</td>
<td>212</td>
</tr>
<tr>
<td>23</td>
<td>between25_45</td>
<td>Female</td>
<td>155</td>
</tr>
<tr>
<td>26</td>
<td>between25_45</td>
<td>Male</td>
<td>148</td>
</tr>
<tr>
<td>14</td>
<td>below25</td>
<td>Male</td>
<td>128</td>
</tr>
<tr>
<td>4</td>
<td>above45</td>
<td>Female</td>
<td>107</td>
</tr>
</tbody>
</table>
recidivists or non-recidivists of the dataset (figure 5.2c and 5.2d) and on the total amount of subjects for each combination (figure 5.2e and 5.2f). In the graphs we used always red color for the recidivists and green color for non-recidivists. We can notice that the first couple and the second couple of graphs show almost the same trend: this is due to the fact that the first couple of graphs plots the percentage on the whole data, while the second couple plots the percentage on all the recidivists 5.2c and on all the non-recidivists 5.2d, but we have already noticed that there is nearly the same number of recidivists and non-recidivists in the dataset. Moreover, as confirmation of the unbalancing, in the first two couple of graphs we see higher percentages for males, in particular Caucasian and African-American.

The most interesting visualisation is given by the last couple of graphs: here we see, for instance, that the Caucasian males under 25 are more commonly recidivists than non-recidivists, but it is also evident that the African-American males under 25 have far more tendency to recidivism than no-recidivism. Indeed, it is quite remarkable the overall higher percentage of recidivism for the below 25 age category, while, concerning to males and females in-within each graph, we do not have any considerable difference.

Anyway, the differences between recidivism and no-recidivism on the ethnicity lines are what drew our attention the most: if we compare the two graphs, all in all we have truly different balloon sizes for male African-Americans, for male and female Native-Americans or for all Asians. On the contrary, all the Caucasians seem to have approximately the same percentages for each of them combinations (both for recidivism and no-recidivism).

Accordingly to these reports, we may expect some degrees of unfairness for our classifier, whatever model we will choose. Indeed, if we train our model on skewed sensitive data, it is highly probable to get unfairness.
Chapter 5. Case studies

5.1. Datasets

(a) % of Yes_recidivism on all data for each combination

(b) % of No_recidivism on all data for each combination

(c) % on Yes_recidivism for each combination

(d) % on No_recidivism for each combination

(e) % of Yes_recidivism on each combination

(f) % of No_recidivism on each combination

Figure 5.2: IMAGE RECIDIVISM ON DIFFERENT COMBINATIONS
Since we have only categorical data, except for the number of priors, we will focus our interest on the possible relationships among the sensitive categorical attributes. We performed the Pearson’s Chi-square test and we plotted the residuals in a corrplot, for different attribute combinations. We reported here in figure 5.3 the resulting Pearson’s Chi-square test graphs, to understand how the three sensitive attributes are related to the target.

![Figure 5.3: COMPAS Pearson’s Chi-square test](image)

Positive residuals are in blue: these values in cells specify an attraction (positive association) between the corresponding row and column variables. Negative residuals are in red: this implies a repulsion (negative association) between the corresponding row and column variables.

As we already noticed previously, there is a strong association between Age below 25 and recidivism and between African-American and recidivism. Now, we can also observe that there is a relevant positive correlation also for females and no-recidivism as for other age or ethnic categories.

In our test we got $p-value < 2.2 \cdot 10^{-16}$ for both Age category and ethnicity; $p-value = 2.898 \cdot 10^{-15}$ for gender attribute, namely all significantly low values, so that we could reject the null hypothesis of independence among variables.

5.1.1.3 Classification

As we already mentioned in chapter 4, we used logistic regression to make our own predictions. We randomly sampled our data: 70% as training test and 30% as test set. We used R `seed()` function to make the experiment repeatable, so that we have the same results at each run time.

We chose to use an optimal cutoff for the predicted probabilities: locating the cut-off point requires a compromise between sensitivity (TNR) and specificity (TPR) and we found it by equalizing their two curves, as in figure 5.4. In fact, there are several approaches to this problem, but this is one of the most frequently used criterion for determination of the test cutoff value: this point of the curve is where the product of these two indices ($Sensitivity \cdot Specificity$) is maximum (see [25]).

Once we found the optimal cutoff we defined the predictions and the resulting confusion matrix was the one in figure 5.5.
Choens Kappa is quite good, we can consider it as ‘fair’ regarding Choens suggestions. The accuracy is the ratio of correct predictions to total predictions made and it is close to 70%, then it is acceptable. Among the other measures, we see F1 score, which is more explicating than the others, but also not so useful, since our target was quite balanced from the beginning. An F1 score reaches its best value at 1 and worst value at 0, then in this case is similar to accuracy and we can take it as acceptable.

Lastly, we plotted the density of the predicted probabilities for each sensitive attribute (figure 5.6).

The vertical line represents the optimized cutoff: we can clearly notice that some subcategories are more likely classified as recidivists, such as age below 25, while some others are predominantly classified as non-recidivists, like Asians.

In the following section we will try to understand which is the most mistreated sensitive attribute, hence the one for which we have highest unsatisfied fairness metrics parity.
5.1.4 | Fairness metrics

For fairness analysis we took advantage of the fairness package in CRAN for R language. This library gives the possibility to have absolute and relative values for each of the fairness metrics described in chapter ?? . The relatives values are compared to a base subcategory, that can be chosen indistinctly, since it will be given the value to this base subcategory and a comparative value to all the others. The objective of the parity metrics will be having approximately the same values for each subcategory (figures 5.7, 5.8, 5.9), therefore when we plot the relative values for each subcategory, for each metric, we desire to have all of them as close as possible to value 1. However, this goal is evidently not reached and there are subcategories for which barplots are even missing in some metrics, probably due to under-representation in the dataset. In fact, later we will see that when we balance these sensitive attributes, we will not get this kind of issue.

All the fairness metrics numerical values are available in appendix B.

Come this far, how can we detect the sensitive attribute in which we have the most mistreated subcategories in terms of fairness? We compared the delta-percentages for each fairness metric pairwise with respect to the sensitive attributes, then the worst results are the ones we obtained by comparing ethnicity to the other two sensitive attributes, as in figures 5.10a and 5.10b. In order to make this comparisons we attributed a value for each fairness metric plot in figures 5.7-5.8-5.9 by calculating the mean signed deviation for each subcategory to the value 1. Then we compared these values of one attribute to the ones of the others.

In table 5.4 there are the values of ethnicity compared to Female and in table 5.5 there are the ones of ethnicity compared to Age. We reported here only these two, as the most significant ones.

In both cases there are few ethnicity fairness values that are better than the ones for the other sensitive attributes. We can observe in particular that the NPV parity is extreamly lower for ethnicity than the other attributes (even nearly 1500% less). How is it possible? If we look at the single fairness metrics plots for ethnicity, we can see that Native Americans have an almost doubled value than Caucasian and Asians are considered as 0 value, even though, to be more precise, there were not enough Asians to get this metric value for this subcategory: indeed, the actual calculated value is 'NaN' (see numerical values in appendix B, that means
Figure 5.7: COMPAS fairness metrics Age
Chapter 5. Case studies

5.1. Datasets

Figure 5.8: COMPAS fairness metrics ethnicity
Figure 5.9: COMPAS fairness metrics Female
there were no Asians subjects predicted recidivists (negative class) that were truly recidivists. Overall, this comparison for NPV parities means that there is much more disparity in predicted recidivists that are actual recidivists among ethnic groups than among age/gender categories. Namely if we take randomly an Asian and a Native-American, is much more likely to have an Asian both predicted and actual recidivist and, at the same time, a Native-American predicted recidivist but actually non-recidivists, than a randomly selected male-female couple with the respective same predicted characteristics of the two ethnic subcategories.

Another sensibly low metric difference, especially regarding the comparison to Female, is the mcc-parity: we know that for imbalanced dataset this metric might be not reliable, but our dataset is quite balanced for the recidivism target class, hence we cannot consider MCC as not indicative from the outset. In addiction, MCC takes into account NPV for its calculation, then we could expect it reflects the same trend of NPV parity. This low percentage difference
in MCC parity explains that the classifier (in terms of all TP, FP, TN and FN) could work in much more different ways for the ethnicity subgroups than for the gender subgroups.

The last visibly low metric comparison is the predictive rate parity, that we analysed better under the name of sufficiency: compared to Female in particular, it reaches the 903% less. No improvements for equalized-odds (separation) or for demographic/proportional parity (independence) goes along with this comparative sufficiency decrease. Sufficiency constrains having equal PPV (or equivalently FDR). This relates to the idea of calibration, the notion that, between two subgroups, the rate of actual recidivists subjects in the predicted-recidivist-portion (all the predicted recidivists in the dataset) are equal across any two sensitive groups. However, in both graphs, we see a slightly better FPR parity for ethnicity than for the other two attributes: it might reflects as well in a mildly better performance for equalized-odds in ethnicity-Age graph, since it requires both FPR parity and TPR parity. Whereas despite of this fact, in ethnicity-Female graph we have anyway a comparative reduction of equalized-odds metric, probably due to a worse satisfaction of TPR parity for ethnicity than for Female.

In conclusion, for COMPAS dataset we chose to focus on the ethnicity sensitive attributes for further fairness analysis.

5.1.1.5 | Bias mitigation

The first bias mitigation technique that we apply for every dataset is resampling, for rebalancing. We used Shannon index as a metric for detecting changes among our data, bearing in mind that it increases as both the richness and the evenness of the community increase. As we are not modifying the number of species (subcategories), all the Shannon index changes are based on subgroups evenness. Of course, when we balance the data towards an attribute, we will see Shannon index changes within that attribute, but we performed this analysis specifically to observe if these shifts may influence on the others as well.

For COMPAS we created 7 fully balanced datasets and we report for each of them the Shannon index comparison to the original data (see the corresponding references):

- balanced_data0: balanced for Two_yr_recidivism. No relevant improvements in diversity 5.11a, as we expected, since the target was already almost fully balanced.

- balanced_data1: balanced for Female. Of course higher Shannon index value for Female, namely less diversity in this category and higher evenness 5.11b.

- balanced_data2: balanced for ethnicity. Great increase of Shannon index for ethnicity, concurrent with an exceptional raising for Number_of_Priors 5.11c, that reflects in a change of distribution, with slightly lower standard deviation (0.8469448). In this case, we would accept the compromise to lose Number_of_Priors diversity in favor of ethnicity balancing.
Chapter 5. Case studies

5.1. Datasets

- **balanced_data3**: balanced for Age. Soft increment for Age Shannon index, that goes along with an even higher increment for Number_of_Priors 5.11d.

- **balanced_data4**: balanced for Two_yr_recidivism within each fully balanced subcategory of ethnicity [Two_yr_recidivism|ethnicity]. We tried this combination to see if we could get better improvements compared to balanced_data2. In fact, the Shannon index results are pretty much the same, except for a very light improvement for Two_yr_Recidivism, but, for instance, no other evident changes for Number_of_Priors or others 5.11e.

- **balanced_data5**: balanced for Two_yr_recidivism within each unbalanced subcategory of ethnicity. In this case we wanted to assure that the results were pretty much the same as balanced_data0 and indeed it is what we got in terms of Shannon index 5.11f.

- **balanced_data6**: balanced for ethnicity within each balanced subcategory of Female [ethnicity|Female]. Since apart from ethnicity, the second most unbalanced sensitive attribute was Female (as we can notice from balanced_data1), we balanced both female and ethnicity 5.11g. We could have chosen to invert the balancing orders: firstly balancing for ethnicity and then for Female within each already balanced subcategory of ethnicity and we did this in balanced_data7. We decided not to modify the original data with more than two balancing at the same time, because it could have strayed too far from the characteristics of the initial population.

- **balanced_data7**: balanced for Female within each balanced subcategory of ethnicity [Female|ethnicity]. In this case, there is practically no changing for Shannon index 5.11h.

How can we select the balanced dataset for which we get the best fairness performance? For each of them, we performed again classification with logistic regression and then we compared the fairness metrics between the original and balanced datasets. This is not a standard work: actually, we can never say in a deterministic way if a dataset is fairer than another. As we already stressed in the previous chapters, we have to accept compromises, because there is no way to get each kind of fairness equally satisfied at the same time, not even for a single sensitive attribute, not mention all of them. Hence, we decided to focus on ethnicity and we should consider which fairness metric is more relevant for us, depending on the study case we are dealing with. For recidivism classification is it better to lend more weight to independence, sufficiency or separation? This is the question we have to make when we face a data fairness analysis. However, since we have no legal expertise in this sector and this is not the aim of this research, we have addressed our approach to not let prevaricate one fairness criterion on the others. We simply analysed the different fairness metrics and tried to select the balanced dataset which gave us the overall better outcomes.
Figure 5.11: Shannon index comparison between original dataset and balances datasets.
5.1.6 | Comparisons

- **Observations on balanced datasets VS original data:**
 In figures 5.12a÷5.12h are reported the most relevant comparisons between different classified datasets, only regarding the ethnicity variable, which is the one we chose as most mistreated.
 As a matter of fact, we get much better results for almost every fairness metric when there is ethnicity fully balanced (figures 5.12c and 5.12e). If we look further, we notice that for 5.12e we lose accuracy parity in favor of higher proportional parity. In this case, both Two_yr_Recidivism and ethnicity are balanced. Keep in mind that these two are both comparisons to the original classified dataset: we get much better values for demographic parity in 5.12e than in 5.12c, but this is not as indicative as proportional parity. Indeed, it is much better to get higher proportional parity values than demographic parity values in terms of fairness, as we explained in 4.
 However, it is noticeable the fact that when Two_yr_Recidivism is fully balanced, the new dataset gives an overall worse fairness performance 5.12a than when Female is fully balanced 5.12b. That is another reason why a balancing combination of Female and ethnicity 5.12g or 5.12h might be more interesting than a combination of ethnicity and recidivism 5.12e.
 The plausible assumption of having similar fairness performance when balancing an attribute such as Two_yr_Recidivism on its own 5.12a and within the subcategories of ethnicity 5.12f is evidently deceptive: in spite of having worse results for some metrics, we got widely different metric values in two cases. Another proof of evidence for this is the comparison between the last two plots 5.12g and 5.12h, both balanced for ethnicity and Female, but in different ways.

- **Observations on selected balanced datasets:**
 After our previous observations, we retrieve indeed that when we focus on ethnicity fairness, the best fairness metrics performances are obtained of course on ethnicity balanced datasets. Hence, we compared the four ethnicity balanced datasets and we report in figure 5.13a÷5.13b the most relevant comparative graphs.
 The immediate deduction is that balanced_data2 does not satisfy Independence for ethnicity groups as much as balanced_data4 does and balanced_data7 does not satisfy Separation as much as balanced_data6 does.

Lastly, in figure 5.14 we have a useful overview of all balanced datasets metric values, split in different graphs for each metric. In this way, it could be immediate the choice of one dataset over another, depending on which metric we want to satisfy the most. For instance, if we need to have false negative rates as similar as possible for each subcategory, it is better to use balanced_data4.
In these graphs we have plotted the mean deviations from perfect fairness for each fairness
Figure 5.12: COMPAS fairness metric comparison between balanced datasets and original data.
Figure 5.13: COMPAS fairness metric comparison between: (a) balanced_data2-balanced_data4 and (b) balanced_data6-balanced_data7.

metric (all subgroups with value 1), for balanced classified datasets and original classified dataset (Classified_dt). Notice that we do not have comparative values here and the optimal value is 0 (no deviation, namely all subgroups with the same fairness metric value).
Figure 5.14: Mean deviations from complete fairness, for each fairness metric, for balanced classified datasets and original classified dataset
5.1.2 | Drugs

For Drugs dataset we will not explain all the analysis steps as it was done for COMPAS data. Instead, we will report the significant results that will be used for the last comparative analysis among the different datasets. For any further detail, the R code for all datasets analysis is available in appendix A.

5.1.2.1 | Context description

The database was collected by Elaine Fehrman between March 2011 and March 2012 for research proposal, by means of an online survey tool from Survey Gizmo was employed to gather data. The study recruited 2051 participants over a 12-month recruitment period and the data were collected maximising anonymity. Every participant has been categorized in a different level of 'drug user' based on the recency of use, for each drug. The drugs evaluation regards In the original research [22], two isolated categories ('Never used' and 'Used over a decade ago') are set into the class of non-users and all other categories form the class of users; whereas, we decided to categorize only 'Never used' individuals as non-users. The aim of the original study was to evaluate the individual drug consumption risk separately, for each drug (18 different) and group of drugs. However, our main interest in this case lies in the fact that usually, for clinical cohorts, data are biased when compared with the general population and in fact [22] research showed that this dataset truly is biased when compared to the data published by Egan, et al [19] and Costa Jr & McCrae [43]. The 5 scores, the impulsiveness and the sensation seeing are the results of the so-called NEO Five-Factor Inventory (NEO-FFI-R) questionnaire, which is a highly reliable measure of basic personality traits.

5.1.2.2 | Data exploration

This is a cleaned data frame with 1885 rows and 12 variables, available on UCI repository. Among the variables there are sensitive attributes and some continuous scores: we will not analyse the scores because they brings information we are not interested to the aim of our research. However, we will not perform any feature selection for classification and we will involve them in the logistic regression model. Here is the list of variables:

- **Age**: is age of participant.
- **Gender**: is gender of participant.
- **Education**: is level of education of participant.
- **Country**: is country of current residence of participant.
- **Ethnicity**: is ethnicity of participant.
Chapter 5. Case studies

5.1. Datasets

- **Nscore**: is NEO-FFI-R Neuroticism.
- **Escore**: is NEO-FFI-R Extraversion.
- **Oscore**: is NEO-FFI-R Openness to experience.
- **Ascore**: is NEO-FFI-R Agreeableness.
- **Cscore**: is NEO-FFI-R Conscientiousness.
- **Impulsive**: is impulsiveness measured by BIS-11.
- **SS**: is sensation seeking measured by ImpSS.

Other columns list several types of drugs. We’ll select only two of them for which predicting the consumption: Coke and Crack.

At first, we only had real values, then we mutated them to categorical, to get more data readability. After that, the data are presented as in table 5.6.

Data are highly skewed (except for Gender, which is fully balanced), as we can observe in figure 5.15.

![Drug dataset categorical variable distributions](image)

Figure 5.15: Drug dataset categorical variable distributions

Likewise COMPAS case, there are three sensitive attributes in our data (Gender, Ethnicity and Age) and a bunch of other variables that might be even proxies for the sensitive ones. Since we are interested into two different drug consumption predictions, in the following analysis we will proceed in parallel for Coke and Crack.

In figure 5.16 is shown the Coke percentage consumption distribution on the whole dataset and on each single combination of sensitive attributes. Whereas, in figure 5.17 there are the same plots for Crack consumption. These data regards only subjects who used the corresponding drug. Moreover, we did not perform any cross evaluation for the two drugs consumption: we limited the research on an individual separated consumption analysis.

In figure 5.18 and 5.19 are reported the Chi-square residuals of Pearson’s Chi-square test (respectively for Coke and Crack variables), in order to see any possible relationship or causal
Table 5.6: Drug dataset first rows

<table>
<thead>
<tr>
<th>Age</th>
<th>Gender</th>
<th>Education</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Nscore</th>
<th>Escore</th>
</tr>
</thead>
<tbody>
<tr>
<td>25_34</td>
<td>Male</td>
<td>Doctorate</td>
<td>UK</td>
<td>White</td>
<td>-0.68</td>
<td>1.94</td>
</tr>
<tr>
<td>35_44</td>
<td>Male</td>
<td>ProfessionalCert</td>
<td>UK</td>
<td>White</td>
<td>-0.47</td>
<td>0.81</td>
</tr>
<tr>
<td>18_24</td>
<td>Female</td>
<td>Masters</td>
<td>UK</td>
<td>White</td>
<td>-0.15</td>
<td>-0.81</td>
</tr>
<tr>
<td>35_44</td>
<td>Female</td>
<td>Doctorate</td>
<td>UK</td>
<td>White</td>
<td>0.74</td>
<td>-1.63</td>
</tr>
<tr>
<td>65_ Female</td>
<td>At18</td>
<td>Canada</td>
<td>White</td>
<td>-0.68</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>45_54</td>
<td>Male</td>
<td>Masters</td>
<td>USA</td>
<td>White</td>
<td>-0.47</td>
<td>-1.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oscore</th>
<th>Ascore</th>
<th>Cscore</th>
<th>Impulsive</th>
<th>SS</th>
<th>Coke</th>
<th>Crack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.44</td>
<td>0.76</td>
<td>-0.14</td>
<td>-0.71</td>
<td>-0.22</td>
<td>Used</td>
<td>Never_used</td>
</tr>
<tr>
<td>-0.85</td>
<td>-1.62</td>
<td>-1.01</td>
<td>-1.38</td>
<td>0.40</td>
<td>Never_used</td>
<td>Never_used</td>
</tr>
<tr>
<td>-0.02</td>
<td>0.59</td>
<td>0.58</td>
<td>-1.38</td>
<td>-1.18</td>
<td>Used</td>
<td>Never_used</td>
</tr>
<tr>
<td>-0.45</td>
<td>-0.30</td>
<td>1.31</td>
<td>-0.22</td>
<td>-0.22</td>
<td>Never_used</td>
<td>Never_used</td>
</tr>
<tr>
<td>-1.56</td>
<td>2.04</td>
<td>1.63</td>
<td>-1.38</td>
<td>-1.55</td>
<td>Never_used</td>
<td>Never_used</td>
</tr>
<tr>
<td>-0.45</td>
<td>-0.30</td>
<td>0.94</td>
<td>-0.22</td>
<td>0.08</td>
<td>Never_used</td>
<td>Never_used</td>
</tr>
</tbody>
</table>

Inference between consumption and sensitive attributes. Regarding both Coke and Crack, Chi-squared approximation may be incorrect, since one Chi-squared test assumption is broken: there are indeed less then 5 subjects over 65 years old who have used the drug. We have also a similar borderline situation for Ethnicity variable. However, we can rely on the Gender Chi-square test: there is a strong association between male and both drugs consumption.

5.1.2.3 | Data classification

We modelled again a logistic regression, which involved all features as predictors. The positive class is "Never_used" and the negative is "Used". The confusion matrix is quite different for Coke (figure 5.20) and Crack (figure 5.21): we can notice a really high TPR for Crack (actual non-consumers predicted as non-consumers) that is not so surprising, since 86% of subjects are crack non-consumers. In figure 5.22 are represented the density plots for Coke consumption probability, with the relative optimal cutoff. It is relevant that in Crack case the optimized cutoff is surprisingly low (0.1829116), probably due to high unbalanced data for Crack consumption variable (only 14% of subjects used this drug), which also leads to issues for fairness...
Chapter 5. Case studies

5.1. Datasets

Figure 5.16: % of coke consumption on: (a) total and (b) each sensitive attribute combination.

Figure 5.17: % of crack consumption on: (a) total and (b) each sensitive attribute combination.

Figure 5.18: Drug dataset Pearson’s Chi-square test for Coke

Figure 5.19: Drug dataset Pearson’s Chi-square test for Crack
Figure 5.20: Drug dataset Coke classification confusion matrix

Figure 5.21: Drug dataset Crack classification confusion matrix
metrics and density probabilities plots (hence, we will not report them here for Crack case).

5.1.2.4 | Fairness metrics

We tried several sensitive attributes fairness metrics comparisons and, as well as for COMPAS, it results that for both Coke (figures 5.23a and 5.23b) and Crack (figures 5.24a and 5.24b) the most critic sensitive attribute is Ethnicity. For all the fairness metrics plots and values, please refer to the attached code in appendix B.

5.1.2.5 | Bias mitigation

Taking into account that Gender is already balanced in the original dataset, we created 3 balanced datasets for Coke as follow:

- balanced_data0: balanced for Ethnicity.

- balanced_data1: balanced for Country. In this way, we wanted to see if there could be any improvement in Ethnicity fairness metrics, since Country may be a proxy for Ethnicity.

- balanced_data2: balanced for Ethnicity and Age. For each already balanced ethnic subcategory, we balanced on Age. Here we got some issues in using SMOTE: since there are too few examples in some subcategories, replicas are introduced by the algorithm. It was indeed impossible to balance Ethnicity for each balanced Age subcategory (opposite order), but this combination was still acceptable for metrics evaluation.

And 3 balanced datasets for Crack:

- balanced_data0: balanced for Crack.

- balanced_data1: balanced for Crack and Ethnicity.

- balanced_data2: balanced for Crack and Age. In this case, SMOTE could not perform Age balancing within each balanced subcategory of Crack, due to few examples in subcategories, then we simply run SMOTE for Age on the whole balanced_data0.

For this dataset we faced dimension problems: when we classify the datasets we get a little more than 500 rows and the fairness metric computation does not work properly on such small datasets, especially when there are underrepresented subcategories in some attributes. In particular in Crack case, we had too few samples for Crack consumers and we had to create balanced datasets always balanced towards Crack in order to get fairness metrics values. Anyway, even if all these balanced datasets are balanced towards Crack, it is not surprising to see that some metrics have better mean deviations in case we only balance Crack. Indeed,
Chapter 5. Case studies

5.1. Datasets

Figure 5.22: Drug dataset Coke density probabilities

Figure 5.23: Drug dataset Coke fairness metrics comparisons between Ethnicity VS (a) Age and (b) Gender.

Figure 5.24: Drug dataset Crack fairness metrics comparisons between Ethnicity VS (a) Age and (b) Gender.
when we try to balance a couple of attributes with SMOTE or ROSE, it does not guarantees to reach a fully balancing for both attributes if we cannot perform the algorithm within each balanced subcategory of Crack. Then, for balanced_data1 and balanced_data2 we do not get a 50-50 proportions for Crack subcategories and this can influence the fairness metric outcomes.

We reported here in figure 5.25 and 5.26 the Mean deviations from complete fairness of balanced classified datasets and original classified dataset (Classified_dt).
Chapter 5. Case studies

5.1. Datasets

Figure 5.25: Mean deviations from complete fairness, for each fairness metric in Coke case, for balanced classified datasets and original classified datasets
Figure 5.26: Mean deviations from complete fairness, for each fairness metric in Crack case, for balanced classified datasets and original classified datasets.
Conclusions

Automated decision systems are likely to be used more and more in every process of our ordinary everyday life. Our first initial analysis - concerning how these systems are being used in the past and the kind of bias and discrimination they may lead to - brings evidence of different and crucial influence of the decisions issued by such systems on different groups of population. In addition, lack of transparency and accountability caused the developing organizations to be criticized and exposed to further investigation. Discriminating behaviors may arise for many reasons, hence before deployment of such tools it is necessary a risks assessment and evaluation of their impact on the society. Thus, it has an ethical importance to investigate whether such algorithms provide outcomes that can declass, demerit, or exclude individuals belonging to disadvantaged groups.

6.1 | Achieved Aims and Objectives

With this research we intended to carry out a comparative analysis of the various known fairness metrics, for the evaluation of classification systems, which are actually a small part of all the automatic decision systems that we can deal with today. In particular, we observed how the metrics varied based on the balance of the datasets, which is reflected in an alteration of the bias present in the data.

We also made our contribution to research on fairness in machine learning by focusing in particular on the balancing of sensitive attributes, which leads to the reduction of selection and population bias.

6.2 | Critique and Limitations

Surely a great limitation in the field of fairness in machine learning lies in the fact that every situation that interfaces with human and / or social variables requires an ad hoc study, dedicated only to particular circumstances and situations. It is not possible to recreate automated
tools for the removal of absolute discrimination, in any context. Furthermore, even the fact that each sensitive attribute must be analyzed in its own right, did not allow us to carry out a cross or aggregate analysis of all the attributes, for an overall assessment of discrimination. Another limitation is certainly due to the innumerable presence of types of bias (here we have created a taxonomy of the best known, but it is constantly evolving), which therefore could not be analyzed all, specifically for our datasets.

A last one also concerns the difficulty in actually being able to quantize a data such as fairness: numerous researches have now been conducted, but it is not possible - and it would certainly not be ethically correct - to establish (only) numerically whether a process is more or less discriminating than a other.

6.3 | Future Work

This research can be deepened with various analyzes of other bias mitigation techniques, such as those provided by the IBM AIF360 tool. Besides, it is possible to create a tool for comparing fairness metrics that takes into account other factors, such as the type of attribute being analyzed or parameters relating to the context of application (e.g. legal context, recruiting systems etc.), perhaps through benchmarks obtained from previous analyzes.

A further point of study is the combination and comparison of the various techniques of debias, to study whether there could be a link between certain social contexts and more marked improvements by means of certain specific techniques.
R code for COMPAS dataset:

```r
## prendo il dataset dalla libreria fairness di CRAN
library(fairness)
library(knitr)
library(recipes)
library(skimr)
library(modeldata)
library(RColorBrewer)
library(tangram)
library(dplyr)
library(vegan)
library(diverse)
library(randomForest)
library(caret)
library(varhandle)
library(MASS)
library(dostats) # per %contains%
library(graphics) # per mosaicplot
library(corrplot)
library(wesanderson)
library(Amelia)
library(ROCR) # per ROC function
library(ROSE)#binary balancing
library("UBL") # multiclass balancing
library(ggplot2)
library(ggpubr)
library(xtable)
library(tidyrr)

# carico il file util con le altre funzioni
source("util.R")
```
Appendix A. R code

```r
#load data
raw_data = fairness::compas
write.csv(raw_data, 'COMPAS.csv')

# in questo dataset gi stato fatto del lavoro rispetto al dataset originale. Tra l'altro: nel ds originale c'era anche il marital status, che qui viene eliminato (probabilmente perch si tratta di un dato personale e non sensibile?), poi lo score nel ds originale presentato in modo diverso (raw score, decile score, text score...)

h = head(raw_data)
print(xtable(h, type = "latex"), file = "COMPAShead.tex")

#probability e predicted per ora non ci interessano, perci eliminiamo le due colonne
raw_data$predicted = NULL
raw_data$probability = NULL

# sostituisci yes/no di 2yrRecidivism con Recidivism\No recidivism
levels(raw_data$Two_yr_Recidivism)[levels(raw_data$Two_yr_Recidivism) == "yes"] <- "Yes_recidivism"
levels(raw_data$Two_yr_Recidivism)[levels(raw_data$Two_yr_Recidivism) == "no"] <- "No_recidivism"

# crea una sola colonna di age, con under25/over45/between25_45
raw_data$Age <- mapply(create_Age, raw_data$Age_Below_TwentyFive, raw_data$Age_Above_FourtyFive)
raw_data$Age = as.factor(raw_data$Age)

h = head(raw_data)
print(xtable(h, type = "latex"), file = "COMPAShead.tex")

summary(raw_data)
```

```r
# data visualization CATEGORICAL

# Filter out categorical columns
cat_data <- raw_data[, sapply(raw_data, is.categorical)]
cat_names <- names(cat_data)

# pie print per ogni colonna categorica
for (i in seq(1, length(cat_data), 1)) {
pie_print(cat_data, cat_names[i])
}
a = table(raw_data)
a = as.data.frame(a)
a$Number_of_Priors = NULL
```
Appendix A. R code

```r
# ggballoonplot(a, x = "ethnicity", y = "Age", size = "Freq",
# color = "#8591C2", fill = "#8591C2", facet.by = "Female",
# ggtheme = theme_bw()) +
# scale_fill_gradientn(colors = wes_palette(2, name="GrandBudapest"))

# selezionario yes_recidivism e plotto la stessa cosa
raw_data_copy = raw_data
a = subset(raw_data_copy, Two_yr_Recidivism =="Yes_recidivism")
a = table(a)
ggballoonplot(a, x = "ethnicity", y = "Age", size = "Freq",
          color = "#F24D4D", fill = "#F24D4D", facet.by = "Female",
          ggtheme = theme_bw())

# selezionario no_recidivism e plotto la stessa cosa
a = subset(raw_data_copy, Two_yr_Recidivism =="No_recidivism")
a = table(a)
ggballoonplot(a, x = "ethnicity", y = "Age", size = "Freq",
          color = "#50C395", fill = "#50C395", facet.by = "Female",
          ggtheme = theme_bw())

## missing values
missmap(raw_data, main = "Missing values vs observed")

# Create a boxplot using base R
boxplot(Number_of_Priors~Female,data=raw_data)
boxplot(Number_of_Priors~Age,data=raw_data)
boxplot(Number_of_Priors~ethnicity,data=raw_data)

# sembra che ci siano parecchi outlier del numero dei precedenti in funzione degli attributi
# sensibili, che potrebbero quindi non essere outlier o alcuni essere dovuti ad errori di
# registrazione

boxplot(Number_of_Priors~Misdemeanor,data=raw_data)
# ci sono anche degli outlier del numero dei precedenti in funzione del fatto che il crimine
# sia stato (o meno) registrato

## plotto lo Two_yr_recidivism al variare di Female

# d = group_by_feature_sensitive(raw_data, "Two_yr_Recidivism", "Female")
# non riesco a risolvere il problema di
taxtors = c("Two_yr_Recidivism", "Female"),
dataframe = as.data.frame(d),
```
Appendix A. R code

```r
errbar = FALSE,
ylim = c(0, as.numeric(d[4])+0.1*as.numeric(d[4]),
col = c("#50C395","#F24D4D")
)  # I increased the upper y-limit to accommodate the legend.

#ethnicity
d = group_by_feature_sensitive(raw_data, "Two_yr_Recidivism", "ethnicity")
bar(dv = count_val,
    factors = c("Two_yr_Recidivism", "ethnicity"), # non riesco a risolvere il problema di
    # passare in questa lista una variabile contenente la stringa, invece della stringa stessa.
dataframe = as.data.frame(d),
    errbar = FALSE,
    ylim = c(0, as.numeric(d[4])+0.1*as.numeric(d[4]),
col = c("#50C395","#F24D4D")
)  # I increased the upper y-limit to accommodate the legend.

#Misdemeanor
d = group_by_feature_sensitive(raw_data, "Two_yr_Recidivism", "Misdemeanor")
bar(dv = count_val,
    factors = c("Two_yr_Recidivism", "Misdemeanor"), # non riesco a risolvere il problema di
    # passare in questa lista una variabile contenente la stringa, invece della stringa stessa.
dataframe = as.data.frame(d),
    errbar = FALSE,
    ylim = c(0, as.numeric(d[4])+0.1*as.numeric(d[4]),
col = c("#50C395","#F24D4D")
)  # I increased the upper y-limit to accommodate the legend.

#Age
d = group_by_feature_sensitive(raw_data, "Two_yr_Recidivism", "Age")
bar(dv = count_val,
    factors = c("Two_yr_Recidivism", "Age"), # non riesco a risolvere il problema di passare
    # in questa lista una variabile contenente la stringa, invece della stringa stessa.
dataframe = as.data.frame(d),
    errbar = FALSE,
    ylim = c(0, as.numeric(d[4])+0.1*as.numeric(d[4]),
col = c("#50C395","#F24D4D")
)  # I increased the upper y-limit to accommodate the legend.

## ------------------------------------------------------------------------------------
#NUMERICAL COLUMN
#Number_of_Priors come lo visualizzo/interpreto? essendo normalized to mean = 0 and standard
#deviation = 1

## ------------------------------------------------------------------------------------
#con frequent_comb1 non devo dividere "manualmente" tra i due valori di Two_yr_Recidivism (cio
#yes_recidivism e no_recidivism), ma lo fa in automatico, restituendomi poi due tabelle.
```
Appendix A. R code

Per capire quale sia riferita a yes e quale a no, occorre guardare le colonne: in una tabella presente la colonna "percentage_on_yes_recidivism" e nell'altra "percentage_on_no_recidivism" e le due tabelle sono quindi riferite rispettivamente a "yes_recidivism" e "no_recidivism"

```r
frequent_comb1(raw_data, filter = "Two_yr_Recidivism", c("Age", "ethnicity"))
frequent_comb1(raw_data, filter = "Two_yr_Recidivism", c("Age", "ethnicity", "Female"))
```

#plotto la distribuzione delle combinazioni (in proporzione)

```r
frequent_comb1(raw_data, filter = "Two_yr_Recidivism", c("Age", "Female"))
frequent_comb1(raw_data, filter = "Two_yr_Recidivism", c("ethnicity", "Female"))
frequent_comb1(raw_data, filter = "Two_yr_Recidivism", c("ethnicity"))
```

##

#COME SI LEGGE LA TABELLA?

#esempio con frequent_comb(raw_data, data_good, c("Marital", "ageR"))

#dataset originale: raw_data

#dataset filtrato: data_good (filtro su status=good)

#attributi che mi interessano: c("Marital", "ageR") -> pu essere una lista di lunghezza variabile

#-Percentage_on_partition rappresenta la probabilit condizionata: es. P(marital=x,ageR=y|status=good).

#-percentage_on_total la percentuale della coppia selezionata (qui ad esempio data dalle combinazioni di marital e ageR) sul totale delle righe del dataset originale. p = #(status=good, marital=x, ageR=y)/#(numero righe dataset originale)

#-numrows_filter_on_col un parametro che non mi interessa in output, ma non riesco ad eliminarlo dalla funzione

#-percentage_on_Marital_ageR la probabilit condizionata p(good| marital=x, ageR=y) = #(status=good, marital=x, ageR=y)/#(marital=x, ageR=y)

#####

#esempio: dato Status="good" probabile al 25,81% cheo si tratti di una persona sposata, tra i 30 e 40 anni.

#esempio: dato Status="bad" probabile al 14.49% che si tratti di un single sotto i 25 anni.

#####

##

#plotto la distribuzione delle combinazioni (conteggio casi)

```r
a = frequent_comb1(raw_data, filter = "Two_yr_Recidivism", c("Age", "ethnicity", "Female"))
```

```r
a1 = as.data.frame(a[1]) #la tabella 1 ha sempre no_recidivism
a2 = as.data.frame(a[2]) #la tabella 2 ha sempre yes_recidivism
```

```r
ggballoonplot(a1, x = "ethnicity", y = "Age", size = "percentage_on_No_recidivism",
             color = "black", fill = "#50C395", facet.by = "Female", ggtheme = theme_bw())
```

#percentage_on_Age_ethnicity_Female

```r
75
```
Appendix A. R code

```r
library(ggplot2)
library(tidyverse)
library(viridis)

# Data Preparation

# Remove columns
a1$percentage_on_No_recidivism = NULL
a1$percentage_on_total = NULL
a1$percentage_on_Age_ethnicity_Female = NULL
a2$percentage_on_Yes_recidivism = NULL
a2$percentage_on_total = NULL
a2$percentage_on_Age_ethnicity_Female = NULL

# Print tables
print(xtable(a1, type = "latex"), file = "No_recFreqComb.tex")
print(xtable(a2, type = "latex"), file = "Yes_recFreqComb.tex")

# Mosaic Plots
mosaicp(raw_data, c("Two_yr_Recidivism", "Age"))
mosaicp(raw_data, c("Two_yr_Recidivism", "ethnicity"))
mosaicp(raw_data, c("Two_yr_Recidivism", "Female"))

# Chi-Squared Test
chisq_fun(raw_data, "Two_yr_Recidivism", "Age")
chisq_fun(raw_data, "Two_yr_Recidivism", "ethnicity")
```

chisq.fun(raw_data, "Two_yr_Recidivism", "Female")

#In console possiamo osservare la differenza tra i valori osservati (prima tabella) e i valori attesi (seconda tabella).

SHANNON INDEX

#uso funzioni create nella libreria

source("util.R")

shannon_diversity(raw_data)

print_shannon(raw_data)

#metrica di diversità Shannon

sostituisco i livelli con valori numerici

levels(raw_data$Two_yr_Recidivism)[levels(raw_data$Two_yr_Recidivism)="yes"] <- 1
levels(raw_data$Two_yr_Recidivism)[levels(raw_data$Two_yr_Recidivism)="no"] <- 0

tabla <- c("Age_Above_FourtyFive", "Age_Below_TwentyFive")

cols_to_drop <- names(raw_data) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")

raw_data <- raw_data[, !cols_to_drop, drop = FALSE]

#split into train and test set

sample_size = floor(0.7*nrow(raw_data))

set.seed(42)

randomly split data

picked = sample(seq_len(nrow(raw_data)),size = sample_size)

training_set =raw_data[picked,]

test_set =raw_data[-picked,]

as.factor mi serve per fare una classificazione binaria

raw_data$Two_yr_Recidivism = as.factor(raw_data$Two_yr_Recidivism)

#devo anche eliminare recidivismo dal training_set

cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")

#training e test set senza variabile target

training_set_data <- training_set[, !cols_to_drop, drop = FALSE]

#anche sui dati di test

test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

#REGRESSIONE LOGISTICA

#in questo caso ho bisogno del dataset numerico

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism)="Yes_Recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism)="No_recidivism "] <- 0
Appendix A. R code

levels(training_set$Two_yr_Recidivism)

levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism)=="Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism)=="No_recidivism"] <- 0
levels(test_set$Two_yr_Recidivism)

poi commento le righe in cui calcola il modello perché ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family=binomial(link="logit"))
logitMod # capire cosa significano questi dati

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 per poi ottengo il cutoff ottimizzato anch'esso tra -1 e 1 e mi piace fare la predizione
classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)

--

ROC
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
plot(perf)

roc_fairness <- roc_parity(data = classified_dt,
outcome = 'Two_yr_Recidivism',
group = 'Female',
probs = 'pred',
preds_levels = c('Yes_recidivism','No_recidivism'),
base = 'Male')
roc_fairness$Metric
roc_fairness$ROCAUC_plot

AUC
AUC

plotto sensitivity e specificity in modo da individuare il cutoff ottimizzato
sens <- data.frame(x=unlist(performance(pred1, "sens")@x.values),
y=unlist(performance(pred1, "sens")@y.values))
spec <- data.frame(x=unlist(performance(pred1, "spec")@x.values),
y=unlist(performance(pred1, "spec")@y.values))

sens %>% ggplot(aes(x,y)) +
geom_line() +
geom_line(data=spec, aes(x,y,col="red")) +
Appendix A. R code

```r
scale_y_continuous(sec.axis = sec_axis(~., name = "Specificity")) +
labs(x="Cutoff", y="Sensitivity") +
theme(axis.title.y.right = element_text(colour = "red"), legend.position="none")

#troviamo l'optimal cutoff, cio l'optimal score che minimizza il misclassification error del modello di regressione logistica
optimized_cutoff = opt.cut(perf, pred1)#il cutoff ottimale leggermente pii basso di quello standard, che sarebbe invece 0.5

classified_dt2$pred = ifelse(classified_dt2$pred<optimized_cutoff,"No_recidivism","Yes_recidivism")

classified_dt2$pred <- factor(classified_dt2$pred, levels = c("Yes_recidivism", "No_recidivism"))

#matrice di confusione
cm <- confusionMatrix(data = as.factor(classified_dt2$pred), reference = as.factor(test_set$Two_yr_Recidivism))

draw_confusion_matrix(cm)

classified_dt$Two_yr_Recidivism)

#lo facciamo per tutti i sensitive attribute

#ripristino di nuovo i livelli yes/no per renderlo pi leggibile
levels(classified_dt$Two_yr_Recidivism)[levels(classified_dt$Two_yr_Recidivism)==1] <- "Yes_recidivism"
levels(classified_dt$Two_yr_Recidivism)[levels(classified_dt$Two_yr_Recidivism)==0] <- "No_recidivism"

#per scegliere la categoria "base" per cui confrontare tutte le altre, per ogni attributo sensibile, ci conviene guardare le tabelle delle frequenze plottate in precedenza:
```
```r
## ------------------------------------------------------------------------------------
fair_metrics(data = classified_dt,
outcome = 'Two_yr_Recidivism',
group = 'Age',
probs = 'pred',
preds_levels = c('No_recidivism', 'Yes_recidivism'),
cutoff = optimized_cutoff,
base = 'between25_45')

fair_metrics(data = classified_dt,
outcome = 'Two_yr_Recidivism',
group = 'ethnicity',
probs = 'pred',
preds_levels = c('No_recidivism', 'Yes_recidivism'),
cutoff = optimized_cutoff,
base = 'Caucasian')

fair_metrics(data = classified_dt,
outcome = 'Two_yr_Recidivism',
group = 'Female',
probs = 'pred',
preds_levels = c('No_recidivism', 'Yes_recidivism'),
cutoff = optimized_cutoff,
base = 'Male')

source("util.R")

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Two_yr_Recidivism',
group1 = 'Female',
group2 = 'ethnicity',
probs = 'pred',
preds_levels = c('No_recidivism', 'Yes_recidivism'),
cutoff = optimized_cutoff,
base1 = 'Male',
base2 = 'Caucasian')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Two_yr_Recidivism',
group1 = 'Age',
group2 = 'ethnicity',
probs = 'pred',
preds_levels = c('No_recidivism', 'Yes_recidivism'),
cutoff = optimized_cutoff,
base1 = 'between25_45',
base2 = 'Caucasian')
```

--
```
#la libreria ROSE si può usare soltanto per bilanciare attributi binari (nasce per bilanciare classificazione binaria)

```r
library("ROSE")
balanced_data = ovun.sample(Female~., data = raw_data, method="both", N = nrow(raw_data), p =0.5, seed = 42)$data
print_cmp_shannon(raw_data, balanced_data)
```

#library(imbalance)

```r
plotComparison(balanced_data, raw_data, attrs = c("ethnicity", "Number_of_Priors"), cols = 2, classAttr = "Two_yr_Recidivism")
```

#Filter out categorical columns

```r
cat_data <- balanced_data[, sapply(balanced_data, is.categorical)]
cat_names <- names(cat_data)
#pie print per ogni colonna categorica
for (i in seq(1,length(cat_data),1)){
pie_print(cat_data,cat_names[i])
}
```

```r
library("UBL")
#questo per il multiclass con la libreria UBL
source("util.R")
sample_size = floor(nrow(raw_data)/3)
#set a random seed per rendere l’esperimento ripetibile
set.seed(10)
data_reduced = raw_data[sample(nrow(raw_data), sample_size),]
balanced_data = AdasynClassif(ethnicity~., data_reduced, beta = 1, dist = "HEOM", k=1)
C.perc = list(Caucasian = 0.1, Asian = 0.1, Other=0.1, African_American=0.1, Hispanic=0.1, Native_American=0.1)
```

POSSO FARLO COS: Error in class.freq(dat, tgt) : non trovo la funzione "class.freq"

```r
#balanced_data = adasyn_mod(ethnicity~., data_reduced, beta = 1, dist = "HEOM", k=1) #NON POSSO FARLO COS: Error in class.freq(dat, tgt) : non trovo la funzione "class.freq"
```

```r
#balanced_data = adasyn_mod(ethnicity~., data_reduced, beta = 1, dist = "HEOM", k=1) #NON POSSO FARLO COS: Error in class.freq(dat, tgt) : non trovo la funzione "class.freq"
```

#Filter out categorical columns

```r
cat_data <- balanced_data[, sapply(balanced_data, is.categorical)]
cat_names <- names(cat_data)
#pie print per ogni colonna categorica
for (i in seq(1,length(cat_data),1)){
pie_print(cat_data,cat_names[i])
}
```

```r
#print_cmp_shannon(raw_data, balanced_data)
```

```r
--
```

```r
#ora provo a riplottare le metriche di fairness per ethnicity
#quindi prima faccio di nuovo sampling, regressione e trovo dataset classificato
source("util.R")
#sostituisco i livelli con valori numerici
levels(balanced_data$Two_yr_Recidivism)[levels(balanced_data$Two_yr_Recidivism)=="yes"] <- 1
```
levels(balanced_data$Two_yr_Recidivism)[levels(balanced_data$Two_yr_Recidivism) == "no"] <- 0
#rimuovo da balanced_data le colonne age_above e age_below
cols_to_drop <- names(balanced_data) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
balanced_data <- balanced_data[, !cols_to_drop, drop = FALSE]

#split into train and test set
sample_size = floor(0.7*nrow(balanced_data))
#set a random seed per rendere l’esperimento ripetibile
set.seed(42)

# randomly split data
picked = sample(seq_len(nrow(balanced_data)), size = sample_size)
training_set = balanced_data[picked,]
test_set = balanced_data[-picked,]

#as.factor mi serve per fare una classificazione binaria
balanced_data$Two_yr_Recidivism = as.factor(balanced_data$Two_yr_Recidivism)
#devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
#training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
#anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0

levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0

logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))

test_set_data$Two_yr_Recidivism = as.factor(balanced_data$Two_yr_Recidivism)
#poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)

canonico_coef = logitMod$coefficients

canonico_coef[cols_to_drop] = 0

canonico_coef

predict = predict(logitMod, test_set_data, type = "response")  # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Sceglio tra -1 e 1 per poi ottenere il cutoff ottimizzato anch’esso tra -1 e 1 e mi pi facile fare la predizione

balanced_classified_dt = cbind(test_set, pred)  #questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)
#classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) #pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff_prova = opt.cut(perf, pred1)#il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

#ripristino di nuovo i livelli yes/no per renderlo più leggibile
levels(balanced_classified_dt$Two_yr_Recidivism)[levels(balanced_classified_dt$Two_yr_Recidivism)==1] <- "Yes_recidivism"
levels(balanced_classified_dt$Two_yr_Recidivism)[levels(balanced_classified_dt$Two_yr_Recidivism)==0] <- "No_recidivism"

#plotto shannon compare per vedere come cambia l’indice rispetto al dataset originale per l’attributo ethnicity

#voglio provare a calcolare il valore medio delle predizioni per tutti i caucasian: PER PROPORTIONAL PARITY FA PROPRIO QUESTO!!!!
cdt_caucasian = classified_dt
cdt_caucasian = classified_dt[classified_dt$ethnicity=="Caucasian",]
m = mean(cdt_caucasian$pred)
m #questa m quella che io avrei chiamato percentage on ethnicity nella mia funzione frequent_comb1, cio percentage on ethnicity la probabilit condizionata p(good| ethnicity=x) = #(status=good, ethnicity=x)}/#{ethnicity=x)

#fair_metrics_cmp(data1 = classified_dt,
data2 = balanced_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff_prova,
base = 'Caucasian')

# fair_metrics(data = classified_dt,
outcome = 'Two_yr_Recidivism',

83
Appendix A. R code

```r
group = 'ethnicity',
probs = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff = optimized_cutoff,
base = 'Caucasian')

--
CREO I SEGUENTI DATASET BILANCIATI:
balanced_data0: bilanciato per Two_yr_recidivism
balanced_data1: bilanciato per Female
balanced_data2: bilanciato per ethnicity
balanced_data3: bilanciato per Age
balanced_data4: bilanciato per Two_yr_recidivism|ethnicity

i due successivi li scarterei:
balanced_data5: bilanciato per Female|ethnicity
balanced_data6: bilanciato per Age|ethnicity

#balanced_data0: bilanciato per Two_yr_recidivism
balanced_data0=NULL

balanced_data0 = ovun.sample(Two_yr_Recidivism~., data = raw_data, method="both", N = nrow(raw_data), p=0.5, seed = 42)$data

cmp_shannon(raw_data, balanced_data0)

shannon index praticamente uguale per Two_yr, perci questo potrebbe essere inutile (non ho cambiato il grado diversita in questo attributo, perci dovrei avere la stessa proporzione di individui yes/no recidivism)

#####################
balanced_data1: bilanciato per Female
la libreria ROSE si pu usare soltanto per bilanciare attributi binari (nasce per bilanciare classificazione binaria)

balanced_data1 = NULL

balanced_data1 = ovun.sample(Female~., data = raw_data, method="both", N = nrow(raw_data), p=0.5, seed = 42)$data

cmp_shannon(raw_data, balanced_data1)

shannon index migliorato per Female (cio riduzione di diversita)

##################
balanced_data2: bilanciato per ethnicity con un random balance che ho creato io
balanced_data2 = rebalance_multiclass(raw_data, "ethnicity")

balanced_data2 = SmoteClassif(ethnicity ~ ., raw_data, dist = "HEOM")

cmp_shannon(raw_data, balanced_data2)

shannon index aumentato per ethnicity
```

84
Appendix A. R code

585 586 ########################
587 #balanced_data3: bilanciato per Age
588 #balanced_data3 = rebalance_multiclass(raw_data, "Age")
589
590 #questo invece ha ethnicity bilanciato con smote ed meglio usare questo!
591 balanced_data3 = SmoteClassif(Age ~ ., raw_data, dist = "HEOM")
592
593 print_cmp_shannon(raw_data, balanced_data3)
594 #shannon index leggermente aumentato per Age
595
596
597 ########################
598 #balanced_data4: bilanciato per Two_yr_recidivism|ethnicity (cio voglio ogni sottocategoria
di ethnicity, gi precedentemente bilanciato (balanced_data2), bilanciata anche rispettoal recidivismo )
599 balanced_data4 = NULL
600 for(i in levels(balanced_data2$ethnicity)){
601 #faccio il rebalancing di Two_yr_Recidivism per ogni categoria di ethnicity
602 temp_dt = balanced_data2[balanced_data2$ethnicity==i, ]
603 s = ovun.sample(Two_yr_Recidivism~., data = temp_dt, method="both", N = nrow(temp_dt), p
604 =0.5, seed = 42)$data
605 #metto poi insieme i vari piccoli dataset bilanciati
606 balanced_data4 = rbind(balanced_data4, s)
607 }
608
609 #plotto entrambi i confronti dello shannon index
610 print_cmp_shannon(raw_data, balanced_data4) #ethnicity aumentato di molto (ma c'era da
611 aspettarsel, visto che il confronto con il dataset originale)
612 print_cmp_shannon(balanced_data2, balanced_data4)#non cambiato quasi nulla, quindi sembra
613 sia sufficiente fare un rebalancing anche solo su ethnicity per migliorare la situazione
614
615 ########################
616 #balanced_data5: bilanciato per Two_yr_recidivism|ethnicity (cio voglio ogni sottocategoria
di ethnicity bilanciata rispetto a Two_yr_recidivism)
617 #rispetto al dataset precedente, qui non abbiamo entrambi gli attributi contemporaneamente
618 bilanciati vicendevolmente: ethnicity non affatto bilanciato qui!
619 balanced_data5 = NULL
620 for(i in levels(raw_data$ethnicity)){
621 #faccio il rebalancing di Two_yr_Recidivism per ogni categoria di ethnicity
622 temp_dt = raw_data[raw_data$ethnicity==i, ]
623 s = ovun.sample(Two_yr_Recidivism~., data = temp_dt, method="both", N = nrow(temp_dt), p
624 =0.5, seed = 42)$data
625 #metto poi insieme i vari piccoli dataset bilanciati
626 balanced_data5 = rbind(balanced_data5, s)
627 }
628 print_cmp_shannon(raw_data, balanced_data5) #shannon praticamente uguali
629 print_cmp_shannon(balanced_data4, balanced_data5)
Appendix A. R code

625
626 #bilancio ethnicity in ogni sottocategoria bilanciata di Female
627 balanced_data6 = NULL
628 for(i in levels(balanced_data1$ethnicity)){
629  #faccio il rebalancing di Two_yr_Recidivism per ogni categoria di ethnicity
630  temp_dt = balanced_data1[balanced_data1$ethnicity==i, ]
631  s = SmoteClassif(ethnicity ~ ., temp_dt, dist = "HEOM")
632  #metto poi insieme i vari piccoli dataset bilanciati
633  balanced_data6 = rbind(balanced_data6, s)
634 }
635 print_cmp_shannon(raw_data, balanced_data6) #molto meglio per ethnicity e un po’ meglio per female
636
637 #confronto con bilanciato solo su female
638 print_cmp_shannon(balanced_data1, balanced_data6)#meglio per ethnicity
639 #confronto con bilanciato solo su ethnicity
640 print_cmp_shannon(balanced_data2, balanced_data6)#meglio per Female
641
642 #bilancio il gender in ogni sottocategoria bilanciata di ethnicity
643 balanced_data7 = NULL
644 for(i in levels(balanced_data2$Female)){
645  temp_dt = raw_data[raw_data$Female==i, ]
646  s = ovun.sample(Two_yr_Recidivism~., data = temp_dt, method="both", N = nrow(temp_dt), p =0.5, seed = 42)$data
647  #metto poi insieme i vari piccoli dataset bilanciati
648  balanced_data7 = rbind(balanced_data7, s)
649 }
650 print_cmp_shannon(raw_data, balanced_data7) #molto meglio per ethnicity e un po’ meglio per female
651
652 summary(raw_data$Number_of_Priors)
653 summary(balanced_data2$Number_of_Priors)
654 sd(raw_data$Number_of_Priors)
655 sd(balanced_data2$Number_of_Priors)
656
657 ##------------------------------------------------------------------------------------
658 #balanced_data0: bilanciato per Two_yr_recidivism
659 #balanced_data1: bilanciato per Female
660 #balanced_data2: bilanciato per ethnicity
661 #balanced_data3: bilanciato per Age
662 #balanced_data4: bilanciato per Two_yr_recidivism|ethnicity
# otteniamo tutti i balanced dataset classificati:
source("util.R")

# balanced_data0

# sostituisco i livelli con valori numerici
levels(balanced_data0$Two_yr_Recidivism)[levels(balanced_data0$Two_yr_Recidivism) == "yes"] <- 1
levels(balanced_data0$Two_yr_Recidivism)[levels(balanced_data0$Two_yr_Recidivism) == "no"] <- 0

cols_to_drop <- names(balanced_data0) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
balanced_data0 <- balanced_data0[, !cols_to_drop, drop = FALSE]

# split into train and test set
sample_size = floor(0.7*nrow(balanced_data0))
set.seed(42)

# randomly split data
picked = sample(seq_len(nrow(balanced_data0)), size = sample_size)
training_set = balanced_data0[picked,]
test_set = balanced_data0[-picked,]

# as.factor mi serve per fare una classificazione binaria
balanced_data0$Two_yr_Recidivism = as.factor(balanced_data0$Two_yr_Recidivism)
# devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0

levels(test_set$Two_yr_Recidivism)

levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(test_set$Two_yr_Recidivism)

logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))
logitMod # capire cosa significano questi dati
pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch'esso tra -1 e 1 e mi pi facile fare la predizione.

balanced0_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

classified_dt2 = cbind(test_set_data, pred)

# classified_dt = rbind(classified_dt1, classified_dt2)

pred1 <- prediction(pred, test_set$Two_yr_Recidivism) # pred1 un oggetto pred.obj di ROCR

perf <- performance(pred1, measure = "tpr", x.measure = "fpr")

optimized_cutoff0 = opt.cut(perf, pred1)# il cutoff ottimale leggermente pii basso di quello standard, che sarebbe invece 0.5

# ripristino di nuovo i livelli yes/no per renderlo pi leggibile

levels(balanced0_classified_dt$Two_yr_Recidivism)[levels(balanced0_classified_dt$Two_yr_Recidivism)==1] <- "Yes_recidivism"

levels(balanced0_classified_dt$Two_yr_Recidivism)[levels(balanced0_classified_dt$Two_yr_Recidivism)==0] <- "No_recidivism"

# sostituisco i livelli con valori numerici

levels(balanced_data1$Two_yr_Recidivism)[levels(balanced_data1$Two_yr_Recidivism)="yes"] <- 1

levels(balanced_data1$Two_yr_Recidivism)[levels(balanced_data1$Two_yr_Recidivism)="no"] <- 0

# rimuovo da balanced_data1 le colonne age_above e age_below

cols_to_drop <- names(balanced_data1) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")

balanced_data1 <- balanced_data1[, !cols_to_drop, drop = FALSE]

# split into train and test set

sample_size = floor(0.7*nrow(balanced_data1))

# set a random seed per rendere l'esperimento ripetibile

set.seed(42)

# randomly split data

picked = sample(seq_len(nrow(balanced_data1)),size = sample_size)

training_set =balanced_data1[picked,]

test_set =balanced_data1[-picked,]

# as.factor mi serve per fare una classificazione binaria

balanced_data1$Two_yr_Recidivism = as.factor(balanced_data1$Two_yr_Recidivism)

# devo anche eliminare recidivismo dal training_set

cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")

# training e test set senza variabile target
Appendix A. R code

```r
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]

anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(training_set$Two_yr_Recidivism)

logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))
logitMod # capire cosa significano questi dati

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Sceglio tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch'esso tra -1 e 1 e mi pi facile fare la predizione

balanced1_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)

classified_dt2 <- prediction(pred, test_set$Two_yr_Recidivism) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff1 = opt.cut(perf, pred1)# il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

ripristino di nuovo i livelli yes/no per renderlo pi leggibile
levels(balanced1_classified_dt$Two_yr_Recidivism)[levels(balanced1_classified_dt$Two_yr_Recidivism) == 1] <- "Yes_recidivism"
levels(balanced1_classified_dt$Two_yr_Recidivism)[levels(balanced1_classified_dt$Two_yr_Recidivism) == 0] <- "No_recidivism"

sostituisco i livelli con valori numerici
levels(balanced_data2$Two_yr_Recidivism)[levels(balanced_data2$Two_yr_Recidivism) == "yes"] <- 1
levels(balanced_data2$Two_yr_Recidivism)[levels(balanced_data2$Two_yr_Recidivism) == "no"] <- 0
```
# rimuovo da balanced_data2 le colonne age_above e age_below

cols_to_drop <- names(balanced_data2) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
balanced_data2 <- balanced_data2[, !cols_to_drop, drop = FALSE]

# split into train and test set

sample_size = floor(0.7*nrow(balanced_data2))

# set a random seed per rendere l'esperimento ripetibile
set.seed(42)

# randomly split data

picked = sample(seq_len(nrow(balanced_data2)), size = sample_size)
training_set = balanced_data2[picked,]
test_set = balanced_data2[-picked,]

# as.factor mi serve per fare una classificazione binaria

balanced_data2$Two_yr_Recidivism = as.factor(balanced_data2$Two_yr_Recidivism)

# devo anche eliminare recidivismo dal training_set

cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")

# training e test set senza variabile target

training_set_data <- training_set[, !cols_to_drop, drop = FALSE]

# anche sui dati di test

test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0

levels(training_set$Two_yr_Recidivism)

levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0

levels(test_set$Two_yr_Recidivism)

# poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)

logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family=binomial(link="logit"))

# capire cosa significano questi dati

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 per poi ottengo il cutoff ottimizzato anch’esso tra -1 e 1 e mi pi facile fare la predizione

balanced2_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

classified_dt2 = cbind(test_set_data, pred)

# classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) # pred1 un oggetto pred.obj di ROCR

perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff2 = opt.cut(perf, pred1)# il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

# ripristino di nuovo i livelli yes/no per renderlo più leggibile
levels(balanced2_classified_dt$Two_yr_Recidivism)[levels(balanced2_classified_dt$Two_yr_Recidivism)==1] <- "Yes_recidivism"
levels(balanced2_classified_dt$Two_yr_Recidivism)[levels(balanced2_classified_dt$Two_yr_Recidivism)==0] <- "No_recidivism"

#########################################################################
## balanced_data3
#
# sostituisco i livelli con valori numerici
levels(balanced_data3$Two_yr_Recidivism)[levels(balanced_data3$Two_yr_Recidivism)=="yes"] <- 1
levels(balanced_data3$Two_yr_Recidivism)[levels(balanced_data3$Two_yr_Recidivism)=="no"] <- 0
# rimuovo da balanced_data3 le colonne age_above e age_below
cols_to_drop <- names(balanced_data3) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
balanced_data3 <- balanced_data3[, !cols_to_drop, drop = FALSE]

# split into train and test set
sample_size = floor(0.7*nrow(balanced_data3))
# set a random seed per rendere l'esperimento ripetibile
set.seed(42)

# randomly split data
picked = sample(seq_len(nrow(balanced_data3)),size = sample_size)
training_set =balanced_data3[picked,]
test_set =balanced_data3[-picked,]

# as.factor mi serve per fare una classificazione binaria
balanced_data3$Two_yr_Recidivism = as.factor(balanced_data3$Two_yr_Recidivism)
# devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

levels(training_set_data$Two_yr_Recidivism)[levels(training_set_data$Two_yr_Recidivism)=="Yes_recidivism"] <- 1
levels(training_set_data$Two_yr_Recidivism)[levels(training_set_data$Two_yr_Recidivism)=="No_recidivism"] <- 0
levels(training_set_data$Two_yr_Recidivism)
Appendix A. R code

```r
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(test_set$Two_yr_Recidivism)

#poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))
logitMod #capire cosa significano questi dati

pred = predict(logitMod, test_set_data, type = "response") #se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 per poi ottenere il cutoff ottimizzato anch'esso tra -1 e 1 e mi pi facile fare la predizione
balanced3_classified_dt = cbind(test_set, pred) #questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)
#classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) #pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff3 = opt.cut(perf, pred1)#il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

#ripristino di nuovo i livelli yes/no per renderlo più leggibile
levels(balanced3_classified_dt$Two_yr_Recidivism)[levels(balanced3_classified_dt$Two_yr_Recidivism) == 1] <- "Yes_recidivism"
levels(balanced3_classified_dt$Two_yr_Recidivism)[levels(balanced3_classified_dt$Two_yr_Recidivism) == 0] <- "No_recidivism"

balanced_data4

#sostituisco i livelli con valori numerici
levels(balanced_data4$Two_yr_Recidivism)[levels(balanced_data4$Two_yr_Recidivism) == "yes"] <- 1
levels(balanced_data4$Two_yr_Recidivism)[levels(balanced_data4$Two_yr_Recidivism) == "no"] <- 0
#rimuovo da balanced_data4 le colonne age_above e age_below
cols_to_drop <- names(balanced_data4) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
balanced_data4 <- balanced_data4[, !cols_to_drop, drop = FALSE]

#split into train and test set
sample_size = floor(0.7*nrow(balanced_data4))
set a random seed per rendere l'esperimento ripetibile
set.seed(42)
picked = sample(seq_len(nrow(balanced_data4)), size = sample_size)
```

92
Appendix A. R code

```r
training_set = balanced_data4[picked,]

test_set = balanced_data4[-picked,]

as.factor mi serve per fare una classificazione binaria
balanced_data4$Two_yr_Recidivism = as.factor(balanced_data4$Two_yr_Recidivism)

devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")

training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]

anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_Recidivism"] <- 1

levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0

levels(test_set$Two_yr_Recidivism)

logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 per ottenere il cutoff ottimizzato anch’esso tra -1 e 1 e mi piacele fare la predizione

balanced4_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

classified_dt2 = cbind(test_set_data, pred)

classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) # predi un oggetto pred.obj di ROCR

perf <- performance(pred1, measure = "tpr", x.measure = "fpr")

optimized_cutoff4 = opt.cut(perf, pred1)# il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

levels(balanced4_classified_dt$Two_yr_Recidivism)[levels(balanced4_classified_dt$Two_yr_Recidivism) == 1] <- "Yes_recidivism"

levels(balanced4_classified_dt$Two_yr_Recidivism)[levels(balanced4_classified_dt$Two_yr_Recidivism) == 0] <- "No_recidivism"
```

93
Appendix A. R code

950 #balanced_data5
951
952 # sostituisco i livelli con valori numerici
953 levels(balanced_data5$Two_yr_Recidivism)[levels(balanced_data5$Two_yr_Recidivism) == "yes"] <- 1
954 levels(balanced_data5$Two_yr_Recidivism)[levels(balanced_data5$Two_yr_Recidivism) == "no"] <- 0
955 # rimuovo da balanced_data5 le colonne age_above e age_below
956 cols_to_drop <- names(balanced_data5) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
957 balanced_data5 <- balanced_data5[, !cols_to_drop, drop = FALSE]
958
959 # split into train and test set
960 sample_size = floor(0.7*nrow(balanced_data5))
961 # set a random seed per rendere l'esperimento ripetibile
962 set.seed(42)
963
964 # randomly split data
965 picked = sample(seq_len(nrow(balanced_data5)), size = sample_size)
966 training_set = balanced_data5[picked,]
967 test_set = balanced_data5[-picked,]
968
969 # as.factor mi serve per fare una classificazione binaria
970 balanced_data5$Two_yr_Recidivism = as.factor(balanced_data5$Two_yr_Recidivism)
971 # devo anche eliminare recidivismo dal training_set
972 cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
973 training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
974 # anche sui dati di test
975 test_set_data <- test_set[, !cols_to_drop, drop = FALSE]
976
977 levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
978 levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
979
980 levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
981 levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
982
983 # poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
984 logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family=binomial(link="logit"))
985 logitMod # capire cosa significano questi dati
986
987 pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo
Appendix A. R code

```r
tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch’esso tra -1 e 1 e mi pi facile fare la predizione
balanced5_classified_dt = cbind(test_set, pred) #questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)
#classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) #pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff5 = opt.cut(perf, pred1)#il cutoff ottimale leggermente pì basso di quello standard, che sarebbe invece 0.5

ripristino di nuovo i livelli yes/no per renderlo pi leggibile
levels(balanced5_classified_dt$Two_yr_Recidivism)[levels(balanced5_classified_dt$Two_yr_Recidivism)==1] <- "Yes_recidivism"
levels(balanced5_classified_dt$Two_yr_Recidivism)[levels(balanced5_classified_dt$Two_yr_Recidivism)==0] <- "No_recidivism"

--
##############################
#balanced_data6
sostituisco i livelli con valori numerici
levels(balanced_data6$Two_yr_Recidivism)[levels(balanced_data6$Two_yr_Recidivism)="yes"] <- 1
levels(balanced_data6$Two_yr_Recidivism)[levels(balanced_data6$Two_yr_Recidivism)="no"] <- 0
rimuovo da balanced_data6 le colonne age_above e age_below
cols_to_drop <- names(balanced_data6) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
balanced_data6 <- balanced_data6[, !cols_to_drop, drop = FALSE]

split into train and test set
sample_size = floor(0.7*nrow(balanced_data6))
set.seed(42)

randomly split data
picked = sample(seq_len(nrow(balanced_data6)),size = sample_size)
training_set =balanced_data6[picked,]
test_set =balanced_data6[-picked,]

as.factor mi serve per fare una classificazione binaria
balanced_data6$Two_yr_Recidivism = as.factor(balanced_data6$Two_yr_Recidivism)
devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]
```
Appendix A. R code

```r
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(training_set$Two_yr_Recidivism)

levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(test_set$Two_yr_Recidivism)

commento le righe in cui calcola il modello perché ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))
logitMod # capire cosa significano questi dati

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perché poi ottengo il cutoff ottimizzato anch'esso tra -1 e 1 e mi piace fare la predizione
balanced6_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

classified_dt2 = cbind(test_set_data, pred)
classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Two_yr_Recidivism) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff6 = opt.cut(perf, pred1) # il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

ripristino di nuovo i livelli yes/no per renderlo più leggibile
levels(balanced6_classified_dt$Two_yr_Recidivism)[levels(balanced6_classified_dt$Two_yr_Recidivism) == 1] <- "Yes_recidivism"
levels(balanced6_classified_dt$Two_yr_Recidivism)[levels(balanced6_classified_dt$Two_yr_Recidivism) == 0] <- "No_recidivism"

balanced_data7

sostituisco i livelli con valori numerici
levels(balanced_data7$Two_yr_Recidivism)[levels(balanced_data7$Two_yr_Recidivism) == "yes"] <- 1
levels(balanced_data7$Two_yr_Recidivism)[levels(balanced_data7$Two_yr_Recidivism) == "no"] <- 0
rimuovo da balanced_data7 le colonne age_above e age_below
cols_to_drop <- names(balanced_data7) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
```

96
Appendix A. R code

1071 balanced_data7 <- balanced_data7[, !cols_to_drop, drop = FALSE]
1072
1073 # split into train and test set
1074 sample_size = floor(0.7*nrow(balanced_data7))
1075 # set a random seed per rendere l’esperimento ripetibile
1076 set.seed(42)
1077
1078 # randomly split data
1079 picked = sample(seq_len(nrow(balanced_data7)), size = sample_size)
1080 training_set = balanced_data7[picked,]
1081 test_set = balanced_data7[-picked,]
1082
1083 #as.factor mi serve per fare una classificazione binaria
1084 balanced_data7$Two_yr_Recidivism = as.factor(balanced_data7$Two_yr_Recidivism)
1085 # devo anche eliminare recidivismo dal training_set
1086 cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
1087 # training e test set senza variabile target
1088 training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
1089 # anche sui dati di test
1090 test_set_data <- test_set[, !cols_to_drop, drop = FALSE]
1091
1092 levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism)="Yes_recidivism"] <- 1
1093 levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism)="No_recidivism"] <- 0
1094 levels(training_set$Two_yr_Recidivism)
1095
1096 levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism)="Yes_recidivism"] <- 1
1097 levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism)="No_recidivism"] <- 0
1098 levels(test_set$Two_yr_Recidivism)
1099
1100 # poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
1101 logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family = binomial(link = "logit"))
1102 logitMod # capire cosa significano questi dati
1103
1104 pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch’esso tra -1 e 1 e mi pi facile fare la predizione
1105 balanced7_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
1106 classified_dt2 = cbind(test_set_data, pred)
1107 # classified_dt = rbind(classified_dt1, classified_dt2)
1108 pred1 <- prediction(pred, test_set$Two_yr_Recidivism) # pred1 un oggetto pred.obj di ROCR
1109 perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
1110 optimized_cutoff7 = opt.cut(perf, pred1)# il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5
# Appendice A. R code

## R code

```r
ripristino di nuovo i livelli yes/no per renderlo più leggibile
levels(balanced7_classified_dt$Two_yr_Recidivism)[levels(balanced7_classified_dt$Two_yr_Recidivism)==1] <- "Yes_recidivism"
levels(balanced7_classified_dt$Two_yr_Recidivism)[levels(balanced7_classified_dt$Two_yr_Recidivism)==0] <- "No_recidivism"

--

ora confronto ciascun dataset bilanciato con quello originale
poi seleziono quelli che sembrano effettivamente migliori del dataset originale
poi confronto tra loro questi dataset bilanciati rimanenti e scelgo il migliore

balanced_data0: bilanciato per Two_yr_recidivism
balanced_data1: bilanciato per Female
balanced_data2: bilanciato per ethnicity
balanced_data3: bilanciato per Age
balanced_data4: bilanciato per Two_yr_recidivism|ethnicity

creo anche un dataset con i valori delle mean deviation per ogni dataset bilanciato, per ogni metrica
msd_balanced=NULL

source("util.R")

png("COMPASb0rdComp.png")

p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced0_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff0,
base = 'Caucasian')

dev.off()

praticamente solo peggioramenti
msd_balanced=p[[1]]
msd_balanced= rbind(msd_balanced, p[[2]])

png("COMPASb1rdComp.png")

p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced1_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
```

98
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff1,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[[2]])

# in questo caso abbiamo dei miglioramenti abbastanza notevoli: dal momento che questo sembra
il miglioramento pi notevole per le metriche di fairness, proviamo a migliorarlo
ulteriormente mettendo lo stesso numero di individui per ogni etnia tra i maschi e tra le
femmine, quindi avremo un doppio bilanciamento (lo chiamiamo balanced6_classified_dt)

png("COMPASb2rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced2_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff2,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[[2]])

# questo era il dataset bilanciato per ethnicity: abbiamo qualche miglioramento, ma anche
qualche peggioramento

png("COMPASb3rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced3_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff3,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[[2]])

# qualche miglioramento e peggioramento

png("COMPASb4rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced4_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff4,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[[2]])

#in questo caso abbiamo ponderato sia l’etnia sia il recidivismo: stesso numero di individui per ciascuna etnia e, all’interno della singola etnia, stesso numero di recidivi e non recidivi

#balanced balanced5_classified_dt
#re avessimo invece ponderato il recidivismo in funzione dell’etnia, cio ugual numero di recidivi per ogni etnia, ma con l’attributo etnia non equilibrato? proviamo (vedi chunk precedente e poi qui sotto)

png("COMPASb5rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced5_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff5,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[[2]])

#alcune metriche sono migliori, ma altre decisamente peggiori

#balanced6_classified_dt

png("COMPASb6b1Comp.png")

#NOTARE CHE QUESTA NON UNA COMPARISON RISPETTO AL DATASET ORIGINALE

fair_metrics_cmp_graph(data1 = balanced1_classified_dt,
data2 = balanced6_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
Appendix A. R code

```r
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff1,
cutoff2 = optimized_cutoff6,
base = 'Caucasian')

dev.off()

globaloptions(width=67, height=92, bg='white', fg='black')

globaloptions("session")

globaloptions(width=67, height=92, bg='white', fg='black')

png("COMPASb6rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced6_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff1,
cutoff2 = optimized_cutoff6,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[2])

quanto pare il balanced6_classified_dt NON meglio del #1

png("COMPASb7rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced7_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff1,
cutoff2 = optimized_cutoff7,
base = 'Caucasian')

dev.off()

msd_balanced= rbind(msd_balanced, p[2])

CONFRONTO TRA LORO BALANCED DATASETS

png("COMPASb2b4Comp.png")
fair_metrics_cmp_graph(data1 = balanced4_classified_dt,
data2 = balanced2_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
```

101
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff4,
cutoff2 = optimized_cutoff2,
base = 'Caucasian')

dev.off()

png("COMPASb7b6Comp.png")

fair_metrics_cmp_graph(data1 = balanced7_classified_dt,
data2 = balanced6_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff6,
cutoff2 = optimized_cutoff7,
base = 'Caucasian')

dev.off()

fair_metrics_cmp_graph(data1 = balanced7_classified_dt,
data2 = balanced6_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff7,
cutoff2 = optimized_cutoff6,
base = 'Caucasian')

#dev.off()

msd_balanced
long_msd_balanced <- msd_balanced %>% gather(metrics, values, dem_parity:spec_parity)
xlab("")
g = ggplot(long_msd_balanced, aes(fill=metrics, y=values, x=datasets)) +
  geom_bar(position="dodge", stat="identity") +
  ggtitle("Studying 4 species...") +
  facet_wrap(~metrics, ncol=2) +
  facet_grid(metrics ~ datasets)
  theme(legend.position="none",
     strip.text = element_text(face="bold", size=15,lineheight=5.0),
     strip.background = element_rect(fill="lightblue", colour="black",
     size=1),axistext.x = element_text(angle = 90),
     axis.text=element_text(size=20, face="bold"),
     axis.title=element_text(size=20,face="bold")) +
Appendix A. R code

```r
xlab(""

```
ggsave("MetricsValuesForbd.jpg", plot = g, width = 24, height = 33, units = "in")
```  
```r
## ------------------------------------------------------------------------------------
#USO DI AIF360
library(aif360)
```  
```r
## ------------------------------------------------------------------------------------
#converto dataset in binario
#qua devo usare il balanced non ancora classificato, NON quello classificato!!!
#OCCHIO: fai il run di queste righe di conversione 0-1 solo se il dataset non ancora stato convertito!!! ad esempio fai prima un check is.numeric
```  
```r
levels(balanced_data1$Two_yr_Recidivism)[levels(balanced_data1$Two_yr_Recidivism)="Yes_recidivism"] <- 1
levels(balanced_data1$Two_yr_Recidivism)[levels(balanced_data1$Two_yr_Recidivism)="No_recidivism"] <- 0
```  
```r
#prendo caucasian come riferimento perch il confronto tra le metrich di fairness lo far poi con caucasian come base
```  
```r
#I caucasian sono codificati con 1 (privilegiati)
levels(balanced_data1$ethnicity)[levels(balanced_data1$ethnicity)!="Caucasian"] <- 0
levels(balanced_data1$ethnicity)[levels(balanced_data1$ethnicity)=="Caucasian"] <- 1
```  
```r
levels(balanced_data1$Female)[levels(balanced_data1$Female)="Female"] <- 0
levels(balanced_data1$Female)[levels(balanced_data1$Female)=="Male"] <- 1
```  
```r
levels(balanced_data1$Misdemeanor)[levels(balanced_data1$Misdemeanor)=="yes"] <- 0
levels(balanced_data1$Misdemeanor)[levels(balanced_data1$Misdemeanor)=="no"] <- 1
```  
```r
levels(balanced_data1$Age)[levels(balanced_data1$Age)=="between25_45"] <- 0
levels(balanced_data1$Age)[levels(balanced_data1$Age)=="between25_45"] <- 1
```  
```r
# trasformo colonne categoriche in numeriche
# must_convert<-sapply(balanced_data1,is.factor) # logical vector telling if a variable needs to be displayed as numeric
# balanced_data1<-sapply(balanced_data1[,must_convert],unclass) # data.frame of all categorical variables now displayed as numeric
```  
```r
## ------------------------------------------------------------------------------------
#i favoriti sono gli adulti-1
formatted_dataset <- aif360::aif_dataset(data_path = balanced_data1, favor_label = 0,
unfavor_label = 1, #label favorita per la variabile target: 0 corrisponde a good
privileged_protected_attribute = 0, # 0-young-unprivileged
unprivileged_protected_attribute = 1, #se non lo scrivo, per il valore privilegiato viene considerato il valore pi alto
target_column = "Two_yr_Recidivism", #qua prima avevo pred.rescaled
protected_attribute = "ethnicity")
```
Appendix A. R code

formatted_dataset

tecnica di debias preprocessing
di <- disparate_impact_remover(repair_level = 0.8, sensitive_attribute = "ethnicity")
 rp <- di$fit_transform(formatted_dataset)

reweighing (tecnica preprocessing)
 pri <- list("ethnicity", 1)
unpri <- list("ethnicity", 0)
rw <- reweighing(unpri, pri)

ad_transformed <- rw$transform(formatted_dataset)
ad_fit_transformed <- rw$fit_transform(rp) # questo lo faccio su rp, cos analizzo entrambe le tecniche in una volta sola (altrimenti dovrei fare mille classificazioni e mille casi)

--
ora torniamo a un dataset in formato data frame (non ai360)
col_names <- c(ad_fit_transformed$feature_names, "Two_yr_Recidivism")
col_names

colnames(new_data) <- col_names

quindi new_data un dataset su cui ho fatto rebalancing per Female, disparate impact remover e reweighing

--
sostituisco i livelli con valori numerici
levels(new_data$Two_yr_Recidivism)[levels(new_data$Two_yr_Recidivism) == "yes"] <- 1
levels(new_data$Two_yr_Recidivism)[levels(new_data$Two_yr_Recidivism) == "no"] <- 0

rimuovo da new_data le colonne age_above e age_below
cols_to_drop <- names(new_data) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
new_data <- new_data[, !cols_to_drop, drop = FALSE]

split into train and test set
sample_size = floor(0.7*nrow(new_data))

set.seed(42)

picked = sample(seq_len(nrow(new_data)), size = sample_size)
training_set = new_data[picked,]
test_set = new_data[-picked,]

as.factor mi serve per fare una classificazione binaria
Appendix A. R code

```r
# Appendix A. R code
new_data$Two_yr_Recidivism = as.factor(new_data$Two_yr_Recidivism)
# devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(training_set$Two_yr_Recidivism)[levels(training_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(training_set$Two_yr_Recidivism)

# poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family=binomial(link="logit"))
logitMod # capire cosa significano questi dati

pred = predict(logitMod, test_set_data, type = "response")
new_data_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

#classified_dt2 = cbind(test_set_data, pred)
#classified_dt = rbind(classified_dt1, classified_dt2)
optimized_cutoff_new = opt.cut(perf, pred1)# il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5

# ripristino di nuovo TUTTI i livelli categorici per renderlo più leggibile
new_data_classified_dt$Two_yr_Recidivism = ifelse(new_data_classified_dt$Two_yr_Recidivism == 1, "Yes_recidivism", "No_recidivism")
new_data_classified_dt$ethnicity = ifelse(new_data_classified_dt$ethnicity == 1, "Caucasian", "Not_caucasian")
new_data_classified_dt$Female = ifelse(new_data_classified_dt$Female == 1, "Male", "Female")
new_data_classified_dt$Misdemeanor = ifelse(new_data_classified_dt$Misdemeanor == 1, "no", "yes")
```
new_data_classified_dt$Age = ifelse(new_data_classified_dt$Age==1,"between25_45", "Not_between25_45")

--
confronto con il dataset bilanciato su female

fair_metrics_cmp_graph(data1 = balanced1_classified_dt,
 data2 = new_data_classified_dt,
 outcome = 'Two_yr_ReCIDivism',
 outcome_base = 'No_recidivism',
 group = 'ethnicity',
 probs1 = 'pred',
 probs2 = 'pred',
 preds_levels = c('No_recidivism','Yes_recidivism'),
 cutoff1 = optimized_cutoff1,
 cutoff2 = optimized_cutoff_new,
 base = 'Caucasian')

confronto con il dataset originale

fair_metrics_cmp_graph(data1 = classified_dt,
 data2 = new_data_classified_dt,
 outcome = 'Two_yr_ReCIDivism',
 outcome_base = 'No_recidivism',
 group = 'ethnicity',
 probs1 = 'pred',
 probs2 = 'pred',
 preds_levels = c('No_recidivism','Yes_recidivism'),
 cutoff1 = optimized_cutoff,
 cutoff2 = optimized_cutoff_new,
 base = 'Caucasian')

--
converto di nuovo il dataset in binario

levels(new_data$Two_yr_ReCIDivism)[levels(new_data$Two_yr_ReCIDivism) == "Yes_recidivism"] <- 1
levels(new_data$Two_yr_ReCIDivism)[levels(new_data$Two_yr_ReCIDivism) == "No_recidivism"] <- 0

prendo caucasian come riferimento perché il confronto tra le metriche di fairness lo far poi con caucasian come base

I caucasian sono codificati con 1 (privilegiati)

levels(new_data$ethnicity)[levels(new_data$ethnicity) != "Caucasian"] <- 0
levels(new_data$ethnicity)[levels(new_data$ethnicity) == "Caucasian"] <- 1
levels(new_data$Female)[levels(new_data$Female) == "Female"] <- 0
levels(new_data$Female)[levels(new_data$Female) == "Male"] <- 1
levels(new_data$Misdemeanor)[levels(new_data$Misdemeanor) == "yes"] <- 0
levels(new_data$Misdemeanor)[levels(new_data$Misdemeanor) == "no"] <- 1
levels(new_data$Age)[levels(new_data$Age) != "between25_45"] <- 0
levels(new_data$Age)[levels(new_data$Age) == "between25_45"] <- 1
transform categorical columns into numeric
must_convert <- sapply(new_data, is.factor) # logical vector telling if a variable needs to be displayed as numeric
new_data <- sapply(new_data[, must_convert], unclass) # data frame of all categorical variables now displayed as numeric

--
create dataset formatted for aif360
NOTA BENE: formatted_dataset is the version of raw_data for aif360. formatted_dataset will always be used for the fit of the debias methods and for prediction on the formatted_dataset of new_data
create the formatted dataset of new_data and call it
formatted_dataset_forPred <- aif360::aif_dataset(data_path = new_data, favor_label = 0,
 unfavor_label = 1, # label favorita for the target variable: 0 corresponds to good
 unprivileged_protected_attribute = 0, # 0-young-unprivileged
 privileged_protected_attribute = 1, # if not specified, the privileged value is considered the highest
 target_column = "Two_yr_Recidivism", # previously I had pred.rescaled
 protected_attribute = "ethnicity")

--
apply debias inprocessing techniques: adversarial debiasing and prejudice remover
prejudice remover
model <- prejudice_remover(class_attr = "Two_yr_Recidivism", sensitive_attr = "ethnicity")
model$fit(formatted_dataset_forPred) # FUNZIONA ma devi fare questa come prima tecnica in assoluto
formatted_dataset_pr <- model$predict(formatted_dataset_forPred) # in formatted_dataset_pr ho quindi IL NUOVO DATASET FORMATTATO con le predizioni del recidivismo fatto con prejudice remover

--
now we return to a dataset in formatted data frame (not aif360)
col_names <- c(formatted_dataset_pr$feature_names, "preds") # questa colonna contiene le predizioni sul recidivismo appena fatte dall'algoritmo
col_names
new_data_pr <- data.frame(formatted_dataset_pr$features, formatted_dataset_pr$labels)
colnames(new_data_pr) <- col_names
new_data_pr in questo caso è classificato!!!

--

new_data_pr$Two_yr_Recidivism = new_data$Two_yr_Recidivism
Appendix A. R code

riptristino di nuovo TUTTI i livelli categorici per renderlo pi leggibile

```r
new_data_pr$Two_yr_Recidivism = ifelse(new_data_pr$Two_yr_Recidivism==1,"Yes_recidivism", "No_recidivism")

new_data_pr$ethnicity = ifelse(new_data_pr$ethnicity==1,"Caucasian", "Not_caucasian")

new_data_pr$Female = ifelse(new_data_pr$Female==1,"Male", "Female")

new_data_pr$Misdemeanor = ifelse(new_data_pr$Misdemeanor==1,"no", "yes")

new_data_pr$Age = ifelse(new_data_pr$Age==1,"between25_45", "Not_between25_45")
```

confronto le metriche con quelle di
#new_data_pr
#source("util.R")

#NOTA BENE: in questo caso abbiamo solo due sottocategorie (caucasian e non caucasian) per un
dataset e ancora tutte le etnie nell’altro, quindi non possiamo usare la funzione di
confronto delle metriche usata fino ad ora, perch teneva conto soltanto delle somme dei
valori assoluti, allora la modifichiamo con una media.

#confronto con il dataset bilanciato su female

```r
fair_metrics_cmp_graph(data1 = new_data_classified_dt,
data2 = new_data_pr,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
preds2 = 'preds', #per il secondo dataset non c' una colonna pred/prob, ma le
previsioni sono gi messe in Two_yr_rec
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff_new,
cutoff2 = 0.5,
base = 'Caucasian')
```

#confronto con il dataset originale

```r
fair_metrics_cmp_graph(data1 = classified_dt,
data2 = new_data_pr,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
```
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = 0.5,
base = 'Caucasian')

adversarial debiasing

tf$reset_default_graph() # questo serve per non avere problemi con tensorflow
sess = tf$compat$v1$Session()

plain_model = adversarial_debiasing(privileged_groups = pri,
unprivileged_groups = unpri,
scope_name='plain_classifier',
debias=TRUE, #CAPIRE BENE LA DIFFERENZA TRA QUESTO TRUE/FALSE

ten_model$fit(formatted_dataset_forPred)

formatted_dataset_ADVdebiasing <- plain_model$predict(formatted_dataset_forPred)

ora torniamo a un dataset in formato data frame (non aif360)
col_names <- c(formatted_dataset_ADVdebiasing$feature_names, "preds")

col_names

new_data_ADVdebiasing <- data.frame(formatted_dataset_ADVdebiasing$features, formatted_dataset_ADVdebiasing$labels)
colnames(new_data_ADVdebiasing) <- col_names

new_data_ADVdebiasing gi classificato

new_data_ADVdebiasing$Two_yr_Recidivism = new_data$Two_yr_Recidivism

new_data_ADVdebiasing$Two_yr_Recidivism = ifelse(new_data_ADVdebiasing$Two_yr_Recidivism==1,
"Yes_recidivism", "No_recidivism")

new_data_ADVdebiasing$ethnicity = ifelse(new_data_ADVdebiasing$ethnicity==1,"Caucasian", "Not_caucasian")

new_data_ADVdebiasing$Female = ifelse(new_data_ADVdebiasing$Female==1,"Male", "Female")

new_data_ADVdebiasing$Misdemeanor = ifelse(new_data_ADVdebiasing$Misdemeanor==1,"no", "yes")
new_data_ADVdebiasing$Age = ifelse(new_data_ADVdebiasing$Age==1,"between25_45", "Not_between25_45")

--

confronto le metriche di fairness: vedo se ci sono stati miglioramenti rispetto alle
techniche di preprocessing debias.

per questi due nuovi dataset non ho l’optimal cutoff quindi prendo 0.5 di default

confronto con il dataset bilanciato su female

fair_metrics_cmp_graph(data1 = new_data_classified_dt,
data2 = new_data_ADVdebiasing,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff_new,
cutoff2 = 0.5,
base = 'Caucasian')

confronto con il dataset originale

fair_metrics_cmp_graph(data1 = classified_dt,
data2 = new_data_ADVdebiasing,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = 0.5,
base = 'Caucasian')

--

formatted_dataset_ADVdebiasing quello predetto e new_data quello vero

la versione di new_data formattata per aif360 esiste già (creata qualche chunk prima) e si
chiama ad_fit_transformed, ma non posso usarlo qui perché contiene weights diversi dal
dataset originale, allora uso formatted_dataset_forPred

true_label_dt = formatted_dataset_forPred

il dataset che scelgo con le predizioni quello uscito dall'adversarial debiasing e ha le
predizioni di tipo 0-1

pred_label_dt = formatted_dataset_ADVdebiasing
Appendix A. R code

```r
# reject_option_classification
roc <- reject_option_classification(unprivileged_groups = unpri,
privileged_groups = pri,
low_class_thresh = 0.01,
high_class_thresh = 0.99,
num_class_thresh = as.integer(100),
num_ROC_margin = as.integer(50),
metric_name = "Statistical parity difference",
metric_ub = 0.05,
metric_lb = -0.05)
roc <- roc$fit_predict(true_label_dt, pred_label_dt)  # il primo il dataset contenente le label vere e il secondo contiene le predizioni

# ora torniamo a un dataset in formato data frame (non aif360)
col_names <- c(roc$feature_names, "preds")
col_names
new_data_roc <- data.frame(roc$features, roc$labels)
colnames(new_data_roc) <- col_names
# new_data_ADVdebiasing gi classificato

# ripristino di nuovo TUTTI i livelli categorici per renderlo più leggibile
new_data_roc$Two_yr_Recidivism = ifelse(new_data_roc$Two_yr_Recidivism==1,"Yes_recidivism", "No_recidivism")
new_data_roc$ethnicity = ifelse(new_data_roc$ethnicity==1,"Caucasian", "Not_caucasian")
new_data_roc$Female = ifelse(new_data_roc$Female==1,"Male", "Female")
new_data_roc$Misdemeanor = ifelse(new_data_roc$Misdemeanor==1,"no", "yes")
new_data_roc$Age = ifelse(new_data_roc$Age==1,"between25_45", "Not_between25_45")
```

111
confronto le metriche di fairness: vedo se ci sono stati miglioramenti rispetto alle
techniche di preprocessing debias.

per questi due nuovi dataset non ho l’optimal cutoff quindi prendo 0.5 di default

confronto con il dataset classificato con adv debiasing

```r
fair_metrics_cmp_graph(data1 = new_data_ADVdebiasing,
  data2 = new_data_roc,
  outcome = 'Two_yr_Recidivism',
  outcome_base = 'No_recidivism',
  group = 'ethnicity',
  probs1 = 'preds',
  probs2 = 'preds',
  preds_levels = c('No_recidivism','Yes_recidivism'),
  cutoff1 = 0.5,
  cutoff2 = 0.5,
  base = 'Caucasian')
```

confronto con il dataset originale

```r
fair_metrics_cmp_graph(data1 = classified_dt,
  data2 = new_data_roc,
  outcome = 'Two_yr_Recidivism',
  outcome_base = 'No_recidivism',
  group = 'ethnicity',
  probs1 = 'pred',
  probs2 = 'preds',
  preds_levels = c('No_recidivism','Yes_recidivism'),
  cutoff1 = optimized_cutoff,
  cutoff2 = 0.5,
  base = 'Caucasian')
```

TENTATIVO DI USO DI AIF360

```r
library(aif360)
load_aif360_lib()
```

converto dataset in binario

```r
levels(balanced_data1$Two_yr_Recidivism)[levels(balanced_data1$Two_yr_Recidivism)="Yes_recidivism"] <- 1
```
levels(balanced_data1$Two_yr_Recidivism)[levels(balanced_data1$Two_yr_Recidivism) == "No_recidivism"] <- 0
prendo caucasian come riferimento perché il confronto tra le metriche di fairness lo farò poi con caucasian come base
I caucasian sono codificati con 1 (privilegati)
levels(balanced_data1$ethnicity)[levels(balanced_data1$ethnicity) != "Caucasian"] <- 0
levels(balanced_data1$ethnicity)[levels(balanced_data1$ethnicity) == "Caucasian"] <- 1
levels(balanced_data1$Female)[levels(balanced_data1$Female) == "Female"] <- 0
levels(balanced_data1$Female)[levels(balanced_data1$Female) == "Male"] <- 1
levels(balanced_data1$Misdemeanor)[levels(balanced_data1$Misdemeanor) == "yes"] <- 0
levels(balanced_data1$Misdemeanor)[levels(balanced_data1$Misdemeanor) == "no"] <- 1
levels(balanced_data1$Age)[levels(balanced_data1$Age) == "between25_45"] <- 0
levels(balanced_data1$Age)[levels(balanced_data1$Age) == "between25_45"] <- 1

trasformo colonne categoriche in numeriche
must_convert <- sapply(balanced_data1, is.factor) # logical vector telling if a variable needs to be displayed as numeric
balanced_data1 <- sapply(balanced_data1[, must_convert], unclass) # data.frame of all categorical variables now displayed as numeric

i favoriti sono gli adulti-1
formatted_dataset <- aif360::aif_dataset(data_path = balanced_data1, favor_label = 0, unfavor_label = 1, # label favorita per la variabile target: 0 corrisponde a good
privileged_protected_attribute = 1, # se non lo scrivo, per il valore privilegiato viene considerato il valore pi più alto
target_column = "Two_yr_Recidivism", #qua prima avevo pred.rescaled
protected_attribute = "ethnicity")
formatted_dataset

tecnica di debias preprocessing
di <- disparate_impact_remover(repair_level = 0.8, sensitive_attribute = "ethnicity")
rp <- di$fit_transform(formatted_dataset)

reweighing (tecnica preprocessing)
pri <- list("ethnicity", 1)
unpri <- list("ethnicity", 0)
rw <- reweighing(unpri, pri)
rw$fit(formatted_dataset)
rw$transform(formatted_dataset)
ad_transformed <- rw$fit_transform(rp) # questo lo faccio su rp, cos analizzo entrambe le tecniche in una volta sola (altrimenti dovrei fare mille classificazioni e mille casi)

ora torniamo a un dataset in formato data frame (non aif360)
col_names <- c(ad_fit_transformed$feature_names, "Two_yr_Recidivism")
```r
col_names
new_data <- data.frame(ad_fit_transformed$features, ad_fit_transformed$labels)
colnames(new_data) <- col_names

# quindi new_data un dataset su cui ho fatto rebalancing per Female, disparate impact remover
e reweighing

###------------------------------------------------------------------------------------
# sostituisco i livelli con valori numerici
levels(new_data$Two_yr_Recidivism)[levels(new_data$Two_yr_Recidivism) == "yes"] <- 1
levels(new_data$Two_yr_Recidivism)[levels(new_data$Two_yr_Recidivism) == "no"] <- 0
# rimuovo da new_data le colonne age_above e age_below
cols_to_drop <- names(new_data) %in% c("Age_Above_FourtyFive", "Age_Below_TwentyFive")
new_data <- new_data[, !cols_to_drop, drop = FALSE]

# split into train and test set
sample_size = floor(0.7*nrow(new_data))
set.seed(42)

# randomly split data
picked = sample(seq_len(nrow(new_data)), size = sample_size)
training_set = new_data[picked,]
test_set = new_data[-picked,]
new_data$Two_yr_Recidivism = as.factor(new_data$Two_yr_Recidivism)
# devo anche eliminare recidivismo dal training_set
cols_to_drop <- names(training_set) %in% c("Two_yr_Recidivism")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(test_set$Two_yr_Recidivism)

levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(test_set$Two_yr_Recidivism)[levels(test_set$Two_yr_Recidivism) == "No_recidivism"] <- 0
levels(test_set$Two_yr_Recidivism)
```

114
#po commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)

logitMod <- glm(Two_yr_Recidivism ~ ., data = training_set, family=binomial(link="logit"))
logitMod #capire cosa significano questi dati

pred = predict(logitMod, test_set, type = "response")

new_data_classified_dt = cbind(test_set, pred) #questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)

optimized_cutoff_new = opt.cut(perf, pred)#il cutoff ottimale leggermente pii basso di quello standard, che sarebbe invece 0.5

--
#ripristino di nuovo TUTTI i livelli categorici per renderlo pi leggibile
new_data_classified_dt$Two_yr_Recidivism = ifelse(new_data_classified_dt$Two_yr_Recidivism ==1,"Yes_recidivism", "No_recidivism")

new_data_classified_dt$ethnicity = ifelse(new_data_classified_dt$ethnicity==1,"Caucasian", "Not_caucasian")

new_data_classified_dt$Female = ifelse(new_data_classified_dt$Female==1,"Male", "Female")

new_data_classified_dt$Misdemeanor = ifelse(new_data_classified_dt$Misdemeanor==1,"no", "yes")

new_data_classified_dt$Age = ifelse(new_data_classified_dt$Age==1,"between25_45", "Not_between25_45")

--
#confronto con il dataset bilanciato su female
fair_metrics_cmp_graph(data1 = balanced1_classified_dt,
data2 = new_data_classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff1,
cutoff2 = optimized_cutoff_new,
base = 'Caucasian')
Appendix A. R code

```
# confronto con il dataset originale
fair_metrics_cmp_graph(data1 = classified_dt,
data2 = new_data$classified_dt,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('No_recidivism', 'Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff_new,
base = 'Caucasian')

## ------------------------------------------------------------------------------------
# converto di nuovo il dataset in binario
levels(new_data$Two_yr_Recidivism)[levels(new_data$Two_yr_Recidivism) == "Yes_recidivism"] <- 1
levels(new_data$Two_yr_Recidivism)[levels(new_data$Two_yr_Recidivism) == "No_recidivism"] <- 0
# prendo caucasian come riferimento perché il confronto tra le metriche di fairness lo farò poi
# con caucasian come base
# I caucasian sono codificati con 1 (privilegiati)
levels(new_data$ethnicity)[levels(new_data$ethnicity) != "Caucasian"] <- 0
levels(new_data$ethnicity)[levels(new_data$ethnicity) == "Caucasian"] <- 1
levels(new_data$Female)[levels(new_data$Female) == "Female"] <- 0
levels(new_data$Female)[levels(new_data$Female) == "Male"] <- 1
levels(new_data$Misdemeanor)[levels(new_data$Misdemeanor) == "yes"] <- 0
levels(new_data$Misdemeanor)[levels(new_data$Misdemeanor) == "no"] <- 1
levels(new_data$Age)[levels(new_data$Age) != "between25_45"] <- 0
levels(new_data$Age)[levels(new_data$Age) == "between25_45"] <- 1
# trasformo colonne categoriche in numeriche
must_convert <- sapply(new_data, is.factor)  # logical vector telling if a variable needs
to be displayed as numeric
new_data <- sapply(new_data, must_convert, unclass)  # data.frame of all categorical
variables now displayed as numeric

## ------------------------------------------------------------------------------------
# creo dataset formatto per aif360
# NOTA BENE: formatted_dataset la versione di raw_data per aif360. formatted_dataset sar
# SEMPRE quello che uso per il fit dei metodi debias e far la predizione sul formatted_
# dataset di new_data
formatted_dataset_forPred <- aif360::aif_dataset(data_path = new_data, favor_label = 0,
unfavor_label = 1, # label favorita per la variabile target: 0 corrisponde a good
unprivileged_protected_attribute = 0, # 0-young-unprivileged
privileged_protected_attribute = 1, # se non lo scrivo, per il valore privilegiato viene
considerato il valore più alto
```

116
Appendix A. R code

```r
# target_column = "Two_yr_Recidivism", #qua prima avevo pred.rescaled
protected_attribute = "ethnicity"

## ------------------------------------------------------------------------------------
# applico tecniche di debias inprocessing: adversarial debiasing and prejudice remover
# prejudice remover
model <- prejudice_remover(class_attr = "Two_yr_Recidivism", sensitive_attr = "ethnicity")
model$fit(formatted_dataset_forPred)
formatted_dataset_pr <- model$predict(formatted_dataset_forPred) # FUNZIONA ma devi fare
questo come prima tecnica in assoluto

# in formatted_dataset_pr ho quindi IL NUOVO DATASET FORMATTATO con le predizioni del
recidivismo fatto con prejudice remover

## ------------------------------------------------------------------------------------
# ora torniamo a un dataset in formato data frame (non aif360)
col_names <- c(formatted_dataset_pr$feature_names, "preds") # questa colonna contiene le
predizioni sul recidivismo appena fatte dall'algoritmo

col_names
col_names(formatted_dataset_pr$features, formatted_dataset_pr$labels)
colnames(new_data_pr) <- col_names

# new_data_pr in questo caso gi classificato!!!

## ------------------------------------------------------------------------------------
# ripristino di nuovo TUTTI i livelli categorici per renderlo pi leggibile
new_data_pr$Two_yr_Recidivism = ifelse(new_data_pr$Two_yr_Recidivism==1, "Yes_recidivism", "No_recidivism")

new_data_pr$ethnicity = ifelse(new_data_pr$ethnicity==1, "Caucasian", "Not_caucasian")

new_data_pr$Female = ifelse(new_data_pr$Female==1, "Male", "Female")

new_data_pr$Misdemeanor = ifelse(new_data_pr$Misdemeanor==1, "no", "yes")

new_data_pr$Age = ifelse(new_data_pr$Age==1, "between25_45", "Not_between25_45")
```
#confronto le metriche con quelle di new_data_pr
#source("util.R")

#NOTA BENE: in questo caso abbiamo solo due sottocategorie (caucasian e non caucasian) per un dataset e ancora tutte le etnie nell’altro, quindi non possiamo usare la funzione di confronto delle metriche usata fino ad ora, perché teneva conto soltanto delle somme dei valori assoluti, allora la modifichiamo con una media.

#confronto con il dataset bilanciato su female
fair_metrics_cmp_graph(data1 = new_data_classified_dt,
data2 = new_data_pr,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
preds2 = 'preds', #per il secondo dataset non c' una colonna pred/prob, ma le previsioni sono già messe in Two_yr_rec
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff_new,
cutoff2 = 0.5,
base = 'Caucasian')

#confronto con il dataset originale
fair_metrics_cmp_graph(data1 = classified_dt,
data2 = new_data_pr,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = 0.5,
base = 'Caucasian')

#adversarial debiasing
tf$reset_default_graph() #questo serve per non avere problemi con tensorflow
sess = tf$compat$v1$Session()
plain_model = adversarial_debiasing(privileged_groups = pri,
unprivileged_groups = unpri,
scope_name='plain_classifier',
debias=TRUE, #CAPIRE BENE LA DIFFERENZA TRA QUESTO TRUE/FALSE
sess=sess)
Appendix A. R code

2032 \texttt{plain_model}\$fit(formatted_dataset_forPred)
2033 formatted_dataset_ADVdebiasing <- plain_model\$predict(formatted_dataset_forPred)
2034
2035 \# ora torniamo a un dataset in formato data frame (non aif360)
2036 col_names <- c(formatted_dataset_ADVdebiasing\$feature_names, "preds")
2037 col_names
2038
2039 new_data_ADVdebiasing <- data.frame(formatted_dataset_ADVdebiasing\$features, formatted_dataset_ADVdebiasing\$labels)
2040 colnames(new_data_ADVdebiasing) <- col_names
2041 #new_data_ADVdebiasing gi classificato
2042
2043 \# ripristino di nuovo TUTTI i livelli categorici per renderlo pi leggibile
2044 new_data_ADVdebiasing\$Two_yr_Recidivism = ifelse(new_data_ADVdebiasing\$Two_yr_Recidivism==1, "Yes_recidivism", "No_recidivism")
2045
2046 new_data_ADVdebiasing\$ethnicity = ifelse(new_data_ADVdebiasing\$ethnicity==1,"Caucasian", "Not_caucasian")
2047
2048 new_data_ADVdebiasing\$Female = ifelse(new_data_ADVdebiasing\$Female==1,"Male", "Female")
2049
2050 new_data_ADVdebiasing\$Misdemeanor = ifelse(new_data_ADVdebiasing\$Misdemeanor==1,"no", "yes")
2051
2052 new_data_ADVdebiasing\$Age = ifelse(new_data_ADVdebiasing\$Age==1,"between25_45", "Not_between25_45")
2053
2054 \# confronto le metriche di fairness: vedo se ci sono stati miglioramenti rispetto alle tecniche di preprocessing debias.
2055 \# per questi due nuovi dataset non ho l\'optimal cutoff quindi prendo 0.5 di default
2056 \# confronto con il dataset bilanciato su female
2057 fair_metrics_cmp_graph(data1 = new_data_classified_dt,
2058 data2 = new_data_ADVdebiasing,
2059 outcome = 'Two_yr_Recidivism',
2060 outcome_base = 'No_recidivism',
2061 group = 'ethnicity',
2062 probs1 = 'pred',
2063 probs2 = 'preds')
Appendix A. R code

```r
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff_new,
cutoff2 = 0.5,
base = 'Caucasian')

# confronto con il dataset originale
fair_metrics_cmp_graph(data1 = classified_dt,
data2 = new_data_ADVdebiasing,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = 0.5,
base = 'Caucasian')

## ------------------------------------------------------------------------------------
#formatted_dataset_ADVdebiasing quello predetto e new_data quello vero
# la versione di new_data formattata per aif360 esiste g1 (creata qualche chunk prima) e si
# chiama ad_fit_transformed, ma non posso usarlo qui perché contiene weights diversi dal
# dataset originale, allora uso formatted_dataset_forPred
true_label_dt = formatted_dataset_forPred
# il dataset che scelgo con le predizioni quello uscito dall'adversarial debiasing e ha le
# predizioni di tipo 0-1
pred_label_dt = formatted_dataset_ADVdebiasing

## ------------------------------------------------------------------------------------
roc <- reject_option_classification(unprivileged_groups = unpri,
privileged_groups = pri,
low_class_thresh = 0.01,
high_class_thresh = 0.99,
num_class_thresh = as.integer(100),
num_ROC_margin = as.integer(50),
metric_name = "Statistical parity difference",
metric_ub = 0.05,
metric_lb = -0.05)
roc <- roc$fit_predict(true_label_dt, pred_label_dt) # il primo il dataset contenente le
label vere e il secondo contiene le predizioni

## ------------------------------------------------------------------------------------
# ora torniamo a un dataset in formato data frame (non aif360)
```

120
Appendix A. R code

```r
col_names <- c(roc$feature_names, "preds")

new_data_roc <- data.frame(roc$features, roc$labels)
colnames(new_data_roc) <- col_names
#new_data_ADVdebiasing gi classificato

## ------------------------------------------------------------------------------------
new_data_roc$Two_yr_Recidivism = new_data$Two_yr_Recidivism

## ------------------------------------------------------------------------------------
#ripristino di nuovo TUTTI i livelli categorici per renderlo più leggibile
new_data_roc$Two_yr_Recidivism = ifelse(new_data_roc$Two_yr_Recidivism==1,"Yes_recidivism",
"No_recidivism")

new_data_roc$ethnicity = ifelse(new_data_roc$ethnicity==1,"Caucasian", "Not_caucasian")

new_data_roc$Female = ifelse(new_data_roc$Female==1,"Male", "Female")

new_data_roc$Misdemeanor = ifelse(new_data_roc$Misdemeanor==1,"no", "yes")

new_data_roc$Age = ifelse(new_data_roc$Age==1,"between25_45", "Not_between25_45")

## ------------------------------------------------------------------------------------
#confronto le metriche di fairness: vedo se ci sono stati miglioramenti rispetto alle
technici di preprocessing debias.
#per questi due nuovi dataset non ho l'optimal cutoff quindi prendo 0.5 di default
#confronto con il dataset classificato con adv debiarsing

fair_metrics_cmp_graph(data1 = new_data_ADVdebiasing,
data2 = new_data_roc,
outcome = 'Two_yr_Recidivism',
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'preds',
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = 0.5,
cutoff2 = 0.5,
base = 'Caucasian')

#confronto con il dataset originale

fair_metrics_cmp_graph(data1 = classified_dt,
data2 = new_data_roc,
outcome = 'Two_yr_Recidivism',
```

121
Appendix A. R code

```r
outcome_base = 'No_recidivism',
group = 'ethnicity',
probs1 = 'pred',
probs2 = 'preds',
preds_levels = c('No_recidivism','Yes_recidivism'),
cutoff1 = optimized_cutoff,
cutoff2 = 0.5,
base = 'Caucasian')
```

R code for Drug dataset:

```r
#-- echo=FALSE, warning=FALSE-------------------------------------------------
library(fairness)
library(knitr)
library(recipes)
library(skimr)
library(modeldata)
library(RColorBrewer)
library(tangram)
library(dplyr)
library(vegan)
library(diverse)
library(randomForest)
library(caret)
library(varhandle)
library(MASS)
library(dostats) #per %contains%
library(graphics) #per mosaicplot
library(corrplot)
library(wesanderson)
library(Amelia)
library(ROCR) #per ROC function
library(ROSE)#binary balancing
library(UBL)#multiclass balancing
library(ggplot2)
library(ggpubr)
library(xtable)
library(tidyr)
library(formatR)

#carico il file util con le altre funzioni
source("util.R")

#-- echo = F--
library(knitr)
opts_chunk$set(tidy.opts=list(width.cutoff=60),tidy=TRUE)
```
Appendix A. R code

```r
## ---- echo=FALSE--------------------------------------------------------------
# Load data
raw_data <- read.csv(file = "drug_consumption.data")

# Data preparation
raw_data = setNames(raw_data, column_names)

head(raw_data)

## ---------------------------------------------------------------------------
# Encode from numerical to categorical
# Potrei anche considerare "usata pi di 10 anni fa" come Never used
# Qui devo mettere stringhe e non valori numerici, oppure cambiarli dopo in stringhe,
# altrimenti poi fa regressione invece di classificazione
raw_data[raw_data == "CL0"]<- "Never_used"  # never used
raw_data[raw_data == "CL1"]<- "Used"  # used more than a decade ago
raw_data[raw_data == "CL2"]<- "Used"  # used within the last decade
raw_data[raw_data == "CL3"]<- "Used"
raw_data[raw_data == "CL4"]<- "Used"
raw_data[raw_data == "CL5"]<- "Used"
raw_data[raw_data == "CL6"]<- "Used"

# Elimino la colonna ID perché non mi interessa
raw_data$ID = NULL

require(dplyr)
require(magrittr)
raw_data = raw_data %>%
  as_tibble %>%
  mutate(Age = factor(Age, labels = c("18_24", "25_34", "35_44", "45_54", "55_64", "65_"))) %>%
  mutate(Gender = factor(Gender, labels = c("Male", "Female"))) %>%
  mutate(Education = factor(Education, labels = c("Under16", "At16", "At17", "At18", "SomeCollege", "ProfessionalCert", "Bachelors", "Masters", "Doctorate"))) %>%
  mutate(Country = factor(Country, labels = c("USA", "NewZealand", "Other", "Australia", "Ireland", "Canada", "UK"))) %>%
```
Appendix A. R code

```r
mutate(Ethnicity = factor(Ethnicity, labels = c("Black", "Asian", "White", "White/Black", "Other", "White/Asian", "Black/Asian"))) %>%
mutate(Coke = factor(Coke, labels = c("Never_used", "Used"))) %>%
mutate(Crack = factor(Crack, labels = c("Never_used", "Used")))

#> mutate_at(vars(Alcohol:VSA), funs(as.numeric))

# data.table(raw_data, options = list(scrollX = TRUE, searching = FALSE, pageLength = 5),
caption = 'Table 2: Clean Drug Use Data')

# selezioon due colonne di droghe che mi interessano
# scelgo Crack e Coke (cocaina)
# elimino tutte le altre colonne che non mi interessano
raw_data = subset(raw_data, select=-c(Alcohol, Amphet, Amyl, Benzos, Caff, Cannabis, Choc, Ecstasy, Heroin, Ketamine, Legalh, LSD, Meth, Mushrooms, Nicotine, Semer, VSA) )

h = head(raw_data)
print(xtable(h, type = "latex"), file = "DRUGShead.tex")
summary(raw_data)

## ------------------------------------------------------------------------------------

# data visualization CATEGORICAL

# Filter out categorical columns
cat_data <- raw_data[, sapply(raw_data, is.categorical)]
cat_names <- names(cat_data)

# pie print per ogni colonna categorica
for ( i in seq(1,length( cat_data ),1) ){
  pie_print(cat_data,cat_names[i])
}

#a = table(cat_data) # lo faccio solo sui categorici
a = as.data.frame(a)
#a$Number_of_Priors = NULL
ggballoonplot(a, x = "Ethnicity", y = "Age", size = "Freq",
color = "#8591C2", fill = "#8591C2", facet.by = "Gender",
ggtheme = theme_bw()) #+
#scale_fill_gradientn(colors = wes_palette(2, name="GrandBudapest"))

# giusto per farci un’idea, quanti hanno consumato cocaina e quanti hanno consumato crack nel nostro dataset
table(raw_data$Coke) #847
```
Appendix A. R code

```r
124 table(raw_data$Crack)  #258
125
126 ## ------------------------------------------------------------------------------------
127 # missing values
128 missmap(raw_data, main = "Missing values vs observed")
129 # no missing values
130
131 ## ------------------------------------------------------------------------------------
132 # Create a boxplot using base R
133 # posso provare a farlo con gli score, ma dovrei capire se davvero questi score (o anche solo uno) mi interessano
134 boxplot(Nscore~Ethnicity, data=raw_data)
135 boxplot(Nscore~Age, data=raw_data)
136 boxplot(Nscore~Gender, data=raw_data)
137
138 ## ------------------------------------------------------------------------------------
139 ## COKE
140
141 # plotto lo Coke consumption al variare di Gender
142 # --------------------------------------------
143 d = group_by_feature_sensitive(raw_data, "Coke", "Gender")
144 bar(dv = count_val,
145     factors = c("Coke", "Gender"), # non riesco a risolvere il problema di passare in questa lista una variabile contente la stringa, invece della stringa stessa.
146     dataframe = as.data.frame(d),
147     errbar = FALSE,
148     ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
149     ) # I increased the upper y-limit to accommodate the legend.
150
151 # --------------------------------------------
152 # Ethnicity
153 d = group_by_feature_sensitive(raw_data, "Coke", "Ethnicity")
154 bar(dv = count_val,
155     factors = c("Coke", "Ethnicity"), # non riesco a risolvere il problema di passare in questa lista una variabile contente la stringa, invece della stringa stessa.
156     dataframe = as.data.frame(d),
157     errbar = FALSE,
158     ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
159     ) # I increased the upper y-limit to accommodate the legend.
160
161 # --------------------------------------------
162 # Education
163 d = group_by_feature_sensitive(raw_data, "Coke", "Education")
164 bar(dv = count_val,
165     factors = c("Coke", "Education"), # non riesco a risolvere il problema di passare in questa lista una variabile contente la stringa, invece della stringa stessa.
166     dataframe = as.data.frame(d),
167     errbar = FALSE,
168 `````
ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

#Age
d = group_by_feature_sensitive(raw_data, "Coke", "Age")
bar(dv = count_val, 
  factors = c("Coke", "Age"), #non riesco a risolvere il problema di passare in questa lista una variabile contenente la stringa, invece della stringa stessa.
  dataframe = as.data.frame(d),
  errbar = FALSE,
  ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

#Country
d = group_by_feature_sensitive(raw_data, "Coke", "Country")
bar(dv = count_val, 
  factors = c("Coke", "Country"), #non riesco a risolvere il problema di passare in questa lista una variabile contenente la stringa, invece della stringa stessa.
  dataframe = as.data.frame(d),
  errbar = FALSE,
  ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

## ------------------------------------------------------------------------------------
##Crack
#plotto lo Crack consumption al variare di Gender
#Gender
d = group_by_feature_sensitive(raw_data, "Crack", "Gender")
bar(dv = count_val, 
  factors = c("Crack", "Gender"), #non riesco a risolvere il problema di passare in questa lista una variabile contenente la stringa, invece della stringa stessa.
  dataframe = as.data.frame(d),
  errbar = FALSE,
  ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

#Ethnicity
d = group_by_feature_sensitive(raw_data, "Crack", "Ethnicity")
bar(dv = count_val, 
  factors = c("Crack", "Ethnicity"), #non riesco a risolvere il problema di passare in questa lista una variabile contenente la stringa, invece della stringa stessa.
  dataframe = as.data.frame(d),
  errbar = FALSE,
  ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

#Education
d = group_by_feature_sensitive(raw_data, "Crack", "Education")
bar(dv = count_val, 
  factors = c("Crack", "Education"), #non riesco a risolvere il problema di passare in
Appendix A. R code

questa lista una variabile contente la stringa, invece della stringa stessa.

dataframe = as.data.frame(d),
errorbar = FALSE,
ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

# Age

d = group_by_feature_sensitive(raw_data, "Crack", "Age")

bar(dv = count_val,
    factors = c("Crack", "Age"),
    dataframe = as.data.frame(d),
    errorbar = FALSE,
    ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

# Country

d = group_by_feature_sensitive(raw_data, "Crack", "Country")

bar(dv = count_val,
    factors = c("Crack", "Country"),
    dataframe = as.data.frame(d),
    errorbar = FALSE,
    ylim=c(0, as.numeric(d[4])+0.1*as.numeric(d[4]))
) # I increased the upper y-limit to accommodate the legend.

## #Coke

frequent_combi1(raw_data, filter = "Coke", "Age")
frequent_combi1(raw_data, filter = "Coke", c("Age", "Ethnicity"))
frequent_combi1(raw_data, filter = "Coke", c("Age", "Ethnicity", "Gender"))
frequent_combi1(raw_data, filter = "Coke", c("Age", "Ethnicity", "Gender", "Education"))

## # plotto la distribuzione delle combinazioni (conteggio casi)

a = frequent_combi1(raw_data, filter = "Coke", c("Age", "Ethnicity", "Gender"))
a1 = as.data.frame(a[1]) # la tabella 1 ha sempre Used
a2 = as.data.frame(a[2]) # la tabella 2 ha sempre Never_Used

# Coloro sempre Used di rosso

ggballoonplot(a1, x = "Ethnicity", y = "Age", size = "percentage_on_Used",
    color = "black", fill = "#F24D4D", facet.by = "Gender", ggtheme = theme_bw())

# percentage_on_Age_ethnicity_Female

ggballoonplot(a2, x = "Ethnicity", y = "Age", size = "percentage_on_Never_used",
    color = "black", fill = "#50C395", facet.by = "Gender", ggtheme = theme_bw())
Appendix A. R code

```r
ggballoonplot(a1, x = "Ethnicity", y = "Age", size = "percentage_on_total",
 color = "black", fill = "#F24D4D", facet.by = "Gender", ggtheme = theme_bw())
#percentage_on_Age_ethnicity_Female

ggballoonplot(a2, x = "Ethnicity", y = "Age", size = "percentage_on_Age_Ethnicity_Gender",
 color = "black", fill = "#50C395", facet.by = "Gender", ggtheme = theme_bw())
g = ggballoonplot(a1, x = "Ethnicity", y = "Age", size = "percentage_on_Age_Ethnicity_Gender",
 color = "black", fill = "#F24D4D", facet.by = "Gender", ggtheme = theme_bw())
#percentage_on_Age_ethnicity_Female
ggsave("DRUGSCokeperOnComb.jpg", plot = g, width = 20, height = 12, units = "cm")

ggballoonplot(a2, x = "Ethnicity", y = "Age", size = "percentage_on_total",
 color = "black", fill = "#50C395", facet.by = "Gender", ggtheme = theme_bw())
--
#Crack
frequent_comb1(raw_data, filter = "Crack", "Age")
frequent_comb1(raw_data, filter = "Crack", c("Age", "Ethnicity"))
frequent_comb1(raw_data, filter = "Crack", c("Age", "Ethnicity", "Gender"))
frequent_comb1(raw_data, filter = "Crack", c("Age", "Ethnicity", "Gender", "Education"))
#non posso fare tutte le combinazioni. C' un modo per capire a priori quali attributi possono essere i pi interessanti da valutare?
--

--

#plotto la distribuzione delle combinazioni (conteggio casi)
a = frequent_comb1(raw_data, filter = "Crack", c("Age", "Ethnicity", "Gender"))
a1 = as.data.frame(a[2]) #la tabella 1 ha sempre Used
a2 = as.data.frame(a[1]) #la tabella 2 ha sempre Never_Used

#Coloro sempre Used di rosso
ggballoonplot(a1, x = "Ethnicity", y = "Age", size = "percentage_on_Used",
 color = "black", fill = "#F24D4D", facet.by = "Gender", ggtheme = theme_bw())
#percentage_on_Age_ethnicity_Female
ggballoonplot(a2, x = "Ethnicity", y = "Age", size = "percentage_on.Never_used",
 color = "black", fill = "#50C395", facet.by = "Gender", ggtheme = theme_bw())
ggballoonplot(a1, x = "Ethnicity", y = "Age", size = "percentage_on_total",
```

128
Appendix A. R code

```r
color = "black", fill = "#F24D4D", facet.by = "Gender", ggtheme = theme_bw())

#percentage_on_Age_ethnicity_Female
gballoonplot(a2, x = "Ethnicity", y = "Age", size = "percentage_on_Age_Ethnicity_Gender",
 color = "black", fill = "#50C395", facet.by = "Gender", ggtheme = theme_bw())

g = gballoonplot(a1, x = "Ethnicity", y = "Age", size = "percentage_on_Age_Ethnicity_Gender",
 color = "black", fill = "#F24D4D", facet.by = "Gender", ggtheme = theme_bw())

#percentage_on_Age_ethnicity_Female
ggsave("DRUGSCrackPerOnComb.jpg", plot = g, width = 20, height = 12, units = "cm")

gballoonplot(a2, x = "Ethnicity", y = "Age", size = "percentage_on_total",
 color = "black", fill = "#50C395", facet.by = "Gender", ggtheme = theme_bw())

--
#chi squared test (consideriamo le colonne come categoriche)
source("util.R")
chisq_fun(raw_data, "Coke", "Age")
chisq_fun(raw_data, "Coke", "Ethnicity")
chisq_fun(raw_data, "Coke", "Gender")

--
chisq_fun(raw_data, "Crack", "Age")
chisq_fun(raw_data, "Crack", "Ethnicity")
chisq_fun(raw_data, "Crack", "Gender")
#In console possiamo osservare la differenza tra i valori osservati (prima tabella) e i
#valori attesi (seconda tabella).

--
#SHANNON INDEX
#uso funzioni create nella libreria
shannon_diversity(raw_data)
print_shannon(raw_data)
#print_cmp_shannon(raw_data, raw_data)

--
sostituisco i livelli con valori numerici
raw_data$Coke = as.factor(raw_data$Coke)
levels(raw_data$Coke)[levels(raw_data$Coke)=="Used"] <- 1
levels(raw_data$Coke)[levels(raw_data$Coke)=="Never_used"] <- 0

#split into train and test set
```

129
sample_size = floor(0.7*nrow(raw_data))
# set a random seed per rendere l’esperimento ripetibile
set.seed(42)
# randomly split data
picked = sample(seq_len(nrow(raw_data)), size = sample_size)
training_set = raw_data[picked,]
test_set = raw_data[-picked,]

# as.factor mi serve per fare una classificazione binaria
raw_data$Coke = as.factor(raw_data$Coke)
# devo anche eliminare Coke dal training_set
cols_to_drop <- names(training_set) %in% c("Coke")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

## ------------------------------------------------------------------------------------
# REGRESSIONE LOGISTICA
# elimino colonna crack
cols_to_drop <- names(raw_data) %in% c("Crack")
raw_data_copy = raw_data
raw_data <- raw_data[, !cols_to_drop, drop = FALSE]

# poi commento le righe in cui calcola il modello perché ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Coke ~ ., data = training_set, family = binomial(link = "logit"))
logitMod # capire cosa significano questi dati
saveRDS(model, "/logitMod_compas_rf.rds") # commento perché l’ho già salvato

# logitMod = readRDS(file = "/model_compas_rf.rds")
logitMod

# faccio la predizione su entrambi training e test set, perché per le metriche di classificazione mi servono dataset originale e dataset classificato *della stessa dimensione*
pred = predict(logitMod, training_set_data)
classified_dt1 = cbind(training_set_data, pred)
pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perché otengo il cutoff ottimizzato anch’esso tra -1 e 1 e mi piacele fare la predizione
classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)
classified_dt = rbind(classified_dt1, classified_dt2)


## Appendix A. R code

```r
##--
ROC
pred1 <- prediction(pred, test_set$Coke) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
plot(perf)
posso anche fare una ROC comparison per le categorie di un attributo sensibile, tipo Female, con la libreria fairness:
roc_fairness <- roc_parity(data = classified_dt,
outcome = 'Coke',
group = 'Gender',
probs = 'pred',
preds_levels = c('Used','Never_used'),
base = 'Male')
roc_fairness$Metric
roc_fairness$ROCAUC_plot
##--
AUC
auc.perf = performance(pred1, measure = "auc")
auc.perf@y.values # stampa a video il valore di AUC
##############
plotto sensitivity e specificity in modo da individuare il cutoff ottimizzato
sens <- data.frame(x=unlist(performance(pred1, "sens")@x.values),
y=unlist(performance(pred1, "sens")@y.values))
spec <- data.frame(x=unlist(performance(pred1, "spec")@x.values),
y=unlist(performance(pred1, "spec")@y.values))
sens %>% ggplot(aes(x,y)) +
 geom_line() +
 geom_line(data=spec, aes(x,y,col="red")) +
 scale_y_continuous(sec.axis = sec_axis(~., name = "Specificity")) +
 labs(x='Cutoff', y="Sensitivity") +
 theme(axis.title.y.right = element_text(colour = "red"), legend.position="none")
##############
troviamo l'optimal cutoff, cio l'optimal score che minimizza il misclassification error del modello di regressione logistica
The best threshold (or cutoff) point to be used in glm models is the point which maximises the specificity and the sensitivity. This threshold point might not give the highest prediction in your model, but it wouldn't be biased towards positives or negatives.
optimized_cutoff = opt.cut(perf, pred1)# il cutoff ottimale leggermente più basso di quello standard, che sarebbe invece 0.5
converto la colonna pred di classified_dt2 in yes/no recidivism usando il cutoff ottimizzato
yes era 1, quindi ho recidivismo se maggiore del cutoff
classified_dt2$pred = ifelse(classified_dt2$pred<optimized_cutoff,"Never_used","Used")
```
Appendix A. R code

```r
sostituisco i valori dei livelli per poter plottare la matrice di confusione
levels(test_set$Coke)[levels(test_set$Coke)==1] <- "Used"
levels(test_set$Coke)[levels(test_set$Coke)==0] <- "Never_used"
levels(test_set$Coke)

anche per classified_dt2
classified_dt2$pred <- factor(classified_dt2$pred, levels = c("Used", "Never_used"))

----message=FALSE, warning=FALSE--

matrice di confusione
cm <- confusionMatrix(data = as.factor(classified_dt2$pred), reference = as.factor(test_set$Coke))

plotto la matrice di confusione
png("DRUGSCokeCM.png")
draw_confusion_matrix(cm)
dev.off()

--
ci occupiamo di group fairness: indipendenza, separazione e sufficienza

lo facciamo per tutti i sensitive attribute (Marital, ageR)

ripristino di nuovo i livelli yes/no per renderlo pi leggibile
levels(classified_dt$Coke)[levels(classified_dt$Coke)==1] <- "Used"
levels(classified_dt$Coke)[levels(classified_dt$Coke)==0] <- "Never_used"

per scegliere la categoria "base" per cui confrontare tutte le altre, per ogni attributo sensibile, ci conviene guardare le tabelle delle frequenze plottate in precedenza:

--

fair_metrics(data = classified_dt,
outcome = 'Coke',
group = 'Age',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base = '18_24')

fair_metrics(data = classified_dt,
outcome = 'Coke',
group = 'Ethnicity',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base = 'White')

fair_metrics(data = classified_dt,
outcome = 'Coke',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base = 'White')
```

132
group = 'Gender',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base = 'Male')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Coke',
group1 = 'Gender',
group2 = 'Ethnicity',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base1 = 'Male',
base2 = 'White')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Coke',
group1 = 'Age',
group2 = 'Ethnicity',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base1 = '18_24',
base2 = 'White')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Coke',
group1 = 'Ethnicity',
group2 = 'Age',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base1 = 'White',
base2 = '18_24')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Coke',
group1 = 'Gender',
group2 = 'Age',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base1 = 'Male',
base2 = '18_24')

#CREO I SEGUENTI DATASET BILANCIATI PER COKE:
#balanced_data0: bilanciato per Ethnicity
#balanced_data1: bilanciato per Country
#balanced_data2: bilanciato per Ethnicity and Age

#balanced_data0: bilanciato per Ethnicity
#questo invece ha ethnicity bilanciato con smote ed meglio usare questo!
raw_data = as.data.frame(raw_data)
balanced_data0 = SmoteClassif(Ethnicity ~ ., raw_data, dist = "HEOM", k=2)

#balanced_data1: bilanciato per Country
raw_data = as.data.frame(raw_data)
balanced_data = SmoteClassif(Country ~ ., raw_data, dist = "HEOM", k=2)
balanced_data1 = NULL
for(i in levels(balanced_data$Country)){
    #faccio il rebalancing di Two_yr_Recidivism per ogni categoria di ethnicity
    temp_dt = balanced_data[balanced_data$Country==i, ]
    s = SmoteClassif(Ethnicity ~ ., temp_dt, dist = "HEOM", k=2)
    #metto poi insieme i vari piccoli dataset bilanciati
    balanced_data1 = rbind(balanced_data1, s)
}

balanced_data2 = NULL
for(i in levels(balanced_data0$Ethnicity)){
    #faccio il rebalancing di Two_yr_Recidivism per ogni categoria di ethnicity
    temp_dt = balanced_data0[balanced_data0$Ethnicity==i, ]
    s = SmoteClassif(Age ~ ., temp_dt, dist = "HEOM")
    #metto poi insieme i vari piccoli dataset bilanciati
    balanced_data2 = rbind(balanced_data2, s)
}

cat_data <- balanced_data1[, sapply(balanced_data1, is.categorical)]
cat_names <- names(cat_data)
for ( i in seq(1,length( cat_data ),1) ){
    pie_print(cat_data,cat_names[i])
}

#balanced_data0
#split into train and test set
sample_size = floor(0.7*nrow(balanced_data0))
#set a random seed per rendere l'esperimento ripetibile
set.seed(42)
# randomly split data
picked = sample(seq_len(nrow(balanced_data0)),size = sample_size)
training_set =balanced_data0[picked,]
test_set =balanced_data0[-picked,]

#as.factor mi serve per fare una classificazione binaria
balanced_data0$Coke = as.factor(balanced_data0$Coke)
#devo anche eliminare Coke dal training_set
cols_to_drop <- names(training_set) %in% c("Coke")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

# REGRESSIONE LOGISTICA
# elimino colonna crack
cols_to_drop <- names(balanced_data0) %in% c("Crack")
balanced_data0_copy = balanced_data0
balanced_data0 <- balanced_data0[, !cols_to_drop, drop = FALSE]

logitMod <- glm(Coke ~ ., data = training_set, family=binomial(link="logit"))
logitMod # capire cosa significano questi dati
# saveRDS(model, "/logitMod_compas_rf.rds") # commento perché l’ho già salvato
logitMod = readRDS(file = "/model_compas_rf.rds")

logitMod$xlevels["Country"] <- union(logitMod$xlevels["Country"], levels(raw_data$Country))
pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch’esso tra -1 e 1 e mi pi facile fare la predizione
balanced0_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

# split into train and test set
sample_size = floor(0.7*nrow(balanced_data1))
set.seed(42)
picked = sample(seq_len(nrow(balanced_data1)), size = sample_size)
training_set = balanced_data1[picked,]
test_set <- balanced_data1[-picked,]

# as.factor mi serve per fare una classificazione binaria
balanced_data1$Coke <- as.factor(balanced_data1$Coke)
# devo anche eliminare Coke dal training_set
cols_to_drop <- names(training_set) %in% c("Coke")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

# REGRESSIONE LOGISTICA
# elimino colonna crack
cols_to_drop <- names(balanced_data1) %in% c("Crack")
balanced_data1_copy <- balanced_data1
balancen setData <- balanced_data1[, !cols_to_drop, drop = FALSE]

# poi commento le righe in cui calcola il modello perché ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Coke ~ ., data = training_set, family=binomial(link="logit"))
logitMod # capire cosa significano questi dati
# saveRDS(model, "/logitMod_compas_rf.rds") # commento perché l'ho già salvato

# logitMod = readRDS(file = "/model_compas_rf.rds")
# logitMod

devo fare queste due righe altrimenti non riconosce i livelli di country
logitMod$xlevels["Country"] <- union(logitMod$xlevels["Country"], levels(raw_data$Country))
pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perché ottengo il cutoff ottimizzato anch'esso tra -1 e 1 e mi piace fare la predizione
balanced1_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
# classified_dt2 = cbind(test_set_data, pred)
# classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Coke) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
opimized_cutoff1 = opt.cut(perf, pred1)

# balanced_data2
# split into train and test set
sample_size = floor(0.7*nrow(balanced_data2))

# set a random seed per rendere l'esperimento ripetibile
set.seed(42)

# randomly split data
picked = sample(seq_len(nrow(balanced_data2)), size = sample_size)

training_set = balanced_data2[picked,]
test_set = balanced_data2[-picked,]

# as.factor mi serve per fare una classificazione binaria
balanced_data2$Coke = as.factor(balanced_data2$Coke)

# devo anche eliminare Coke dal training_set
cols_to_drop <- names(training_set) %in% c("Coke")

# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]

# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

# REGRESSIONE LOGISTICA

# elimino colonna crack
cols_to_drop <- names(balanced_data2) %in% c("Crack")
balanced_data2_copy = balanced_data2

balanced_data2 <- balanced_data2[, !cols_to_drop, drop = FALSE]

# poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Coke ~ ., data = training_set, family=binomial(link="logit"))

logitMod # capire cosa significano questi dati

# saveRDS(model, "/logitMod_compas_rf.rds") # commento perch l'ho gi salvato

# logitMod = readRDS(file = "/model_compas_rf.rds"

# devo fare queste due righe altrimenti non riconosce i livelli di country
logitMod$xlevels[["Country"]]<- union(logitMod$xlevels[["Country"]], levels(raw_data$Country))

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch'essso tra -1 e 1 e mi pi facile fare la predizione

balanced2_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness

# classified_dt2 = cbind(test_set_data, pred)

# perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff2 = opt.cut(perf, pred1)

## ------------------------------------------------------------------------------------
# ora confronto ciascun dataset bilanciato con quello originale
# poi seleziono quelli che sembrano effettivamente migliori del dataset originale
# poi confronto tra loro questi dataset bilanciati rimanenti e scelgo il migliore
levels(balanced0_classified_dt$Coke)[levels(balanced0_classified_dt$Coke)==1] <- "Used"
levels(balanced0_classified_dt$Coke)[levels(balanced0_classified_dt$Coke)==0] <- "Never_used"
levels(balanced1_classified_dt$Coke)[levels(balanced1_classified_dt$Coke)==1] <- "Used"
levels(balanced1_classified_dt$Coke)[levels(balanced1_classified_dt$Coke)==0] <- "Never_used"
levels(balanced2_classified_dt$Coke)[levels(balanced2_classified_dt$Coke)==1] <- "Used"
levels(balanced2_classified_dt$Coke)[levels(balanced2_classified_dt$Coke)==0] <- "Never_used"

fair_metrics(data = balanced2_classified_dt,
outcome = 'Coke',
group = 'Ethnicity',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff,
base = 'White')

# creo anche un dataset con i valori delle mean deviation per ogni dataset bilanciato, per ogni metrica
msd_balanced=NULL

source("util.R")

png("DRUGSb0rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced0_classified_dt,
outcome = 'Coke',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff0,
base = 'White')
dev.off()

# praticamente solo peggioramenti
msd_balanced=p[[1]]
msd_balanced= rbind(msd_balanced, p[[2]])

png("DRUGSb1rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced1_classified_dt,
outcome = 'Coke',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff0,
base = 'White')
outcome = 'Coke',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff1,
base = 'White')

dev.off()

msd_balanced = rbind(msd_balanced, p[2])

png("DRUGSb2rdComp.png")

p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced2_classified_dt,
outcome = 'Coke',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff1,
base = 'White')

dev.off()

msd_balanced = rbind(msd_balanced, p[2])

#CONFRONTO TRA Loro BALANCED DATASETS

################################

png("DRUGSb0b1Comp.png")

fair_metrics_cmp_graph(data1 = balanced0_classified_dt,
data2 = balanced1_classified_dt,
outcome = 'Coke',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff0,
cutoff2 = optimized_cutoff1,
base = 'White')

dev.off()

png("DRUGSb0b2Comp.png")

fair_metrics_cmp_graph(data1 = balanced0_classified_dt,
Appendix A. R code

data2 = balanced2_classified_dt,
outcome = 'Coke',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff0,
cutoff2 = optimized_cutoff2,
base = 'White')

dev.off()

msd_balanced
long_msd_balanced <- msd_balanced %>% gather(metrics, values, dem_parity:spec_parity)

theme(legend.position="none",
strip.text = element_text(face="bold", size=15, lineheight=5.0),
strip.background = element_rect(fill="lightblue", colour="black",
size=1,),
axis.text.x = element_text(angle = 90),
axis.text=element_text(size=20, face="bold"),
axis.title=element_text(size=20, face="bold") +
xlab("")
ggsave("OverallCoke.jpg", plot = g, width = 24, height = 33, units = "in")

## ------------------------------------------------------------------------------------
raw_data = raw_data_copy
# sostituisco i livelli con valori numerici
raw_data$Crack = as.factor(raw_data$Crack)
levels(raw_data$Crack)[levels(raw_data$Crack)="Used"] <- 1
levels(raw_data$Crack)[levels(raw_data$Crack)="Never_used"] <- 0

# split into train and test set
sample_size = floor(0.7*nrow(raw_data))
set.seed(42)
picked = sample(seq_len(nrow(raw_data)), size = sample_size)
training_set = raw_data[picked,]
test_set = raw_data[-picked,]
Appendix A. R code

# as.factor mi serve per fare una classificazione binaria
raw_data$Crack = as.factor(raw_data$Crack)
# devo anche eliminare Crack dal training_set
cols_to_drop <- names(training_set) %in% c("Crack")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

## ------------------------------------------------------------------------------------
# REGRESSIONE LOGISTICA
# elimino colonna coke
cols_to_drop <- names(raw_data) %in% c("Coke")
raw_data_copy = raw_data
raw_data <- raw_data[, !cols_to_drop, drop = FALSE]

###############################
# poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Crack ~ ., data = training_set, family=binomial(link="logit"))
logitMod # capire cosa significano questi dati
# saveRDS(model, "./logitMod_compas_rf.rds") # commento perch l’ho gi salvato
#logitMod = readRDS(file = "./model_compas_rf.rds")
#logitMod

pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 per poi ottengli il cutoff ottimizzato anch’esso tra -1 e 1 e mi pi facile fare la predizione
classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)
# classified_dt = rbind(classified_dt1, classified_dt2)

## ------------------------------------------------------------------------------------
# ROC
pred1 <- prediction(pred, test_set$Crack) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
plot(perf)

# posso anche fare una ROC comparison per le categorie di un attributo sensibile, tipo Female, con la libreria fairness:
roc_fairness <- roc_parity(data = classified_dt,
  outcome = 'Crack',
  group = 'Gender',
  probs = 'pred',
  preds_levels = c('Never_used','Used'),

Appendix A. R code

```r
roc_fairness$Metric
roc_fairness$ROCAUC_plot

#AUC
auc.perf = performance(pred1, measure = "auc")
auc.perf@y.values #stampa a video il valore di AUC

#############
#plotto sensitivity e specificity in modo da individuare il cutoff ottimizzato
sens <- data.frame(x=unlist(performance(pred1, "sens"))@x.values),
y=unlist(performance(pred1, "sens"))@y.values)
spec <- data.frame(x=unlist(performance(pred1, "spec"))@x.values),
y=unlist(performance(pred1, "spec"))@y.values)

sens %>% ggplot(aes(x,y)) +
 geom_line() +
 geom_line(data=spec, aes(x,y,col="red")) +
 scale_y_continuous(sec.axis = sec_axis(~., name = "Specificity")) +
 labs(x='Cutoff', y="Sensitivity") +
 theme(axis.title.y.right = element_text(colour = "red"), legend.position="none")

#############

--
#troviamo l’optimal cutoff, cio l’optimal score che minimizza il misclassification error del
#modello di regressione logistica
#The best threshold (or cutoff) point to be used in glm models is the point which maximises
#the specificity and the sensitivity. This threshold point might not give the highest
#prediction in your model, but it wouldn’t be biased towards positives or negatives.

optimal_cutoff = opt.cut(perf, pred1)#il cutoff ottimale leggermente più basso di quello
#standard, che sarebbe invece 0.5

optimized_cutoff

#converto la colonna pred di classified_dt2 in yes/no recidivism usando il cutoff ottimizzato
#yes era 1, quindi ho recidivismo se maggiore del cutoff
classified_dt2$pred = ifelse(classified_dt2$pred<optimized_cutoff,"Never_used","Used")

#sostituisco i valori dei livelli per poter plottare la matrice di confusione
levels(test_set$Crack)[levels(test_set$Crack)==1] <- "Used"
levels(test_set$Crack)[levels(test_set$Crack)==0] <- "Never_used"

#anche per classified_dt2
classified_dt2$pred <- factor(classified_dt2$pred, levels = c("Used", "Never_used"))

--
#matrice di confusione

cm <- confusionMatrix(data = as.factor(classified_dt2$pred), reference = as.factor(test_set$Crack))

#plotto la matrice di confusione

png("DRUGSCrackCM.png")
```

142
Appendix A. R code

```r
--
ci occupiamo di group fairness: indipendenza, separazione e sufficienza
--

draw_confusion_matrix(cm)
dev.off()

--

lo facciamo per tutti i sensitive attribute (Marital, ageR)

ripristino di nuovo i livelli yes/no per renderlo pi leggibile
levels(classified_dt$Crack)[levels(classified_dt$Crack)==1] <- "Used"
levels(classified_dt$Crack)[levels(classified_dt$Crack)==0] <- "Never_used"

per scegliere la categoria "base" per cui confrontare tutte le altre, per ogni attributo sensibile, ci conviene guardare le tabelle delle frequenze plottate in precedenza:

--

source("util.R")

fair_metrics(data = classified_dt,
 outcome = 'Crack',
 group = 'Age',
 probs = 'pred',
 preds_levels = c('Never_used','Used'),
 cutoff = optimized_cutoff,
 base = '18_24')

fair_metrics(data = classified_dt,
 outcome = 'Crack',
 group = 'Ethnicity',
 probs = 'pred',
 preds_levels = c('Never_used','Used'),
 cutoff = optimized_cutoff,
 base = 'White')

fair_metrics(data = classified_dt,
 outcome = 'Crack',
 group = 'Gender',
 probs = 'pred',
 preds_levels = c('Never_used','Used'),
 cutoff = optimized_cutoff,
 base = 'Male')

fair_metrics_cmp_graph2(data = classified_dt,
 outcome = 'Crack',
 group1 = 'Gender',
 group2 = 'Ethnicity',
 probs = 'pred',
```
Appendix A. R code

```r
preds_levels = c('Never_used', 'Used'),
cutoff = optimized_cutoff,
base1 = 'Male',
base2 = 'White')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Crack',
group1 = 'Age',
group2 = 'Ethnicity',
probs = 'pred',
preds_levels = c('Never_used', 'Used'),
cutoff = optimized_cutoff,
base1 = '18_24',
base2 = 'White')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Crack',
group1 = 'Ethnicity',
group2 = 'Age',
probs = 'pred',
preds_levels = c('Never_used', 'Used'),
cutoff = optimized_cutoff,
base1 = 'White',
base2 = '18_24')

fair_metrics_cmp_graph2(data = classified_dt,
outcome = 'Crack',
group1 = 'Gender',
group2 = 'Age',
probs = 'pred',
preds_levels = c('Never_used', 'Used'),
cutoff = optimized_cutoff,
base1 = 'Male',
base2 = '18_24')
```

## ------------------------------------------------------------------------------------
# CREO I SEGUENTI DATASET BILANCIATI PER CRACK:
# balanced_data0: bilanciato per Crack
# balanced_data1: bilanciato per Crack and Ethnicity
# balanced_data2: bilanciato per Crack, Ethnicity and Age

#balanced_data0: bilanciato per Ethnicity
#questo invece ha ethnicity bilanciato con smote ed meglio usare questo!
raw_data = raw_data_copy
raw_data = as.data.frame(raw_data)

balanced_data0 = ovun.sample(Crack ~ ., data = raw_data, method="both", N = nrow(raw_data), p =0.5, seed = 42)$data

balanced_data0 = SmoteClassif(Age ~ ., balanced_data0, dist = "HEOM")
# balanced_data1 = SmoteClassif(Country ~ ., raw_data, dist = "HEOM", k=2)
balanced_data1 = SmoteClassif(Ethnicity ~ ., balanced_data0, dist = "HEOM", k=2)

balanced_data2 = NULL
balanced_data2 = SmoteClassif(Age ~ ., balanced_data0, dist = "HEOM", k=2)

# for(i in levels(balanced_data0$Ethnicity)){
# # faccio il rebalancing di Two_yr_Recidivism per ogni categoria di ethnicity
# temp_dt = balanced_data0[balanced_data0$Ethnicity==i, ]
# s = SmoteClassif(Age ~ ., temp_dt, dist = "HEOM")
# # metto poi insieme i vari piccoli dataset bilanciati
# balanced_data2 = rbind(balanced_data2, s)
# }

cat_data <- balanced_data0[, sapply(balanced_data0, is.categorical)]
cat_names <- names(cat_data)
for ( i in seq(1,length( cat_data ),1) ){
  pie_print(cat_data,cat_names[i])
}

### ---------------------------------------------------------------
# balanced_data0
# split into train and test set
sample.size = floor(0.7*nrow(balanced_data0))
# set a random seed per rendere l'esperimento ripetibile
set.seed(42)
# randomly split data
picked = sample(seq_len(nrow(balanced_data0)),size = sample.size)
training_set = balanced_data0[picked,]
test_set = balanced_data0[-picked,]

# as.factor mi serve per fare una classificazione binaria
balanced_data0$Crack = as.factor(balanced_data0$Crack)
# devo anche eliminare Coke dal training_set
cols_to_drop <- names(training_set) %in% c("Crack")
# training e test set senza variabile target
training_set.data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set.data <- test_set[, !cols_to_drop, drop = FALSE]

# REGRESSIONE LOGISTICA
# elimino colonna crack
cols_to_drop <- names(balanced_data0) %in% c("Crack")
balanced_data0_copy = balanced_data0

balanced_data0 <- balanced_data0[, !cols_to_drop, drop = FALSE]
Appendix A. R code

# poi commento le righe in cui calcola il modello perché ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Crack ~ ., data = training_set, family = binomial(link = "logit"))
# capire cosa significano questi dati
logitMod
#saveRDS(model, "/logitMod_compas_rf.rds") #commento perché l'ho già salvato
#logitMod = readRDS(file = "/./model_compas_rf.rds")

devo fare queste due righe altrimenti non riconosce i livelli di country
logitMod$xlevels["Country"] <- union(logitMod$xlevels["Country"], levels(raw_data$Country))
logitMod$xlevels["Ethnicity"] <- union(logitMod$xlevels["Ethnicity"], levels(raw_data$Ethnicity))
pred = predict(logitMod, test_set_data, type = "response") # se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 per poi ottenere il cutoff ottimizzato anch'esso tra -1 e 1 e mi piace fare la predizione

balanced0_classified_dt = cbind(test_set, pred) # questo quello che uso per la libreria fairness
#classified_dt2 = cbind(test_set_data, pred)
#classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Crack) # pred1 un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff0 = opt.cut(perf, pred1)

#balanced_data1
#split into train and test set
sample_size = floor(0.7*nrow(balanced_data1))
# set a random seed per rendere l'esperimento ripetibile
set.seed(42)
# randomly split data
picked = sample(seq_len(nrow(balanced_data1)), size = sample_size)
training_set = balanced_data1[picked,]
test_set = balanced_data1[-picked,]
as.factor mi serve per fare una classificazione binaria
balanced_data1$Crack = as.factor(balanced_data1$Crack)
devo anche eliminare Crack dal training_set
cols_to_drop <- names(training_set) %in% c("Crack")
# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]
# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]
Appendix A. R code

#REGRESSIONE LOGISTICA
#elimino colonna crack
cols_to_drop <- names(balanced_data1) %in% c("Coke")
balanced_data1_copy = balanced_data1
balanced_data1 <- balanced_data1[, !cols_to_drop, drop = FALSE]

#poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Crack ~ ., data = training_set, family=binomial(link="logit"))
logitMod #capire cosa significano questi dati
saveRDS(model, "/logitMod_compas_rf.rds") #commento perch l'ho gi salvato

#logitMod = readRDS(file = "/./model_compas_rf.rds")
logitMod

#devo fare queste due righe altrimenti non riconosce i livelli di country
logitMod$xlevels["Country"] <- union(logitMod$xlevels["Country"], levels(raw_data$Country))
logitMod$xlevels["Age"] <- union(logitMod$xlevels["Age"], levels(raw_data$Age))
pred = predict(logitMod, test_set_data, type = "response") #se non metto il type = response, mi restituisce una predizione tra -1 e 1, altrimenti me la restituisce tra 0 e 1. Scelgo tra -1 e 1 perc poi ottengo il cutoff ottimizzato anch'esso tra -1 e 1 e mi pi facile fare la predizione
balanced1_classified_dt = cbind(test_set, pred) #questo quello che uso per la libreria fairness
classified_dt2 = cbind(test_set_data, pred)
classified_dt = rbind(classified_dt1, classified_dt2)
pred1 <- prediction(pred, test_set$Crack) #predi un oggetto pred.obj di ROCR
perf <- performance(pred1, measure = "tpr", x.measure = "fpr")
optimized_cutoff1 = opt.cut(perf, pred1)

#balanced_data2
#split into train and test set
sample_size = floor(0.7*nrow(balanced_data2))
set a random seed per rendere l’esperimento ripetibile
set.seed(42)
# randomly split data
picked = sample(seq_len(nrow(balanced_data2)),size = sample_size)
training_set =balanced_data2[picked,]
test_set =balanced_data2[-picked,]

#as.factor mi serve per fare una classificazione binaria
balanced_data2$Crack = as.factor(balanced_data2$Crack)
# devo anche eliminare Coke dal training_set

cols_to_drop <- names(training_set) %in% c("Crack")

# training e test set senza variabile target
training_set_data <- training_set[, !cols_to_drop, drop = FALSE]

# anche sui dati di test
test_set_data <- test_set[, !cols_to_drop, drop = FALSE]

# REGRESSIONE LOGISTICA
# elimino colonna crack

cols_to_drop <- names(balanced_data2) %in% c("Coke")
balanced_data2_copy = balanced_data2
balanced_data2 <- balanced_data2[, !cols_to_drop, drop = FALSE]

# poi commento le righe in cui calcola il modello perch ci potrebbe mettere troppo (sufficiente salvarlo e ricaricarlo)
logitMod <- glm(Crack ~ ., data = training_set, family=binomial(link="logit"))

logitMod # capire cosa significano questi dati

# saveRDS(model, "/logitMod_compas_rf.rds") # commento perch l'ho gi salvato

# logitMod = readRDS(file = "/model_compas_rf.rds")

# devo fare queste due righe altrimenti non riconosce i livelli di country
logitMod$xlevels[["Country"]]

# ora confronto ciascun dataset bilanciato con quello originale
# poi seleziono quelli che sembrano effettivamente migliori del dataset originale
# poi confronto tra loro questi dataset bilanciati rimanenti e scelgo il migliore
levels(balanced0_classified_dt$Crack)[levels(balanced0_classified_dt$Crack)==1] <- "Used"
levels(balanced0_classified_dt$Crack)[levels(balanced0_classified_dt$Crack)==0] <- "Never_used"
levels(balanced1_classified_dt$Crack)[levels(balanced1_classified_dt$Crack)==1] <- "Used"
levels(balanced1_classified_dt$Crack)[levels(balanced1_classified_dt$Crack)==0] <- "Never_used"
levels(balanced2_classified_dt$Crack)[levels(balanced2_classified_dt$Crack)==1] <- "Used"
levels(balanced2_classified_dt$Crack)[levels(balanced2_classified_dt$Crack)==0] <- "Never_used"

classified_dtatisfaction

fair_metrics(data = balanced1_classified_dt,
outcome = 'Crack',
group = 'Ethnicity',
probs = 'pred',
preds_levels = c('Never_used','Used'),
cutoff = optimized_cutoff1,
bases = 'White')

# creo anche un dataset con i valori delle mean deviation per ogni metrica

msd_balanced=NULL

source("util.R")

png("DRUGSb0rdComp.png")

p = fair_metrics_cmp_graph(data1 = classified_dt, data2 = balanced0_classified_dt,
outcome = 'Crack',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff0,
bases = 'White')

dev.off()

# praticamente solo peggioramenti

msd_balanced=p[[1]]

msd_balanced= rbind(msd_balanced, p[[2]])

png("DRUGSb1rdComp.png")

p = fair_metrics_cmp_graph(data1 = classified_dt, data2 = balanced1_classified_dt,
outcome = 'Crack',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff0,
bases = 'White')

dev.off()
```r
Appendix A. R code

cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff1,
base = 'White')

dev.off()
msd_balanced= rbind(msd_balanced, p[[2]])

png("DRUGSb2rdComp.png")
p = fair_metrics_cmp_graph(data1 = classified_dt,
data2 = balanced2_classified_dt,
outcome = 'Crack',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff,
cutoff2 = optimized_cutoff2,
base = 'White')
dev.off()
msd_balanced= rbind(msd_balanced, p[[2]])

#CONFRONTO TRA LORO BALANCED DATASETS

png("DRUGSb0b1Comp.png")

fair_metrics_cmp_graph(data1 = balanced0_classified_dt,
data2 = balanced1_classified_dt,
outcome = 'Crack',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff0,
cutoff2 = optimized_cutoff1,
base = 'White')
dev.off()

png("DRUGSb0b2Comp.png")

fair_metrics_cmp_graph(data1 = balanced0_classified_dt,
data2 = balanced2_classified_dt,
outcome = 'Crack',
outcome_base = 'Never_used',
group = 'Ethnicity',
probs1 = 'pred',
probs2 = 'pred',
preds_levels = c('Never_used','Used'),
cutoff1 = optimized_cutoff0,
cutoff2 = optimized_cutoff2,
```
```r
Set up PDF
dev.off()

Load data
msd_balanced

Extract relevant metrics
long_msd_balanced <- msd_balanced %>% gather(metrics, values, dem_parity:spec_parity)

Create ggplot
g = ggplot(long_msd_balanced, aes(fill=metrics, y=values, x=datasets)) +
 geom_bar(position="dodge", stat="identity") +
 facet_wrap(~metrics, ncol=2) +
 theme(legend.position="none",
 strip.text = element_text(face="bold", size=15, lineheight=5.0),
 strip.background = element_rect(fill="lightblue", colour="black",
 size=1,),
 axis.text.x = element_text(angle = 90),
 axis.title=element_text(size=20, face="bold"),
 xlab="")

ggsave("OverallCrack.jpg", plot = g, width = 24, height = 33, units = "in")
```
### COMPAS fairness metrics data

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positively classified</td>
<td>460</td>
<td>71.0000</td>
<td>365.0000</td>
</tr>
<tr>
<td>Demographic Parity</td>
<td>1</td>
<td>0.1543</td>
<td>0.7935</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>0.4283</td>
<td>0.1863</td>
<td>0.9193</td>
</tr>
<tr>
<td>Proportional Parity</td>
<td>1.0000</td>
<td>0.4351</td>
<td>2.1466</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.7244</td>
<td>0.9031</td>
<td>0.1294</td>
</tr>
<tr>
<td>Equalized odds</td>
<td>1.0000</td>
<td>1.2466</td>
<td>0.1786</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.7149</td>
<td>0.7516</td>
<td>0.6875</td>
</tr>
<tr>
<td>Predictive Rate Parity</td>
<td>1.0000</td>
<td>1.0512</td>
<td>0.9616</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.6816</td>
<td>0.7323</td>
<td>0.6020</td>
</tr>
<tr>
<td>Accuracy Parity</td>
<td>1.0000</td>
<td>1.0744</td>
<td>0.8833</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNR</td>
<td>0.2756</td>
<td>0.0969</td>
<td>0.8706</td>
</tr>
<tr>
<td>FNR Parity</td>
<td>1.0000</td>
<td>0.3516</td>
<td>3.1591</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPR</td>
<td>0.3739</td>
<td>0.6260</td>
<td>0.0440</td>
</tr>
<tr>
<td>FPR Parity</td>
<td>1.0000</td>
<td>1.6741</td>
<td>0.1178</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>between25_45</th>
<th>above45</th>
<th>below25</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC</td>
<td>0.3512</td>
<td>0.3327</td>
<td>0.1551</td>
</tr>
<tr>
<td>MCC Parity</td>
<td>1.0000</td>
<td>0.9473</td>
<td>0.4418</td>
</tr>
</tbody>
</table>
### Appendix B. Data files

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positively classified</td>
<td>214</td>
<td>602.000000</td>
<td>0</td>
<td>54.000000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Demographic Parity</td>
<td>1</td>
<td>2.813084</td>
<td>0</td>
<td>0.2523364</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

### Specificity Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>0.6260684</td>
<td>0.3739373</td>
<td>0.9559471</td>
<td>0.5973529</td>
<td>1.5269053</td>
<td></td>
</tr>
</tbody>
</table>

### Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.7608142</td>
<td>0.5314534</td>
<td>1.000000</td>
<td>0.8073394</td>
<td>0</td>
<td>0.859375</td>
</tr>
</tbody>
</table>

### Equalized odds

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equalized odds</td>
<td>1.00000000</td>
<td>1.9345594</td>
<td>0.9774237</td>
<td>1.0015576</td>
<td>0.7664982</td>
<td></td>
</tr>
</tbody>
</table>

### Proportion

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>0.3328149</td>
<td>0.6438653</td>
<td>0</td>
<td>0.3253012</td>
<td>0.3333333</td>
<td>0.2551020</td>
</tr>
</tbody>
</table>

### Proportional Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional Parity</td>
<td>1.00000000</td>
<td>1.9345594</td>
<td>0.9774237</td>
<td>1.0015576</td>
<td>0.7664982</td>
<td></td>
</tr>
</tbody>
</table>

### Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.651633</td>
<td>0.6748663</td>
<td>0.8571429</td>
<td>0.7289157</td>
<td>0.6666667</td>
<td>0.7244898</td>
</tr>
</tbody>
</table>

### Accuracy Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy Parity</td>
<td>1.000000</td>
<td>1.0356540</td>
<td>1.3153767</td>
<td>1.1185985</td>
<td>1.0230708</td>
<td>1.1118065</td>
</tr>
</tbody>
</table>

### FNR

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNR</td>
<td>0.2391858</td>
<td>0.4685466</td>
<td>0</td>
<td>0.1926606</td>
<td>0</td>
<td>0.1406250</td>
</tr>
</tbody>
</table>

### FNR Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNR Parity</td>
<td>1.00000000</td>
<td>1.9589237</td>
<td>0</td>
<td>0.8054851</td>
<td>0</td>
<td>0.5879322</td>
</tr>
</tbody>
</table>

### MCC

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC</td>
<td>0.2491225</td>
<td>0.3610301</td>
<td>0</td>
<td>0.3915207</td>
<td>0.5000000</td>
<td>0.3602994</td>
</tr>
</tbody>
</table>

### MCC Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC Parity</td>
<td>1.00000000</td>
<td>1.4492073</td>
<td>0</td>
<td>1.5715990</td>
<td>2.007045</td>
<td>1.4462742</td>
</tr>
</tbody>
</table>

### NPV

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>0.5607477</td>
<td>0.641196</td>
<td>NaN</td>
<td>0.6111111</td>
<td>1.0000000</td>
<td>0.640000</td>
</tr>
</tbody>
</table>

### NPV Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV Parity</td>
<td>1.00000000</td>
<td>1.143466</td>
<td>NaN</td>
<td>1.0898148</td>
<td>1.783333</td>
<td>1.141333</td>
</tr>
</tbody>
</table>

### Specificity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>0.48</td>
<td>0.814346</td>
<td>0</td>
<td>0.5789474</td>
<td>0.5000000</td>
<td>0.4705882</td>
</tr>
</tbody>
</table>

### Specificity Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity Parity</td>
<td>1.00000000</td>
<td>1.0171610</td>
<td>0.9333770</td>
<td>0.5973529</td>
<td>1.5269053</td>
<td></td>
</tr>
</tbody>
</table>

### Parity

<table>
<thead>
<tr>
<th></th>
<th>Caucasian</th>
<th>African_American</th>
<th>Asian</th>
<th>Hispanic</th>
<th>Native_American</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity</td>
<td>1.00000000</td>
<td>1.0171610</td>
<td>0.9333770</td>
<td>0.5973529</td>
<td>1.5269053</td>
<td></td>
</tr>
</tbody>
</table>

154
### Appendix B. Data files

<table>
<thead>
<tr>
<th>Metric</th>
<th>Male</th>
<th>Female</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity Parity</td>
<td>1.00</td>
<td>1.696554</td>
<td>0.12061404</td>
</tr>
<tr>
<td>Positively classified</td>
<td>802</td>
<td>94.000000</td>
<td></td>
</tr>
<tr>
<td>Demographic Parity</td>
<td>1</td>
<td>0.117207</td>
<td></td>
</tr>
<tr>
<td>Proportion</td>
<td>0.535738</td>
<td>0.2647887</td>
<td></td>
</tr>
<tr>
<td>Proportional Parity</td>
<td>1.000000</td>
<td>0.4942503</td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.6231343</td>
<td>0.8391304</td>
<td></td>
</tr>
<tr>
<td>Equalized odds</td>
<td>1.000000</td>
<td>1.3466285</td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>0.7208633</td>
<td>0.7394636</td>
<td></td>
</tr>
<tr>
<td>Predictive Rate Parity</td>
<td>1.000000</td>
<td>1.0258028</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.6680027</td>
<td>0.7042254</td>
<td></td>
</tr>
<tr>
<td>FNR</td>
<td>0.3768657</td>
<td>0.1608696</td>
<td></td>
</tr>
<tr>
<td>FNR Parity</td>
<td>1.000000</td>
<td>0.4268618</td>
<td>1.0542254</td>
</tr>
<tr>
<td>FPR</td>
<td>0.2799423</td>
<td>0.544000</td>
<td></td>
</tr>
<tr>
<td>FPR Parity</td>
<td>1.000000</td>
<td>1.943258</td>
<td></td>
</tr>
<tr>
<td>MCC</td>
<td>0.3431249</td>
<td>0.3194837</td>
<td></td>
</tr>
<tr>
<td>MCC Parity</td>
<td>1.000000</td>
<td>0.9311003</td>
<td></td>
</tr>
<tr>
<td>NPV</td>
<td>0.6221945</td>
<td>0.6063830</td>
<td></td>
</tr>
<tr>
<td>NPV Parity</td>
<td>1.000000</td>
<td>0.9745875</td>
<td>0.9745875</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.7200577</td>
<td>0.4560000</td>
<td>0.6332826</td>
</tr>
</tbody>
</table>
References


[10] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal justice risk assessments: The state of the art. Sociological Methods & Research, 0(0):0049124118782533, 0.


References


