
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master Thesis

Integration of Timed Metadata in
the HTTP Streaming Architecture

Supervisor Candidate
prof. Antonio Servetti Gabriele Ghibaudo

ACADEMIC YEAR 2019 - 2020

Contents
Introduction 4

HTTP Streaming 5
1.1 HTTP Streaming Architecture 6
1.2 The HLS Protocol . 8
1.3 Nginx HLS Media Server . 13
1.4 Module Configuration . 14
1.5 Low Latency HLS . 16
1.6 Content Publishing . 19

Nginx-rtmp Module 21
2.1 Mpeg TS Format . 22
2.2 How to Store Metadata in MPTS files 27
2.3 How nginx-rtmp Handles Audio Packets 30
2.4 Integration of Timed Metadata 36

Parsing of AMF packets . 37
Generation of ID3 Tag . 40
Generation of PES packet . 41

2.5 Integration of Packed Audio Segments 43
HLS Playlist Files . 43
Integration in the nginx-rtmp Module 44

Configuration 46
3.1 id3v2lib library modifications 47
3.2 Building the server . 48
3.3 GStreamer Updates . 49
3.4 Testing . 51
3.5 HLS Development Resources . 52

Future Improvements 53
4.1 Transcoding with FFmpeg . 54
4.2 Low Latency Extension . 54

Conclusions 57

Bibliography 59

2

List of Figures
1 HTTP Streaming Architecture 6
2 Streaming Protocols Comparison 8
3 Playlist Files Structure . 9
4 Bitrate Switch During Stream 12
5 Nginx-rtmp configuration file 14
6 Cmaf File Components . 18
7 Gstreaner Pipeline Example 19
8 MPEG TS Header . 22
9 TS Packets Sequence . 23
10 PSI Header Fields . 24
11 PAT Table Fields . 24
12 PMT Table Fields . 25
13 AMF Metadata Packet Capture 36

3

Introduction
The nginx-rtmp module is a popular extension of the Nginx web server used
for HLS streaming, a last-mile distribution protocol for multimedia content
based on HTTP. While proprietary solutions usually come with native support
for timed metadata describing the audiovisual data or signaling the presence
of advertisements, open-source libraries lack the integration of this feature.
This work aims at filling this gap by implementing the Apple metadata spec-
ification in the mentioned module.
The thesis will start with a general overview of HTTP based streaming pro-
tocols, followed by a detailed description of the HLS standard and the latest
trends in the industry. The focus will then move to the internals of nginx-
rtmp and the structure of the MPEG TS container format, used for the en-
capsulation of the encoded content. With this knowledge, we will look at the
requirements for the integration of timed metadata in the module and what
modifications to the code base were necessary to achieve our goal.
We will go through the steps of configuration and testing of the improved
streaming chain and conclude with possible future improvements that could
benefit the module and the open source ecosystem.

4

Chapter 1

HTTP Streaming

5

1.1 HTTP Streaming Architecture
It is clear that the way we consume content today has shifted to the streaming
model. Despite the need for a persistent internet connection, faster play times
and less required storage have led to the widespread adoption of this tech-
nology. The variety of protocols available covers the most disparate use cases
and scenarios, from live event coverage to near real-time ultra low-latency
streaming, and is subject to continuous improvements both by the ideators
and the open-source community.
Unreliable communication infrastructure and an immense assortment of digi-
tal devices spurred the development of the Adaptive Bitrate (ABR) streaming
model. The name of this family of protocols comes from their ability to dy-
namically adapt to variable network conditions and change on the fly to a
more convenient version, encoded at a different bitrate. This operation is
carried automatically by the client software and can be done in the middle of
a stream, without playout delays or stallings.
To set up a Live Streaming service, the elements to be taken in consideration
are multiple, starting from the content production up until the distribution to
end users. Different protocols work together at the intersection of the various
components and must be selected with care between the pool of developed
solutions. This is the architecture of a full HTTP streaming chain.

Figure 1: HTTP Streaming Architecture

On the left side, where the production of the actual content occurs, there
is a first encoding step, usually done locally. Once ready to be uploaded, the

6

data is encapsulated in packets and pushed to the media server.
The most common protocol for this part is the TCP based RTMP (Real Time
Messaging Protocol). It was once used for the full streaming stack, thanks to
the wide diffusion of the FLASH Player on client devices. With the depre-
cation of this technology, RTMP has left room for newer standards, but still
remains the predominant solution for content publishing.
On the server, two main operations take place:

• Transcoding, the process of uncompressing encoded data, audio or video,
and reencoding it with different parameters, for example to change its
birate. Also, a completely distinct codec could be used to recompress the
data, for example when reformatting an H.264 video to HEVC.

• Transmuxing, which refers instead to the restructuring of the bitstream
without modification to the media itself, but only on the wrapping con-
tainer format, as in the case of the move from RTMP to HLS.

The high level components in charge of these two operations are the Media
Encoder and the Stream Segmenter.
For an adaptive bitrate protocol to work effectively, the content needs to be
encoded at different bitrates so that the client will have the option to select
the more appropriate for the situation. The Encoder transcodes the single
input bitstream into more renditions, the number of which depends on the
circumstances and the server configuration.
This output is then fed to the Segmenter, that will take care of splitting the
continuous stream in smaller chunks and save them to file. The fragmentation
allows a player to move between the available media variants at precise points
in time, with a high level of granularity.
The audiovisual content, processed and ready to be distributed, appears as a
common HTTP resource and can be exposed to the internet with a web server
like Nginx or Apache. Moreover, it can also take advantage of consolidated
technologies developed for the underlying protocol, like CDNs, or Content
Delivery Networks, which allow the caching of the media to a location closer
to the final user and a consequently improved experience.

7

1.2 The HLS Protocol
From its inception at Apple, HLS, or HTTP Live Streaming, has taken the
lead in the pool of the so-called adaptive bitrate protocols, shining for adop-
tion and implementations in respect to DASH and Microsoft Smooth Stream-
ing. As shown in the Wowza 2019 Video Streaming Latency Report [13], this
is the industry adoption percentage (only ABR protocols displayed here)

Figure 2: Streaming Protocols Comparison

Its advantage comes from the spread support on the client side: with native
reproduction in almost all web browsers on Android and iOS devices, it can
be easily implemented on Windows and Linux with the help of libraries like
Hls.js or through the use of proprietary solutions.
The main drawback of the protocol is the generally high latency, falling in
the 10-45 seconds range, which can be further reduced with carefully thought
out optimizations. HLS is not the best option when the application requires
low delays, like in video conferencing or highly interactive software. However,
low-latency variations have been developed both by private entities and open-
source communities, and Apple has announced their official extension for the
base protocol in 2019.
As previously stated, the continuous flow of data needs to be separated in
chunks or media segments, each of specific duration. Apple recommends the
usage of segments of 6 seconds. The Media segment formats supported by the
HLS standard include MPEG-2 Transport Streams and Fragmented MPEG-
4, with the option of Packed Audio in the case of audio only streams.
To know the types and locations of the various segments, a client must make
use of the HLS playlist files, which come in two flavors

8

• the Media Playlist indexes the media segments for a specific bitrate
variant, through a list of URIs mixed with protocol tags defined in the
specification

• the Master Playlist contains a reference to all the available variant
streams, and each URI will point to a media playlist file instead of a
fragment

Figure 3: Playlist Files Structure

The master file is the first that must be retrieved and can be read only once
since the advertised variants are not expected to change. The client can then
proceed to open the desired Media Playlist and start retrieving segments with
HTTP requests.
To give better context to a player parsing a playlist, HLS specifies a set of
descriptive tags that must be placed inside these files, some specific to one
type or even mutually exclusive between the two (if defined in the master
playlist, cannot be present in the media one). The followings are general tags
that can appear everywhere:

• EXTM3U sits at the beginning of the file and indicates that the format used
is an extension of the one deployed with the previous HLS version. Its

9

presence is mandatory in every m3u8 file.

• EXT-X-VERSION is use to specify which version of the protocol is imple-
mented by the server, and consequently the list of supported features.

Specific to master m3u8 files is instead the tag EXT-X-STREAM-INF, which
delineates the parameters for a specific encoded variant and the URI of the
media playlist. For each one of those, a line of this type has to be defined.
The variant characteristics are described through a list of attributes, some of
them recommended:

• BANDWIDTH is the maximum possible value of the bitrate, considering all
the segments composing a media list. It’s an integer with bps (bits per
second) as a measure of unit.

• AVERAGE-BANDWIDTH is the mean value for the bitrate, counting again all
the fragments

• RESOLUTION is the dimension in pixels of a video frame, obviously not
present for audio only streams

• CODECS is a string of comma separated values, containing the audio and
video encoders used in the related variant, in the ISO Base Media File
format. Useful for the client to know the required codecs before down-
loading the content.

• FRAME-RATE is the highest value of the homonymous parameter

Of all the listed fields, only BANDWIDTH is required by the specification, al-
though CODECS is marked as highly suggested for a better user experience. To
illustrate the tags in action, this is a sample Master Playlist file.

#EXTM3U
#EXT-X-STREAM-INF:BANDWIDTH=150000,RESOLUTION=416x234,

CODECS="avc1.42e00a,mp4a.40.2"
http://example.com/low/index.m3u8

10

#EXT-X-STREAM-INF:BANDWIDTH=240000,RESOLUTION=416x234,
CODECS="avc1.42e00a,mp4a.40.2"

http://example.com/lo_mid/index.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=440000,RESOLUTION=416x234,

CODECS="avc1.42e00a,mp4a.40.2"
http://example.com/hi_mid/index.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=640000,RESOLUTION=640x360,

CODECS="avc1.42e00a,mp4a.40.2"
http://example.com/high/index.m3u8
#EXT-X-STREAM-INF:BANDWIDTH=64000,CODECS="mp4a.40.5"
http://example.com/audio/index.m3u8

Media Playlists usually follow a simpler structure and employ three funda-
mental tags:

• EXT-X-TARGETDURATION is the duration in seconds of media files and, by
Apple recommendation, has to be around 6 seconds. No segment should
last more than this value.

• EXT-X-MEDIA-SEQUENCE is the starting value for the incremental index
included in the segments filename. When not specified, the client should
assume an initial value of 0.

• EXT-INF is the location of a fragment, with respective duration in seconds

This example shows the case of a variant with MPEG TS segments of 10
seconds length and relative paths.

#EXTM3U
#EXT-X-TARGETDURATION:10
#EXT-X-VERSION:4
#EXT-X-MEDIA-SEQUENCE:1
#EXTINF:10.0,
fileSequence1.ts
#EXTINF:10.0,
fileSequence2.ts
#EXTINF:10.0,

11

fileSequence3.ts
#EXTINF:10.0,
fileSequence4.ts

During a live stream, this file is being continuously updated by the media
server, with new segments appended at the tail of the list and older ones re-
moved from the head. The media sequence tag must also be set accordingly.
This concept goes by the name of Sliding Window, with the number of ele-
ments falling in the window range specified in the configuration.
At playback time, a client will ask for the Master Manifest and discover the
encoded versions that the server makes available. Based on the quality of
its connection, it will select the most appropriate rendition and request the
related Media Playlist, starting then to stream the content. In case the net-
work, previously congested in this example, suddenly offers more bandwidth,
the player will move to a higher resolution variant, downloading the 1080p
Manifest and the respective segments.

At any time, if needed, it will be possible to roll back to the low bitrate

Figure 4: Bitrate Switch During Stream

version. Note that the switch happens from one fragment to the other, since
that is the basic logical block of the stream. A smaller segment duration will
offer a more granular control, but it could not be worth the cost of the added
protocol overhead.

12

1.3 Nginx HLS Media Server
The nginx-rtmp module is a popular open-source solution built upon Nginx,
integrating in the powerful web server the functionalities needed to oper-
ate as a media server. It supports the RTMP protocol for content ingestion,
HLS and MPEG-DASH for last-mile distribution, while the carried audio and
video content must be encoded with AAC and H.264. It can be used in a live
streaming scenario, but also as a VOD (Video On Demand) server, when the
media is not produced on the fly but statically stored in the file system, as in
the case of Youtube and Netflix content.
To rearrange the incoming data to a format conforming the HLS standard
and prepare it to be streamed to end users, a media server needs to work as
a media encoder and segmenter.

• The encoder is responsible for the transcoding of the received data, pos-
sibly in multiple versions with various qualities and bitrates. This dif-
ferentiation will allow clients to adapt to variable network conditions by
requesting the best stream for their situation.

• The segmenter has to divide the continuous stream (or better, the streams
leaving the encoder) into chunks of specified length. It’s also its respon-
sibility to create and update the playlist files indexing the generated
fragments.

While the RTMP module natively implements the segmentation code, it re-
lies on the FFmpeg tool for the transcoding of the incoming RTMP stream.
FFmpeg is a versatile software component for working with audio and video
files, with support for a huge list of protocols and formats. It is used in this
instance to prepare multiple versions of an input stream, encoded at different
bitrates.
The missing piece to complete the streaming architecture is the media dis-
tributor, which takes care of delivering the content to the final users. In the
Adaptive Bitrate protocols family, since the resources can be accessed with
HTTP requests, a common web server is responsible for this task. Obviously,
this will be taken care of by Nginx itself.

13

1.4 Module Configuration
All the protocol options can be set in the nginx configuration file, where cus-
tom directives have been added alongside the ones for the basic web server.
To enable HLS streaming, with three different encoded versions of the con-
tent, this is a sample nginx.config with all the required parameters.

Figure 5: Nginx-rtmp configuration file

We can see that two applications are defined:

• src is the RTMP endpoint for the transcoding of the stream. With the
exec directive, we set up the FFmpeg command that will take care of
the operation, defining the expected bitrates for both audio and video,
and the destination URLs for the output. Note that these paths include
the name variable of the incoming stream and add a suffix string for each
variant (_low, _mid and _hi), and have as destination the hls applica-
tion instead of src.

14

• hls will take care of the segmentation, placing the media fragments
inside three distinct subfolders of /tmp/hls, since specified with the
hls_nested directive. For each variant the attributes to be inserted in
the EXT-X-STREAM-INF playlist tag need to be specified, as for BANDWIDTH
in this case (which corresponds to the summed bitrates for audio and
video outputted by FFmpeg) .

Other notable directives are

• hls_fragment sets the duration for a media segment, with a default value
of 5 seconds if not specified.

• hls_type is used to specify the insertion in a media manifest of the line
EXT-X-PLAYLIST-TYPE:EVENT. With this tag the server should not mod-
ify the playlist file, other than when inserting new segments at the end
of it, overriding the sliding window functionality.

• hls_continuous allows to restart the sequence number from where it
was left the stream before

• hls_playlist_length is the size of the sliding window, so the number
of segments written in the playlist at any moment, expressed in seconds

15

1.5 Low Latency HLS
Given the advantages that come with an HTTP based streaming model, it is
a natural step trying to overcome the associated limitations. As noted before,
Apple proposed an official solution to lower the latency of HLS streams down
to two seconds or less, while keeping the high level of reliability bound to the
protocol. With this goal, a set of single improvements has been combined
together to achieve better performance:

• Partial Segments

• Playlist Delta Updates

• Block Playlist Reload

A big source of delay comes from the necessity to encode a full segment be-
fore making it available for clients, and when its duration is in the order of
different seconds (generally six) the time wasted is considerable. Moreover,
a player has to wait for the reception of three segments (or three times the
target duration) before it can start the reproduction.
The proposed idea was then to reduce the size of a segment, or rather have the
possibility to split it up into different smaller ones, through the use of incom-
plete .ts files or CMAF chunks, which take the name of Partial Segments.
To advertise this incomplete parts, the EXT-X-PART tag has been added to the
specification and can be used with the following syntax inside a media playlist:

#EXT-X-PART:DURATION=0.3333,URI="segmentPart-14.0.ts",
INDEPENDENT=YES

#EXT-X-PART:DURATION=0.3333,URI="segmentPart-14.1.ts"
#EXT-X-PART:DURATION=0.3333,URI="segmentPart-14.2.ts"

The INDEPENDENT attribute notifies the presence of an I-Frame inside the seg-
ment, since given its small size, a single partial fragment could not be enough
to decode the media content. We see that in this case a duration of 0.33
seconds has been chosen, but it could reach a value as low as 200 ms.
With an increasing amount of segments, the manifest file will end up being
updated more often, requiring a client to make more HTTP requests to stay

16

up to date. With Delta Updates, the server can respond with only the mod-
ified sections of the file, saving on bandwidth and latency.
Related to this feature, the polling mechanism employed for downloading the
latest media playlist can be upgraded, giving a player the ability to ask the
server to wait to return the file until a specific future segment (maybe not yet
ready at request time) is available.

As mentioned, the CMAF (Common Media Application Format) file for-
mat can be used to represent a partial segment instead of the usual MPEG
TS. Still in an early phase of adoption, it was born to tackle the problem of
the streaming industry standards fragmentation, with its multitude of codecs
and container formats in use. Aside from the advantages in terms of compati-
bility between HLS and other protocols like DASH, the latency improvements
of this format could lower the delay from production to display.
To understand its structure, let’s introduce some terms:

• a track is a sequence of samples of one format, either encoded au-
dio, video or extra information like metadata, composed by a CMAF
header and a list of fragments (more fragments grouped together form a
segment)

• a switching set indexes tracks encoding different renditions of the same
data, for example audio content at low, mid and high quality. It’s used
to dynamically adapt the stream bitrate

• a selection set bounds together switching sets of a media, which dif-
fer for example by the language utilized (think to a movie with different
localizations), or even for the employed encoder

• a presentation is the union of multiple selection sets, where video, au-
dio e related data finally converge, similar to the concept of Program in
the MPEG TS standard

The basic idea is to split a segment in smaller units, the chunks, that are
made available for download as soon as they are encoded, even if the related

17

Figure 6: Cmaf File Components

segment has still to be fully completed. A client will be able to retrieve,
through a manifest, one of the CMAF objects listed above, which could be
as small as a single chunk, and instead of waiting for the buffering of three
complete segments, it will start the reproduction after the reception of three
chunks.

18

1.6 Content Publishing
So far we looked at the central component of an HTTP streaming chain, but
we should also make an overview of the publishing side. As stated, the RTMP
protocol is still the main solution applied to the transmission of the created
audiovisual content to the media server. Since it would be impractical to
send an uncompressed file, with a considerable waste on network bandwidth
and noticeable delays, there is the need to encode it before the encapsulation
inside RTMP packets.
The components that take care of this operation are many and differ based
on the context. In the case of a live stream on a social platform like Youtube
or Twitch a tool like OBS Studio would be more than enough, while in a
professional environment it is common to employ a more complex solution
like GStreamer or even hardware encoders.
GStreamer is an open source library for audio and video manipulation based
on the concept of a pipeline, a sequence of linked modules each executing
some specific manipulation on the media stream. Its support of a wide array
of codecs and container formats, as well as its extensibility through the use
of custom plugins, make it a popular choice not only in the streaming ar-
chitecture, but also in applications that work with multimedia files as media
players and video editors.

In the context of this work, the insertion of metadata in a live stream can

Figure 7: Gstreaner Pipeline Example

be achieved with the taginject plugin, extended with additional code to
handle the injection not only at the launch of the encoder command but at

19

every moment of its life, through the use of a TCP server constantly listening
for new input.
For compatibility with the Wowza Streaming Engine, the component was also
modified to avoid the transmission of the setDataFrame string as the first field
in the body of AMF packets, which begin instead with the onMetadata line.
Alternatively, FFmpeg can be used to stream a media file to the nginx server,
but although it supports the insertions of metadata packets, it cannot work
in the same manner of GStreamer, accepting TCP connections while running.
Further work could be aimed at investigating this missing feature.

20

Chapter 2

Nginx-rtmp Module

21

2.1 Mpeg TS Format
One of the ways media segments can be packaged inside an HLS stream is
with the use of the MPEG TS container format. While originally conceived
to be used for digital television broadcasting, it was later integrated in other
technologies like streaming over IP networks. This format introduces the
concept of Elementary Stream (ES), a sequence of bytes representing either
audio, video or a related set of data. Different Elementary Streams can then
be composed together to form a Program, and even separate programs can
be assembled in a unified stream. The HLS standard allows only the use of
single program streams.
The format is based on packets of a fixed length of 188 bytes. Each packet
could either carry a chunk of the media data, or some system information for
the correct handling of the bitstream at the receiver side. In both cases, a
common header is placed in the first 4 bytes of the packet.

Figure 8: MPEG TS Header

The most relevant field in this sequence of bytes is the PID, or Packet
Identifier, a 13 bits value which ties a packet to a specific Elementary Stream.
It allows the recognition and separation of the different streams traveling to-
gether.
The PID can either be a number defined in the specification or a custom
value dependent on the implementation, chosen by the developers. In case
the payload of a packet is some kind of system data, the PID will be a defined

22

value listed in the standard.
The Adaptation Field Control is a two bit field signaling the presence or ab-
sence of an additional header, unsurprisingly named Adaptation Field. It is
optional since it contains information that doesn’t have to be sent in each TS
packet.
After the header section, either Program Specific Information (PSI) or a Pack-
etized Elementary Stream (PES) could constitute the payload. The most rel-
evant types of PSI data are the Program Association Table (PAT) and the
Program Map Table (PMT).

Figure 9: TS Packets Sequence

A PAT contains the information about all the programs available in a
stream, which, as said before, are limited to one in the case of HLS. Its
identifier must always take the 0 value. Inside this packet, there will be a list
of PIDs corresponding to different PMTs, one for each program. A PMT lists
the Elementary Streams composing a single program, such as the audio and
video streams, each identified by their own PID. These two tables are the first
structures that a receiver needs to correctly decode the incoming bitstream.
A PSI header precedes the actual table, with a list of fields describing the
format of the tabular data and its total length. Its most relevant fields for
the aim of this work are the Table ID, which defines the type of system table
contained in the packet, and the Section Length, the size in bytes of the
packet after this field, excluding the padding.

23

Figure 10: PSI Header Fields

After the PSI header, the actual table follows. For the PAT, the fields
include the Program Number, a 16 bits value which identifies the program,
and the identifier of the respective PMT.

Figure 11: PAT Table Fields

The PMT is more complex and contains 4 initial bytes, followed by some
optional descriptors and the list of Elementary Streams composing the Pro-
gram. The Program Info Length field keeps the size in bytes of the descrip-
tors and is set to 0 if none is present. For each ES, the table must contain its
type, the PID and optional descriptors, in the same format as the ones used
before. The ES Info Length field stores their length in bytes.
A descriptor is made of a unique tag, a field for its size and a body with
predefined values. All the descriptor types and values can be found in the
ISO 13818 [1] under section 2.6.

24

Figure 12: PMT Table Fields

In the nginx-rtmp module, this information is saved in an array of unsigned
characters, inside the ngx_rtmp_mpegts.c file. It can be statically defined
since the tables preserve the same values from one stream to another.

static u_char ngx_rtmp_mpegts_head er[] = {
/* TS header */
0x47, 0x40, 0x00, 0x10, 0x00,
/* PSI header */
0x00, 0xb0, 0x0d, 0x00, 0x01, 0xc1, 0x00, 0x00,
/* PAT table*/
0x00, 0x01, 0xf0, 0x01,
/* CRC */
0x2e, 0x70, 0x19, 0x05,
/* stuffing 167 bytes */
...

Looking closer at the PAT table we see:

• first 16 bits for the Program Number

• 3 reserved bits set to 0x7

25

• 13 bits for the PMT packet Identifier, of value 0x1001

We than have the PMT packet.

/* TS header*/
0x47, 0x50, 0x01, 0x10, 0x00,
/* PSI header*/
0x02, 0xb0, 0x17, 0x00, 0x01, 0xc1, 0x00, 0x00,
/* PMT table*/
0xe1, 0x00,
0xf0, 0x00,
0x1b, 0xe1, 0x00, 0xf0, 0x00, /* h264 */
0x0f, 0xe1, 0x01, 0xf0, 0x00, /* aac */
/* CRC */
0x2f, 0x44, 0xb9, 0x9b,
/* stuffing 157 bytes */
...

The 0x1001 PID can be seen in the TS header, starting from the 4th bit in the
second byte. Inside the PMT table, we notice the video and audio Elemen-
tary Streams data, at the third and fourth rows respectively. One byte for
the Stream Type (0x1b and 0x0f), 3 reserved bits and 13 for the PIDs (0x100
and 0x101). The remaining space could contain a list of stream descriptors
but is in this case left empty.
A client reading an MPEG TS bitstream will have to look for the packet with
an identifier equal to 0, the PAT table. Parsing its content, it will now know
the PID of the PMT and how to recognize the respective packet, from which
derive the Elementary Streams corresponding to audio, video and any other
related information, like metadata or subtitles.
When considering the introduction of Timed Metadata, this structure will
need to be modified accordingly.

26

2.2 How to Store Metadata in MPTS files
The Apple specification on Timed Metadata [7] details the procedure to follow
when including metadata in an HLS stream. In the same way as with audio
and video, the metadata must be place inside its own Elementary Stream,
which will belong to one of the programs advertised in the PAT. The data for
this new stream needs to be added to the Program Map Table, which with the
proper fields will signal the presence of metadata in the program. The PAT
can be left unmodified since HLS requires the use of single program streams.
First, a descriptor of type Metadata Pointer Descriptor must be put in
the previously empty descriptors section of the PMT header, with the val-
ues specified in the following table.

SYNTAX VALUE
descriptor_tag 0x26
descriptor_length – the length of the descriptor
metadata_application_format 0xFFFF
metadata_format_identifier ‘ID3 ’ (0x49 0x44 0x33 0x20)
metadata_format 0xFF
metadata_format_identifier ‘ID3 ’ (0x49 0x44 0x33 0x20)
metadata_service_id – any ID, typically 0
metadata_locator_record_flag 0
MPEG_carriage_flags 0
reserved 0x1f
program_number – identifies the program with

the metadata descriptor

This gives a client consuming the bitstream the necessary details about the
structure of possible metadata, which have to be, when used for HLS, in the
ID3v2 format. ID3 tags were ideated to be used in mp3 files, carrying media
related data such as title, artist and many other useful informations. They
compose, in this context, the payload of TS metadata packets.
The newly created stream must be then included in the Elementary Streams
list section of the PMT, adding the following fields:

27

SYNTAX VALUE
stream_type 0x15
reserved 0x7
elementary_PID - pid of the Elementary Stream
reserved 0xf
ES_info_length - length of the ES info descriptor loop,

also counting the metadata descriptor

Differently from audio and video, the definition of this Elementary Stream
must include a descriptor:

SYNTAX VALUE
descriptor_tag 0x25 - Metadata_descriptor tag
descriptor_lenth - the length of the descriptor
metadata_application_format 0xFFFF
metadata_format_identifier ’ID3’ (0x49 0x44 0x33 0x20)
metadata_format 0xFF
metadata_format_identifier ’ID3’
metadata_service_id - any ID, typically 0
metadata_locator_record_flag 0
MPEG_carriage_flags 0
reserved 0x1f
program_number - identifies the program with

the metadata descriptor

All this information, which must be placed in the ngx_rtmp_mpegts.c array
containing the PMT packet, translates to the sequence of bytes

/* descriptor list */
0x25, 0x0f, 0xff, 0xff, 0x49, 0x44, 0x33, 0x20, 0xff, 0x49,
0x44, 0x33, 0x20, 0x00, 0x1f, 0x00, 0x01,

/* metadata ES */
0x15, 0xe1, 0x02, 0xf0, 0x0f,

/* ES descriptors */
0x26, 0x0d, 0xff, 0xff, 0x49, 0x44, 0x33, 0x20, 0xff, 0x49,
0x44, 0x33, 0x20, 0x00, 0x0f

28

Note that a PID of value 0x102 has been assigned to this ES. The Stream
Type describes the kind of data transported: 0x15 corresponds to "Metadata
carried in PES packets".
Both the section length in the PSI header and the program info length
in the PMT table, containing the size of parts of the packet, must be up-
dated taking into account the added sections. The CRC32 checksum has to
be recomputed excluding the TS header and the stuffing bytes, which must
be reduced to reach a paket size of 188 bytes.
Every time a new TS fragment is opened by the module, the PAT and the
PMT packets are immediately written on file, being the first information
needed by the receiver to understand the following bytes in the bitstream.
The duration of the media segment will consequently determine the frequency
of the transmission of these system tables.
Understood how to configure the system tables for the integration of timed
metadata, the next step it to figure out how the module should behave when
an AMF packet, containg the fields of interest, is actually received. The meta-
data will be carried inside a PES packet, the same type used for the encoded
audiovisual content.
Before implementing the code handling this process, it’s useful to understand
how the module works when audio and video come in.

29

2.3 How nginx-rtmp Handles Audio Packets
The nginx module takes care of the RTMP protocol message exchange be-
tween the publisher and the server, offering an useful abstraction that saves
us from dealing with the underlying transport layer. We have instead direct
access to the packets payload and can listen for module defined events trig-
gered by the reception of specific data, such as audio and video frames.
The list of possible events, with the respective handler functions that execute
when triggered, is defined in a ngx_rtmp_core_main_conf_t global structure,
where the module stores two arrays named events and amf. While the former
has a more general purpose , the latter is specific to AMF packets reception.
In fact, it’s important to point out that this format is not only employed for
the encapsulation of metadata, but is also the medium for RTMP sender and
receiver to enchange control directives through dedicated commands.
The base handlers for events common to all the module components are initial-
ized in the ngx_rtmp_init_event_handlers function, inside the ngx_rtmp.c
file. In its post_configuration at the end of the ngx_rtmp_hls_module.c file,
the HLS submodule defines its own event handlers for rtmp audio and video
events.
In the case of audio, the following function gets called:

ngx_rtmp_hls_audio(ngx_rtmp_session_t *s, ngx_rtmp_header_t *h,
ngx_chain_t *in)

The pointer to the rtmp session allows to retrieve the configuration param-
eters and the global context where to store data that must persist through
the life of the server, while the in argument points to the sequence of bytes
corresponding to the payload of the RTMP packet.
Retrieving the global variables, the hls context and the app config, is the first
operation carried inside the handler. These are the fields that make up the
context:

typedef struct {
unsigned opened:1;
ngx_rtmp_mpegts_file_t file;
ngx_str_t playlist;
ngx_str_t playlist_bak;

30

ngx_str_t var_playlist;
ngx_str_t var_playlist_bak;
ngx_str_t stream;
ngx_str_t keyfile;
ngx_str_t name;
u_char key[16];

uint64_t frag;
uint64_t frag_ts;
uint64_t key_id;
ngx_uint_t nfrags;
ngx_rtmp_hls_frag_t *frags;

ngx_uint_t audio_cc;
ngx_uint_t video_cc;
ngx_uint_t key_frags;

uint64_t aframe_base;
uint64_t aframe_num;

ngx_buf_t *aframe;
uint64_t aframe_pts;
ngx_rtmp_hls_variant_t *var;

} ngx_rtmp_hls_ctx_t;

The most relevant fields of this structure, from top to bottom, include:

• file stores the information for the currently open media segment, like
its file descriptor and the size, as well as some parameter for the eventual
encryption (specified in the configuration)

• playlist and var_playlist are strings containing the file path for the
m3u8 files, respectively the media and the master playlist.

• the bak variables save the paths for the backups of the playlist files.
When a new fragment is added to the available ones, the media playlist
must be updated. The module does so by first modifying a copy stored

31

in the backup path file, and later replacing the original with the up to
date version.

• stream is the location in the file system of the fragment files, comprising
the path to the folder plus the string specified by the content publisher via
the rtmp address (the location flag in the gstreamer launch command).
For example, when connecting to rtmp://localhost/live/test, the
string will be test.

• frag is the incremental counter appended at the tail of the filename of a
fragment, which, depending on a config parameter, could either start at
0 or preserve the previous stream value.

• frag_ts keeps the timestamp of the first frame in the file and its set when
opening a new fragment. It is used to check if a segment has reached its
target duration inside the update_fragment function, subtracting it to
the last inserted frame timestamp.

• nfrags is the total number of ts files

• frags is a circular buffer of ngx_rtmp_hls_frag_t types, a struct stor-
ing data about the fragment files such as the id and the duration. When
writing or updating the media playlist, it is used to correctly fill the HLS
tags. The size of the buffer is derived from the winfrags configuration
parameter and computed as winfrags * 2 + 1.

. typedef struct {
uint64_t id;
uint64_t key_id;
double duration;
unsigned active:1;
unsigned discont:1;

} ngx_rtmp_hls_frag_t;

32

The discontinuity flag is set in case of timestamp discrepancies in respect
to the previous segment, signaled with the insertion in the media playlist of
the #EXT-X-DISCONTINUITY tag.

• audio_cc and video_cc are used to fill the Continuity Counter field in
the PES header, which keeps track of the sequence of packets in a stream
and helps detecting losses in the transmission.

• aframe is a buffer for audio frames, whose count is kept in the aframe_num
variable. When the allocated memory is exhausted, the flush_audio
function is called and the content saved on file.

• aframe_pts is the presentation timestamp of the last inserted frame in
the audio buffer.

The configuration object contains instead all the possible parameters that can
go inside the nginx config file specific to the HLS application, and differently
from the context, its fields are well documented in the module wiki available
on the Github repository.
The handler function goes on to retrieve the Codec context, which stores
the parameters for the audio and video encoders extracted from the RTMP
stream by the ngx_rtmp_codec_module.c submodule. This information is
needed to check the correspondence between the data format in use and the
ones supported by the HLS module (AAC in the case of audio in MPEG TS
containers).
After that, a series of operations specific for audio is executed, which is not
that useful for the handling of metadata . What is relevant to our use case, is
the management of the media segment files (or fragments, using the module
naming convention).

. static void ngx_rtmp_update_fragment(ngx_rtmp_session_t *s,
uint64_t ts,
ngx_int_t boundary,
ngx_uint_t flush_rate)

33

This function takes care of checking if a fragment has already been opened,
looking at the context flag opened, and creating an empty one if needed. It
makes sure the target duration has not yet been reached, otherwise closing
the current file and opening a new one with the use of the force variable.
The boundary argument gives the caller the ability to manually force this
operation. Before returning, it also takes care of emptying the audio buffer
when the delay of the most recent audio frame from the current timestamp
exceeds a defined limit.
This avoids the unavailability of audio at play time when too many video
packets are placed in a sequence.
Back to ngx_rtmp_hls_audio, if the new audio frame doesn’t fit inside the
buffer stored in the context, the flush audio function gets called.

. if (b->last + size > b->end) {
ngx_rtmp_hls_flush_audio(s);

}

The b variable is a struct of type ngx_buf_t, which offers a convenient abstrac-
tion for working with dynamically allocated memory. It holds two unsigned
character pointers, start and end, referencing the lower and upper bound-
aries of the buffer, which size is specified in the variable audio_buffer_size
and can be set in the configuration, with a default value of 1024*1024 bytes.
It also makes use of other two pointers, pos and last. When writing to
the structure, we incrementally increase the last pointer one byte at a time.
When instead we want to read from it, we begin from pos and move towards
the former, knowing that when the two correspond (two identical addresses
pointing to the same memory location), the buffer has been emptied.
Understanding how this works will come in handy later on, when it will be
used to write on the segment file.
If the size of the frame, extracted from the RTMP header, added to the last
written address exceeds the upper limit of the buffer, its content is saved on
file with ngx_rtmp_hls_flush_audio.
In any case, an ADTS header is added before the audio, the inbuffer frame
counter increased (aframe_num) and the most recent timestamp updated
(aframe_pts).
The flush function has to prepare the data for the PES header that will sit
in front of the payload, and to this end makes use of the following structure.

34

. typedef struct {
uint64_t pts;
uint64_t dts;
ngx_uint_t pid;
ngx_uint_t sid;
ngx_uint_t cc;
unsigned key:1;

} ngx_rtmp_mpegts_frame_t;

It contains all the relevant and stream dependent fields, like timestamps, PID,
Stream Type and Continuity Counter.
As declared in the static array for the PAT and PMT tables, the audio Ele-
mentary Stream is assigned the 0x101 identifier, while the CC, which must
be preserved between different packets, is read from the context and later
updated. Finally, with all the data ready to be saved in MPEG TS format,
the writer function is invoked.

. ngx_int_t ngx_rtmp_mpegts_write_frame (
ngx_rtmp_mpegts_file_t *file,
ngx_rtmp_mpegts_frame_t *f,
ngx_buf_t *b)

Combining the variable fields with the remaining header flags, it assembles a
complete PES packet, ready to be saved on file alongside the video stream.

35

2.4 Integration of Timed Metadata
We already saw how to update the PMT containing a reference to the Ele-
mentary Streams of a single program, adding to the existing ones for audio
and video the newly created dedicated to the transport of metadata. The
next task is the handling of incoming AMF packets, which requires the ma-
nipulation of the data into a structure suitable for the MPEG TS container
format.
This is a sample packet captured with the wireshark tool.

The RTMP body will include the onMetaData string followed by an array

Figure 13: AMF Metadata Packet Capture

of properties. Our goal is to send a single string field with key StreamTitle
containing title and artist of the currently streamed media content.
To manage the reception of this kind of packets, we can define a custom han-
dler function that will run at the reception of the aforementioned onMetaData
string, executing the following operations:

• parse the AMF packet and save the content to memory

• create an ID3 tag with title and artist fields

36

• place the tag inside a PES packet

• write the packet to the MPTS file

Parsing of AMF packets

The module makes use of a global structure of type ngx_rtmp_core_main_conf_t
where, together with other configuration parameters, stores two arrays named
events and amf. With a call to ngx_rtmp_initi_event_handlers at the
start of the server, the events array is filled with the functions that need to
be executed when one of the following types of event occurs:

• standard protocol event

• AMF event

• user protocol event

• audio / video event

The amf array instead, is filled in the post-configuration section of each sub-
module (like the HLS one) and contains AMF specific handlers.
So when an AMFmessage is received, first the ngx_rtmp_amf_message_handler
function is invoked. Then, based on the type field of the RTMP header and
the command string carried inside the packet, an handler of the amf array
will be called.
The AMF event that we want to listen to for intercepting metadata packets
is onMetadata. In the HLS module post-configuration we add the lines:

ch = ngx_array_push(&cmcf->amf);
if (ch == NULL) {

return NGX_ERROR;

37

}
ngx_str_set(&ch->name, "onMetaData");
ch->handler = ngx_rtmp_hls_meta;

which adds to the amf array our custom handler function, ngx_rtmp_hls_meta,
that will run when a metadata packet is received. It takes as parameters point-
ers to the rtmp session, packet header and payload.
The first operation is the extraction of the metadata content from the packet
payload. The server expects an AMF element of Object type (a sequence of
key-value pairs), that will in turn contain a string field named StreamTitle,
where two different strings separated by a pipe character are stored, one for
the Title and the second for the Artist.
In the same way as when parsing an AMF command, we make use of the
function

ngx_rtmp_receive_amf(ngx_rtmp_session_t *s, ngx_chain_t *in,
ngx_rtmp_amf_elt_t *elts, size_t nelts)

which from the incoming payload bytes in will extract the metadata and
place them in the elts array.
This data structure contains a sequence of structs representing AMF elements
(strings, numbers, arrays, etc.), that needs to be correctly initialized before
being handled to the parsing function.
In the code we define:

static ngx_rtmp_amf_elt_t in_inf[] = {
{ NGX_RTMP_AMF_STRING,

ngx_string("StreamTitle"),
&v.streamTitle, 64 },

};
static ngx_rtmp_amf_elt_t in_elts[] = {

{ NGX_RTMP_AMF_STRING,
ngx_string("first_string"),
NULL, 0 },

{ NGX_RTMP_AMF_OBJECT,
ngx_string("mix_array"),
in_inf, sizeof(in_inf) },

};

38

We can see inside the in_elts array the expected AMF Object, with a ref-
erence to the StreamTitle string in_inf.
The first field in this structures is the type of the element, a string in our case,
followed by an identifier that must correspond to the field key of the AMF
packet. We then have a pointer to the variable where the string will actually
reside (the v struct) and the size of allocated memory for the element. If the
AMF object will contain a field named StreamTitle, its value will be put
inside v.streamTitle.
The function can then be called passing the in_elts array as argument. The
skip variable is used to handle the string placed before the metadata by FFm-
peg. If the first element read is of type NGX_RTMP_AMF_STRING, it is set to 0
and in_elts will include the first_string field. Otherwise, in_elts will
contain only mix_array.

skip = !(in->buf->last > in->buf->pos
&& *in->buf->pos == NGX_RTMP_AMF_STRING);

if (ngx_rtmp_receive_amf(s, in, in_elts + skip,
sizeof(in_elts) / sizeof(in_elts[0]) - skip))

{
ngx_log_error(NGX_LOG_ERR, s->connection->log, 0,

"codec: error parsing data frame");
return NGX_OK;

}

When the ngx_rtmp_receive_amf will return, we’ll be able to manipulate
the Title and Artist strings stored in the streamTitle field of the v struct.
Knowing the format of the StreamTitle field, we want to split the two strings,
separated by the pipe character, and store them separately, also trimming
any leading or trailing white spaces.

token = strtok(v.streamTitle, "|");
token = trim_spaces(token);
snprintf(v.title, sizeof(v.title), "%s", token);

token = strtok(NULL, "|");
token = trim_spaces(token);
snprintf(v.artist, sizeof(v.artist), "%s", token);

39

The strtok function of the string.h library is used for the splitting, while
the custom trim_spaces takes care of the spaces. The cleaned strings are
placed in the title and artist variables of the v struct and are now conve-
niently stored for the successive operations.

Generation of ID3 Tag

Since HLS expects metadata to be structured in the ID3 format (the same
used to store meta information in mp3 files), we’ll make use of an appropriate
external C library.
Among the vast offering of modules, we opted for the open sourced id3v2lib,
since listed in the ID3 standard website, recently updated and of small size.
An ID3 tag is composed of a 10 bytes header and a list of frames containing
each a specific type of data about the media they refer to.
We define and create an empty tag with the line

Id3v2_tag* tag = new tag();

With a simple call to the library, we can set title and artist for the tag, copy-
ing the strings from the v struct saved in memory.
Since the library is conceived to be used with mp3 files, there is no real in-
terface for interacting with the mpeg ts container format. We manually need
to write the bytes composing the tag container to a memory buffer, and pass
this buffer to a function writing on the TS file. This buffer is an nginx defined
structure

ngx_buf_t out;
static u_char buffer[132];

out.start = buffer;
out.end = buffer + sizeof(buffer);
out.pos = out.start;
out.last = out.pos;

As explained in a previous section, this buffer makes use of start and end for
the allocated memory boundaries, the last pointer for writing in new data
and pos when it’s time to read it back.

40

Before calling the write function tough, we must still take care of the PES
container.

Generation of PES packet

As previously stated, the metadata will be inserted inside a PES packet and
belong to a separate Elementary Stream, which will be multiplexed with the
audio and video tracks in the same transport stream. This packet will need
an appropriate header with the essential informations that a receiver has to
know to correctly extract and interpret the payload:

• the PID of the Metadata ES

• a Timestamp for the alignment with the rest of the media content

• a Stream Identifier defining the kind of payload

• a dedicated Continuity Counter for packet loss detection

The rtmp module defines the struct ngx_rtmp_mpegts_frame_t with the nec-
essary fields used for audio and video PES packets, described in section 2.3.
The same can be done for metadata packets. So in our handler function we
fill an instance of this structure.

frame.cc = ctx->meta_cc;
frame.dts = (uint64_t) h->timestamp * 90 + 100;
frame.pts = frame.dts;
frame.pid = 0x102;
frame.sid = 0xbd;

The PID 0x102 corresponds to the higher ES identifier value already assigned
(0x101 for audio) incremented by one.
The Stream Type must be set to 0xbd as for the Apple Timed Metadata
specification [7] and indicates a private stream.

41

The Continuity Counter (cc) contains some status information that must be
preserved from one packet to another, for this reason it has to be saved in the
global context. As for the video and audio cc, we add the meta_cc variable
inside the ngx_rtmp_hls_ctx_t structure and increment it at every metadata
packet reception. Being a 4 bits value, it will cycle in the 0 to 15 range as we
would expect for this field.
Once the header and the payload are ready, ngx_rtmp_hls_update_fragment
is invoked. This function takes care of the fragment files, creating an empty
one at startup and making sure that when the target duration for a segment
is reached, a new one with the right identifier is opened. The descriptor of
the currently open fragment file is saved in the global context variable file.
Finally, with ngx_rtmp_mpegts_write_frame, PES header and payload are
concatenated together and saved on file. A small modification has been done
to this code since the metadata packet requires the Data Alignment flag in
the header to be set to 1, to indicate that the payload starts with the ID3
tag [7]. In case the tag doesn’t fit in one single packet, the successive packets
need to have the Data Alignment bit set to 0.

if (f->pid == 0x102) {
p++ = 0x84; / set data alignment bit for metadata */

} else {
*p++ = 0x80;

}

Here p is a pointer to the packet buffer and before the if statement points to
the seventh byte, where the data alignment field is located, precisely in the
sixth bit. When the PID corresponds to the metadata Elementary Stream
identifier, we set the corresponding bit to 1.
Internally, this function makes a call to ngx_rtmp_mpegts_write_file, which
takes care of encrypting the file if specified in the configuration.

42

2.5 Integration of Packed Audio Segments
In the case of audio only streams, the media segments can also be composed
of the bare audio frames, without the encapsulation offered by the MPEG
TS container. The HLS specification defines this segment format as Packed
Audio.
In the case of AAC each frame should be prepended by an ADTS header, a
sequence of 7 bytes (or 9 if CRC protection is used) describing data informa-
tion like the codec profile and the sampling frequency. It is suggested to use
one ADTS header for each AAC frame.
When using raw AAC, the timestamp of each sample is not carried in the
stream. Instead, an ID3 private frame containing the timestamp of the first
sample must be added at the start of the segment.
From the HLS RFC document:

The ID3 PRIV owner identifier MUST be
"com.apple.streaming.transportStreamTimestamp". The ID3 payload
MUST be a 33-bit MPEG-2 Program Elementary Stream timestamp
expressed as a big-endian eight-octet number, with the upper
31 bits set to zero.

HLS Playlist Files

To notify the clients of the segment format for the stream the master playlist
will simply need to define the audio codec in the EXT-X-STREAM-INF tag.
Taking as example the Radio Norba stream:

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-STREAM-INF:BANDWIDTH=64457,CODECS="mp4a.40.2"
chunklist_w2052014452.m3u8

The media playlist will include the usual tags, listing aac files instead of ts
ones:

#EXTM3U
#EXT-X-VERSION:3

43

#EXT-X-TARGETDURATION:6
#EXT-X-MEDIA-SEQUENCE:4790
#EXTINF:5.015,
media_w2052014452_4790.aac
#EXTINF:5.016,
media_w2052014452_4791.aac
...

Integration in the nginx-rtmp Module

To manage this segment format, two new files are added to the hls folder
alongside the ones used for interfacing with MPEG TS containers. Inside the
header file, we define

typedef struct {
ngx_fd_t fd;
ngx_log_t *log;
unsigned encrypt:1;
unsigned size:4;
u_char buf[16];
u_char iv[16];
AES_KEY key;

} ngx_rtmp_aac_file_t;

A variable of this type needs to be added in the hls context to keep track
of the opened AAC fragment information, with which IO operations can be
carried out through the helper functions

ngx_int_t ngx_rtmp_aac_open_file(ngx_rtmp_aac_file_t *file,
u_char *path,
ngx_log_t *log);

ngx_int_t ngx_rtmp_aac_close_file(ngx_rtmp_aac_file_t *file);
ngx_int_t ngx_rtmp_aac_write_file(ngx_rtmp_aac_file_t *file,

u_char *in, size_t in_size);

When calling ngx_rtmp_hls_update_fragment, instead of the usual func-
tions we take care of correctly renaming the segment with an AAC extension
and writing the expected ID3 private tag.

44

if (hacf->packed_audio) {
id = ngx_rtmp_hls_get_fragment_id(s, ts);
ngx_sprintf(ctx->stream.data + ctx->stream.len,

"%uL.aac%Z", id);
ngx_rtmp_aac_open_file(&ctx->aac_file, ctx->stream.data,

s->connection->log);
ngx_rtmp_aac_write_header(&ctx->aac_file, ts);

}

The packed_audio flag has been placed inside the module configuration and
can be set with the use of the homonymous directive in the nginx.config file.
Next, at the time of saving the audio frames with a flush audio call, we
pass the buffer to the IO handler, avoiding to fill the PES header information.

if (hacf->packed_audio) {
rc = ngx_rtmp_aac_write_file(&ctx->aac_file, b->pos, bsize);
if (rc != NGX_OK) {

ngx_log_error(NGX_LOG_ERR, s->connection->log, 0,
"hls: audio flush failed");

}
}

45

Chapter 3

Configuration

46

The setup needed to compile the Nginx server with the RTMP module re-
lies on external packages and the library for ID3 tags. The software chain has
been developed and tested on a Linux environment with the use of Docker,
starting from an Ubuntu base image. The following dependencies need to be
installed (with the package manager):

• ca-certificates

• openssl

• libssl-dev

• build-essential

• zlib1g-dev

• ffmpeg

• cmake

Considering we are including our improvements to the code, the next compo-
nents have to be installed from source:

• nginx (downloaded later with wget)

• nginx-rtmp module, https://github.com/arut/nginx-rtmp-module

• id3v2lib, https://github.com/larsbs/id3v2lib

3.1 id3v2lib library modifications
Since ID3 tags of private type were not supported by default, some modi-
fications have been done on the library to correctly handle this format, re-
quired when Packed Audio segments are used instead of .ts files. In the
src/id3v2lib.c file, the following functions were added:

47

https://github.com/arut/nginx-rtmp-module
https://github.com/larsbs/id3v2lib

ID3v2_frame* tag_get_private_data(ID3v2_tag* tag)

void set_private_frame(char* data, char* owner_identifier,
ID3v2_frame* frame)

void tag_set_private_data(char* private_data,
char* owner_identifier,
ID3v2_tag* tag)

The new frame identifier has to be defined in include/id3v2lib/constants.h:

#define PRIVATE_FRAME_ID "PRIV"

The tag_set_private_data function was added to the external interface, in-
side include/id3v2lib.h, and is the one that gets called each time an AAC
segment file is opened.

3.2 Building the server
Place the source code folders for nginx-rtmp and the id3 library inside the
/tmp/build directory. To build id3v2lib, from /tmp/build/id3v2lib run:

$ mkdir build && cd build
$ cmake /tmp/build/id3v2lib
$ make && make install

To install nginx with the rtmp module run:

$ mkdir -p /tmp/build/nginx
$ cd /tmp/build/nginx
$ wget -O nginx-1.19.1.tar.gz

https://nginx.org/download/nginx-1.19.1.tar.gz
$ tar -zxf nginx-1.19.1.tar.gz
$ cd /tmp/build/nginx/nginx-1.19.1
$./configure \

--sbin-path=/usr/local/sbin/nginx \
--conf-path=/etc/nginx/nginx.conf \

48

--error-log-path=/var/log/nginx/error.log \
--pid-path=/var/run/nginx/nginx.pid \
--lock-path=/var/lock/nginx/nginx.lock \
--http-log-path=/var/log/nginx/access.log \
--http-client-body-temp-path=/tmp/nginx-client-body \
--with-http_ssl_module \
--with-threads \
--with-ipv6 \
--without-http_rewrite_module \
--with-cc-opt="-Wimplicit-fallthrough=0" \
--with-ld-opt="-lid3v2" \
--with-debug \
--add-module=/tmp/build/nginx-rtmp-module-1.2.1

$ make
$ make install
$ mkdir /var/lock/nginx

Place the nginx configuration file (nginx.conf) in the /etc/nginx directory.
To run the nginx server use:

$ nginx -g ’daemon off;’

or, to run it in the background, simply

$ nginx

Alternatively, the Dockerfile can be used:

$ docker build -t nginx .
$ docker run --net=host --name nginx nginx

3.3 GStreamer Updates
Starting from the previous work on the GStreamer library for metadata in-
jection in an RTMP stream, the setup has been updated to support version
1.16.2. Instead of downloading the original repository for rtmpdump, there is
a clone with the necessary patch already applied, which can be installed with

49

git clone https://github.com/JudgeZarbi/RTMPDump-OpenSSL-1.1.git
rtmpdump

Modify the librtmp/rtmp.c file, commenting or deleting the lines which insert
the SetDataFrame string in AMF packets, inside the RTMP_Write function

/* if (pkt->m_packetType == RTMP_PACKET_TYPE_INFO)
pkt->m_nBodySize += 16; */
...
/* if (pkt->m_packetType == RTMP_PACKET_TYPE_INFO) {
//enc = AMF_EncodeString(enc, pend, &av_onMetaData);
pkt->m_nBytesRead = enc - pkt->m_body;
} */

and run the following:

$ cd rtmpdump/librtmp
$ make
$ cp librtmp.so.1 /lib
$ cd ..
$ make SYS=posix
$ make install
$ cd /gstreamer/gst-plugins-bad-1.16.2/ext/rtmp
$ touch gstrtmpsink.c
$ make
$ make install
$ ldconfig

The changes on the GStreamer source remain pretty much the same, taking
into account that the library code has been slightly modified but without af-
fecting the necessary additions.
The component can be compiled by hand or using the provided Dockerfile,
placing it in the same folder where gstreamer (with respective plugins) and
rtmpdump are located.

50

3.4 Testing
Once the nginx server is up and running, we can test the full streaming chain,
from content publishing to livestream reproduction inside a media player. To
talk with nginx through the RTMP protocol, we can resort to Gstreamer or
FFmpeg.
With a version of Gstreamer supporting the insertion of the StreamTitle
metadata field [1], we can stream a mp4 file with the following command:

gst-launch-1.0 filesrc location=input.mp4 ! qtdemux name=demux
! flvmux name=mux streamable=true ! queue ! rtmpsink
location=’rtmp://localhost/live/test’ demux. ! multiqueue
name=mq ! h264parse ! mux. demux. ! mq. mq. ! aacparse
! taginject tags="StreamTitle=\"Title|Artist\"" ! mux.

where input.mp4 is the content we want to send to the media server located
at the rtmp://localhost/live/test URL. Note that we connect to the live
application with the test stream name. The StreamTitle metadata packet
is set with the !taginject parameter. To include the pipe operator the string
must be placed inside double quotes, escaped by the backslash character. The
same applies for whitespaces.
Alternatively, we can make use of FFmpeg:

ffmpeg -re -i input.mp4 -metadata StreamTitle="Title | Artist"
-c copy -f flv rtmp://localhost:1935/live/test

making sure to use the right arguments for input and metadata. In this case
tough, the AMF packet will not start with the OnMetadata string but with
SetDataFrame.
The server will take care of segmenting the content, and we can now reproduce
the HLS stream in a player like VLC, though it doesn’t display our metadata,
or iTunes. In this case, the resource URL will be
itals://localhost/tv/test.m3u8
If the setup has been done correctly, the metadata Title field will appear in
the top bar of the player, next to the media controls panel.

51

3.5 HLS Development Resources
During development, testing the latest modifications to the code was often
time consuming. Other than the Wireshark network analyzer, I made use of
some tools to facilitate the process.
http://thumb.co.il/ is an online MPEG TS file visualizer, which decodes
the container format displaying system information like PAT and PMT ta-
bles, alongside audio and video packets. It also supports metadata, which
was useful for quickly checking the correctness of the protocol headers when
modifying the server module.
https://github.com/bengarney/list-of-streams is a list of public HLS
streams of various types and quality, which extends the limited testing re-
sources published by Apple. It contains some video resources with included
timed metadata, which apparently are quite difficult to find, since they are
usually relegated to audio only streams.
https://github.com/dusterio/hlsinjector/ is a PHP library for meta-
data injection in hls streams, useful to get a first understanding on how the
specifications can be translated in a real-world implementation.

52

http://thumb.co.il/
https://github.com/bengarney/list-of-streams
https://github.com/dusterio/hlsinjector/

Chapter 4

Future Improvements

53

4.1 Transcoding with FFmpeg
The work done on the Nginx-rtmp module brings timed metadata support
only for a subset of the desired functionalities of a media server. In fact, the
component handles correctly the segmentation phase of the process, when the
continuous stream is chunked in smaller units and encapsulated inside MPEG
TS packets. This could be easily achieved since the code for this operation is
part of the module itself and not delegated to external libraries.
For the transcoding, on the other hand, there isn’t a custom implementation,
since the original author decided to rely instead on the FFmpeg tool.
While there are some options to configure the handling of metadata, I have
not been able to obtain the desired outcome of letting through all the AMF
packets.
When the RTMP stream reaches the server, based on the nginx configuration
file, the bitstream is splitted in different quality versions, each at a specific
bitrate. This operation, as for the current implementation, causes the loss of
the metadata AMF packets, which can be seen with the wireshark network
analyzer. From this point, the new RTMP streams will hit the segmenter
endpoint, but the information of our interest has already been lost.
If for some reason transcoding is not required by the application, then the
whole chain will work as expected, since FFmpeg will not manipulate the
audiovisual data. The official documentation states that metadata should be
preserved from input to output and describes some parameter that modify
the behaviour of the command, such as

• -movflags use_metadata_tags

• -map_metadata 0

but both did not produce the required results.

4.2 Low Latency Extension
As mentioned before, latency has been a major concern in recent years and
the focus of development efforts both by the industry and the open source
community. While there are commercial options available like the Wowza

54

implementation, free and open alternatives keep lagging behind.
To begin with, the ability to separate TS files in smaller parts could be added,
giving clients the possibility to download an incomplete fragment and con-
sequently start the reproduction before the reception of three complete seg-
ments. CMAF files definitely introduce more complexity, but seem to be
the solution for the intercompatibility between HTTP streaming protocols,
DASH and HLS in particular.
To enable the delivery of Partial Segments, the module will need to support
the new EXT-X-PART tag in a media playlist, which indicates the location of
each chunk with the respective duration. Its syntax closely resembles the one
used for the EXT-INF tag, with segment duration and URI defined through
specific attributes.

#EXT-X-PART:DURATION=0.3333,URI="segmentPart-14.1.ts"

This modification has to be placed inside the ngx_rtmp_hls_write_playlist
function, where instead of simply writing EXTINF lines, the server has to check
if writing a complete or a partial fragment, since both are allowed in the Apple
Low Latency specification. This decision could be based on an additional flag
saved in the global hls context, or in the ts file reference directly, alongside its
file descriptor and size. Additional care has to be taken for the INDEPENDENT
attribute, indicating the presence of a key frame inside a segment, necessary
for the decoding process.
It’s important to note that these smaller segments are a partial representation
of a complete fragment, which is considered the parent object and effectively
named parent segment. Both can exist at the same time: while a standard
segment is being produced by the server, its components incrementally accu-
mulate until two instances of the same content are present.
With this mode of operation, the playlist will rapidly increase in size, espe-
cially when selecting a very small length for the parts. The recommendation
is to delete partial segments older than three times a complete target dura-
tion.
To integrate this behaviour, the rtmp-nginx module will have to manage:

• the writing on file of partial segments while they are created, preserving
the original operations on the complete segment

55

• the handling of old segments falling outside the window

• the tracking of I video frames in the encoded content, in order to mark
the respective partial segment with the INDEPENDENT label

The integration of the CMAF format will require extensive work, with a need
for additional functions that, much like for MPEG TS, will handle the I/O
operations and expose an interface to the hls module.
Aside incomplete segments, the low latency specification resorts to additional
strategies:

• delta updates: when asking for a playlist, a client can be served with
only the lines that changed in respect to the previous request

• block playlist reload: if asked, the server can wait until a particular
segment has been produced and added to the media playlist before re-
sponding to the HTTP request

The support for these non trivial features will require further extended anal-
ysis and careful considerations.

56

Conclusions
The streaming model has become the standard way to consume content on-
line, taking up a considerable amount of bandwidth in communication net-
works. The family of HTTP based protocols has seen the most widespread
adoption, thanks to the advantages that come with the underlying layer, like
support on almost all end-user devices, lower delays due to caching on CDN
infrastructures and ability to bypass firewalls. HTTP Live Streaming, ab-
breviated HLS, is in particular the solution which gained most popularity in
the industry, with server and client implementations offered both by private
companies and the open source community. In this work, a popular Nginx
module turning the web component into a media server has been extended
to support timed metadata traveling alongside the audio and video content.
Such additional information, synchronized with the multimedia stream, can
be used to improve the user experience with content related descriptions, but
it can also enable the automated processing of the media stream, such as the
marking of beginning and end of commercials.
The nginx-rtmp module ingests an RTMP stream from the content publisher
and performs transcoding and stream segmentation, preparing the data to be
distributed through the HLS or DASH protocols. The focus of this thesis has
been on the HLS part.
The encoded information exiting the transcoder is encapsulated in MPEG
TS packets, a container structure multiplexing together the audio and video
components, as well as any other information related to the data, which in-
dividually take the name of Packetized Elementary Streams. In order to
describe the format of the packet stream and the included audiovisual data,
it makes use of system tables of various types, also sent over the network to
allow the parsing of the bitstream by the receiver.
Moreover, the nginx module takes care of assembling the files required by the
HLS specification, indexing the segments and the bit-rate variants in media
and master playlists.
The integration of metadata has been achieved with the addition of a new
Elementary Stream dedicated to this type of information, advertised to end-
users with a proper header in the Program Map Table.
While receiving an RTMP stream, the server listens for the interception of
AMF packets with the OnMetadata string, which is the metadata format ex-
pected to be used by the publisher.
The code proceeds to parse and sanitize the relevant data, in our case title

57

and artist of the currently streamed media, contained in the StreamTitle field.
Through the use of a third party library, it generates an ID3v4 tag with the
received strings. After assembling a ts packet with a complete header and the
tag as payload, it proceeds to write the result to the open segment file.
The proposed solution suffers from limitations owing to the design choices
made by the module developer. While the segmenter is hardcoded into the
component, the transcoding operation relies on the use of the FFmpeg tool,
which drops the AMF packets of our interest.
At the moment, the metadata integration works correctly when the audiovi-
sual content is distributed in the format in which it was received by the pub-
lisher, not utilizing at its fullest the advantages of adaptive bitrate streaming
that come with HLS.
Concluding, this thesis laid the groundwork for a full HTTP streaming chain
with support for timed metadata based on open-source libraries, which will
be hopefully extended with future additions and improvements in the effort
to fill the gap with proprietary solutions.

58

Bibliography
[0] Leonardo Chiariglione - The MPEG Representation of Digital Media

[1] BS ISO-IEC 13818-7-2003 - Generic Coding of Moving Pictures and As-
sociated Audio Information: Systems

[2] Live Video Transmuxing/Transcoding: FFmpeg vs TwitchTranscoder.
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-
vs-twitch-transcoder-part-i-489c1c125f28/

[3] hlsinjector
https://github.com/dusterio/hlsinjector

[4] Requirements for Media Timed Events #+latex:
https://www.w3.org/TR/media-timed-events/

[5] ID3 tag version 2.4.0 - Main Structure
https://id3.org/id3v2.4.0-structure

[6] HTTP Live Streaming draft-pantos-http-live-streaming-23
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23

[7] Timed Metadata for HTTP Live Streaming
https://developer.apple.com/library/archive/documentation/. . .

[8] Fun with Container Formats
https://bitmovin.com/fun-with-container-formats-3/

[9] Understanding the HTTP Live Streaming Architecture
https://developer.apple.com/documentation/http_live_streaming/. . .

[10] MPEG TS Program Specific Information
https://en.wikipedia.org/wiki/Program-specific_information

[11] Enabling Low-Latency HLS
https://developer.apple.com/documentation/http_live. . .

59

https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/
https://blog.twitch.tv/en/2017/10/10/live-video-transmuxing-transcoding-f-fmpeg-vs-twitch-transcoder-part-i-489c1c125f28/
https://github.com/dusterio/hlsinjector
https://www.w3.org/TR/media-timed-events/
https://id3.org/id3v2.4.0-structure
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
https://bitmovin.com/fun-with-container-formats-3/
https://developer.apple.com/documentation/http_live_streaming/understanding_the_http_live_streaming_architecture
https://en.wikipedia.org/wiki/Program-specific_information
https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_hls

[12] Live Low Latency Streaming
https://bitmovin.com/live-low-latency-hls/

[13] About the Common Media Application Format with HTTP Live Stream-
ing https://developer.apple.com/documentation/http_live_streaming/. . .

[14] FFmpeg Documentation https://ffmpeg.org/ffmpeg.html

[15] GStreamer Documentation https://gstreamer.freedesktop.org/

[16] Guide to Mobile Video Streaming with HLS https://mux.com/blog/
mobile-hls-guide/

60

https://bitmovin.com/live-low-latency-hls/
https://developer.apple.com/documentation/http_live_streaming/about_the_common_media_application_format_with_http_live_streaming
https://ffmpeg.org/ffmpeg.html
https://gstreamer.freedesktop.org/
https://mux.com/blog/mobile-hls-guide/
https://mux.com/blog/mobile-hls-guide/

	Introduction
	HTTP Streaming
	1.1 HTTP Streaming Architecture
	1.2 The HLS Protocol
	1.3 Nginx HLS Media Server
	1.4 Module Configuration
	1.5 Low Latency HLS
	1.6 Content Publishing

	Nginx-rtmp Module
	2.1 Mpeg TS Format
	2.2 How to Store Metadata in MPTS files
	2.3 How nginx-rtmp Handles Audio Packets
	2.4 Integration of Timed Metadata
	Parsing of AMF packets
	Generation of ID3 Tag
	Generation of PES packet

	2.5 Integration of Packed Audio Segments
	HLS Playlist Files
	Integration in the nginx-rtmp Module

	Configuration
	3.1 id3v2lib library modifications
	3.2 Building the server
	3.3 GStreamer Updates
	3.4 Testing
	3.5 HLS Development Resources

	Future Improvements
	4.1 Transcoding with FFmpeg
	4.2 Low Latency Extension

	Conclusions
	Bibliography

