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Summary

Machine learning and neural net use is increasing for many tasks, which require
high computational parallelism and but also high energy efficiency and low power
consumption. These requirements become crucial when neural nets need to be
integrated in embedded systems, which require also a significant reduction in
area occupation. Another main aspect to be considered is that conventional
architectures, such as convolutional neural networks, do not take into account
the possibility to implement fault tolerant systems in which the produced results,
while still satisfying the specifications, do not have necessarily to be deterministic.
Furthermore, nowadays new generations of neural networks are emerging with the
purpose to reduce the parallelism of data transfer by using an event driven approach.
This thesis work analyzes the recent bio-inspired neuronal models and implements
one of these, the Izhikevich neuron. The different architectural solutions used
include fixed point arithmetic, one arithmetic operator and stochastic computing.
The solutions are then synthesized with the 45 nm Nangate Opencell Library and
the UMC 65 nm one and compared with each other, in order to evaluate the metrics
change with the same technology.
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Chapter 1

Dynamic neuronal models

1.1 Introduction
Neural networks are improving each day, and one trend pursued is to reduce

computational operations in order to maintain a good degree of neural network
complexity without an exceeding of energy consumption. This issue is relevant
mostly with Deep Neural Networks (DNNs), which have the best performance but
also the worst energy cost. A first try to reduce the impact of energy consumption
in these neural networks is proposed in [1]. It is shown that the most energy
consumption happens when data are transferred from the main memory to the
processing unit, which can be a CPU or a GPU. As a consequence, the first way
adopted to improve energy efficiency is to reduce data movements algorithmically.
This approach can be achieved by working on hyperparameters, such as the number
of layers, the number of filters in each layer, width and height of the filter.

A far better way to resolve energy consumption issue is to implement all MAC
(Multiply and ACcumulate) operations in hardware and design a PCB with the
amount of DRAM required. A commercial solution, the Tensor Processing Unit
(TPU) is already present and heavily used in datacenters, so this unit is the state-
of-art computing system for training DNNs. Although TPUs are more energy
efficient than any CPU or GPU and remain an excellent choice for training and
inference, they still remain unsuitable for embedded solutions.

The increasing demand of low cost machine learning is leading to reconsider
the concept of neural networks itself, which should be see not only as a pure
mathematical model, but also as the natural derivation of biological neurons. This
approach is leading to new biological plausible, low power and low cost neural
network.
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Dynamic neuronal models

1.2 Important biological plausible models
The research of biological plausible is far from recent, but only a decade ago an

efficient way for neuron patter simulation is found, when spiking neural networks
study becomes more interesting for practical applications.

1.2.1 The Hodgking-Huxley neuronal model
The first biological plausible model seen is the Hodgkin-Huxley one [2]. Experiments
carried by these two researchers leads to one of the first electrical network to
describe the behavior of the membrane current of a nerve. This network is the
one of figure 1.1 and reports all the electrical components involved in the analysis.
The characterization of these components is described in the mathematical model
proposed by Hodgkin and Huxley, which is discussed later. The most important
physical quantity is the current I, which represents the overall movement of electrical
ions inside the neuron. Current I is mostly composed by INa and IK , which
correspond to sodium and potassium ion currents, respectively. Other contributions
to current I are due to chloride and less important ions and are treated as one
leakage current Il.

Figure 1.1: Electrical schematic of the Hodgking Huxley neuron.
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Dynamic neuronal models

The topology of the electrical schematic in figure 1.1 allows to formulate simple
characteristic relations between the membrane voltage V and the ion currents. The
parameters gNa and gK depend from time and the membrane voltage. The other
parameters seem to be characteristic properties of the neuron and are treated as
constants. A first qualitative analysis states that a reduce of membrane voltage,
which is called depolarization, increases the sodium and potassium conductance.
The former increases faster than the latter. This dependence on the membrane
voltage shows that the internal electric field, which is generated by the orientation
of molecules with an electrical dipole, modifies significantly the flow of the main ion
currents. Sodium conductance depends more directly on the number of molecules
involved in the change of the total electric dipole. The molecules considered must
be related to sodium ions inside the membrane but not to the ones outside the
membrane. Since the dependence of sodium conductance from the membrane
potential is stronger than the dependence of potassium conductance and, with
some approximations, it can be explained on its own, a quantitative analysis can
be made. With these considerations, the Bolzmann principle is used:

Pi

Po

= e
w+ze(V+Vr)

kT (1.1)

where Pi is the fraction of molecules inside the membrane and Po the proportion
of molecules outside the membrane. The value w is the work needed to carry one
molecule from the inside of the membrane to the outside of it when the membrane
potential is in its resting value. The value k is the Bolzmann constant and T is the
absolute temperature. Since the proportions must satisfy also the (1.2):

Pi + Po = 1 (1.2)

so it is found that:

Pi + Po = Pi

A
1 + Po

Pi

B
= 1⇒ Pi = 1

1 + Po
Pi

(1.3)

Using the (1.2) in the final step of the (1.3) it is found that:

Pi = 1
1 + e−w+ze(V+Vr)

kT

(1.4)

If the membrane polarization is sufficiently high, which can be expressed by the
condition (1.5):

ze(V + Vr)º 3kT + 3w

kT
(1.5)

Then the (1.4) becomes:
Pi ≈ e

w+ze(V+Vr)
kT (1.6)

3



Dynamic neuronal models

As a consequence, it is found that the proportion of sodium molecules inside the
membrane is related to the membrane voltage with an exponential function. With
other considerations, it can be assumed that the relation between the sodium
conductance and the membrane voltage must present the same characteristic.

From figure 1.1 the electrical characteristics can be derived:

I = CM
dV

dt
+ Ii (1.7)

where Ii = INa + IK + Iü is the total ionic current.

INa = gNa(V − VNa) (1.8)

IK = gK(V − VK) (1.9)

Iü

Rl

= V − Vü (1.10)

where VNa,VK and Vü are the potential voltage of each current branch at the resting
potential of V.

Potassium conductance. From the experimental results found for the potas-
sium conductance the following assumption is made: gk is proportional to the
fourth power of a variable, which variable depends on a first order equation. In a
more formal way:

gK ∝ (1− e−t)4 (1.11)

during the de-polarization phase and:

gK ∝ e(−4t) (1.12)

during the re-polarization of the membrane. A possible empirical solution can be
the (1.13): gK = gKn4

dn
dt

= αn(1− n)− βnn
(1.13)

where gK is a constant and αn and βn depends from the membrane voltage. These
equations are physically meaningful if it is assumed that only potassium ions can
cross the membrane when a particular region of the membrane is occupied by
four similar particles. The variable n represents the fraction of particles inside
the membrane, whereas 1-n represents the proportion of the molecules outside the
membrane. αn and βn are rate constants and represents, respectively, the rate
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transfer from the inside of the membrane to the outside and the transfer rate in
the opposite direction.

The second of the (1.13) is a first order differential equation whose solution is
an exponential of time. The change of the values of αn and βn can be considered
instant because it is assumed that these parameters do not depend from time. With
respect to this consideration, if the membrane voltage is considered at its resting
state, which means that V = 0, then the resting value of n can be expressed by the
(1.14):

n0 = αn0

αn0 + βn0
(1.14)

The values αn0 and βn0 are evaluated so that the solution found may fit the
experimental results found for the potassium conductance [2]. The solution of the
differential equation in (1.13) that can satisfy the following boundary condition:
(1.15):

n(t0) = n(0) = n0 (1.15)
is then:

n(t) = n∞ − (n∞ − n0)e− t
τn (1.16)

where:
n∞ = αn

αn + βn

(1.17)

and:
τn = 1

αn + βn

(1.18)

With respect to the solution for the parameter n, the sodium conductance equation
in (1.13) can be represented also in a more appropriate form in order to examine
the similarities with the (1.16):

gK =
A

4
√

gK∞ −
3

4
√

gK∞ − 4
√

gK0

4
· e
−t
τn

B4

(1.19)

where gK∞ is the potassium conductance value at the end of the transition and
gK0 is the same variable at the beginning. For each value of the membrane voltage
analyzed, the parameter τn is derived so that the curved generated could explain
the experimental results properly.

In order to derive the rate constants from experimental results, the (1.17) and
the (1.18) can be rearranged in the following forms:

αn = n∞

τn

(1.20)

βn = 1
τn

A
1− n∞

B
(1.21)

5
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since the time constant was already chosen to fit the experimental results with
the (1.19).

The assumption made in order to use the (1.20) and the (1.21) is that the
membrane voltage changes instantly from the resting value to a new steady state.
Since in the real dynamics the membrane voltage changes during all the observation
period, a relation between the rate constants and membrane voltage must be
derived. From experimental data the following formulas can be derived:

αn =
0.01

A
10 + V

B
e

10+V
10 − 1

(1.22)

βn = 0.125e
V
80 (1.23)

The values of the constants depends on the measure unit adopted, which are
millivolts for the membrane voltage and the reverse of milliseconds for the rate
constants. Although more complex formulas could have been chosen, the (1.22)
and the (1.23) are the simplest ones "which gave a reasonable fit" ([2], page 510).

Sodium conductance. The behaviour of sodium conductance can be expressed
as a function, which contains two parameters obeying a first order differential
equation each:

gNa = m3hgNa (1.24)
where gNa is a constant,

dm

dt
= αm(1−m)− βmm (1.25)

dh

dt
= αh(1− h)− βhh (1.26)

These equations can have a physical meaning: m is the proportion of activating
molecules inside the nerve membrane, and h is the proportion of inactivating
molecules inside it. As a consequence, the values (1-m) and (1-h) represents the
proportion of activating and inactivating molecules, respectively, outside the nerve
membrane. The parameters αm, αh, βm and βh represent the transfer rate constants
of each proportion. The solution of the (1.24) and (1.25) are the ones of a first
order differential equation, while the (1.26) derives directly from these. In a way
similar to the derivation of the potassium transfer rate constants, the dependence
of sodium conductance parameters αh, βh, αh and βh with respect to the membrane
voltage can be derived from the experimental results:

αm = 0.1(V + 25)
e
V+25

10 − 1
(1.27)
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βm = 4e
V
18 (1.28)

αh = 0.07e
V
20 (1.29)

βh = 1
e
V+30

10 + 1
(1.30)

In order to summarize, since the overall current is generally an external input
given by other neurons or sources, the (1.7) can be rearranged so that:

dV

dt
= 1

CM

A
I − Ii

B
= f

1
V, I

2
(1.31)

which can be integrated with a proper numerical method [3]. The parameters of
potassium and sodium conductance, as well as the other time-dependent variables
in the latter equations, must be integrated first in order to assure the correct
behaviour of the membrane voltage.

The Hodgkin-Huxley model has a total of 10 equations which must be evaluated
each integration steps, with an estimation of around 1200 floating point operations
[4].

1.2.2 The Fitzhug-Nagumo model
Although the Hodgkin-Huxley model has biological meaningful variables, such as
the potassium and sodium conductance, it is very expensive in terms of arithmetic
operations. An attempt to reduce this complexity is done by the Fitzhug-Nagumo
model [5] [6], whose formulas have been rearranged by Izhikevich in the following
form [4]:

vÍ = a + bv + cv2 + dv3 − u

uÍ = Ô(ev − u)
(1.32)

The following model requires less than 100 floating point operations for one
integration step, so it is more suitable for low cost implementations. It has only
two non linear terms and can exhibit most of the biological neuron spiking patterns
[4], although not all.
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1.2.3 The Izhikevich model proposal
Besides all other models presented before, the model that is analysed with more

accuracy is the Izhikevich one [7]. This model presents several interesting features.
First of all, it is biological plausible, so it presents a spiking behaviour at the
neuron output. Furthermore, this model can exhibit several spiking patterns with
the same differential equations [4]. The last positive aspect is that the Izhikevich
model require far less floating point operations with respected to the more complex
models described previously.

The Izhikevich neural model description consist of two differential equations:vÍ = 0.04v2 + 5v + 140− u + I

uÍ = a(bv − u)
(1.33)

The two differential equations in (1.33) represent the membrane potential v and
the recover variable u, which is used in order to give stability to the variable v and
refractoriness. The reset conditions are:

v ≥ 30 mV ⇒

v ← c

u← u + d
(1.34)

8



Chapter 2

Stochastic computing
compendium

2.1 Introduction
Nowadays, the requirement of less complex computational units, combined with

high error tolerance in the design specification, has lead to the rediscovery of
stochastic computing [8][9][10][11], which represents values as probabilities instead
of a deterministic symbol or number. Stochastic computing gives the designers a
new challenge to implements low complex computational units for non conventional
neural network implementations.

There are several ways to represent numbers with a finite number of bits. The
most commons are the positional representation, which includes integer and fixed-
point formats, the floating point one and its less accurate format called posit. (cite
references). There are other ways to represent numbers, though. Here a briefing of
the positional representation is presented, so that the stochastic representations can
be introduced, with their characteristics and differences with respect to conventional
number representation techniques.

2.2 The positional representation
In arithmetic units the architecture depends strongly on the number representa-

tion. The majority of digital computational units use the positional representation
[12], in which every digit is a power of 2. The position of each digit related to the
others determines the real value the digit represents. For example, the number
10102 represents the value:

9
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10102 = 1× 23 + 0× 22 + 1× 21 + 0× 20 = 1010

Generally, an integer binary number B with n bits represents the value:

Binteger =
n−1Ø
k=0

bk × 2k (2.1)

where bk ∈ {0,1}.
Fixed point numbers use the same form, but they use also negative powers of 2

in order to represent numbers with fractional parts:

Bfixed =
n−1Ø

k=−m

bk × 2k (2.2)

where -m is the number of fractional bits and n is now the number of integer
bits. The overall number of bits are now m + n.

2.3 Stochastic representations
A different way to represent a number is using a stochastic approach [9], in which
numbers are represented as probabilities. There are several ways to represents
probabilities and the most important ones are described further.

2.3.1 Unipolar representation
The simplest way to define a stochastic number is using a binary stream, where the
number of ’ones’ over the number of bits of the streams represents the probability
of having a logic ’1’. A stream used in this way can be seen as an instance of
a Bernoulli sequence of parameter p [13]. For example, the number 10 can be
expressed as a binary stream with 10 bits equal to logic ’1’. With a precision 4 bits,
a stream of 24 = 16 bits must be generated, so the parameter p of the Bernoulli
sequence is equal to:

p = 10
24 = 10

16
Generally, if the initial number representation requires n bits, then the number of
stream bits must be at least 2n. This aspect is very important, because a linear
increase in the number of bits in the positional representation corresponds to
an exponential increase in the number of stream bits in the stochastic one and,
consequently, in the number of clock cycles required. Precision can be easily traded
off for less computational time by just reducing the number of stream bits generated

10
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or taken into account. For example, the previous probability can be represented
also as:

p = 10
16 = 5

8 = 5
23

which is in this case the exact value of the previous probability with a precision of
3 bits.

As it can be seen, in order to obtain a probability, the initial value is normalized
with respect to the maximum value it can reach. For an integer number x in the
range [0,2N ], with N the number of bits of the deterministic number, is chosen,
then the probability represents the following normalized part:

px = P (X = 1) = x

2N
(2.3)

It is possible to avoid this "implicit" normalization by considering normalized
values in the range of [0,1], so only fractional numbers. The maximum value now
is 1 and the (2.3) becomes:

px = x

20 = x (2.4)

The (2.4) shows clearly that a fractional number corresponds directly to a
probability. This property simplifies the implementation of multistage stochastic
processing, where multiple elementary operations must be performed, such as sums
or products.

2.3.2 Single line bipolar representation
Signed numbers can be normalized in the range [0,1] and represented as probabilities,
too. The most common way to do that is to use the single-line bipolar representation
[14]. In this case, the minimum probability represents the most negative number
used, whereas the maximum probability stands for the maximum positive value
mapped. Generally, given a number x ∈ [−2N−1,2N−1], where N is the number of
bits used to represent the variable, the transformation given by Gaines is:

px = p(X = 1) = x

2N
+ 1

2 (2.5)

In order to obtain the deterministic value or, in the real case, a good approxi-
mation of it, the formula to be used is derived from the (2.5):

x

2N−1 = 2 · px − 1 (2.6)

If the deterministic numbers are normalized in the range [−1,1], the (2.6)
becomes:

x = 2 · px − 1 (2.7)
The latter representation is the most suitable to make stochastic computations,

since it avoids implicit normalization as well as the unipolar case.
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The bipolar notation must be used in all the cases where mixed signed and
unsigned operations must be performed. In some cases, such as the subtraction
1− px, the unipolar representation can still be used, but generally the bipolar is
preferred since it allows to perform all elementary arithmetic operations directly,
or nearly.

2.4 Stochastic computational elements
2.4.1 Digital to probabilistic converter
The digital to probabilistic converters (DPC) is the component which associate
a probability to a deterministic number, which is given with a positional repre-
sentation. The general schematic representation is reported in figure 2.1: the X
represents a deterministic input, while Y indicates a uniform stochastic variable.
Both X and Y have a bit-width equal to N, while the output Z one bit large.

Figure 2.1: General schematic of the digital to probabilistic converter.

The DPC generates a bit-stream, which has the following property: the number
of ones in the stream over the all bits generated corresponds to the probability
associated to the deterministic number. In fact, for a stochastic unipolar represen-
tation, if all possible values are generated by the stochastic variable Y, which are
2N , the number of ones generated are exactly the unsigned value of X. Formally it
is:

P (Z = 1) = P (X > Y ) = X

2N
(2.8)

If Y is purely random, which means that generated numbers can occur more than
once in a period of two, the number of ones generated can be not exactly equal to
the unsigned values of X due to the generation of the stochastic variable Y. The
latter consideration is crucial when an accurate analysis of stochastic-induced error
has to be performed. This logic block can be directly implemented in hardware,
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although there can be a significant increase in area if the number of bits required
are too many. A lower-cost implementation of the DPC, proposed by Brown-Card
[8] is shown in figure 2.2.

Figure 2.2: Mux implementation for a digital to probalistic converter. In this
case, N = 4.

Each bit of the signal X is sent to the second port of a mux, and the output of
each mux is the first input of the following one. The output of the most significant
mux represents the current value of the stochastic bit-stream. The stochastic
signals Bi, i ∈ {0,1,2, . . . N − 1} are Bernoulli variables with parameter p = 1

2 ,
which means that the values ’0’ and ’1’ have the same probability to occur [13].
The (2.8) works for unsigned numbers and the probability associated to it is in
the unipolar format. If the deterministic number uses the 2’s complement scheme,
then the correct representation to use is the single line bipolar. The most simple
way to convert the number is by inverting the most significant number, so that all
negative values are associated with the smaller probabilities. In this case, the new
DPC is the one in figure

Figure 2.3: Bipolar implementation of a mux DPC.
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2.4.2 Linear feedback shift registers
The implementation of a stochastic architecture requires the generation of random
numbers or pseudo random numbers. Random numbers can be generated in
different ways by using unstable components, such as ring oscillators [15] or diodes
[14], although it is not a practical approach if the goal is to design a fully digital
system. On the contrary, pseudorandom numbers can be generated by using logical
cells and/or arithmetic componets only. A typical example is the generation of
pseudorandom numbers using the standard C function [15], which uses the following
equation:

Nnext = Ncurrent × 32Íh343FD + 32Íh269EC3 (2.9)

where the constants are 32-bit numbers represented in hexadecimal representation.
The 16 most significant bits are considered pseudorandom sequences. The require-
ments for this implementation is at least one 32-bit adder and a 32-bit multiplier,
which is unacceptable for a low cost design.

An alternative way to generate pseudorandom sequences is by using Linear
Feedback Shift Registers (LFSR). The general schematic of an LFSR is reported in
figure 2.4.

Figure 2.4: General schematic of a linear feedback shift register.

The linear feedback network is composed by two input XOR gates and is called
feedback polynomial. Since the exclusive or function represents also a direct sum,
the following notation is generally used to represent the feedback polynomial:

Yfeedback = X0(t + 1) =
N−1Ø
i=0

biXi + 1 (2.10)

where bi can be ’0’ or ’1’, depending on the the feedback polynomial chosen. The
bits of the shift register can be seen as the state variables of a finite state machine.
The number of possible states depends on the feedback polynomial, and each state
can be interpreted as a pseudorandom number [14], since the sequence of the state
machine is a cyclic graph, where each transition is not correlated with a deterministic
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variable coding. The only correlation is the feedback polynomial, which determies
the pseudorandom nature of the LFSR. The best feedback polynomial are the
ones which generates all the possible states with N bits and are called maximal
polynomials. In this particular case, the cyclic graph contains all the N possible
states.

Random number generation is crucial in order to have good bit streams that can
be used for further evaluations [16][17]. One major issue is that the LFSR used as
random number generators can occupy a signficant amount of area, as it can be
seen from the synthesis results reported further. This problem can be solved by
sharing the same resource for parallel and not related bit streams, such as the ones
belonging to different neurons. In order to share the same LFSR for correlated bit
streams without a significant increase of the correlation-induced error, the circular
shifting technique can be adopted [18]. Another useful way to reduce the number
of LFSRs involved is to reuse the same bit stream multiple times. This goal can be
achieved by using duplicating techniques [19][20] or proper delay elements, such as
D-Flip Flops [21].

2.4.3 Basic stochastic arithmetic blocks
The main advantage of stochastic computing lies in the logic used to perform

arithmetic operations. While in deterministic arithmetic logic functions with
several gates must be implemented in order to process operands, the complexity in
stochastic computing is overwhelmingly small, which can be exploited for very low
cost implementations. Another positive aspect is that, in some cases, it is possible
to process numbers represented differently with the same arithmetic block, which
allows to save even more area to the design. For example, a stochastic number in
bipolar notation can be processed and the resulting output can be interpreted as
an unipolar stochastic value.
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The basic arithmetic blocks are reported in figure 2.5 whereas the basic operation
performed by these blocks are shown in table 2.1 [22].

Figure 2.5: Basic stochastic arithmetic elements.

Combinational component Unipolar Output Bipolar Output
AND Y = X0 ·X1 Y = X1X2+X1+X2−1

2
XOR Y = 1−X1 −X2 + 2X1 ·X2 Y = X1 ·X2
NOT Y = 1−X Y = −X

MUX qN−1
i=0 p(S = i)Xi

qN−1
i=0 p(S = i)Xi

Table 2.1: Stochastic functions implemented by each combinational block. Hybrid
computations are not considered.

If the selector signal S has uniform distribution of its value, which means that
each selection bit is a Bernoulli variable of parameter p = 1

2 and the selection bits
are uncorrelated from each other, the multiplexer performs a scaled sum of the
input probabilities, which can be in bipolar or unipolar format.

Stochastic computing may present very high error and poor accuracy if the bit
stream are correlated or several sequential operations are performed [23][24][25].
Error and variance of the stochastic processes can be improved with custom
architectural solutions and analysis [26][27][28]. Latency can be reduced by using
unary positional computing [29] and its derivations [30][31]. For large fully stochastic
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systems, the polysynchronous clocking approach can be used to reduce the clock
tree design, with a significant reduce of area, power and energy consumption [32].

2.4.4 State machines for complex functions
Complex functions such as hyperbolic tangent and exponential can be imple-

mented in stochastic computing with the use of simple state machines [8][33]. The
working principle is based on the saturated counting: given a general state machine
with N states, the possible transitions occur only between the adjacent ones, giving
generally a chain graph as the one on figure 2.6 for the case of one stochastic input
only.

Figure 2.6: General finite state machine graph to generate arbitrary one input
stochastic funtion.

A transition between first state and the last one, which would correspond to a
closed loop state machine as the one in figure 2.7, is not allowed.
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Figure 2.7: Closed loop FSM graph.

Stochastic hyperbolic tangent If the state machine considered is the one
in figure 2.6 and the output Y is ’1’ when the state index is i ∈ [N/2, N − 1]
and ’0’ otherwise, the stochastic output is the stochastic hyperbolic tangent, or
stanh(N, X), which is approximately tanh

3
N
2 x
4
[8].

Estimation of a stochastic value

The last part of a stochastic computation is the estimation of the output stochastic
stream. For the unipolar representation a simple saturating up counter can be used,
while a saturating up-down counter is needed for the bipolar representation which
is actually a particular use of the ADaptive DIgital Element (ADDIE), described
by Gaines [14].
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2.5 Applications of stochastic computing
Stochastic computing is successfully used in several fields, in which high parallel
and fault tolerant computation are required. The main applications for which
stochastic computing can be good alternative are:

• Machine learning and neural network accelerators [34][35][36][37][38][39][40]
[41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62]
[63][64][65][66][67][68][69][70]

• Massive parallel computing, Digital Signal Processing and very low cost hard-
ware for simple operations or custom functions [71][72][73][74][75][57][59][67][76][77]

• Low Density Parity Check (LDPC) decoders [78][79]

• Low power and energy efficient image processing accelerators [37][80][81][82][83]

• Digital filtering [84][85]

• Mixed signal and analog applications [86][87][88][89][90][77]

• Robust architecture for fault tolerant technologies and reliability evaluation
[91][92][93]

• Ultra low cost fully custom designs [94][46][53]

2.5.1 Stochastic computing for accelerating neural nets

Nowadays there is an increasing demand of computation tasks, especially the
ones related to detection and recognition. The results are remarkable and can
compete, or even outperform, several human tasks [95]. Some of these are speech
recognition and its convertion into text, object identification in images or videos,
even in real time such as in [96]. Complex neural networks can easily run in large
server clusters, where high performance computational elements are present, such
as CPU and GPU. Unfortunately, they have not reached good results in embedded
systems, yet. Many accelerators are present in literature, which demonstrate that
stochastic computing can significantly improve several important metrics, such as
area occupation and power consumption. Table 2.2 reports some of these ASICs
and the improvement each work brings on these metrics.
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Neural Net Tech Area Power Energy
LeNet-5 conf. 11
[95]

45 nm
NanGate
OpenCell
Library

13.98 mm2

(-98%)
3.1 W
(-99%)

7.9 µJ
(-75%)

Electro En-
cephaloGram
(EEG) classifier
[97]

32 nm 6651 µm2

(-92%)
203.9
µW
(-88%)

N/A

Restricted Boltz-
mann Machine,
larger configura-
tion [98]

45 nm
NanGate
OpenCell
Library

4.76 mm2

(-98%)
545.67
mW
(-98%)

69.86 nJ
(-41%)

Multi Layer Per-
ceptron, larger
configuration
[98]

45 nm
NanGate
OpenCell
Library

10.76 mm2

(-98%)
1234.7
mW
(-98%)

180.26 nJ
(-34%)

Custom Hybrid
Stochastic/Bi-
nary neural
network[47]

65 nm
TSMC

1.321 mm2 33.17
mW

543.42 nJ
(-19%)

LeNet-5 larger
configuration
(tanh) [48]

45 nm
NanGate
OpenCell
Library

12.5 mm2

(-98%)
3.1 W
(-99%)

15.8 nJ
@1024 bit
stream
(+699%)
1 uJ @64
bit stream
(-50%)

HEIF for LeNet-
5 and AlexNet
[68]

45 nm
Nangate
OpenCell
Library

24.7 mm2

(-61%)
1.9 W
(-19%)

754 µJ
(-86%)

Table 2.2: Neural net accelerators in literature and improvement with respect to
the reference binary architecture reported in the design work.
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Chapter 3

Design of a hardware
Izhikevich neuron

The design of special purpose hardware needs several steps in order to satisfy all
the constraints required. First of all, an high descriptive level of the algorithm is
requested in order to have a comparison model, which is assumed to have infinite
precision in number representation. The algorithm of the Izhikevich neuron is
analyzed with Brian2 [99], which is a Python library used for spiking neural network
simulations. From the results, obtained with a 64-bit double precision, a fixed point
model is made in C, in order to view the differences with the floating point one, in
terms of spiking timing and spike curve approximation. From these results it is
derived the minimum number of bits which preserves the original membrane voltage
and recover variable pattern. The last step is to design the Izhikevich neuron with
an Hardware Descriptive Language (HDL). The architecture is designed in order to
improve area usage, while its reduction is compared with the performace, in terms
of clock period and cycles, and power consumption.

3.1 Brian2 simulation
A first integration of the Izhikevich equations is made by using the Brian2 simulator,
from which the exact behaviour of the membrane voltage and recover variable is
derived. The integration method adopted is the forward Euler, since it requires much
less arithmetic operations than other higher order methods, such as Runge-Kutta
[3]. The equations in (1.33) become:

v(t + ∆t) = v(t) + ∆t(0.04v2 + 5v + 140− u + I)
u(t + ∆t) = u(t) + ∆t · a(bv − u)

(3.1)
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A simulation result to evaluate the membrane voltage pattern is reported in
figure 3.1.

Figure 3.1: Membrane voltage of the Izhikevich neuron in tonic spiking mode.
Integration step is 2−10.

For the next design steps, the tonic spike behavior is used as a reference pattern
for checking purpose, although other spiking pattern can be used.

3.2 Fixed point model
The Izhikevich equations in Brian2 have variables and constants in floating point
representation, which is a problem when a low power and area design is required.
The most simple and efficient solution is to implement a fixed point arithmetic,
which does not require dedicated hardware for its execution, but only integer
arithmetic components, which can be easier to be integrated into a single circuit.
One important issue is to estimate the neuronal pattern change when the floating
point representation is replaced with a fixed point one. For this purpose, a C
program implementing the Izhikevich equations is written. Although this design
step is not explicitly mandatory for an hardware design process, it is very useful
for the following reasons:

• Result estimations with a C program are definitely faster than designing an
entire hardware, testing it and comparing its results with the floating point
arguments. As a matter of fact, the error from floating point representations
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to fixed point one can be seen only in the end, when all the design steps are
made.

• An HDL simulator requires more computational resources than an simple C
program and it is usually proprietary. It is much better to have a general
purpose, open source code, which can be compiled and executed in every
platform.

• The C code is well suited for intermediate solutions such as microcontrollers
or when an ASIC design is not required or not able to be achieved.

• For the next neural net simulations, topology analysis is faster in software
than in hardware, since the latter requires an implementation for each neural
net topology.

Although no strict specifications are given, the choice of this design step can be
very useful for further testing, allowing to make fixed-point simulations (and also
neural net training) without implementing necessarily an hardware architecture.
All the variable used for testing are 64-bit integers, so the maximum number of
bits available to represent fixed-point variables are 32. More larger variables can
be used if available by the C compiler used.

The general functions implemented with the C program covers the following
steps:

• Conversion from floating-point to fixed-point representation of the occurring
values.

• Setup of the neuron parameter and initial values.

• Making of an integration step for a neuron.

• Testing of the results and comparing them with the ones obtained with the
Brian2 simulation.
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3.2.1 Float to Fixed conversion
The first step for fixed-point simulation is the conversion of the Izhikevich param-
eters from the the floating point to the fixed notation. The functions used are
reported in figure 3.2.

Figure 3.2: Float to fixed-point flowchart

The get_integer_part function takes the absolute value of the integer part of the
floating point number and returns the integer part of the final fixed point number.
The number of integer bits used must be specified, and the function warns the user
if the number of bits used are not sufficient. The procedure adopted is the same as
the one explained by Brown-Vranesic [12].

The get_fractional_part function takes the absolute value of the fractional part
of the floating point number and returns the fractional part of the final fixed point
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number. The number of fractional bits used must be specified, but no warning is
sent to the user if the number of fractional bits were not sufficient. This choice is
due to the fact that, generally, the conversion usually brings a conversion error,
even with limited and non periodic fractions. This error decreases as the number
of fractional bits provided increases. The procedure is quite similar to the one of
the get_integer_part function and is reported in the flowchart of figure 3.3.
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Figure 3.3: Flowchart to get a fixed-point fractional number from a floating point
one.
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Since only fractional part is involved in this function, then it can be written:

Vfrac =
fØ

i=1
b−i · 2−i (3.2)

Multiplication by 2 shifts the digits left so that the (3.2) becomes:

Vfrac · 2 = b−1 +
fØ

i=2
b−i · 2−i (3.3)

The value b−1 can be 0 or 1 and it stored into the new integer variable as the most
significant bit. Then the integer part is removed and the cycle continues, until the
number of fractional bits available are 0 or the fractional part is already represented
correctly with current bit available.

The merge_integer_and_fractional_part takes the two results obtained previ-
ously and merges them into a single fixed point number. As a matter of fact, the
results obtained with the previous functions occupy the same position into the
integer variable. If m is the number of integer bits and f the number of fractional
bits, the get_integer_part function returns a number:

Vint =
m−1Ø
i=0

Ii (3.4)

All the other bits past the bit m− 1 are zero. The get_fractional_part function
also returns a similar result:

Vfrac =
f−1Ø
i=0

Qi (3.5)

Also here the bits past the bit f − 1 are zero. In order to have both integer part
and fractional part on the same integer variable, the merge function shifts logically
left the integer bits by the number of fractional bits f and stores the fractional
bits into these least significant bits. The function also checks whether m + f > N ,
where N is the number of bits available with the integer variable chosen and returns
a warning message in case of overflow. The final result obtained is then:

Vfixed−point = (Vint << m) + Vfrac =
f−1Ø
i=0

Qi · 2i +
f+m−1Ø

i=f

Ii−f · 2i (3.6)

The description of the result obtained in (3.6) is important when the fixed-point
number has to be printed, saved or compared with a floating point number. The
conversion requires a division by 2f and saving the result into a floating point
variable. This action brings of course to another error, which is smaller when the
conversion takes a 32 bits fixed-point number to a 64-bit double variable and it is
not taken into account.
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The get_signed_fixed function returns the signed value of the unsigned fixed-
point number if the initial floating point value is negative. The algorithm used is
the simple complement and increment described in the radix complement schemes
in Brown-Vranesic [12].

The overall procedure is summarized by the use of function get_fixed_value,
which uses the four function previously described and returns a signed fixed point
number stored into an integer variable.

3.2.2 Setup functions
Following the float to fixed-point functions a set of new ones are implemented to
setup all the neuron parameters and variables.

The setup_spike_neuron_parameters setups the neuron fixed parameters in the
Izhikevich equations a,b,c and d. This value are given as floating point numbers,
so no previous conversions are required.

The setup_spike_neuron_current setups only the neuron input stimuli I. This
parameter is taken separately since it can can change over the simulation time, while
the other parameters are treated as intrisic neuron properties and are mantained
constant.

The setup_spike_neuron_membrane_voltage function setups the membrane
voltage into the Izhikevich equation. This function is used for simulation setup and
reset only.

The setup_spike_neuron_recover_variable function setups the recover variable
into the Izhikevich equation. This function is used for simulation setup and reset
only.

3.2.3 Step functions
The next functions are used to proceed over the integration steps and derive the
new variable values. These functions also change the current variable values, so
also the current time changes by an intgration step.

The make_step function make an integration step to the membrane voltage and
the recover variable by using the discrete Izhikevich equations (3.1) with integer
arithmetic.
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The fire_and_reset function checks the reset condition for a single Izhikevich
neuron and resets the neuron variable with the (1.34) if the reset condition occurs.

3.2.4 Test function

A separate test function is implemented in order to compare the Brian2 results
with the fixed-point model. In order to estimate the error introduced by changing
from floating-point to fixed-point variable, this test function makes the following
steps for each integration step:

• It reads a reads the results obtained previously from the Brian2 simulation.

• It makes an integration step for a testing neuron, which is set up to the same
initial conditions. All the parameters for this neuron are in the fixed-point
notation described in the previous section.

• It evaluate the current step absolute error AE with this error formula:

AEi =
V i

Brian2 − V i
fixed_value

V i
Brian2

× 100 (3.7)

where V i
Brian2 is the value of the membrane voltage in the step i obtained with

Brian2, while V i
fixed_value is the value of the membrane voltage obtained with

the fixed-point model.

For better error evaluation, figure reports the comparison between the floating-
point value and a particular of 32 bits fixed-point implementation. As it can be
seen from the two waves’ behaviour, the error is mostly focused nearby the spike:
the maximum absolute error found there is very large due to the fact that the error
formula in (3.7) increases very quickly with small differences of almost-zero values.
The error found here is more than 170%, but fortunately for only one integration
step. Furthermore, the firing and reset condition happens in the same integration
step for both models: this is a crucial aspect, since it is the spike-timing activity
that actually carries information. For all other 95% cases, the absolute error is
always below 0.1%, making the fixed point very precise despite of the number of
bit reduction.
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Figure 3.4: Comparison between floating-point results and the fixed-point imple-
mentation.

3.3 Hardware implementation
The fixed-point values found with the previous design step becomes a requirement

for the following hardware architecture: since the first implementation in hardware
uses deterministic arithmetic in order to make further comparisons with a stochastic
one, the result obtained with the former must be same of the fixed-point algorithm.

The basic blocks of all architectures are reported in figure 3.5. The DATAPATH
block contains the equation variables and constants of a single neuron and the
arithmetic units to process them. The uControl Unit (uCU) contains all the logic
to control the dataflow of the DATAPATH. The commands from the uCU to the
DATAPATH are divided into fields:

• The REG_DECODER_ENABLE is the signal which enables the datapath
variable registers for write procedures.

• The REG_DECODER_SELECT is the signal used to select the register to
be written and, when necessary, also the data to be written into it.

• The OPERAND_SELECTOR selects the register variable or variables which
are to be directed to the arithmetic operators. This signal is used when there
is resource sharing and the arithmetic operations must be scheduled.
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• RCS stands for "Reset Commands Strobe". It is a signal used for equations
with reset condition, which is present for most of the spiking neuron equations.
When this signal is set to ’1’, the datapath must set the SPIKE signal to ’1’ if
the reset condition occurs. The implementation for reset condition evaluation
must respect this constraint, although other aspects, such as the change of
the internal variables, can be implemented without particular restrictions.

The write procedures for internal variable is general and can be implemented
in different ways with no particular constraints, so a particular implementation is
shown when the variable storing design is explained. The I_STIMULUS signal
can be used to load external values to the datapath internal registers, although
this approach is not recommended. This signal is thought to load the input stimuli
current only, since it is the only variable that must be loaded to the datapath for
each integration step and for most spiking neuron equations.

Figure 3.5: Basic blocks for hardware implementation of the neuron equations.

A preliminary analysis is made by drawing the Data Flow Graphs (DFG) in order
to find the main operators involved. Then it is presented the general schematic
of the architecture, which is composed by a single Contronl Unit (CU) per layer
and by one DataPath (DP) for each neuron. Then the architecture designs are
compared with the direct implementation in hardware of the DFGs.
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3.3.1 Data Flow Graph
With respect to the discrete Izhikevich equations of 1.33, the Data Flow Graph

are derived and reported in figure 3.6. Furthermore, a direct implementation is
made in order to derive the initial reference metrics. As it can be seen, the DFGs
includes several multiplications, which should not be directly implemented with
multipliers in order to save area. In addition to this, the adders can be also area
consuming when there is the need to instantiate several of these units.

In order to derive low area architectures, the following choices are taken as
specifics:

• The solutions are completely multiplierless

• All arithmetic operation, including also squaring and multiplications, are
implemented with sums and shifts algorithms only.

• The resource sharing policy is adopted: an instantiated operator is reused for
several operations in the DFGs.
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Figure 3.6: Data Flow Graphs of the discrete Izhikevich equations. The labels
are the names of each internal signal.
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3.3.2 Direct implementation
Figure 3.7 shows the direct implementation of the DFG. This one is used as
a reference for the further implementations, in order to make an architectural
comparison in term of speed, area and power consumption. All the arithmetic
operations are inside the three main blocks, which are the "Membrane Voltage
DFG", the "Recover Variable DFG" and the "Comparator" blocks. Each operation
is done by a different arithmetic unit and the internal parallelism remains the
same as the initial one. In order to obtain the same results of the fixed point
program, the result of each multiplication is right shifted arithmetically by the
number of fixed point number, then the MSBs of the integer part and the LSBs of
the fractional part are truncated.

Figure 3.7: Direct implementation of the DFG datapath.
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3.3.3 Control Data Flow Graph and number of operators
The first solution which is thought to be sufficient to be comparable to a stochastic
arithmetic is a solution with a single operator, which means that all arithmetic
operation, including sums, multiplications and subtractions, must be implemented
with a single arithmetic unit. With this consideration, it is derived the Control
Data Flow Graphs (CDFG) from the DFG. Figure 3.8 shows the steps involved
for the generation of one integration step. Each step involves only one operator at
a time. The solution adopted requires then an adder with some additional gates
and registers in order to implement subtraction, multiplication and shifts with the
same adder. Each step of the CDFG requires different clock cycles to be completed.
The exact number is shown along with the control unit implementation.
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Figure 3.8: Control data flow graph of the discrete membrane voltage equation.36
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Figure 3.9: Control Data Flow Graph of the discrete recover variable equation.

Figure 3.10: Control Data Flow Graph of the reset conditions
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3.3.4 Variable lifetime analysis
The CDFG permits also to make an accurate variable lifetime analysis, whose

result reveals the effective registers needed to store all variable without exceeding
in the number of memory components. Table 3.1 reports the variable lifetime of all
results involved into the CDFG previously implemented.

Variable name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
v(t) X X X X X X X X X X X X
u(t) X X X X X X X X X X X X X X X X X

sqr_res X
sqr_res_sz X X X X

2v(t) X
4v(t) X
lin_res X

sqr_pl_lin_res X
spl_pl_cons_res X
splpc_min_u_res X
splpcmu_pl_I_res X
splpcmupI_rsh_res X

v_pl_dt X X X X X X X X
v_mult_b_res X
vmb_min_u_res X

vmbmu_mult_a_res X
vmbmuma_rsh_res X

u_pl_dt X X X
u_pl_d X X

v_min_th X
Variables in step 3 3 4 4 4 3 3 3 3 3 3 4 3 3 3 3 3 4

Table 3.1: Variable lifetime analysis

From this analysis it is derived that the minimum number of registers to be
included into the register file are 4. In particular, in the end of step 18, 2 registers
called "variable registers" are needed to save v(t + ∆t) and u(t + ∆t), while the
others to save v(t + ∆t)− vth (where vth is the threshold voltage) and u(t + ∆t) + d.
After step 18 there is another step in order to check if the reset condition occurs
and, in case of positive response, it fires a spike and reset the "variable registers"
with the corresponding reset values. The register file also saves the input current
given by the pre-synaptic block (this block is described in the further chapter).
The register file contains also the neuron parameters needed to execute the discrete
Izhikevich algorithm.

3.3.5 One adder arithmetic block
Figure 3.11 shows the first implementation of the arithmetic block, which is used
to implement all the arithmetic and logic operation necessary.
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Figure 3.11: Architecture of the arithmetic block with a single adder.

The arithmetic block contains four special register, two n-bits selectors (or n
2-way muxes) and a single arithmetic operator, which is considered the core unit
of the design. Each register has its own control signals, since each of these has
different functionalities. For example, R0 needs to perform both logical right shift
and arithmetic left shift, while R3 needs only the arithmetic left shift property.
All registers have an enable signal, in order manage the dataflow of all operations.
Register R1 is bigger than the others, since it serves as accumulator for storing the
partial products of multiplications. Register R1 has two outputs:

• the register1_accumulator (or R1_acc) output, which is marked with a bold
arrow, is the output of the n most significant bits and it is directed to the
arithmetic operator.

• the mult_result output, which is marked with a dashed bold arrow, is the
signal which contains the final result of a multiplication.
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Figure 3.12: Implementation of the arithmetic core.

The arithmetic operator performs both addition and subtraction, so the real core
is represented in figure 3.12. As it can be seen, this unit presents an additional
n-bit selector and n inverters.

The arithmetic unit has two inputs, which are the OPERAND signal, coming
directly from the register file, and the CMD_VECTOR signal, containing all the
command signals. The only output is the RES signal, which carries the arithmetic
results back to the register file. In order to control the dataflow of the arithmetic
unit in a simpler way, the arithmetic command vector is divided into fields, which
are described in table 3.2. Each field controls a specific component of the arithmetic
block.
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CMD_VECTOR [12:0]
Name Position Description
ctrl_r0 [12:10] controls the register R0
ctrl_r1 [9:7] controls the register R1
ctrl_r2 [6] controls the register R2
ctrl_r3 [5:3] controls the register R3

ctrl_adder [2] with 0 the operator performs a sum, with 1 a
subtraction

ctrl_mult [1] when 0, the arithmetic unit is in multiplica-
tion mode and in addition/subtraction mode
with 1

ctrl_mux1 [0] selects multiplication result with 1 and the
output of the arithmetic operator with 0

Table 3.2: Command fields for the arithmetic block. The CMD_VECTOR
includes all the fields described into this table.

In order to make the control signals of the arithmetic registers more readable, a
mnemonic name for each command is used. These mnemonics are summarized and
described in table 3.3. When no operation has to be performed by a register, it
is sufficient to set its control signals to 0. The description of these mnemonic are
useful when there is the need to create or modify the uInstruction set, which is
described within the control unit part.

41



Design of a hardware Izhikevich neuron

Name Value Description
ctrl_r0

enable_r0 100 enables register
lshift_r0 110 (111) performs logical shift left. The value in brack-

ets is for the single fulladder architecture im-
plementation

rshift_r0 101 performs arithmetic shift right
rotate_r0 110 performs rotate right shift. This mnemonic

is for the single fulladder architecture only
ctrl_r1

reset_r1 001 resets register
enable_r1 100 enables register

enable_and_shift_r1 110 enables register and performs an arithmetic
shift right on the new data
ctrl_r2

enable_r2 1 (10) enables register. Value in brackets for the
single fulladder architecture implementation

rshift_r2 01 loads the fulladder result to the MSB of the
register after a right shift if performed
ctrl_r3

reset_r3 001 resets register
enable_r3 100 enables register
rshift_r3 110 performs an arithmetic right shift

Table 3.3: Fields mnemonic description for the arithmetic registers and corre-
sponding binary values.

3.3.6 The register file

Internal neuron variables and parameters, including the equation constants, are
contained in a custom register file, located into the datapath unit of each neuron
instantiation. The register file contains both variables evaluated during the algo-
rithm execution and constants. Constants can be avoided by replacing them with
shifts and accumulations performed by the arithmetic block, although this could
significantly increase the uROM size, containing all the uInstructions. The only
output signal is REG_OUTPUT and its output is described by figure 3.13 The
OPERAND_SELECTOR signal has its own mnemonics in order to make code
more readable. These mnemonics are reported in table 3.4 and describe the current
selection of the multiplexer.
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Figure 3.13: Register file selection schematic.

OPERAND_SELECTOR
Name Value
regv 1000
regu 0001
regI 0010
regt1 0011
regt2 0010

squarecons (0.04) 0101
voltagecons (140) 0111

consth (30) 1111
consa (a) 1000
consb (b) 1001
consd (d) 1011

Table 3.4: Description of the mnemonics for OPERAND_SELECTOR signal.

The registers regv, regu, regt1 and regt2 can be loaded with the result signal
RES, coming from the arithmetic block. In order to select and enable one of
these registers, the REG_DECODER_ENABLE signal must be set to ’1’ and the
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REG_DECODER_SELECT must be set to one of the values reported in table 3.5.

REG_DECODER_SELECT
select_v 00
select_u 01
select_t1 10
select_t2 11

Table 3.5: Mnemonics for register decoder selection.

The regI register, which contains the input stimuli current, is sampled each
clock cycle from the DATAPATH input.

This register file implements also the reset condition for the SPIKE signal. This
implementation is The circuitry used is reported in figure 3.14, which also shows
the values that must be present in registers t1 and t2.

Figure 3.14: Circuitry for SPIKE generation and internal variable reset. Register
t1 must contain the value v− vth and t2 must contain the value u(t + dt) + d during
the reset condition check period.

As it is requested from the specifications previously defined, the SPIKE signal
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is set to ’1’ in the same period if the RCS signal is asserted and the reset condition
occurs. As a matter of fact, the reset condition for the Izhikevich equations can be
rewritten as in the (3.8):

v ≥ vth ⇒ v − vth ≥ 0 (3.8)

If the MSB of the value v − vth is ’0’ it means that the value is non negative, so
only the most significant bit of register t1 can be used for the check circuitry.

This event resets also the values of the membrane voltage and the recover
variable, so the reset_condition_flag signal is used as a special reset for registers v
and u. The parameter c is considered constant and it is not stored in a register
but serves only to define a new reset for register v. The recover variable reset
depends on its current value, instead, so t2 is used as a support register. If the
reset condition occurs, then value of the recover variable becomes the one contained
in register t2. All these register resets described for spike event are synchronous.
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3.3.7 uControl Unit

Figure 3.15: Schematic of the uControl Unit. The architectures of the Izhikevich
with one adder or one full adder for arithmetic operations use this unit for dataflow
control.
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In order to control the datapath correctly, a uControl Unit(uCU) is designed. The
general schematic of the uCU is reported in figure 3.15.

The uCU is implemented with a uCode structures, which means that the com-
mands through the datapath are generated by starting from uInstructions. These
uInstructions are saved in a uROM, which is implemented by using combinational
circuitry [100]. The main reason for choosing a uCode architecture is that it is
enough flexible for further improvements and in case that the original algorithm is
modified because, for example, the equations are arranged in a different way or
are changed with total different ones. The Izhikevich equations are indeed only a
particular design choice which can be over This type of state machine requires of
course more components than a simple Moore state machine, but the little increase
of area occupation is balanced by the fact that the uCU can be instantiated only
once for each group of neuron with the same equations that are working in parallel.

uPC The uPC is an address generator. It consists of a counter which can
increment its value by setting to ’1’ the ENABLE_UPC signal or reset it by setting
reset_uPC signal to ’1’.

uIR The uIR is a register which contains the current uInstruction to be executed.

Sequencer The sequencer units is the block that manage the input/output signal
for the flow control.

Command Generator The Command Generator is a combinational block which
decodes the uInstruction in the uIR and generates the control signals for the
datapath. Since each uInstruction may require more than one clock cycle, the
Command Generator uses the uSTEPs CMD COUNTER’s signal CMD_COUNT
to know the current uSTEP of the uInstruction and generate the proper datapath
control signals.
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3.3.8 uInstruction Set
The uCU can execute the uInstructions reported in table 3.6.

Opcode First Operand Second Operand Result destination Description
nop empty empty empty Keep uCU in idle

addOp reg1 reg2 reg_dest reg_dest <= reg1 +
reg2

subOp reg1 reg2 reg_dest reg_dest <= reg1 -
reg2

multOp reg1 reg2 reg_dest reg_dest <= reg1 ×
reg2

accOp reg1 empty empty R1_acc <= R1_acc +
reg1

accsubOp reg1 empty empty R1_acc <= R1_acc -
reg1

shiftlOp empty empty empty R0 << 1
shiftrOp empty empty empty R0 >> 1
jumpOp empty empty empty Reset uPC
movOp reg1 empty empty R0 <= reg1
saveOp empty empty reg_dest reg_dest <= R0
transOp reg_src empty reg_dest reg_dest <= reg_src
spikeOp empty empty empty set RCS to ’1’ for one

clock cycle

Table 3.6: uIstructions available for the single adder architecture. Empty spaces
are filled with zeroes.

The possible values for the first operand and the second operand are the ones
reported in table 3.4, while the destination register values are in table 3.5.
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3.3.9 Single Full Adder Datapath
In order to reduce even more area, a second implementation of the arithmetic block
is made. The new structure is reported in figure 3.16.

Figure 3.16: Arithmetic block with one fulladder instead of an adder/subtractor
unit.

The ctrl_cin signal is controlled by a small finite state machine, whose state
graph is reported in figure 3.17, so that the architecture can still perform addition
or subtraction with the same fulladder.
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Figure 3.17: Finite state machine for ctrl_cin signal management.

With respect to the single adder implementation, the register R1 receives now
one bit at a time from the fulladder and saves its value in the MSB. The register
R0 performs arithmetic right shifts to pass the values to the fulladder, and uses
rotate right shifts in the case of a multiplication. The registers R2 receives now
the arithmetic results serially, except for the final multiplication result, which is
called mult_result, which is directly loaded into R2 at the end of the multiplication
uSteps.

uCU adaptation for serial arithmetic operations Since now all the fixed
point operations are made with serial arithmetic, the uCU has one more counter
to manage the serial steps. The uInstructions that can be used are reduced and
are the addOp, subOp, multOp,transOp and the spikeOp. The area increase of
the uCU due to the new counter is balanced by reducing the uInstructions in the
uROM.

3.4 Equation normalization
Stochastic computing with complex functions is much easier to be implemented

in hardware when all variables and parameters are normalized. The most common
and suitable ranges are [0,1] for the unipolar representation and [−1,1] for the
bipolar one. Without normalization most complex functions with several gate
stages would require intermediate evaluation of the value, with an unacceptable
increase of computation time in terms of clock cycles, since a precision of n bits
requires already 2n clock cycles.
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As it is said by Izhikevich itself [7] the equations can be changed in order to
obtain a different range values and time scale. In order to do so, the part to be
substantially modified is the first one of the membrane voltage differential equation
in (1.33):

f(v) = 0.04v2 + 5v + 140 (3.9)
The constants in (3.9) can be generalized as parameters, which will be derived by
applying the wanted constraints. Thus the equation (3.9) becomes:

f(v, k1, k2, k3) = k1v
2 + k2v + k3 (3.10)

Where k1, k2 and k3 are the generalized parameters. These parameters must also
be normalized, since they are used as probabilities, too.

Although a more accurate and rigorous mathematical analysis can be made,
the choice adopted to find the normalized parameters is more simple and leads
fast to the result needed for the implementation. The consideration is that, if the
parameters a, b, c and d are chosen for most common spiking activity such as tonic
spiking or class 2 excitability, then both membrane voltage and recover variable
must have a resting value in case of absence of pre-synaptic stimuli, which means
I = 0. In this quiescent condition the first derivatives must be equal to zero, since
no variation occurs for both membrane voltage and recover variable.

Another important property which should be preserved is that, when membrane
reaches low polarization values, which means nearly zero or positive, the neuron
must fire a spike and then re-polarize the membrane voltage. In order to preserve
this aspect, it is clear that the k3 parameter must be positive

In order to summarize the conditions derived from previous considerations:

• The new equation must contain only normalized parameters, so

k1, k2, k3, a, b, c, d ∈]− 1,1[ (3.11)

• The membrane voltage and the recover variable must be also normalized;

• A stability point must be chosen in order to impose quiescent condition. The
necessary condition for a stability point is that, given the two stability values
v0, u0 ∈]− 1,1[, the derivatives described into the Izhikevich Equations must
be zero:

vÍ(v0, u0, I = 0) = 0 (3.12)

uÍ(v0, u0) = 0 (3.13)
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• A more strict condition is imposed for the parameter k3, which must be also
positive.

From the previous equation the following new conditions are derived:vÍ(v0, u0, I = 0) = 0⇒ k1v
2
0 + k2v0 + k3 − u0 = 0

uÍ(v0, u0) = 0⇒ bv0 − u0 = 0⇒ u0 = bv0
(3.14)

It is interesting to see that the stable recover variable value is related to the
stable membrane voltage one by the second equation of (3.14), so only one of these
can be chosen. In this case it is more convenient to choose v0, since b is normalized
and the resulting variable is smaller than the membrane voltage, which is also
normalized.

If the coefficient k1 is chosen, the parameter k3 can be derived as a function
of k2 and vice versa. It is more convenient to choose the first option, since the
parameter k2 is the most critical parameter to determine the working range of the
two neuron variables. As a matter of fact, it is found from Brian2 simulations that
the k2 parameter determines significantly the range of membrane voltage and can
change significantly the stability point. For some values, the k2 parameter can lead
to a stability point totally different from the expected result.

From the (3.14) the following function is derived:

k3(v0, k1, k2, b) = −k1v
2
0 + (b− k2)v0 (3.15)

It is important to see that, in order to derive the new parameter, the parameter
b must be chosen and usually determines the sign of k3. As a consequence, a
good value of b is chosen in order to determine the k3 parameter, but then the
parameters of the (3.10) are treated as constants, as it would be for the original
part in (3.9). The b parameter is chosen initially so that the neuron reproduces a
tonic spike behaviour or class 2 excitability one, since these patterns are the most
common and used in machine learning.

The response of the new normalized Izhikevich neuron is then implemented with
both floating point and fixed point and then compared with each other. The result
of this comparison is reported in figure 3.18.
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Figure 3.18: Comparison of normalized Izhikevich equations in floating point and
fixed point arithmetic.
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3.5 Stochastic implementation of an Izhikevich
neuron

After the equation being normalized, it is much easier to implement them with the
use of stochastic arithmetic.

3.5.1 Stochastic arithmetic core
The most important part of all design is the arithmetic core, where all algorithmic
operations are performed. This block is composed by two parts, which are reported
in figure 3.19 and figure 3.20.

Figure 3.19: Stochastic arithmetic block for membrane voltage and threshold
condition estimation.
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Figure 3.20: Stochastic arithmetic block for recover variable estimation.

The behavior of these arithmetic circuits reflects the Izhikevich equations. As
a matter of fact, with respect to the output values explained in table 2.1, the
stochastic results of these arithmetic blocks are derived:

v(t + ∆t) = 1
4

3
v4 + v3k2 + 1

2(v1v2 − u1) + 1
2(I + k3)

4
(3.16)

v_min_vth = 1
2(v(t + ∆t)− vth) (3.17)

u(t + ∆t) = 1
2

3
u3 + a

11
2(bv1 − u2)

24
(3.18)

u_plus_d = 1
2(u(t + ∆t) + d) (3.19)

In order to obtain the same output of the Izhikevich equations, the variables
must be pre-amplified by a proper factor. These coefficients are reported in table
3.7.
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Variable/Parameter Pre-amp coefficient
v1 2
v2 4
v3 2
v4 4
k2 2
k3 8
u1 8
u2 4
u3 2
I 8
a 2
b 2
d 2

Table 3.7: Preamplification coefficients.

A problem that occur with variable pre-shift is that the normalized value of
the membrane voltage cannot be larger than 0.25 in magnitude. This condition
never happens for positive values, since the positive threshold is set to 0.125. For
negative values, it is found from Brian2 simulations that membrane voltage satisfies
this condition for the time period analyzed, which the neuron takes to reach a
stable value without input currents (I = 0).
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3.5.2 Stochastic datapath with estimation circuits
In order to exploit the stochastic arithmetic blocks properly, additional support
blocks must be included for stochastic numbers generation and next variable values
estimation. The schematic of the stochastic datapath is reported in figure 3.21.

Figure 3.21: Datapath part for stochastic arithmetic computing and variable
estimation.

The estimation blocks are saturating up-down counters. The overall number of
stochastic variable needed to generate good and uncorrelated stochastic streams
are 19, as it can be seen from the schematic.

3.5.3 Control unit for integration step management
The state machine which manages the steps of the stochastic Izhikevich neuron is
reported in figure 3.22. The control signals used and their function are reported in
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table 3.8.

Figure 3.22: Finite state machine for the stochastic Izhikevich neuron control
flow.

Control signal width Description
ARITH_COMMANDS 1 Resets the up-down counter

estimators
REG_DECODER_ENABLE 1 Enables the datapath inter-

nal registers to save the new
estimated values

RCS 1 Reset Command Strobes. If
the reset condition occurs,
the datapath set the SPIKE
signal to ’1’

DONE 1 It is ’1’ when an integra-
tion step is done. The cor-
rect spike evaluation is given
by the SPIKE signal after a
clock period, as it is for the
previous implementations

Table 3.8: Stochastic control unit control signals

The values membrane voltage and recover variable with the use of stochastic
arithmetic are reported in figure 3.23.
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Figure 3.23: Membrane voltage and recover variable values of an Izhikevich
neuron with class 2 excitability parameters without input current stimulus.
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3.6 XOR Neural Network
In order to test the correct behavior of the neural model proposal, a Spike Neural
Network is designed for inference tests. A brief summary about neural nets is
presented in order to explain the main reasons behind further choices. The neural
network designed recognizes the patterns of the XOR function, which is one of the
most simple non-linear separable problems. The correct behavior of the neural net
is test with a C program and the results are used for comparisons with the further
VLSI implementatios.

Besides the Izhikevich-based neural networks, another purely stochastic imple-
mentation of the same topology is made. This architecture uses a classical approach
of machine learning, as described in chapter 2 of [101] and the activation function
of each neuron is the stanh function.

3.6.1 Neural net topology
Figure 3.24 reports the neural net topology used to implement the XOR function.

Figure 3.24: Neural net topology used to implement the xor function.

For each weight and neuron an index is assigned in order to reference them
when the net is implemented with a high level programming language.

3.6.2 Xor C program comparison variable generation
Similarly to the C program written to compare the fixed point model with the
floating point one in the first part of the design, a preliminary procedure is made
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to generate all the stimuli. The high level algorithm is described by two flowcharts
and can be implemented by procedural approach or in a object oriented manner.
The first flowchart, which is shown in figure 3.25, reports the macro steps done
to setup all the neural net components and to make it ready to receive the input
patterns of the xor functions.
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Figure 3.25: Flowchart for proper XOR neural net setup.
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Figure 3.26: Flowchart for xor neural net integration steps evaluation.
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3.6.3 Hardware implementation
After the performing of all high level testing for the correct behavior of the neural
net, several hardware implementations are made in order to compare the evolution
of all metrics of the neuron when these are used in a neural net.

The general schematic block of the neural net is report in figure 3.27.

Figure 3.27: General schematic of the XOR neural net.

This scheme is used for all the implementations of the Izhikevich neuron. The
behavior of the signals are described in the timing diagram in figure 3.28. Each
layer of the neural net follows this timing diagram, too.

Figure 3.28: XOR neural net timing diagram.

In order to evaluate the stimulus current I for each neuron, the response of
the previous layer (or the input) must be evaluated. The formula to evaluate the
stimulus current in biological-plausible models is given by the (3.20):

I = δ0w0 + δ1w1 (3.20)

These inputs δ1 and δ2 correspond to the presynaptic stimulus, which are the
SPIKE signals of the corresponding neuron.
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3.6.4 Deterministic presynaptic unit
For all Izhikevich implementations the presynaptic unit in figure 3.29 is used to
evaluate the input stimuli current. The outputs consist of a DONE signal for the
layer uCU and the current I for the corresponding neuron.

Figure 3.29: Presynaptic block used to evaluate the input stimuli current of each
Izhikevich neuron.
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3.6.5 The stochastic presynaptic unit for stanh solution
For the stanh neural net, the input of each neuron is given by a presynaptic unit,
whose output is given by the (3.21):

Istanh =
x1w1+x2w2

2 − φ

2 (3.21)

where φ is the bias. The random sequences to generate these values are 5: 2
random sequences for the weights, 1 for the bias and 2 stochastic bitstream for the
scaled addition and subtraction. The scaled addition and subtraction are used in
order to perform the operation directly with these probabilities. The schematic
implementing the (3.21) is reported in figure 3.30.

Figure 3.30
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Chapter 4

Synthesis of the
architectures

After the implementation of different architectures for the same Izhikevich neuron
algorithm, a set of analyses are performed to evaluate area occupation and power
consumption. In order to estimate these metrics, synthesis and power switching
activities simulation are performed with the use of Modelsim [102] and Synopsys
Design Compiler [103]. The technology libraries used are the Nangate45 Open Cell
and the UMC 65 nm ones.

4.1 Arithmetic core area estimation
An important area comparison is made between the arithmetic cores, without taking
into account all the support circuitry not involved directly in the computation
tastks such as storing registers, linear feedback shift registers, DPCs. Table 4.1
reports the results found for each implementation. In this preliminary analysis there
is no estimation about the area occupation of the interconnections and containers.

Arithmetic blocks
Area DFG(32 bits) Single adder Single fulladder Stochastic

Combinational 11171.20 382.51 265.734 27.398
Non combinational 516.04 430.92 442.89 0
Buffer & inverter 1120.126 43.624 32.452 2.66
Total cell area 11687.24 813.428 708.624 27.398

Table 4.1: Area comparison of the arithmetic blocks with the Nangate Open Cell
libraries.

67



Synthesis of the architectures

4.2 Xor neural net area estimation
For each implementation of the xor neural net an area estimation is derived and
reported in table 4.2.

Xor neural net type
Area DFG(20 bits) Single adder Single fulladder Stochastic

Combinational 21423.64 4895.2 4263.98 7574.62
Non combinational 2218.44 6756.40 6908.02 5000.8
Buffer & inverter 2794 678.57 597.17 1491.728
Total cell area 23642.08 11651.6 11172.00 12575.42

Table 4.2: Area comparison of the xor neural nets.

Xor neural net type
Area DFG(20 bits) Single adder Single fulladder Stochastic (11 bits) Stanh

Combinational 59930.64 8194.32 6820.56 7630.92 548.64
Non combinational 4041.36 12303.36 12281.76 4559.76 205.2
Buffer & inverter 2851.92 1476 1248 724.68 43.2
Total cell area 63972 20497 19102.32 12190.68 753.84

Table 4.3: Area comparison of the xor neural nets UMC libraries at 65 nm.

Area of a 32-bit LFSR
262.44

Table 4.4: Area of a 32-bit LFSR with UMC 65 nm libraries.

4.3 Switching activities and Power Consumption
After the all synthesis are made, power switching activities simulations are made
in order to estimate the power consumption of each architecture.

4.3.1 Arithmetic core power consumption
The first comparison involves the arithmetic cores only. In table 4.5 are reported
the results for each arithmetic core.
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Consumption type Architectures
DFG(32 bits) Single adder Single fulladder stochastic

Internal (register) 36.3945 uW 28.1429 uW 29.4209 uW 0 uW
Internal (combinational) 504.4610 uW 1.7150 uW 0.6697 uW 1.1608 uW

Switching (register) 10.2681 uW 0.1871 uW 0.4547 uW 0 uW
Switching (combinational) 667.9446 uW 3.6186 uW 0.8390 uW 0.3878 uW

Leakage (register) 8.4576 uW 6.9459 uW 7.1918 uW 0 uW
Leakage (combinational) 266.28 uW 10.802 uW 8.5090 uW 580.1469 nW

Total power 1.4938 mW 51.4115 uW 47.0851 uW 2.1287 uW

Table 4.5: Power consumption comparison from switching activities of the arith-
metic cores. Support registers are included in the analysis if needed by the
architecture itself.

4.3.2 Xor neural net power consumption

Consumption type Xor neural net architectures
DFG(20 bits) Single adder Single fulladder stochastic

Internal (register) 125.55 uW 362.644 uW 357.9015 uW 474.83 uW
Internal (combinational) 31.44 uW 14.934 uW 6.7146 uW 102.2592 uW

Switching (register) 4.89 uW 6.03 uW 5.4755 uW 6.1491 uW
Switching (combinational) 40.45 uW 5.3701 uW 0.8390 uW 104.37 uW

Leakage (register) 36.64 uW 111.36 uW 113.95 uW 78.827 uW
Leakage (combinational) 523.35 uW 116.73 uW 103.88 uW 153.94 uW

Total power 762.31 uW 632.28 uW 593.2879 uW 924.3733 uW

Table 4.6: Power consumption comparison from switching activities of the xor
neural nets.

Xor neural net type
Power DFG(20 bits) Single adder Single fulladder Stochastic (11 bits) Stanh

Internal (register) 176.9 uW 561 uW 568.6 uW 281.9 uW 15.8 uW
Internal (combinational) 304.2 uW 14 uW 5.632 uW 68 uW 6.097 uW

Switching (register) 4.7583 uW 3.3 uW 2.83 uW 4.466 uW 6.268 nW
Switching (combinational) 243.7 uW 15.3 uW 4.594 uW 44.06 uW 3.25 uW

Leakage (register) 0.301 uW 0.9 uW 0.923 uW 322 nW 13.268 nW
Leakage (combinational) 5.51 uW 0.6 uW 0.457 uW 630 nW 42.836 nW

Total power 735.4 uW 595.2 uW 583.1 uW 399.4 uW 25.218 uW

Table 4.7: Power consumption comparison of the xor neural nets UMC libraries
at 65 nm.
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4.3.3 LFSR power consumption
The power consumption for a single 32-bit LFSR is reported in table 4.8.

Power consumption LFSR at 32-bits
25.218 uW

Table 4.8: 32-bit LFSR power consumption with UMC 65 nm

4.3.4 Energy consumption comparison between the Izhike-
vich neurons

Another interesting metric to be evaluated is the energy consumption needed to
make an integration step of the Izhikevich equations. Table 4.9 shows the energy
required for each neuron to make an integration step.

Izhikevich neuron architecture Clock cycles Energy consumption
DFG(20 bits) 1 3.3 pJ
Single Adder 141 349.962 pJ

Single fulladder 1433 3.32 nJ
Stochastic 2049 2.39 nJ

Table 4.9: Energy consumption and clock cycles required for one integration step
of each implementation of the Izhikevich neuron with UMC 65 nm.

4.3.5 Energy consumption comparison between the XOR
neural nets

The energy consumption for one integration step of each XOR neural network is
reported in table 4.10.

XOR neural net architecture Energy consumption for 1 integration step
DFG(20 bits) 44.124 pJ
Single Adder 5.035 nJ

Single fulladder 50.134 nJ
Stochastic 49.10 nJ
Stanh 1.44 nJ

Table 4.10: Energy consumption for one integration step of each implementation
of the XOR neural net with UMC 65 nm.
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For each XOR neural net the amount of energy to evaluate the response of
the neural net is estimated and reported in table 4.11. The estimation takes into
account the number of integration steps needed to evaluate correctly the neural
net response to a specific input pattern.

XOR neural net architecture Energy consumption for 1 complete evaluation
DFG(20 bits) 44.124 nJ
Single Adder 5.035 uJ

Single fulladder 50.134 uJ
Stochastic 49.10 uJ
Stanh 1.44 nJ

Table 4.11: Energy consumption for one evaluation of each implementation of
the XOR neural net with UMC 65 nm.
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