RISC-V : an FPGA implementation for general purpose
prototyping hardware

Author : Federico Pozzana

Supervisor : Guido Masera
Co-supervisor : Elia Delledonne
Co-supervisor : Fabrizio Fraternali

A thesis presented for the Master degree in

Electronic engineering

Department of Electronics and Telecommunication
Politecnico di Torino
18 December 2020

Abstract

The RISCV project began in 2010 at UC Berkely. It set out to provide a flexible, open source
instruction set architecture to offer an alternative to proprietary ISAs which require non disclosures
agreements and royalties to be used. Currently the RISCV foundation own, maintain and publish
intellectual property related to RISCV’s definition [1]. Although it started out in academia the
RISCV instruction set architecture has been adopted by numerous companies, such as

e SiFive
e Codasip
e lowRISC

and many more [2]. With such strong industrial adoption, RISCV poses itself as a rival to the
ARM’s hegemony in the microcontroller world.

This study, made in collaboration with Maxim Integrated [3], aims to integrate general purpose
peripherals (such as 12C, SPI, UART, etc...) with an available RISCV IP provided by an inter-
nal group. This work is intended to be a feasibility study for the aformentioned core; possible
applications for the microcontroller could be

e motor control applications
e replace big control finite state machines

e industrial communication applications

The methodology followed these steps

e RISCV IP RTL study

e publicly available toolchain/IDE selection

e compiler performance evaluation

e peripheral dedicated firmware development

e peripherals integration

e develop regression environment for RTL validation
e CORDIC peripheral development

e LINTing of newly developed RTL

e synthesis step with Design Compiler

The conclusions can be observed in the ”Conclusion” chapter.

Acknowledgements

I would like to thank my supervisor, Professor Guido Masera. His knowledge and guidance helped
me during the technical challenges that this thesis presented.

I would like to thank my co-supervisors, Elia Delledonne and Fabrizio Fraternali, for their guidance
during this master thesis project. They were always present to steer me in the right direction from
start to finish.

I would also like to thank the people that have been close to me for all these years. I am particu-
larly grateful to Laura, whom had the arduous task of putting up with me for the past decade.

Last, but not least, I would like to thank my family. Their constant support throughout my
university studies have been invaluable.

Contents

1 Introduction

1.0.1 Tools e

1.0.2 PULP o

1.0.3 RISCVIP e
2 Memories description

2.0.1 Portmap and timing diagram

2.0.2 Vivado’s synthesis
3 IDE setup

3.01 IDE e e

3.02 HEXfile. e
4 Initial tests

4.0.1 Testbench L

4.0.2 Initial tests L
5 Embench tests

5.0.1 Testssetup o L e

5.0.2 Resultsanalysis.

5.0.3 Simulation

6 FPGA porting process

6.0.1 Board choice e
6.0.2 Porting processo
6.0.3 FPGA resource utilization L
7 Peripherals integration
7.0.1 UART e
7.0.2 SPI . . . e
7.0.3 I2C . . e
8 Peripherals stress test
8.0.1 LFSR e
8.0.2 I2C master write
8.0.3 I2C master read
8.0.4 UART communication
8.0.5 SPI communication
9 Cordic
9.0.1 Cordic algorithm L
9.0.2 Numerical example
9.0.3 CORDIC generalized equations
9.0.4 Hardware implementations L.
9.0.5 Complete CORDIC peripheral design
9.0.6 Data representation Lo
9.0.7 Testing phase e
9.0.8 Further improvements Lo o

10
11
11
14

16
16
17

18
18
19

20
20
20

24
25
25
27

28
28
29
29

31
31
36
39

44
45
46
47
49
50

CONTENTS CONTENTS

10 Front-end 80
10.0.1 Linting e 80

10.0.2 Synthesis L 81

11 Conclusion 84
A Project sources 85
A.1 Memories RTL model 85
A1l ROMRTL model e 85

A12 RAMRTL model e 86

A.2 State machine RTL model 87
A3 Ceceode e 93
A3.1 March C. e 93

A3.2 APBrandomtest. 95

A.3.3 CORDIC precision test e 96

A.3.4 12C master write - master code 98

A.3.5 I2C master write - slave code 99

A.3.6 I2C master read - master code o 101

A.3.7 I2C master read - slavecode 104

A3.8 UART -mastercode e 106

A3.9 UART -slavecode 109

A.3.10 SPI word mode - master code, 111

A.3.11 SPI word mode - slave code 114

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

reference microcontroller architecture, 11
RAM read operation 12
RAM write operation L 12
ROM read operation 12
JTAG operation L 13
APB write operation Lo 13
APB read operation 14
ZERO-RISCY architecture i 14
RISCV IP e e 15
RAM read operation 17
RAM write operation 17
ROM read operation e 17
Eclipse IDE o 18
testbench architecture 21
March C-RAMr ramp 21
March C - RAM read o 22
March C - RAM write e e 22
APB test - RF read 22
APB test - RF write 1 e 22
APB test - RF write 2 e 23
Eclipse optimization flag setting L 25
Arty A7 100T board 28
RISC-V system block diagram 32
UART testing phase o 35
UART FPGA testing phase et 35
Overall SPTloop test e 38
SPI loop test - write focus 38
SPI FPGA testing phase 39
I2C tx test 42
I2c only master L 42
12C FPGA master only e 42
I12C FPGA testing phase e 43
Testbench organization L 44
LESR . . e 45
I12C master write - RTL 46
12C master write - state diagram oL oo 47
I2C master read - RTL 47
12C master read - state diagram oL oL oo 48
UART communication - RTL 49
UART communication - state diagram 50
SPI communication - RTL 51

LIST OF FIGURES LIST OF FIGURES

8.10

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24

10.1
10.2
10.3
10.4
10.5

SPI communication - state diagram 52
Vector rotation L 53
CORDIC architecture - Rotation mode 57
CORDIC architecture - Vectoring mode 58
CORDIC unfolded architecture 59
CORDIC operation 0 i it e e e e e e e 61
State machine’s operation 62
State machine initial operation Lo Lo 63
State machine intermediate operation 64
State machine final operation L oL o 65
Cordic rotation e e e 66
CORDIC complete architecture 67
CORDIC 20 sinresults o 72
CORDIC 20 cosresults 72
CORDIC 20 sqrt results oo 73
CORDIC 15sinresults o o e 73
CORDIC 15 cosresults 74
CORDIC 15 sqrt results o e 74
CORDIC 10sinresults o 75
CORDIC 10 cos results oo e 75
CORDIC 10 sqrt results o o0 o 76
math.h sinresults. 76
math.h cosresults 77
math.h sqrt resultso 77
CORDIC - software approach comparison 79
Reallntent flow e 80
iDebug e 81
Design Compiler inputs/outputs oo 81
Design Compiler flow 82
MCU place and route e e 83

List of Tables

1.1
1.2
1.3

2.1
2.2

5.1
5.2
5.3

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23

RAM interface portmap 12
ROM interface portmap 12
JTAG interface portmap 13
RAM portmap e 16
ROM portmap 16
Embench tests distribution 24
GCC optimization flag oo 25
Results relative to reference L L 26
FPGA resource utilization oL 29
FPGA implementation cell count 30
gate count equivalency Lo 30
UART portmap o o ot e e 32
UART register organization 33
SPI bussignals e 36
SPIportmap e 36
SPI register organization L Lo 37
I2C bus signals 39
I2C portmap 40
12C register organization L Lo 41
CORDIC numerical example L 55
Rotation mode, d;=sign(z%) 56
Rotation mode, d;=sign(z%) 56
Vectoring mode, d;=—sign(y’) 56
Vectoring mode, d;=—sign(y’) 56
sine, cosine and square root inputso o 56
Area parameters oL 58
Area parameters oL 58
Performance parameters L 59
CORDIC core area compariSon v vt 59
CORDIC register organization 60
CORDIC register organization - CORDIC control register 60
CORDIC register organization - CORDIC status register 60
CORDIC register organization - CORDIC x, y and z datain 60
CORDIC register organization - CORDIC x and y dataout 61
CORDIC angle representation L 0L 68
CORDIC data representation 68
1.75 representation Lo 69
0.607253 representationo Lo Lo 69
0.607253 representationo Lo 69
CORDIC data representation it 69
0.25 representation Lo L e 70
CORDIC 20 resultso 71

LIST OF TABLES LIST OF TABLES

9.24
9.25
9.26
9.27
9.28
9.29
9.30

10.1

CORDIC 15 results o e e 71
CORDIC 10results o s e s e 71
math.hresults. e 71
sine and cosine operations IMC' e 78
sine and cosine operations IC' e 78
square root operation IMC' 78
square root operation IC' 78
synthesis reports L. 83

Chapter 1

Introduction

This thesis, done in collaboration with Maxim Integrated [3], is intended as a feasibility study for
an internal version of a RISC-V microcontroller, investigate the area - performance tradeoff for
this particular design and to consider if such microcontroller could be used in applications such as

e replacing big control finite state machines
e motor control applications

e industrial communication applications

The starting point of this research is the register transfer level description of the microcontroller.
From the RTL description my contribution range from firmware development to logic synthesis
passing through peripherals integration, in particular

IDE setup

In order to be able to develop C code for the peripheral’s drivers an IDE has to be set up. In
this case Eclipse [5] has been chosen due to the support for the RISCV toolchain [6]. An in depth
overview for the IDE selection and set up process is on chapter 3.

Benchmarking activity

To gauge the performance of the microcontroller a benchmarking activity is necessary. Benchmark-
ing is useful in order to understand possible application uses for the design at hand. An exhaustive
account for the benchmarking acrivity is present on chapter 5.

FPGA porting activity

To gauge the area occupation and to validate the RTL design on hardware an FPGA porting process
has been performed. The FPGA board Arty A7 - 100T [7] has been selected for porting/testing
the overall design. The complete FPGA porting process is present on chapter 6.

General purpose peripherals integration

In order to be able to communicate with the external world peripherals such as UART, SPI and
I12C have to be integrated to the microcontroller itself. An RTL description for the previously
mentioned peripherals was already present in the Maxim Integrated’s IP bank. Chapters 7 and 8
are an in depth overview of the peripheral integration and verification activities respectively.

Application specific peripheral development

Maxim’s need to find a more efficient way of performing operations such as sine, cosine and square
root led to the development of a custom peripheral. An exhaustive description of the development,
testing and benckmarking activity for the custom peripheral, based on the CORDIC algorithm, is
present on chapter 9.

10

CHAPTER 1. INTRODUCTION

Front-end activity

To have a more precise indication on the area occupation and a clearer understanding on the clock
frequency obtainable a synthesis step has been performed. Alongside the synthesis step the front-
end includes a LINTing activity for the RTL code. A complete overview for the front-end process
is present on chater 10.

1.0.1 Tools

Given the wide variety of topics touched during this research a number of software tools have been
used, in particular

Xcelium Logic Simulation from Cadence for RTL simulation

e AscentLint from Reallntent for LINTing

Vivado Design suite from Xilinx for FPGA synthesis

Design Compiler from Synopsys for ASIC synthesis

e Eclipse IDE for firmware development

1.0.2 PULP

The PULP platform [4] is a research group between ETH Zurich and University of Bologna which
develops open hardware compliant with the RISCV instruction set architecture. The group has
developed during the last seven years single core, multi core and multi cluster based microcon-
trollers. For this research project a Maxim’s [3] internal revision of the PULPino microcontroller
is used. The microcontroller, given as IP, has

e two memory ports (one for a data RAM and one for an instruction ROM)
e a JTAG port (used to debug the microcontroller)

e one AHB interface (used by high speed peipherals)

e one APB interface (used by low speed peripherals)

Figure 1.1 gives an overall structure of the microcontroller.

Figure 1.1: reference microcontroller architecture

11

CHAPTER 1. INTRODUCTION

Memory ports

The two memory ports, one used for the ROM and one used for the RAM, are interfaces used by
the microcontroller to exchange informations with the two memories. In particular

e the Read-Only-Memory is used to store both program code and constant data

e the Random-Access-Memory is used to store non constant data, like data returned by a
function

A code snippet for both memories can be found in the appendix chapter. By specification the
memories have to be synchronous to a clock and compliant with the signals coming out of the two
interfaces, which are similar for both memories.

H port name lenght inuput/output description H

ram_clk 1 bit output RAM clock

ram_address log2(num_bytes/4) bits output RAM address
ram_ce 1 bit output RAM chip enable

ram_wdata 32 bits output RAM write data
ram_be 4 bits output RAM byte enable
ram_we 1 bit output RAM write enable

ram_rdata 32 bits input RAM read data

Table 1.1: RAM interface portmap

H port name lenght inuput/output description H
rom_clk 1 bit output ROM clock
rom_address log2(num_bytes/4) bits output ROM address
rom_ce 1 bit output ROM chip enable
rom_rdata 32 bits input ROM read data

Table 1.2: ROM interface portmap

The following figures represent a read and a write operation on the RAM memory (the ROM
memory have similar access timing, only for the read operation).

Figure 1.2: RAM read operation

Baseinev=0
Baslne = 11,124,401 000ps

Figure 1.3: RAM write operation

Figure 1.4: ROM read operation

Baselne =0
rsor-Baseline =2,478,200,000p3

12

CHAPTER 1. INTRODUCTION

JTAG port

JTAG is an industry standard for verifying designs and testing PCB’s after manufacture [8]. Almost
every microcontroller has a JTAG port for debugging purposes. The JTAG port signals follow
closely the JTAG standard, in particular

H port name lenght inuput/output description H
jtck 1 bit input JTAG clock
jdi 1 bit input JTAG data input
jtms 1 bit input JTAG test mode select
tdoen_n 1 bit output JTAG data output enable
jtdo 1 bit output JTAG data output

Table 1.3: JTAG interface portmap

Figure 1.5: JTAG operation

AHB-APB interfaces

Both AHB and APB interfaces are bus protocols compliant with the AMBA [9] (advanced micro-
controller bus architecture) specifications. The two interfaces are used for

e AHB : used for fast peripherals
e APB : used for slow peripherals

The two protocol are similar in the sense that both present an address phase and a subsequent
data phase; the difference is the presence of additional features, such as

e burst write
e write without wait states

o extended bus widths (64, 128, .. to 1024 bits)

These features make the AHB bus more sutable for high bandwidth, high complexity periph-
erals. The following figures represent both read and write transactions, with and without wait
states. For a more comprehensive view of the APB bus standard refer to [10].

TO T T2 T3 T4
PCLK
PADDR 0 Addr 1 o0 T T2 3 T4 T5 T6
PCLK
PWRITE 4!“_![PADDR 0 Addr 1
PSEL / J | \ PWRITE I]
PENABLE i 0 [M/ JLE—
PENABLE [I\
PWDATA b Data 1 | PWOATA W — o
PREADY I W PREADY 0 [\
(a) APB write without wait states (b) APB write with wait states

Figure 1.6: APB write operation

13

CHAPTER 1. INTRODUCTION

TO T1 T2 T3 T4
PCLK
PADDR X Addr o0 T T2 3 T4 T5 T6
POLK
PWRITE \ L PADDR X Addr 1
PSEL L/ U PWRITE T\
PENABLE 7 0 psEL_ ff |\ S—
PENABLE [
PRDATA \ | Data1) o—
PRDATA)) Data 1 JT
PREADY [\ PREADY) Jij I\
(a) APB read without wait states (b) APB read with wait states

Figure 1.7: APB read operation

Microcontroller core

For this specific microcontroller [11] two different cores can be used
e a 4-stage pipelined core named RI5CY
e a 2-stage pipelined core named ZERO-RISCY (currently known as IBEX)

The two cores present the same external interface and thus are plug-compatible.

Since this project is intended for low overhead applications ZERO-RISCY is used since it provides
the same functionalities in term of instruction supported on a smaller footprint. Figure 2.2 gives
an overall structure of the ZERO-RISCY core.

The ZERO-RISCY core presents the following features
e parametrized to support either the RV32I or the RV32E instruction set
e RV32C and RV32M instruction set availability
e 2-stage pipeline (IF - ID/EX)

e latch based or flip-flop based register file

Figure 1.8: ZERO-RISCY architecture

wiala_ o

rZEFO-rISC},f core -I""...'I..'.'I.l""_'""'"""""""" azor o

rdata i
: —l
e | Cina Add O L

Lsu

addr_ o
roata i

n Mem I
W

-

E
o
=
o
mn
o

apé LT

addb

:

Debug I'1:€”facE:J [nstruct

1.0.3 RISCV IP

The starting point for this master thesis in terms of IP is the complete microcontroller, with
interfaces for the two memories (ROM and RAM) alongside AHB and APB buses. Figure 1.12
represent the delivered TP (orange block). This thesis’s work is represented in figure 1.12 by the

cyan block.

14

CHAPTER 1. INTRODUCTION

Figure 1.9: RISCV IP

[integration (BU) O RISC-V system IP (AR&D) O RISC-V core IP (MS&S)

15

Chapter 2

Memories description

The first step in the integration process is to develop both ROM and RAM memories to be con-
nected to the RISCV IP. In our case both memory controllers have been attached to the ahb bus;
this design choice forces the design of both memories to be synchronous. Timing diagram are in
figure 2.1 to 2.3. The code snippet relative to both ROM and RAM memories can be found in the
appendix chapter.

Both memories have been synthetized on Vivado in order to make sure that they inferred a mem-
ory based on BRAM instead of logic cell’s registers. This characteristic is crucial for the following
reasons

e Using logic cell’s registers is inefficient with respect to chip usage
e A requirement for this project is to be able to reprogram the ROM on the synthetized design

without re-synthetizing the whole microcontroller on FPGA

2.0.1 Portmap and timing diagram

In order to understand the principle of both ROM and RAM memories a brief description of their
portmap and timing diagram is necessary.

H port name lenght inuput/output description H

ram_clk 1 bit input RAM clock

ram_address log2(num_bytes/4) bits input RAM address
ram_ce 1 bit input RAM chip enable

ram_wdata 32 bits input RAM write data
ram_be 4 bits input RAM byte enable
ram_we 1 bit input RAM write enable

ram_rdata 32 bits output RAM read data

Table 2.1: RAM portmap

H port name lenght inuput/output description H
rom_clk 1 bit input ROM clock
rom_address log2(num_bytes/4) bits input ROM address
rom_ce 1 bit input ROM chip enable
rom_rdata 32 bits output ROM read data

Table 2.2: ROM portmap

16

CHAPTER 2. MEMORIES DESCRIPTION

Figure 2.1: RAM read operation

2.0.2 Vivado’s synthesis

In order to make sure that the code for ROM and RAM memories, available in the appendix
chapter, would infer block RAMs and not map the two memories on flip-flops, the Vivado’s synthesis
report has to checked. The synthesis report confirmed that the RTL code for both memories infers
block RAMs.

2. Memory

| Site Type Fixed Available | Util% |

Block RAM Tile
RAMB36/FIFO*
RAMB36E1 only
RAMBI8

o o

0

I
T
+
+

Module rom

Detailed RTL Component Info
+——Registers

32 Bit Registers = 1

+—RAMs :

512K Bit RAMs = 1
+——Muxes

2 Input 32 Bit Muxes := 6

Module ram

Detailed RTL Component Info
+——Registers

32 Bit Registers = 1

+—RAMs :

256K Bit RAMs := 1
+—Muxes

2 Input 32 Bit Muxes := 6

17

Chapter 3

IDE setup

An integrated development environment (IDE) is a software application that provides comprehen-
sive facilities to computer programmers for software development [12]. In this specific case the
IDE is a graphical user interface that links every step of firmware development (C code correctness
check, compilation, linking, hex file generation).

e

file Edit Source Refactor
A || % || ® | |4 Debug
BC/Ce+ Projects

||) Embench Debug

% Connections

& Apb_check
5 cordic . .
Cmee Project list
€ 1c
5 Interrupt
& lpuart
& March_ram
i MontyStartup
&5 nsichneu
 gspi
~ 5 sanity_test
4 Binaries
 incudes
v @8 src
@ mainc
8 pulpinoh
3 s gp 01
3 startupS
18 system.c
5 gstemh
~ @ Debug
35 sanity_testelf - nonele]
» makette)
wovecsme — Qutput files
= canit testhex
canit testmap
® sources.mk
&5 test_apb_fast
&5 testDriver
S testtest

Input files

Jsanity_test

Figure 3.1: Eclipse IDE

[57 |®~-&v@iBin

HE eI GO R AISE 5

main.c
federico

Sanity test (toggle RUNNING and OUTCOME)

C code editor

2 #include "pulpino.h”

14 int
15 main(void)

test_check = 0x00000001;
for (int z = 0; z < 500000; z++){}
20 uhile(

2 test_check = test_check * 0x00000003;
2 for (int i = 0; i < 500000; i++){}

t period = 500000;

8= int
29 main(void)

test check = 0xAAAAAOAT :

8 Console &
GNU MCU Eclipse Packs console

Comp
settin

Parsing cached content file "C: ico.p
File does not exist, ignored.

Identifying installed packages. ..

Found no installed packages.

Completed in 8ms.

No installed packages

Completed in 16ms.

Appl

ing\CMSTS-Packs\.cache\. con

© Properties for sanity_test o x ;|6
==
[oetiterie || settings \tiatl T
Resource ~
Builders
© C/Cs+ Build Configuration: Debug [Active] L
Build Variables
Environment Tool S S
Loagig ® Tool Settings % Toolchains B Devic,
Settings 5 Target Processor
Tool Chain Editor 25 Optimization
C/C++ General (5 Warnings
Linux Tools Path & Debugging
Project Natures « 8 GNU RISC-V Cross Assembler
Project References & Preprocessor
Run/Debug Settings 2 Includes
Task Repository 2 Warnings
Task Tags 5 Miscellaneous
Validation ~ ® GNU RISC-V Cross C Compiler
WikiText @ Preprocessor
v ® GNU RISC-V Cross C Linker
gs & General
5 Libraries
35 Miscellaneous
~ ® GNU RISC-V Cross Create Flash Im¢
3 General
1 GNURISC-V Cross Print Size
& General =B
% >
® Apply and Close Cancel

3.0.1 IDE

The first step in developing executable code for the microcontroller is to
of choice is Eclipse due to the following reasons

e open software that can be customized as needed

e RISC-V toolchain integration within the IDE [13]

set up the IDE. The IDE

e ease of integrating startup/linker files (internal version of them were already available)

In particular, for a microcontroller, as toolchain is intended one or more applications capable
of taking as input a list of C files and giving as output either a binary or an HEX file. Usually the
intermediate steps performed are

e C code correctness check, done by Eclipse

e C code compilation, done by the RISC-V compiler linked to Eclipse

18

CHAPTER 3. IDE SETUP

e Linking, done by a Maxim propietary script. Eclipse is capable of pointing to a specific linker
file chosen by the user

e HEX file generation, done by Eclipse

In order to prove the correctness of the IDE setup a C program has been developed, further
informations are in chapter 3.

In order to fill the ROM with executable code with the
initial $readmemh(” file .mem” , rom);

instruction a binary memory file has to be created. Eclipse’s output is an HEX file, in the
following paragraph are presented

e HEX file format

e HEX to MEM transition

3.0.2 HEX file

The output of the compile and linking phase is a .hex [14] file. An example of a line of a .hex
file would be :0300300002337A1E. Relatively to the previous hex line example the .hex file format
presents the following characteristics

HEX line breakdown
value type description
: start code start of a new line
03 byte count two hex digits indicating the number of bytes in the data fields
0030 address four hex digits representing the 16-bit beginning memory address
offset of the data
00 record type two hex digits defining the meaning of the data field
02337A data a sequence of n bytes of data represented by 2n hex digits
1E checksum two hex digits used to verify the record has no errors

The record type can assume values from 00 to 05 with different meanings. In particular if record
type is

Record type breakdown

value description

00 the data field contains data

01 end of file

02 the data field contains a base address to be added to each subsequent address
relative to data type (extended segment address)

03 CS:IP registers content (only for 80x86 processors)

04 the data field contains the upper 16 bits for a 32 bits address to be applied to each
subsequent data type (extended linear address)

05 address to be loaded into EIP register (only for 80386 or higher CPU’s)

The checksum field is computed adding each byte in the hex line and then making the two’s
complement of the LSB of the obtained sum. In our example line is easy to see that the sum of 03
+ 00 + 30 + 00 + 02 + 33 + 7A is E2, and its two’s complement is 1E.

In order to be able to decode the content of the .hex file an internal script was provided. The
script, a .hex file parser, takes as input the .hex file produced by the compiling and linking phase
and produces the memory file in a .mem extension. This .mem file is then read by the ROM during
simulation. This script have been used for 8-bit microcontroller projects; since the microcontroller
is a 32-bit one the internal script has been modified in order to output program data word by word
instead of byte by byte.

19

Chapter 4

Initial tests

4.0.1 Testbench

The testbench is organized in order to reflect the real world implementation relative to chip hierar-
chy; in particular figure 3.1 shows the testbench organization. This testbench structure allows to
utilize the same stimuli both on RTL simulation and on FPGA simulation. Performing the same
test in both cases (RTL and FPGA) allows to spot an error much easier than if the setup needed
two different simulations. In particular the testbench has the following blocks

e fpga_digtop is the top entity of the microcontroller. It comprises both the core and the
peripherals attached to it

e fpga_top is the top entity of the overall system. It comprises both the fpga_digtop and the
analog models of external components present on FPGA, such as a reset button and an
oscillator

e tc_fpga_top is the top entity of the stimuli block. This block drives and checks the signals
going to and coming from the fpga_top block. During simulation it generates stimuli for
the microcontroller and checks its actuations; this allows to perform an auto-check for each
simulation. The auto-checking feature in turn makes possible to change RTL code and
simulate the result without looking at any specific waveform, but just checking the .log file
to see if the test has finished successfully or not.

e tb_fpga_top is the top entity connecting tc_fpga_top and fpga_top

Running and outcome are service signals coming from the microcontroller which indicates the
state of the program being tested. In each test program those signals are set at the beginning
and end of the program; the module tc_fpga_top then checks the signal outcome at the end of the
program (signaled by the running signal) to confirm the successful exit.

4.0.2 Initial tests

In order to guarantee the correctness of both the toolchain setup and the RISCV IP two simple
programs have been developed. They are respectively

e March C RAM test

e Random APB test

To be noted is the auto-checking nature of these tests; in fact at both the start and the end
of the program the signals running and outcome are set/cleared depending on the outcome of the
program itself. This feature allows us to build a regression list of tests used to check automatically
(looking at the simulator log) the correctness of the microcontroller in case of modifications.

The following sections enter in detail for the above mentioned tests.

20

CHAPTER 4. INITIAL TESTS

Figure 4.1: testbench architecture

tb_fpga_top

reset

oscillator
button

running

tc_fpga_top outcome ’

stimuli

fpga digtop

March C test

March tests are a group of algorithms used to test memories. This group of tests are characterized
by reading and writing test patterns in memory locations in both an increasing and decreasing
fashion. The aim for this particular test is to check the connection between the RAM memory
and the microcontroller; if the march test fails it means that a bug is present between the mi-
crocontroller and the RAM memory. A C program compliant with these specifications has been
developed in order to test both the RAM memory and its connection to the microcontroller. A
code snippet for this test can be found in the appendix chapter.

The aim of the March C test is to perform a systematic read /write test on each memory cell. During
this test if an error is spotted the signal test_running is lowered to 0, likewise for the test_outcome
signal. Setting to 0 or 1 test_running and test_outcome will set to 0 or 1 the corresponding signal
specified in the testbench section. For this test two 32 bit registers are attached to the APB bus
used to store informations about the possible error through the write APB(address,value) function.

Figure 4.2: March C - RAM ramp

21

CHAPTER 4. INITIAL TESTS

Figure 4.3: March C - RAM read

Random APB test

Following the reasons of the previous test (check correctness of both the toolchain setup and the
RISCV IP) a random test for the APB bus has been developed. A code snippet can be found in
the appendix chapter.

In particular the test checks random addresses of the APB bus comprised in an interval defined
by the variables start_addr and end_addr. The test writes on the APB bus ten random values on
32 bits at ten random addresses; after the write phase it reads at those random addresses to check
the value. This process is repeated, thus providing a more exhaustive test. In order for this test
to be effective a register file is attached to the APB bus; the register file holds the random values
produced by the write phase and provides them during the read phase. As stated before setting
to 0 or 1 test_running and test_outcome will set to 0 or 1 the corresponding signal specified in the
testbench section. Figures from 4.5 to 4.7 are the waveforms for the RTL simulation for the APB
test. Figures 4.6 and 4.7 show a write operation with values 0x7044FFE7 and 0x01B1B099; the
same values are then read from the register file in figure 4.5 (first two results in rf_prdata[31:0]).

Figure 4.5: APB test - RF read

Baselnev=0
EF Cursor-aseline = 126,634,101 000ps.

Baselnerv=

-0
EF Cursor-Bselie v=34,779,532,821p3

22

CHAPTER 4. INITIAL TESTS

Figure 4.7: APB test - RF write 2

@ Basineve0
£ Cursor-Baseline v= 34,778,532, 821p
334,000,000p:

333,500,000p:

n apsé1nsz

h 00002260 Goa03eA0

mo
“n apse1nsz

- prestalsi
B preay

BB pweatapt 0] 00000000 0000000 (o003

0 purite

23

Chapter 5

Embench tests

In order to gauge the performances of both the microcontroller and the gcc compiler a stress test
is needed. The most common benchmark program to test CPU’s performance is the Dhrystone
[15]; this benchmark however has some shortcomings

e it features code that is not representative of real life programs

e it is susceptible to compiler optimizations

These two problems are addressed by the Embench [16] open benchmarks. In particular the
Embench benchmark collection, developed by both industry and university, provides the following
benefits

e it is a collection of 19 benchmark programs, capable of representing real life processor usage
e ease of porting and free to use

e benchamrk programs developed specifically with memory constraints in mind (64 KiB ROM
and 64 KiB RAM)

H test comment branch memory computing H
crc32 CRC error checking 32b high med low
cubic cubic root solver low med med

edn general filter low high med
huffbench compress/decompress med med med
matmult-int integer matrix multiply med med med
miniver matrix inversion high low med
mont64 montgomery multiplication low low high
nbody satellite N body, large data med low high
nettle-aes AES encrypt/decrypt med high low
nettle-sha256 SHA256 digest low med med
nsichneu large - petri net med high low
picojpeg JPEG med med high
qrduino QR codes low med med
sglib-combined Simple Generic Library for C high high low
slre regex high med med

st statistics med low high
statemate state machine (car window) high high low
ud LUD composition int med low high
wikisort merge sort med med med

Table 5.1: Embench tests distribution

Due to these reasons I decided to test the microcontroller performances with the Embench
tests.

24

CHAPTER 5. EMBENCH TESTS

5.0.1 Tests setup
It has been a straightforward process to set up the Embench tests due to the following reasons
e Common main.c file, used to trigger start/stop test

e Extensive documentation available at Embench github page [16]

The number of each test run is determined by two parameters, namely LOCAL_SCALE_FACTOR
and CPU_MHZ; those two parameters are multiplied and the result is the number of time the bench-
mark has to be run. Those numbers are not random; in fact, depending on the test, those numbers
allow the run time to be approximately 4 seconds for the benchmark microcontroller which is an
ARM Cortex-M4. These two parameters are present in each test.c file. The results obtained with
the benchmark microcontroller have to be considered with no compiler optimization flag.

To have a clearer grasp on the zero-riscy code size/performance trade-off and GCC compiler pre-
formance each test present in the Embench’s collection was performed changing the compiler
optimization flags; in particular

e -O0 flag. This is the default flag which optimize for compilation time

e -O3 flag. This flag let the compiler to do an heavy optimization for both code size and
performance

e -Os flag. This flag let the compiler to do an heavy optimization for code size only
The optimization flag can be set using the Eclipse IDE as it’s represented in figure 5.1.

Figure 5.1: Eclipse optimization flag setting

type filter text Settings Gvo v
Besolice) Configuration: |Debug [Active] | Manage Configurations..| ~
Builders

~ C/C++ Build

Build Variables % Tool Settings & Toolchains B Devices @ Container Settings . Build Steps % Build Artifact [Binary Parsers @ Error Parsers
Environment
Logging (2 Target Processor Optimization Level None (-00) 2
=
Settings i Optimization essage length (-fmessage-length=0)
Tool Chain Editor i Warnings har'is signed (-fsigned-char)
& Debuggin
C/Cx+ General & Debugeing [Function sections (-ffunction-sections)
Linux Tools Path v GNU RISC-V Cross Assembler
= Data sections (-fdata-sections)
Project Natures (% Preprocessor On talized
Project References (2 Includes o common unitialized (“fno-comman)
Run/Debug Settings 8 Warnings [Do not inline functions ¢-fno-inline-functions)
Task Repository 2 Miscellaneous [Assume g environment (-f
Task Tags v % GNU RISC-V Cross C Compiler [Disable builtin (-fno-builtin)
Validation (2 Preprocessor [single precision constants (-fsingle-precision-constant)
WikiText @ Includes [JPosition independent code (-fPIC)
(2 Optimization [Link-time optimizer (-fito)
(£ Warnings [Disable loop invariant move (-fno-move-loop-invariants)
2 Miscell
& Miscellaneous Other optimization flags | |
~ % GNU RISC-V Cross C Linker

The following table gives a visual representation of the effectivness of each optimization flag.

H option optimization level execution time code size memory usage compile time

-00 opt for compilation time + + -
-01 opt for code size and execution time - -
-02 opt for code size and execution time --
-03 opt for code size and execution time ---
-Os opt for code size --

+ 4+

+
++
+++
++

Table 5.2: GCC optimization flag

5.0.2 Results analysis

As it is possible to see from the normalized histogram below, relative to the benchmark micro-
controller the zero-riscy microcontroller is both slower and has a larger code size compared to the
same test.

25

CHAPTER 5. EMBENCH TESTS

In particular the blue bar represent the normalized result, for both code size and performance,
for the reference microcontroller. The red, yellow and grey bar represent the result, relative to the
reference microcontroller, for no compiler optimization (-O0 flag), heavy optimization for code size
and performance (-O3 flag) and heavy optimization for code size (-Os flag).

1, |

Lim

Code size Performance
00 reference U0 zero-riscy U0 zero-riscy -O3 BB zero-riscy -Os ‘

The exact number of code size and performance relative to the benchmark microcontroller are
in the table 4.2.

H compiler flag code size performance H

-00 336% 23%
-03 282% 45%
-Os 254% 41%

Table 5.3: Results relative to reference

These results, however, do not take into account the size of the microcontroller itself; generally
speaking a bigger microcontroller in terms of gate count has better performance. The zero-riscy
implementation has appriximately 20kGe [17] while the Cortex M4 has 105kGe [18], thus justifying
the worse performance and code size comparison relative to the benchmark microcontroller.

The bar graph below gives a visual representation of the difference in gate count between the
reference microcontroller, the Cortex M4, and zero-riscy.

1l]

0.8 - =

0.6 - =

04| 8

0.2 e
Gate count

0o reference U0 zero-riscy

Better results in terms of code size and performance relative to the reference microcontroller could

26

CHAPTER 5. EMBENCH TESTS

have been obtained by using a commercial toolchain like IAR Embedded Workbench [19], however
this analysis is outside of the scope of this master thesis’s work.

5.0.3 Simulation

To check the correctness of each test two support signals (running and outcome, explained in
chapter 4) were used. The main.c file, in fact, has a start and stop trigger function

//start_trigger ();
test_check = 0x00000001;

//stop_trigger ();
correct = verify_benchmark (result);
if(correct) {
test_check = 0x00000002;
} else {
test_check = 0x00000000;
}

Those functions have been substituted with an actuation on running and outcome signals, in
particular

e running represent the test’s status, 0 for finished and 1 for running

e outcome represent the test’s outcome, 0 for fail and 1 for pass

Thanks to the testbench organization (more on it in chapter 4) looking at the log file was the
only step needed. A sample of a log file is the following

test : crc32

test time start in ns is 148500

test time end in ns is 15853599500
test time in ns is 15853451000
test time in ms is 15853

test time in cc is 15853451

Test passed

Simulation complete via $finish (1) at time 15853699500 NS + 0
./tes.sv:23 $finish

xcelium> assertion —summary —final ;

Summary report deferred until the end of simulation.
xcelium> exit ;

27

Chapter 6

FPGA porting process

To validate the whole microcontroller design and the toolchain setup an FPGA porting process
is necessary. The overall process can be divided into two parts, namely FPGA board choice and
FPGA porting process.

6.0.1 Board choice

The FPGA board choice is dependent on the HDL used to describe the RISC-V microcontroller;
since, in fact, the HDL used is SystemVerilog the pool of software that could have been used
shrunk. For instance looking at Xilinx software offer for FPGA development it’s possible to see
that

e ISE, support for VHDL/Verilog
e Vivado, support for VHDL/Verilog/System Verilog

Using Vivado as FPGA development software places a constraint to the number of boards sup-
ported in Vivado itself; in fact only the newer boards (7-series) are natively supported.

Due to the previous constraints the FPGA board of choice is the Arty A7-100T board. Some
strengths for this particular board are

e Vivado support
e Many input/output pins available to the end user (more than 50)

Extensive number of flip-flops (126800 flip-flops)

607KB of block RAM available

USB-UART bridge

Figure 6.1: Arty A7 100T board

L ——

ADISILERT ﬂ

28

CHAPTER 6. FPGA PORTING PROCESS

6.0.2 Porting process

The FPGA porting process has been straight forward thanks to the ease of use of the Vivado
software. The porting process can be divided into two distinct sub-processes, namely

e clock instantiation

e xdc (constraint) file development

Clock instantiation

The Arty A7 board present a 100 MHz clock on pin E3. In order to provide a lower frequency clock
to the microcontroller a clock manager has to be instantiated. Vivado ease this process through the
clock wizard, a special menu that produces a Verilog file containing clock tiles capable of delivering
an output clock compliant with the specifications given during creation. This module’s top entity
can be instantiated easily inside the microcontroller top entity. In particular the following is the
portmap of the obtained clock manager

module clk_wiz_0

(
// Clock out ports

output clk_outl ,

// Status and control signals
input reset ,

output locked ,

// Clock in ports

input clk_inl

E

XDC file development

The constraint file developed for the FPGA implementation is available in the appendix chapter,
in particular commands used are

e set_property -dict {PACKAGE_PIN pin_num IOSTANDARD LVCMOS33} [get_ports {port_name}].
This command routes an input/output port on the top entity of the microcontroller to a user
available FPGA pin.

e create_clock -add -name clock_name -period[ns] period -waveform {start[ns] rising_edge[ns]}
[get_ports {clock_port}]. This command informs Vivado that a particular port on the micro-
controller top entity has a clock assigned.

e set_property PULLDOWN/PULLUP true [get_ports {port_name}|. This command assign a
PULLUP/PULLDOWN to a particular port on the top entity of the microcontroller.

6.0.3 FPGA resource utilization

The synthesis and implementation process produced the following resource utilization results

H resource utilization available utilization % H

LUT 4090 63400 6.45%
FF 2747 126800 2.17%
BRAM 8 135 5.93%
I0 44 210 20.95%
BUFG 3 32 9.38%
MMCM 1 6 16.67%

Table 6.1: FPGA resource utilization

Taking a closer look at the cell usage report it’s possible to give a rough estimate on the number
of ASIC gates used by the implementation. We have

29

CHAPTER 6. FPGA PORTING PROCESS

H cell count H
LUT1 13
LUT2 240
LUT3 500
LUT4 673
LUT5 942
LUT6 2352

Table 6.2: FPGA implementation cell count

A rough estimate on the equivalency between cell usage and gate count would be 3-8 gates per

LUT [20]. This estimate would give

H estimate gate count H
3x 12.270kGe
8x 32.720kGe

Table 6.3: gate count equivalency

This rough estimate is compliant with the informations gathered from the zero-riscy manual

17].

30

Chapter 7

Peripherals integration

The main topic for this master thesis is to integrate general purpose peripherals alongside the
RISC-V microcontroller; in particular the required peripherals the be integrated are

e UART
e SPI
e 12C

SystemVerilog models for these peripherals were already available from Maxim Integrated’s IPs
bank [3]; for this reason the RTL development phase for each peripheral was skipped, leaving the
integration activity to

e driver development
e testing phase

The following is a block diagram representing the final result after the peripherals integration
step

7.0.1 UART

The UART (universal asynchronous receiver-transmitter) is a general purpose peripheral capable
of serial communication at programmable speed rates. Usually this peripheral is used for com-
munication and debugging purposes between the integrated circuit and a computer available to
the end user. The fact that the UART peripheral lends itself to multiple uses eased the choice
for first peripheral to be integrated; in fact this peripheral was used extensively for its debugging
capability.

Portmap and register organization

In order to be able to integrate successfully any kind of peripheral it’s necessary to understand
two key points, namely

e peripheral’s portmap

e peripheral’s register organization

The two following tables give an overview of both the portmap and register organization of the
UART peripheral.
Baudrate calculation

The expression that describes the baud rate for the UART peripheral is
UART_CKDIV = SEL_CLK/Baudrate
The input SEL_CLK is a clock chosen between CLK, CLK UART1,CLK UART2, CLK _UARTS3

through bits 16 and 17 of the control register UART _CTRL. A further restriction is that the bau-
drate has to be at least four times slower than the system clock (input CLK).

31

CHAPTER 7. PERIPHERALS INTEGRATION

Figure 7.1: RISC-V system block diagram

RISC-V core

H port name lenght inuput/output description H
CLK 1 bit input input clock
CLK_UART1 1 bit input secondary clock 1 for baud rate generator
CLK_UART2 1 bit input secondary clock 2 for baud rate generator
CLK_UART3 1 bit input secondary clock 3 for baud rate generator
RSTN 1 bit input asynchronous reset
SCANMODE 1 bit input SCAN mode input
TIRQ_Q 1 bit output interrupt request
WAKE_A_O 1 bit output asynchronous wake up
RX_DMA REQ-Q 1 bit output inform system DMA that data in RX FIFO is available
TX_DMA REQ.Q 1 bit output inform system DMA that data in TX FIFO is available
PSEL 1 bit input APB IP select
PENABLE 1 bit input APB IP enable
PADDR 10 bits input APB address bus
PWDATA 32 bits input APB write data
PRDATA 32 bits output APB read data
PREADY 1 bit output APB ready
PSLVERR 1 bit output APB slave error
PWRITE 1 bit input APB write enable
RX.I 1 bit input data reception input
X0 1 bit output data transmission output
CTS1 1 bit input clear to send
RTS_O 1 bit output ready to send

Table 7.1: UART portmap

32

CHAPTER 7. PERIPHERALS INTEGRATION

H register name address access description
UART_CTRL 0x00 RW control register
UART_STATUS 0x04 R status register
UART_INTEN 0x08 RW interrupt enable control register
UART_INTFL 0x0c RW interrupt status flag register
UART_CKDIV 0x10 RW clock divider register
UART_OSR 0x14 RW over sampling rate register
UART_TXFIFO 0x18 R TX FIFO output register
UART_PNR 0x1C RW Pin register
UART_DATA 0x20 RW FIFO rad/wirte register
Reserverd register 0 0x24 R
Reserverd register 1 0x28 R
Reserverd register 2 0x2C R
UART_-DMA 0x30 RW DMA configuration register
UART_WKEN 0x34 RW wake up enable control register
UART_WKFL 0x38 RW wake up status flag register

Table 7.2: UART register organization

33

CHAPTER 7. PERIPHERALS INTEGRATION

Driver development

To configure the peripheral it’s necessary to be able to read and write the registers present in table
6.2. Being the UART connected to the APB bus the driver development phase can be looked at as
a read/write in a specific memory location owned by the APB bus. In C this action is performed
by the following code

#define PULPINO_BASE_ADDR 0x0
#define SOC_PERIPHERALS BASE_ADDR (PULPINO_BASE_ADDR + 0x40000000)
#define UART BASE ADDR (SOC_PERIPHERALS BASE_ADDR + 0x4000)

#define REG(x) (*((volatile unsigned int=x)(x)))

#define UART.CTRL (UART BASE_ADDR + 0x0000)
#define CTRL.UART REG(UART.CTRL)

Thanks to these defines it’s possible to read/write to the UART CTRL register by reading and
writing to CTRL_UART. The previous defines are repeated for each register in the table 6.2.

For a full overview of each function developed during this phase refer to the appendix chapter.

Testing phase

The testing phase deals with using the drivers developed in the previous phase in order to validate
the functionalities of the peripheral. According to the relative datasheet a typical software sequence
to establish the UART serial communication is

e configure the baud rate

e configure the oversampling rate

e select the appropriate clock source

e configure the appropriate fifo rx threshold
e cnable the internal UART baud clock

e wait for baud clock to be ready

e start the UART communication

In order to test both the rx and tx functionalities of the peripheral two UARTSs have been
instantiated, connecting the first UART RX input to the second UART TX output and vice versa.
With this setup is possible to test extensively both the rx and tx peripheral’s capabilities by
firmware.

The firmware testing phase can be divided into two distinct phases
e initial peripherals configuration
e initial UART transmission

In order to test both rx and tx capabilities the initial peripheral configuration, similar for both
peripherals, is composed of

e baud rate configuration

e over sampling rate configuration

e parity, character size and stop bit(s) configuration
e baud clock enable and check

e rx fifo threshold setting (set to 4)

e interrupt on rx fifo threshold reached enabled

34

CHAPTER 7. PERIPHERALS INTEGRATION

e interrupt service routine configured to transmit the same character received back to the other
UART

The initial UART transmission is made up of four characters (1-4). This initial transmission
triggers the interrupt of the second UART, which is going to transmit back those characters to the
first UART, creating a loop of transmissions of characters as seen in figure 6.1.

Figure 7.2: UART testing phase

Baseinev=0
wrsor-Baseline v = 26,558,301 000ps

To definitely confirm that the peripheral has been configured correctly a final testing phase on
FPGA was needed.

On the Arty A7 board it’s possible to connect directly the RX and TX UART’s signals to two
FPGA pins routed into the USB-UART bridge which, in turn, is connected to the micro-usb con-
nector allowing to convert USB packets to serial data. After installing FTDI drivers and a serial

terminal (such as Tera Term [21]) it’s possible to use the host PC to send/receive serial data
to/from the FPGA board.

For this particular testing phase the C code developed would

e set the correct baudrate (tested for 9600 and 19200)

e set the over sampling rate

configure the parity, character size and stop bit(s)

set the rx fifo threshold to 1

inside the while(1) perform the uart_scanf() function

The uart_scanf() function enables the interrupt generated on rx fifo threshold reached and wait
for the interrupt service routine to complete. The interrupt service routine checks each character
coming to the UART, if the character received is

e CR (carriage return) or LF (line feed) ends the interrupt service routine

e any other character is appended to a char array called instruction

As soon as the interrupt service routine completes the uart_scanf() function sends through the
uart_printf() function the instruction received to the serial terminal as seen on figure 6.2.

Figure 7.3: UART FPGA testing phase

I COM4 - Tera Term VT — O x

File Edit Setup Control Window Help

The combination of these two tests (simulation and FPGA) are sufficient to determine the
correctness of both the UART IP connection to the RISCV microcontroller and the driver devel-
opment.

35

CHAPTER 7. PERIPHERALS INTEGRATION

7.0.2 SPI

The SPT (serial peripheral interface) is a general purpose peripheral capable of serial communication
between a master and one or multiple slave devices. The master control the SPI bus composed of
the following signals

H port name lenght description H
slck 1 bit SPI clock
Ss 1 bit SPI selection signal
mosi 1 bit SPI master out slave in
miso 1 bit SPI slave in master out

Table 7.3: SPI bus signals

Portmap and register organization

As highlighted before it is of paramout importance to to understand the peripheral’s portmap and
the peripheral’s register organization to integrate successfully any peripheral. The two following
tables give an overview of

e SPI’s portmap

e SPT’s register organization

H port name lenght inuput/output description
CLK 1 bit input input clock
RSTN 1 bit input asynchronous reset
TIRQ_Q 1 bit output interrupt request
WAKE_A_O 1 bit output wake up request
RX_DMA_REQ.Q 1 bit output inform system DMA that data in RX FIFO is available
TX DMA REQ.Q 1 bit output inform system DMA that data in TX FIFO is available
PSEL 1 bit input APB IP select
PENABLE 1 bit input APB IP enable
PADDR 10 bits input APB address bus
PWDATA 32 bits input APB write data
PRDATA 32 bits output APB read data
PREADY 1 bit output APB ready
PSLVERR 1 bit output APB slave error
PWRITE 1 bit input APB write enable
SCLK 1 bit output serial clock to slaves (used in master mode)
SSEL_OUT 8 bits output slave select to slaves (used in master mode)
SDO 4 bits output serial data out (used in master mode)
SDO_OE 4 bits output serial data output enable (used in master mode)
SSEL_IN 1 bit input slave select from master (used in slave mode)
SDI 4 bits input serial data in (used in slave mode)
SCLK_IN 1 bit input serial clock from master (used in slave mode)

Table 7.4: SPI portmap

36

CHAPTER 7. PERIPHERALS INTEGRATION

H register name address access description H
SPI_DATA 0x00 RW data register
SPI_.CTRL1 0x04 RW control register
SPI_.CTRL2 0x08 RW control register
SPI_CTRL3 0x0c RwW control register
SPI_CTRL4 0x10 RW control register

SPI_.BRG_CTRL 0x14 RW baud rate generator control register
reserved 0x18 R reserved register
SPI_.DMA 0x1C RW DMA register
SPIIRQ 0x20 RW interrupt status register
SPI_TRQE register 0x24 RW interrupt enable register
SPI_WAKE register 0x28 RW wakeup status register
SPI_WAKEE register 0x2C RW wakeup enable register
SPI.STAT 0x30 R status register
reserved 0x34 R reserved register

Table 7.5: SPI register organization

Baudrate calculation

Similarly to the UART peripheral it is possible to scale the system clock (input CLK) to have a
slower serial clock for each SPI transmission. To scale the system clock bits 16 to 19 of the register
BRG_CTRL are used; the system clock is scaled by 25¢@e-factor with a maximum scale value of
28 (any bigger scale factor is illegal and interpreted as 2%).

Driver development

Similarly to the previous peripheral it’s necessary to be able to read and write the registers present
in table 6.5. Being the SPI connected to the APB bus the driver development phase can be looked
at as a read/write in a specific memory location owned by the APB bus. In C this action is
performed by the following code

#define PULPINO_BASE_ADDR 0x0
#define SOC_PERIPHERALS BASE_ADDR (PULPINO_BASE_ADDR + 0x40000000)
#define SPI BASE_ADDR (SOC_PERIPHERALS BASE_ADDR + 0x2000)

#define REG(x) (x((volatile unsigned intx)(x)))

#define SPI.DATA (SPI.BASE_ADDR + 0x0000)
#define DATA_SPI REG(SPI.DATA)

Thanks to these defines it’s possible to read/write to the SPI DATA register by reading and
writing to DATA_SPI. The previous defines are repeated for each register in the table 6.5.

For a full overview of each function developed during this phase refer to the appendix chapter.

Testing phase

The testing phase deals with using the drivers developed in the previous phase in order to validate
the functionalities of the peripheral. According to the relative datasheet a typical software sequence
to establish the SPI serial communication is

e enable SPI peripheral
e cnable tx and rx fifos

e select master or slave mode

select clock phase and polarity

set the number of bytes for each transmission

37

CHAPTER 7. PERIPHERALS INTEGRATION

e start the SPI communication

In order to test both the rx and tx functionalities of the peripheral two SPIs have been instan-
tiated with the following connections

o first SPI sclk_in with second SPI sclk

e first SPI ss_in with second SPI ss_out

e first SPI sdi with second SPI sdo

The configuration for both SPIs is composed of
e enable SPI peripheral

e enable tx and rx fifos

e select clock phase and polarity

e set the number of bytes for each transmission
e master mode selection for second SPI

e slave mode selection for first SPI

e interrupt fifo threshold set to one for the first SPI

This test is based on the fact that each SPI transmission from the second SPI triggers the
interrupt service routine of the first SPI. The interrupt service routine performs

e reads the data received
e transmit back the data read

To start the test the SPI transmission is placed in a while(1) loop, thus making the test
indefinitely long. After each SPI transmission from the second SPI peripheral the data to be
transmitted is incremented.

Figure 6.3 and 6.4 are proof of the behavior described.

(a) SPI loop test) SPI loop test transaction

Figure 7.4: Overall SPI loop test

a) secon write rst write
d SPI b) first SPI

Figure 7.5: SPI loop test - write focus

To definitely confirm that the peripheral has been configured correctly a final testing phase on
FPGA was needed. The test performed on FPGA is directed to check the correctness of an SPI
write transaction; a program consisting of an SPI write inside a while(1) loop have been chosen
for this purpose.

To monitor the SPI traffic an oscilloscope is needed; the oscilloscope of choice is the Analog Dis-

covery 2 [22]. It has the feature of having a bus analyzer, capable of analyzing the most common
communication protocols such as

38

CHAPTER 7. PERIPHERALS INTEGRATION

e UART
e SPI

o 12C

e CAN

o IWIRE

As already introduced, this test performs an SPI write inside a while(1) loop with a static data,
equal to Oxbb, being transmitted. This behavior is displayed in Figure 6.5.

Figure 7.6: SPI FPGA testing phase

The combination of these two tests (simulation and FPGA) are sufficient to determine the cor-
rectness of both the SPI IP connection to the RISCV microcontroller and the driver development.

7.0.3 I2C

The I2C (inter-integrated circuit) is a general purpose peripheral capable of serial communication
between one or multiple master and one or multiple slave devices. The master control the 12C
bus composed of the following signals

H port name lenght description H

sda 1 bit serial data
scl 1 bit serial clock

Table 7.6: 12C bus signals

Portmap and register organization

As highlighted before it is of paramout importance to to understand the peripheral’s portmap and
the peripheral’s register organization to integrate successfully any peripheral. The two following
tables give an overview of

e [2C’s portmap

e 12C’s register organization

39

CHAPTER 7. PERIPHERALS INTEGRATION

H port name lenght inuput/output description H
CLK 1 bit input input clock
RSTN 1 bit input asynchronous reset
TRQ-Q 1 bit output interrupt request
WAKE_A_O 1 bit output wake up request
RX_DMA_ REQ-Q 1 bit output inform system DMA that data in RX FIFO is available
TX_DMA_REQ-Q 1 bit output inform system DMA that data in TX FIFO is available
PSEL 1 bit input APB IP select
PENABLE 1 bit input APB IP enable
PADDR 10 bits input APB address bus
PWDATA 32 bits input APB write data
PRDATA 32 bits output APB read data
PREADY 1 bit output APB ready
PSLVERR 1 bit output APB slave error
PWRITE 1 bit input APB write enable
SCL_PAD_OE 1 bit output scl pad output enable
SDA_PAD_OE 1 bit output sda pad output enable
SCL_PAD_DO 1 bit output scl pad data out
SDA_PAD_DO 1 bit output sda pad data out
SDA_PAD_IN 1 bit input sda pad in
SCL_PAD_IN 1 bit input scl pad in

Table 7.7: 12C portmap

Baudrate calculation

Similarly to the other peripherals it is possible to set the SCL frequency to a divided value of the
system clock. In this particular case it is necessary to set both the low pulse duration and high
pulse duration of the SCL clock relative to the system clock. The expression (similarly for the
high period)

SCLjpy = SYS.CLK x (CLK_LOW _REG + 1)

determines the duration of the low pulse duration of the SCL clock. The minimum value for
CLK_LOW_REG and CLK_HIGH _REG is one (set through I12CCK L and I2CCK H registers),
thus giving a maximum SCL frequency of SYS_CLK /4.

Driver development

Similarly to the previous peripheral it’s necessary to be able to read and write the registers present
in table 6.8. Being the I12C connected to the APB bus the driver development phase can be looked
at as a read/write in a specific memory location owned by the APB bus. In C this action is
performed by the following code

#define PULPINO_BASE_ADDR 0x0
#define SOC_PERIPHERALS BASE_ADDR (PULPINOBASE_ADDR + 0x40000000)
#define 12C_BASE_ADDR (SOC_PERIPHERALS BASE_ADDR + 0x1000)

#define REG(x) (*((volatile unsigned int=x)(x)))

#define I2C_CTRL (T2C_BASE_ADDR + 0x0000)
#define CTRL_I2C REG (I12C_CTRL)

Thanks to these defines it’s possible to read/write to the 12C CTRL register by reading and
writing to CTRL_I2C. The previous defines are repeated for each register in the table 6.8.

For a full overview of each function developed during this phase refer to the appendix chapter.

40

CHAPTER 7. PERIPHERALS INTEGRATION

H register name address access description H
12C_CTRL 0x00 RW control register
12C_STATUS 0x04 RW status register
12C_INTO 0x08 RW interrupt 0 register
12C_INTEO 0x0c RW interrupt enable 0 register
12C_INT1 0x10 RW interrupt 1 register
12C_INTE1 0x14 RW interrupt enable 1 register
I2C_FIFO_CFG 0x18 R fifo configuration register
I2C_RX_CFG.REG 0x1C RW rx fifo configuration register
2C_RX_REG 0x20 RW rx register register
12C_TX_CFG_REG 0x24 RW tx configuration register
12C_TX_REG 0x28 RW tx register
12C_DATA 0x2C RW data register
12C_MASTER 0x30 RW master register
12C_CLK_LOW 0x34 RW clock low register
12C_CLK_HIGH 0x38 RW clock high register
12C_HS_-MODE 0x3C RW high speed mode register
I2C_TIMEOUT 0x40 RW timeout register
reserved 0x44 RW reserved register
12C_DMA 0x48 RW DMA register
12C_SLAVE 0x4C RwW slave register

Table 7.8: 12C register organization

Testing phase

The testing phase deals with using the drivers developed in the previous phase in order to validate
the functionalities of the peripheral. According to the relative datasheet a typical software sequence
to establish the 12C serial communication is

e enable 12C peripheral

e select master or slave mode

e set the I2C clock frequency through clock high/low registers

e set the number of bytes for each transmission (in case of read)

e fill the tx fifo with the address of the slave device (in case of master mode)

e start the I2C communication

In order to test both the rx and tx functionalities of the peripheral two 12Cs have been instan-
tiated with the following connections

e first and second 12C scl line with the global scl bus line

e first and second 12C sda line with the global sda bus line
The configuration for both I12Cs is composed of

e enable 12C peripheral

e select master or slave mode (one master and one slave)

set the 12C clock frequency through clock high/low registers for the master peripheral

set the number of bytes for each transmission for the master peripheral

start the I2C communication

The test performed are

41

CHAPTER 7. PERIPHERALS INTEGRATION

Figure 7.7: I2C tx test

e tx three bytes from master to slave

e tx communication with only the master peripheral on the bus

As it’s possible to observe in the first case the slave acknowledges the master transmission
request, while in the second case the master is forced to end the transmission due to the fact that
the acknowledge is missing.

The second test (only master) has been replicated on FPGA to check the correctness of the 12C
peripheral in master mode. The result is the same as in the RTL simulation

Figure 7.9: 12C FPGA master only

{Trerw T TeoH T [TooH Toiwe T R N s}

To definitely confirm that the peripheral has been configured correctly a final testing phase on
FPGA was needed. The test performed on FPGA is directed to check the correctness of an 12C
read transaction. The Analog Discovery 2 [22] oscilloscope is used to generate 12C traffic such as
a master 12C peripheral. In this particular test the initial I2C transaction is a write; this write
transaction put in the I2C peripheral’s (synthesized on FPGA) rx fifo three bytes which are read
during the following read transaction started by the oscilloscope. The data received is then checked
and a message is printed. Proof for this test is in Figure 6.9.

The combination of these tests (simulation for both master and slave mode, FPGA tests for
both master and slave mode) determine the correctness of both the I12C IP connection to the
RISCV microcontroller and the driver development.

42

CHAPTER 7. PERIPHERALS INTEGRATION

Figure 7.10: 12C FPGA testing phase

UART SPI nc CAN AVR

R Logic Analyzer

Settings
scL: [po o z] spa: [po1 2] Frequency: |40 kHz | clock stretching (uses 010 0 to D10 9) (5
Spy Master Custom Semsor

B> Bxecute Seripte &5 Options, ./ Example .

/ clear()

/ resolve SDA hold down issus.

’

/ n acknowledgsd otk false.

/ count of bytes)

/ b I b array from specified

/ -], count o

7 specifi

,

’ herwise false.

’

’

/7 ss NAK or the NAK by

if(Clear()!=tzus) return "I2C bus error. Check the pull-ups.

Write (0x01,0x01, Oxkb, 0x44) ;

var status = Read(0x01, 3);

if (status([0] 0x01 & status[1] Oxbb && status[2] == 0x44) return "Slave working correctly”;

clse return "Slave working incorrectly"

Tnsert

A% [Slave working correctly

Discovery2 SN:210321ABEASE | =7/ | Status: OK |

43

Chapter 8

Peripherals stress test

To test extensively the behavior of the peripherals integrated (UART, SPI and 12C) presented in
the previous chapther a more thorough test is needed. For this stress test at the top level two
microcontrollers are instantiated; connecting together the general purpose peripherals is possible
to test both master and slave modes. Two GPIOs are also connected to two IRQ inputs for
handshaking purposes. Figure 8.1 gives a visual representation of the testbench organization

Figure 8.1: Testbench organization

TB_FPGA

TC_FPGA

outcome running

Riscv microcontroller Riscv microcontroller
one — master mode two —slave mode

UART -2

12C-2

SPI-4

restart-1

error-1

Handsanking signals

To test extensively the general purpose peripherals four tests have been developed, namely

e I2C master write
e 12C master read
e UART communication

e SPI communication

The following subsections explain in further details each test purpose and operation.

44

CHAPTER 8. PERIPHERALS STRESS TEST

8.0.1 LFSR

To effectively test a communication of data between any peripherals a random data generator is
needed in order to guarantee that the communication is not going to fail for a particular data being
transmitted and received; a LFSR (linear feedback shift register) has been used for this purpose.
An LFSR is a shift register whose input bit is a linear function of its previous state [23]. Figure
8.2 gives a visual representation of an LFSR. An LFSR is used as

e pseudo-random number generator

e pseudo-noise sequencer

Figure 8.2: LFSR

16 14 13 11 1

P 1

The initial value of the LFSR is called seed, while the bits that influence the input (bits 11,
13, 14 and 16 in figure 8.2) are called taps. Since the register operation is deterministic the values
produced by the LFSR are also deterministic. Likewise the number of possible state is finite, thus
the LFSR must re-enter in a repeating cycle. By a carefull choice of initial seed and taps the
period of the repeating cycle can assume the maximum value of 2 — 1, where n is the number
of bits present in the LESR (16 in figure 8.2). Both hardware and software implementation exist;
in this particular case a software implementation is needed to generate pseudo-random data to be
transmitted via UART, SPI and 12C. A software implementation of an LFSR is as follows

HALFWORD 1fsr_16 (HALF-WORD l1fsr , HALF-WORD mask) {
int lsb;

Isb = Ifsr & 1;
lfsr >= 1;

if (1sb = 1){
Ifsr "= mask;
}

return Ifsr;

}
With the values for the initial state of the lfsr 0OxACE1 and the mask 0xB400 the LFSR is
able to traverse each possible state, thus having a lenght of 2'6 — 1. This kind of LFSR is called

maximum lenght LFSR. These exact values are used in each peripheral stress test in order to
guarantee the maximum code coverage possible.

45

CHAPTER 8. PERIPHERALS STRESS TEST

8.0.2 I2C master write

The I12C master write test’s purpose is to test two conditions

e Correctness of the write operation of the I2C peripheral in master mode

e Correctness of the read operation of the 12C peripheral in slave mode

In synthesis the test can be divided in two parts, the master operation and the slave operation.
The first microcontroller, in charge of the master operation, writes a random number of bytes
(between two and seven, depending on the lfsr state) to the slave; the second microcontroller, in
charge of the slave operation, reads those bytes and checks the correctness of the trasnmission
against the internal lfsr state. A code snippet for both operations can be found in the appendix
chapter.

Figure 8.3 represent a series of I12C transactions between the master and the slave; as it is possible
to see the master microcontroller sends via 12C a random number of bytes to the slave periph-
eral. The slave then reads the bytes received, checks them, and, if a correct corrrespondance
between data recieved and the internal state of the LFSR is found, sends a pulse to the master
microcontroller through the RUNNING output pin.

Figure 8.3: I2C master write - RTL

la swnreo
£r|Cursor-Baselinev=30,140,500,0000s

B Cursor @

A breakdown of the firmware of both microcontrollers is as follows

Master firmware divided into main.c, irq_0.c and irq_1l.c
e In main.c the I2C peripheral is enabled and the master mode is selected

e In irq.0.c a new state of the LFSR is generated. Depending on the last three bits of the
LFSR state a random number of bytes (between two and seven) is written on the I2C bus.
irq_0.c is also responsible to check the end of test; if the LFSR state correspond to the initial
one the test is stopped with a pass condition

e In irq_l.c the test is stopped with a fail condition

Slave firmware divided into main.c and irq_i2c.c
e In main.c the 12C peripheral is enabled and the slave mode is selected

e In irq_i2c.c a new LFSR state is generated to match the LFSR state present in the master
microcontroller. The number of bytes present in the internal 12C fifo is retrieved; the corre-
sponding number of bytes is read from the fifo and checked against the internal state of the
LFSR. In case of correct check the slave microcontroller generated a pulse on an output pin
connected to the irq-0 of the master microcontroller (thus restarting the write operation).
In case of incorrect check the slave microcontroller generate a pulse on a second output pin
connected to the irq-1 of the master microcontroller (thus stopping with an error the test)

Figure 8.4 represent the state diagram of the operations of both microcontroller.

46

CHAPTER 8. PERIPHERALS STRESS TEST

Figure 8.4: I2C master write - state diagram

Master microcontroller Slave microcontroller

main.c ‘/ 12C peripheral setup

while(1) loop

_ | /

main.c (12C peripheral setup
\ while(1) loop

irg_0.c irg_1.c - check passed irg_i2c.c
/ - Lfsg‘state gbener?t;on \ / \ / - LFSR state generation \
(d> Va”ad_ e ”UThe’L?SR‘I:e: \ / - test stopped with a fail \ [- bytes read from internal fifo \
| epending on the state | \ condition € \ and checked against internal ‘
\ written on the 12C bus / \ / tate of LFSR
N -checkendoftest _/ o 2 \\ sretee

- check failed

/

/ \

(- test passed | (- test failed)

e
- AN /

8.0.3 I2C master read

The I2C master read test’s purpose is to test two conditions

e Correctness of the read operation of the I2C peripheral in master mode

e Correctness of the write operation of the I2C peripheral in slave mode

Figure 8.5: I12C master read - RTL

Baselinev=

@]
EF| Cursor-Baseline + - 20,355,000 000ps

Name av Cursor @

In synthesis the test can be divided in two parts, the master operation and the slave operation.
The first microcontroller, in charge of the master operation, starts a read transaction. The second
microcontroller, in charge of the slave operation, aknowledges the read request coming from the
master and writes a random number of bytes (between one and eight, depending on the 1fsr state).
The master, at the end of the transaction, checks the bytes recieved against the internal lfsr state.
A code snippet for both operations can be found in the appendix chapter.

Figure 8.4 represent a series of I12C transactions between the master and the slave; as it is possible

47

CHAPTER 8. PERIPHERALS STRESS TEST

to see the master microcontroller sends a I12C read request to the slave microcontroller. The slave
microcontroller then sends to the master a random number of bytes dependent on the internal
state of the LFSR; the master then checks the data recieved and, in case of a successful check,
starts a new read request to the slave.

A breakdown of the firmware of both microcontrollers is as follows

Master firmware divided into main.c , irq_i2c.c and irq.0.c

e In main.c the I2C peripherals is enabled and the master mode is selected

e In irq-i2c.c the data received is checked against the internal state of the LFSR. In case of un-
succesful check the test is stopped with a fail, otherwise the 12C peripheral is prepared for the
next operation and a pulse is raised on an output pin connected to the slave microcontroller

e In irq_0.c an I12C read request is generated. The curent and next LFSR state are generated,
to be used in irq_i2c.c code

Slave firmware divided into main.c , irq_i2c.c and irq_0.c

e In main.c the I2C peripherals is enabled and the slave mode is selected. A pulse is sent
through an output pin connected to the master’s irq_0 to start the test

e In irq.i2c.c the internal LFSR state is generated, to match the one present in the master
microcontroller. Depending on the last three bits of the LFSR state a random number of
bits (between one and eight) is sent to the I12C bus

e In irq-0.c a pulse is sent through an output pin connected to the master’s irq_0 to start the
test again

Figure 8.6 represent the state diagram of the operations of both microcontroller.

Figure 8.6: 12C master read - state diagram

Master microcontroller Slave microcontroller

main.c (12C peripheral setup \\ main.c (| i

2C peripheral setup

while(1) loop / ‘\ while(1) loop /
\ﬂ - -

- syncing pulse

irq_i2c.c irq_0.c irq_i2c.c irg_0.c

—_— ‘7;
bytes read from internal ff -12C read request / - LFSR state generation /

and checked against internal generation i) 8
{ state of LFSR (- uaniable number of bytes | [-restartpulse generation
\ - syncing pulse to slave - current and next LFSR (depending on LFSR state) are |\
\ - end of test check \ state generation \ written on the 12C bus / \

- restart pulse

| - test passed) - test failed)

- N 7 I
NI N

48

CHAPTER 8. PERIPHERALS STRESS TEST

8.0.4 UART communication

The UART communication test’s purpose is to test the following

e Correctness of the TX operation of the UART peripheral

e Correctness of the RX operation of the UART peripheral

In synthesis the test can be divided in two parts, the TX operation and the RX operation. The
first microcontroller, in charge of the TX operation, writes a random number of bytes (between
one and eight, depending on the lfsr state) to the slave; the second microcontroller, in charge of
the RX operation, reads those bytes and checks the correctness of the trasnmission against the
internal lfsr state. A code snippet for both operations can be found in the appendix chapter.

Figure 8.7 represent a series of UART transactions between the master and the slave; as it is
possible to see the master microcontroller sends a number of bytes trough the UART to the slave
microcontroller. The slave microcontroller then checks the data recieved against the internal state
of the LFSR; in case of successful check a pulse through the RUNNING output pin is sent back to
the master microcontroller which starts a new UART communication.

Figure 8.7: UART communication - RTL

@ Baselnev=0
EF|Cursor-Baseline~ - 28,844,001 000ps

Name v Cursor @v

I T

<)

bits
o 18w 9 bite]

A breakdown of the firmware of both microcontrollers is as follows
Master firmware divided into main.c, irq_0.c and irq_1l.c

e In main.c the UART peripheral is initialized with the right baud-rate, number of bits per
trasnmission, parity and stop bit configuration

e In irq0.c a new LFSR state is computed; depending on the last three bits of the LFSR state
a random number of bytes (between one and eight) is sent to the slave microcontroller. This
section of code also checks for the end of test condition; if the end condition is met the master
microcontroller end the test with a pass condition. At the end of the UART transmission a
pulse on an output pin is sent to the slave microcontroller

e In irq_1.c the master microcontroller ends the test with a fail result

Slave firmware divided into main.c and irq_0.c

e In main.c the UART peripheral is initialized with the right baud-rate, number of bits per
trasnmission, parity and stop bit configuration. An initial pulse is sent out through an output
pin connected to irq_0 routine of the master microcontroller to start the test

e In irq_0.c the new LFSR’s state is computed; the data received is checked against the internal
LFSR’s state. If the check is unsuccesful the output connected the master’s irq_1 routine
is raised, otherwise a pulse is sent through the output pin connected to the master’s irq-0
routine, thus restarting the UART communication

49

CHAPTER 8. PERIPHERALS STRESS TEST

Figure 8.8: UART communication - state diagram

Master microcontroller

\

UART peripheral setup \

Slave microcontroller

—

)

main.c main.c (UART peripheral setup
\ while(1) loop /‘ \\\ while(1) loop
- syncing pulse
irq_0O.c irqg_1.c irg_0O.c

- new LFSR state is generated
- variable number of bytes is

sentout |

\ (
\ - check for end of test \
\\ condition + syncing pulse \\

- test passed /J

(

.
\

condition

- test failed

/ - end test with fail \
{

/

- successful check .

/— LFSR state generation \

- data recieved checked

\\ against LFSR’s state /

- unsuccesful check

Figure 8.6 represent the state diagram of the operations of both microcontroller.

The test has been repeated for the following operation modes

e baud rate 115200, 8 bits for each data transmission, 1 stop bit
e baud rate 9600, 5 bits for each data transmission, 1 stop bit

e baud rate 38499, 6 bits for each data transmission, 1 stop bit

8.0.5 SPI communication

The SPI communication test’s purpose is to test the following

e Correctness of the TX operation of the SPI peripheral in master mode

e Correctness of the RX operation of the SPI peripheral in slave mode

In synthesis the test can be divided in two parts, the TX operation and the RX operation.
The first microcontroller, in charge of the TX operation, writes a random number of bytes to the
slave; the second microcontroller, in charge of the RX operation, reads those bytes and checks the
correctness of the trasnmission against the internal lfsr state. A code snippet for both operations
can be found in the appendix chapter.

Figure 8.9 represent a series of SPI transactions between the master and the slave; as it is possible
to see the master microcontroller sends a number of bytes trough the SPI to the slave microcon-
troller. The slave microcontroller then checks the data recieved against the internal state of the
LFSR; in case of successful check a pulse through the RUNNING output pin is sent back to the
master microcontroller which starts a new SPI communication.

A breakdown of the firmware of both microcontrollers is as follows

50

CHAPTER 8. PERIPHERALS STRESS TEST

Master firmware divided into main.c, irq_0.c and irq-1.c

e In main.c the SPI peripheral is initialized

e In irq 0.c a new LFSR state is computed; depending on the LFSR’s state a random number
of bytes/half words or words (depending on the test) is sent to the slave microcontroller.
This section of code also checks for the end of test condition; if the end condition is met the
master microcontroller end the test with a pass condition

e In irq_1.c the master microcontroller ends the test with a fail result

Slave firmware divided into main.c and irq_spi.c

e In main.c the SPI peripheral is initialized

e In irq_spi.c a new LFSR state is computed; the data recieved thourgh SPI is checked against
the internal state of the LFSR. In case of unsuccesful check an output pin connected to the
master’s irq_1 routine is raised, thus ending the test with a fail condition. This section of code
alse generated a pulse through a pin connected to the master’s irq_0 routine, thus restarting
a new SPI transaction

Figure 8.9: SPI communication - RTL

=0
- 28,452,500,000ps

av Cursor G

Figure 8.10 represent the state diagram of the operations of both microcontroller.

The test has been repeated for the following operation modes

e SPI peripheral in byte mode (TX and RX of data byte by byte). The first microcontroller
sends a number of bytes between one and thirtytwo (full lenght of internal fifo).

e SPI peripheral in half word mode (TX and RX of data half word by half word). The first
microcontroller sends a number of half word between one and sixteen (full lenght of internal
fifo).

e SPI peripheral in word mode (TX and RX of data word by word). The first microcontroller
sends a number of word between one and eight (full lenght of internal fifo).

51

CHAPTER 8. PERIPHERALS STRESS TEST

Figure 8.10: SPI communication - state diagram

Master microcontroller

main.c SPI per

ipheral setup

while(1) loop

irq_0O.c

- syncing pulse

irq_1.c

Slave microcontroller

main.c SPI peripheral setup
while(1) loop

irg_spi.c

- new LFSR state is generated
- variable number of bytes is

sent out
- check for end of test
condition

- test passed

-

- end test with fail

- successful check

- LFSR state generation
- data recieved checked

condition

- test failed

52

against LFSR’s state

- unsuccesful check

Chapter 9

Cordic

9.0.1 Cordic algorithm

The CORDIC algorithm (COordinate Rotation Digital Computer) is an efficient algorithm to
compute

e trigonometric functions

e square roots

hyperbolic functions

multiplications and divisions
e exponentials and logarithms

A common use of this algorithm is in case of a microcontroller with no multiplication unit since
it requires only additions, subtractions, bit-shifts and look up tables. To understand the theory
behind the CORDIC algorithm it’s necessary to take a step back. Suppose having a vector with
coordinates x;, ¥;» and rotating it by an angle #, thus getting to the point of coordinates z,. ...

Figure 9.1: Vector rotation

This rotation is represented by the following equations

o &, = x;,c08(0) — yinsin(0)

o Y = Xinsin(f) + yincos(d)

Choosing y;, = 0 and x;, = 1 the previous equations become
o x,. = cos(f)

e y,. = sin(0)

53

CHAPTER 9. CORDIC

Thus by knowing the value of x, and y, it’s possible to calculate sine and cosine of an angle
through a rotation. The previous general equations can be transformed into

o x,. = cos(0)(xin — yintan(6))
® Yr = 003(9) (xmtan(e) + yin)

So far no simplifications have been obtained, however the CORDIC algorithm is based on three
premises

e rotating by one input angle is the same as rotating for several smaller angles
e the value of smaller angles can be chosen such that tan(6;) = 27% (angles stored in a LUT)

e the objective is to rotate an initial vector in order to align it with a new vector (which has
an angle relative to the x axis of which sine and cosine have to be computed)

With the second premise the multiplication can be replaced by a bit shift (much easier in
hardware). The first premise (dividing the original shift in a series of smaller shifts) provide the
negative feedback mechanism of the CORDIC algorithm. An arbitrary angle is obtained with a
successive rotation by the angles stored in the LUT; at each iteration the difference between the
new vector angle and the angle in the LUT is recorded. The sequence of vector rotations can be
represented by a decision vector

2 = 2t - ditanT1270

where z represent the difference between the angle of the input vector and the vector being rotated;
z is an angle accumulator. d; represent the direction of the current rotation, based on the value of
the current z. Due to the initial choice for the elementary angles tan='27 is equal to the series of
angles stored in the LUT. With the following assumptions

e value of smaller angles chosen such that tan(6;) = 27

e ignoring the constant gain factor (cos(#)) since for a sufficient number of iterations the cosine
contribution becomes a constant equal to 0.6073

The three equations representing the values of x and y coordinates of the rotating vector and
the decision vector become

o zitl = gi - g2y
o yitl = yi 4,2 g

o il = i _ . tan~127¢

9.0.2 Numerical example

The three equations in the previous sub section might seem not intuitive, a numerical example is
necessary to have a clearer understanding of the CORDIC algorithm. To sum up the inputs of the
CORDIC algorithm

e z_in is the initial location on the x coordinated of the rotating vector
e y_in is the initial location on the y coordinated of the rotating vector

e z_in is the angle of which sine and cosine are being computed

To compute sine and cosine the initial vector, as explained in the previous sub section, has
to have coordinate (1,0). However at the end of the algorithm it’s still necessary to divide the
results by cos(#); the cosine term act as gain (both z and y values are affected by it). The scaling
operation can be avoided by passing the value 0.6072 instead of 1 for the x coordinate for the
initial rotating vector.

54

CHAPTER 9. CORDIC

iteration d;) Yy_in zan

- - 0.6072 0 70°

0 1 0.6072 0.6072 25°

1 1 0,3036 0,9108 —1.5651°

2 -1 0,5313 0,8349 12.4711°

3 1 0,4269 0,9013 5.3461°

4 1 0,3706 0,9279 1.7698°

5 1 0,3415 0,9395 —0.0201°
Tr yr z.r

Table 9.1: CORDIC numerical example

The following example shows a numerical example for the computation of sine and cosine of an
angle of 70°.

The real value of cos(70) is 0.342, while the real value of sin(70) is 0.9396. The values computed
with the CORDIC algorithm approximate the real values closely even after only 5 iterations. For
other input angles the approximation after such a small number of iteration is going to be less
effective; increasing the number of iterations increases the result’s precision.

9.0.3 CORDIC generalized equations

Sub section 9.0.1 presents a CORDIC’s operative mode in which the input vector (with coordinates
(1,0)) is rotated in order to be aligned to the vector which sine and cosine have to be computed.
This operative mode is called rotation mode. The CORDIC algorithm has an additional operative
mode, called vectoring mode; in vectoring mode the input vector is rotated by whichever angle in
order to align it with the x axis. The vectoring mode allows the CORDIC algorithm to compute
new functions, such as

e square root

o tan~!

e tanh™!

Moreover, depending on which angles are stored in the LUT, a number of additional operation
can be performed (both in rotation and vectoring mode). As shown in the previous sub section,
to compute sine and cosine the LUT is filled with angles such as

0! = tan=1(27%) * 360/2%m

This choicce of angles put the CORDIC in circular mode. The other two options are linear mode
and hyperbolic mode. The LUT is filled with angles such as

0" = 2% * 360/2*r for the linear mode
6" = tanh™'(277) * 360/2* for the hyperbolic mode
The generalized equations describing the possible operations in both operative mode (rotation
and vectoring mode) and with each angle choice (circular, linear and hyperbolic mode) are as
follows

o 2t = i - pd,2 iy

o yitl = yi 4+ d;27ig

o 2t — i g

The values of u, d; and €’ change in case we are in rotation or vectoring mode, circular, linear
or hyperbolic rotations. A complete overview of every combination of rotation mode and rotation
type is the following

95

CHAPTER 9. CORDIC

z_out y_out z_out
Circular K(xzcos(z) — ysin(z)) K (ycos(z) + zsin(z)) 0
Linear x y+ (zx2z) 0
Hyperbolic K*(xcosh(z) —ysinh(z)) | K*(ycosh(z) + xsinh(z)) | 0
Table 9.2: Rotation mode, d;=sign(z")
y2 ei dl
Circular 1 tan— 1277 sign(z")
Linear 0 21 sign(z")
Hyperbolic -1 tanh~ 1277 sign(z?)
Table 9.3: Rotation mode, d;=sign(z")
Vectoring mode, d;=—sign(y")
r_out y-out z_out
Circular VK (22 + y?) 0 z+tan~(y/x)
Linear x 0 z+ (y/x)
Hyperbolic VE* (22 — y?) 0 z +tanh ™ (y/x)
Table 9.4: Vectoring mode, d;=—sign(y*)
" e d;
Circular 1 tan— 1277 sign(y*)
Linear 0 27¢ sign(y®)
Hyperbolic -1 tanh~ 1277 sign(y?)

Table 9.5: Vectoring mode, d;=—sign(y*)

As it’s possible to see from the two previous tables, depending on the values fed to the in-
puts (represented as x, y and z) the outputs (represented as z_out, y-out and z_out) can express
trigonometric functions, square roots, multiplication etc.. For instance to compute sine, cosine and

square root

mode Tin YiT Zin
sine Rotation - Circular 0.6072 0 angle
cosine Rotation - Circular 0.6072 0 angle
square root Vectoring - Hyperbolic | x + 0.25 x - 0.25 0

Table 9.6: sine, cosine and square root inputs

For the sine/cosine operation at the end of the CORDIC algorithm z_out is going to hold the
value of the cosine of the initial angle while y_out is going to hold the value of the sine of the
initial angle. Similarly for the square root operation at the end of the CORDIC algorithm x_out is
going to hold the value of the square root of x. Similar input combinations can be found for other

operations.

56

CHAPTER 9. CORDIC

9.0.4 Hardware implementations

Before diving into the two implementations considered for the CORDIC algorithm it is necessary to
give a visual representation of the equations presented in the previous subsection. As it is possible
to see the following equations

o pitl = zi _ pud 2ty
o yitl = yi 1 427

° zz—i—l = - diez

Figure 9.2: CORDIC architecture - Rotation mode

ROTATION MODE

X_input Y_input Z_input
; 1 0 ; step jg 0 1/ step ’
' Ll/

FT F: LUT
=

sen@ \)/

X_output Y_output Z_output

sign(z) ~sign(z)

present a series of sum/subtractions and shifts to converge to the final result. To understand
the possible implementations of the algorithm a single stage has to be observed; figure 9.1 present
a single stage depending on the mode the CORDIC peripheral is put in. In fact in vectoring mode
the shift-add stage has to be repeated for the steps that adheres to the equation k! = 3 * k% 4
1, starting from k° = 1 [24]. Those iterations are k = 4, k = 13, k = 40, k = 121 etc.

Both implementations, folded and unfolded, make use of the above blocks; rotation mode and
vectoring mode CORDIC architecture.

For the folded implementation a single stage is used; in particular the stage represented for the
vectoring mode is used. Thanks to the conv signal (generated with particular timing, refer to
subsection 9.0.3 for further explanations on the complete CORDIC peripheral design) the next
iteration’s result is chosen between the result after a single shift-add computation or the one gen-
erated with a double shift-add computation for convergence reasons. The final result is fed back
to the input multiplexer in order to compute each successive result. At the end of the algorithm
X_output and Y _output are sampled as they are the final CORDIC algorithm results.

For the unfolded implementation each stage is repeated, with each register functioning as pipelining
registers for X_output, Y_output and Z_output coming from the previous stage; unlike the folded

57

CHAPTER 9. CORDIC

Figure 9.3: CORDIC architecture - Vectoring mode

VECTORING MODE

- X_input Y_input Z_input
@ step 0 1 step w
. CLK

[

“ | CLK ’

D
LUT
A | e

Z_output

>>i F>i

~sign(y)

o/

conv 1

‘ X_output Y_output

implementation both X_output, Y_output and Z_output are not fed back to the input multiplexer
but are fed to the pipelining registers. Since the additional shifting present in the vectoring mode
stage is required only at certain iterations, the stage used for each iteration in the generate loop is
chosen according to the iteration itself. For instance for the first stage (iteration ¢ = 1) a simple
rotation mode stage is sufficient since the additional shift/add present in the vectoring mode stage
is necessary for other iterations. For the fourth stage (iteration ¢ = 4) the vectoring mode stage
has to be used for convergence reasons. Figure 9.4 gives a visual representation of the CORDIC
architecture in the unfolded version.

To evaluate the trade-off area/performance for the CORDIC algorithm implementations, one
folded and one unfolded, are taken into considerations. As it’s possible to see from figures 9.2 and
9.3, representing a single stage in rotation and vectoring mode, the two implementations differ
vastly in area and performances, in particular tables 9.7 to 9.9 give a comparison between area
and performance parameters betrween the folded and the unfolded implementation

Folded adders Unfolded adders Folded shifters Unfolded shifters
5 3 * (depth -4 2 * (depth -
conv_stage) + 5 * conv_stage) + 4 *
conv_stage conv_stage
Table 9.7: Area parameters

Folded LUTSs

Unfolded LUTSs

Folded registers

Unfolded registers

1

1

3

3 * depth

Table 9.8: A

rea parameters

58

CHAPTER 9. CORDIC

Figure 9.4: CORDIC unfolded architecture

timing singals CORDIC
» Rotation iterationi=0
mode

ild— Pipelining registers

timing singals CORDIC
> | Rotation iterationi=1
mode

| J&————— Ppipelining registers

CORDIC
state
machine
timing singals CORDIC
| Vectoring iterationi =4
"I mode
«———— Pipelining registers
¥
timing singals CORDIC
"| Rotation iterationi=5
mode
v
Folded number of || Unfolded number of | Folded max achiev- | Unfolded max
cc for operation cc for operation able throughput achievable through-
put
depth depth 1/depth ops/cc 1 ops/cc

Table 9.9: Performance parameters

Due to the excessive area cost of the unfolded implementation, the folded implementation has
been chosen as preferred CORDIC core implementation. Table 9.10 gives the area parameter, after
being synthesized on FPGA, for both core implementations with 15 iterations and data width for
x, y and z of 32 bits

Folded Unfolded
Slice LUTs 465 2865
Slice registers 96 1421

Table 9.10: CORDIC core area comparison

59

CHAPTER 9. CORDIC

9.0.5 Complete CORDIC peripheral design

The CORDIC peripheral designed needed to be compatible with the APB bus (similarly to the
other peripherals examined in the previous chapter) in order to be able to communicate easily with
the RISC-V microcontroller. The complete CORDIC peripheral is thus composed of

e The CORDIC core, as seen in the previous subsection

e The APB wrapper, a digital block capable of acting as a bridge between the CORDIC core
and the APB bus

An overall picture can be observed in figure 9.10.
As highlighted before the APB wrapper is responsible for two operations, namely

e Communications with the APB bus through a bank of registers

e Controlling the CORDIC core through control signals

CORDIC register organization

As done for the previous peripherals designing the peripheral’s register organization allows us to
communicate effectively with the, in this specific case, CORDIC core. The register organization is
the following

H register name address access description H
CORDIC_CTRL 0x00 RwW control register
CORDIC_STATUS 0x04 R status register

CORDIC_X_DATA 0x08 RW x register data in
CORDIC_Y_ DATA 0x0C RW y register data in
CORDIC_Z_DATA 0x10 RW z register data in
CORDIC_X_OUT 0x14 R x register data out
CORDIC_Y_OUT 0x18 R y register data out

Table 9.11: CORDIC register organization

Every CORDIC register is 32 bits wide, however, depending on the register, only a subset is
used. Tables 9.12 to 9.15 give a bit by bit representation of each CORDIC register content

H register name bit 0 bit 1 bits 2-31 H
H CORDIC_CTRL rot mode start vector mode start unused H

Table 9.12: CORDIC register organization - CORDIC control register

H register name bit 0 bit 1 bits 2-31 H
H CORDIC_STATUS status status clear unused H

Table 9.13: CORDIC register organization - CORDIC status register

H register name bit 0-31 H
CORDIC_X_DATA x data in
CORDIC_Y_DATA y data in
CORDIC_Z_DATA =z data in

Table 9.14: CORDIC register organization - CORDIC x, y and z data in

A typical sequence of operations for the CORDIC peripheral is represented in figure 9.5.

60

CHAPTER 9. CORDIC

H register name bit 0-31 H
CORDIC_X_OUT x data out
CORDIC_Y_ OUT y data out

Table 9.15: CORDIC register organization - CORDIC x and y data out

Figure 9.5: CORDIC operation

Write 0x01 in the control Write 0x02 in the control
register (CORIDC_CTRL) to register (CORIDC_CTRL) to
start the rotation circular Load x_data, y_data and z_data by writing start the vectoring
mode in CORIDC_X_DATA, CORIDC_Y_DATA and hyperbolic mode
CORIDC_Z_DATA

N A

Wait for the status register Wait for the status register
(CORIDC_STATUS) to become (CORIDC_STATUS) to become
0x01 (CORDIC operation done) 0x01 (CORDIC operation done)
N A
Clear the status register Clear the status register
(CORDIC_STATUS) by writing (CORDIC_STATUS) by writing
0x02 to it 0x02 to it

Get the results by reading from
registers CORDIC_X_OUT and
CORDIC_Y_OUT

A

CORDIC state machine

To control the CORDIC core a state machine has been implemented; the purpose for this particular
state machine is to control, with the right timing, the control signals to

e Handle muxes control input present in the CORDIC core according to the mode selected

e Generate the sampling and done signals used by the APB wrapper itself to effectively com-
municate with the RISC-V microcontroller about its state of operations

The complete state machine’s operation is represented in figure 9.3

The output signals coming from the state machine serve the following purpose
e EN_REGS : registers enable going to the CORDIC stage
e STEP : signal used to control the multiplexer between X_input and X_output

e CONYV : signals used to control the multiplexer between the standard X_next result and the
result produced for convergence reason at iteration kit! =3 * k! + 1

e OPERATION : signals used to determine the operation mode (rotation or vectoring)

e SAMPLE : signal used by the APB wrapper to sample the data coming from the CORDIC
core

61

CHAPTER 9. CORDIC

Figure 9.6: State machine’s operation

State machines's states : Ve N\
e IDLE P IDLE

e START_ROT \ /AN
o START_VECT state_input_rot == rb/ N _ TS state_intput_vect == 1'b1
* SKIP_ROT p g
« SKIP_VECT e ~
* RUN L L |
« RUN_VECT - = N —

/ N\ 7 N\
« CONV_VECT (\
« STOP_EN_ROT (| START_ROT) [smrveer
* STOP_EN_VECT \ o)
* DONE

N4 \/

State machine’s outputs Ve N // -

/ \
N E:E:EGS (SKiP_ROT) [sapvecr)
. \

\ \
* CONV = - ~ 4
« OPERATION
* SAMPLE \/
+ DONE Ve N P ™~ Ny~ ™~
« COUNTER (RUN) (RUN_VECT } /> CONV_VECT |

S/ AN / AN
: : \J//

T N\ Ve ™

[storenroT) [sTOP_EN_VECT |

N 2

\\
AN state_input_clear == 1'b1
~
\\ = \L
i DONE
N

e DONE : signal used by the APB wrapper to indicate that the current computation has
finished

e COUNTER : integer used to indicate the current iteration of the CORDIC algorithm. The
CORDIC core uses this integer to shift by the right amount the current data.

The states of the state machine are as follows

e IDLE : idle state, is the starting state at reset and after each computation
e START_ROT : a CORDIC computation in rotation mode is started

e SKIP_ROT : first iteration of a computation in rotation mode

e RUN : CORDIC algorithm in rotation mode

e STOP_EN_ROT : last iteration for a computation in rotation mode

e START_VECT : a CORDIC computation in vectoring mode is started

e SKIP_VECT : first iteration of a computation in vectoring mode

e RUN_VECT : CORDIC algorithm in vectoring mode

e CONV_VECT : CORDIC algorithm in vectoring mode during a convergence iteration
e STOP_EN_VECT : last iteration for a computation in vectoring mode

e DONE : computation done

In figures from 9.4 to 9.6 is an example of the state machine operation. As an example only

the rotation mode has been represented (left branch of the diagram in figure 9.3). A code snippet
of the whole state machine is in the appendix chapter.
As it’s possible to see in figure 9.4 the rotation mode is activated by an high pulse of the sig-
nal state_input_rot while on IDLE state; the rotation mode starts by activating the registers
through EN_REGS while in START_ROT state, asserting STEP one clock cycle later (while
in SKIP_ROT state) and then activating the counter (while in RUN state). In figure 9.5 it’s
possible to see the final part of the computation; during the DEPTH — 1 stage the state changes
to STOP_EN_REG, where an high pulse of SAMPLE is activated (thus sampling the result at
the following clock cycle). During the next clock cycle (thus in DONE state) the result is sampled
and stored in cordic_regs[5] and cordic_regs[6]. The state is stuck to DON E until an high pulse
of state_clear which reset the state machine to the IDLE state (as in figure 9.6).

62

€9

| [Baseling =0
EF| Cursor-Bageling == 1,337 ,000,000ps

MName &~| Cursor

E-2 4

Figure 9.7: State machine initial operation

OIAHOD 6 HHILdVHD

¥9

&y Baselinev=10
EF| Cursor-Baseline = 1,357 ,000,000p35

MName & | Cursor

o

Figure 9.8: State machine intermediate operation

OIAHOD 6 HHILdVHO

<9

| [Baseline =0
FT| Cursor-Baseline »= 1,387 ,000,000ps

MName &~ Cursor

E-22

Figure 9.9: State machine final operation

OIAHOD 6 HHILdVHD

CHAPTER 9. CORDIC

CORDIC pre and post processing

The CORDIC core embed a pre and post processing block; these two blocks are used during the
sine-cosine operations in order to place the angle received as input in the convergence interval for
the algorithm itself. The CORDIC algorithm, in fact, for the sine-cosine operation converges only
if the input angle is between 90° and -90°. This is due to the fact that the sum of the angles
stored in the LUT amounts to around 100° (99.86° for the first 12 entries in the LUT). Limiting
the convergence range to 90° -/- -90° ease the rotation decision.

Figure 9.10: Cordic rotation

90°

rotated
vector

4

180° rotation ——» convergence

quadrant

7
convergence
quadrant
/ /

-90°

180°

initial
vector

The pre-processing block looks at the input angle and rotates it by 180° if it’s outside the
restricted convergence interval. If the input angle gets shifted the pre-processing block raises a
signal going to the post processing block. The post-processing block is responsible of outputting the
results for sine and cosine; if the pre-processing block raises the rotate signal the post-processing
block outputs the negated results obtained from the CORDIC core. Figure 9.10 gives a visual
representation of the convergence interval and the rotation operation for a vector outside of it.

66

CHAPTER 9. CORDIC

Figure 9.11: CORDIC complete architecture

APB bus

APB wrapper

rotate

X, Y, Zinputs

pre-processing

CORDIC core

post-processing

X, Y, Z outputs

67

CHAPTER 9. CORDIC

9.0.6 Data representation

A fixed point integer representation for x and y data has been adopted. This particular choice,
explained further in the next two subsections, has one advantage and one drawback, namely

e Ease the design phase allowing the use of integer adder/subtractor instead of floating point
ones (saving area and complexity in the process)

e To get a real, as in floating point, representation of the results a further floating point division
is needed. This division is handled by the microcontroller core

To be noted is that this floating point division is achieved by multiple operations, not neces-
sarily involving division/multiplication operations. The GCC compiler is able in fact to translate
a floating point division in a series of integer operations.

For the z data, or the data representing the angle, a different approach has been adopted, called
binary scaling [25]. The binary scaling approach is a way of representing angles in such a way that
the addition/subtraction operations would work in two’s complement. The idea behind binary
scaling is to use 32 bits to represent 360 degrees. In particular

0° 90° 180° 270°
0x00000000 0x40000000 0x80000000 0xC0000000

Table 9.16: CORDIC angle representation

This type of angle representation gives a similar resolution than a floating point one considering
that the angles interval is (very) limited.
Cosine and sine operations

As highlighted in the first section, the CORDIC peripheral can be used to compute sine and cosine
of an angle; this is achieved through

e Load the angle in register z

e Load register x with 1/K (scaling factor)

e Load register y with 0

e Start the CORDIC core in circular rotation mode

At the end of the computation the value of Z_output is going to converge to zero, while X _output
and Y _output are going to be cosine and sine of the angle placed in register z respectively.

As explained in the previous subsection, this particular peripheral has an integer fixed point rep-
resentation for the numbers in X and Y registers. The following example (on 16 bits, but the idea
behind it is applicable to any number of bits) shows how the number 1/K (namely 0.607253) is
represented.

| bit 15 bit 14 bits 13-0 |
H sign bit integer part bit fractional part bits H

Table 9.17: CORDIC data representation

To represent the number 1.75 we would have

This kind of representation allows us to retain the maximum resolution on the final result. As
explained before the final result (an integer number in this case represented in 16 bits) have to be
divided by 16384 (2 to the 14th, least significant bit of the integer part) to obtain a floating point
number in the range of 4+1/-1 representing sine and cosine of the initial angle. In our specific case
the number 1/K (0.607253) can be approximated to

This number would then be loaded into the X_data_in register to start the sine/cosine compu-
tation.

68

CHAPTER 9. CORDIC

H bit 15 bit 14 bit 13 bit 12 bits 11-0 H
H 0 1 1 1 0 H

Table 9.18: 1.75 representation

H bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bitSH
H 0 0 1 0 0 1 1 0 H

Table 9.19: 0.607253 representation

H bit 7 bit6 bit5 bit4 bit3 bit2 bitl bitOH
H 1 1 0 1 1 1 0 0 H

Table 9.20: 0.607253 representation

Square root operation

To compute the square root of a numberv it is needed to

e Load register X_DATA_IN with v + 0.25
e Load register Y_DATA _IN with v - 0.25

e Start the CORDIC core in hyperbolic vectoring mode

The CORDIC algorithm for the square root is particularly sensitive to inputs outside the range
2/0.5, this is the reason why an initial pre-processing on the input v is needed. This pre-processing
is needed to find the value n, which is the number of leading zeros in the binary representation
of v, needed to verify the equation v = u * 2" with the value of u comprised between 0.5 and 2.
This relation is useful since at the end of the CORDIC algorithm with the pre-processing step it’s
possible to obtain the value of the square root of v since /v = \/u 27/2 Given this last equation
it’s easy to see the reason for a further condition on n; n has to be an even number.

The following example (on 16 bits, but the idea behind it is applicable to any number of bits)
clarifies the steps taken to compute the square root of an integer number v. Let’s suppose v = 7,
which in binary has a representation of 111. The first step is to find the number of bits of v, which
in our case is three. Since the number u that we are going to find at the end of this pre-processing
phase has to be comprised between 0.5 and 2 our 16 bits integer representation is going to be

H bit 15 bit 14 bits 13 bits 12-0 H
H sign bit integer part bit integer part bit fractional part bits H

Table 9.21: CORDIC data representation

After finding the number n the binary representation of the number v has to be shifted left
following this rule

o If even shift left by 15 -n - 2
o If odd shift left by 15 -n - 1

This rule guarantees that the value of v + 0.25 doesn’t overflow and changes accidentally the
sign bit. In our representation the value of 0.25 is

At this point the shifted value of 0.25 is added and subtracted to v, thus generating the values to
be loaded into the registers X_DATA_IN and Y_DATA _IN. At the end of the CORDIC computation
with the before mentioned values in register X_DATA_OUT is present u / K, where K is the scaling
factor (namely 1.2075). This value is processed as follows, depending on the parity of n computed
in the first pre-processing step

69

CHAPTER 9. CORDIC

H bit 15 bit 14 bits 13 bits 12 bit 11 bits 10-0 H
H 0 0 0 0 1 0 H

Table 9.22: 0.25 representation

o If even the result is shifted left by n/2

e If odd the result is shifted left by (n-1)/2
This intermediate result (corresponding to /v / K) has to be multiplied by the scaling factor

(1.2075). As in the cosine/sine operation this result (now corresponding to v/v) has to be divided
by 8192 (2 to the 13th, least significant bit in the integer part).

70

CHAPTER 9. CORDIC

9.0.7 Testing phase

To test the correctness of the CORDIC peripheral an automatic test has been developed. This test
compares the results for sine, cosine and square root obtained through the CORDIC peripheral
against the results obtained through math.h C library. A code snippet for this test can be found in
the appendix chapter. Every result have been printed using the UART peripheral, and the printed
results have been redirected to a log file thanks to the serial monitor Tera Term. This process has
been repeated for different number of total iterations of the CORDIC algorithm, in particular 10,
15 and 20.

To guarantee that the comparison between cordic and math.h results is a reasonable one the
same comparison between math/h’s results and excel’s results (taken as golden standard) is per-
formed. Having a reasonably small diference between the two methods allows to consider math.h’s
results as the golden standard.

The following tables and histograms give a visual representation of the comparison results

H median_sin average_sin median_cos average_cos median_sqrt average_sqrt H

H 1,1270 10~* 1,2970 10-* 11,1978 10~* 1,421910~% 8,6524 10~2 §8,2140 102 H

Table 9.23: CORDIC 20 results

H median_sin average_sin median_cos averagecos median_sqrt average_sqrt H

H 1,1270 10~* 1,2970 10-* 11,0398 10~* 11,2305 10~* 8,5147 10~2 8,0540 102 H

Table 9.24: CORDIC 15 results

H median_sin average_sin median_cos average_cos median_sqrt average_sqrt H

H 28213 10~% 13,3816 10~% 19,0920 10~° 13,3816 10~* 11,2590 10~T 11,2475 1071 H

Table 9.25: CORDIC 10 results

H median_sin averagesin median_cos average_cos median_sqrt average_sqrt H

H 29126 10~% 4,4959 10~% 3,0738 10~ 4,9017 10~° 2,0013 10~% 2,0391 10~ F H

Table 9.26: math.h results

Given the fact that the absolute and the percent error between math.h’s results and excel’s
results differ by a factor of 10~® for the absolute error of sine and cosine and by a factor of 10~
for the percent error of the square root the approximation above (considering math.h’s and excel’s
results as the golden standard) holds true.

71

CHAPTER 9. CORDIC

Figure 9.12: CORDIC 20 sin results

abs_err_sin
200
180
160
140
120
100
80
60
: il
28 I Illll-l
3 3 3 3 3 3
o~ - - o~ o™ <
Figure 9.13: CORDIC 20 cos results
abs_err_cos
200
180
160
140
120
100
80
60
: i
28 IIIIIIIII.I.I-----_-__ _

2,00E-05
1,00E-04
1,80E-04
2,60E-04
3,40E-04
4,20E-04
5,00E-04
5,80E-04
6,60E-04

72

CHAPTER 9. CORDIC

Figure 9.14: CORDIC 20 sqrt results

%_err_sqrt

180

160

140

120

100

80

60

40 n

20 I

0 L=
& & S & & 3 5 3 3
L] o wn ~ [e)] i i i L]

Figure 9.15: CORDIC 15 sin results
abs_err_sin

200

180

160

140

120

100

80

60

40 I

28 II.-I_

2,00E-05
1,00E-04
1,80E-04
2,60E-04
3,40E-04

4,20E-04

73

CHAPTER 9. CORDIC

Figure 9.16: CORDIC 15 cos results

2

o

abs_err_cos
250
200
150
100
i IIIIIIII'
0 IIIIII.I.-.-- __________ —
wn < < < < < <
o @ 2 2 @ @ @
w w w w w w w
o o o o o o o
S S ® © <. N S
o~ i i o~ (a2 < wn
Figure 9.17: CORDIC 15 sqrt results
% _err_sqrt
180
160
140
120
100
80
60
20 nl
| -

o

1,00E-02
3,00E-02
5,00E-02
7,00E-02
9,00E-02
1,10E-01
1,30E-01
1,50E-01
1,70E-01

74

CHAPTER 9. CORDIC

Figure 9.18: CORDIC 10 sin results

abs_err_sin

200
180
160
140
120
100
80
60
40
20

5,00E-05
2,50E-04
4,50E-04
6,50E-04
8,50E-04
1,05E-03

Figure 9.19: CORDIC 10 cos results

abs_err_cos

200
180
160
140
120
100
80
60
40
20

1,00E-04
3,00E-04
5,00E-04
7,00E-04
9,00E-04
1,10E-03

(0]

CHAPTER 9. CORDIC

Figure 9.20: CORDIC 10 sqrt results

%_err_sqrt
400
350
300

250

20

15

10 II

Figure 9.21: math.h sin results

o O O O o

5,55E-02
7,55E-02
9,55E-02
1,16E-01
1,36E-01
1,56E-01
1,76E-01

abs_err_sin

500
450
400
350
300
250
200
15
10
5

o O O

o

1,00E-08
5,00E-08
9,00E-08
1,30E-07
1,70E-07
2,10E-07

76

CHAPTER 9. CORDIC

Figure 9.22: math.h cos results

abs_err_cos

350
300
250
200
150
100
50

1,00E-08
5,00E-08
9,00E-08
1,30E-07
1,70E-07

2,10E-07

Figure 9.23: math.h sqrt results

%_err_sqrt

250

200

150

10

o

5

o

o

1,50E-07
7,50E-07
1,35E-06
1,95E-06
2,55E-06
3,15E-06
3,75E-06
4,35E-06
4,95E-06
5,55E-06

7

CHAPTER 9. CORDIC

The graphs show that the histograms for the 15 and 20 iteration implementations present
similar results; the difference in performance can be seen looking at tables 9.23 and 9.24. The 20
iterations implementation has slightly worse median and average results. This is due to the fact
that continuing the CORDIC algorithm once the convergence is reached tend to impact the final
result, thus degrading it. Unsurprisingly the 10 iteration implementation has the worst median
and average results for each operation out of the three implementations tested (not enough steps
have been performed for the result to converge to the correct one).

math.h comparison

As highlighted in the previous subsection the initial correctness test has been performed comparing
the CORDIC results to the math.h outputs; a further comparison between the CORDIC and
math.h approach for the sine, cosine and square root operation is necessary. This additional
comparison gauge the performance of a custom peripheral approach against a software one. The
results for time and memory occupation are taken for

e A sine operation followed by a cosine operation of the same angle
e A square root operation

Both operations are repeated in case of IMC and IC instructions sets; this means that in the
IC case the multiplication unit is not used.

H CORDIC time [cc] CORDIC ROM math.h time [cc] math.h ROM H
H 3130 9 kB 24417 19 kB H

Table 9.27: sine and cosine operations IMC

H CORDIC time [cc] CORDIC ROM math.h time [cc] math.h ROM H
H 6136 9.5 kB 57135 19.5 kB H

Table 9.28: sine and cosine operations IC

H CORDIC time [cc] CORDIC ROM math.h time [cc] math.h ROM H
H 2783 8.5 kB 1072 13.1kB H

Table 9.29: square root operation IMC

H CORDIC time [cc] CORDIC ROM math.h time [cc] math.h ROM H
H 4889 9 kB 1072 13.7 kB H

Table 9.30: square root operation IC

As it’s possible to see every implementation done through the CORDIC approach has a clear
edge on the memory occupation side; in fact for both tests, sine-cosine and square root, in both
instruction set conditions, IMC and IC, the CORDIC approach presents a smaller ROM occupation
(in case of the sine-cosine operations tests the CORDIC ROM occupations amount to half of the
software approach). In terms of test time the CORDIC approach presents a clear advantage in
the sine-cosine tests (test time is between 8 to 9 times faster), however for the square root test the
software approach is between 3 to 5 times faster. Figure 9.6 gives a visual representation for the
previous results

78

CHAPTER 9. CORDIC

101 ‘
61 57,135 |
= 4f .
2.
[}
E 24,417
6,136 4,889
3,13 0 278%72 4072
ol m L] — =
T T T T
sin_cos IMC sin_cos IC sqrt IMC sqrt IC
[00CORDIC I Umath.h |

9.0.8 Further improvements

(a) Tests time

ROM occupation [kB|

20 |- 19 19.5
By 13.7
13.1 =
10| 9.5
I I ’_‘\ I
sin_cos IMC sin_cos IC sqrt IMC sqrt IC

\ 00CORDIC I math.h \

(b) ROM occupation

Figure 9.24: CORDIC - software approach comparison

A shortcoming of this CORDIC peripheral implementation is the fact that the data is represented
in an integer fixed point representation. This is necessary for the CORDIC algorithm to work (the
algorithm works on integer numbers), however poses a significant drawback; the data has to be
converted back to floating point by software. A further improvement would be to place a float to
int and an int to float converter both in the pre and post processing blocks. This would allow to
place floating point data in the input registers (useful for computing the square root of a floating
point number) and to retrieve an already converted to float number, thus ease the microcontroller
of the conversion itself.

79

Chapter 10

Front-end

The final activity of this master thesis is the front-end. This part is divided into

e Linting of newly developed RTL code

e Synthesis with DesignCompiler

10.0.1 Linting

The linting activity has been performed with AscentLint [26], a tool from Reallntent. AscentLint
takes as input the RTL to be analyzed alongside a set of predetermined rules, checks the RTL and
produces a log with the part of the RTL code that do not match the input set of rules. With
Reallntent it is possible to check

e coding style
e language construct usage

e synthesizable RTL

This activity, run at RTL stage, detect possible bugs in order to minimize the number of design
iterations which could occur due to bug detection downstream in the flow. Figure 10.1 gives a
visual representation of the Reallntent flow.

Figure 10.1: Reallntent flow

RTL/Metlist

Ascent Lint

80

CHAPTER 10. FRONT-END

Reallntent has an integrated debug environment named iDebug that facilitates the error cor-
rection activity. Figure 10.2 gives a visual representation of iDebug.

Figure 10.2: iDebug

10.0.2 Synthesis

The synthesis step has been performed using Design Compiler, a tool from Synopsis; its purpose
is to, starting from the RTL design, output the design’s gate level netlist. The synthesis has been
performed pointing to a Maxim’x propietary library of gates. As represented in figure 10.3 in order
to get to a final gate level netlist Design Compiler needs the following inputs

e RTL description
e Timing contraints

o Liberty/CCS libraries

Figure 10.3: Design Compiler inputs/outputs

Timing | [Liberty/ccs (| [Milkyway [| | Floorplan/DEF
Constralpts Libraries Libraries* F'Iet ,

Sl =iy = i

Scan
Insertion

RTL

DesignCompiler (DCT/DCG*)

|

| Gate-Level
Netlist

Reports

RTL description

The RTL collection of files given as input to Design Compiler are the files used during the MCU’s
simulation activity performed to validate both the microcontroller core and the peripherals inte-
gration step. In particular the collection of files comprise

e MCU’s RTL files
e UART, SPI, I2C RTL files
e CORDIC RTL files

81

CHAPTER 10. FRONT-END

Timing constraints

The timing contraints are applied to input and output ports, in particular
e Clock frequency, jitter and slope transition are specified
e Input delays relative to the system clock are specified

e Output delays relative to the system clock are specified

Liberty /CCS libraries
Since the MCU’s design is made of two RAM memories (data and instruction RAM), the liberty

(.lib) files for both memories had to be generated. The liberty files give a characterization for
timing and area for the memories; this characterization is necessary for Design Compiler in order
to give an estimate for the design’s performance and area parameters.

Synthesis script

To perform the sythesis step an internal script has been provided. The following points are a rough
summary of each step performed by the script

e Loading each design file (.sv, .lib) + analyze step to check the correctness of each input file
e Applying timing constraints

e Initial hierarchical syntesis

Final flattened syntesis

Fianl report annotation

Final netlist annotation

Figure 10.4 gives a representation of a typical design compiler flow.

Figure 10.4: Design Compiler flow

HDL design
(o] ——

Set search paths and timing libraries

!

Load RTL and elaborate the design

!

Apply constraints +
Apply optimization settings

Synthesize design

'

Analyze reports EE—

b

‘ Export design r

Change constraints

No

Meet

L]
constraints |

| , |

[Netlist/DDC][Reports] [Milkyway DB]

82

CHAPTER 10. FRONT-END

Reports

After the flattened synthesis step reports for area and timing are annotated. The final result of
the synthesis step are

H frequency [MHz] total area [um?] comb area [pm?] non comb area [um?] black boxes area [um?] H

H 25 3088125 163856 150139 2774130 H

Table 10.1: synthesis reports

A couple of points have to be noted for the results present in table 10.1; the aim of this pre-
liminary synthesis step is to gauge the area occupation for the MCU. This is the reason why the
maximum clock frequency is 25 MHz.

Looking at the area parameter is possible to note that around 90% of the area is taken by the
black boxes area; the black boxes in this particular design are the two RAM memories. The size
of the RAM memories has been chosen such that they would be big enouch to contain data and
instruction of the most memory expensive test performed, which is the CORDIC precision test.
The size used in this preliminary synthesis is not important since the area parameter of importance
is relative to the MCU.

The total area of the MCU, both combinational and non combinational, amount to around 0.3
mm?. The area of the MCU includes

e RISC-V microcontroller
e UART, SPI, I2C peripherals
e CORDIC peripheral

Place and Route

A preliminary place and route has been performed by a Maxim’s layout engineer. The result of
the place and route process is

Figure 10.5: MCU place and route

S EEENYY' & T ey

83

Chapter 11

Conclusion

In conclusion the objectives set out in the abstract have been met, in particular
e Toolchain bring up for RISCV
e Benchmarking activity
e General purpose peripherals integration
e CORDIC peripheral development

e Front-end activity

Compared to a state machine designed for a specific application the RISCV IP microcontroller
is a more flexible solution in a low area occupation. The benchmarking results confirm that the
performances of the RISCV microcontroller (with the zero-riscy core) is not suitable for floating
point or compute intensive DSP applications, rather for general purpose I/O applications.

The presence of two busess (AHB and APB) allows the development of application specific periph-
erals to make up for the lack in performances at the expense of additional area.

A stronger industrial adoption of the RISCV instruction set can only benefit the movement in
terms of

e Availability of new and improved IDEs

e Availability of new and improved RISCV based microcontroller designs
Possible future developments for this project are

e Completing the front-end activity by performing STA

e Production of a test chip

84

Appendix A

Project sources

A.1 Memories RTL model
A.1.1 ROM RTL model

//fully synchronous rom model
//numByte is the number of Bytes of the memory
module rom #(parameter numByte = 512%1024)
(input logic romO_clk,
input logic romO_ce,
input logic [($clog2 (numByte) —2)—1:0] rom0O_addr,
output logic[31:0] romO_rdata);

//1 MiB = 4/ x 256 KiB => each memory location is made of 32 bits
logic [31:0] rom[(1<<(($clog2(numByte))—2))—1:0];

//rom initialization
initial $readmemb(” file .mem” , rom);

//read capability
//read the complete word if rom0O-ce is high
always_ff @Q(posedge romO_clk) begin
if (rom0O_ce)
rom0_rdata <= rom|[rom0O_addr];
end

endmodule

85

A.1. MEMORIES RTL MODEL APPENDIX A. PROJECT SOURCES

A.1.2 RAM RTL model

//fully synchronous ram model
//numByte is the number of Bytes of the memory
module ram #(parameter numByte = 128%1024)
(input logic ramO_clk,
input logic ramO_ce,
input logic ramO_we,
input logic [3:0] ramO_be,
input logic [($clog2 (numByte)—2)—1:0] ram0O_addr,
input logic[31:0] ram0O_wdata,
output logic[31:0] ramO_rdata);

//128 KiB = 4 % 32 KiB => each memory location is made of 32 bits
logic [31:0] ram[(1<<(($clog2 (numByte))—2))—1:0];

//write capability
//a memory location is written if
//ram0_ce and ram0O-we are high
//the corresponding bit in ram0_be is high
always_ff @Q(posedge ram0_clk) begin
if (ramO_ce) begin
if (ramO_we)
if (ramO_be[0])
ram[ram0_addr][7:0] <= ram0O_wdata[7:0];
if (ramO_be[1])
ram|[ram0_addr][15:8] <= ram0O_wdata[15:8];
if (ramO_be[2])
ram [ram0_addr][23:16] <= ram0O_wdata[23:16];
if (ramO_be[3])
ram [ram0_addr][31:24] <= ramO_wdata[31:24];
end
end

//read capability
//read the complete word if ramO_ce is high
always_ff @Q(posedge ram0_clk) begin
if (ramO_ce)
ram0_rdata <= ram|[ram0O_addr|;
end

endmodule

86

APPENDIX A. PROJECT SOURCES A.2. STATE MACHINE RTL MODEL

A.2 State machine RTL model

//input to state machine
logic state_input_rot , state_input_vect , state_clear;

assign state_input_rot = PENABLE & PSEL & PWRITE & PWDATA[O0] &
(PADDR, = 32’h00000000);

assign state_input_vect = PENABLE & PSEL & PWRITE & PWDATA[1] &
(PADDR = 32’h00000000);

assign state_clear = PENABLE & PSEL & PWRITE & PWDATA[1] &
(PADDR = 32’h00000004);

//state machine

parameter IDLE = 4’b0000,
START ROT = 4’b0001,
START_VECT = 4’b0010,
RUN = 4’b0011,
DONE = 4’b0100,
SKIP_ROT = 4°b0101,
STOP_EN_VECT = 4°b0110,
RUN_VECT = 4’b0111,
CONV_VECT = 4’b1000,
SKIP_VECT = 4’b1001,
STOP_EN_ROT = 4’b1010;

logic [3:0] state, next_state;
logic out_rot, out_vect, sample, done;

integer counter_s;
logic en_reg_s, step_s, conv_s;

logic operation_s;

always_comb //(state, state_input, state_clear)

begin
case(state)
IDLE
begin
if(state_input_rot = 1’bl)
next_state = STARTROT;
else if(state_input_vect = 1’bl)
next_state = START_VECT;
else
next_state = IDLE;
end
START ROT :
begin
next_state = SKIP_ROT;
end
SKIP_ROT :
begin
next_state = RUN;
end
START_VECT
begin
next_state = SKIP_.VECT;
end
SKIP_VECT :
begin

87

A.2. STATE MACHINE RTL MODEL

APPENDIX A.

PROJECT SOURCES

next_state = RUNVECT;

end
RUN :
begin
if (counter = DEPTH — 2)
begin
next_state = STOP_.EN_ROT;
end
else
begin
next_state = RUN;
end
end
RUN_VECT
begin
if (counter = DEPTH — 2)
begin
next_state = STOP_EN_VECT;
end
else if(counter = 4 — 1)
begin
next_state = CONV_VECT;
end
else if(counter =— 13 — 1)
begin
next_state = CONV_VECT;
end
else
begin
next_state = RUN_VECT;
end
end
CONV_VECT :
begin
if (counter = DEPTH — 2)
begin
next_state = STOP_EN_VECT;
end
else
begin
next_state = RUN_VECT;
end
end
STOP_EN_VECT :
begin
next_state = DONE;
end
STOP_EN_ROT :
begin
next_state = DONE;
end
DONE :
begin
if(state_clear = 1’bl)
next_state = IDLE;
else
next_state = DONE;
end

88

APPENDIX A. PROJECT SOURCES A.2. STATE MACHINE RTL MODEL

default

next_state = IDLE;
endcase
end

always_ff @Q(posedge CLK or negedge RSTn)

begin

if (RSTn = 1’b0)

begin
counter_s <= 6'd0;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’b0;
step-s <= 1’b0;
conv_s <= 1’b0;
operation_s <= 1’b0;

end

else

case(state)

IDLE

begin
counter_s <= 6’d0;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’b0;
step_s <= 1’b0;
conv_s <= 1’b0;
operation_s <= 1’b0;

end

START ROT :

begin
counter_s <= 6'd0;
out_rot <= 1’bl;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
/11117777
en_reg.s <= 1’bl;
step-s <= 1’b0;
conv_s <= 1’b0;
operation_s <= 1’b0;

end

SKIP_ROT :

begin
counter_s <= 6°d0;
out_rot <= 1’bl;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’bl;
step_s <= 1’bl;

89

A.2. STATE MACHINE RTL MODEL APPENDIX A. PROJECT SOURCES

conv_s <= 1’b0;
operation_s <= 1’b0;

end

START_VECT :

begin
counter_s <= 6°d0;
out_rot <= 1’b0;
out_vect <= 1’bl;
sample <= 1’b0;
done <= 1’b0;
s
en_reg.s <= 1’bl;
step-s <= 1’b0;
conv_s <= 1’b0;
operation_s <= 1’bl;

end

SKIP_VECT :

begin
counter_s <= counter_s + 1;
out_rot <= 1’b0;
out_vect <= 1’bl;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’bl;
step-s <= 1’bl;
conv._s <= 1’b0;
operation_s <= 1’bl;

end

RUN :

begin
counter_s <= counter + 1;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’bl;
step-s <= 1’bl;
conv_s <= 1’b0;
operation_s <= 1’b0;

end

RUN_VECT :

begin
counter_s <= counter + 1;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’bl;
step_s <= 1’bl;
conv._s <= 1’b0;
operation_s <= 1’bl;

end

CONV_VECT :

begin

counter_s <= counter + 1;

90

APPENDIX A. PROJECT SOURCES A.2. STATE MACHINE RTL MODEL

out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
/11117777
en_reg._s <= 1’bl;
step_s <= 1’bl;
conv_s <= 1’bl;
operation_s <= 1’bl;

end

STOP_EN_VECT :

begin
counter_s <= counter + 1;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’bl;
done <= 1’b0;
s
en_reg._s <= 1’bl;
step_s <= 1’bl;
conv_s <= 1’b0;
operation_s <= 1’bl;

end

STOP_EN ROT

begin
counter_s <= counter + 1;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’bl;
done <= 1’b0;
s
en_reg._s <= 1’bl;
step-s <= 1’bl;
conv_s <= 1’b0;
operation_s <= 1’b0;

end

DONE :

begin
counter_s <= counter_s;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’bl;
/111177
en_reg._s <= 1’b0;
step_s <= 1’b0;
conv._s <= 1’b0;
operation_s <= 1’b0;

end

default

begin
counter_s <= 6’d0;
out_rot <= 1’b0;
out_vect <= 1’b0;
sample <= 1’b0;
done <= 1’b0;
s
en_reg._s <= 1’b0;

91

A.2. STATE MACHINE RTL MODEL APPENDIX A. PROJECT SOURCES

step-s <= 1’b0;
conv_s <= 1’b0;
operation_s <= 1’b0;

end

endcase

end

always_ff @Q(posedge CLK or negedge RSTn)
begin
if (RSTn = 1’b0)
state <= IDLE;
else
state <= next_state;
end

//output assignment

assign operation_o operation_s;
assign en_reg = en._reg_s;

assign step = step_s;

assign conv = conv_s;

assign counter = counter_s;

92

APPENDIX A. PROJECT SOURCES

A.3. C CODE

A.3 C code

A.3.1 March C

#include ”apb_driver.h”
#include <stdlib .h>
#include <stdbool.h>

int mem[16] = {OxFFFFFFFF,
0x00000000 ,
OxEEEEEEEE,
Ox11111111,
0xDDDDDDDD,
0x22222222 ,
0xCCCCCCCC,
0x33333333,
0xBBBBBBBB,
0x44444444 |
OxAAAAAAAA,
0x55555555 ,
0x99999999 ,
0x66666666 ,
0x88888888 ,
Ox77777TTT }

int memory[3053];

int zero;
int one;

int start_addr = SOC_PERIPHERALS_BASE_ADDR;

bool stop = false;

int
main (void)
{
int address = start_addr;
for (int i = 0; i < 8 && !stop;

zero = mem|[2x1];
one = mem[2x%i+1];

test_running = 1;
test_outcome = 0;
/ /<> wo
for (int j = 0; j < 3053 && !stop; j++){
memory[j] = zero;
}
//>r0, wl
for (int t = 0; t < 3053 && !stop; t++){
if (memory[t] != zero){
stop = true;

writeAPB (address ,0x0000000A);
writeAPB (address+4,t);

}

memory [t] = one;

}
//>r1, w0

93

A.3. C CODE APPENDIX A.

PROJECT SOURCES

for (int f = 0; f < 3053 && !stop; f++){
if (memory[f] != one){
stop = true;
writeAPB (address ,0x0000000B);
writeAPB (address+4,f);
¥
memory [{] = zero;
}
//<>r0
for (int y = 0; y < 3053 && !stop; y++){
if (memory[y] != zero){
stop = true;
writeAPB (address ,0x0000000C);
writeAPB (address+4,y);
}
}
//<r0,wl
for (int r = 3052; r >= 0 && !stop; r——){
if (memory[r] != zero){
stop = true;
writeAPB (address ,0x0000000D);
writeAPB (address—+4,r);
}
memory [r] = one;
}
//<rl,wo
for (int h = 3052; h >= 0 && !stop; h—){
if (memory[h] != one){
stop = true;
writeAPB (address ,0x0000000E) ;
writeAPB (address+4,h);
}
memory [h] = zero;
}
//<>r0
for (int n = 0; n < 3053 && !stop; n++){
if (memory[n] != zero){
stop = true;
writeAPB (address ,0x0000000F);
writeAPB (address+4,n);

}

test_running = 0;

if (stop = false){
test_outcome = 1;

}

while (1){}

94

APPENDIX A. PROJECT SOURCES A.3. C CODE

A.3.2 APB random test
#include 7 apb_driver.h”
#include <stdlib .h>
#include <stdbool.h>

int start_addr = SOCPERIPHERALS BASE ADDR;
int end_addr = SOC_PERIPHERALS END_TEST_ADDR;

int value_vect [10];
int address_vect [10];

bool stop = false;

int

main (void)

{
int num_iteration = 10;
int num_extern_for = 10;
int address = start_addr;
int add;
int temp;
test_running = 1;
test_outcome = 0;

for (int t = 0; t < num_extern_for && !stop; t++) {
for (int j = 0; j < num_iteration && !stop; j++){
temp = rand ()%4294967295;
value_vect[j] = temp;
address_vect[j] = address;

writeAPB (address , temp) ;

add = rand()%(end_-addr — start_addr);
add = add >> 2;

add = add << 2;

address = start_addr + add;

}
for (int i = 0; i < num_iteration && !stop; i++){
if (readAPB(address_vect[i]) != value_vect[i]){
stop = true;
}
}
}
test_running = 0;
if (stop = false) {
test_outcome = 1;
}
while (1){}

95

A.3. C CODE APPENDIX A. PROJECT SOURCES

A.3.3 CORDIC precision test

#include <math.h>
#include ”pulpino.h”
#include ”cordic.h”

int incorrect = 0;
int main(void) {

float sin_math;

float cos_math;

float sin_cordic;

float cos_cordic;

float angle_float = 0.0;
float angle_radians;
float precision = 0.001;
WORD angle_word;

int data_sqrt = 2;
float cordic_sqrt;
float fw_sqrt;

float precision_sqrt;

test_check = 0x01;

for(int i = 0; i < 3600; i++){
//sin/cos

angle_radians = degrees_to_radians (angle_float);
sin_.math = sin(angle_radians);
cos_math = cos(angle_radians);

angle_word = cordic_32_angle(angle_float);

sin_cordic = cordic_16_sin (angle_word);
cos_cordic = cordic_cos_half_word_read ();
cos_cordic = cos_cordic / cordic_16_div;

if ((sin_cordic > sin.math + precision) ||
(sin_cordic < sin_math — precision)){
incorrect = 1;

test_check = 0x00;
}

if ((cos_cordic > cos.math + precision) ||
(cos_cordic < cos_math — precision)){
incorrect = 1;
test_check = 0x00;

}

angle_float 4= 0.1;

//sqrt

cordic_sqrt = cordic_sqrt_half_word (data_sqrt);
fw_sqrt = sqrt(data_sqrt);

precision_sqrt = fw_sqrt /300;

if ((cordic_sqrt > fw_sqrt 4+ precision_sqrt) ||

96

APPENDIX A. PROJECT SOURCES A.3. C CODE

(cordic_sqrt < fw_sqrt — precision_sqrt)){
incorrect = 1;
test_check = 0x00;

}

data_sqrt 4= 1;

}

if(incorrect){
test_check = 0x00;
} else{
test_check = 0x02;
}

}

97

A.3. C CODE APPENDIX A. PROJECT SOURCES

A.3.4 1I2C master write - master code

L1111
/111 S main. e code/) /)11
N A ada

test_check = 0x01;

i2c_enable ();
i2c_master_mode_enable ();
i2c¢c_set_timeout (0x0400);
i2c_clock_low (0x0001);
i2c_clock_high (0x0001);

e
/111 interrupt_0.c code//////)//)/// /) /) /
A A ada

BYTE operation;

lfsr = I1fsr_16 (1fsr, mask);

if (1fsr != 0xACEL){
operation = lfsr & 0x0007;
switch (operation)

{

case 1 : i2c_master_write_byte (0x01, 0x01, (lfsr & 0x00ff));
break;

case 2 : i2c_master_write_half_word (0x01, 0x01, (lfsr & 0x00ff),
((lfsr & 0x01lfe) >> 1));
break ;

case 3 : i2c_master_write_three_bytes(0x01, 0x01, (lfsr & 0x00ff),
((lfsr & 0x01fe) >> 1), ((lfsr & 0x03fc) >> 2));
break;

case 4 : i2c_master_write_word (0x01, 0x01, (lfsr & 0x00ff),
((1fsr & 0x01fe) >> 1), ((lfsr & 0x03fc) >> 2),
((lfsr & 0x07f8) >> 3));
break;

case 5 : i2c_master_write_five_bytes(0x01, 0x01, (lfsr & 0x00ff),
((1fsr & 0x01fe) >> 1), ((lfsr & 0x03fc) >> 2),
((1fsr & 0x07f8) >> 3), ((lfsr & 0x0ff0) >> 4));
break ;

case 6 : i2c_master_write_six_bytes(0x01, 0x01, (lfsr & 0x00ff),
((lfsr & 0x01fe) >> 1), ((lfsr & 0x03fc) >> 2),
((1fsr & 0x07f8) >> 3), ((lfsr & 0x0ff0) >> 4),
((1fsr & 0x1fe0) >> 5));
break ;

default : i2c_master_write_six_bytes (0x01, 0x01, (lfsr & 0x00ff),
((lfsr & 0x01fe) >> 1), ((lfsr & 0x03fc) >> 2),
((1fsr & 0x07£8) >> 3), ((lfsr & 0x0ff0) >> 4),
((1fsr & 0x1fe0) >> 5));
break ;

}

} else {

test_check = 0x02;

}

e
/11 interrupt 1 oc code///) /) /1)) /) /))/
N A aada

test_check = 0x00;

98

APPENDIX A. PROJECT SOURCES A.3. C CODE

A.3.5 I2C master write - slave code

e ads
/11 S main e code /)1 11111 TS
s

i2c_enable ();
i2c_master_mode_disable ();
i2c_slaveO_address (0x01);
i2c_slaveO_address_enabled ();
i2c_clock_low (0x0001);
i2c_clock_high (0x0001);

i2c¢_stop_irq_enabled ();
for(int i = 0; 1 < 1000; i++){}

test_check "= 0x01;
test_check "= 0x01;
Ay
/11177 interrupt_ile.c code/// /))/)/ /) /) /)

éééé////<{//
testO;

BYTE operation;

i2c_clear_irq_stop ();

Ifsr = 1fsr_16 (1fsr , mask);

operation = i2c_rx_fifo_bytes_count ();

for (int 1 = 0; i < operation; i++){
test0 = i2c_read_data ();
switch (1)
{
case 0 : if(test0 != 0x01){
test_check "= 0x02;
}

break;
case 1 : if(test0 != (1lfsr & 0x00ff)){
test_check "= 0x02;

}

break;

case 2 : if(test0 != ((1lfsr & 0x01fe) >> 1)){
test_check "= 0x02;

}

break;

case 3 : if(test0 != ((1lfsr & 0x03fc) >> 2)){
test_check "= 0x02;

}

break;

case 4 : if(test0 != ((1lfsr & 0x07f8) >> 3)){
test_check "= 0x02;

}

break;

case 5 : if(test0 != ((1lfsr & 0x0ff0) >> 4)){
test_check "= 0x02;

}

break;

99

A.3. C CODE APPENDIX A. PROJECT SOURCES

case 6 : if(test0 != ((1lfsr & O0x1fe0) >> 5)){
test_check "= 0x02;
}
break ;
}

}

i2c_rx_fifo_flush ();

test_check "= 0x01;

test_check "= 0x01;

IER = OxFFFFFFFF;

}//,,enable,irq ();

100

APPENDIX A. PROJECT SOURCES A.3. C CODE
A.3.6 I2C master read - master code
111
/1 S main e code /)11
4;/////g{/{{//////////////////////////////////////
i2c:master,m;de,enable();
i2c_set_timeout (0x0400);
i2c_clock_low (0x0001);
i2c¢c_clock_high (0x0001);
i2c_set_rx_bytes_count (0x01);
i2c¢_stop_irq_enabled ();
test_check = 0x01;
A e ads
/117 interrupt_i2e.c code////)////////////
A A aaa
BYTE testO;
BYTE testl;
BYTE test2;
BYTE test3;
BYTE test4;
BYTE testb;
BYTE test6 ;
BYTE test7;
i2c_clear_irq_stop ();
?Witch(op)
case 0 : test0 = i2c_read_data ();
if(test0 != (1lfsr & 0x00ff)){
test_check = 0x00;
}
break;
case 1 : test0 = i2c_read_data ();
testl = i2c_read_data ();
if(test0 != (1lfsr & 0x00ff) | testl != ((lfsr & 0xO0lfe) >> 1)){
test_check = 0x00;
}
break;
case 2 : test0 = i2c_read_data ();
testl = i2c_read_data ();
test2 = i2c_read_data ();
if(test0 != (1lfsr & 0x00ff) | testl != ((lfsr & O0xO0lfe) >> 1) |
test2 = ((1fsr & 0x03fc) >> 2)){
test_check = 0x00;
}
break;
case 3 : test0 = i2c_read_data ();
testl = i2c.read_data ();
test2 = i2c_read_data ();
test3 = i2c_read_data ();
if(test0 != (1lfsr & 0x00ff) | testl != ((lfsr & O0xO0lfe) >> 1) |
test2 = ((1lfsr & 0x03fc) >> 2) | test3d != ((lfsr & 0x07f{8) >> 3)){

test_check = 0x00;

101

A.3. C CODE APPENDIX A. PROJECT SOURCES

}
break;

case 4 : test0 = i2c.read_data ();
testl = i2c_read_data ()
test2 = i2c_read_data ()
test3 = i2c_read_data ()
test4d = i2c_read_data ();
if(test0 != (1fsr & 0x00ff) | testl != ((lfsr & 0x01lfe) >> 1) |
test2 != ((1fsr & 0x03fc) >> 2) | test3 != ((lfsr & 0x07f8) >> 3) |
testd != ((lfsr & 0x0ff0) >> 4)){

test_check = 0x00;
}

break;

case 5 : test0 = i2c.read_data ();
testl = i2c_read_data ()
test2 = i2c_read_data ();
test3 = i2c_read_data ();
test4d = i2c_read_data ();
tests = i2c_read_data ();

)

)
I

i

if(test0 != (1fsr & 0x00ff) | testl != ((lfsr & 0x0lfe) >> 1) |

test2 = ((Ifsr & 0x03fc) >> 2) | test3 != ((1fsr & 0x07f8) >> 3) |

testd != ((1lfsr & 0x0ff0) >> 4) | testd != ((lfsr & 0x1fe0) >> 5)){
test_check = 0x00;

}

break;

case 6 : test0 = i2c_read_data ();
testl = i2c_read_data

test2 = i2c_read_data ();
testd = ;
testd = i2c_read_data

)

()
();
i2c_read_data ();
()
()

testbh = i2c_read_data ();
test6 = i2c_read_data ();

if(test0 != (1lfsr & 0x00ff) | testl != ((lfsr & 0xO0lfe) >> 1) |
test2 != ((lfsr & 0x03fc) >> 2) | test3 != ((lfsr & 0x07f8) >> 3) |
test4d != ((lfsr & 0x0ff0) >> 4) | testh != ((Ifsr & Ox1fe0) >> 5) |
test6 != ((lfsr & 0x3fc0) >> 6)){

test_check = 0x00;
}
break;

case 7 : test0 = i2c.read_data ();
testl = i2c_read_data ()
test?2 i2c_read_data ()
test3 i2c_read_data ()
()
()
()

)

)

testd = i2c_read_data
testh i2c_read_data

test6 = i2c_read_data ();
test7 = i2c_read_data ();

if(test0 != (lfsr & 0x00ff) | testl != ((lfsr & O0xO0lfe) >> 1) |

test2 != ((lfsr & 0x03fc) >> 2) | test3 != ((lfsr & 0x07f8) >> 3) |

testd != ((lfsr & 0x0ff0) >> 4) | testh = ((lfsr & Ox1lfe0) >> 5) |

test6 != ((lfsr & 0x3fc0) >> 6) | test7 != ((lfsr & 0x7f80) >> 7)){
test_check = 0x00;

}

break;

default : test0 = i2c_read_data ();
testl = i2c_read_data ();
test2 = i2c_read_data ();
test3 = i2c_read_data ();

102

APPENDIX A. PROJECT SOURCES A.3. C CODE

if(test0 != (1lfsr & 0x00ff) | testl != ((lfsr & 0xO0lfe) >> 1) |
test2 != ((Ifsr & 0x03fc) >> 2) | test3 != ((1fsr & 0x07f8) >> 3)){
test_check = 0x00;

}
break;

}

switch(next_op)

{
case 0 : i2c_set_rx_bytes_count (0x01);
break;
case 1 : i2c_set_rx_bytes_count (0x02);
break;
case 2 : i2c_set_rx_bytes_count (0x03);
break;
case 3 : i2c_set_rx_bytes_count (0x04);
break;
case 4 : i2c_set_rx_bytes_count (0x05);
break;
case 5 : i2c_set_rx_bytes_count (0x06);
break;
case 6 : i2c_set_rx_bytes_count (0x07);
break;
case 7 : i2c_set_rx_bytes_count (0x08);
break;
default : i2c_set_rx_bytes_count (0x03);
break;

}

test_check "= 0x04;
test_check "= 0x04;

e ds
/111 interrupt 0.c code/////)///////)/ /) /] /

A aada
i2c_master_read (0x01, 0x02);

lfsr = 1fsr_16 (1fsr ,mask);

Ifsr_next = 1fsr_16 (lfsr_next ,mask);
op = (Ifsr & 0x0007);

next_op = (1lfsr_next & 0x0007);

//stop condition

if(lfsr = O0xACE1l){
test_check = 0x02;
}

103

A.3. C CODE APPENDIX A. PROJECT SOURCES

A.3.7 I2C master read - slave code

N A ads
/1111 S main. e code /)])11/
A A

i2c_enable ();
i2c_master_mode_disable ();
i2c_slaveO_address (0x01);
i2c_slaveO_address_enabled ();
i2c_clock_low (0x0001);
i2c_clock_high (0x0001);

i2c_slave_read_address_match_irq_enabled ();

test_check "= 0x01;
test_check "= 0x01;
e aas
/177 interrupt_i2e.c code///)/)/ //////////
A aaa

BYTE op;

for(int i = 0; i < 300; i++){}

i2c_clear_irq_slave_read _address_match ();

lfsr = I1fsr_16 (lfsr ,mask);
op = (1fsr & 0x0007);

switch (op)

{
case 0 : i2c_write_data ((1lfsr & 0x00ff));
break;
case 1 : i2c_write_data ((1lfsr & 0x00ff));
i2c_write_data ((lfsr & 0x01fe) >> 1);
break;
case 2 : i2c_write_data ((1lfsr & 0x00ff));
i2c_write_data ((lfsr & 0x01lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
break;
case 3 : i2c_write_data ((1lfsr & 0x00ff));
i2c_write_data ((lfsr & 0x01lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
i2c_write_data ((lfsr & 0x07f8) >> 3);
break;
case 4 : i2c_write_data ((1lfsr & 0x00ff));
i2c_write_data ((lfsr & 0x01lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
i2c_write_data ((lfsr & 0x07f8) >> 3);
i2¢_write_data ((1fsr & 0x0ff0) >> 4);
break;
case 5 : i2c_write_data ((1fsr & 0x00ff));
i2c_write_data ((lfsr & 0x01lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
i2c_write_data ((lfsr & 0x07f8) >> 3
i2c_write_data ((lfsr & 0x0ff0) >> 4);
i2c_write_data ((lfsr & Ox1fe0) >> 5
break;
case 6 : i2c_write_data ((1lfsr & 0x00ff));

— — — —

104

APPENDIX A. PROJECT SOURCES

A.3. C CODE

}

N A i
/1111 interrupt 0.c code/////)/////////// /] /
N A aaada

test_check
test_check

i2c_write_data ((lfsr & 0x0lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
i2c_write_data ((Ifsr & 0x07f8) >> 3);
i2c_write_data ((lfsr & 0x0ff0) >> 4)
i2¢c_write_data ((1fsr & 0x1fe0) >> 5);
i2c_write_data ((lfsr & 0x3fc0) >> 6);
break;

case 7 : i2c_write_data ((1fsr & 0x00ff));
i2c_write_data ((lfsr & 0x01lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
i2c_write_data ((1fsr & 0x07f8) >> 3);
i2c_write_data ((lfsr & 0x0ff0) >> 4)
i2c_write_data ((lfsr & 0x1fe0) >> 5);
i2c_write_data ((Ifsr & 0x3fc0) >> 6);
i2c_write_data ((1fsr & 0x7f80) >> 7);
break;

default : i2c_write_data ((1lfsr & 0x00ff));
i2c_write_data ((lfsr & 0x01lfe) >> 1);
i2c_write_data ((lfsr & 0x03fc) >> 2);
i2c_write_data ((1fsr & 0x07f8) >> 3);

break;

"= 0x01;
"= 0x01;

105

A.3. C CODE APPENDIX A. PROJECT SOURCES

A.3.8 UART - master code

N A ads
/1111 S main. e code /)])11/
N A s

test_check = 0x01;

set_baudrate_divisor (UARTDIV);
osr_zero_set ();

osr_one_clear ();

osr_two_set ();
uart_parity_config (1,0,1);
uart_char_size (3);
uart_stop_bit (0);
uart_baud_clk_enable (1);

while (! uart_baud_clk_ready ()){}

e
/1111 interrupt_0.c code////)/)/ /1)) /) /])/
A A ada

int operation;

Ifsr = 1fsr_16 (1fsr, mask);
operation = (lfsr & 0x0007);

switch (operation)
{
case 0 : if(lfsr != O0xACEl){
send_uart (1fsr & 0x00ff);
} else {
test_check = 0x02;
}

break;
case 1 : if(lfsr != 0xACE1l){
send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01fe) >> 1);
} else {
test_check = 0x02;
}

break;
case 2 : if(lfsr != O0xACEl){
send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01fe) >> 1);
)

send_uart ((lfsr & 0x03fc) >> 2);
} else {

test_check = 0x02;
}
break;

case 3 : if(lfsr != O0xACE1l){
send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01fe) >> 1);
(
(

send_uart ((1fsr & 0x03fc) >> 2);
send_uart ((lfsr & 0x07f{8) >> 3);
} else {
test_check = 0x02;
}
break;

case 4 : if(lfsr != O0xACEl){
send_uart (1fsr & 0x00ff);

106

APPENDIX A. PROJECT SOURCES

A.3. C CODE

} else

}
break;

case 5

} else

}

break;
case 6

} else

}
break;

case 7

} else

}
break;

default

1 else

}
break;

}

{

{

{

{

{

Ifsr & 0x01fe)
Ifsr & 0x03fc)
Ifsr & 0x07£8)
Ifsr & 0x0ff0)

send_uart (
send_uart (
send_uart (
send_uart (

o~~~ —~

test_check = 0x02;

if(1fsr |= O0xACE1){

send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01fe)
send_uart ((1fsr & 0x03fc)
send_uart ((1fsr & 0x07{8)
send_uart ((1fsr & 0x0ff0)
send_uart ((1fsr & 0x1fe0)

test_check = 0x02;

if (1fsr != O0xACE1){

send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01fe)
send_uart ((1fsr & 0x03fc)
send_uart ((lfsr & 0x07f8)
send_uart ((1fsr & 0x0ff0)
send_uart ((1fsr & 0x1fe0)
send_uart ((1fsr & 0x3fc0)
test_check = 0x02;

if (1fsr != O0xACE1){
send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01fe)
send_uart ((lfsr & 0x03fc)
send_uart ((1fsr & 0x07f8)
send_uart ((1fsr & 0x0ff0)
send_uart ((1fsr & 0x1fe0)
send_uart ((1fsr & 0x3fc0)
send_uart ((1fsr & 0x7f80)
test_check = 0x02;

if (1fsr != 0xACELl){
send_uart (1fsr & 0x00ff);
send_uart ((1fsr & 0x01lfe)
send_uart ((1fsr & 0x03fc)
send_uart ((1fsr & 0x07{8)

test_check = 0x02;

while (! tx_fifo_empty ()){}

while(tx_fifo_busy ()){}

107

>>
>>
>>
>>

>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>

>>
>>
>>
>>
>>
>>
>>

>>
>>
>>

A=V R Nl
—_—— —

Ul W N~
—_— — — —

O UL W N~
—

N O O WD
—

A.3. C CODE

APPENDIX A. PROJECT SOURCES

test_check "=
test_check "=

0x04 ;
0x04 ;

1111110010110 0000001007001 101 1007001107107

s

nterrupt_1.c code///////////////////

N A aada

test_check = 0x00;

108

APPENDIX A. PROJECT SOURCES

A.3. C CODE

A.3.9 UART - slave code

e ads
/11 S main e code /)1 11111 TS

e
set_baudrate_divisor (UARTDIV);

osr_zero_set ();

osr_one_clear ();

osr_two_set ();
uart_parity_config (1,0,1);
uart_char_size (3);
uart_stop_bit (0);
uart_baud_clk_enable (1);
while (! uart_baud_clk_ready ()){}

test_check "= 0x01;
test_check "= 0x01;

A e ads
/7 interrupt 0. code///) /))/)/ /) /) /)

éééé/é//
ata;

for(int i = 0; i < 1000; i++){}

BYTE bytes;
lfsr = Ifsr_16 (1fsr , mask);
bytes = rx_fifo_bytes ();

for (int 1 = 0; 1 < bytes; i++){

data = recieve_uart ();
switch (i)
{

case 0 : if(data != (1lfsr & 0x00ff)){
test_check "= 0x02;

}
break;
case 1 : if(data != ((1lfsr & 0x01fe) >> 1)){
test_check "= 0x02;
}
break;
case 2 : if(data != ((1lfsr & 0x03fc) >> 2)){
test_check "= 0x02;
}
break;

case 3 : if(data != ((1lfsr & 0x07f8) >> 3)){
test_check "= 0x02;
}

break;
case 4 : if(data != ((1lfsr & 0x0ff0) >> 4)){
test_check "= 0x02;

}
break;
case 5 : if(data != ((lfsr & Ox1fe0) >> 5))
test_check "= 0x02;
}
break;

case 6 : if(data != ((lfsr & 0x3fc0) >> 6)){

109

A.3. C CODE APPENDIX A. PROJECT SOURCES

test_check "= 0x02;
}
break;
case 7 : if(data != ((lfsr & 0x7f80) >> 7)){
test_check "= 0x02;

}
break;
}
}
rx_flush ();
test_check "= 0x01;
test_check "= 0x01;

110

APPENDIX A. PROJECT SOURCES

A.3. C CODE

A.3.10 SPI word mode - master code

e ads
/11 S main e code /)1 11111 TS
N s

test_check "= 0x01;

spi_setup ();

N A ads
/17 interrupt 0. code//////)//)11/)/
A A

int num_tx;

lfsr = 1fsr_16 (1fsr , mask);

if (1fsr = 0xACEL){
test_check = 0x02;

}

WORD 1fsr2 , Ifsr3;
Ifsr2 = Ifsr;
Ifsr3 = Ifsr;

Ifsr2 = (1fsr2 << 16) | 1fsr3;

num_tx = (lfsr & 0x0007);

switch (num_tx)

{

case 0 : spi_tx_num_char (4);

spi-ss_sel (1);
spi-push_word (1fsr2);
spi_start_transaction ();
while (spi_status ()){}
spi_ss_desel (1);

break;

case 1 : spi_-tx_num_char (8);

spi_ss_sel (1);
spi-push_half_word (1fsr2);
spi-push_half_word ((1fsr2 >>
spi-start_transaction ();
while (spi_status ()){}
spi-ss_desel (1);

break;

case 2 : spi_tx_num_char (12);

spi_ss_sel (1);
spi-push_half_word (1fsr2);
spi-push_half_word ((1fsr2 >>
spi-push_half_word ((1fsr2 >>
spi_start_transaction ();
while(spi_status ()){}
spi-ss_desel (1);

break;

case 3 : spi_-tx_num_char (16);

spi_ss_sel (1);
spi-push_half _word (1fsr2);
spi_push_half_word ((lfsr2 >>
spi_push_half_word ((lfsr2 >>

111

A.3. C CODE APPENDIX A. PROJECT SOURCES
spi-push_half_word ((1fsr2 >> 3));
spi_start_transaction ();
while (spi_status ()){}
spi_ss_desel (1);
break ;

case 4 spi-tx_num_char (20);
spi-ss_sel (1);
spi_push_half_word (1fsr2);
spi_push_half_word ((1fsr2 >> 1));
spi_push_half_word ((1fsr2 >> 2));
spi_push_half_word ((1fsr2 >> 3));
spi_push_half_word ((1lfsr2 >> 4));
spi_start_transaction ();
while (spi_status ()){}
spi_ss_desel (1);
break ;

case 5 spi-tx_num_char (24);
spi-ss_sel (1);
spi-push_half_word (1fsr2);
spi_push_half_word ((1fsr2 >> 1));
spi_push_half_word ((1fsr2 >> 2));
spi_push_half_word ((1fsr2 >> 3));
spi_push_half_word ((1lfsr2 >> 4));
spi-push_half_word ((1fsr2 >> 5));
spi_start_transaction ();
while (spi_status ()){}
spi_ss_desel (1);
break;

case 6 spi-tx_num_char (28);
spi-ss_sel (1);
spi_push_half_word (1fsr2);
spi_push_half_word ((1fsr2 >> 1));
spi_push_half_word ((1lfsr2 >> 2));
spi-push_half_word ((1fsr2 >> 3));
spi-push_half_word ((1fsr2 >> 4));
spi_push_half_word ((1fsr2 >> 5));
spi_push_half_word ((1fsr2 >> 6));
spi_start_transaction ();
while(spi_status ()){}
spi-ss_desel (1);
break;

case 7 spi_tx_num_char (32);
spi_ss_sel (1);
spi-push_half_word (1fsr2);
spi_push_half_word ((1lfsr2 >> 1));
spi_push_half_word ((1fsr2 >> 2));
spi_push_half_word ((1fsr2 >> 3));
spi_push_half_word ((1fsr2 >> 4));
spi-push_half_word ((1fsr2 >> 5));
spi-push_half_word ((1fsr2 >> 6));
spi_-push_half_word ((1fsr2 >> 7));

spi_start_transaction ();
while (spi_status ()){}
spi_ss_desel (1);

break;

}
A e
/111 interrupt 1 .c code////) /) 1))/ /) /)]

112

APPENDIX A. PROJECT SOURCES A.3. C CODE

N i

test_check = 0x00;

113

A.3. C CODE APPENDIX A. PROJECT SOURCES

A.3.11 SPI word mode - slave code

A aaias
[/ S main e code// /)))) 11/
/////////{{///////////////////////////////////////
spi-setu ;

sEi,slavep,mode ();

spi_enable_rx_fifo ();

spi_ss_deasserted_enable_irq ();

test_check "= 0x01;
test_check "= 0x01;

A A A aadl
/111 interrupt_spi.c code///))///)/// /) /])/

éagggég/{//

BYTE bytes;

for(int i = 0; i < 1000; i++){}

WORD 1fsr2 , Ifsr3;

spi_clear_irq_ss_deasserted ();
Ifsr = 1fsr_16 (lfsr, mask);
bytes = spi-rx_fifo_cnt ();

Ifsr2
Ifsr3

Ifsr;
Ifsr;

Ifsr2 = (1fsr2 << 16) | 1fsr3;

for (int 1 = 0; 1 < bytes/4; i++){
data = spi_pull_word ();

switch (i)
{
case 0 : if (data != 1fsr2){
test_check = 0x02;
}
break;
case 1 : if(data != (lfsr2 >> 1)){
test_check = 0x02;
}
break;
case 2 : if(data != (1lfsr2 >> 2)){
test_check = 0x02;
}
break;
case 3 : if(data != (Ifsr2 >> 3)){
test_check = 0x02;
}
break;
case 4 : if(data != (1fsr2 >> 4)){
test_check = 0x02;
}
break;
case 5 : if(data != (1lfsr2 >> 5)){

test_check = 0x02;

114

APPENDIX A. PROJECT SOURCES

A.3. C CODE

case 6

case 7

spi-clear_rx_fifo ();

test_check
test_check

}
break;

if (data != (1fsr2 >> 6)){

}
break;

test_check

if (data != (Ifsr2 >> 7)){

"= 0x01;
"= 0x01;

}
break;

test_check

115

0x02;

0x02;

Bibliography

[SVE)

t

NS s o

T e o WS =

‘©

— [Ery U —
N A= L S B L e =)

_~ T T E e T e T ==
=)

URL:

URL

URL:
URL:
URL:
URL:

URL:

: https:

a7/start.

URL

URL

URL:
URL:
URL:
URL:
URL:
URL:
URL:
URL:
URL:
URL:

URL:

: https:
: https:

https:

https:
https:
https:
https:
https:

https:
https:
https:
https:
https:
https:
https:
https:

https:
https:

//en.wikipedia.org/wiki/RISC-V.
//riscv.org/membership/members/.
//www.maximintegrated.com/en.html.
//pulp-platform.org/
//www.eclipse.org/
//gnu-mcu-eclipse.github.io/downloads/

//reference .digilentinc . com/reference/programmable-logic/arty-

//en.wikipedia.org/wiki/JTAG.
//en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture.
//developer.arm.com/documentation/ihi0024/c/
//pulp-platform.org/docs/pulpino_datasheet.pdf.
//en.wikipedia.org/wiki/Integrated_development_environment.
//gnu-mcu-eclipse.github.io/toolchain/riscv/
//en.wikipedia.org/wiki/Intel_HEX.
//en.wikipedia.org/wiki/Dhrystone.
//github.com/embench/embench-iot.

//ibex-core.readthedocs.io/en/latest/index.html.

http://www.vlsiip.com/soc/soc_0003.html.

//www.iar.com/iar-embedded-workbench/#!7architecture=RISC-V.

//forums.xilinx.com/t5/Versal-and-UltraScale/Comparing-ASIC-gate-

equivalent-with-XU-LUTs/m-p/8937957advanced=false&collapse_discussion=true&
search_type=thread.

URL: https://ttssh2.o0sdn. jp/index.html.en.

URL: https://reference . digilentinc . com/reference/ instrumentation/analog-
discovery-2/start.

URL: https://en.wikipedia.org/wiki/Linear-feedback_shift_register.

URL: https://it.mathworks.com/help/fixedpoint/ug/compute-square-root-using-
cordic.html; jsessionid=cd29£8c21792e49ef58535c8b3fe.

URL: https://en.wikipedia.org/wiki/Binary_scaling.

URL: https://www.realintent.com/rtl-linting-ascent-1lint/

116

