
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

A Model Predictive Sample-Based
Trajectory Planning Strategy for UAS

Supervisors

Prof. Alessandro RIZZO

Dr. Stefano PRIMATESTA

Candidate

Alessandro PAGLIANO

December 2020

Summary

Trajectory planning is an essential element in robotics applications. The quality of
the planned trajectory strongly influences the robot behavior, particularly when an
autonomous robot operates in complex and structured environments.
This thesis focuses on the study, deployment and testing of a trajectory planning
algorithm for autonomous Unmanned Aerial Vehicles (UAVs), exploiting the Model
Predictive Control (MPC) theory and the Rapidly-Exploring Random Tree "Star"
(RRT*) algorithm. The developed logic makes use of the RRT* algorithm to explore
the search space and, then, construct an incremental optimal tree to connect a
given start and a goal pose in the search space. During the exploration phase,
whenever two states are attempted to be connected, the deployed Model Predictive
Control logic computes a "cost-to-go" cost of moving between two adjacent states
in the graph by predicting the motion of the UAV, exploiting its dynamic model.
At the end of the search phase, RRT* returns the asymptotically optimal path in
the graph with the lowest cost. The resulting path consists in a sequence of states
connected through the optimal motion computed by the MPC logic.
One of the drawback of the implemented logic is its complexity due to the MPC
optimization that requires huge computational resources and time. Hence, some
assumptions and heuristics are deployed for improving the quality of the algorithm.
Finally, simulation results in realistic environments validate the implemented
approach, proving how the proposed trajectory planner is able to compute an
effective trajectory to be executed by the UAV.
This thesis is carried out within the activities of the Amazon Research Award "From
Shortest to Safest Path Navigation: An AI-Powered Framework for Risk-Aware
Autonomous Navigation of UASes" granted to Prof. Rizzo.

ii

Acknowledgements

Last months have been the toughest of my life, because of the pandemic and the
several difficulties I encountered. Nevertheless, I have never stopped smiling, thanks
to all the people around me.
First of all, I want say thanks to my family for all the sacrifices they did for me
and for the values and love they have always shared with me. Particularly, I want
to spend some words for my sister. You are the most important person in my life,
the person that, with her simplicity, always manages to pull a smile out of my
face. Please, do not change, because, even if you are young, you are an example to
follow. Thanks to my great-grandparents, that I know they are happy for me. I
want to say that I gave my all to finish this thesis as soon as possible, in order to
share this joy with Grammy, but unfortunately I didn’t make it. What I want to
say is that, if someone asked me to imagine the perfect family, I would not be able
to imagine a better family than the one I have.
Thanks to all my friends that are always willing to help me and that always
encourage me in what I do. Thanks to all my university friends with whom I shared
beautiful and though moments, spending entire days at the Politecnico. Thank
you all my friends for all the moments you shared with me, hoping to see you again
and again in this life.
I want to thank Professor Alessandro Rizzo for having given me the opportunity of
developing this thesis. A really big thanks to my supervisor Stefano Primatesta
that has always helped me, replying to my stressful messages and supporting me
at every stage of this project.
During this course of study I had beautiful experiences that I will never forget.
Therefore, I dedicate this thesis to all the people I love; thank you for having
accompanied me on this beautiful journey. I will be forever grateful to all of you.

Alessandro

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 State of the Art . 2

1.1.1 Dijkstra’s Algorithm . 3
1.1.2 A* Search Algorithm . 4
1.1.3 Genetic Algorithm . 5
1.1.4 Ant Colony Optimization 6
1.1.5 Probabilistic Roadmap Planner 8
1.1.6 Rapidly-Exploring Random Tree 9
1.1.7 Rapidly-Exploring Random Tree "Star" 10

1.2 Outline of the Thesis . 11

2 Background 13
2.1 Robot Operating System (ROS) . 13

2.1.1 ROS Resources Hierarchy 14
2.1.2 ROS Computation Graph Level 15

2.2 Open Motion Planning Library (OMPL) 18
2.2.1 Problem Statement Definition 18
2.2.2 OMPL Foundations . 18

2.3 Model Predictive Control (MPC) 21
2.3.1 MPC Theory . 21

2.4 Multi-Rotor System Notation . 24
2.5 Multi-Rotor System Model . 27

2.5.1 Linearization and Discretization 28

v

3 Software Implementation 32
3.1 Code Details . 33

3.1.1 RRT* Algorithm . 33
3.1.2 MPCOptimizationObjective 38

3.2 ROS-PX4 Interface . 50

4 Simulation and Testing 53
4.1 Simulation Hardware . 54
4.2 Parameter Optimization . 54

4.2.1 UAV Speed Module . 56
4.2.2 RRT* Cost Function Weights 59
4.2.3 Solve Time . 62
4.2.4 Final Configuration with Path Simplifier 66

4.3 Test in Different Maps . 67
4.3.1 Narrow and Constrained Environment, First Map 67
4.3.2 Narrow and Constrained Environment, Second Map 69
4.3.3 Empty Environment . 71
4.3.4 Two Obstacles Avoidance . 72

4.4 SITL Testing . 74
4.5 Limitations and Possible Solutions 76

5 Conclusions 79

A CVXGEN Code 82

B text.launch File 83

C CVXGEN Statistics 85

D Euclidean Distance 86

E mavros_msgs/Waypoint Message 87

Bibliography 88

vi

List of Tables

4.1 Initial parameters set. 56
4.2 UAV Speed Module test 1: simulation results. 56
4.3 UAV Speed Module test 2: parameters. 58
4.4 UAV Speed Module test 2: simulation results. 58
4.5 Cost function weights test 1: parameters. 59
4.6 Cost function weights test 1: simulation results. 60
4.7 Cost function weights test 2: parameters. 61
4.8 Cost function weights test 2: simulation results. 61
4.9 Solve Time test 1: parameters. 62
4.10 Solve Time test 1: simulation results. 63
4.11 Solve Time test 2: parameters. 64
4.12 Solve Time test 2: simulation results. 64
4.13 Solve Time test 3: simulation results with path simplifier. 65
4.14 Final configuration test: parameters. 66
4.15 Final configuration test: simulation results. 66
4.16 Empty environment: simulation results. 72

vii

List of Figures

1.1 Dijkstra’s Algorithm grid example.1 3
1.2 A* Search Algorithm grid example.2 4
1.3 ACO path example.3 . 7
1.4 PRM graph example.4 . 8
1.5 RRT graph and trajectory (in red) example.5 9
1.6 RRT* graph and trajectory (in red) example. 10

2.1 ROS Computation Graph Network. 15
2.2 ROS Nodes - ROS Master relationship.6 16
2.3 ROS Nodes - ROS Topic interaction.7 17
2.4 OMPL high level components hierarchy.8 20
2.5 Quadcopter axes and movements description. 26
2.6 Quadcopter maneuvers description [15]. 27

3.1 Algorithm logic scheme. 32
3.2 RRT* expansion phase [18]. 35
3.3 Example of an algorithm solution. 48
3.4 PX4 SITL Simulation Environment.9 50

4.1 Algorithm parameters test map. 55
4.2 UAV Speed Module test 1: third simulation trajectory. 57
4.3 UAV Speed Module test 2: fifth simulation trajectory. 58
4.4 Cost function weights test 1: fourth simulation trajectory. 60
4.5 Cost function weights test 2: second simulation trajectory. 61
4.6 Solve Time test 1: fourth simulation trajectory. 63
4.7 Solve Time test 2: fifth simulation trajectory. 64
4.8 Solve Time test 3: third simulation trajectory. 65
4.9 Final configuration test: fifth simulation trajectory. 67
4.10 Narrow and constrained environment, first map. 68
4.11 Example of solution in the first narrow and constrained environment. 69
4.12 Narrow and constrained environment, second map. 70

viii

4.13 Example of solution in the second narrow and constrained environment. 71
4.14 Example of solution in the empty environment. 72
4.15 Two obstacles avoidance test map. 73
4.16 Example of a solution in the two obstacles avoidance test map. . . . 74
4.17 Comparison between the trajectory planned on RViz and the one

performed by PX4 autopilot for the SITL testing. 75
4.18 Example of the orientation error. The green arrow represents the

goal pose that is not reached in terms of heading. 77

C.1 Computation time for finding the solution to the same problem by
different solvers. 85

ix

Acronyms

ACO
Ant Colony Optimization

MPC
Model Predictive Control

OMPL
Open Motion Planning Library

PRM
Probabilistic Roadmap

ROS
Robot Operating System

RRT
Rapidly-Exploring Random Tree

RRT*
Rapidly-Exploring Random Tree "Star"

SITL
Software In The Loop

UAS
Unmanned Aerial System

UAV
Unmanned Aerial Vehicle

xi

Chapter 1

Introduction

Some of the most challenging issues in the Robotics field are related to motion
planning. New generation robots are suppose to work with high speed, low con-
sumption movements, in order to perform high number of actions for long periods
of time. For the already mentioned reasons, motion planning plays a fundamental
role in this sense. In fact, the quality of the planning strongly influences the quality
of the actions performed by robots. When robots execute harsh maneuvers, it is
necessary to avoid to damage their components because of the excessive forces and
accelerations necessary for performing desired movements, so these precautions are
intrinsically defined by the planner.
A popular motion planning problem often used as an example to explain a practical
motion planning is the so called Piano Mover’s Problem [1], where a piano is
supposed to be moved in a known house, from a room to another, without hitting
obstacles and walls. Going deeper inside the motion planning theory, it is possible
to distinguish between path planning and trajectory planning, two central topics
in the Robotics industry, particularly when automation is requested.
Differences between these two planning theories need to be presented. Path plan-
ning algorithms are able to return a continuous path between two given robot
configurations; trajectory planning algorithms, instead, return a continuous path
between two robot configurations marked with a timing law. In this sense, tra-
jectory planning algorithms affect robot kinematics and dynamics. As properly
presented in [2], path planning algorithms are usually divided according to the
methodologies used for generating the geometric path:

• Roadmap Techniques;

• Cell Decomposition Algorithms;

• Artificial Potential Methods.

1

Introduction

Trajectory planning algorithms are named on the basis of the function that the
algorithm tries to minimize:

• Minimum Time;

• Minimum Energy;

• Minimum Jerk.

Hybrid algorithms optimizing multiple functions are presented in literature.
Historically, as presented in [3], two fields have contributed to trajectory or

motion planning methods, particularly with Unmanned Aerial Systems (UASes):
robotics, and dynamics and control; the former focuses on computational issues and
robot control, while the latter focuses on the dynamic behavior and more specific
aspects of trajectory performance. Concerning the UAV case, the motion planning
represents a real challenging problem because of the different nature of this systems
with respect to the common mobile robots or manipulators. Qualities characteristic
to UAVs include non-trivial dynamics, three-dimensional environments, disturbances
and uncertainties in state knowledge [3].
In this thesis, a different kind of trajectory planner is proposed.
The idea is to develop an hybrid approach inspired to [4], in which the Closed-
Loop Rapidly-Exploring Random Tree algorithm is proposed. The basic idea is to
evaluate the dynamical feasibility of the trajectory by running forward a simulation
of the closed-loop system, consisting of the vehicle model and the controller. In this
way, even the presence of obstacles can be easily handled by the planner, as well as
dynamic and kinematic limitations. For the mentioned reasons, the attention is
focused on applying the Model Predictive Control logic together with a State of
the Art planning algorithm in order to a-priori evaluate the trajectory feasibility.
This thesis is carried out within the activities of the Amazon Research Award "From
Shortest to Safest Path Navigation: An AI-Powered Framework for Risk-Aware
Autonomous Navigation of UASes" granted to Prof. Rizzo.

1.1 State of the Art
This section is devoted to the presentation and comparison of some algorithms
used in robotics for accomplishing the task of finding a feasible path between an
initial and a final position in a search space.
It is important to precise that not all the algorithms in the literature are mentioned
in this Section, but only some of the most curious and famous.
For each algorithm presented below, it is tried to explain how it works, how it
has been used or how it may be used for accomplishing UAV trajectory planning
queries, highlighting advantages and disadvantages of each approach.

2

Introduction

At the end of this section, one algorithm is chosen as candidate algorithm for the
thesis.

1.1.1 Dijkstra’s Algorithm
The Dijkstra’s Algorithm is probably the oldest algorithm for finding the shortest
path between vertices in a graph. This algorithm is able to find a path depending
on edges cost, that can be considered as a “cost-to-go” from a starting node to a
goal one.

Figure 1.1: Dijkstra’s Algorithm grid example.1

Explanation

The aim of the algorithm is to find the shortest path between any two vertices in
a graph. Given a set of vertices, Dijkstra’s Algorithm first reports the shortest
distance from a previous vertex (i.e. the lowest cost for connecting the current
vertex to another vertex). In this way, it is possible to easily find out the lowest
cost path for reaching the goal vertex. Defined a starting vertex, the algorithm
iteratively repeats the following phases until all vertices are visited:

• Visit the nearest unvisited vertex to the start one;

• Examine the current vertex unvisited neighbour vertices;

• Calculate the distance (cost) of each neighbour from the starting vertex;

• Update the shortest distance whenever it is shorter than the known distance;

• Update the previous vertex for each of the updated distances;

• Mark the current vertex as visited;

• Move to the next unvisited vertex.

1Image courtesy from Geeksforgeeks website.

3

Introduction

Limitations

Even if it is very fast and computationally simple, Dijkstra’s Algorithm wastes time
by performing a "blind" research, computing unnecessary calculations. Moreover,
Dijkstra’s Algorithm is able to return the global optimal solution with respect to
a quantifiable variable, like length or another cost. However, in several problems,
multivariable functions are asked to be minimized. Because of these impediments,
this algorithm is modified by adding some heuristics to speed up the algorithm.

1.1.2 A* Search Algorithm
A* Search Algorithm is one of the most popular technique used in path finding and
graph traversals because of its simplicity and its quick solution finding capability.
It is an extension of the Dijkstra’s Algorithm that allows to add some heuristics
for the path selection.

Figure 1.2: A* Search Algorithm grid example.2

Explanation

Consider a square grid having many obstacles. It is desired to plan the optimal
trajectory from a starting cell to a target one as quick as possible. A* Search
Algorithm, at each computational step, picks a node x computing the cost f(x),
equal the sum of two functions, g(x) and h(x). At each iteration step, the node/cell
with the lowest f(x) value is chosen.
g(x) and h(x) values are defined as follow:

g(x): The cost to move from the starting point to a given cell on the grid, following
the path generated to get there, the same used in the Dijkstra’s Algorithm.

2Image courtesy from 101computing website.

4

Introduction

h(x): The estimated cost to move from a given node on the grid to the final
destination. In order to guarantee the optimal solution in the graph, the
heuristic must be admissible, i.e. it must never overestimate the cost of
moving toward the goal node.

The main advantage of this algorithm is that the distances used as a criterion
can be accepted, modified or another distance can be added. This allows a wide
range of modifications of this basic principle, so that time, energy consumption or
safety can be also included in function f(x). Moreover, because of the introduced
heuristic, world information can be taken into account [5].

Limitations

A* Search Algorithm doesn’t produce always the shortest path because it heavily
relies on heuristics/approximations to calculate h(x). Moreover, as explained in [6],
this algorithm provides a solution that is a sequence of vertices to be followed in
order to move from a starting position to a target one.

1.1.3 Genetic Algorithm
Inspired by Charles Darwin’s Evolutionary theory, Genetic Algorithm is an algo-
rithm that reflects the process of natural selection, where fittest individuals are
selected for reproduction, in order to produce progeny of the next generation.

Explanation

The process of natural selection starts with the selection of fittest individuals from
a population. The results of this population are offspring that inherit parents’
characteristics. Better fitness parents produce better offspring with higher chances
to survive. The process iteratively repeats until the best offspring is found. Same
iterative approach can be used for finding best problem solutions.
Genetic algorithm can be described with five phases3:

Initial Population: The process begins with a set of individuals which is called a
Population. Each member of this Population is a solution to the problem. An
individual is characterized by a set of parameters (variables) known as Genes.
A set of Genes is joined into a string to form a Chromosome (solution). Often,
Genes are described by alphanumerical characters.

3Definition courtesy from Towardsdatascience website.

5

Introduction

Fitness Function: The fitness function represents a way for quantifying the
quality of a solution, relative to the problem to be solved. Thanks to this
function, each individual receives a score, called fitness score. Higher the
fitness score, higher the probability of an individual to be chosen for the future
generations.

Selection: The idea of selection phase is to select the fittest individuals and let
them pass their Genes to the next generation. Depending on their fitness
scores, two pairs of individuals, called parents, are selected.

Crossover: The crossover phase is very significant. Parents pair Genes are mixed
until a predefined crossover point is reached. This point is randomly chosen,
with the aim of increasing the probability of finding a solution to the problem.

Mutation: New generated offspring Genes can be conditioned by mutation with
a low probability. This implies that some of the bits in the bit string can be
flipped.

The algorithm ends when it results in saturation, i.e. new generations are very
similar to parents. In this way, a solution to the problem is found.
A three-dimensional trajectory planning based on genetic algorithm, as reported
in [7], is done by randomly generating a route from the initial three-dimensional
position (xi, yi, zi) to the final one (xf , yf , zf), and finding out an optimized
trajectory by minimizing the sum of the Euclidean distances between couples of
points in the 3D space.

Limitations

This method is efficient for trajectory planning where the obstacles are static.
Moreover, it is really effective in minimizing the distance from a start to a goal,
but it is not able consider dynamic and kinematic constraints of the UAV.
Moreover, as shown in [8], a successful solution depends on the success in encoding
or representing Chromosomes.

1.1.4 Ant Colony Optimization
Ant Colony Optimization algorithm (ACO) belongs to the so-called swarm intelli-
gence, a relatively new approach to problem-solving that takes inspiration from
the social behaviors of insects and of other animals.4
In particular, ACO is inspired by the behavior of some ant species; these ants

4Definition courtesy from Towardsdatascience website.

6

Introduction

deposit pheromone on the ground in order to mark some favorable path that should
be followed by other members of the colony. Similar mechanism is used for solving
optimization problems.

Figure 1.3: ACO path example.5

Explanation

This algorithm is introduced based on the foraging behavior of ants for seeking a
path between their colony and food source. While searching, ants roaming around
their colonies. While moving, they deposit an organic compound called pheromone
on the ground. Ants communicate with each other via pheromone trails. When an
ant finds some amount of food, it carries as much as it can carry. When returning
to the colony, it deposits pheromone on the paths based on the quantity and quality
of the discovered food. Ant can smell pheromone, so, other ants can follow that
path. Higher the pheromone level, higher the probability of choosing that path
and the more ants follow the path, higher the amount of pheromone deposited on
the pathway, that results in higher probability of choosing it as preferential route
by other ants.

Limitations

As properly explained in [9], ACO can fall into local minima during the path
research, so it is not popular to be used for trajectory planning, while it is widely
used for problems optimization.

5Image courtesy from Towardsdatascience website.

7

Introduction

1.1.5 Probabilistic Roadmap Planner
The Probabilistic Roadmap Planner (PRM) is a motion planner used in Robotics
for determining a path between a starting robot configuration and a final one, while
avoiding obstacles and collisions.

Figure 1.4: PRM graph example.6

Explanation

The concept behind PRM is to take random samples from the robot configuration
space, ensuring that they are in the free space and, then, trying to connect them
to nearby configurations. Then, starting and goal configurations are added in, and
a graph search algorithm is applied to the resulting graph in order to determine
a path between the starting and goal configurations. PRM works by uniformly
sampling the free space, trying to connect the samples to form a roadmap of the
free space. PRM has two main phases:

Construction Phase: In this phase, the graph is created by adding random
configurations and trying to connect them to some neighbor ones. Whenever
the graph is dense enough, this part is completed;

Query Phase: In this phase, start and goal are added to the graph, and the
shortest length roadmap is found.

6Image courtesy from Mathworks website.

8

Introduction

Limitations

Because of the random nature of the samples, it is not sure that a solution is
found, particularly inside environments with narrow passages. Furthermore, this
algorithm is provably probabilistically complete: it means that the probability of
finding a solution increases with the increasing number of samples.

1.1.6 Rapidly-Exploring Random Tree
Rapidly-Exploring Random Tree (RRT) is an algorithm used for the path-planning
that attempts to construct a tree for exploring the robot space and finding out a
suitable path for connecting a start and a goal position. This algorithm is really
popular nowadays because of its capability of considering robot kinematic and
dynamic constraints.

Figure 1.5: RRT graph and trajectory (in red) example.7

Explanation

After having defined a start and a goal position in the robot free space, a set of
samples is generated. Commonly, a single tree is constructed starting from the
initial position. At each sample, the sampled state is attempted to be connected
to the nearest state in tree. If the connection is feasible, the sample is added to
the tree. Whenever the nearest sample in the tree is farther to the sampled state

7Image courtesy from Mathworks website.

9

Introduction

than a predefined distance called growth factor, this sample is substituted with
another one on the same line of the original one, but at a distance equal to the
growth factor. The probability of finding a solution depends on the number of
samples, as well as on the sampling strategy. Higher the number of samples, higher
the probability to find a path. In the same way, it is possible to grow two trees
starting from initial and final state, with the aim to try to connect them, finding a
suitable path with a higher probability; this variation is called Bidirectional RRT.

Limitations

Even if the probability of finding a solution is high also with a small number of
samples, the obtained solution is not supposed to be optimal. In fact, RRT is not
able to find a path that minimizes the distance between start and goal.

1.1.7 Rapidly-Exploring Random Tree "Star"

Similar to RRT, Rapidly-Exploring Random Tree "Star" (RRT*) is a path-planning
algorithm that attempts to connect a starting and a goal state by constructing
an optimal tree made of random samples. RRT* is an incremental sample-based
algorithm which finds an initial path very quickly and later optimizes the path as
the execution takes place [10].

Figure 1.6: RRT* graph and trajectory (in red) example.

10

Introduction

Explanation

The sampling theory used by RRT* is the same used by RRT: robot configurations
are sampled in the robot free space. The main difference is the introduction of a
minimization function. RRT* algorithm adds to the grown tree robot configurations
whenever connection to parent node is collision free and with a minimum cost. In
fact, new sample nodes are not connected to the nearest node, but to the node
with the minimum cost. For each added node, the cost of the connection, defined
by a cost function c(t), is computed. Each node of the graph is marked with a cost
relative to the connection to the parent node. In this way, for each new connection,
the overall cost of the graph (i.e. the summation of each node cost) is updated.
The algorithm ends after a predefined solve time or after a predefined number of
nodes are sampled, and the returned graph is the one joining the start and the goal
pose with the lowest cost according to the cost function c(t).

Limitations

The limit of this algorithm is that, ideally, it converges to the optimal solution
with an infinite number of iterations, meaning that the convergence to the optimal
requires an infinite amount of time. However, this algorithm is able to provide a
sub-optimal path solution in a limited period of time. For the mentioned reasons,
together with the fact of being able to consider dynamic and kinematic constraints,
RRT* is used as path-finding algorithm in this thesis, with an ad-hoc extension
that allows to characterise the path with a timing law.

1.2 Outline of the Thesis
This thesis is structured as follows. Chapter 2 presents the Model Predictive
Control theory, the Open Motion Planning Library, the Robotic Operating System,
as well as the Unmanned Aerial Vehicle model and notations adopted for developing
this thesis, presenting some specificities. Of particular importance is Chapter 3,
devoted to the deep explanation of the implemented logic; the chapter contains
some code fragments used for setting the Model Predictive Control tool and better
understanding the whole planner algorithm. In Chapter 4, simulations and
testing results are presented; the effect of the different algorithm parameters on
the final solution are treated, comparing graphical representations of the computed
trajectories. Moreover, it also contains a simulation using SITL and Gazebo,
proving that the planned trajectory can be really handled and performed by an
Unmanned Aerial Vehicle. The thesis ends with Chapter 5, containing the overall
analysis of the proposed algorithm, highlighting strengths and limitations of the
implemented trajectory planner, as well as possible improvements.

11

Chapter 2

Background

2.1 Robot Operating System (ROS)
Robotic industry is quickly expanding; robots are rapidly becoming usual actors
in every manufacturing sector. In order to accomplish different tasks in different
working fields, different kinds of robots can be made of very dissimilar hardware,
making the programming phase quite trivial. Moreover, being robots more and
more complicate and smart, researchers and developers have to manage a big
amount of codes from driver-level software to higher level like perception and
artificial intelligence. In addiction, different programming languages can be used
for designing a single robotic software, depending on developers’ preferences. For
the purpose of making the programming easier and more immediate, allowing robot
developers to focus only on software, neglecting hardware-code integration, ROS
has been created. Robot Operating System, known worldwide by the acronym ROS,
is an open-source, meta-operating system for robots. As precisely expressed in [11],
ROS is not a traditional operating system, addicted to process management and
scheduling; indeed, it does not provide only hardware abstraction, low-level device
control, tools and libraries for obtaining, building, writing, and running code across
multiple computers, but, in addition, ROS provides structured communication
layers above the host operating systems of a heterogeneous compute cluster. The
philosophical goals of ROS can be summarized as:1

Peer-to-Peer: ROS-built systems processes are connected at run-time in a peer-
to-peer topology. This characteristic allows system processes running on a
single host or on multiple hosts to communicate each other via UDP protocols.
The main actor in this communication is the Master process, that enables

1Guide courtesy from ROS website.

13

Background

each component to synchronously or asynchronously communicate with any
other, naming the different Nodes, making them able to be found;

Multi-Lingual: ROS is a language-neutral operating system. In this way, depend-
ing on the programming language preferences of each programmer, different
languages can be used for the software design. ROS currently supports four
languages: C++, Octave, Python and LISP. However, if necessary, support
to other languages can be added by wrapping existing libraries. To support
cross-language development, ROS uses a simple, language-neutral interface
definition language (IDL) to describe the messages sent between modules;

Tool-Based: With the aim of avoiding monolithic kernel architecture, ROS is
implemented with a microkernel structure where system components are made
and run by a set of small tools. Using a decentralized run-time environment,
the whole system is more robust and flexible;

Thin: ROS environment is designed so that code written for this platform can be
used on other software frameworks. This is possible thanks to the lightness of
ROS. In order to fully exploit this characteristic, the drivers and algorithms
development should be done using standalone libraries, without ROS depen-
dencies. The ROS build system performs modular builds inside the source
code tree;

Free and Open-Source: ROS has been developed with the aim of being open-
source. In fact, the entire ROS source code is public. The ROS distribution
is performed under the terms of BSD license, allowing commercial and non-
commercial project development.

2.1.1 ROS Resources Hierarchy
In this section, the ROS resources hierarchy on the storage medium is presented.

Packages: Packages are the key units in which ROS software is organized. Pack-
ages can carry different entities, like ROS run-time processes (Nodes), a
ROS-dependent library, data sets, configuration files, or anything else that is
usefully organized together. Packages aim to provide their useful functionalities
in an easy-to-consume manner, in order to exploit software reusability;

Metapackages : Metapackages are particular Packages used for representing a
group of related other packages for creating high level library. They are not
intended for installing files or for containing tests, code, files and other items
generally present in the packages;

14

Background

Package Manifests: The package manifest, named package.xml, is an XML
file that must be included with any catkin-compliant package root folder.
This package is important because it is used for declaring different package
properties like package name, version number, authors, maintainers, as well
as dependencies on other catkin packages;

Message Type: In order to make ROS tools able to easily perform the automatic
generation of the source code in different target languages, data values pub-
lished by ROS Nodes are described through a simplified messages description
language. Message files are marked with “.msg” extension and are composed of
two parts: fields, that are the data sent inside of the message, and constants,
that define useful values for interpreting those fields;

Services Type: Similarly to message types, ROS Service types are described
in ROS using a simplified service description language. This is necessary for
building directly upon the ROS “.msg” format to enable request/response
communication between Nodes.

2.1.2 ROS Computation Graph Level

Figure 2.1: ROS Computation Graph Network.

15

Background

In ROS, several processes compute data together in a peer-to-peer network,
named ROS Computational Graph Level. The processes belonging to this network
are:

ROS Nodes: Nodes are executable files inside ROS Packages. Nodes exchange
information through message passing, using Topics for identifying message
contents. In order to maintain the modularity principle on which ROS is
based, a single robot process, like a control system, can be composed of several
Nodes. In this way, errors can be restricted to a single Node, improving code
readability, debugging and decreasing the probability of error spread up to
the entire system.

Master: The ROS Master is the main actor of the Computation Graph for the
Nodes peer-to-peer communication. Its main action is to store Topics and
Services registration information for ROS Nodes. In this way, Master allows
the ROS Nodes to locate each other, enabling peer-to-peer communication
and direct Nodes connections. ROS Master provides an XMLRPC-based
API, called by ROS client libraries, such as roscpp and rospy, for storing and
retrieving information.

Figure 2.2: ROS Nodes - ROS Master relationship.2

Parameter Server: Parameter Server is a shared and multi-variable dictionary
provided by ROS Master and accessible via network APIs. This server is used
by system Nodes for storing and retrieving parameters at runtime. Thanks to
its implementation on XMLRPC, Parameter Server API can be accessed via
XMLRPC libraries.

2Image courtesy from Introduction to ROS, Clearpath Robotics, 2015.

16

Background

Messages: ROS provides a message passing interface for Nodes communication.
Messages are digital data structure, whose primitive types are integer, floating
point, Boolean and array. Nested structures and arrays are allowed too.

Topics: ROS supports a publish-subscribe message pattern. Using this kind of
semantics, providers and consumers of information are decoupled from each
other, while they are logically connected through Topics. This asynchronous
communication protocol is used for decoupling ROS Nodes, making them
independent each other, easily maintainable and deployable. Topics are named
logical channel used for sending or retrieving information. In fact, publisher
Nodes publish data with a certain Topic, while all the Nodes that are subscribed
to the same Topic receive those data. Different subscribers can subscribe
to several single Topics, in the same way, different publishers can publish
information on different Topics. In ROS, each Topic is strongly typed by the
ROS message type used to publish to it and Nodes can only receive messages
with a matching type. In this way, Nodes are able to understand messages
arriving from a Topic they are subscribed to.

Figure 2.3: ROS Nodes - ROS Topic interaction.3

Services: Even if the asynchronous communication provided by publish-subscribe
paradigm is a flexible message pattern, sometimes it is necessary to have
a synchronous communication paradigm. For accomplishing this function,
ROS provides a request-response communication pattern where Services work
similarly to Topics in publish-subscribe pattern. Services are defined by a pair
of messages, one for the request and one for the response. Services are offered
by provider ROS Node under a string name, ROS Node client calls the Service
by sending the request message and awaiting the response.

Bags: Bags are important ROS tools used for storing data published on a defined
Topic. A Bag file, in fact, subscribes to desired ROS Topics and stores message
data in the order they are received.

3Image courtesy from ROS website.

17

Background

2.2 Open Motion Planning Library (OMPL)
Concerning the implementation of the motion planner for the thesis, it is decided to
use a library able to interact with ROS. This library, better known as Open Motion
Planning Library (OMPL), implements the basic primitives of sampling-based
motion planning and allows users to modify the planners’ settings, or use them as
they are.
Sampling based motion planners, like PRM-based and RRT-based algorithms, are
known for employing samples of the robot free state space and trying to connect
them, via collision free paths that respect robot constraints, in order to reach a goal
position, defined a starting one. The way the samples are connected differs from
algorithm to algorithm. For more details, refer to Section 1.1. Most sampling-based
methods provide probabilistic completeness, that means that the probability of
finding a solution increases as the number of samples increases.

2.2.1 Problem Statement Definition
In this section, some terminologies, useful for better understanding the following
parts, are presented.

Workspace: The workspace is the physical space where the robot operates in;

State Space: The state space is the parameter space where the robot operates
in; it means that this space is the set of all the possible configurations that
the robot is able to assume in the relative workspace;

Free State Space: The free state space is the obstacles-free subset of the state
space;

Obstacle Space: The obstacle space is the subset of the state space occupied
by obstacles;

Path: A path is a continuous sequence of states in the state space. A collision
free path is a path made only by free state space elements.

2.2.2 OMPL Foundations
OMPL sampling-based motion planners are made of several components for solving
planning queries. Thanks to the C++ based architecture of OMPL, these com-
ponents are made by classes, where each class implements a single actor in the
trajectory planning:

StateSampler: This class implements methods for uniform and Gaussian sam-
pling robot configurations in the available state space;

18

Background

NearestNeighbors: NearestNeighbors is a class used for searching nearest neigh-
bours between samples in the desired state space;

StateValidityChecker: As previously mentioned, samples come from the entire
robot state space, so it is necessary to check if the sampled states are valid
or not. In fact, there could be some robot configurations that collide with
obstacles, while others could not satisfy robot constraints. While all the
previously mentioned classes are already available in OMPL, this class has to
be defined by programmer and a callback to this method has to be provided
by the user to the planner in order to detect and discard undesired states;

MotionValidator: MotionValidator is a class used for checking if the motion of
the robot from a state to another is valid. Some motions could hit obstacles
or not respect robot constraints, so it is necessary that a class returns whether
the motion between a state to another is invalid or not;

OptimizationObjective: This class implements an abstract function used for
defining an optimization objective to be used by the motion planner to search
for an optimal solution. In fact, several motion planners like RRT* aim to solve
the planning query by minimize a function. This class contains a function able
to return costs that will be taken in account for the final path definition. For
example, minimum path length could be achieved by implementing functions
able to return cost proportional to the length of the considered path: longer
the path, higher the cost;

ProblemDefinition: ProblemDefinition is a class used for specifying the desired
motion query that is intended to be solved. This class needs as input parame-
ters the start and the goal robot configurations (region surrounding particular
states can be passed too) and the optimization objective to be met, if any.

Class hierarchy is reported in Figure 2.4.
One of the main advantages of using OMPL is the fact that it is object oriented;
because of its nature, it is possible to inherit already existing components or create
newer ones. Moreover, it is not necessary to define all the objects that compose
OMPL architecture since for general motion queries most of the objects can be
used in their default implementation.

19

Background

Figure 2.4: OMPL high level components hierarchy.4

4Image courtesy from OMPL website.

20

Background

2.3 Model Predictive Control (MPC)
Modern industrial evolution is making control theory in the presence of constraints
and optimization objectives more and more challenging. In the last 40 years Model
Predictive Control (MPC) is become a milestone in the control theory and in
industrial control applications for its capability of stabilizing plant including soft
or hard constraints directly in the control input calculation.

2.3.1 MPC Theory
As widely presented in [12], MPC aims at solving constrained control problems
with optimization demands. The need of having constrained input is really com-
mon nowadays, just think about actuators limitations and energy consumption
reduction. The input signals limitations can be directly handled inside classical
control approaches by saturating these signals whenever a critical value is reached.
However, input saturation causes the feedback control system to become non-linear.
Beside that, exceeding input bounds leads unexpected system behaviours such as
bad time response, low performances and instability. Moreover, in the majority
of cases, input limitations are checked a posteriori. The fact that, in nowadays
control problems, output signals limitations are often required demonstrates the
need of changing strategy, in particular when approaching Multiple Input Multiple
Output (MIMO) systems.
MPC is a tactical constrained control, meaning that constraints are included from
the beginning of the control input computation. The theory behind MPC is based
on the prediction of the future behaviour of a system. In fact, starting from a
mathematical system model and defining desired signal limitations, it is possible
to track desired output values by generating prediction of the future output of
the system in the defined time horizon. After that, a sequence of state and input
values over the time horizon are calculated by minimizing an objective function,
always considering the predefined constraints. Finally, adopting the Receding
Horizon theory, only the first step input in the calculated input sequence is applied
to the system. The process repeats measuring current output, predicting system
behaviour and applying input signal until the desired output values are reached.
It is necessary to better explain the MPC theory for understanding the way this
powerful tool solves control problem. For understanding the Receding Horizon
principle, Linear Quadratic finite horizon optimal control must be introduced.

21

Background

The discrete time finite horizon LQ design procedure considers the minimization
of a cost function J of the input and state over a finite time horizon:

min
U(k|k)

J
1
x(k|k), U(k|k)

2
(2.1)

where J is the cost function, x(k|k) the state vector at time k and U(k|k) =
[u(k|k) u(k + 1|k) . . . u(k +HP − 1)]T is the control sequence computed at time k
over the prediction horizon HP , subjected to the following model constraint:

x(k + 1) = Ax(k) +Bu(k) x(k) ∈ Rn, u(k) ∈ Rp (2.2)

with A ∈ Rn×n the state matrix and B ∈ Rn×p the input matrix.
The optimal input sequence, marked with U∗(k|k), is the input argument that
minimizes the cost function J :

U∗(k|k) = arg min
U(k|k)

J
1
x(k|k), U(k|k)

2
(2.3)

This input sequence is computed optimizing the predicted state response, given
the system information at time k:

x(k + 1|k), x(k + 2|k), . . . , x(k +HP |k)

On the basis of the measured state x(k|k) = x(k) at time k, in fact, exploiting
system model, it is possible to calculate the ith-step ahead prediction:

x(k+i|k) = Aix(k|k)+Ai−1Bu(k|k)+Ai−2Bu(k+1|k)+· · ·+Bu(k+i−1|k) (2.4)

In order to take into account input saturation, the following constraints are
added in the optimization problem:

umin ≤ u(k|k) ≤ umax

umin ≤ u(k + 1|k) ≤ umax

...

umin ≤ u(k +HP − 1|k) ≤ umax (2.5)
where umin, umax ∈ Rp are the vectors containing the saturation values for the p
input of the considered system.
These input saturation constraints can be expressed as a set of linear inequalities
in the variable U(k|k).
The application of the minimizing sequence U∗(k|k) causes an open-loop control
strategy, so that, in order to address this problem, the Receding Horizon (RH)
principle is applied.

22

Background

The RH principle recursively performs the following actions:

• Get the state x(k) = x(k|k);

• Solve the Quadratic Problem optimization related to the U(k|k) and compute
the minimizer U∗(k|k) = [u∗(k|k) u∗(k + 1|k) . . . u∗(k +HP − 1)]T ;

• Apply the present control input u(k) = u∗(k|k) to the system and discard the
other optimized input;

• Repeat the procedure for the next time instant.

Recalling that cost function J depends on x(k|k) = x(k) only, it can be shown
that the Receding Horizon implicitly defines a nonlinear time invariant static state
feedback control law of the form:

u(k) = K(x(k)) (2.6)

After this introduction, it possible to present the Model Predictive Control (MPC)
methodology. MPC is a control strategy that exploits a dynamical model of the
plant to predict the future behaviour of the variables of interest to compute an
optimal control action. MPC control input is computed by solving at each sampling
time k the following Quadratic Problem:

min
U(k|k)

HP−1Ø
i=0

1
xT (k+1|k)Qx(k+1|k)+uT (k+1|k)Ru(k+1|k)

2
+xT (HP |k)Sx(HP |k)

U(k|k) = [u(k|k) u(k + 1|k) . . . u(k +HP − 1)]T (2.7)

so that:

x(k + 1) = Ax(k) +Bu(k)
umin ≤ u(k + i|k) ≤ umax, i = 0, . . . , HP − 1

According to Receding Horizon principle, only the first element of the minimizer
u(k) = u∗(k|k) is applied to the system, and the process repeats iteratively.
In the following, some MPC advantages are recapped:

• MPC is a control procedure that allows to control Single Input Single Output
as well as Multiple Input Multiple Output systems;

• It can be applied on linear and non-linear systems, providing high performances
even in the presence of highly complex dynamics, instability and non-minimum
phase systems;

• It allows to handle soft and hard input and output constraints directly in the
control problem, providing better control performances;

23

Background

• By using an Observer and a Kalman filter it is possible to estimate disturbances,
system unmeasurable states and include them directly inside the control
problem.

On the other hand, MPC presents several disadvantages that must be taken
into account:

• Even if it is a really effective approach, MPC may require more sophisticated
derivation for designing the control procedure than classical control approaches;

• MPC strongly relies on the plant mathematical model used for the states
prediction. Most of the cases where MPC results infeasible are due to modelling
errors, neglected disturbances or dynamics. For these reasons, it is very
important to use a precise system model, in order to carefully take into
account system dynamics;

• The biggest limit of the MPC approach is the computational effort that
computers spend in order to solve the control problems. Moreover, better
system performances can be obtained with longer prediction horizon, but
higher the prediction horizon, higher the number of degrees of freedom in the
optimization, so the problem complexity. A possible solution to this problem
is reducing the number of variables to be optimized over a shorter time horizon
named control horizon HC . In this way, the system is predicted over the entire
prediction horizon, but only the first HC input variables are optimized, while
the remaining HP −HC control values may be set in different ways, reducing
computational effort.

2.4 Multi-Rotor System Notation
As happened for most of the technological innovations upon the last centuries,
Unmanned Aerial Vehicles are a technology developed for war purposes. Starting
from early 19th, big interest has been spent on the deployment of aerial vehicles
flying without pilot. This kind of technology allows to inspect hostile unknown
environments without any kind of risk as well as transporting goods through risky
zones without jeopardizing human life [13]. Modern technologies have allowed to
improve quality and performance of UAVs while reducing their size, so, because of
the already mentioned characteristics, big attention is paying on UAVs. Referring
to Civil UAVs, acronym that refers to unmanned aircraft that can be either
autonomously guided or remotely controlled by a pilot and have the ability of
performing a variety of missions, it is possible to split them in two categories:

• Multicopters;

24

Background

• Fixed-wing.

The main difference between these two categories of UAVs is the mechanics adopted
for generating lift, that influences the way wings and rotors are arranged in the
UAV body. After this short introduction and before presenting the UAV model
that is used in this thesis, it is necessary to explain several notations and terms
that are used in the following parts.
It is important to precise that the developed project does not focus on the UAV
model, while focusing on the trajectory planning strategy. Anyway, it is decided
to use a multi-rotor system model. For the following explanations, a quadcopter
drone will be considered. Moreover, the following considerations will be treated for
a three-dimensional frame, while this thesis is developed in a two-dimensional one.
Following the approach used in [14], the vehicle position and speed are defined
with respect to a world inertial frame W. Defined a vehicle body frame B, the
position vector is computed as the relative position of the drone body frame B
origin, fixed in the vehicle center of mass, expressed in the world inertial frame W.
Both frames are right-handed reference frames. The model speed vector is defined
as the derivative of the position vector in the given instant of time. Geometrically
speaking, given a point in the 3D space, the following relationship can be defined:

pB =

xByB
zB

 = vAB · t+ pA =

vAB,xvAB,y
vAB,z

 · t+

xAyA
zA

 (2.8)

Being the system working in discrete time, for a matter of notation and completeness,
the previous equation can be rewritten as follows:

p(t+ 1) = v(t) · TS + p(t) (2.9)

where p(t + 1) and p(t) are the positions at time t + 1 and t, v(t) is the vehicle
speed at time t, and TS is the sampling time.
UAV orientation in the space is described with Cardan angles convention, a
particular representation of the Euler angles.

Remembering that the vehicle is described in a three-dimensional right-handed
reference frame, it is possible to name the rotations as follows:

Roll φ: Rotation around the drone longitudinal axis;

Pitch θ: Rotation around the drone transverse axis;

Yaw ψ: Rotation around the drone vertical axis passing for its center of mass.

These rotations are considered in the vehicle body frame, so, in order to correctly
translate information from the inertial world frame to the vehicle body frame it is

25

Background

Figure 2.5: Quadcopter axes and movements description.

necessary to perform rotations.
Geometrically speaking, these transformations are performed by pre-multiplying
the drone body frame orientations for the rotation matrices. This discussion will
not be done in this part, but is presented in the part related to the linearization,
precisely at Equation 2.19.
It is now time for explaining how the UAV moves and how some maneuvers are
performed.
Quadcopters are made by four rotors arranged in the drone body forming a square.
Two out of four rotors spin counterclockwise, while the others spin clockwise, with
the rotors on the same diagonal spinning in the same direction. This arrangement
is made for partially compensating drone internal forces. If the four rotors spin
at the same rate, null angular speed results around the rotation axes. As a result,
changing the angular speeds of the vehicle rotors causes resulting torques given by
the decompensation of accelerations, making the UAV able to perform the desired
maneuvers.
In the following, the most common drone maneuvers are listed:

Hovering: The drone hovering represents the condition of stationary flight at a
certain altitude, meaning that the drone remains at a certain altitude without
angle variations. This condition is obtained by making the four rotors spinning
at the same rate, with each rotor compensating 1/4 of the drone weight;

Move Up and Move Down: In order to increase or decrease the altitude of the
drone, the spins of the four rotors change identically, augmenting the four
rotors rotational speeds in case of drone ascent maneuver, and decreasing
them in case of drone descent maneuver;

Roll: Roll maneuvers are performed by increasing or decreasing the rotational
speeds of the rotors of lateral axis (i.e. the perpendicular to the drone forward

26

Background

direction). It is important to point out that, in order to not affect drone yaw,
the rotor on the same axis are coupled in the sense that whenever the speed
of a drone rotor is augmented for performing the desired maneuver, the one of
the opposite rotor is decreased;

Pitch: Similarly to how the roll maneuver is done, the pitch is performed by
increasing or decreasing the rotational speeds of the rotors of longitudinal axis
(i.e. the drone forward direction);

Yaw: This movement is performed by increasing the rotational speeds of a couple
of opposite rotors, while decreasing the ones of the other two rotors. In this
way, an overall imbalance of moments causes a rotation around the vertical
axis.

Figure 2.6: Quadcopter maneuvers description [15].

2.5 Multi-Rotor System Model
In this section, a simplified linear model of multi-rotor system is presented. The
current model, studied by [14], is used for a model-based control to achieve trajectory
tracking. The presented model describes a 6DoF multi-rotor system. Its body
frame B is described with respect to a fixed world frame W, with p the position of
the origin of the vehicle body frame B with respect to the inertial world frame W
described in W and R the rotation matrix of B in frame W expressed in W. UAV
angles are defined with respect to its body frame and they are marked with the
Greek letters φ, θ and ψ, denoting roll, pitch and yaw angles respectively. The
used non-linear drone model is presented below:

ṗ(t) = v(t) (2.10)

v̇(t) = R(φ, θ, ψ)

0
0
T

+

 0
0
−g

−
Ax 0 0

0 Ay 0
0 0 Az

 v(t) + d(t) (2.11)

27

Background

φ̇(t) = 1
τφ

(Kφφd(t)− φ(t)) (2.12)

θ̇(t) = 1
τθ

(Kθθd(t)− θ(t)) (2.13)

where the vehicle speed v is expressed as the derivative of the position vector
p, T is the mass normalized thrust, g represents the gravitational acceleration,
Ax,Ay,Az are the mass normalized drag coefficients, d is the external disturbance
vector, while τφ, Kφ, τθ, Kθ are the time constants and gains of the inner-loop
behavior for roll angle and pitch angle respectively, and R(φ, θ, ψ) is the rotation
matrix from W to B presented in Equation 2.14 (cosine and sine are marked with
c and s letters).

R(φ, θ, ψ) =

 c(ψ)c(θ) c(ψ)s(φ)s(θ)− c(φ)s(ψ) s(φ)s(ψ) + c(φ)c(ψ)s(θ)
c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) c(φ)s(ψ)s(θ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(φ)c(θ)


(2.14)

2.5.1 Linearization and Discretization

For the purpose of this thesis, the vehicle model is approximated around its hovering
conditions, where small attitude angle variations are assumed and vehicle heading
is null, so vehicle longitudinal axis is aligned with the inertial frame x axis. With
the already presented conditions, the state space representation of the system can
be rewritten as follows:

ẋ(t) = Acx(t) +Bcu(t) +Bd,cd(t), (2.15)

where Ac is the state matrix defined as:

Ac =



0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −Ax 0 0 g 0
0 0 0 0 −Ay 0 0 −g
0 0 0 0 0 −Az 0 0
0 0 0 0 0 0 − 1

τφ
0

0 0 0 0 0 0 0 − 1
τθ


28

Background

Bc is the input matrix equal to:

Bc =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
Kφ
τφ

0 0
0 Kθ

τθ
0


Bd,c is the disturbance matrix:

Bd,c =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


x is the state vector [pT , vT ,W φ,W θ]T , u is the input vector equal to [Wφd,W θd, T]T
and d is the disturbance vector equal to [dx, dy, dz]T . Entities marked with subscript
c are continuous time models.
Being the controller implemented in discrete time, system dynamics is discretized
as follows:

A = eAcTs (2.16)

B =
Ú Ts

0
Bcdτ (2.17)

Bd =
Ú Ts

0
Bd,cdτ (2.18)

where Ts is the prediction sampling time.
It is important to point out that, in this linearization, the attitude is marked in the
world inertial frame W for removing the yaw angle ψ dependence from the model.
Wφd and Wθd control actions are computed in the world frame, so they have to be
converted to body frame corresponding angles by performing a rotation around the
z axis. A

φd
θd

B
=
A

cosψ sinψ
− sinψ cosψ

BA
Wφd
Wθd

B
(2.19)

29

Background

As advised by Kamel, Stastny, Alexis and Siegwart, control input should undergo
a feed-forward compensation before being applied to the system, in order to
compensate coupling and achieve better tracking performances [14].

30

Chapter 3

Software Implementation

Figure 3.1: Algorithm logic scheme.

This section focuses on the explanation of the proposed trajectory planner.
The implemented logic is developed in C++ programming language because of its
compatibility with ROS and OMPL. For this thesis, OMPL is used to implement
the planning algorithm to plan the UAV trajectory. As explained in Section
1.1, RRT* algorithm is chosen as the candidate planner for its characteristic of
cost minimization. Exploiting OMPL object oriented nature, a newer class for
computing a trajectory optimization with MPC approach is created. This function
is set as default optimization objective for the path computation.

32

Software Implementation

In fact, whenever a new state is sampled as candidate child node in the chosen
state space, the node and its parent node are passed to the optimization class that
computes the trajectory for moving from the parent node to the sampled child. If
the sampled child satisfies specific characteristics, both states are transformed in
ROS poses and the MPC implemented logic is called for predicting the intermediate
poses and computing the relative cost of moving. If child pose does not match
particular characteristics, the class returns an infinite "cost-to-go", marking the
trajectory as unfeasible.
After the defined search time, the sub-optimal path (i.e. the path with the lowest
cost) is chosen as candidate path and then, exploiting again the MPC approach,
an optimized trajectory is returned. The proposed algorithm contains function for
simplifying the resulting sub-optimal path.
This thesis is developed using a two-dimensional state space, configuring OMPL for
sampling 2D poses in the the Special Euclidean Group with dimension two (SE(2)).
The implemented software is able to detect the presence of obstacles during the
path cost computation by exploiting the predictive capability of the MPC tool.

3.1 Code Details
In this part, the implemented code is deeply described, highlighting its structure,
its functioning and its peculiarities.
Several code fragments are presented, trying to make the explanation of the
proposed trajectory planning algorithm clearer.

3.1.1 RRT* Algorithm
The first component that needs to be presented is the RRT* planner. In order to
exploit the tools offered by OMPL, a class inheriting most of its components is
created. As properly presented in Section 2.2, OMPL contains default functions
for performing the trajectory planning. These functions are designed for being
customized according to the programmer’s needs.
First of all, it is necessary to present the motion planning problem.
Consider a system dynamically described by the following dynamic reported in
Equation 2.2 of the form: ẋ(t) = f(x(t), u(t)), where x(t) ∈ X is the state vector
at time t with X ⊆ R8 the state space, u(t) ∈ U is the input vector at time t with
U ⊆ R3 the input space. Let Xobs indicate the obstacle region, Xfree = X\Xobs the
obstacle-free space and Xgoal ⊂ X the goal region. The motion planning problem
is to find a control input set u : [0, T]→ U , that allows to obtain a feasible path
x(t) ∈ Xfree for t ∈ [0, T] from an initial state to a goal region x(T) ∈ Xgoal [16],
satisfying system dynamics.
The already explained logic represents the basis of the RRT algorithm; RRT*

33

Software Implementation

contains an important improvement for the path computation, that is the research
of an optimal path with respect to a given cost function c(t). The optimal motion
planning problem targets the minimization of a cost function c(t) for the feasible
path computation. In fact, each admissible trajectory is tagged with a real number
representing the relative cost for performing the desired motion. In solving the
optimal motion planning problem, the RRT* algorithm builds and maintains a tree
G = (V ;E) comprised of a vertex set V of state from Xfree connected by directed
edges E ⊆ V × V [16].
In the following, a set of basic procedures is listed for introducing the RRT*
logic[17]:

Sampling : The first function to be introduced is the one devoted to the sampling
of states in the space. This function randomly samples a state zrand in the
robotic free space Xfree;

MPC Logic: motionCost X ×X → R+ is the function that solves the optimiza-
tion problem defined in the MPC logic, given an initial and a final state, and
returns the cost of the optimized trajectory. If an obstacle is encountered
during the optimal trajectory computation or the final state does not satisfy
certain characteristics, this function returns an infinite cost, marking the
trajectory as unfeasible;

Nearest Neighbor: Given a state z ∈ X and a treeG = (V ;E), v = Nearest(G, z)
is the function used for returning the nearest node in the tree G, in terms of
Euclidean distance, to the passed state z;

Collision Check: ObstacleFree(x) function checks whether a path x : [0, T]→ X
lies within the obstacle-free region of state space. The previous sentence means
that each state of the resulting path belongs to the obstacles free state space
Xfree: x(t) ∈ Xfree, ∀t ∈ [0, T];

Distance Computation: A function called computeDistance(x1, x2), X ×X →
R+ is the function that returns the Euclidean distance between two states in
the state space.

Node Insertion: InsertNode(zcurrent, znew, G) is the function that adds the new
sampled node znew to V and creates an edge to connect the new state to the
current node zcurrent ∈ V as its parent. The already generated edge is added
to E and the cost of the trajectory for reaching the newer state is added to
the cost of the whole path up to znew. Whenever the trajectory for joining a
state has an infinite cost, the corresponding node is discarded.

The functioning of the RRT* algorithm is the same of RRT, with the only
difference that whenever a node is added as vertex, the "cost-to-go" from the start

34

Software Implementation

Figure 3.2: RRT* expansion phase [18].

state up to the added node znew is increased by the cost of the trajectory for
reaching znew form its lowest cost near state in the vertex space V . In fact, it
is important to highlight the choice of the parent made by the algorithm. The
parent of a sampled state, according to RRT logic, is the nearest node in the graph,
instead, RRT* chooses the lowest cost parent according to the defined cost function,
from a set of near parent nodes. Initially, the sample is attempted to be connected
to its nearest vertex in the graph in the circular area of radius equal to ρ around its
nearest node, with ρ the Planner Range. Samples are performed in the whole robot
free space, but, whenever a state is randomly sampled in this space, if the sampled
state is farther to its nearest node than ρ, the parent nearest node connection is
attempted with a state on the same line joining the sampled node and its parent,
but at a distance equal to ρ.
Then, being Znear the set of near nodes to the sampled one, for each node znear in
this set, the motion cost between it and the sample is computed. Discovered the
near parent with the lowest cost of moving, the sample is connected to it and a
rewiring action is performed. For each sample znear ∈ Znear in the vicinity of znew,
a connection check is done to see whether reaching znear via znew would achieve
lower cost than doing so view its current parent [16]. If this connection reduces
the total cost associated with znear, the tree is modified to make znew the parent of
znear.
An example of this state connection is shown in Figure 3.2.

35

Software Implementation

The algorithm logic is presented in the following:

Algorithm 1: G=(V ,E)← RRT*(zinit)
G← InitializeThree();
G← InsertNode(∅,zinit,G);
for i = 1 to i = N do

zrand ← Sample(i);
znearest ← Nearest(G,zrand);
if ObstacleFree(xnew) then

Znear ← Near(G,znew,|V |);
zmin ← ChooseParent(Znear,znearest,znew,xnew);
G← InsertNode(zmin,znew,G);
G← ReWire(G,Znear,zmin,znew);

return G

Algorithm 2: zmin ← ChooseParent(Znear,znearest,xnew)
zmin ← znearest;
cmin ← motionCost(znearest)+c(xnew);
for znear ∈ Znear do

(xÍ,uÍ)←motionCost(znear, znew);
if ObstacleFree(xÍ) and (xÍ(GÍ)=znew or i<itermax) then

cÍ=motionCost(znear, znew)+c(xÍ);
if cÍ<motionCost(znear, znew) and cÍ < cmin then

zmin ← znear;
cmin ← cÍ;

return zmin

Algorithm 3: G←ReWire(G,Znear,zmin,zmin)
for znear ∈ Znear\zmin do

(xÍ,uÍ,GÍ)← motionCost(znear, znew);
if ObstacleFree(xÍ) and xÍ(GÍ) = znear and
motionCost(znear, znew)+c(xÍ)< motionCost(znear, znew) then
G←Reconnect(znew,znear,G);

return G

Even if the drone model allows to perform a three-dimensional trajectory plan-
ning, the thesis project is developed for planning in a two-dimensional space.
Being more precise, the code works in 3D because UAV states and references exploit
all the model characteristics, but data related to z coordinate are set to zero (i.e.

36

Software Implementation

reference z position and reference z speed).
Because of the fact that the drone model does not need roll and pitch references,
being the planning performed in 2D, the used OMPL state space is SE(2).
SE(2) is the Special Euclidean Group of dimension 2; in general SE(n) is a topo-
logical space and it is homeomorphic to Rn × SO(n), with Rn the Euclidean space
of dimension n and SO(n) the rotation group of all the rotations about the origin
of n-dimensional Euclidean space.
With the library configured for sampling in this state space, each sample contains
two data describing state position in the x-y plan (i.e. abscissa and ordinate
coordinates) and one describing the state orientation in the same space.
In order to properly exploit the characteristics of the OMPL sampled states, it is
decided to use two-dimensional poses in the x-y plan. For doing that, ROS Pose2D
message type is used. This data structure, contained in the ROS geometry message
work-space, allows to construct objects made by three attributes:

• float64 x position;

• float64 y position;

• float64 θ orientation (i.e. drone yaw).

OMPL sampled states need to be translated from their native data structure to
the ROS Pose2D one. For doing that, a function, named SE2ToROSPose2D, is
developed. It exploits OMPL SE(2) state space methods that are automatically
able to transform states characteristics into double quantities, saved in the Pose2D
attributes:

Listing 3.1: SE2ToROSPose2D function code.
1 void OmplPlanner : : SE2ToROSPose2D(const ompl : : base : : State ∗

ompl_state , geometry_msgs : : Pose2D& pose2D)
2 {
3 pose2D . x = ompl_state−>as<ompl : : base : : SE2StateSpace : :

StateType >()−>getX () ;
4 pose2D . y = ompl_state−>as<ompl : : base : : SE3StateSpace : :

StateType >()−>getY () ;
5 pose2D . theta = ompl_state−>as<ompl : : base : : SE2StateSpace : :

StateType >()−>getYaw () ;
6 return ;
7 }

Explaining and showing the translation form OMPL states to ROS Pose2D is
important because it is the first action performed by MPCOptimizationObjective
class.

37

Software Implementation

3.1.2 MPCOptimizationObjective

The novel feature of the proposed algorithm that differs from those presented in
the literature is the path cost computation, that exploits the MPC logic. For
accomplishing this task, a class named MPCOptimizationObjective is created.
This class, sets as default class for performing the RRT* optimization through
OMPL default setOptimizationObjective function, contains some methods needed
for properly solving the MPC optimization problem and for generating the desired
trajectory. OMPL automatically recalls two default functions for evaluating a
cost in the motion query. These functions must be defined in the optimization
class, and are named stateCost and motionCost. The former, evaluates the cost
of a state, while the latter evaluates the cost for moving from am initial state
to a final one arbitrarily defined in the state space. stateCost function does not
perform any computation and it always returns a null cost; for the purpose of this
thesis, in fact, it is not necessary to compute the cost of a single state, but it is
necessary to compute the cost of moving from a certain pose to another one in the
two-dimensional plan.
Particular attention is paid to the implementation of the motionCost function
devoted to compute the cost for approaching a final pose from an initial one,
exploiting the MPC logic. Moreover, this function is also exploited to define the
optimal trajectory for moving between two poses. Before presenting the functions
created for properly setting the MPC for the thesis purposes, it is mandatory to
introduce an important tool used for generating the MPC desired code.
As treated in Section 2.3, the biggest limit of the MPC approach is the computational
effort requested for solving the optimization problem, and higher the problem
complexity (i.e. the number of optimization variables), higher the computational
effort. This limit causes big time delays that are undesired in sample-based motion
planner. In fact, higher the speed of the cost computation, higher the number of
samples that the planner is able to analyze in a fixed amount of time and, concerning
the RRT* algorithm, higher the probability of obtaining a better solution.
For the already mentioned problems, it is decided to use CVXGEN for the MPC
code generation.
CVXGEN stands for Code Generation for Convex optimization. It is an online
interface used for generating fast custom code for small, QP-representable convex
optimization problems. As treated in [19], CVXGEN interface allows to describe
the problem to be optimized with a simple and powerful language, to automatically
create library-free C code for custom, high-speed solver that can be directly
downloaded from the CVXGEN website.
Additionally, for same optimization problems, the solution provided by CVXGEN is
twelve to one thousand-times faster than the solution offered by the most common
optimizers [20] (further details at Appendix C).

38

Software Implementation

Before showing the CVXGEN description of the problem, the optimization problem
is presented. The MPC problem is defined by inspiring to [14], where a MPC-based
trajectory tracking is developed using CVXGEN.
Assuming a disturbance free system model (i.e. d(t) = 0 ∀t ∈ [0, HP]), the
optimization problem can be defined as:

min
U,X

1HP−1Ø
k=0

(xk − xref,k)TQx(xk − xref,k) + (uk − uk−1)TR∆(uk − uk−1)
2
+

+ (xHP − xref,HP)TQfinal(xHP − xref,HP)
(3.1)

subject to Equation 2.15:

xk+1 = Axk +Buk;
uk ∈ U ;
x0 = x(t0)

(3.2)

where HP is the prediction horizon, U is the input space U = [u0 u1 . . . uHP−1]T
with uk ∈ R3 for k = [0, . . . , HP − 1], X is the state space X = [x0 x1 . . . xHP]T
with xk ∈ R8 for k = [0, . . . , HP], Xref = [x0 x1 . . . xHP]T with xk ∈ R8 for
k = [0, . . . , HP], Qx is the penalty on the state error, R∆ is a penalty on the control
change rate and Qfinal is the terminal state error penalty. The computation of
the terminal cost matrix Qfinal is done by solving the Algebraic Riccati Equation
iteratively [21].
analyzing the introduced objective function, it is clear that control input rate
∆uk and state error ∆xk are penalized. In this way, smooth control input can be
obtained, as well as oscillations prevention.
After this small presentation, it is now possible to present the structure of the
motionCost function. This function receives as input from the OMPL planner two
states that are immediately transformed in ROS Pose2D after the MPC parameters
initialization.
In order to properly fill the drone model matrices, the optimization function
ones and the reference state vectors, the initializeParameters function is called.
This function is called when MPCOptimizationObjective class is constructed. The
initialization phase is quite long, so, being the MPC tool parameters fixed for
the entire RRT* graph construction phase, it is performed only once inside the
MPCOptimizationObjective class constructor. initializeParameters contains a ROS
node handler that makes the function able to read parameters form a launch
file (the test.launch file used in this thesis is detailed in Appendix B). Data read
from this file are saved into global variables. A particular string value that is
saved through initializeParameters is the desired state space. OMPL class and
MPCOptimizationObjective are designed for sampling states even in other state

39

Software Implementation

spaces, but the reference trajectory is only computed for a x-y plan, being z position
and z speed assumed to be equal to zero.
In the following, the way state matrix A and input matrix B are filled is presented:

Listing 3.2: Drone model matrices definition.
1 Eigen : : MatrixXd A_continuous_time (StateS i ze , S t a t eS i z e) ;
2 A_continuous_time = Eigen : : MatrixXd : : Zero (StateS i ze , S t a t eS i z e) ;
3 Eigen : : MatrixXd B_continuous_time (StateS i ze , InputS i ze) ;
4 B_continuous_time = Eigen : : MatrixXd : : Zero (StateS i ze , InputS i ze) ;
5

6 Eigen : : Matrix<double , S ta teS i ze , S ta teS i ze> model_A_ ;
7 Eigen : : Matrix<double , S ta teS i ze , InputSize> model_B_ ;
8

9 std : : vector<double> drag_coe f f i c i en t s_ ;
10

11 const double kGravity = 9 . 8066 ;
12 drag_coe f f i c i en t s_ . push_back (0 . 0 1) ;
13 drag_coe f f i c i en t s_ . push_back (0 . 0 1) ;
14 drag_coe f f i c i en t s_ . push_back (0 . 0) ;
15 A_continuous_time (0 , 3) = 1 ;
16 A_continuous_time (1 , 4) = 1 ;
17 A_continuous_time (2 , 5) = 1 ;
18 A_continuous_time (3 , 3) = −drag_coe f f i c i en t s_ . at (0) ;
19 A_continuous_time (3 , 7) = kGravity ;
20 A_continuous_time (4 , 4) = −drag_coe f f i c i en t s_ . at (1) ;
21 A_continuous_time (4 , 6) = −kGravity ;
22 A_continuous_time (5 , 5) = −drag_coe f f i c i en t s_ . at (2) ;
23 A_continuous_time (6 , 6) = −1.0 / rol l_time_constant_ ;
24 A_continuous_time (7 , 7) = −1.0 / pitch_time_constant_ ;
25

26 model_A_ = (prediction_sampling_time_ ∗ A_continuous_time) . exp () ;
27

28 Eigen : : MatrixXd integral_exp_A ;
29 integral_exp_A = Eigen : : MatrixXd : : Zero (StateS i ze , S t a t eS i z e) ;
30 const int count_integral_A = 100 ;
31

32 B_continuous_time (5 , 2) = 1 . 0 ;
33 B_continuous_time (6 , 0) = rol l_gain_ / rol l_time_constant_ ;
34 B_continuous_time (7 , 1) = pitch_gain_ / pitch_time_constant_ ;
35 for (int i = 0 ; i < count_integral_A ; i++)
36 {
37 integral_exp_A += (A_continuous_time ∗

prediction_sampling_time_ ∗ i / count_integral_A) . exp () ∗
prediction_sampling_time_ / count_integral_A ;

38 }
39 model_B_ = integral_exp_A ∗ B_continuous_time ;

For computing B matrix in discrete time, it is necessary to compute the integral
calculation presented in Section 2.5.1, so, being integral calculation in C++ quite

40

Software Implementation

trivial, an incremental approach is adopted.
Objective function matrices are initialize as follows:

Listing 3.3: MPC optimization objective matrices definition.
1 Eigen : : Vector3d q_position_ (q1 , q2 , q3) ;
2 Eigen : : Vector3d q_velocity_ (q4 , q5 , q6) ;
3 Eigen : : Vector2d q_attitude_ (q7 , q8) ;
4

5 Eigen : : Vector3d r_command_(35 . 0 , 35 . 0 , 2 . 0) ;
6 Eigen : : Vector3d r_delta_command_ (0 . 3 , 0 . 3 , 0 . 0 0 2 5) ;
7

8 Eigen : : Matrix<double , S ta teS i ze , S ta teS i ze> Q;
9 Eigen : : Matrix<double , S ta teS i ze , S ta teS i ze> Q_final ;

10 Eigen : : Matrix<double , InputSize , InputSize> R;
11 Eigen : : Matrix<double , InputSize , InputSize> R_delta ;
12

13 Q. se tZero () ;
14 Q_final . s e tZero () ;
15 R. se tZero () ;
16 R_delta . s e tZero () ;
17

18 Q. block (0 , 0 , 3 , 3) = q_position_ . asDiagonal () ;
19 Q. block (3 , 3 , 3 , 3) = q_velocity_ . asDiagonal () ;
20 Q. block (6 , 6 , 2 , 2) = q_attitude_ . asDiagonal () ;
21 R = r_command_ . asDiagonal () ;
22 R_delta = r_delta_command_ . asDiagonal () ;
23 Q_final = Q;
24 for (int i = 0 ; i < 1000 ; i++)
25 {
26 Eigen : : MatrixXd temp = (model_B_ . t ranspose () ∗ Q_final ∗

model_B_ + R) ;
27 Q_final = model_A_ . t ranspose () ∗ Q_final ∗ model_A_ − (

model_A_ . t ranspose () ∗ Q_final ∗ model_B_) ∗ temp . i nv e r s e () ∗ (
model_B_ . t ranspose () ∗ Q_final ∗ model_A_) + Q;

28 }

All the matrices in the implemented code are defined as Eigen matrices of double
quantities, but CVXGEN corresponding parameters must be passed as attributes
of an object in vector form. For doing that, cast operations are performed:

Listing 3.4: Matrices cast operations.
1 Eigen : :Map<Eigen : : MatrixXd>(const_cast<double∗>(params .Q) ,

StateS i ze , S t a t eS i z e) = Q;
2 Eigen : :Map<Eigen : : MatrixXd>(const_cast<double∗>(params . Q_final) ,

S tateS i ze , S t a t eS i z e) = Q_final ;
3 Eigen : :Map<Eigen : : MatrixXd>(const_cast<double∗>(params . R_delta) ,

InputSize , InputS i ze) = R_delta ∗ (1 . 0 / 0 .01 ∗ 0 . 01) ;
4

41

Software Implementation

5 Eigen : :Map<Eigen : : MatrixXd>(const_cast<double∗>(params .A) ,
StateS i ze , S t a t eS i z e) = model_A_ ;

6 Eigen : :Map<Eigen : : MatrixXd>(const_cast<double∗>(params .B) ,
StateS i ze , InputS i ze) = model_B_ ;

After having initialized the necessary parameters and having transformed the
sampled states in ROS Pose2D, the samples evaluation can be performed.
Points sampled in the plan portion defined by the perpendicular to the initial pose
yaw angle in the opposite direction to the initial pose orientation are marked with
an infinite cost. The same happens for the final sampled poses with orientations
offset more than sixty degrees with respect to the line joining initial and final
poses. This samples selection is done to exclude non-promising samples and, then,
avoiding to spend time computing unnecessary MPC problem solutions, considering
that it is a-priori known that initial and final poses with opposite directions may
cause bad trajectories in terms of cost. This is a sort of heuristic used to speed-up
the algorithm.
For doing that, a function inside MPCOptimizationObjective class named motion-
CostHeuristic2D is implemented. This function is unprecedented named heuristic.
"Heuristics are problem-solving methods that use shortcuts to produce good-enough
solutions given a limited time frame or deadline. Heuristics are flexibility tech-
niques for quick decisions, particularly when working with complex data", this is
the definition given by James Chen on Investopedia website, so our function aims
to speed-up the optimal solution computation, avoiding to evaluate non-optimal
trajectories, but it indirectly increases the quality of the computed solution; in
fact, motionCostHeuristic2D allows to sample and evaluate an higher number of
possible "good trajectories" states, while neglecting those causing "bad trajectories".
The result of this function is a Boolean variable sets as true whenever a goal pose
does not satisfy predefined characteristics, and cost computation is immediately
stopped returning an infinite cost; otherwise, if false, the MPC solver, the input
limits, the initial position and the reference states are set and the optimization
problem solution is computed.
It is decided not to limit the states, being the sampled child nodes quite close to
parent nodes, so short motions are supposed to be predicted by the MPC.
Concerning the setting of the solver characteristics and of the limits, two functions
are created:

Listing 3.5: setSolver function code.
1 s e t_de f au l t s () ;
2 setup_indexing () ;
3 //settings.max_iters = 10;
4 //settings.eps = pow(10,-5);
5 //settings.resid_tol = pow(10,-3);
6 int dont_print_solver_output {0} ;

42

Software Implementation

7 s e t t i n g s . verbose = dont_print_solver_output ;

Listing 3.6: setLimits function code.
1 params .u_max [0] = ro l l_ l im i t_ ;
2 params .u_max [1] = pitch_limit_ ;
3 params .u_max [2] = thrust_max_ ;
4

5 params . u_min [0] = − ro l l_ l im i t_ ;
6 params . u_min [1] = − pitch_l imit_ ;
7 params . u_min [2] = thrust_min_ ;

setSolver function performs a default configuration of the MPC, but the de-
sired CVXGEN generated solver parameters could be customized. settings.eps is
used for setting the solver duality gap for returning the MPC problem solution:
solver will not declare a problem converged until the duality gap is known to be
bounded by eps; settings.resid_tol command sets the residue tolerance value for
returning the solver solution: solver will not declare a problem converged until
the norm of the equality and inequality residuals are both less than resid_tol.
settings.max_iters is used for setting the maximum number of iterations the
MPC solver is allowed to run before returning a solution if eps and resid_tol are
not reached. settings.verbose is used for making the solver able to output or not
output information about each iteration, including residual norms, duality gap
bounds and step sizes. By properly adjusting the setting parameters of the MPC
solver, solution computation can be speeded-up considerably (further information
available on CVXGEN website). For the purpose of this thesis, it is decided to
keep these parameters at their default values. setLimits function defines the input
values bounds. Limits are set according to [14].
Of particular interest is the reference trajectory xref,k used by the MPC opti-
mization with k ∈ [0, HP], defined by line-circumference interpolations, with an
iterative process. Given an initial and a final pose, defined a line joining the two
poses, interceptions line-circumferences centred in the initial pose are calculated,
by increasing the circumference radius iteration after iteration, finding out newer
reference positions farther to the initial pose. When the interpolated pose is near
to the final pose, the successive references are calculated with interceptions cir-
cumferences centred in the start pose-final speed direction line, along the speed
direction.
The reference speeds are set by multiplying the speed module, constant and a-priori
defined, for sine and cosine of an angle that could be the joining line inclination
angle, in case of reference points on the poses joining line, or the final pose orienta-
tion in the other case.
Setting as initial states the initial position and as initial speed the speed vector
with predefined module and direction given by the initial pose orientation, the

43

Software Implementation

optimization problem is solved iteratively. In fact, instead of saving the whole
trajectory computed by MPC tool, only the first optimized state x1 ∈ R8 is saved as
newer initial position. The MPC approach needs the measured state quantities for
iteratively adjusting the control input set and achieving the desired references; in the
absence of real measurement from the UAV, being this phase totally theoretical and
devoted to the motion cost computation for finding the optimal path, it is decided
to use the simulated state of the previous MPC solving phase. The optimization
problem is solved since the Euclidean Distance (for further details refer to Appendix
D) between the first optimized state and the final pose is greater than a predefined
threshold, since the Euclidean Distance between the first optimized states and
the final one at the previous iteration is bigger than the distance at the current
iteration (i.e. the distance to the goal is decreased), or since a predefined maximum
number of iterations is not reached. The reference trajectory is recomputed at each
iteration with the optimized state returned by the MPC logic.
An additional characteristic introduced by the motion cost computation function is
the capability of stopping the trajectory optimization whenever an optimized state
collides an obstacle. The trajectory planning is performed on a predefined map
with fixed obstacles in the robotic space. The obstacle avoidance capability of the
project may be guaranteed by the RRT* algorithm, that samples states only in the
UAV free space, neglecting states sampled on or in the neighbourhood of obstacles.
However, it may happen that the optimized trajectory joining two states in the
free space collides with an obstacle.
Because of the already explained fact, a logic for stopping the trajectory is imple-
mented in the motionCost function.

Listing 3.7: Obstacles detection function code.
1 i n i t i a l_pose2D . x= vars . x_1 [0] ;
2 i n i t i a l_pose2D . y= vars . x_1 [1] ;
3 i n i t i a l_pose2D . theta=atan2 (vars . x_1 [4] , vars . x_1 [3]) ;
4

5 double temp_cost = getCost (in i t i a l_pose2D) ;
6 if (temp_cost < 0 .0 | | temp_cost >= 100)
7 {
8 return (Cost (i n f i n i t eC o s t ())) ;
9 }

motionCost returns an infinite cost whenever a double value, returned by a function
named getCost, does not lay between predefined bounds.

44

Software Implementation

In the following, the getCost function is presented:

Listing 3.8: getCost function code.
1 double ompl : : base : : MPCOptimizationObjective : : getCost (

geometry_msgs : : Pose2D pose) const
2 {
3 int ce l l_x = (int)(− pose . x + origin_x_) / re so lu t i on_ ;
4 int ce l l_y = (int)(− pose . y + origin_y_) / re so lu t i on_ ;
5 float temp_cost = (∗data_) (ce l l_x , ce l l_y) ;
6

7 return (double) temp_cost ;
8 }

Whenever the goal neighbourhood is reached, the optimization objective returns
a cost. In order to test the influence of the cost function on the quality of the
solution path, three different functions for computing the cost, named computeCost1,
computeCost2 and computeCost3, are implemented. The resulting cost computed by
motionCost is the sum of the weighted costs returned by each single cost function.
By changing these weights, the algorithm has different behaviours highlighted in
Section 4.
Concerning computeCost1, this function is designed for returning the sum of
the distances between each pair of poses of the predicted trajectory in meter.
computeCost2 is designed for returning the total rotation performed by the UAV in
the predicted trajectory. computeCost3 calculates a cost using the cost function of
the optimization problem (3.1) with the control input and the state of the predicted
trajectory. It is important to specify that this cost computation is done whenever
a new state is sampled and attempted to be inserted in the graph.
In order to properly calculate these costs, at each iteration, the computed first input
vector u0, the first reference state xref,1 the first optimized state x1 are saved into
three matrices, one for each signal, with predefined dimensions equal to the input
or state vectors dimensions and to the maximum number of the iteration that the
MPC is allowed to be computed for a single couple of initial and final poses. These
matrices are initialized and set null; then, they are filled with the computed values,
iteration after iteration. In this way, the cost can be easily calculated performing a
product between the optimized quantities and the optimization matrices.
Listing 3.9: Reference state, optimized state and input matrices initialization
and filling, with it the number of iterations of the MPC logic.

1 Eigen : : Matrix<double , 200 , StateS i ze> matrix_x_temp ;
2 Eigen : : Matrix<double , 200 , StateS i ze> matrix_x_ref_temp ;
3 Eigen : : Matrix<double , 200 , StateS i ze> matrix_u_temp ;
4 matrix_x_temp . se tZero () ;
5 matrix_x_ref_temp . se tZero () ;
6 matrix_u_temp . se tZero () ;
7

45

Software Implementation

8 for (unsigned j =0; j<Sta t eS i z e ; j++)
9 {

10 matrix_x_ref_temp (i t , j)=params . x_ss_1 [j] ;
11 matrix_x_temp (i t , j)=vars . x_1 [j] ;
12 matrix_u_temp(i t , j)=vars . u_0 [j] ;
13 }

Listing 3.10: computeCost1 function code.
1 double ompl : : base : : MPCOptimizationObjective : : computeCost1 (Eigen : :

MatrixXd matrix_x , Eigen : : MatrixXd matrix_x_ref , Eigen : : MatrixXd
matrix_u , int i t) const

2 {
3 double c1 =0.0 ;
4 geometry_msgs : : Pose2D pose1 , pose2 ;
5

6 for (s i z e_t i = 1 ; i < i t ; i++) {
7 pose1 . x=matrix_x (i −1 ,0) ;
8 pose1 . y=matrix_x (i −1 ,1) ;
9 pose2 . x=matrix_x (i , 0) ;

10 pose2 . y=matrix_x (i , 1) ;
11 c1+=computeDistance2D (pose1 , pose2) ;
12 }
13 return (c1) ;
14 }

Listing 3.11: computeCost2 function code.
1 double ompl : : base : : MPCOptimizationObjective : : computeCost2 (Eigen : :

MatrixXd matrix_x , Eigen : : MatrixXd matrix_x_ref , Eigen : : MatrixXd
matrix_u , int i t) const

2 {
3 double c2=0.0 , ang l e_d i f f =0.0 ;
4 for (s i z e_t i = 1 ; i < i t ; i++) {
5

6

7 ang l e_d i f f=std : : abs (atan2 (matrix_x (i , 4) ,matrix_x (i , 3))−
atan2 (matrix_x (i −1 ,4) ,matrix_x (i −1 ,3))) ;

8 if (ang l e_di f f>M_PI)
9 ang l e_d i f f =(2∗M_PI−ang l e_d i f f) ;

10 c2+=180/M_PI∗ ang l e_d i f f ;
11 }
12 return (c2) ;
13 }

As already explained, the computeCost3 cost computation is done by performing a
summation of matrices products.
This operation can be described in C++ language by nested for loops performing

46

Software Implementation

matrices cells product. These products are added to an incremental double variable,
representing the cost.

Listing 3.12: computeCost3 function code fragment.
1 double co s t =0.0 ;
2 for (unsigned i =1; i<i t ; i++)
3 {
4 for (unsigned j =0; j<InputS i ze ; j++)
5 {
6 co s t=cos t+pow((matrix_u (i , j)−matrix_u (i −1, j)) , 2) ∗R_delta (

j , j) ;
7 }
8 }
9

10 for (unsigned i =0; i<i t ; i++)
11 {
12 for (unsigned j =0; j<Sta t eS i z e ; j++)
13 {
14 co s t=cos t+pow((matrix_x (i , j)−matrix_x_ref (i , j)) , 2) ∗Q(j , j)

;
15 }
16 }
17 for (unsigned j =0; j<Sta t eS i z e ; j++)
18 {
19 co s t=cos t+pow((matrix_x (i t −1, j)−matrix_x_ref (i t −1, j)) , 2) ∗

Q_final (j , j) ;
20 }
21 return (co s t) ;

This cost computation process is performed many times for each sampled state of
RRT*, so it is logical to expect that the cost computation is continuously performed
until the solve time. If, after this period of time, a path joining the desired start
and goal poses in the two-dimensional plan is found, it is the one that minimizes
the "cost-to-go" function for reaching the desired pose in the space, according to the
motion cost definition. Being the MPC optimization computationally expensive,
the algorithm computes few states in the defined search time, so the path will not
be the global optimal one, while the one with the lowest cost between the evaluated
paths for reaching the goal. This limit is always present in RRT* logic; in fact, the
global optimal solution is obtained only when search time approaches infinite. The
limitation is emphasized in the deployed algorithm because of the time needed for
evaluating a single trajectory through MPC approach.
After the computation of the path using RRT*, the returned path consists in a
sequence of motions defined by the MPC. However, these motions are not perfectly
aligned due to uncertainties in the MPC optimization. In order to have a continuous
trajectory between the start and the goal pose, the MPC optimization is used to
define the whole trajectory.

47

Software Implementation

Differently of what is done for the motion cost computation, the trajectory compu-
tation function, named trajectoryGenerator, introduces a little modification with
respect to the previous function. These function receives as inputs two states that
are successively transformed into ROS Pose2D data for performing the desired
operations, and a vector of ROS Pose elements. The MPC logic is initialized in
the same way it is done for the motionCost method; the only difference is that,
at each iteration successive the first one, the initial pose to be connected to the
corresponding goal pose is the one calculated by the MPC logic at the previous
iteration. In this way, possible orientation errors as well as position errors are
corrected by the MPC tool, returning a continuous final path. trajectoryGenerator
and motionCost are structured in the same way; for a single couple of poses, MPC
problem is solved since the Euclidean distance between the first optimized state and
the goal pose is greater than a predefined quantity or since a predefined maximum
number of iterations is not reached.
However, at the end of each optimization phase, the first optimized pose x1 ∈ R8 is
saved into the vector of poses passed as input. Trajectory generation is performed
after that the lowest cost path is obtained. The sets of states passed by the planner
are assumed to be trajectory feasible, being the unfeasible nodes discarded in the
cost computation phase. After that each of the couples is passed to trajectoryGener-
ator, the optimized trajectory and the whole tree constructed by this algorithm are
published on the corresponding Topics and visualized with RViz tool. An example
of the obtained trajectory is presented in Figure 3.3

Figure 3.3: Example of an algorithm solution.

48

Software Implementation

The search tree is marked with a blue colour, while the optimized trajectory is
represented by a set of pink arrows. As clearly shown in Figure 3.3, the algorithm
samples states only in the robotic free space. The constructed tree never enters the
obstacle region, highlighted with the black colour, and it never exceeds the map
outline.
Another important aspect to be highlighted is the fact that the computed trajectory
is not straight. This is due to the random orientation of the sampled states. The
algorithm computes the cost for reaching a state that could have any orientation in
the space. It is important to remember that wrong samples in terms of orientation
are discarded, but those with an acceptable orientation are always taken into
consideration, even if they are not optimal for reaching the goal pose of the motion
query. These states are marked with an higher cost because of their distance from
the desired reference, designed as a straight line, and for their longer distance and
bigger overall rotation. By increasing the number of samples, the probability of
sampling lower cost states is higher, but it is not sure that the solution obtained in
the given search time is perfectly straight. It could happen that an intermediate
state in the graph has an high cost, so its trajectory is not "optimal", but in the
given solve time, no other solution with lower cost is found.
It must not be forgotten that, even if the final graph contains high cost nodes, the
resulting trajectory is supposed to be kinematically and dynamically "optimal" for
the UAV, being computed by an MPC that exploits the vehicle dynamic model
with constraints in terms of UAV input signals. Being more precise, the resulting
trajectory is always the optimal one between any couple of states in the resulting
graph.
For all the mentioned reasons, timing is a crucial topic for this algorithm. The
quality of the resulting trajectory strongly depends on the sampled states orienta-
tions.
With the aim of improving the quality of the planner, some simplifications are
done exploiting default OMPL functions. In particular, reduceVertices function
is applied after the optimal path computation and before the MPC trajectory
generation. This function attempts to remove vertices from the passed path while
keeping it valid by creating connection between non-consecutive way-points for
"short-cutting" the path when possible. Other simplifications are offered by OMPL,
but it is important to say that the simplifications compromise the quality of the
algorithm; some nodes, that are optimally oriented, may be deleted for achieving a
simpler resulting path, but not optimal in terms of trajectory regularity. Anyway,
simulation results are reported in the Section 4.

49

Software Implementation

3.2 ROS-PX4 Interface
This work is tested with a realistic simulation that allows to show the behaviour of
the UAS in a realistic environment. In order to do that, PX4 is used.
PX4 is an open source flight control software for drones and other unmanned
vehicles 1, offering a flexible set of tools for drone developers to share technologies
to create tailored solutions for drone applications. PX4 provides a standard to
deliver drone hardware support and software stack and supports Software In the
Loop (SITL) simulation with flight stack running on computer.
SITL allows to test an implemented code directly into the mathematical simulation
that contains the models of the Physical System. Thus and so, it is possible to
test the current code even without the target physical hardware, performing faster
simulation in terms of time.

Figure 3.4: PX4 SITL Simulation Environment.2

It is decided to use PX4 for the final simulation because of its capability of in-
terfacing with ROS. In fact, PX4 communicates with external frameworks using
the MAVLink communication protocol [22]. In order to enable the communication
between PX4 and ROS, the ROS community developed the mavros package, that
converts ROS messages into MAVLink messages, and the opposite.
In particular, as showed in Figure 3.4, UDP port 14540 allows the communication

1Definition courtesy from PX4 Autopilot website.
2Image courtesy from PX4 Autopilot website.

50

Software Implementation

with ROS. Exploiting the mavros Topics and the ROS services offered by MAVLink,
it is possible to publish missions described by a set of points in the space on PX4
to perform realistic simulations. In order to publish trajectory states with a proper
syntax on the mavros corresponding Topic, a ROS Node is implemented.
This node, named drone_node contains a ROS Service and a ROS Subscriber. The
subscriber subscribes to the optimized trajectory Topic and a callback to that Topic
is implemented for making the node able to react to any trajectory publication.
It is decided to publish data in the form of UAV Waypoints list. MAVLink exploits
a mavros/mission/waypoints Topic for receiving data of this type. Each element of
this list is a Waypoints message containing attributes for position and other pa-
rameters to be passed to PX4 for configuring the autopilot (for further information
referring to Appendix E). Callback function is intended for translating ROS Pose
in Waypoints. Waypoints are set for performing UAV arming, takeoff, trajectory
following and landing, depending on the passed pose set.
Mavlink Waypoints interface needs global GPS coordinates for working properly, so
local positions in meter are translated into GPS data. The function that performs
this operation translates Cartesian coordinates in GPS ones referring to a fixed
origin position.

51

Chapter 4

Simulation and Testing

This section is devoted to the presentation of the environment used for simulating
and testing the proposed trajectory planning algorithm.
As mentioned in Section 2.1, this thesis is based on ROS framework. The whole
developed framework consists in ROS Nodes, ROS Services and ROS Topics in-
teracting each other exploiting the decentralised ROS structure for having an
algorithm that can be realistically tested and, eventually, easily implemented on
existing UAVs.
Trajectory planning algorithm can be launched through roslaunch command from
Ubuntu terminal. Automatically, RViz (ROS Visualization Tool) is executed and
start and goal poses can be chosen on the map and, then, they are sent as messages
on a ROS Topic to the Node that provides the trajectory planner. The implemented
algorithm is able to read those poses, when available, directly from their Topic and
start the trajectory planning.
After the search time, RRT* algorithm returns the optimal path in the constructed
graph, successively passed to the MPC tool for computing the optimized trajectory,
and the grown tree. RRT* tree and MPC optimized trajectory are published on
their ROS Topics for being visualized on RViz. ROS Visualization Tool allows
to analyze the resulting planned path on the desired map. RRT* algorithm is
configured for reading the map size and sampling the free space defined by its
dimensions.
For the timing limitations introduced by the MPC logic, the proposed algorithm is
designed for working locally, so small map tests are performed. Nevertheless, this
algorithm works quite well even with large maps, but the quality of the planner
reduces with the growth of the map size.

53

Simulation and Testing

4.1 Simulation Hardware
The proposed trajectory planning algorithm is tested on a PC with the following
features:

Operating System: Ubuntu 18.04.5 LTS;

CPU: Intel® Core™ i5-4670K CPU @ 3.40GHz × 4;

GPU: GeForce GTX 950;

RAM: 8GB;

ROS Version: Melodic 1.14.9.

4.2 Parameter Optimization
This section is devoted to discover the best set of parameters defined in the algorithm
in terms of solution quality and planning efficiency.
The influence of the following parameters is analyzed:

• Cost Function weights;

• UAV Speed Module;

• Solve Time.

For the whole set of tests the trajectory planner always optimizes the motion
between the same start and goal poses in the two-dimensional space. The poses are
set for forcing the planner to discover a path trying to avoid a fixed obstacle; so, it
is decided to use a map of size 20m× 20m, showed in Figure 4.1, with a L shape
obstacle occupying the bottom-left and central part of the map in order to simulate
an harsh local environment. The planner, in fact, has to avoid the obstacle while
trying to pass as close as possible to it.
Each subsection aims to analyze the influence of a single parameter for finding out
its value that maximizes the quality of the planner. Initially, the test parameters
are "randomly" set, but at the end of each subsection, a good value is found and
the following tests are performed with the previously found set of parameters. In
this way, at the end of this phase, the optimal configuration is obtained.
Moreover, the influence of the path simplification before the final MPC optimization
is shown. This comparison is done only for the best possible set of already analyzed
values (i.e. only the candidate parameter sets). Initial parameters are shown in
Table 4.1.
It is important to point out that Cost1 is the weight cost relative to the trajectory

54

Simulation and Testing

Figure 4.1: Algorithm parameters test map.

length in meters, Cost2 is the weight cost of the total rotation in degrees necessary
for performing the motion, while Cost3 is the weight of the cost obtained computing
the optimization function used by the MPC, solved with the trajectory set of state,
reference and input.
Before proceeding with testing, it is necessary to introduce two parameters that
have not been taken into consideration yet, but that are really important for
obtaining good planning results. The first one is the Planner Range; it is the radius
of the circle centered in the states in which RRT* connects newer states; whenever
a sample is randomly sampled at a distance greater than the Planner Range, it
is substituted with a newer sample along the line joining the initial sample, but
Planner Range far from its nearest node in the graph. This radius decreases with
the increasing of the sampled states, as properly explained by Frazzoli and Karaman
in [17], to converge to the sub-optimal path solution, so, for this reason, it is fixed
equal to five meters, but decreases while the planning proceeds. Another important
parameter to introduce is the Planner Goal Bias, that represents the probability of
sampling the goal state in the whole Solve Time. Its value is fixed equal to 5%,
meaning the goal state is sampled five out of one hundred times during the graph
construction phase; higher value are counterproductive in terms of planner quality.
For the way the proposed algorithm is designed, RRT* Solve Time does not
represent the total time it searches for a solution. In fact, for analyzing the
evolution of the graph constructed by the planner, the solving phase is divided in
ten phases with the same duration equal to the Solve Time. At the end of each
phase, the cost of the path up to that time is printed for seeing it diminishes cycle
after cycle.
Because of the probabilistic nature of RRT* algorithm, each test is performed
five times and the different path costs and path lengths are reported on a single
label, while only the most significant trajectory out of five is figured out (i.e. the
trajectory that best represents the limitations or advantages introduced by the

55

Simulation and Testing

analyzed set of parameters).

4.2.1 UAV Speed Module
In this subsection, the influence of the UAV Speed Module on the final solution is
analyzed. In order to recap the concept, the UAV trajectory is designed for being
done at constant speed equal to UAV Speed Module value. Depending on the UAV
orientation, the reference speed contributions in the space are changed. Because of
the input constraints, UAV Speed Module represents an important parameter for
the planner.

Test 1

The first test is performed with the parameters set labelled at Table 4.1.

Parameter Set
Cost1 1.0
Cost2 1.0
Cost3 0.1
Prediction Sampling Time 0.1s
Planner Range 5m
Solve Time 6s
Total Solve Time 60s
UAV Speed Module 3.0m/s

Table 4.1: Initial parameters set.

This value is too high for the imposed input constraints, so bad trajectories are
expected.

Simulation Results
Simulation Number Path Cost Path Length
First Simulation 1287.763 46.380m
Second Simulation 1250.149 42.837m
Third Simulation 1276.167 42.800m
Fourth Simulation 1155.827 54.519m
Fifth Simulation 1307.899 40.382m
Average 1255.561 45.384m

Table 4.2: UAV Speed Module test 1: simulation results.

56

Simulation and Testing

Figure 4.2: UAV Speed Module test 1: third simulation trajectory.

As clearly shown in Figure 4.2, this configuration of the planner is not effective.
The UAV Speed Module, assumed constant for the whole motion, is too high with
respect to the imposed input constraints: the goal pose orientation is never obtained
and long trajectories are planned. Adopting a set of constraints that is optimal for
the used trajectory tracking logic on which the designed MPC tool is based, it is
decided to decrease the speed of the UAV during the planning instead of changing
the input constraints. Another possible approach is adding state limits directly
in the MPC optimization problem, but this addiction increases the complexity of
the problem, slowing down the solution computation and the overall algorithm
performances.

Test 2

For the previously explained reasons, this test is performed by decreasing the UAV
Speed Module from 3.0m/s to 2.0m/s.

The quality of the planner increases a lot with the new UAV Speed Module; the
costs of the new trajectories are less than half of those obtained from the previous
parameter set, and as a consequence, the total lengths of the computed paths are
reduced. Decreasing again UAV Speed Module is counterproductive because the
planner has to guarantee good motion performances, so lower values of speed are
not taken into consideration.
The trajectories computed by the proposed algorithm in this test set are quite
good; however, they are quite far from the optimal; the length of the path is high
and several useless curves are performed.

57

Simulation and Testing

Parameter Set
Cost1 1.0
Cost2 1.0
Cost3 0.1
Prediction Sampling Time 0.1s
Planner Range 5m
Solve Time 6s
Total Solve Time 60s
UAV Speed Module 2.0m/s

Table 4.3: UAV Speed Module test 2: parameters.

Simulation Results
Simulation Number Path Cost Path Length
First Simulation 570.945 24.079m
Second Simulation 799.445 28.477m
Third Simulation 565.249 29.308m
Fourth Simulation 690.262 24.998m
Fifth Simulation 572.070 25.230m
Average 639.594 26.418m

Table 4.4: UAV Speed Module test 2: simulation results.

Figure 4.3: UAV Speed Module test 2: fifth simulation trajectory.

58

Simulation and Testing

4.2.2 RRT* Cost Function Weights
This test section aims to find the best combination of MPC cost function weights.
The trajectory planner is designed for minimizing the length of the final solution
while diminishing the rotation of the drone, taking into consideration input varia-
tions and state errors with respect to the reference trajectory.
For performing straight trajectories, UAV model needs a constant set of input, so
null input variation. In the same way, if UAV is correctly aligned with the reference
trajectory, its contribution to the cost is negligible. However, it could happen that
a low cost trajectory with respect to input variation and state error is long. So, it
is necessary to take into consideration the length of the path properly weighted
with respect to the MPC optimization function.

Test 1

For the previously explained reasons, taking into consideration the rotation of the
UAV seems useless. Indeed, the presence of this cost contribution is ineffective for
the optimal solution computation. Sharp corners are marked with high cost in
terms of MPC function because of the smooth reaction due to input limitations that
causes "slow" maneuvers for riding the corner; so, higher the number of rotations in
the trajectory, higher the cost in terms of MPC function due to state errors with
respect to the reference as well as the input variations.
So, the first test is done with a null weight of the cost function that takes into
consideration the UAV rotation during the motion.

Parameters Set
Cost1 1.0
Cost2 0.0
Cost3 0.1
Prediction Sampling time 0.1s
Planner Range 5m
Solve Time 6s
Total Solve Time 60s
UAV Speed Module 2.0m/s

Table 4.5: Cost function weights test 1: parameters.

The performances of the algorithm following the first modification of the weights
look quite interesting, as clearly shown in Figure 4.4. The generated trajectories
are smooth, but another limit is met: being the MPC relative cost dominant with
respect to the length cost, it could happen, and it is clearly observable in Table 4.6,

59

Simulation and Testing

Simulation Results
Simulation Number Path Cost Path length
First Simulation 281.131 28.495m
Second Simulation 277.422 20.413m
Third Simulation 336.692 22.967m
Fourth Simulation 275.649 26.753m
Fifth Simulation 327.581 25.707m
Average 299.695 24.867m

Table 4.6: Cost function weights test 1: simulation results.

Figure 4.4: Cost function weights test 1: fourth simulation trajectory.

that the lowest cost trajectory is the longest one, being the quality of the motion
the predominant parameter in the optimization problem.

Test 2

In this test, the best relative weights between the MPC optimization function and
the path length in the cost computation are discussed.
For giving bigger importance to the path length, its cost is augmented of ten times
with respect to the previous test sets. Having the weighted MPC cost a dimension in
the order of hundreds, multiplying by 10 the path makes the two costs comparable
for the final cost value. Higher values in terms of cost are expected, but they do not
have to be compared with the ones of the previous test sets: another cost function
is introduced whenever the relative weights in the cost function change.
The new test parameters set is showed in Table 4.7

60

Simulation and Testing

Parameters Set
Cost1 10.0
Cost2 0.0
Cost3 0.1
Prediction Sampling time 0.1s
Planner Range 5m
Solve Time 6s
Total Solve Time 60s
UAV Speed Module 2.0m/s

Table 4.7: Cost function weights test 2: parameters.

Simulation Results
Simulation Number Path Cost Path length
First Simulation 543.601 23.201m
Second Simulation 509.132 22.436m
Third Simulation 528.185 23.662m
Fourth Simulation 422.044 23.590m
Fifth Simulation 454.620 22.418m
Average 491.516 23.061m

Table 4.8: Cost function weights test 2: simulation results.

Figure 4.5: Cost function weights test 2: second simulation trajectory.

At the end of this test it is clear that, with the current parameter set, the
algorithm discovers shorter good shape trajectories. The aspect that could be

61

Simulation and Testing

improved is the quality of the shape; however, it is important to highlight that,
increasing the Solve Time, the solution converges to the expected shortest path.
So, the current weights are kept, and the quality of the solution is analyzed with
shorter and longer Solve Time.

4.2.3 Solve Time

Discovered a good trade-off between the different cost function weights, the timing
performances of the algorithm are tested in this section. It is clear that, with
longer Solve Time, shorter and less expensive paths are expected, because of
the convergence of RRT* to the optimal path with an higher number of samples.
On the other side, the behaviour of the algorithm with short Solve Time is unknown.

Test 1

This test set aims to demonstrate that, doubling the RRT* Solve Time, the trajec-
tories discovered by the planning algorithm converges to the optimal in terms of
cost function. The cost weights remain unchanged with respect to the previous
test set, while the only parameter that is changed is the Solve Time, that becomes
of 12.0s.

Initial Parameters
Cost1 10.0
Cost2 0.0
Cost3 0.1
Prediction Sampling time 0.1s
Planner Range 5.0m
Solve Time 12.0s
Total Solve Time 120.0s
UAV Speed Module 2.0m/s

Table 4.9: Solve Time test 1: parameters.

This test set does not present unexpected results. With higher Solve Time value,
the probability of obtaining an optimal solution is higher. For the whole test set,
in fact, low cost and short trajectories are planned, showing the convergence of the
resulting path to the optimal one with the time increasing.

62

Simulation and Testing

Simulation Results
Simulation Number Path Cost Path length
First Simulation 503.885 21.204m
Second Simulation 470.008 23.184m
Third Simulation 421.392 22.485m
Fourth Simulation 449.071 21.206m
Fifth Simulation 433.744 22.388m
Average 455.62 22.093m

Table 4.10: Solve Time test 1: simulation results.

Figure 4.6: Solve Time test 1: fourth simulation trajectory.

Test 2

In order to test the effectiveness of the proposed algorithm, the second test of
this section shows the trajectory-find capability of the implemented logic in small
amount of time. The algorithm configuration parameters of this test are reported
in Table 4.11.

By inspecting the results labelled in Table 4.12, it could be seen that the used set
of cost function weights allows to plan good trajectories even with few Solve Time.
The overall length and cost of the motion paths are similar to the ones obtained
in the previous test set. This fact demonstrates that, with the proper trade-off of
the algorithm parameters, good solutions can be found even in small amount of
time. Moreover, until now, the effects of the path simplifier have not been taken
into account, so it is interesting to understand if this kind of simplification could
be useful in terms of final solution.

63

Simulation and Testing

Initial Parameters
Cost1 10.0
Cost2 0.0
Cost3 0.1
Prediction Sampling time 0.1s
Planner Range 5m
Solve Time 1s
Total Solve Time 10s
UAV Speed Module 2.0m/s

Table 4.11: Solve Time test 2: parameters.

Simulation Results
Simulation Number Path Cost Path length
First Simulation 433.859 22.936m
Second Simulation 421.449 23.607m
Third Simulation 635.237 27.800m
Fourth Simulation 570.987 24.222m
Fifth Simulation 452.389 25.166m
Average 502.784 24.746m

Table 4.12: Solve Time test 2: simulation results.

Figure 4.7: Solve Time test 2: fifth simulation trajectory.

64

Simulation and Testing

Test 3 with Path Simplifier

This subsection is devoted to the testing of the default OMPL path simplifier applied
to the optimal trajectory in the same conditions analyzed in the previous test
set. This test aims to demonstrate the effectiveness of the implemented trajectory
planning strategy in short time with a path simplification. It is important to
anticipate that the path simplifier does not affect the cost computation, being the
simplification a post-processing action applied to an already found path. On the
contrary, this simplification affects the path length that is calculated after the path
simplification through the MPC logic. The used set of data is labelled at Table
4.11; no changes are done with respect to the previous test parameters set.

Simulation Results
Simulation Number Path Cost Path length
First Simulation 430.465 22.973m
Second Simulation 528.295 26.021m
Third Simulation 562.702 22.536m
Fourth Simulation 535.964 22.402m
Fifth Simulation 580.709 22.154m
Average 527.627 23.217m

Table 4.13: Solve Time test 3: simulation results with path simplifier.

Figure 4.8: Solve Time test 3: third simulation trajectory.

As clearly shown in Table 4.13, the main advantage of applying a path simplifi-
cation in the presence of few samples in the search space is the fact that shorter

65

Simulation and Testing

paths can be obtained, being longer trajectories "cut" by the path simplifier. In fact,
it could happen that, with few samples, the algorithm returns a long trajectory; the
probabilistic nature of the algorithm does not ensure to discover always a smooth
and short path in a small search time. Removing non-optimum vertices in terms of
trajectory length solves this problem. Moreover, RRT* discovered path is passed
to the MPC logic for computing the final trajectory, ensuring a good shape final
solution. However, even if this solution looks pretty good for solving local motion
queries, it is decided to plan for one minute, and, then, applying the path simplifier.

4.2.4 Final Configuration with Path Simplifier
This section is devoted to test the parameter set that is the candidate final set for
the proposed logic. Parameters values are shown in Table 4.14.

Parameters Set
Cost1 10.0
Cost2 0.0
Cost3 0.1
Prediction Sampling time 0.1s
Planner Range 5m
Solve Time 6s
Total Solve Time 60s
UAV Speed Module 2.0m/s

Table 4.14: Final configuration test: parameters.

Simulation Results
Simulation Number Path Cost Path length
First Simulation 534.707 21.191m
Second Simulation 544.864 22.346m
Third Simulation 543.272 20.680m
Fourth Simulation 470.754 22.212m
Fifth Simulation 505.283 20.935m
Average 519.776 21.473m

Table 4.15: Final configuration test: simulation results.

The application of the path simplifier to a good discovered path does not produce
excessive changes in terms of quality. Nevertheless, applying a path simplification is
helpful for reducing the length of the final trajectory when the algorithm discovers
relative high cost solutions. Because of the probabilistic nature of the algorithm,

66

Simulation and Testing

Figure 4.9: Final configuration test: fifth simulation trajectory.

the final solution strongly depends on the quality of the sampled states, so, in order
to force the final trajectory to be straight, the use of path simplifier is appreciable
in this sense.
Summarising, after this first testing phase, the overall best solution with a Solve
Time of sixty seconds, where the rotation cost is neglected and the MPC cost and
the length cost are comparable in terms of relative values, is the one analyzed in this
last section. In addiction, for the already explained reasons, the path simplification
is kept valid for planning the final trajectory.

4.3 Test in Different Maps
After having discovered the best algorithm configuration, labelled at Table 4.14,
it is interesting to test it in different maps in order to understand if the set of
parameters tagged as the best one is really effective in any kind of environment.
For the following tests, the graphical dimension of the constructed graph is decreased
with respect to the previous test sets for better appreciating the proposed figures.
All the maps used in this section have dimension of 20m× 20m.

4.3.1 Narrow and Constrained Environment, First Map
In this section, the behaviour of the planner in a narrow and constrained environment
is tested. This simulation is quite trivial because of the fact that the algorithm is
forced to sample states with proper orientations in a small passage; in fact, wrong
sampled poses angles cause unfeasible trajectories. The map used in this test is
reported at Figure 4.10.

67

Simulation and Testing

The analyses performed in this section are quite different from those of the previous
test sets.
Here, the convergence of the cost function to the optimal is showed with a chart
where each of its points represents the average path cost over the five tests in a
precise instant of time. This chart is important for figuring out the diminishing of
the path cost over time, proving that the algorithm tries to minimize the defined
cost function. Moreover, another chart is introduced; it shows the average over
the five tests of the number of samples in the constructed graph in a precise time
instant in order to show that the addiction of vertices to the graph constructed
by RRT* slows down while time passing. So, each point in the charts represents
the average over the five tests of the costs and of the number of samples in that
precise time instant.
It could happen that, being the analyzed map quite big, the saturation of the
vertices number is not reached in the imposed Solve Time.

Figure 4.10: Narrow and constrained environment, first map.

0 6 12 18 24 30 36 42 48 54 60650
700
750
800
850
900
950

Instant of Time [s]

Pa
th

C
os
t

Path cost evolution over time.

68

Simulation and Testing

0 6 12 18 24 30 36 42 48 54 600
200
400
600
800

1,000
1,200
1,400

Instant of Time [s]

N
um

be
r
of

Ve
rt
ic
es

Evolution over time of the average number of vertices in the graph.

Figure 4.11: Example of solution in the first narrow and constrained environment.

Nothing unexpected is observed in this test; as clearly shown in Figure 4.11, the
goal pose is reached while properly moving inside the narrow passage.

4.3.2 Narrow and Constrained Environment, Second Map
Similar to the previous test, this test is performed in a narrow and constrained
environment. However, this test introduces a new obstacle in the path computation
clearly showed at Figure 4.12; the presence of multiple passages for reaching the
same point stresses the algorithm, that has to choice between two pathways for
reaching the goal. This map, in fact, is designed for having two different paths of
more or less the same length between the start and the goal. So, depending on the

69

Simulation and Testing

orientation of the goal, the algorithm may return the best route for reaching that
desired pose in the space.

Figure 4.12: Narrow and constrained environment, second map.

0 6 12 18 24 30 36 42 48 54 60650
700
750
800
850
900
950

1,000
1,050
1,100

Instant of Time [s]

Pa
th

C
os
t

Path cost evolution over time.

0 6 12 18 24 30 36 42 48 54 600
200
400
600
800

1,000
1,200
1,400
1,600

Instant of Time [s]

N
um

be
r
of

Ve
rt
ic
es

Evolution over time of the average number of vertices in the graph.

The algorithm behaves exactly as expected. As can be seen in Figure 4.13, the

70

Simulation and Testing

Figure 4.13: Example of solution in the second narrow and constrained environ-
ment.

logic privileges the trajectories that approach the final pose in the right direction,
and not those passing from the other pathway that need a final rotation.

4.3.3 Empty Environment
An interesting test of the proposed algorithm performances is to plan a trajectory
in an empty environment. In the absence of obstacles, the planner is supposed
to plan straight trajectories, being designed for achieving the shortest path with
the smallest possible input variation. In order to properly perform this test, an
empty map is used. The evaluations for this test are done with respect to path
length. Multiple simulations are necessary because of the probabilistic nature of
the algorithm and, for each test, the path cost, the number of states as well as the
path length are reported. Start and goal are 22.63 meters away in the sense of
Euclidean distance, so the same length of the planned path is expected.

As clearly shown in Table 4.16, regardless the path cost and the number of
samples in the constructed graph, the distance returned by the algorithm is always
the same. In this sense, the path simplifier action is really effective; at the end
of the path computation, the useless path vertices are removed. It is clear that,
for this test, the only useful states are the start and the goal, being the trajectory
supposed to be straight, so the logic directly joints the start and the goal through
a straight line following the reference.
The solutions provided by the algorithm for problems of this kind could be optimized:
the planner wastes a lot of time searching for a good path by joining the sampled
states, while the best solution is to try to directly connect the start and the goal

71

Simulation and Testing

Simulation Results
Simulation Number Path Cost Path Length Number of Vertices
First Simulation 407.838 22.63m 1680
Second Simulation 493.952 22.63m 1837
Third Simulation 422.915 22.63m 1877
Fourth Simulation 434.476 22.63m 1856
Fifth Simulation 430.796 22.63m 1800
Average 437.995 22.63m 1810

Table 4.16: Empty environment: simulation results.

Figure 4.14: Example of solution in the empty environment.

state if there are not obstacles along the straight line joining them.

4.3.4 Two Obstacles Avoidance

Another interesting test that is useful to be performed is the test in a map with
two obstacles. This test aims to demonstrate the effectiveness of the planner in
open environments where the path is imposed. In fact, in the map used for this
test, reported at Figure 4.15, the motion of the UAV is forced to be through two
obstacles after having turned around one of them. Experimental results considering
the same data as before are plotted in the following.

72

Simulation and Testing

Figure 4.15: Two obstacles avoidance test map.

0 6 12 18 24 30 36 42 48 54 60650
700
750
800
850
900
950

1,000

Instant of Time [s]

Pa
th

C
os
t

Path cost evolution over time.

0 6 12 18 24 30 36 42 48 54 600
200
400
600
800

1,000
1,200
1,400
1,600
1,800

Instant of Time [s]

N
um

be
r
of

Ve
rt
ic
es

Evolution over time of the average number of vertices in the graph.

73

Simulation and Testing

Figure 4.16: Example of a solution in the two obstacles avoidance test map.

This test does not present peculiarities to be mentioned. The algorithm behaves
exactly as expected, trying to minimize the distance for approaching the goal while
avoiding the obstacles encountered during the motion. Analyzing Figure 4.16, it is
possible to appreciate the work of the path simplifier; when no turning action is
requested, the simplifier directly joins states for obtaining a "short-cut" of the path.
In this way, perfectly straight trajectories can be obtained. For the path sections
close to a corner, it is possible to see that no simplification in terms of motion is
done and the trajectory is that planned by the RRT* algorithm exploiting the UAV
dynamic model.

4.4 SITL Testing
The quality of the planner is graphically analyzed in the previous sections, but
the effectiveness of its solution with a real UAV is not tested. This section is
totally devoted to the Software In The Loop testing of the implemented algorithm,
where the computed trajectory is passed by PX4 autopilot for understanding if it
could be handled and executed by a real drone. This test is done for validating
the implemented trajectory planner. In fact, after its computation, the optimal
trajectory is published as message on a predefined Topic; an implemented ROS
Node, that works as middleware in the communication between the planner and
the autopilot, reads this trajectory and translates it as a Waypoint list. Finally, the
translated trajectory is passed to the autopilot, that performs the desired motion
showing the behaviour of a UAV in a three-dimensional world simulated on Gazebo
and represented on the QGroundControl application.
For better visualizing the resulting path, the trajectory as a Waypoint list is scaled,
doubling its size with respect to the one visualized on RViz. As clearly shown in

74

Simulation and Testing

Figure 4.17b, reporting an example of SITL testing, the trajectory planned by the
proposed logic can be handled and performed by PX4 autopilot, resulting in the
vary same path computed by the algorithm. In this way, it is possible to state that
the implemented trajectory planner can be used for real UAVs.

(a) Trajectory represented on RViz

(b) Trajectory from QGroundControl

Figure 4.17: Comparison between the trajectory planned on RViz and the one
performed by PX4 autopilot for the SITL testing.

75

Simulation and Testing

4.5 Limitations and Possible Solutions

Even if the proposed logic seems working fine, it presents some limitations.
The first highlighted limit is the speed of the UAV. As properly analyzed at Section
4.2.1, this algorithm is really effective when planning with low speed. At high
speed, the imposed input constraints do not allow to perform agile maneuvers,
worsening the quality of the final trajectory. A possible solution to this problem
is to compute the optimal speed components during the planning procedure, but
this addiction increases the overall problem complexity, slowing down the whole
algorithm.
However, the biggest limit of the implemented logic is the time requested for the
computation of the MPC problem solution. For analyzing a single state connection,
the prediction and optimization process repeats iteratively for a number of times
that depends on the distance between the states, but that is, in the worst cases,
equal to 25 iterations, given the current Prediction Sampling Time, the UAV
Speed Module and the Planner Range. The RRT* algorithm recalls the MPC
tool whenever a newer state is attempted to be added as vertex into the graph,
so it is clear that these recursive MCP solution computations reduce the number
of sampled states. Needing an average time of 0.01 seconds for computing each
solution, the delay introduced by this logic forces its computation to be done offline.
In fact, because of its timing limitations, this software is not designed for working
in real-time. A possible way to make it able to work in real-time applications is to
optimize the algorithm, exploiting multi-core hardware for paralleling the planner
processes to speed it up.
Indeed, the presence of obstacles is a-priori known; a map with fixed obstacles is
read by the trajectory planner, that sets the proper sampling bounds and starts
the trajectory computation. The obstacles that can be detected by the proposed
logic are the ones already present on the map when it is read by the algorithm and
not possible obstacles occurring when the UAV is moving. This planner does not
take into account the presence of low level hardware in the motion planning phase,
like sensors and cameras, that are useful for the obstacle avoidance; it only focuses
on discovering a path between a start and a goal pose in a two-dimensional map,
optimizing the motion in a-priori known environment.
The error that is encountered during the different test phases concerns the final pose
orientation in the returned trajectory. An example of this error is showed in Figure
4.18. For the way this logic is designed, the algorithm stops planning whenever
a neighbourhood of the goal is reached; possible orientation differences between
the planned final goal and the desired goal are never taken into consideration.
This choice is due to the fact that the algorithm is designed for working locally,
planning short partial trajectories; so, the possible final pose errors are adjusted at
the beginning of the successive motion.

76

Simulation and Testing

Figure 4.18: Example of the orientation error. The green arrow represents the
goal pose that is not reached in terms of heading.

This problem could be solved by introducing a cost contribution in the cost
function that evaluates the final orientation error; in this way, not only the length
of the path, the input variation and the state error with respect to the reference
are minimized, but also the final pose orientation error.
Another limitation of this work is the capability of planning only into a two-
dimensional space. As already explained, the drone model, RRT* algorithm and
the MPC logic are able to work even in a three-dimensional environment, but the
reference trajectory is computed in 2D.
In fact, the difficulty of the interpolation phase grows considerably with the
increasing of the number of dimensions. Referring to the proposed work, a sphere-
line interpolation is the natural evolution in 3D world of the reference adopted for
this planner.

77

Chapter 5

Conclusions

The main contribution of this thesis focuses on the development of a trajectory
planning algorithm. The proposed logic, based on the RRT* planning algorithm,
provides good performances in terms of quality of the final solution.
The MPC logic developed for accomplishing the desired tasks is really useful for the
path computation; even if this prediction is really expensive in terms of computer
resources and time, exploiting the system model, each sampled state is inserted as
vertex in the constructed graph and labelled with a cost only if the predicted motion
for reaching it is feasible. In this way, the resulting optimal path is composed by
states whose connections are previously checked by the MPC logic. The application
of the MPC tool after the optimal path computation performed by the RRT*
algorithm allows to obtain a resulting smooth and continuous trajectory that is
optimal for the UAV, being calculated on the basis of its dynamical model together
with the imposed input constraints.
As already explained in Section 4.5, this trajectory planner is designed for working
locally and performing small motions; this logic is supposed to be run several times
for performing small sequential moves between the desired starts and goals, so,
even the presence of small final orientation errors with respect to the desired goal
poses are accepted, being completely compensated by the successive trajectory.
Furthermore, the SITL testing phase shows that this planning algorithm can be
applied to real UAV. The computed trajectories are not only marked as a sequence
of states in the space with a given speed, but they are also marked with a set of
input that could be passed to a real UAV. It is important to point out that the
input sets returned by the algorithm need some arrangements for being applied in
a real world; gravity and accelerations need to be compensate for achieving precise
trajectories.

79

Conclusions

The proposed planner could be attempted to be improved by adopting some
modifications:

• The first possible improvement refers to the space dimension. This thesis
project is designed for working in a two-dimensional space; so the variables
sampled by the RRT* algorithm in each sample are three, two positions and
one orientation in the space. Changing the state space from SE(2) to SE(3)
allows to extend the planning capabilities to the three-dimensional space,
but it means adding one positional contribution and two orientations at each
sample data-structure, increasing considerably the complexity of the algorithm.
Moreover, the presence of a third positional coordinate makes a bigger amount
of samples necessary for obtaining a good final trajectory, so timing limitations
have to be taken into consideration in order to provide planning effectiveness;

• Another possible improvement is the use of Dubins path for the reference
trajectories definition. This different kind of approach, that could be used
even in SE(3) state space, allows to obtain better curvatures with respect to
the line-circumference interpolation. However, this different reference is not
sure to be better than the implemented interpolation technique; close start
and goal states with very different orientations that are attempted to be joined
in the space may need long curvatures for approaching the final orientation.

• Concerning the time performances of the planner, it is possible to change the
MPC logic. Instead of returning only the first state calculated by the MPC, it
is possible to return more than one state from each optimization cycle. In this
way, the number of solving iterations can be considerably decreased, making
the algorithm able to sample an higher number of states. On the contrary,
the quality of the planning may decrease and this different approach cannot
be considered an MPC anymore.

• The last improvement that is proposed is about the possibility of improving the
quality of the planning procedure by inserting disturbances directly inside the
UAV state space representation. By using an Extended Kalman Filter (EKF),
disturbances prediction can be done, increasing the overall quality of the
planner. Even if the estimation phase is quite heavy in terms of computational
effort, it is the best possible way of modelling the UAV dynamics.

In conclusion, the proposed planner represents an efficient way of planning
the UAV trajectory inside an unknown two-dimensional environment. The use
of the MPC logic together with the RRT* algorithm turned out to be a good
planning strategy, even with its timing limitations. This technology presents several
limitations and possible improvements that need to be considered step-by-step
during the developing phase for preserving the planning effectiveness.

80

Appendix A

CVXGEN Code

82

Appendix B

text.launch File

Listing B.1: text.launch file content.
1 <launch>
2 <! --
3 <node pkg="tf" type="static_transform_publisher" name="fake_tf"

args="0 0 0 0 0 0 1 world map 20" />
4 -->
5 <node name="risk_aware_pp" pkg="risk_aware_pp" type="

risk_aware_pp" output="screen">
6 <node name="risk_aware_pp" pkg="risk_aware_pp" type="

risk_aware_pp" output="screen">
7 <param name="solve_time" type="double" value="5.0" />
8 <param name="planner_type" type="string" value="MPC_RRTstar" />
9 <param name="planner_goal_bias" type="double" value="0.1" />

10 <param name="planner_range" type="double" value="5.0" /> <! -- 30
-->

11 <param name="relative_validity_check_resolution" type="double"
value="0.01" />

12 <param name="start_flight_altitude" type="double" value="0.0" />
13 <param name="goal_flight_altitude" type="double" value="0.0" />
14 <param name="roll_limit" type="double" value="0.436332" />
15 <param name="pitch_limit" type="double" value="0.43633" />
16 <param name="thrust_max" type="double" value="10.1934" />
17 <param name="thrust_min" type="double" value=" -4.80" />
18 <param name="roll_time_constant" type="double" value="0.25" />
19 <param name="pitch_time_constant" type="double" value="0.255" />
20 <param name="prediction_sampling_time" type="double" value="0.1"

/>
21 <param name="roll_gain" type="double" value="0.9" />
22 <param name="pitch_gain" type="double" value="0.9" />
23 <param name="q1" type="double" value="40.0" />
24 <param name="q2" type="double" value="40.0" />
25 <param name="q3" type="double" value="60.0" />

83

text.launch File

26 <param name="q4" type="double" value="20.0" />
27 <param name="q5" type="double" value="20.0" />
28 <param name="q6" type="double" value="25.0" />
29 <param name="q7" type="double" value="0.0" />
30 <param name="q8" type="double" value="0.0" />
31 <param name="p1" type="double" value="100.0" />
32 <param name="p2" type="double" value="100.0" />
33 <param name="p3" type="double" value="1.0" />
34 <param name="p4" type="double" value="1.0" />
35 <param name="p5" type="double" value="1.0" />
36 <param name="p6" type="double" value="1.0" />
37 <param name="p7" type="double" value="0.0" />
38 <param name="p8" type="double" value="0.0" />
39 <param name="dist1" type="double" value="0.15" />
40 <param name="dist2" type="double" value="0.35" />
41 <param name="cost1" type="double" value="2.0" />
42 <param name="cost2" type="double" value="57.3248" /> //"57.3248"
43 <param name="cost3" type="double" value="0.0" />
44 <param name="speed_module" type="double" value="1.5" />
45 <param name="angle_difference" type="double" value="1.57" />
46 <param name="num_of_iter" type="int" value="200" />
47 <param name="state" type="string" value="SE2" />
48 <param name="map_file" value="$(find risk_aware_pp)/config/map/

mappa_thesis.png" 5/>
49 </node>
50 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find

risk_aware_pp)/config/rviz/grid_map.rviz"/>
51 </ launch>

84

Appendix C

CVXGEN Statistics

Figure C.1 shows the time needed by several optimization methods for solving the
same Model Predictive Control problem presented in [19], where m is the number
of input, n is the number of state variables and T is the prediction horizon.

Figure C.1: Computation time for finding the solution to the same problem by
different solvers.

85

Appendix D

Euclidean Distance

The Euclidean distance between two points is the length of the straight line joining
the points.
In Cartesian coordinates, given two points p = [p1, p2, . . . , pn] and q = [q1, q2, . . . , qn]
belonging to the Euclidean n-space, the Euclidean distance of the points can be
computed exploiting the Pythagorean theorem:

d(p, q) =
ñ

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2

For the purpose of this thesis, being developed in 2-D space, the previous formula
can be re-written for n = 2:

d(p, q) =
ñ

(q1 − p1)2 + (q2 − p2)2

86

Appendix E

mavros_msgs/Waypoint
Message

Listing E.1: Waypoint.msg structure
1 # Waypoint . msg
2 #
3 # ROS rep r e s en t a t i on o f MAVLink MISSION_ITEM
4 # See mavlink documentation
5

6 # s ee enum MAV_FRAME
7 uint8 frame
8 uint8 FRAME_GLOBAL = 0
9 uint8 FRAME_LOCAL_NED = 1

10 uint8 FRAME_MISSION = 2
11 uint8 FRAME_GLOBAL_REL_ALT = 3
12 uint8 FRAME_LOCAL_ENU = 4
13

14 # s ee enum MAV_CMD and CommandCode .msg
15 uint16 command
16

17 bool i s_cur rent
18 bool autocont inue
19 # meaning o f this params des c r ibed in enum MAV_CMD
20 f l o a t 3 2 param1
21 f l o a t 3 2 param2
22 f l o a t 3 2 param3
23 f l o a t 3 2 param4
24 f l o a t 6 4 x_lat
25 f l o a t 6 4 y_long
26 f l o a t 6 4 z_alt

87

Bibliography

[1] Jacob T Schwartz and Micha Sharir. «On the “piano movers’” problem I.
The case of a two-dimensional rigid polygonal body moving amidst polygonal
barriers». In: Communications on pure and applied mathematics 36.3 (1983),
pp. 345–398 (cit. on p. 1).

[2] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato Vidoni.
«Path Planning and Trajectory Planning Algorithms: A General Overview».
In: Mechanisms and Machine Science 29 (Mar. 2015), pp. 3–27. doi: 10.
1007/978-3-319-14705-5_1 (cit. on p. 1).

[3] Chad Goerzen, Zhaodan Kong, and Bernard Mettler. «A survey of motion
planning algorithms from the perspective of autonomous UAV guidance». In:
Journal of Intelligent and Robotic Systems 57.1-4 (2010), p. 65 (cit. on p. 2).

[4] Yoshiaki Kuwata, Gaston A Fiore, Justin Teo, Emilio Frazzoli, and Jonathan
P How. «Motion planning for urban driving using RRT». In: 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2008,
pp. 1681–1686 (cit. on p. 2).

[5] František Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek,
Tomáš Fico, and Ladislav Jurišica. «Path planning with modified a star
algorithm for a mobile robot». In: Procedia Engineering 96 (2014), pp. 59–69
(cit. on p. 5).

[6] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. «Real-time motion
planning for agile autonomous vehicles». In: Journal of guidance, control, and
dynamics 25.1 (2002), pp. 116–129 (cit. on p. 5).

[7] Reagan L Galvez, Elmer P Dadios, and Argel A Bandala. «Path planning for
quadrotor UAV using genetic algorithm». In: 2014 International Conference
on Humanoid, Nanotechnology, Information Technology, Communication and
Control, Environment and Management (HNICEM). IEEE. 2014, pp. 1–6
(cit. on p. 6).

88

https://doi.org/10.1007/978-3-319-14705-5_1
https://doi.org/10.1007/978-3-319-14705-5_1

BIBLIOGRAPHY

[8] Safaa H Shwail and Alia Karim. «Probabilistic roadmap, A*, and GA for
proposed decoupled multi-robot path planning». In: Iraqi Journal of Applied
Physics 10.2 (2014), pp. 3–9 (cit. on p. 6).

[9] Guanjun Ma, Haibin Duan, and Senqi Liu. «Improved ant colony algorithm
for global optimal trajectory planning of UAV under complex environment.»
In: IJCSA 4.3 (2007), pp. 57–68 (cit. on p. 7).

[10] Sertac Karaman and Emilio Frazzoli. «Sampling-based algorithms for optimal
motion planning». In: The international journal of robotics research 30.7
(2011), pp. 846–894 (cit. on p. 10).

[11] Morgan Quigley, Josh Faust, Tully Foote, and Jeremy Leibs. «ROS: an
open-source Robot Operating System». In: (cit. on p. 13).

[12] Yu-Geng XI, Dewei Li, and Shu Lin. «Model Predictive Control — Status
and Challenges». In: Acta Automatica Sinica 39 (Mar. 2013), pp. 222–236.
doi: 10.1016/S1874-1029(13)60024-5 (cit. on p. 21).

[13] John F Keane and Stephen S Carr. «A brief history of early unmanned
aircraft». In: Johns Hopkins APL Technical Digest 32.3 (2013), pp. 558–571
(cit. on p. 24).

[14] Mina Kamel, Thomas Stastny, Kostas Alexis, and Roland Siegwart. «Model
predictive control for trajectory tracking of unmanned aerial vehicles using
robot operating system». In: Robot operating system (ROS). Springer, 2017,
pp. 3–39 (cit. on pp. 25, 27, 30, 39, 43).

[15] Jung Cheon, Han Kyoohyung, Seong-Min Hong, Junsoo Kim, Suseong Kim,
Hoseong Seo, Hyungbo Shim, and Yongsoo Song. «Toward a Secure Drone
System: Flying with Real-time Homomorphic Authenticated Encryption». In:
IEEE Access PP (Mar. 2018), pp. 1–1. doi: 10.1109/ACCESS.2018.2819189
(cit. on p. 27).

[16] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. «Anytime motion planning using the RRT». In: 2011 IEEE
International Conference on Robotics and Automation. IEEE. 2011, pp. 1478–
1483 (cit. on pp. 33–35).

[17] Sertac Karaman and Emilio Frazzoli. «Optimal kinodynamic motion planning
using incremental sampling-based methods». In: 49th IEEE conference on
decision and control (CDC). IEEE. 2010, pp. 7681–7687 (cit. on pp. 34, 55).

[18] Juan Cortés, Léonard Jaillet, and Thierry Siméon. «Disassembly Path Plan-
ning for Complex Articulated Objects». In: Robotics, IEEE Transactions on
24 (May 2008), pp. 475–481. doi: 10.1109/TRO.2008.915464 (cit. on p. 35).

89

https://doi.org/10.1016/S1874-1029(13)60024-5
https://doi.org/10.1109/ACCESS.2018.2819189
https://doi.org/10.1109/TRO.2008.915464

BIBLIOGRAPHY

[19] Jacob Mattingley and Stephen Boyd. «CVXGEN: A code generator for em-
bedded convex optimization». In: Optimization and Engineering 13.1 (2012),
pp. 1–27 (cit. on pp. 38, 85).

[20] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. 2014 (cit. on p. 38).

[21] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control
for linear and hybrid systems. Cambridge University Press, 2017 (cit. on p. 39).

[22] Joseph A Marty. Vulnerability analysis of the mavlink protocol for command
and control of unmanned aircraft. Tech. rep. AIR FORCE INSTITUTE OF
TECHNOLOGY WRIGHT-PATTERSON AFB OH GRADUATE SCHOOL
OF . . ., 2013 (cit. on p. 50).

90

	List of Tables
	List of Figures
	Acronyms
	Introduction
	State of the Art
	Dijkstra's Algorithm
	A* Search Algorithm
	Genetic Algorithm
	Ant Colony Optimization
	Probabilistic Roadmap Planner
	Rapidly-Exploring Random Tree
	Rapidly-Exploring Random Tree "Star"

	Outline of the Thesis

	Background
	Robot Operating System (ROS)
	ROS Resources Hierarchy
	ROS Computation Graph Level

	Open Motion Planning Library (OMPL)
	Problem Statement Definition
	OMPL Foundations

	Model Predictive Control (MPC)
	MPC Theory

	Multi-Rotor System Notation
	Multi-Rotor System Model
	Linearization and Discretization

	Software Implementation
	Code Details
	RRT* Algorithm
	MPCOptimizationObjective

	ROS-PX4 Interface

	Simulation and Testing
	Simulation Hardware
	Parameter Optimization
	UAV Speed Module
	RRT* Cost Function Weights
	Solve Time
	Final Configuration with Path Simplifier

	Test in Different Maps
	Narrow and Constrained Environment, First Map
	Narrow and Constrained Environment, Second Map
	Empty Environment
	Two Obstacles Avoidance

	SITL Testing
	Limitations and Possible Solutions

	Conclusions
	CVXGEN Code
	text.launch File
	CVXGEN Statistics
	Euclidean Distance
	mavros_msgs/Waypoint Message
	Bibliography

