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Abstract

Collaborative robots have been increasingly used in industries. This master thesis
proposes a new mode of interaction to perform an industrial assembly task that
employs an LCD, a Leap Motion controller and a camera as hardware and lets
them interact with a Niryo One robot over ROS. The robot is an educational one,
3D printed with 6 degrees of freedom. The camera is a webcam, placed above the
robot, focusing the workspace and displaying images on the screen. A new touch
emulation system was proposed using the display and the Leap Motion controller.
It consists of an initial calibration step which creates a virtual representation of the
screen. Using the position and the orientation of the LCD, two virtual touch panels
are created, parallel to the screen, one representing the touching panel that is very
close to the screen, the second representing the farther hovering panel. Every time
the index tip crosses a panel, a corresponding event is sent. A human operator,
with the tip of his/her index, touches an object on the screen to perform a pick
and place operation with that object, while the hovering panel was used to send
feedback on the screen to show the current position of the tip of the index. Moreover
the Find-Object application was used to recognise pieces on the workspace. This
information is used by the robot to avoid any collision, and by the touch emulation
system to recognise if an object is touched on the screen.
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Chapter 1

Introduction

The word “robot” comes from a Czech term that means “hard work” and it was
used for the first time by the writer Karel Čapek in his play R.U.R. (Rossum’s
Universal Robots). At Čapek’s times the term was used in many fields and since
then it has always been used to indicate a machine which substitutes humans in
their job.

The term “robotics” was used for the first time by the famous writes Isaac
Asimov to indicate the science which studies robots, based on three laws (also
known as Asimov’s Laws) [4]:

first law A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

second law A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law.

third law A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

1.1 Background
Nowadays robots are considered as machines that interact with the external en-
vironment and are able to modify it based on predefined laws and information
about the environment and the robot itself. They are composed of a mechanical
structure, which can be based on locomotion (wheels) or manipulation (manipula-
tors, grippers), actuators, which enable the movement of the mechanical structure
(motors), and sensors, which can be internal or external, depending on whether
information comes from the robot itself or from the environment. The ability to
combine the information, coming from sensors, and the execution of a task is given
by the controller system, which represents the brain of the robot.
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Introduction

Robotics can be subdivided in industrial robotics and service (and advanced)
robotics. Industrial robotics is based on some strong qualities like versatility, adapt-
ability, strength, repeatability, accuracy, etc. It includes industrial manipulators
and Automated Guided Vehicles (AGV). The former are mainly used to pick and
place, palletise, measure, weld, cut, paint, etc., the latter are mainly used to move
objects (also big and heavy ones) from one cell to another in an industrial process.
Service robotics, instead, is based mainly on autonomy. This last allows the robots
to move, interact and modify the environment without any a priori knowledge.
Advanced robotics is mainly composed of mobile robots. They can be field robots,
which work in environments dangerous for humans, and service robots, which work
for humans to enhance their life quality.

Figure 1.1: From left to right examples of robotic arm, AVG and service robot

The focus of this master thesis is to implement an assembly task using a new way
of interaction. The pick and place operations, needed to perform the assembly task,
are executed using a robotic arm that substitutes a generic industrial manipulator
during the training phase.

An industrial manipulator is characterised by an open kinematic chain. This
chain is composed by a sequence of bodies (links) connected by joints. In an open
kinematic chain, each joint provides a degree of freedom. To determine the position
and the orientation (pose) of an object in the 3D space, 6 degrees of freedom are
needed: 3 for the position and 3 for the orientation.

Joints are of two types: prismatic, when they determine a translation between
two links, and revolute, when they determine a rotation between two links.

The mechanical structure of a manipulator can be divided into two parts: the
arm, which is responsible for the position of the end effector, and the wrist, which
is responsible for the orientation of the end effector. This is mounted on the tip of
the kinematic chain, and it depends on the task to be accomplished.

Depending on the sequence of joint types used in the arm, robots can be classified
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1.2 – Overview

in different typologies. The arm of industrial manipulators are often of anthropo-
morphic type, i.e. composed of three revolute joints, with the first one having
vertical axis perpendicular to the horizontal parallel axes of the two remaining
joints. Also the wrist is composed of three revolute joints. There are many types of
wrists but the most common is the spherical one, in which the three joint axes in-
tersect in one point. The spherical wrist is preferred despite it is difficult to realise,
because it allows the kinematic decomposition of the position and the orientation
of the end effector.

1.2 Overview
This master thesis aims at proposing a new methodology of Human-Robot Collab-
oration for pick and place operations to perform an assembly task. The interaction
between the robot and the human has been realised implementing a new touch
emulation system. The robotic system has been developed using the Niryo One
robotic arm and some inexpensive devices like Leap Motion, in conjunction with a
camera and an LCD.

The camera, placed above the robot, focusing the workspace, allows a human
operator to visualise the pieces around the robot. The user, guided by a virtual
feedback marker, can touch the image of a piece on the screen to select the piece to
accomplish the assembly. The touch emulation system, thanks to the Leap Motion
controller, is able to recognise which piece has been touched by the user and it sends
the command to the robot to perform a pick and place operation for the specified
piece.

Chapter 1 This chapter contains the background and some notions of robotics,
from the historical definition of a robot, Asimov’s laws and the definition
of robotics to the mechanical structure of a robot, its classification and the
description of a robotic arm.

Chapter 2 This chapter starts with the definition of Human-Robot Interaction.
Then it continues with the definition of four criteria to divide Human-Robot
Interaction into three subgroups and examines in depth Human-Robot Collab-
oration. Then the chapter continues with an overview of past studies classified
according to the different interaction techniques and control devices used. The
last part deals with the interaction with synchronous and asynchronous feed-
back and a new generation touch screen device is presented.

Chapter 3 This chapter contains a detailed description of the Robot Operating
System (ROS) and other components that work with it, from the motivation
and basic concepts to some very useful tools to the programmer. It describes
the models used for robot representation, how useful coordinate frames are,
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and images manipulation. Finally, two softwares used for planning and simu-
lation are presented.

Chapter 4 The first part of this chapter focuses on Leap Motion. It describes the
device from the physical point of view, its architecture and tracking model,
used by the software to recognise humans hands. Finally, it describes the
package used for the integration with ROS.
The second part describes the Niryo One robotic arm from its physical char-
acteristics to the division in different layers of the Niryo One ROS stack. This
part also shows the package used for the ROS integration.

Chapter 5 This chapter contains the description of the development process step
by step. First, it describes the elements that compose the workspace and how
it is organised, second, it shows the interaction among Leap Motion, camera
and the screen to realise the touch emulation with feedback, third, it describes
how Find-Object application is used as a link between the touch emulation
and the assembly task, finally it shows how the robot behaves during the pick
and place operations in the simulated environment.

Chapter 6 This chapter shows the practical implementation of the system. First,
it highlights components used to compose the workspace, in comparison with
the simulation with Gazebo. Second, it describes the ROS network created by
the robot and Niryo One Studio application to command it. Third, it evidences
the differences in the code between the virtual and real tests and how they
were treated. Finally, it shows the result obtained through an experimental
test.

Chapter 7 The first part of the final chapter analysed the qualities of the system
and some encountered issues. The pros are described through some examples,
while, the methods used to avoid some cons are described.
In the second part, possible future improvements are listed.
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Chapter 2

State of the art

In the last 30 years industrial manipulators have been seen as autonomous machines
that work separately from humans, surrounded with cages. They have been con-
sidered as substitutes to replace humans in hazardous and tedious manufacturing
tasks with high accuracy and repeatability [29]. Year after year the technological
improvement and the scientific research have brought to the development of logical
capabilities in the robotic field to develop some robots able to coexist, cooperate and
collaborate with humans. Moreover some tasks are too difficult and too expensive
to be fully automated and, in the same way, too strenuous, tedious or dangerous for
a human. Thanks to that humans and robots started to work and interact together
in a safe way, developing the field called Human-Robot Interaction (HRI).

Figure 2.1: Examples of robots: Racer-7-1.0 by Comau [13] as example of indus-
trial manipulator on the left and UR5e by Universal Robots [73] as example of
collaborative robots on the right
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2.1 Human-Robot Interaction

Human-Robot Interaction has been defined as “the process that conveys the human
operators’ intention and interprets the task descriptions into a sequence of robot
motions complying with the robot capabilities and the working requirements” [20]
or as “a general term for all forms of interaction between human and robot” [62].
In general it is defined as Human-Machine Interaction because a robot is defined
as a machine, or simply the interaction between actors which can be both humans
and robots.

2.1.1 Categorisation

There are different levels of interaction, as Fang et al. explain in [20], and the
identification of this level depends on two principles: the level of autonomy (LOA)
which the robotic system is able to achieve and the proximity between the human
and the robot during the task. Parasuraman et al. define automation as “the full
or partial replacement of a function previously carried out by the human operator”
[53], which is not all or none, but can vary across different levels. Table 2.1 shows
10 possible levels of automation from fully manual (lowest level) to fully automated
(highest level). Thrun in [67] defines autonomy as “the robot’s ability to accommo-
date variations in its environment”. This explains that industrial robots have a low
level of autonomy, while, service robots, which work in close proximity to people,
have a high level of autonomy. This is because, on one hand, they have to guarantee
human safety and, on the other hand, humans are little (or no) predictable. As
expected, autonomy and proximity are related to each other.

LOW 1. The computer offers no assistance: human must take all decisions and
actions.

2. The computer offers a complete set of decision/action alternatives, or
3. narrows the selection down to a few, or
4. suggests one alternative
5. executes that suggestion if the human approves, or
6. allows the human a restricted time to veto before automatic execution,

or
7. executes automatically, then necessarily informs the human, and
8. informs the human only if asked, or
9. informs the human only if it, the computer, decides to.

HIGH 10. The computer decides everything, acts autonomously, ignoring the hu-
man.

Table 2.1: Levels of automation of decision and action selection [53]
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2.1 – Human-Robot Interaction

As explained in [62], Human-Robot Interaction is considered a very large cate-
gory which can be subdivided in subsets according to four criteria:

workspace defined as the common space between the human and the robot;

working time defined as the time the human spends in the workspace;

aim defined as the goal the actors want to achieve;

contact defined as the physical interaction which can be occasional or by accident.

Both humans and robots can have the same or different workspace, working time
and aim. Human-Robot interaction, therefore, can be subdivided into the follow
categories (figure 2.2):

Human-Robot Coexistence (HRCoex or HRCx), also called coaction, is
when humans and robots share the same workspace and the same working
time but they have a different aim [2]. They don’t have a common task and
no contact is required. Usually the coexistence is limited to collision avoidance.

Human-Robot Cooperation (HRCoop or HRCp) is a specialisation of the
HRCx. It is when humans and robots not only share the same workspace and
working time but also have a common task to achieve [74]. To do that more
sensors are needed, for example force-feedback and vision.

Human-Robot Collaboration (HRCollab or HRC) is a specialisation of
HRCp. It is when humans and robots exchange information during the ex-
ecution of a task [14] so they collaborate one over another. There can be
collaboration, using two different modalities: physical collaboration and con-
tactless collaboration. The first one is when there is physical contact, one of the
four criteria to divide HRI into its subsets. Physical collaboration is intended
as an intentional contact with an exchange of forces between the robot and
the human. The robot can measure or estimate the exchanged force, predict
the human intention and react in an appropriate way. The second modality
is when the exchange of information is not directly with the robot itself but
with the robotic system, using some sensors. It can be consequently divided
into direct communication, like gestures and voice, and indirect communica-
tion, by identifying human intentions, for example through eye gaze or facial
expressions.

Human-Robot Collaboration enables the achievement of very complex tasks,
based on the fact that humans can contribute the decision-making, flexibility and
the possibility to react to something that behaves in an unexpected way in the
system, instead robots can perform what humans tell them to do without being too
much complex, bringing strength, high precision and productivity to the system. In
this way robots and humans become co-workers, able to work shoulder-by-shoulder
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Figure 2.2: Division of Human-Robot Interaction in subsets accordingly to
workspace, working time, aim and contact [62]

in a safe environment, in order to reach the same goal, combining the best qualities
of each one (table 2.2).

Humans Robots
Advantages Disadvantages Advantages Disadvantages
Dexterity Weakness Strength No Process Knowledge
Flexibility Fatigue Endurance Lack of Experience
Creativity Imprecision Precision Lack of Creativity

Decision Making Low Productivity High Productivity No Decision Power

Table 2.2: Comparison between human and robot qualities [64]

2.1.2 Human Robot Collaboration

The definition of collaborative robots — “cobots” — was coined to define a robot
which directly interacts with a human worker [55] and “cobotics”, the neologism
made up of collaborative and robotics, to indicate the science which involves cobot
systems. These have a large use in industrial applications and each system adapts
itself to a specific job, basing on three main aspects [46]:
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task characterisation which is defined by many variables like the domain of ap-
plication (domestic, industrial, military, medical, etc.), the visibility, the adap-
tation to new applications and the risk to damage the system or humans.

role of operator which depends on the complexity of the interaction. These roles
are: operator, which pilots the robots, coworker, supervisor, which provides
instructions to the robot, bystander, which is present in the workspace with-
out interacting, maintenance operator or programmer. In the past, computer
science knowledge was needed to program the robot to execute a specific task,
instead, now, a lot of people can use robots without specific training or, at
most, with a very short one.

human-system interaction which is based mostly on the proximity concept. Er-
gonomic design must be taken into account. The operator can be in contact
with the robot, either nearby or very far; the interaction feedback can be imme-
diate or can be differed, the interaction can be brief or continuous, moreover
sensors play an important role in the remote communication. The interac-
tion can be: physical (buttons, joystick or handling the robot), using touch-
sensitive surfaces, visual (screens or glasses with virtual or augmented reality),
using motion capture (eye tracking, fingers, hands, arms or body tracking) and
sounds (alarms or voice detection and recognition).

Since the beginning of 1970s robots have been used in the industrial sector but at
the beginning they were very expensive and only few people were able to program
them. Since the industrial revolution 4.0, cobots have been very popular and essen-
tial in production in many fields [64]. They have been used in the manufacturing
industry, automotive industries and assembly lines, especially for the manipulation
of small and lightweight pieces. They are used first of all for picking, packing and
palletising items, secondly for welding, thirdly for assembling items, fourthly for
handling materials and finally for product inspection (figure 2.3). Artificial intel-
ligence, computer vision and speech recognition are some techniques which allow
a high degree of HRI, although these systems are not robust enough to be used
in industrial applications. For this reason, also nowadays, robots support humans,
who are in charge of the perception of the environment.

2.2 Related works

As we have seen previously, cobots are robots which can be moved from one task
to another without a lot of effort, thanks to their reprogrammability. No experts
are needed and almost everyone can use them without specific knowledge.
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Figure 2.3: Different examples of Human-Robot Interaction [29]

2.2.1 Teleoperation, step-by-step commands and learning
by demonstration

A human can command a robot using teleoperation, or using previously pro-
grammed simple motions and then combine these motions one after another, or
the robot can learn for the first time how to accomplish a certain task.

Teleoperation, or telerobotics, is when a human operates on a robot from a
distance [60] and the robot moves in real time. The operator sends a command to
the robot to control its movement and then the robot sends back a signal which
corresponds to the robot’s state. There are two methods to teleoperate a robot:
vision based method and sensor based method [12]. The first method is based on
cameras. It can be a single inexpensive camera or a depth camera as Kinect [30]
or Leap Motion [72] equipped with image processing algorithms in order to detect
fingers, hands, arms or the whole body (figure 2.4). The robot is programmed in
order to follow the movement of the body [30] or the movements of the hands and
fingers (gestures) [56] or it can be teleoperated moving it, holding the end effector,
in a virtual environment as if it were real [33].

The second method, which is based on sensors, uses them to send command to
the robot. Using, for example, an haptic-based device [10], the users hold it as they
were holding the end effector and they can retrieve information about the environ-
ment by using, for example, a haptic display and a tactile display for feedback [68]
or simply a force sensor on the end effector of the robotic arm [16], in order to have
a bilateral interface.
The user can also employ other sensors, for example the IMU sensor that contains
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Figure 2.4: Examples of depth camera: Kinect [30] by Microsoft on the left and
Leap Motion by Ultraleap [72] on the right

a gyroscope and an accelerometer, to control a robotic arm using the head move-
ments. Therefore they take advantage of the three degrees of freedom of the human
head to change only the position of the end effector [51] or use not only the head
motion but also head gestures to control completely a robotic arm [32].
Users can also utilise other sensors, like magnetometer and electromyography sen-
sors (EMG), together with gyroscope and accelerometer in order to obtain more
information. Armbands, for example Myo armband, are used to control a robotic
arm reading information about not only the orientation (very accurately) and po-
sition (not very precise) of the band but also reading the surface electromyography
(sEMG) signals which allow the recognition of few simple hand gestures.

Figure 2.5: Examples of sensors used to teleoperate a robot, from left to right:
Touch X by 3D SYSTEM [1] as haptic-based device, eSense [18] as IMU sensor and
Myo armband [12] as EMG sensor.

Another possible way to collaborate with a robot is by guiding it through a task
execution, not continuously like in teleoperation, but by following a step-by-step
procedure. Of course the robot must know how to complete each single step but
usually these stages in each process are made by simple actions, so they can be
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reused even if the new task is very different from the previous one. Examples of
these steps can be, pick an object, manipulate the object and then place it. In this
case the cobot is able to perform a pick operation but it does not know which object
to pick, how to manipulate it and where to place it. This missing information is
given by the human who has the decision making skill to lead the robot.
Also in this case, pick and place operations can be made using different techniques
and sensors, for example depth camera and gestures can be used to pick a piece
and place it in the user’s hand [22], or a smartphone touch display can be used to
identify the pose in the 3D space where to place an object, using augmented reality
[8] or using a 3D gaze tracking to select the object to pick, simply staring at it [5].

Last but not least, another important method frequently used in HRC is learning
by demonstration. In this case the cobot is not able to perform any task without
a learning process. There are mainly two techniques to perform the learning pro-
cedure. The first method is when the human moves the cobot with his/her hands
and shows it exactly the same movements it must perform to accomplish that task.
This process is called kinesthetic teaching and can be made using some force sen-
sors on the robot [65] (figure 2.6) or Virtual reality. During this process the robot
records the position of each joint to go from one point to another. In a recent study
[28], a haptic sensor applied to the robotic arm was developed. This sensor is able
to recognise and follow the movements of the human hand and also some gestures
drawn on its surface.
The second technique uses observation. The robot collects data on what the human
operator is doing using markers [66], cameras or other kinds of sensors, and then,
after the training process, using some neural networks, it is able to perform the
learned task. In this way no pre-programmed steps are needed and the robot is
able to support the human in almost every task [38] (figure 2.6).

2.2.2 Mixed reality
Since humans and robots collaborate in the same workspace, safety reasons require
to improve the communication between the operator and the cobot. One of the
most critical issues is the difficulty of a human to interpret a robot’s intent. Mixed
Reality helps humans to do this.
Milgram in [45] introduced the concept of Virtuality Continuum (VC) (figure 2.7) in
which real environment and virtual environment, or Virtual Reality (VR), are the
extremes. The real environment is represented by real objects, while the virtual
environment is represented by virtual objects, in other words computer images.
Between these two environments there exists the Mixed Reality (MR). It is the
general word which includes Augmented Reality (AR) and Augmented Virtuality
(AV). The first consists in the vision of the real world with the addition of virtual
objects, conversely the former consists in the vision of a virtual environment with
the addition of real objects.
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Figure 2.6: Examples of learning by demonstration: a man performs kinesthetic
teaching moving the robotic arm with his hands [65] on the left and a woman shows
the robot which trajectories it has to follow in order to perform a specific task [38]
on the right.

Figure 2.7: Representation of the Virtuality Continuum (VC) [45]

Virtual Reality is usually used when something is too risky for humans, for
example a robotic arm is remotely teleoperated with a joystick because grit blasting
creates an hazardous working environment for human operators [11]; virtual reality
is also used to teach the robot to execute a task without actually stopping it or to
teleoperate it in real time from another place (figure 2.8).

Augmented Reality is usually used to add information to the real environment.
This can be done by adopting different techniques, for example using a smartphone
display to select the place where to perform the pose action [7], or to visualise the
point used by the end effector to pick the object, projected by an head-mounted-
display (HMD) or a finger [39]. Another way to use AR is to add some virtual cues
about the correspondent position of the end effector for the pick operation or a
ghost image of the object after the place operation [3]. For safety reasons, instead,
AR is usually used to show the planned path and possible contact with the human
operator [59] (figure 2.8).
A study [9] uses a camera to detect markers which are then converted into objects,
using Augmented Reality, and displayed on an LCD display. After that the user
can select a virtual object with their hands and perform a virtual assembly task.
Apart from this case, AR is usually used paired to a Head Mounted Display (HMD).
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HMDs can be of two types: Optical See-Through (OST) and Video See-Through
(VST). The first is when the user can see directly the environment (through a glass),
the former is when the real environment is shown to the human’s eyes through a
display.
In most cases AR is used to add 3D virtual objects in a 3D environment. In other

Figure 2.8: Examples of VR and AR with HMD: on the left a man teleoperates a
robot using Virtual Reality [33] and on the right a man watches the robot planning
path using Augment Reality [59]

cases AR is used to add 2D information on a plane (figure 2.9), usually a table,
creating, therefore, a projection-based interactive system [27]. In these cases visual
cues are about the position of objects on the plane and the operations to perform
with them. A study [23] used this technique to develop an illustration-based lan-
guage for robot programming in order to develop an easier way of interaction with
the cobot.

Figure 2.9: Examples of AR used to add 2D virtual images on a table top [27] [23]
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2.2.3 Multimodalities
In some cases one single modality for interaction is enough to accomplish the task
in a correct way with enough accuracy, in other cases one modality is not sufficient
because the system should know more information about the environment. To
solve this problem multimodality was developed by adding more sensors, leading
the system to a more complex state.
Multimodality can be done in different ways. The most common multimodality
is the combination of gestures and voice to perform object manipulation [6], for
example the voice is used to indicate which object to manipulate using specific
characteristics, while gestures are used to communicate where to place the object.
A study [54] used many sensors for the interaction: a glove with a sensor module and
IMU sensors to indicate to the robot, respectively, the finger position measurement
and the arm position, HMD and vibrators on the tips of the glove were used to
receive visual and haptic feedback from the robot. In these two studies the human
operator used different sensors to communicate different information to the robot.
In other cases, different sensors are used for the same purpose (sensor fusion), in
order to increase the accuracy, for example using an ocular interface and a haptic
interface to better indicate the path the end effector has to follow [70].

2.3 New generation control devices
There are situations in which the communication between the human and the robot
cannot be through physical interaction, for example, because of the transmission
of microorganisms in a medical environment [15] or simply because the task is too
hazardous to be accomplished by a human. To solve this problem tablets and voice
commands can be used, but they are not effective in an industrial environment:
here operators usually use gloves which do not allow the interaction with a touch
screen or the high noise does not allow the operator to use vocal communication.

2.3.1 Gestures
Nowadays gestures are considered the new form of interaction which are suitable
in the cases described above. No practice is required and they allow the operator
to communicate with the robot in a manner similar to Human-Human interaction.
Duvenhage says “gestures are a normal human way of communicating”, “it comes
very naturally to people” [24].

Many different approaches to the use of gestures have been developed thanks to
specific studies in this field. Gestural technologies can be based on handheld devices
or on cameras. The former are usually wearable devices like gloves or bands which,
however, could be bulky, unwieldy and they can limit the hand movements due to
the presence of wires and sensors. The latter are depth cameras such as Kinect

15



State of the art

[30] and Leap Motion [72] which detect the hand in a cloud of points generated by
different IR cameras and powerful image processors. Using depth cameras, users
are able to move their hands in a natural way. The drawback, however, is that
movements are detected only in the restricted field of view near the camera itself.

Gestures can be classified in three groups [44]: locator, valuator and imager
(table 2.3). The first group includes only simple pointing actions which indicate
locations, the second group includes gestures which indicate extents of quantity,
the last group includes gestures which indicate general images.

Group Meaning Example
Locator Indicate location Pointing
Valuator Indicate extents of quantity "this size" or "rotate this much"
Imager Indicate general images sign language, body language, geomet-

ric figures

Table 2.3: Gestures classification

Gleeson et al. in [26] studied gestures for industries. As a reliable verbal com-
munication between humans is very difficult, due to the noisy industrial conditions,
similarly also the communication between a human and a robot can be complicated.
After the analysis of different tasks, they were grouped in three main categories:
firstly, part acquisition, which includes the selection of a part, the location in the
supply area, the acquisition and the transfer in the work area; secondly, part manip-
ulation, which includes part insertion, feature location and alignment and general
part placement; finally, part operation, which includes all actions done to a part
after it has been placed.
During the experiment two operators communicated only using gestures, with their
mouths and eyes covered. One operator showed the other one which action to per-
form using body language.
The result was that 276 communication events were coded, reduced to eleven differ-
ent terms and nine basic gestures (figure 2.10), each one executed using one single
hand with the unique exception of the two-handed “swap” gesture. Figure 2.10
shows that the correspondence term-gesture is not one-to-one but many-to-many.
Moreover “point at part” gesture is connected with six distinct terms. It is the
most used gesture because it is very simple, but its meaning depends on the task
context.

Sakr et al. in [60] based their study on the comparison of the orthographic
vision-based interface, developed in this work, with respect to the standard vision,
in the teleoperation of a robotic arm.
The experiment was based on a pick and place task in which each participant had
to gently pick a toy and place it in a target container. The toy was placed on a
box, identified by a QR code, used by an inexpensive camera to better estimate
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Figure 2.10: On the left, nine basic gestures identified in the study and on the right
the association among terms and gestures [26]

the position of the toy. Moreover the box could be pressed by the participant in
such a way as to estimate how much gently it was picked. In addition, the study
was not based only on the two different vision systems but also on three different
modalities, because each participant had to perform the task three times using a
joystick, a keyboard and Leap Motion.
The result of this study showed a significant reduction in task completion times
using the new orthographic vision system, respectively of 50%, 44%, and 35%
using the joystick, the keyboard, and Leap Motion. Moreover Leap Motion has the
smallest completion time of 37± 19 s compared to 42± 18 s and 51± 23 s using the
keyboard and the joystick, respectively. These results can be interpreted saying,
not only that this new developed vision system is better than the standard one,
but also that Leap Motion has the smallest completion time independently of the
vision system used, maybe because it allows humans to interact in a more natural
way, even when they are not accustomed with this device.
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2.3.2 Eye-tracking
Sometimes human operators, especially in some industrial applications, can have
busy hands, so they cannot interact with the robot system using gestures. Moreover
gestures nowadays are not very precise and they usually need more complex systems
with sensor fusion abilities. A new possible technology which can be used as way
to interact leaving both hands free is eye-tracking.

Dünser et al. in [17] based their study on a comparison between old and new
generation control mechanisms, for a pick and place task. As old generation control
systems a mouse and a touch screen were used, while eye-tracking was used, as new
generation one, in combination with dwell time or mouse click. It was thought that
the combination eye-tracking-dwell was the most natural and the most useful when
the human operator, who interacted with the robot, had busy hands and could not
use them. On the other hand, it was not possible to distinguish when a human was
gazing at an object or simply glancing at it, so eye-tracking-click interaction was
taken into account in the comparison. The comparison was done to know if gaze
interaction is effectively an advantage in a control system or it is simply a novelty
which performs well only in simple tasks.
The study was performed in a simulated environment for two reasons: firstly, be-
cause in this way all variables were measurable and possible uncertainties, due to
an inexpensive system, were avoided, and secondly, because they wanted to detach
the comparison from the specific system and, therefore, generalise the study.
The variable to measure was the movement time. The experiment was composed of
two circles: one, in red, which represented the target, had to be selected first; the
second, a black one, represented the destination and it had to be selected after the
first. The time was measured from the selection of the first circle to the selection
of the second
The result of this experiment was that touchscreen interaction had the smallest
movement time, followed by mouse, eye-tracking-dwell and eye-tracking-click. De-
spite the touchscreen interaction was evaluated as the one which required the high-
est physical demand, it was also perceived, like the mouse interaction, as the most
precise technique. Results, therefore, showed that using eye-tracking devices where
they are not needed is not useful, maybe because so far they have not been good
enough to be used in a quite complex task, or maybe because people use touch-
screen devices everyday and they are not so used to new generation devices as to
eye-tracking.

2.4 Interaction with feedback
Year after year cobots interact better with humans and different techniques have
been developed to improve the communication. However Human-Human Interac-
tion is better than Human-Robot Interaction principally because it is based on
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a bidirectional channel. In a dialogue between two speakers, while one is speak-
ing, the other uses words, facial expressions or gestures to answer, in other words
humans use various forms of feedback to interact.

2.4.1 Asynchronous feedback
Quintero et al. [57] performed an experiment using the pointing gesture in a pick
and place task. The study used this gesture because it is a form of non-verbal
communication and it can be used for Human-Human, Human-Robot and Robot-
Human Interaction. Moreover this gesture is very simple and universally under-
standable.
The experiment focused on the picking of one of many objects placed on a table
and placing it in the appropriate container and was conducted for the three types
of interaction.
When the experiment was conducted for Human-Robot Interaction, a depth cam-
era was used to detect the body gesture, the pointed object and the positions of the
objects on the table. The gesture can be “stand by”, “pointing”, “yes” or “no”, each
one represented by a specific human body position. The pointed object is selected
as the closest object to the projected point, obtained by the intersection between
the plane on which objects are laid and the straight line between the human head
and the hand.
For each kind of interaction, three configurations were used:

• non-feedback normal, in which the human indicates one of the objects ran-
domly placed on the table and the robot picks it up;

• non-feedback line, in which the human indicates one of the objects placed
along a line on the table and the robot picks it up;

• feedback line, in which the human indicates one of the objects placed along a
line on the table and the robot moves the end effector on it. If the feedback
is positive the robot picks the object up, otherwise it moves the hand effector
to the grasping pose of the nearest object, waiting for new feedback. This
procedure is repeated until the right object is selected.

Results (figure 2.11), in term of success rate, show that Robot-Human Interaction
is the most difficult to perform without misinterpretations; Human-Human Interac-
tion is very difficult when objects are organised in a line; finally, when the feedback
is available, the success rate is the highest, reaching the maximum, independently
of the type of interaction.
In this last article the human operator knows which object the robot has selected
only after it moves on top of it and the robot picks the right object moving the end
effector from the grasping pose of one object to another one until the answer to the
feedback is positive. This can last a lot and the communication is not so quick.
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Figure 2.11: Commander and assistant experiment success rate [57]

2.4.2 Synchronous feedback

In order to have immediate feedback, Sato and Sakane proposed an interface which
uses an Interactive Hand Pointer (IHP) that projects a mark in the real workspace
[61].
This system uses the concept of Augmented Reality: two cameras detect the point-
ing gesture, using a Tracking Vision System (TVS), and an LCD projector is used
to project the mark on the workspace. The marker position in the workspace is
obtained by the intersection between the horizontal plane and the straight line de-
termined by two points: the “tip point” and the “base point”. The tip point is
identified by the tip of the finger, and the base point, in this case, by the base of
the finger. In other cases the base point can be identified by the head position
[57] or by a Virtual Projection Origin (VPO) [44] (figure 2.12). Using the VPO an
assumption is made: all projection lines converge into one single point. This point
is identified during a calibration procedure while the user points to some predefined
targets.

2.4.3 Layered Touch Panel

Tsukada and Hoshino proposed an improvement of the classical touch screen used
as input device. They defined the Layered Touch Panel as a touch screen with two
levels [69].
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Figure 2.12: Two examples of different usages of the base point: on the left it is
defined by the human head [57], on the right it is defined by the Virtual Projection
Origin [44]

Their work shows a “Screen Layer Touch Panel (Screen Layer TP)”, which repre-
sents the screen surface, and a “Infrared Rays Layer Touch Panel (IR Layer TP)”,
which is above the screen, parallel to it, at a small distance (figure 2.13)
The user is able to interact with this device without any physical contact or by

Figure 2.13: Touch stated of Layered Touch Panel [69]

touching the surface crossing the IR Layer. This allows it to have not only two
states, as a common input device, but rather three. For example, a mouse only has
the pointing event and the clicking event but but there is no possibility of a nothing
state; a touchscreen, instead, has only the touch event or none, but no pointing
event is possible; conversely, the Layer Touch Panel has all these three kinds of
events (table 2.4). The pointing event added to the Layered Touch Panel is some
new further information during the interaction with the device. These data can be
used as feedback in order to implement a communication from the machine to the
human.
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Input state Normal touch panel Mouse Layered Touch Panel
Nothing o x o
Pointign event x o o
Touching or click-
ing event

o o o

Table 2.4: Available input states [69]
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Chapter 3

ROS — Robot Operating
System

ROS is the acronym for Robot Operating System and it is a meta-operating system
that runs on Unix-based platforms [36]. It provides not only all services that an
operating system usually does, but also libraries and tools that allow the user to
run ROS across multiple machines. In other words ROS is fundamental for robots:
it is the core, that interconnect each part of the robot, and the brain, that allows
the robot to reach the assigned goals.

ROS, as other operating systems do, allows the user to have different types of
communication: synchronous over services and asynchronous over topics. Moreover
it is possible to store data on the Parameter Server.

ROS is composed of some elementary parts called nodes [58]. They are processes
that build a peer-to-peer network, possibly also among different machines, which
represent the ROS computational graph level. Nodes should be designed in order
to be executed independently of others but also in such a way that they can be
easily integrated in a more complex system. In this way the code uploaded in the
ROS community can be reused by researches and developers.

There are many robotics software platforms but ROS has many benefits com-
pared to other. Some advantages are:

Thin ROS is designed in order to be used with other robot software frameworks
and easily integrated with them.

ROS-agnostic libraries ROS libraries are developed with a clean functional in-
terfaces in order to be used without restriction.

Language independence Each ROS project can be implemented in any modern
programming language. It was full implemented for C++, Python and Lisp;
moreover there are experimental libraries for Java and Lua.
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Easy testing ROS has its own test framework (rostest) that helps the developer
to check and analyse the system.

Scaling ROS was developed to be modular. It works well on a single machine but
its strength is to be easily integrated in a wide network of nodes.

Thanks to the fact that ROS is open source, researches and developers can
implement their own code and share it in the ROS community in order to allow
other people to use it. The ROS core is very basic, but there are a lot of libraries
and packages that can be downloaded from the ROS repository that help the user
to reuse the code.

3.1 Concepts
ROS can be split in three main levels: the Filesystem Level, the Computation
Graph Level and the Community Level. Each level is described below.

3.1.1 ROS Filesystem Level
The Filesystem Level includes all kinds of resources that you use working with ROS
and they are:

Packages ROS Filesystem is organised, at the first level, in packages. A package is
defined as the most atomic build item in ROS. In other words it is the smallest
thing that can be built and released. A package is, therefore, an independent
unit that provides some useful functionalities, able to work by itself but that
can be also interconnected in a more complex system in order to reuse the
code. Packages can be created or downloaded from the ROS repository (see
section 3.1.3). They can contain code developed by the user and third-party
code and they usually reflect the following structure (figure 3.1):

• package.xml is an XML file and represents the Package Manifest (de-
scribed below).

• CMakeLists.txt represents the CMake build file to build packages. It
contains dependencies and describes how to build the code and where to
install it;

• scripts/ is a folder which contains executable scrips (usually Python);
• inc/ is a folder containing header files;
• src/ is a folder containing C++ source files;
• msg/ is a folder containing message type files (see section 3.1.2);
• srv/ is a folder containing service type files (see section 3.1.2);
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• bagfiles/ is a folder which contains bag files (see section 3.1.2);
• launch is a folder containing launch files. This kind of file is written using

XML language and it allows the user to run many nodes (see section 3.1.2)
at a time and also to include other launch file. These files are very used
in ROS in order to reuse the code;

• config is a folder which contains all configuration parameters needed dur-
ing the execution. These files have extension .yaml and they are usually
used inside launch files to load parameters on the Parameter Server.

Figure 3.1: Tree visualisation of a generic package structure.

Metapackages Metapackages are a special type of packages which do not contain
files or code but only references to other packages so that different packages
are related to one another.

Package Manifests Package manifest is a .xml file which describes a package. It
contains the package name, version, description, maintainer, licence and de-
pendencies on other packages. A package manifest is automatically generated
whenever a new package is created with the catkin command.

Message (msg) types Messages are .msg files stored in package_name/msg/ fold-
er. They describe the message type that a node can publish. Each message
contains a list of fields and each field consists of a pair: type and name. The
field type can be a built-in type or another message type and it can be a single
variable or an array.
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Service (srv) types Services are .srv files stored in package_name/srv/ folder.
They are based on messages and implement a request/response communication
between nodes. They are formed by a request and a response message type
divided by “---”.

3.1.2 ROS Computation Graph Level
The Computation Graph Level includes all elements that create the peer-to-peer
network of processes. These elements are:

Figure 3.2: Example of computational graph in which two nodes communicate each
other through a topic. First of all, nodes contact the master to communicate it that
they want to advertise and subscribe to a topic, then node1 can start publishing
messages on the topic and node2 receives a callback every time a new message is
available on the same topic.

Master The ROS Master is the core of the Computation Graph which assigns
a unique name to each node. It enables the communication between nodes,
recording publishers and subscribers to topics and services. The Master also
provides the Parameter Server.

Parameter Server The Parameter Server is a dictionary placed inside the Master
and it provides a way to store data. As well as the Master, all nodes can contact
the Parameter Server and they can save and retrieve parameters through the
network. The dictionary is composed of a couple of elements: the first is the
name of the parameter, that follows the ROS naming convention, and the
second is the value, that can be a built-in type or a struct.

Nodes Nodes are processes that perform some functionalities in the system. One
single node is the smallest part of the Computation Graph and many nodes
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together constitute a network.
As shown in figure 3.2, nodes can communicate each other through topics,
services and can contact the Parameter Server in the Master.
Each node has a unique name and it must contact the Master before being
launched. If a node is launched with the same name of a running node, the
latter is shut down.
Nodes are usually written using C++ or python. They should be developed
and implemented so as to concentrate their work on a specific functionality.
They should be independent from other nodes so that the code is modular and
it can be easily integrated in a complex system.

Messages Messages are what nodes send and receive to communicate. As previ-
ously described in the Filesystem Level (see section 3.1.1, messages are com-
posed of fields and each field has a type and a value.
Messages can also contain a special type: the Header, which allows the defini-
tion of some metadata as a timestamp and a frame ID.

Topics Topics are asynchronous unidirectional buses that connect nodes and cor-
respond to the edges of the Computation Graph. They have a name that
identifies the content of the message and a type given by the message itself.
A node can use a topic as publisher in order to send messages to other nodes
and can use it as a subscriber in order to receive messages from others. Nodes
can publish or subscribe to many topics, moreover each node does not know
if other nodes are reading or writing on the same topic.

Services Services implement a request/reply communication. They are synchro-
nous bidirectional buses with a name, which represent the service, and a type,
given by the service itself. Each service has a message request type, used by a
client node to send a request to a server node, and a message reply type, used
to receive the reply.

Bags Bag is a file format that ROS uses to record and playback messages that
nodes exchange among them. Usually bag files are stored in the same folder
(bagfiles) in a package and they are useful not only to simulate how messages
are sent on topics but also for an offline study, for example to plot data or to
display images.

3.1.3 ROS Community Level
The ROS Community Level contains all resources that allow separate communities
to exchange software, code and knowledge. These resources are:

Distributions Distributions are releases of the Operative System. ROS has several
distributions in order to let developers work on a stable system. This project
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was developed using ROS Kinetic Kame. Nevertheless it is compatible with
previous and future distributions.

Repositories Repositories are used in ROS by institutions to develop and release
their own software components. In this way people can easily access them.

ROS Wiki ROS community Wiki is a forum in which documentation about ROS
can be found. Anyone in the community can contribute to the forum adding
documentation and corrections and writing tutorials.

3.2 rqt
The ROS platform was built to be as agnostic as possible. For example users can use
topics, services or the Parameter Server to communicate data; but the architecture
does not force you to use one over another nor to assign a specific name. This allows
the end user to integrate ROS with other external architectures but, in order to do
this, higher-level concepts are necessary.

rqt is a framework for GUI development for ROS based on Qt. It provides the
rqt_gui, which is a kind of main window, and many plugins that can be dockable
in the rqt_gui or used in a traditional standalone method. Moreover the layout
can be customised and the perspective saved and restore for future uses. If users
do not find the plugin that they want they can create their own.

rqt is divided in three main parts:

• rqt — Core modules

• rqt_common_plugins — Tools that can be used on/off of robot runtime

• rqt_robot_plugins — Tools for interacting with the robot at runtime

3.2.1 rqt_graph

rqt_graph is one of the most important GUI plugins from the rqt_common_plugins.
It is used to display the ROS computation graph showing interconnection of nodes
that are topics. More information like the publish frequency and the average age of
the message for each topic are displayed. Moreover these two piece of information
are displayed in the graph using visual elements, as shown in figure 3.3. The colour
of each topic represents the age of the topic itself (red for old and green for young)
and the line thickness represents the throughput (the thicker the line, the larger
the throughput).
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Figure 3.3: ROS graph using rqt_graph tool with statistics [58]

3.2.2 rqt_console and rqt_logger_level

Both rqt_console and rqt_logger_level plugins come from the rqt_common_plug-
ins.

The first plugin displays and filters ROS messages that are published to rosout.
Figure 3.4 shows in the first box a list view in which are listed all messages collected
over time and updated in real time as they arrive. For each message it is possible
to retrieve the content of the message, the severity, the node which published it,
the topic on which it was published, the time of the publishing and the location.
In the second part of the window it is possible to filter messages by excluding or
highlighting filters.

The second plugin allows the configuration of the logger level of each node. The
main window (figure 3.5) shows the nodes on the left, their associated loggers in
the middle and different levels on the right (Fatal, Error, Warn, Info and Debug).
Logging levels are prioritised using Fatal as the highest priority and Debug as the
lowest. By choosing a certain level, only messages with the same priority level or
higher are visualised in the message list in the rqt_console.

3.2.3 rqt_join_tranjectory_controller

rqt_join_tranjectory_controller is a GUI designed to interact with joint_trajecto-
ry_controller instances in an easy way (figure 3.6). It allows the user to choose the
controller manager namespace, the controller itself and then, after the controller is
started, it allows the user to visualise the current value of each joint in the controller
and to modify it using the slider or the spinner. Moreover, using the same way of
interaction, the user can choose the scaling factor.
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Figure 3.4: rqt_console window [58]

Figure 3.5: rqt_logger_level window [58]

3.2.4 rqt_tf_tree
rqt_tf_tree is a runtime tool which can be used to visualise the tree of frames
(see section 3.4). It works as a listener of frames, which are broadcasted at that
specific moment, and then it creates a tree and displays it (figure 3.7). It does not
show only the relationship between a parent frame and a child frame but it also
reports some diagnostic information like the broadcaster, average rate, most recent
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Figure 3.6: Example of rqt_join_tranjectory_controller used to control a robot
manipulator

transform and buffer length.

3.3 Robot Model
In a real project it is necessary to have a description of the robot system to display,
control, plan, etc. This description is made using two formats to describe some
characteristics as kinematics, dynamics, visual and collision of the robot itself. The
first one is the URDF and it is usually used for simple models, the second one is
the xacro and it is used when a robot system is complex or to make it modular.

3.3.1 URDF
The Unified Robot Description Format (URDF) is a model used to describe a robot
and it is represented by a file written using XML. It is made to be as general as
possible, thus causing some limitations: for example it can represent only robots
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Figure 3.7: rqt_tf_tree window shows a tf tree with a parent frame (world) and
two child frame (leap_pointcloud and leap_hands)

with a tree structure and rigid links connected by joints (neither parallel robots
nor flexible elements can be represented). The file consists of a set of link elements
and joint elements connected in an appropriate way as shown in figure 3.8.

Figure 3.8: URDF structure

A link has only one mandatory attribute, the name of the link itself, and some
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optional attributes such as vision, collision and inertial. Each instance of visual and
collision has an optional name, the origin of the reference frame with respect to the
link, the geometry (box, cylinder, sphere or a mesh file specified by a name and
located in a different folder) and material (name, colour and texture). For complex
elements more visual or collision instances can be used and the final instance is
given by the union of all elements of geometry. Collision and visual properties can
be different and the geometry of the collision property is usually simpler than the
geometry of the visual property, so as to reduce the computation complexity in
order to better perform the collision check. Usually in a robot description .dae
files are used for the visual attribute, in order to have a robot representation as
close as possible to the reality, while the .stl files or elementary geometry figures
described above are used for the collision attribute. Finally, the inertial instance
has the origin as specified for visual and collision properties, the mass and the
inertia (represented by the 6 elements above diagonal of the inertia matrix due to
it is symmetric).

A joint element has some mandatory attributes such as name, type (revolute,
continuous, prismatic, fixed, floating or planar), parent link name, child link name,
axis of rotation and its limits in terms of lower and upper limits, velocity and
effort. Some other attributes are optional such as origin in terms of xyz and RPY,
calibration in terms of rising and falling, dynamics in terms of damping and friction,
mimic used to define a joint mimics another joint with a multiplier and an offset,
and safety controller.

Figure 3.9: On the left, general representation of a link, on the right, general
representation of a joint

3.3.2 Xacro
Xacro (XMLMacros) is another format generally used to describe a robot structure.
This format is very useful when the file is very large because it provides many
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functionalities in order to make the file more compact. It is possible to define
properties and property blocks using a name and a value. Properties are like
variables that can be defined at the beginning of the file and then reused in any
part of the code. In the same way macros can be defined using a name and a list of
parameters. This format also allows the inclusion of other xacro files, insert some
simple math expressions and add some conditional blocks, which are very useful
when the robot can be used in different configurations.

3.4 Coordinate Frames and TransForms
Usually, for the user it is simpler to work inside a local frame; for this reason a new
frame is defined for each single piece that composes the robot system. For example,
when a sensor is added to the robot, all the data collected by this sensor are related
to its coordinate system located in the centre of the sensor. Then these data need
to be converted into the robot coordinate frame.

3.4.1 Why transforms
From an abstract point of view, a transform defines an offset in terms of translation
and rotation between two coordinate frames. We can decide to manage this offset
by ourselves, applying it to each couple of adjacent links or sensors, but it could
be a little difficult when the number of coordinate frames increases. tf2 stands for
TransForm and it is a tool that helps the user to keep track of multiple coordinate
frames over time. tf2 allows the definition of a local frame for each link, sensor, etc.,
and it helps the user to transform points, vectors, etc., between any two coordinate
frames. tf2 is also able to maintain the relationship of different coordinate frames
in an oriented graph without loops, represented by a tree structure as shown in
figure 3.10. Each node in the tree represents a frame. Each frame has only one
single parent but it can have many children. Each tree has one single root usually
called world frame. Each edge represents the transform that needs to be applied
to move from the parent coordinate frame to the child coordinate frame.

Usually a robot system has several 3D coordinate frames changing over time.
Considering a manipulator arm each link has a coordinate frame, from the base
to the end effector, moreover there usually exists a fixed frame (world frame) used
as reference and a coordinate frame for the end effector. tf2 helps the user to
know, for example, not only the current pose of the gripper relative to the base
or relative to the world but also the previous poses of a certain link. In each
transform the direction of conversion is specified. It transforms the coordinate
frame “frame_id” into “child_frame_id”. This is the same transform which will
take data from “child_frame_id” into “frame_id”. This tool is very simple to
use because its high level allows the users to compute transforms, only knowing
the name of each “frame_id”, that needs to be globally unique. In addition it is
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Figure 3.10: Generic example of a transform tree

efficient to use because it transforms data between coordinate frames only at the
time of use and it also works well in a distributed system because all the coordinate
frames are available in all the components of the system.

Its main functionalities are listening for transforms and broadcasting transforms.
The first means receiving and storing in a buffer (up to 10 seconds) all coordinate
frames and querying for specific transforms, the latter stands for publishing the
relative pose of coordinate frames. A system can have several broadcasters, each
one publishing information about a different part of the robot.

3.4.2 static_transform_publisher and
robot_state_publisher

Some objects attached to the robot do not change their own position in time so
it is not needed to broadcast the transform. static_transform_publisher comes to
our help in order to not communicate again and again things which do not change
in time. Compared to a regular transform, the biggest difference is that it does not
keep a time history.

In a real development process an executable program (static_transform_pub-
lisher), provided by the tf2_ros package, can be used as a commandline tool or as
a node in a launch file, indicating the offset in terms of pose.

robot_state_publisher, instead, is an executable that publishes the state of the
robot to tf. This package uses the URDF (XML format) and the publish rate stored
in the Parameter Server, respectively under the name “robot_description” and
“publish_frequency”, and the position of each joint, shared in the topic joint_states.
By doing this, it has all information about the structure of the robot and current
position of the joints in order to compute the forward kinematics of the robot and
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to publish it over tf (figure 3.11).

Figure 3.11: Example of a generic robotic arm using robot_state_publisher to
calculate the coordinate frame of each link

3.5 MoveIt
MoveIt is an open source robotics manipulation platform [47]. It is used to gener-
ate high-degree of freedom trajectories using motion planning, analyze and interact
with the environment with grasp generation, solve the inverse kinematics for a
given pose, control, have a 3D perception of the world and collision checking. Users
can interact with MoveIt by programming or using a plugin interface in Rviz (fig-
ure 3.12) and it is easily integrable with Gazebo (see section 3.8) and ROS Control
to have a powerful robotics development platform.

3.5.1 Architecture
The primary node provided by MoveIt is move_group. This is a ROS node capable
of interacting with other nodes in the ROS environment. In figure 3.13 it is possible
to see all interconnections between the move_group node and the system.

This node mainly interacts with the User Interface. The User Interface allows
the user to send actions and services to the move_group node and let MoveIt do
its job. This interaction can be done using C++ or Python interfaces or through
the GUI on Rviz.
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Figure 3.12: Example of interaction with MoveIt using the Rviz plugin. Adding the
MotionPlanning display to Rviz, the user can choose the initial pose of the robot
(green) and the final pose (orange).

The move_group node interacts also with the Param Server. In this way the
main node can retrieve all information about the robot system: the URDF from
the robot_description parameter, the SRDF from the robot_description_semantic
parameter and other MoveIt configurations like joint limits, kinematics, motion
planning, perception etc. Configuration files and SRDF files are generated auto-
matically from the MoveIt Setup Assistant when the user setups the robot to work
with MoveIt.

Finally, the move_group node interacts with the robot using topics and ac-
tions to retrieve information about the current robot state (joints position from
/joint_states topic) and data collected from sensors.

3.5.2 Planning Scene
MoveIt uses the Planning Scene Monitor (inside the move_group node) to create
the Planning Scene. It is an internal representation of the world and the robot
itself. As described in figure 3.14, the Planning Scene Monitor uses:

• the scene monitor to retrieve information about the current joint positions and
to reconstruct the robot state (the robot state can include also objects that
can be considered rigidly attached to the robot);
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Figure 3.13: Interconnection between the move_group node by MoveIt and other
parts of the system [47]

• the state monitor to retrieve information about the data collected from the
robot sensors;

• the world geometry monitor to build world geometry using information about
the robot, sensors and user input, listening to the planning_scene topic, to
add object information.

In order to do this, the world geometry monitor uses the occupancy map monitor to
construct an octomap that is a 3D occupancy grid map based on an octree designed
to generate an updatable full 3D model in a flexible and compact way.

3.5.3 Motion Planning
MoveIt interacts with a motion planner through a plugin interface. This makes
MoveIt easily extensible with different motion planners from multiple libraries.
The default motion planners used by MoveIt are configured using OMPL (Open
Motion Planning Library), which implements randomised motion planners.
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Figure 3.14: MoveIt Planning Scene Monitor and its interconnections [47]

Figure 3.15 shows the entire flow from motion plan request, as input, to motion
plan response, as output.
The motion plan request usually asks the robotic arm to move to a specific location
in joint space or to a specific pose of the end-effector. Moreover some kinematic
constraints can be specified, like the position and orientation constraints of a link,
joint constraints or more complex customized constraints by the user. Collisions
and self collisions are checked by default. If an object is attached to the end-effector
(or any part of the robot) MoveIt takes care of it and makes collision checking and
planning considering the object as a momentary part of the robot.
The motion plan response contains the trajectory (not simply a path) that moves
the robotic arm to the desired pose. move_group uses the maximum velocity and
acceleration if specified.
Before the request arrives to the motion planner and before the final motion plan re-
sponse is generated, there are some planning adapters that carry out pre-processing
motion plan request and post-processing motion plan response. Pre-processing is
used, for example, to fix the start state bounds, when the joint positions is slightly
outside the joint limits, then joints are moved to the joint limits. Another example
is when the start state is in a collision state then joints are perturbed using a small
amount such as to find a collision free state. Post-processing is instead used for
example to generate a time-parameterized trajectory, applying velocity and accel-
eration constraints. This is because the “kinetic path” generated by the motion
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planner does not obey any velocity or acceleration constraints and it is not time
parameterized.

Figure 3.15: MoveIt Motion Planning pipeline [47]

3.5.4 Pick and place
MoveIt website provides many tutorials to better explain the MoveIt package be-
haviour. One of the most used feature is the pick and place functionality. It is
performed using PlanningSceneInterface and MoveGroupInterface. The executable
is composed by three main functions: addCollisionObjects, pick and place.

The addCollisionObjects function uses the PlanningSceneInterface. Through
this interface it is possible to add collision object to the Planning Scene using a
vector of messages of type moveit_msgs/CollisionObject. Each object has a unique
identifier, a type, which can be a primitive shape, a mesh file or a plane, and its
pose.

The pick function uses the MoveGroupInterface to call the MoveGroupInter-
face::pick function with the object id and a vector of messages of type moveit_msgs/
Grasp, which defines the possible ways to grasp the object. The grasp message is
defined by five relevant fields:

• pre_grasp_approach defines the direction the end effector has to follow and
the distance from which to approach the object;
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• pre_grasp_posture defines the trajectory position of the joints of the end
effector before the grasp;

• grasp_pose defines the pose of the end effector during the grasp;

• grasp_posture defines the trajectory position of the joints of the end effector
for grasping the object;

• post_grasp_retreat define the direction the end effector has to follow and the
distance to travel after the object is grasped.

The place function uses the MoveGroupInterface to call the MoveGroupInter-
face::place function with the object id and a vector of messages of type move-
it_msgs/PlaceLocation, which defines the possible ways to place the object. As in
the case of the grasp message, the place message is defined by four relevant fields:
pre_place_approach, place_pose, post_place_posture and post_place_retreat.
In this case the pose is defined with respect to the center of the object.

3.6 OpenCV
Open Source Computer Vision Library (OpenCV) is an open source computer vi-
sion and machine learning software library [52]. It was built in order to have a
common infrastructure for computer vision applications. It has a lot of algorithms
(more than 2500) based on state-of-the-art computer vision and machine learning
algorithms. They can be used to detect and recognise faces and objects, classify hu-
man actions and track objects movements in a video, extract 3D models of objects,
produce 3D point clouds when a stereo camera is available, find similar images from
an image database, follow eye movements, add virtual markers using Augmented
Reality, etc. OpenCV was implemented for Windows, Linux, Android and Mac OS
and it provides C++, Python, Java and MATLAB interfaces to develop OpenCV
applications.

From ROS Kinetic Kame, OpenCV3 can be used by default. To do this, the pack-
age vision_opencv is included in the ROS distribution and it allows the user to use
OpenCV as it were outside ROS [34]. It contains cv_bridge and image_geometry
packages. The first is used as an interface between ROS messages and OpenCV
(figure 3.16), the second provides a lot of functions to manipulate images and pixels.

3.6.1 find_object_2d
find_object_2d [21] is a package which corresponds to Find-Object application [40]
in ROS. It uses OpenCV and an inexpensive webcam to implement SIFT, SURF,
FAST, BRIEF and other feature detectors and descriptors to detect and recognise
images from a database.
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Figure 3.16: Graphical representation of the interconnection between ROS and
OpenCV using cv_bridge [58]

The executable listens the topic in which the camera images are published, de-
tects and recognises objects and then publishes DetectionInfo and ObjectsStamped
message on two topics. Both message types contain the ID of detected objects,
their position in the image in pixels and other information.

Using the Qt based GUI (figure 3.17), the user can add some objects the exe-
cutable has to recognise, loading them from a folder or taking new photos to the
current video, and change some parameters at runtime [35].

3.7 Rviz
Rviz is a 3D visualiser for ROS. The main window (figure 3.18) is divided into three
main parts: on the left, a list of displays and their own properties, the 3D view in
the middle and, on the right, a list of views.

3.7.1 Displays
Displays are what is shown in the 3D view. A display has some properties such as
the status (OK, Warning, Error and Disabled) with a short explanation, in order to
let the user understand if it is behaving in the correct way, and the subscribed topic
where data are taken from. There is a very long list of different kinds of displays
and each display has its own kind of properties. The most common built-in displays
types are:

Grid This display shows a 2D or 3D grid of lines along a plane, centered at the
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Figure 3.17: Example of object recognition. on the left, the object to recognise
which detectors and descriptors (yellow and light blue points), in the middle there
is the image from the camera and the detected object has a square around it, on
the right, the list of parameters.

origin of the target frame. It is generally used to represent the XY plane as a
surface on which to locate the robot. The Grid display is included by default
when a new Rviz window is opened.

RobotModel This kind of display shows the pose of each link and reconstructs
the entire robot. Links information (visual and collision) is given by the
robot_description parameter in the Parameter Server and it retrieves the po-
sition of each joint using the tf tree. The model is updated with a given rate.

TF This kind of display shows the tf transform tree published by the
robot_state_publisher node (see section 3.4.2). It allows to display the frame
name, the frame axes and the arrow from the child frame to the parent frame.
Axes are indicated: in red the X axis, in green the Y axis and in blue the
Z axis. The fixed frame is always available (usually world frame) and it is
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Figure 3.18: Rviz main window with the displays section on the left, views section
on the right and the 3D view in the middle

located in the center of the coordinate system.

Image This kind of display generates a new display window with an image inside.
This image is updated with a given rate and it takes information from the
sensor_msgs/Image topic. This kind of display is generally used to show
images coming from a camera.

Marker This display adds a primitive shape to the 3D view, reading information
from the visualization_msgs/Marker message on visualization_marker topic.
The available shapes are arrow, cube, sphere, cylinder, line strip, line list, cube
list, sphere list, points, view-oriented text, mesh resource and triangle list. In
case of a single object, it is displayed using the center of the object or using
the start and end point (only in the case of the arrow), while in case of list
objects a set of points is used. Obviously the visualisation of a single marker
is less expensive than many markers, so it is better to use an object list when
many shapes of the same type have to be displayed.
When this kind of display is created, it automatically subscribes to the same
topic with extension “_array” using visualization_msgs/MarkerArray mes-
sages. With this kind of messages it is possible to display many markers at
once.

PointCloud2 This kind of display is used to show data from sensor_msgs/Point-
Cloud2 messages in order to generate some shapes in the 3D view, according to

44



3.7 – Rviz

the depth generated from a sensor, for example, a depth camera. This display
offers four different rendering styles (points, billboards, billboard spheres and
boxes), giving the possibility to choose the best one that fits the application.

If the users do not find a desired display in the provided list they can use a
plugin to add a new customised display with some specific properties so as to make
it behave as they want.

3.7.2 View
Views are different types of camera available in the visualiser. Each camera has a
different way to be controlled and a different type of projection (Orthographic or
Perspective). The different types of cameras are:

Orbital Camera This camera rotates around a focal point that can be everywhere
in the space.

XY Orbit This camera has the same behaviour and the same way of controlling
the Orbital Camera but the focus point is restricted to be in the XY plane.

Third Person Follower This camera maintains a constant viewing angle towards
the tangent frame but it turns if the tangent frame yaws.

FPS (first-person) Camera This camera gives you a first-person perspective.
Rotating the camera is like rotating one’s head up and down or left and right.
Zooming in and out is like moving forwards and backwards.

Top-down Orthographic This camera provides a top to bottom perspective,
along the Z axis in the robot frame using an orthographic view therefore if
the camera moves farther the object does not get smaller.

Given a certain type of camera, its pose and the target frame, it is possible to
save the view in the view panel and use it in the future.

Many different configurations are possible using displays and views. A config-
uration is made up of displays and their properties, tool properties and a camera
type with its settings. It can be saved in a folder and reused again. It can be simply
loaded from the Rviz windows or it is generally used inside a launch file.

When a display is used, rviz uses the tf to transform data from the coordinate
frame into the global reference frame. There are two very important reference
frames: the fixed frame and the target frame. The former is used to identify the
world, in fact it is usually called “world”, it is fixed and it does not move. The
latter is the frame for the camera view. For example, considering a mobile robot,
if the target frame is the map, you will see the robot moving around, conversely
if the target frame is the robot, you will see the robot fixed and the map moving
with respect to it.
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3.8 Gazebo
Gazebo is a free simulator which enables the user to design robots and simulate
them using a realistic scenario [25]. It can be used from the command line or using
a graphical interface, it has a robust physics engine and high quality graphics. It
is also able to generate sensor data optionally with noise, and users can also write
plugins for robots, sensors and environments.

3.8.1 Components and SDFormat
The simulator is composed of two executables: the Gazebo Server and the Graphical
Client. The first is the core of the simulator, it simulates the world using a physics
and sensor engine without any graphical interface, the latter is a visualiser based
on Qt user interface which is connected with the server and displays elements
(figure 3.19). The running simulation can also be controlled and modified. When
the Gazebo Server runs, some files are uploaded. These files are formatted using
SDF [63]. SDF (Simulation Description Format) is an XML file which can be
used to describe objects and environments for robot simulation, visualisation and
control. It gives the possibility to accurately describe static and dynamic objects,
any kind of robot not only using kinematics and dynamics but also using sensors
and surface properties as textures, friction etc.

Figure 3.19: General robotic arm simulation using Gazebo Server and the Graphical
Client

There are four different types of elements and all of them can be represented by

46



3.8 – Gazebo

an SDF file:

world The world element describes the whole environment and it can contain mod-
els, actors, light and plugins. It is used by the Gazebo Server to populate an
environment.

model The model elements describe a robot or a sensor or any other physical
object. An SDF file can contain only one single model but many models can
be included in a world. This is mainly done for code reuse and to reduce the
dimension of world files. Models can be dynamically loaded into simulation
either programmatically or through the GUI. They can be downloaded from
the repository or created by the user.

actor The actor element is a special kind of model which can have a scripted
motion that can be global waypoint type animations and skeleton animations.

light The light element describes a light source.

3.8.2 ROS integration
In order to use stand-alone Gazebo with ROS a set of packages named gaze-
bo_ros_pkgs need to be downloaded. These packages work as a wrapper between
the two systems in order to let them communicate with each other, as shown in fig-
ure 3.20. In addition these packages have the main characteristic to treat an URDF
file as close as possible to a SDF file and improve controllers using ros_control.

An URDF file can only specify the kinematic and the dynamic characteristic
of a robot, moreover it can only describe things that are robots, and not sensors,
lights and so on. For this reason the SDF was developed and it was made in order
to reuse more code as possible from the URDF files.

First of all Gazebo needs to know some physical properties to better simulate the
environment, so the optional inertial parameters in the URDF file become manda-
tory for for each link. The mass, the center of mass and the moment of inertia ma-
trix must be specified. Since the 3x3 inertia matrix is symmetric positive-definite,
with 3 diagonal elements and 3 unique off-diagonal elements, only 6 numbers are
sufficient to represent it. Additionally, with the URDF it is not possible to specify
the position of the robot with respect to the environment. To solve this problem
a new link, usually defined as “world_link”, is added and the base of the robot is
connected with the world link using a fixed joint.

Secondly, Gazebo needs to know more information about the controllers in order
to simulate the hardware interfaces. The ros_control package receives as input the
joint state and use a generic control loop feedback (PID controller) to move the
robot.

Some controllers are available in the ros_controllers package:
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Figure 3.20: Interconnection between Gazebo and ROS using ros_control package
[25]

• joint_state_controller — Publishes the state of all joints.

• position_controllers — Set one or multiple joint positions at once.

• velocity_controllers — Set one or multiple joint velocities at once.

• effort_controllers — Command a desired force/torque to joints.

• joint_trajectory_controllers — Extra functionality for splining an entire tra-
jectory.

If the above list of controllers does not satisfy the user requirement, they can
autonomously create the one which better fits their needs.

In parallel with the controllers, ROS needs some hardware interfaces in order to
read and send commands to the hardware. The most important hardware interfaces
are:

• Joint State Interface — Used for reading the state of an array of named joints.
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• Joint Command Interface — Used for commanding an array of joints.

• Actuator State Interfaces — Used for reading the state of an array of named
actuators.

• Actuator Command Interfaces — Used for commanding an array of actuators.

Also in this case users can create their own hardware interface if they do not find
the right one in the provided list.

Finally a transmission tag needs to be added for each link in the URDF file.
Transmission is the element that interconnects an actuator to a joint. It transforms
the force or the velocity between the two components maintaining their product
(power) constant.

Once all hardware is specified, Gazebo is ready to simulate the defined system.
To do this, the gazebo_ros_control plugin is added to the URDF in order to
load the appropriate hardware interfaces and controller manager [37]. After this
procedure the simulated robot system can be treated as a real robotic system.
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Hardware

4.1 Leap Motion
Leap Motion Controller is an optical hand tracking module, developed by Ultraleap,
able to capture the movement of your hands and fingers [41]. It is a very small
sensor (80mm x 30mm x 11.3mm), and it is simple but also fast and accurate. It
contains three IR LEDs that illuminate the interaction zone with a frequency of
100 times a second using infrared light, which is not visible to humans but visible
to its two IR cameras which capture images and send data back to the computer
via USB. The interaction zone goes from 10 cm up to 80 cm (preferred 60 cm) in a
120°x 150° field of view.

Figure 4.1: On the left, the Leap Motion controller dimensions are shown, on the
right, a representation of IR LEDs and IR cameras

The software works in a powerful and robust way to reconstruct the hand shapes
and generate a virtual model of the hands from images. It recognises 27 distinct
hand elements among bones and joints, even when some pieces are hidden, from
the controller point of view. Moreover it is able to track the complexity of natural
movements in a smooth way thanks to its high frame rate. Cameras work at 120 Hz
and they are capable of capturing an image within 1/2000th of a second. Thanks
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to its good qualities, the software processes images with a very low latency, which
is not perceptible to the human brain.

4.1.1 Architecture
The Leap Motion software runs as daemon on Linux. The Leap Motion service,
as shown in figure 4.2, receives data from the Leap Motion controller via USB. It
processes data and sends them to the Leap-enabled application, which can be one at
a time. The Leap Motion SDK provides two kinds of API for getting Leap Motion
tracking data: a WebSocket interface and a native interface. The native interface is
a dynamic library which the user can use to create new Leap-enabled applications.
When a Leap-enabled application is in foreground it can connect the Leap Motion
service using the Leap motion native library to receive tracking data, while, if the
Leap-enabled application is in background, it stops receiving data from the Leap
Motion service, unless the configuration settings are configured differently. From
the Leap setting app, which runs separately from the service, the user can configure
the Leap Motion installation.

Figure 4.2: Leap Motion architecture for native application interfaces

4.1.2 Coordinate frame
The Leap Motion uses a right-handed cartesian coordinate system (figure 4.3).
The origin of this system is in the centre of the top of the Leap Motion controller.
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Considering the Leap Motion controller on a desk with the user on one side and
the computer on the other side, the horizontal plane is represented by the x-z plane
with the positive z axis pointing to the user and the positive x axis pointing to the
right. The y axis is consequently vertical and its value increases going upwards. By
using this coordinate frame, only positive values can be obtained from the y axis.
Moreover, as shown in figure 4.3, the field of view is an inverted pyramid, so the
available range on the x and z axes is very small when closer to the device while it
increases when going farther. The consequence is that users need to maintain their
hands in the field of view if they want the controller to properly track them.

Figure 4.3: On the left, the representation of the Leap Motion coordinate system
[41], on the right, the field of view represented by the inverted pyramid

4.1.3 Tracking model
The Leap Motion API provides a class for each tracked object. The tracking model
is organised using a tree structure in which the root is given by the Frame class and
the other classes are a specialisation or a component of the above class (figure 4.4).
A new Frame object is created at each update interval and from this class the
user can access all other tracked elements. It contains classes of the “-List” type,
which allow the user to retrieve many elements all at once and other functions
for filtering. These “-List” classes contain classes of the Image, Hand, Pointable,
Finger, Tool and Gesture types. Moreover there are some classes, like Vector and
Matrix classes, which are not included in the tracking model but which provide
several useful mathematical functions to manipulate data, for example, directions
and normals.

A Frame object contains a snapshot of the scene recorded by cameras. Frames
can be retrieved in two ways: by polling and with callbacks. The first method is
the simplest and works very well when the application has a constant frame rate.
At each iteration a frame is taken from the controller but, in this situation, if the
application frame rate is greater than the Leap Motion controller frame rate, the
same frame is taken twice; conversely, if the application frame rate is lower, some
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Figure 4.4: Leap Motion tracking model [41]

frames are skipped. The second method uses listener callbacks, so the controller
calls a function each time a new frame is received. Callbacks are more complex
because they are multi-thread and each callback is invoked on an independent
thread, so the user must ensure data access is made in a thread-safe manner. Also
in this case some frames can be skipped: if the callback takes too much time to
complete its process, the frame is added to the history; if the computer has many
tasks to run, instead, the Leap Motion software may not finish to process some
frames in time and these frames are discarded.

Hands are the main element tracked by the Leap Motion controller. More than
one hand can be tracked but the quality decreases if more than two hands are
present in the scene. The Leap Motion software has an inner model of the human
hand and it uses this model to compare data received from sensors and validate
them. This also allows the software to reconstruct the position of fingers even
when they are not completely visible, for example, when a finger is behind the
palm, from the controller point of view. From a Hand object it is possible to access
its information like palm position, direction, norm, etc. but it is also possible to
access the Arm object and Pointable objects (fingers).

An Arm object can be accessed only from a Hand object. It provides information
like orientation, length, width, and end points of an arm. If the elbow is not visible
by the controller, its position is estimated based on past observations as well as
typical human proportions.
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Pointable objects are Finger and Tool objects. They have some common prop-
erties deriving from the Pointable class and other more specific properties deriving
from their own specialised class. A Tool object is represented by a cylinder object
longer and thinner than a human finger; instead, a Finger object is more complex.

A Finger object has a type (thumb, index, middle, ring and pinky), other prop-
erties, like the direction, the length, the width, etc. and a list of bones. As shown
in figure 4.5, all fingers have four bones. Even if a real thumb has three bones, for
a practical realisation, the metacarpal is present but has zero length.

Each bone is represented by an object of the Bone class. Also in this case it has
a type (metacarpal, proximal phalanx, intermediate phalanx and distal phalanx)
and other properties like the position, the direction, etc.

Figure 4.5: Leap Motion hand model

A Gesture object can be accessed directly from a Frame object and it represents
a specific movement of the hand. When the software recognises that a gesture
is present, a new object is created and added to the Frame object. If a gesture
continues in time, it is updated and inserted in future Frame objects. A Gesture
object contains the type of gesture, the duration and other information. Leap
Motion recognises four gestures (figure 4.6):

• CircleGesture — a finger movement as it traces a circle;

• SwipeGesture — a finger movement as it traces a line;
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• KeyTapGesture — a tapping movement as a finger taps a keyboard key;

• ScreenTapGesture — a tapping movement as a finger taps a vertical screen.

Figure 4.6: Representation of Leap Motion gestures [41]. On the top left, circle
gesture, on the top right, swipe gesture, on the bottom left, key tap gesture, on the
bottom right, screen tap gesture

The ImageList class contains the two raw images coming from the left and right
infrared cameras. Image objects can be obtained both from a Frame object or
directly from the controller. The difference is that the synchronisation between the
user’s hands and a Frame object is slightly lagged, while images obtained directly
from the controller are real time but do not correspond to the hand represented on
the screen. An Image object contains also the calibration data required to correct
the lens distortion.

The Leap Motion software not only generates Frame objects, one independently
from the other, but also keeps track of the correlation between a couple of frames.
For example, if the user makes a rotation of his/her hand and Leap Motion recog-
nises a frame in which the palm normal has a value and, later, another frame in
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which the palm normal has a different value, the software compares these two frames
and recognises the rotation. Motions are representations of these movements and
the software is able to recognise them both with one single hand (considering the
movement of fingers and properties of a Hand object) and two hands (considering
the position of one hand with respect to the other).

There are three types of motions (figure 4.7):

• translation — linear movement;

• rotation — angular movement;

• scale — relative expansion or contraction.

Figure 4.7: Representation of motions [41]. On the left, scale, in the middle,
rotation, on the right, translation

4.1.4 Touch emulation
Leap Motion API, through the Pointable class, provides information which can be
used to implement a touch emulation.

Leap Motion defines a touch surface, roughly parallel to the x-y plane, which
is used as a virtual surface. This surface divides the space into two zones: the
hovering zone, between the user and the plane, and the touching zone, beyond the
plane (figure 4.8). If the Pointable object, the finger or the tool, is too far from the
touch surface, it is in the none zone.

The Pointing class declares the Zone enumeration composed by the hovering,
touching and none states, which can be retrieved with the touchZone attribute. If
the Pointable object is in the hovering zone or in the touching zone, it is possible to
access to the touchDistance attribute, which returns a value in the range [+1,−1].
When the Pointable object enters the touching zone this quantity is +1; then it
decreases, becoming 0 when the Pointable object touches the virtual plane; when
the Pointable object crosses the plane and is in the touching zone it continues to
decrease without reaching −1. Of course the touchDistance attribute does not
report the real distance from the plane but a normalised distance in the range
[+1,−1].
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Figure 4.8: Representation of Leap Motion touch emulation with hovering and
touching zones and [+1,−1] interval [41]

4.1.5 ROS integration
leap_motion [42] is a ROS package used as a wrapper for interfacing ROS nodes
with the Leap Motion controller. This ROS package, apart from CMakeLists.txt
and package.xml, also contains five folders (figure 4.9): LeapSDK, config, msg, inc,
src and launch.

The LeapSDK folder contains all the files needed to interact with the Leap
Motion controller. It includes some header files which can be used when Leap
Motion functionalities are required.

The config folder contains two configuration files (.yaml) used to setup the con-
troller and the filter, a folder which contains cameras parameters (both left and
right), and a folder containing characteristics for Rviz visualisation.

The message folder contains message files, one for each message type. Messages
were designed to be consistent with the tracking model of the Leap Motion con-
troller. Message types are: Bone, Finger, Hand, Arm, Gesture and Human. Also
in this case each message has its own properties and some message types compose
other message types. For example, a Finger message contains a Bone list, an Hand
message contains an Arm message, a Gesture list and a Finger list, and a Human
message contains two messages of Hand type, one for the left hand and one for the
right hand. Consequently from the definition of the Human message it is possible
to deduce that leap_motion package supports one single person.

The src folder contains five source files in C++ language linked to header files
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Figure 4.9: Tree representation of leap_motion package

in the inc folder. These files are:

lmc_driver_node.cpp This file generates a ROS node, contacts the Parameter
Server to retrieve some Leap Motion controller configuration parameters (some
for debug and some to enable and disable gestures), generates an instance of
type lmc_listener (described below) and uses it to publish messages of type
Human on a topic.

lmc_listener.cpp This is the main file which allows nodes to receive tracked ele-
ments and their information. It contains the constructor and a list of callback
functions which are:

• onConnect — called when a connection is established between the con-
troller and the Leap Motion software;
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• onDisconnect — called when the Controller object disconnects from the
Leap Motion software or the Leap Motion hardware is unplugged;

• onInit — called when an instance of a Listener object is added to a Con-
troller object;

• onExit — called when the Listener object is removed from the Controller
object or the Controller instance is destroyed;

• onFrame — called when the Controller object receives a new frame. This
function retrieves all tracked elements from the controller and puts them
inside a message of type Human. Then this message is published on a
topic to let all tracked data be available to any node on the ROS network.

lmc_filter_node.cpp This file creates a ROS node which implements a 2nd-order
Butterworth lowpass filter [31]. This node receives Human messages from
the lmc_driver_node and publishes them on another topic after filtering the
position of each tracked element. The low pass filter uses the cutoff parameter
to define the cutoff frequency of the filter. The higher its value is, the more
trust is in the filtered data.

lmc_visualizer_node.cpp This file is used to create a visual representation of
the hands. It creates a node that receives data from the filter node if it is
enabled, otherwise directly from the driver node; then, it creates some Marker
object and send them to Rviz using the visualization_marker_array topic (see
section 3.7.1). The shape of the hand is generated using elementary shapes:
line_list is used to draw the hand outline and fingers, spheres are used to draw
joints and the centre of the palm.

lmc_camera_node.cpp This file creates a ROS node that contacts the controller
and retrieves images generated by the cameras. The node publishes on different
topics, both for left and right camera, raw images and camera information.

The launch folder contains three launch files:

• visualization.launch, first of all, loads some parameters, some used by the
driver node for debug reason and for gestures configuration, others used by
the filter node; it creates one instance of leap_motion_driver_node, leap_mo-
tion_filter_node and leap_motion_visualizer_node. These three nodes work
in a pipeline mode: data are generated by the controller, then they are fil-
tered and finally used to create a visualisation of hands. The launch file also
launches the Rviz visualiser to display the shapes of the hands (figure 4.10).
static_transform_publisher is used (see section 3.4.2) to rotate the Leap Mo-
tion coordinate system in order to match the world coordinate system (static).
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Figure 4.10: Representation of one hand in Rviz using MarkerArray display:
line_list for the hand outline and fingers, spheres for joints and the centre of the
palm

• camera.launch creates an instance of leap_motion_camera_node, which is
used to display the raw image of a camera, and an instance of stereo_im-
age_proc from stereo_image_proc package, which performs the duty of im-
age_proc for both cameras so as to remove camera distortion from the raw
images. Also this launch file launches an instance of Rviz visualiser, to dis-
play the raw image of one camera, using the Image display, and the point
cloud (figure 4.11) generated by stereo_image_proc node, using the Point
Cloud 2 display (see section 3.7.1). Also this launch file creates an instance
of static_transform_publisher to rotate the point cloud coordinate system in
order to match the world coordinate system.

• demo.launch is a combination of the two previous launch files that allows the
visualisation of the shapes of the hands using MarkerArray display, to fill
the 3D view using PointCloud2 display and to visualise the raw image of the
camera using Image display (figure 4.12).

4.2 Niryo One
Niryo One is a 6-axis collaborative robotic arm, which means that it has 6 degrees of
freedom. It is an educational robot, used to train industry 4.0, which is open source
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Figure 4.11: Representation of one hand in Rviz using PointCloud2 display

Figure 4.12: Graph which represents the interconnection among nodes when the
demo.launch file is launched

and 3D printed, so its cost is very low with respect to other collaborative robots.
Its weight is 3.3Kg and its reach is 440mm. The company provides STL files that
allow buyers to print the robot by themselves. It is composed of seven pieces:
base, shoulder, wrist, arm, elbow, forearm, wrist and hand (figure 4.13). They also
provide STL files for five different interchangeable end-effectors: three grippers,
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one vacuum pump and one electromagnet. Each tool has the same mechanical
connector and the company also provides instructions that enable users to design
their own end-effectors if they want. In this project “Gripper 1” was used. It has a
weight of 70 g, a length (gripper closed) of 80mm and a maximum opening width
of 27mm. A representation of this gripper can be seen in figure 4.14

Figure 4.13: Niryo One structure composed of seven pieces, each one reported in
the table on the left [48]

Figure 4.14: Niryo One Gripper 1 with its specific in the table on the left [48]

It is possible to easily connect the robot with other devices. The user can
integrate Arduino and/or Raspberry Pi boards to create a controlled environment
in which more Niryo One robots can be synchronously controlled or where an
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assembly line or any other robotic arm application can be simulated. The company
also provides a free desktop application to easily interact with the robot: Niryo
One Studio. The software has a graphical interface not only to control each joint
separately but also to create programs using blocks, so no robotic knowledge is
needed. The robot can be controlled using an ethernet cable or Wi-Fi. In the
latter case the robot can work as a hotspot mode or it can be connected to a local
network.

4.2.1 Niryo One ROS stack
Figure 4.15 is the representation of different layers taht compose the Niryo One
ROS stack [50]. Going from the bottom up, it is possible to define the hardware
layer. This layer is the communication channel between the hardware itself and the
software. One part is inside the niryo_one_rpi package (mostly Python) and it is
responsible for the top button, the LED, the digital I/O panel, the Wi-Fi, the fans,
etc.; the other part is the motor driver and it is responsible for handling the CAN
and Dynamixel buses to control motors. This driver works as an interface between
the motors and ROS and it is able to both send commands to all motors and read
their position.

The above layer is the control layer. It uses the ros_control package next to the
joint_trajectory_controller. This controller is a position controller that receives a
trajectory and runs a control loop: it reads the current position from the driver,
interpolates the trajectory (using a quintic spline) to get the next position command
and sends it to the driver.

On top of the control layer there is the motion planning layer. This layer uses
the well-known ROS MoveIt package (see section 3.5) to find the inverse kinematics
and build a path for the robot. The path is composed of a series of points and for
each one a specific position, velocity, and acceleration are given. Then the path is
sent to the joint_trajectory_controller.

Next there is the command and user interface layer. This layer is the link between
the ROS system and the client (the user or another machine). All commands go
through this layer, coming from the command line, code or graphical user interface.

The last level is the external communication level and it is used to communicate
with what is outside the system. For example, the user can use a joystick, through
a USB bus, to send commands to the robot.

4.2.2 Simulation
The company also provides the niryo_one_ros_simulation metapackage [49], which
contains three packages: niryo_one_description, niryo_one_gazebo and
niryo_one_moveit_config.

The niryo_one_description package provides all the material needed for the
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Figure 4.15: Representation of the division in different layers of the Niryo One ROS
stack [50]

Figure 4.16: Tree structure of niryo_one_description package

visualisation of the robot. It contains (figure 4.16): mesh files, in the meshes folder,
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of the seven pieces that constitute the robot, both collada and stl formats, used in
the URDF file for the visual and collision properties, respectively (see section 3.3.1);
two xacro files, in the urdf folder, one used simply to display the robot from the
base link to the head link (the gripper is not included) and the other containing also
the inertial parameters and transmission tags for the simulation with Gazebo (see
section 3.8); a launch file, in the launch folder, which loads the robot description
(the simpler version) into the Parameter Server and uses joint_state_publisher and
robot_state_publisher and Rviz to display the robot (figure 4.17); a configuration
file, in the config folder, which is used to configure the Rviz window.

Figure 4.17: Representation in Rviz of Niryo One using RobotModel display

The niryo_one_gazebo package is used for the simulation. It contains a config-
uration file (yaml file), in the config folder, with the description of the controllers
(joint_state_controller and joint_trajectory_controller) and two launch files, in
the launch folder (figure 4.18). One launch file loads the robot description (Gazebo
version) into the Parameter Server, runs Gazebo and populates it with the robot
model (figure 4.19); the other file loads into the Parameter Server the configuration
file containing the controller parameters, uses robot_state_publisher node, to com-
municate the state of the robot, and a spawner node from the controller_manager
package which loads and starts the two controllers.

The niryo_one_moveit_config package is used by MoveIt to plan the motion.
As figure 4.20 shows, this package contains some configuration files, in the config
folder, generated by the MoveIt Setup Assistant, which contain some information
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Figure 4.18: Tree structure of niryo_one_gazebo package

Figure 4.19: Simulation of Niryo One using Gazebo

like joint limits, kinematics, semantic robot description, ompl planning configura-
tion, fake and real controllers parameters. The package also contains some launch
files, in the launch folder. The most used are move_group.launch and demo.launch.

The first file is the main MoveIt executable. First of all it launches plan-
ning_context.launch, which is used to upload all needed parameters on the Pa-
rameter Server, like robot description, semantic robot description, joint limits and
kinematics; it launches planning_pipeline.launch.xml, which uploads all param-
eters needed for planning functionality (ompl_planning_pipeline.launch.xml); it
launches trajectory_execution.launch.xml, which uploads the controller manager
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Figure 4.20: Tree structure of niryo_one_moveit_config package

and controller parameters that can be real (niryo_one_moveit_controller_man-
ager.launch.xml) or fake (fake_moveit_controller_manager.launch.xml); finally, it
starts the move_group node/action server that provides MoveIt functionality.

The second file is used to display the robot and to use MoveIt with fake con-
trollers. It launches planning_context.launch; it uses joint_state_publisher to pub-
lish fake joint states because the robot is not connected; it uses robot_state_pub-
lisher, given the published joint states, to publish tf for the robot links; it launches
move_group.launch using a fake execution; finally it launches moveit_rviz.launch
which runs Rviz with its configuration file, moveit.rviz. The Rviz window allows the
user to see the planning scene that MoveIt uses to calculate the trajectory avoiding
collision, and the trajectory itself.
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Figure 4.21: Representation of the trajectory in Rviz using Trajectory display
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Chapter 5

System development

The goal of this study was to implement a collaborative assembly task, using Niryo
One robotic arm, two low cost sensors, a Leap Motion controller and a webcam, as
input devices, and an LCD as output. Human operators, using gestures, perform
a Human-Robot Collaboration in order to carry out a pick and place operation.

5.1 The concept
The first innovative idea was to place the camera above the robot, focusing the
workspace, and to display the output on the LCD (figure 5.1). In order to perform
an industrial assembly task, the user can now see the robot and a set of pieces on
the screen. Human operators can use the Leap Motion controller, placed in front
of the screen on the same surface. With their index they can indicate some pieces
on the screen to pick them up and place them in a given order.

Figure 5.1: Block diagram of the proposed system

As discussed in chapter 2, many studies based their research on Human-Robot
Collaboration using gestures, because they are a natural way for humans to interact
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(see section 2.3.1).
As explained in [26], the pointing gesture, in particular “point at part” gesture,

is universally understandable and very simple; the study [17] shows that people
perform better when they use a simple method which is natural for them, as ges-
tures; moreover, [57] shows that the interaction quality is better when there is a
feedback in the communication.

The system proposed in this thesis tries to take into account the good results
of these previous studies and combines all these features in order to create an
innovative way of Human-Robot Interaction using the “point at part” gesture.
Moreover there are no studies focusing on a direct interaction between a screen and
gestures; so it was decided to develop a system using the LCD not only to visualise
the image coming from the camera placed above the robot, but also in conjunction
with the Leap Motion controller to develop a touch emulation system.

Gestures are generally used in conjunction with Augmented Reality to recreate
a feedback marker but this technique requires expensive devices. In this study
feedback was integrated with the touch emulation system employing the already
used LCD, adding a virtual marker to the image stream coming from the camera.

Human operators, using the tip of their index, touch the object image on the
screen, guided by the feedback marker, and communicate to the robot which object
to pick up. This way the robot performs a pick and place operation from the object
position to the first placing area in front of it. Then the operation is repeated
again to pick and place another object in the second placing area to complete the
assembly task.

5.2 System architecture
The proposed system is composed of several pieces, which can be represented in
a schematic way as shown in figure 5.2. In the extremities (top and bottom) of
the scheme, the hardware used in the system is represented, while the software is
in the middle (with the exception of Rviz). Information flows from the top (input
devices) to the bottom (output devices). The scheme can be divided into 6 layers.
They are described below, following the same order of the information flow:

input devices The Leap Motion controller was used to recognise the human hands,
the camera was used to retrieve images of the workspace from the top view.

drivers Although they have been called drivers, they are in reality some ROS
nodes used as links between the input devices and the main layer. These nodes
perform a set-up phase to adapt raw information in order to be available for
the next layer.

main layer This layer represents the core of the system. It is responsible for many
things: first of all, the visualisation of the hands recognised by the Leap Motion
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Figure 5.2: Schematic representation of the proposed system and division in layers

controller; secondly, the visualisation and manipulation of images coming from
the camera; thirdly, the implementation of the touch emulation system; finally,
the detection and recognition of objects in the workspace.

command layer This layer represents the crux that fuses together information
coming from the user and the robot. In other words, it takes the information
coming from the touch emulation block and the one coming from the find
objects block and verifies if their combination makes sense. If it does, it sends
the command to the next layer.

control layer This layer consists of ROS components responsible for the pick and
place operation and commands to be sent to the robot controller to perform
a given task.

output devices The robot itself and the LCD, which shows images coming from
the camera, are considered as output devices. Rviz was added to this last layer
because it is not possible to interact with it, but only to visualise information
about the system. For this reason Rviz was considered as an end point, even
though it is constituted by a software part.

The system was developed following a top-down approach, with the exception
of the workspace, which was developed firstly, because the camera retrieves the
information from there. Each block of the system was developed separately and
only at the end, when all components were completed, the whole system was simu-
lated. Firstly the workspace was organised and some pieces were designed, secondly
the touch emulation system was developed, then the find-object application was
adapted and finally the pick and place operation was performed.

73



System development

5.3 Workspace
The assembly task was performed using the Gazebo simulator (see section 3.8).
The workspace is composed of a flat surface on which the robot, the camera and
some pieces to pick and place are located.

5.3.1 Hardware
NIRYO company provides all files (.stl) needed to print the robot links and the
gripper with a 3D printer and other physical parts that are not printable. Then
the final user uses these components to mount the robot. On the contrary, the
company does not provide all needed files (.dae) used for the simulation, but only
those files regarding the robotic arm and not the ones regarding the gripper.

The first problem was encountered in the simulation of a pick and place task
because, of course, the gripper is needed. Due to the fact that the company does
not provide any file for the simulation of the gripper, files used to print the gripper
are also used for the simulation. Differently from the robotic arm, whose .dae
files are used for visualisation and .stl files are used for collision, gripper visual and
collision tag are both realised using .stl files. This allows the realisation of the same
behaviour regarding the motion, while it is not possible to visualise the texture and
colours as in the case of the robotic arm.

Similarly to the real gripper, which is equipped with a single motor, also the sim-
ulated gripper was developed in the same way. For this reason the hand.urdf.xacro
file, which describes the Niryo One Gripper 1, contains only one independent
joint, while the second joint mimics the first one. To reproduce this behaviour
in the Gazebo simulator, the mimic_joint_plugin was also included in the file
gazebo_hand.urdf.xacro, in addition to the transmission tag for the independent
joint. In reality some connectors allow the conversion of the rotating movement of
the rotor into the translational movement of the gripper’s fingers. For simplicity,
the joint declared in the urdf file was defined as prismatic. Moreover a controller of
type effort_controller/JointTrajectoryController was added to control the gripper
and some files containing its parameters. Finally, all files were adapted to con-
tain niryo_one_hand.urdf.xacro and gazebo_niryo_one_hand.urdf.xacro, which
include the description of both robotic arm and the gripper.

As figure 5.3 shows, the robot was positioned at the center of the world frame
while the camera was placed above it, at a distance of 1 m from the horizontal
plane. The camera is represented in simulation as a 0,1 m long white cube which
is not affected by gravity (as in reality it was suspended in the air). The camera
is simulated with an image that is 1920x1080 pixels large and an update rate of
30 fps, in order to reflect real camera parameters. The image is oriented with the
positive x world frame axis going down and the positive y world frame axis going
right. In this way the x-y plane of the image matches the x-y plane where the
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robotic arm and pieces are placed. Moreover Gazebo simulator gives the possibility
to add some white noise, as it was in reality, before publishing the image on the
topic sensor/usb_cam/image_raw using sensor_msgs/Image messages.

Figure 5.3: Representation of the simulated system composed of Niryo One in the
middle, a camera placed above it (white box), white pieces around the robot and
two place locations in front of it (blue and red rectangles)

5.3.2 Other components
Gazebo does not simulate only gravity and textures, but also light. In the simula-
tion a directional light was used, to recreate the sunlight coming from a window, as
in a real environment. This light generates some shadows which are fundamental
in object recognition (see section 5.5).

To perform pick and place operations some objects are placed in a horseshoe
shape around the robot (figure 5.3). It was decided to organise the workspace in
this way because it was thought that in an industrial assembly task, this last is
the final step of a chain. Possibly the pieces are placed from other robots after a
manipulation task.

These objects are all different from one another but follow the same pattern.
As figure 5.4 shows, one object is represented by a parallelepiped having base
10 cm x 14 cm and a height of 2 cm. The middle section (in green) is the common
part to all pieces, while the shortest edges of the parallelepiped have a concave shape
that matches the convex shape of another object and vice versa. Placed above the
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parallelepiped, in the middle, there is a cube with 2 cm long edges, used by the
gripper to easily pick the object. The lower part is larger, to be better identified
by the find-object software, while the upper part is smaller because the Niryo One
Gripper 1 has a small opening width. Moreover the lower part was designed in this
way so that it would be too difficult for a robot to perform an assembly task by
itself, leaving to the human operators the ability to choose two matching objects,
thus exploiting the Human-Robot Collaboration.

Figure 5.4: Representation of one piece used in the simulation with a concave shape
on one side and a convex shape on the other side. The middle section (green) is
the common part.

Each single piece was firstly created using an external software and then exported
using .stl format using an ID represented by a unique increasing number. Then each
piece was added to a .xacro file describing it and named pieceX.xacro, where X is
the object’s ID. Finally, these xacro files are used to spawn the pieces in Gazebo
through the gazebo.launch file.

5.4 Touch emulation
The developed touch emulation combines information retrieved by the Leap Motion
controller, using the leap_motion package, with the image coming from the camera.

At the beginning the first idea was to use the pointing gesture to indicate an
object, but during the developing phase many problems occurred.
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The first difficulty occurred in the definition of the pointing finger gesture. This
can be identified when the index is straight and the other fingers are closed. But it
is difficult to identify how straight the index has to be or how closed other fingers
have to be. However, Leap Motion provides a function, which is not reported in
the Bone message of the leap_motion package, which returns the normalised di-
rection of a bone from the base to the tip. By adding this information to the Bone
message it is possible to calculate the angle between two bones, using the func-
tion Vector::angleTo(const Vector & other). After a threshold ∆ has been
defined, the two conditions to identify the position of the fingers for the pointing
gesture are:

• the angle between each couple of adjacent bones of the index has to be smaller
than ∆;

• the angle between metacarpals and proximal phalanges has to be greater than
∆ for the remaining fingers, with the exception of the thumb.

It was observed that, setting ∆ = 0,2 rad (about 11,5 ◦), the position of the
fingers is similar to the position of the pointing gesture normally used. Moreover
this value allows the recognition of the pointing gesture also when the index is not
completely straight.

Another problem that occurred during the development phase was the time
needed to define a pointing gesture. An initial idea was to let a timer start each
time the position of the fingers verified the previously described conditions, and
trigger the pointing gesture event when the timer reached zero. In this case, if the
timer was set to a low value, the gesture would be recognised very quickly, but the
user would not have enough time to identify the virtual marker on the screen and
move it to the desired position; on the contrary, if the timer was set to a high value,
then the user would have the possibility to point at an object on the screen without
triggering the gesture event, but it would be very unlikely to keep the hand still
while indicating an object on the screen.

The last problem, extensively discussed in many studies (see section 2.4.1), was
the definition of the “base point” (the “tip point” is defined by the tip of the index)
to define the pointing line which intersects the pointed plane. In this case, as the
user’s head cannot be detected by the Leap Motion controller, it could not have
been used as the base point. Other alternative base points could have been either
the base of the finger or a Virtual Projection Origin (VPO). In any case, whatever
point had been chosen as the base point, it could not have corresponded to what
the user expected, due to a different mental model.

To solve all these problems it was necessary to find a way of interaction indepen-
dent from the position of the fingers, from a timer to trigger the event and possibly
also independent from how the base point is defined. The new way of interaction
had to maintain, of course, the possibility to interact using feedback.
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In [17], it was seen that people perceive more accurately and prefer a system they
are more comfortable with, such as a touchscreen; in [69] a Layered Touch Panel
was developed to implement the hovering event. These articles, in conjunction with
the touch emulation API provided by Leap Motion (see section 4.1.4), generated
the idea to implement a virtual Layered Touch Panel which solved the problem
described before.

Leap Motion provides some API for the touch emulation which works using an
imaginary vertical plane, centred in the origin of the Leap Motion controller. There
is no direct correspondence between the human hand position and the pointer on
the screen and no feedback is displayed on the screen.

The touch emulation system proposed in this study generalises the already avail-
able touch emulation for a general LCD screen, implementing a direct correspon-
dence using a 1:1 scale and having the touching plane correspond to the LCD screen,
whatever its position and orientation. The real time feedback was established by
adding a virtual panel to the LCD. For simplicity, an assumption was made for
the development: the plane where the LM controller is placed and the LCD screen
are perpendicular. This assumption is quite reasonable, because having a vertical
screen on an horizontal plane is very common.

In this case the LCD was not used only as an output device where to display
images coming from the camera, with the possible addition of the feedback marker,
but also as a tool to define the touch panel and the virtual one.

This touch emulation system was developed to be as general as possible. Using
the same ROS principles, this system is usable with every type of screen and with
every dimension (inside the Leap Motion field of view).

5.4.1 Screen definition
After the Leap Motion controller is correctly linked with the computer and working,
and the leap daemon is run and the demo.launch file is launched (see section 4.1.5),
first of all, the file screen_edges_definition has to be run. This file was written
to implement a calibration phase, in which the human operator uses LM to define
the screen in the virtual space, used later as point of reference for the touch em-
ulation. The screen definition is performed, saving on the Parameter Server some
information about the screen, with respect to the world coordinate system. These
parameters are the dimensions of the screen, its position and its orientation, with
respect to the world frame.

At first, the position of the screen was represented by the centre of the screen,
while the orientation was identified by the normal vector coming out from the
screen. It was then seen that this definition was useful only for the visualisation of
the virtual screen.

Later, the position was redefined to coincide with the top left corner of the
screen, while the orientation was defined by the normal vector entering the screen.
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The next section of this thesis will illustrate how useful this choice is to realise the
screen TransForm.

When the executable screen_edges_definition is running, users have to touch
with their index the top left corner of the screen and save its coordinates by pressing
the spacebar or the enter key. Then they repeat the operation with the remaining
corners, in a clockwise direction. The screen dimensions are calculated as the mean
of the distance between the top and bottom corners for the width, and the mean
of the distance between the right and left corners for the height. To calculate
the screen orientation, instead, the coordinates of the center are calculated first.
This point is calculated as the mean, for each coordinate, of the four corners. The
four vectors are calculated, one for each corner. Each vector has the head in one
corner and the tail in the previously calculated centre point of the screen. After
that, the two top vectors and the two bottom vectors are used to calculate two
normal vectors, by making the cross product for each couple of vectors. In order
to obtain one single normal vector (red vector in figure 5.5), the mean between the
two normal vectors is calculated. Finally this vector is normalised. Before storing
these parameters in the Parameter Server, they are converted in the world frame
and the vector, which represents the orientation, is converted in a quaternion. For
the orientation, only the yaw angle is considered thanks to the previous assumption
which imposes to have the screen plane perpendicular to the plane on which the
Leap Motion controller is placed.

Figure 5.5: Representation of the screen corners as vectors with respect to the
center of the screen and the normal vector (red) entering in the screen surface
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5.4.2 Interaction system
After the calibration phase is completed, in order to make the touch emulation work
properly, three source files were created. Some executables and other parameters are
included in the touch_emulation.launch file in order to start the touch emulation
system with one single command. Some parameters regard the camera, as the
image dimension in pixels, and some the touch emulation, as the hovering distance,
the touching distance and the pointer radius of the marker visualised on the screen
(see next section). The three executables in the launch file are described below
(figure 5.6):

Figure 5.6: Graphical representation of the touch emulation system

leap_motion_touch_emulation_setup This file creates a ROS node and, by
reading the screen parameters from the Parameter Server, creates the “screen”
TF (see section 3.4) using the parameters previously stored in the Parameter
Server during the calibration phase. It means that the TF is positioned in the
top left corner of the screen, and the same orientation of the screen, with the
positive x axis going to the right and the positive y axis going down along
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the screen (figure 5.7). As a consequence, the direction of the positive z axis
enters the screen. This reference frame was set to match the image coordinate
system, which has the origin in the top left corner, x values growing towards
the right and y values growing towards the bottom. This validates the decision
to define the position and the orientation as explained before. Therefore it is
very simple to transform points from the world frame to the screen frame and
scale them from meters to pixels.
In addition, in order not to broadcast useless information, this node filters
the position of the tip of the index from the Human message and sends it on
the topic index_tip_point_stamped using a geometry_msgs/PointStamped
message.

screen_visualisation This file simply visualises the virtual screen in Rviz (fig-
ure 5.7). It uses the Marker display (see section 3.7.1) to show a rectangular
box with respect to the screen frame. It means that the center of the box
is translated by half screen height and half screen width, but the orientation
is the same. The marker is published using a very low rate (a frame each 5
seconds) because it is supposed that the screen does not move with respect to
the world frame.

Figure 5.7: Virtual representation of the screen using Marker display in Rviz

leap_motion_touch_emulation This executable does the main work of the
touch emulation. It receives messages containing the position of the tip of the
index with respect to the world frame, converts them into the screen frame,
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using screen TransForm, and then it verifies two conditions. First it verifies
if the distance from the screen is less than the previously declared hovering
distance (figure 5.8). If the condition holds, it broadcasts the position on the
topic hover_position using geometry_msgs/Point messages (more information
in the next section), otherwise it does nothing. Second, if the tip of the index is
in the hovering zone then it verifies another condition. If the distance from the
screen is smaller than the previously declared touching distance then the same
message is broadcast also on the topic touch_position. It is of course easier to
verify these two conditions, while working in the screen frame, because only
values of z axis are compared.
In contrast to messages sent over the topic hover_position, which are sent
continuously, messages on the touch_position topic are sent each and every
single time the tip of the finger enters the touching zone. Moreover messages
contain only values of x and y and no value for z, since the latter are not used
in the following steps.

Figure 5.8: Graphical representation of the two virtual panels, the first closer to
the screen, the second farther

5.4.3 Feedback marker
When immediate feedback is implemented in a system to show what the index is
pointing, Augmented Reality is needed to represent a virtual marker in the real
workspace. AR has been used a lot recently but very expensive devices are needed
like an LCD projectors or Head Mounted Display.
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In this study the purpose was to integrate live feedback using low cost devices.
Since an LCD is used to see the real workspace and, in conjunction with Leap
Motion, to emulate a touchscreen, this screen is also used to display a feedback
marker in correspondence with the finger tip.

A study on the Layered Touch Panel [69] uses Screen Layer TP and IR Layer
TP to implement a revolutionary touchscreen with the hovering event. Inspired
by this Layered Touch Panel, this system simulates both touch panels using Leap
Motion: the Screen Layer TP and the IR Layer TP are represented by two virtual
planes parallel to the LCD with a distance respectively equal to touch_distance
for the first virtual panel and hover_distance for the second one (figure 5.8). The
first virtual panel is used to capture a touching event, the second for the hovering
event.

The executable draw_frames is executed in the same machine that is connected
to the LCD. As figure 5.6 shows, it subscribes to topics hover_position and sensor/
usb_cam/image_raw, which is the topic where the camera publishes images. This
file creates a window in which the images coming from the camera can be displayed.
When an image is available, the node simply displays it or, if a geometry_msgs/
Point message was previously published on the hover_position topic, a virtual
marker is added to the image (figure 5.9). The marker is represented by a black
circle having radius equal to the previously defined variable pointer_radius and
it represents the point that the finger is going to touch. The position of the tip
of the index (in meters) is scaled to the screen range and converted into pixels in
order to have a direct correspondence.

Figure 5.9: Representation of immediate feedback (black circle) used in this system
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In this case, the position of the marker is simply the normal projection of the
fingertip on the screen, unlike previous studies in which it was given by the inter-
section of the plane and the pointing direction. This decision was made to give the
user the freedom to touch the screen not only using the fingertip but also using the
finger pad, which would lead to projecting the virtual marker far from the fingertip
if the pointing direction was used.

5.5 Object recognition
The object recognition group is used as a link between the touch emulation and
the simulated system. All executables are included in the find_object_2d.launch
file. In this file the user defines the topic from which to receive images, used as
an environment from which to extract detected objects, and the folder path, where
objects to detect are saved. The launch file is composed of three executables that
work in pipeline (figure 5.11):

find_object_2d This executable is used to simulate the find-object application
in ROS (see section 3.6.1). The GUI is used only to take some photos of the
environment and save images of objects to detect. Each object has an ID,
which is a unique increasing number, and the name of the photo is given by
the ID followed by the extension.
At first, the light was set to come from above, such as a light coming from a
bulb, in order not to project shadows. It was thought that shadows could be
considered as noise for the find-object application.
At a later stage, the attention was put to photos of the pieces, which are taken
in a grey scale because the application compares the difference of brightness
and not colours. Since pieces do not have images on them but they all are
of the same colour, shadows are an advantage because they allow a higher
contrast along the shape, which makes an object easily recognisable. As a
consequence the sunlight was set as if coming from a window of a building.
When an object is recognised, a coloured polygon is drawn around it (fig-
ure 5.10). After this process, it is possible to set the gui parameter in the
launch file equal to false and not use the graphical interface, as it is not needed.

find_object_2d_filter This executable works as a filter to not overload the sys-
tem with useless information. It subscribes to the topic objects and publishes
on the topic objects_filtered the same type of message, but only when there
is a variation in the number of recognised objects. Theoretically one object
can be removed and another can be added at the same time without having a
variation in the number of recognised objects; practically, this is not possible
due to the quite high frame rate (once every two seconds).
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Figure 5.10: Visualisation of recognised objects (coloured polygons) using
find_object_2d with the GUI

touch_object This executable was designed to work as a funnel; the node which
connects the find-object application with the touch emulation system. The
ROS node subscribes to the topic objects_filtered and to the topic /touch_em-
ulation/touch_position and publishes to the topic pick_piece the ID of the
object, which has been recognised and touched, using a std_msgs/Int32 mes-
sage (figure 5.11).
When a message of recognised objects is received, using the homography ma-
trix stored in the std_msg/Float32MultiArray message, this node calculates
the position of each recognised object with respect to the whole image and
stores the four vertices of the polygon in an internal variable. When a message
that indicates the touch position is received, this node verifies if the position
of the tip of the index is in correspondence with one recognised object and, if
it is true, the node sends the ID of the object that has been touched over the
topic pick_piece. For simplicity, the check is considered verified if the position
of the tip of the index is inside the rectangle inscribed in the polygon.

5.6 Assembly task
The assembly task is performed doing the pick and place operation with two objects.
MoveIt is responsible to perform the pick and place operation using the Planning
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Figure 5.11: Graphical representation of object recognition group

Scene Monitor and the move_group node. A new file, pick_place.cpp, is developed
adapting the pick_place_tutorial.cpp source file, provided in MoveIt tutorials (see
section 3.5.4), to the current contest.

5.6.1 Planning scene

The executable pick_place creates a ROS node and subscribes to objects_filtered
topic. Every time a message is received, which means that a variation in the
numbers of detected objects has occurred, the position of each detected object is
stored in an internal variable. The position is given in terms of x and y (the height
is the same for all objects) and it is retrieved from the Parameter Server. It was
assumed that the initial position of an object with a given ID was always the same
because an inexpensive webcam cannot locate an object in the 3D space. This is a
reasonable assumption if the assembly task is the last step of an industrial chain,
in which other robots are responsible for the location of the pieces.

The planning scene is composed of a horizontal plane, which represents the top
surface of the table so that the robot does not move under the x-y plane, and the
representations of pieces placed around the robot in a horseshoe shape (figure 5.12).
In contrast to the simulation in Gazebo, in which objects are all different from one
another, in the planning scene, for simplicity, objects are all the same.

As explained before, the concave and convex shapes of each piece are inscribed
in a parallelepiped. Starting from this, initially, all pieces were represented by a
parallelepiped and a smaller cube above it, in order to be a general shape in which
each piece can be inscribed. Doing this, MoveIt was not able to place the second
piece in the second location, because there was an overlapping part between the
two pieces, which led to a collision.

To avoid the collision, each object is represented only by the central part which
is the same for all pieces. As a consequence, the additional concave or convex parts
are considered like extensions which characterise the piece and they are seen as such
only by the human operators. It means that the user alone has the responsibility to
check if two pieces match each other, because from the robot point of view, pieces
are all identical.
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Figure 5.12: Representation of the planning scene (white objects), composed of the
horizontal plane and 12 pieces, in Rviz using the PlanningScene display

5.6.2 Pick and place operation
Each time an object is touched on the screen a pick signal is emitted. The executable
maintains two internal variables in which the ID of the objects can be saved to
perform the pick and place operation.

At the beginning, only the horizontal plane is part of the planning scene. Only
when the first pick request is received by the node, the pieces are added to the
planning scene. These pieces correspond to the last detected objects and they do
not change during the assembly task. This was made for two reasons: the first
is to avoid a system overload because, even if a real piece is not removed, the
robot, during the pick or place operation, can move above that piece which can not
be recognised by the find-object application, therefore removed from the planning
scene and then added again; the second reason is that when the robot moves on
the top of the piece to pick it, the piece is no longer recognised by the find-object
application, therefore the robot “does not see” the object and an error is generated.

Successively, the robot grasps the little cube on top of the touched object and
lifts it up vertically for a distance of 10 cm.

During the place operation, using the variables in which IDs are stored, if no
objects are picked up before, the piece grasped by the end effector is placed in the
first location (blue rectangle); otherwise, if only one variable contains the ID, the
piece is placed in the second location (red rectangle).

In the final phase, where the two objects are assembled and constitute a single
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piece, this has to be removed manually from the workspace.

5.7 Simulation
During the simulation all blocks, which were previously developed and executed
separately from one another, are now run all together.

For a better result, two machines were used for the simulation, in order to have
higher performances.

In the first machine, to which the Leap Motion controller is linked, the ROS
core is executed, followed by LeapControlPanel and the leap daemon. Then the
demo.launch file from the leap_motion package is launched in order to recognise
hands.

In the meanwhile, in the second machine, the gazebo.launch file is launched.
Firstly, this file uploads both the xacro files of the robot, of the camera and of
the pieces and two yaml files containing the parameters of the controllers and the
position of the pieces on the Parameter Server. Secondly, it launches an instance
of Gazebo with an empty environment and populates it with all models previ-
ously uploaded. Finally, it loads the controllers to command the robot, and the
robot_state_publisher to communicate the current state of the robot. Still in the
second machine, the draw_frame executable is run and the find_object_2d.launch
file is launched. At this moment, the draw_frame executable shows images com-
ing from the camera in a new window, without having the possibility to add the
marker, firstly because the touch_emulation system is not launched yet, secondly,
because screen parameters are not set yet.

Coming back to the first machine, the calibration phase is started by running
the screen_edges_definition executable. Pointing with the tip of the index, the
position of the four screen corners is detected and parameters saved in the Param-
eter Server. At this point the draw_frame executable knows how to convert the
position (in meters) of the tip of the index to the position of the virtual marker
in pixels. As it does not know when the finger is in the hovering zone yet, the
touch_emulation.launch file is launched.

The whole system is almost up. Leap Motion recognises the hands, the touch
emulation system divides the space into the three zones, the Gazebo simulator is
simulating the workspace and the find-object application recognises the pieces on
the screen. It is possible to see the virtual marker on the LCD when the finger is in
the hovering zone, but nothing happens if the tip of the finger touches the image of
one piece on the display. To react to the touching event, the pick_place executable
is run on the first machine.

In the simulation 12 pieces were placed on the table, numbered from 1 to 12
starting from the bottom left corner and continuing in a clockwise order. The
simulation was performed touching the object with ID equal to 9 on the screen,
placed in the top right corner. It was picked up and placed on the blu rectangle
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(figure 5.13). The second object touched on the screen was the one with ID equal
to 5, in the top left corner. This piece was successfully picked up and placed on
the red rectangle.

When the assembly task is finished, the objects have to be removed manually to
clear the workspace.

Figure 5.13: Representation of the completed assembly task in Gazebo simulator
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Chapter 6

Practical implementation
and experimental tests

After the simulation in Gazebo, experimental tests were performed employing the
Niryo One robot, a computer to which the Leap Motion controller is attached and
a Raspberry Pi 3 Model B+ to which a webcam and an LCD are linked.

6.1 Workspace
The workspace was organised in the same way as in the simulation with Gazebo.
The robot was placed in the middle of the workspace and pieces surrounded it in a
horseshoe shape (figure 6.1).

Pieces have particular shapes which were quite difficult to generate. They were
made using cardboard, with the highest possible precision, by cutting and assem-
bling them by hands. The error of the dimension of each piece was about 1 mm.
As figure 6.2 shows, they were composed of a flat surface having the thickness of
the cardboard (about 3 mm) and a square prism placed in the centre of the piece,
having a 2 cm long base and a height such that the total height is equal to 4 cm.

Niryo One has four suckers at its bottom to be better fixed to the surface. Despite
these suckers, the robot’s stability is quite precarious when the arm is completely
extended. The position of the pieces was modified so that the straight lines of the
horseshoe were 30 cm distant from the center of the robot.

Since the pieces had the color of the cardboard, a white blanket was created
with some white paper sheets and it was used as a uniform surface to increase the
contrast between the pieces and the background. In the middle of this blanket the
shape of the base of the robot was cut to let the robot stick to the surface below
the blanket.

The webcam was placed above the workspace with the help of the e.DO collab-
orative robot by Comau. The height of the camera was set so that the workspace
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Figure 6.1: Representation of the workspace composed of the Niryo One robot in
the middle, 12 pieces surrounding the robot and a webcam placed above it

was entirely visible in the LCD. As in the simulation in Gazebo, images of the
workspace on the screen had the x positive axis going down and the y positive axis
going to the right.

A lamp was then added to the workspace (see section 6.3.1). It was placed near
the camera to generate shadows but in order not to be seen in the image stream.

For the physical simulation, in order to reproduce a realistic robotic system,
computers were removed from the system and substituted with a board. In the
system, therefore, two boards were present: one was the Raspberry Pi 3 Model B
inside the robot and the second was a Raspberry Pi 3 Model B+ outside the robot.
From here going ahead, to distinguish the two boards easily, the first one will be
called “robot”, the second one will be simply called Raspberry.

Far from the workspace, the Raspberry, linked to the LCD and the webcam, was
placed on a stable surface. The screen and the Leap Motion controller in front of
it were placed on the same surface (figure 6.3).
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Figure 6.2: Detail of one piece made of cardboard used in the tests

6.2 Niryo One
The Niryo One base link, which is fixed to the surface, is already provided with
the Raspberry Pi 3 Model B. This board is responsible for the correct mode of
operation of all layers of the Niryo One ROS stack, from the hardware (LEDs, Wi-
Fi, top button, digital I/O panel, motors, etc.) to the controllers, motion planning
(MoveIt), commands (from both the graphical interface and the code) and external
communication (websocket server or joystick).

6.2.1 Niryo One Studio
After the robot is powered on, it can be controlled through Niryo One Studio. This
is a graphical interface the user can use to interact with the robot without any
programming knowledge.

First of all the computer has to be connected to the same network of the robot
(robot in hotspot mode or local network). Through this application, in the top
right part (figure 6.4), the user can know the IP of the robot and connect to it
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Figure 6.3: Representation of the work station composed of Raspberry Pi 3 Model
B+ to which the webcam and the LCD are linked. The Leap Motion controller is
placed in front of the screen.

without any difficulties.
Then the robot calibration is required. The calibration can be done in two ways:

auto-calibration and manual calibration. The first is when the robot moves by itself
and the axes, which need to be calibrated, move until they reach their maximum
position, in order to calculate an offset for each motor. The second is when the user
moves the axes in order to align the two arrows placed on the fixed and moving
parts of the joints. To perform a manual calibration, at least one auto-calibration
is needed because the first one uses the same precision of the second one. Manual
calibration is recommended, firstly because it allows the robot to reach the same
position with the same precision, secondly because it is faster and motors wear off
less.

After the calibration, in the right part of the application (figure 6.4), the user
can see the current state of the robot in a 3D virtual representation, read the values
of all joints, the position and the orientation of the end effector and choose the arm
maximum speed. A toggle button is also present to switch on and off the “learning
mode”. This modality allows the deactivation of the torque on all motors so it is
possible to move the robots by hand.

In the left part of the application, using a menu, the user can navigate through
different panels which enable the user to control the robot, save some positions and
sequences, and other specific actions like settings, calibration, hardware status,
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Figure 6.4: Niryo One Studio application showing the robot state on the right and
arm and tool command on the left

debug and logs.
Selecting the control section from the left menu, two boxes are displayed.

In the first box, at the top, two tabs are presented: the first allows the user to
choose the value for each joint, the second allows the user to define the final pose
of the robot. In both cases the user can set the current values, change them, send
the command to the robot or stop it.
The second box, in the lower part, regards the tool. From this box the user can
select which gripper is mounted, choose the open and close speed and send open
and close commands.

The user can be completely unaware of the robot internal behaviour and can
command it without any effort. This GUI allows the decoupling of robotics and
programming knowledge. However this application uses the ROS network described
in the next section, the same used for programming. All commands generated by
Niryo One Studio are executed using services or implement a client-server protocol
using the actionlib package (see section 6.4).

At the beginning of the practical tests, robot movements were hardly imposed,
setting the grasping pose of each piece in the Niryo One Studio, in order to be sure
that each piece is reachable.
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6.2.2 Programming
At the startup of the robot, the Raspberry launches the ROS master and creates a
network of ROS nodes which allow the robot to work properly.

NIRYO company provides an open source metapackage (niryo_one_ros) which
contains a series of packages which compose the Niryo One ROS Stack.

The niryo_one_bringup package contains all the files needed to start the sys-
tem. This operation can be done in two ways. The first one is through a service
(niryo_one_ros.service), which is automatically started when the robot is switched
on, works in the background and in this case it is not possible to modify the robot
behaviour. The second one is through a launch file which creates the same net-
work of nodes but works in the foreground, and in this case it is possible to mod-
ify the Niryo One ROS stack. It is necessary to make a distinction between two
launch files: rpi_setup.launch and desktop_rviz_simulation.launch. The first file
runs over the robot and launches rosbridge, for the connection with other compo-
nents; niryo_one_base, which loads robot parameters; controllers, which manage
the drivers, the tool interface and the state of the robot; robot_interface, which is
responsible for the robot movements; and user_interface, which allows the inter-
action with Niryo One Studio. The second file is identical to the first one apart
from the following aspects: it can be launched only on the computer, it uses Rviz
to visualise the robot, it does not have the access to the hardware therefore fake
controllers are used.

When the network is up, the robot can communicate with other components in
hotspot mode, creating its own local network, or with a direct connection using an
Ethernet cable, usb cable or ssh, for example to be linked to other boards, to a
joystick or to a local network.

For example, Niryo One Studio is connected with the robot using ssh. It sends
commands to Niryo One which uses a Websocket server to receive and process them.

6.3 Raspberry
For the experimental tests, it was decided to leave the Raspberry embedded in the
robot “cleaned”, by not adding external code or modifying the Niryo One ROS
Stack, using the external Raspberry instead to connect the sensors and the LCD
with the system and run the required ROS nodes.

On the Raspberry it was decided to mount a robot development image made
by Ubiquity Robotics [71]. This is an image designed to make the development of
ROS based robot applications easier, in fact it is a Linux image with ROS Kinetic
Kame already installed.

The LCD was linked to the Raspberry, not only to use the terminal to exe-
cute commands, but also to visualise images coming from the camera through the
draw_frame node. The screen type and its size are not a problem, because the
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code was developed to be independent of them. However, the screen must be small
enough to guarantee that the image of the workspace displayed on it is inside the
Leap Motion field of view. During the simulation a 17 inch screen was used.

Also in this case the ssh protocol was used to let the Raspberry and the robot
communicate over the ROS network. In both machines ROS_IP and ROS_HOSTNAME
variables were set to have the IP of the current machine, while the ROS_MASTER_URI
variable was set in all the machines to have the IP of the robot, since the ROS
Master runs over it.

Many packages were downloaded to set up the Raspberry. Some of them like
OpenCV and MoveIt are used by some nodes like draw_frame and pick_place,
others, like the niryo_one_ros package, were downloaded only because they contain
the definition of some messages.

6.3.1 Camera
Webcam C210 by Logitech [43] was used as a camera. It has a resolution of
640 x 480 pixel, it is very small and inexpensive.

After it was linked to the Raspberry, it worked well in the operating system
but it was not able to share images and information on the ROS network. To let
the webcam communicate with other nodes, the usb_cam_node executable from
the usb_cam package was run. This node works as a driver which takes images
from the camera and publishes them over the topic /usb_cam/image_raw topic.
During the simulation in Gazebo, images coming from the simulated camera were
published on the topic /sensor/usb_cam/image_raw. Nodes that subscribed to
this topic were draw_frames and find_object_2d, therefore they were adapted to
the new topic name.

Unlike in the simulation with Gazebo in which the camera had a resolution of
1920 x 1080 pixel that allows a good object detection, the camera used in the real
simulation has a lower resolution and this causes a not so good behaviour of the
Find-Object application. Since the resolution is lower, colours are not very close to
the reality and small changes in colour, like light shadows, are not perceived. The
light in the laboratory, coming from the windows, was intense enough to illuminate
the pieces in the workspace but not enough for the generation of dark shadows. The
light coming from the ceiling was more intense than the sunlight but it generated
multiple shadows for each object. To solve this problem a lamp was used. The light
bulb, positioned close to the workspace, near the webcam, was intense enough to
generate shadows. Due to its position, shadows were not only along one direction
but they had a radial direction. As in Gazebo, the best solution would have been
to have a central light positioned far from the workspace but intense enough to
generate dark shadows along one single direction. However the use of the lamp
allows the Find-Object application to generate more than 1000 detectors, which are
enough for a correct object recognition, compared to about 700 detectors without
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the use of the lamp.

Figure 6.5: Visualisation of the Find-Object application with the real pieces recog-
nition

6.3.2 Leap Motion
As mentioned before, initially the idea was to replace the two computers used in the
simulation with Gazebo with the Raspberry. This meant that not only the LCD
and the webcam had to be connected with the board but also the Leap Motion
controller.

After the download of the Leap Motion software, when the installation of this
component over the Raspberry was attempted an error was encountered. The
problem was that Leap Motion installation is available only for AMD or Intel Core
processors, while all Raspberry boards have an ARM processor. The one and only
solution available was to insert again the computer in the system and link the Leap
Motion controller to it. This was done because only with the installation it is
possible to read the leap libraries that are available for Leap Motion. Therefore
the demo.launch and touch_emulation.launch files from the leap_motion package
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were run on the computer, which has an Intel Core processor, because both run
executables that need leap.h. Also the screen_edges_definition was executed on
the computer, even if the screen was linked to the Raspberry.

6.4 Pick and place
After the first approach in which Niryo One Studio was used to move the robot,
the code to perform a pick and place operation used in the simulation with Gazebo
was adapted for the real robot.

Going step by step, the first one was to adapt the previously developed code
to the desktop simulation. During this phase it was discovered that the robotic
arm moved well but the gripper did not perform the opening and closing actions.
This occurred because, unlike the behaviour in Gazebo simulator in which both
robotic arm and the gripper used a joint_state_controller, the Niryo One ROS
Stack uses this kind of controller only to move the robotic arm and it provides an
ActionClient/ActionService to perform the operation on the gripper.

The actionlib package provides the ActionClient and the ActionServer which
implement a client-server communication between ROS nodes. The client and the
server create an exchange of information as in a service protocol, but with the
possibility not only to send a goal and receive the result, but also to cancel the
goal and receive feedback about the task progression during the execution. As for
services, a message has to be defined. In this case the message contains three fields:
the goal, the result and the feedback, separated by “---”.

In this case the Tool.action is already defined and available in the niryo_one_msg
package. Using this action, the ActionClient sends a goal containing the tool ID,
the command type (open or close) and the velocity; the ActionServer in the robot
executes the command.

Consequently the pick and place functions from MoveGroupInterface, which en-
able to open and close the gripper selecting the gripper joint, are not usable yet.
To solve this problem a different approach was used. When the node is generated,
it creates an ActionClient that tries to contact the ActionServer of the gripper and,
if it does, it uses a service to select the gripper ID. Then the functions setPoseTar-
get and move from MoveGroupInterface were used. The first function allows the
definition of the final pose of the robotic arm, using the corresponding values with
the piece touched on the screen, the second one permits to perform the movement.
These two functions substitute the functions pre_grasp_approach, pre_grasp_pos-
ture, grasp_pose, grasp_posture, post_grasp_retreat (see section 3.5.4) used in
the pick function. As described above, the ActionClient was used to send a mes-
sage to open the gripper before the robot reaches the grasp pose and a message to
close the gripper when it is in position. A similar procedure was used also to adapt
the function place to put the piece in the first place or in the second one, sending
also a message to open the gripper, using the ActionClient, to release the piece.
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The remaining part of the code, which adds the pieces to the Planning Scene, was
left unchanged.

The second step was to recreate the simulation from the desktop to the reality.
The Niryo One ROS Stack was run in the robot and the adapted pick_place ex-
ecutable in the Raspberry. At first it did not work. The adapted code and Niryo
One ROS Stack were verified many times far and wide but no solution was found.
In a second moment two issues were discovered. First, the calibration is mandatory
every time the robot is switched on, otherwise the commands do not reach motors.
Second, unlike the Niryo One Studio application, which uses ActionClient to send
commands to the robot and it is able to switch off the “learning mode” automat-
ically and move the robot, the move_group node does not have this ability and,
even if it was able to correctly compute the motion plan, it was not able to move
the robotic arm because the torque on all motors were deactivated. After these two
little issues were discovered, it was seen that the code worked quite well also in the
practical implementation.

6.5 Experimental test
During an experimental test (figure 6.6) the assembly of piece 5 and piece 10 (count-
ing pieces clockwise) was attempted. Firstly the image of piece 5 was touched on
the screen. The robot moved from the start pose to the grasping pose above this
piece. Then it opened the gripper, went down following a straight line, closed the
gripper to pick the piece and moved up following a straight line. After that the
robot moved above the first place position. Following the same pattern the robot
went down following a vertical movement, opened the gripper, released the piece
and then went up following the same vertical movement. Secondly the image of
piece 10 was touched on the screen, with the help of the virtual feedback marker.
As a consequence the robot moved on the top of this piece to grasp it. It per-
formed the pick operation and moved the piece on the top of the second location to
perform the place operation. The assembly task was concluded correctly with no
error as it is shown in the video that was made during the test [19]. Sometimes in
the final assembly some pieces overlap. This happens because pieces are imprecise
while in the virtual simulation pieces are assembled with high precision. Moreover,
as previously explained, the robot is not able to recognise if two pieces match each
other: the pick and place operation was tested with a wrong assembly task and
the system worked well up to the picking operation of the second piece, making a
wrong placing operation because the shapes of the two pieces did not match.
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Figure 6.6: On the left, the robot picking the second piece of the assembly task, on
the right the hand pointing the same piece on the screen
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Chapter 7

Conclusion

This master thesis presented a new way for Human-Robot Collaboration, to pick
and place objects in an industrial assembly task. The system simulates a touch
emulation using inexpensive devices like Leap Motion, for hands recognition, a
camera and an LCD.

7.1 Final remarks
In this system the following advantages were observed:

performance The ROS core is very simple but also very efficient. ROS was essen-
tial in this robotic system to let the robot interact with sensors and humans.
ROS allowed the reuse of the code developed by third companies and other
developers without reducing the performance.

scalability This system was developed using Niryo One robotic arm. This robot
is an educational robot, it is small, good for prototyping, and it behaves as
an industrial robot. Potentially, Niryo One software components could be
substituted by another robot and the system should work in the same way.

inexpensiveness This advantage was thought as necessary a prerequisite during
the developing face. For this reason Leap Motion and a webcam were chosen
as sensors. An alternative idea was to use two cameras in place of the Leap
Motion controller but this would have led to a frequent calibration phase. The
advantages of using Leap Motion is to have a depth camera with an integrated
software able to recognise human hands.
In addition Niryo One is very cheap with respect to other collaborative robots
and it can be 3D printed, so the cost can be even reduced.

easy to perform The system was developed using Gazebo simulator. This al-
lowed the simulation of different scenarios with little effort. Moreover, the
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simulation is a solution in a situation in which the environment is not avail-
able, like in the case of this project because the robot was not accessible until
October due to COVID-19.
In addition ROS provides some tools like rqt, TF and Rviz that allows the user
to visualise how the system behaves and easily interact with it using GUIs.

versatility The touch emulation developed in this system allows users to interact
with the robot using their hands. Usually in industrial processes, human
operators have to wear gloves for safety reasons. Gloves do not allow the use
of a touchscreen device but of course this system can be used either with or
without gloves.

adaptability In this system 12 different pieces were used matching one another.
These pieces have the same pattern but they are recognised by the find-object
application as all different. Each object has an ID and it is identified using an
image having the ID as a name. Adding, removing or changing some objects,
which have a unique ID, allows the system to adapt to every assembly task.

modularity The proposed system can be conceptually divided into five main
blocks: Leap Motion, touch emulation, find objects, MoveIt and Gazebo. All
these blocks are linked to work together but each block is independent from
the others. As a consequence, each block can be potentially substituted with
another one which behaves in the same way, using a different technology or a
different code.

The following disadvantages were also observed:

object position Since a single camera is placed above the robot, the find-object
application is not able to recognise the position of each piece in the 3D space
but only its location in the whole image. This led to always assigning the
same position to the same piece. This is a kind of limitation in the system
but it works in situations in which other robots perform the work done before
the assembly task. These robots could also be programmed to place a specific
piece in the same place.

LM field of view The main drawback in this system is given by the small interac-
tion space. Even if the human operator is free to move in the workspace, their
hand is recognised only if it is inside the Leap Motion field of view. Moreover,
since during the calibration phase the user has to touch the corners of the
LCD, also the screen must be inside the Leap Motion field of view.

LM errors Even though the Leap Motion controller is very precise in the recog-
nition of human hands and their motion, it is not so precise in measuring
distances. Since, during the calibration phase, the Leap Motion controller is
used to detect the screen dimensions, this error cannot be considered to be of
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little value. The error reported is about 1 cm less every 10 cm. In this appli-
cation, this error can be avoided by touching the external corner of the screen
instead of touching the window corners and, of course, the virtual marker
added as feedback is considered essential.

7.2 Future developments
The system has been developed in order to be as simple as possible and potentially
integrable in a real industrial task. Some improvements are here proposed:

• The system could allow the user to have more power during the assembly task.
This improvement could be obtained be recognising not only the pointing at
part gesture but also other gestures. For example the circle gesture could be
used to rotate the piece to one side or the other, or another gesture could be
used to cancel the current operation. Another way could be to give the user
the possibility to choose the location where to place the piece.

• The system could be improved by adding more sensors. The camera placed
above the robot could be substituted with a depth camera to recognise objects,
their position and the possible grasping pose. Another possibility is to add
eye tracking sensors to move the robot in the proximity of the object so as to
make the pick operation last less time.

• The touch emulation system could be made universally possible. If the Leap
Motion controller did not need to be placed on a surface perpendicular to the
screen, this would lead to an easier physical setup of the system.

• The system could be equipped with some neural networks. Neural networks
could be used in many ways. One possibility is to improve the pick operation
of the second piece, moving the robot in the proximity of those pieces that
match with the first one.
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