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Summary

As the adoption and usage of Unmanned Aircraft Systems (UAS) is growing over
time, the safety related to UAS flight is questionable, especially when UASs operate
in urban areas. Urban areas are characterized by high population density, therefore
a potential UAS crash may involve people injuries or even people death, as a
consequence, it is essential to preserve human safety in mission planning.

This thesis is based on a previous work done by the research group, in which a
path planning algorithm for UASs has been developed to determine a safe flight
mission. The proposed methodology uses a risk-based map that quantifies the risk
of fly over specific areas. In order to compute a safe path for the UAS several
input parameters are required, but, unfortunately, it’s not always easy to obtain
those specific data, such as the population density and distribution that is one of
the most important parameter for the risk assessment. The thesis is carried out
within the activities of the Amazon Research Award “From Shortest to Safest Path
Navigation: An AI-Powered Framework for Risk-Aware Autonomous Navigation of
UASs” granted to Prof. Rizzo.

The main contribution of this thesis is the use of an Artificial Intelligent method-
ology to estimate the population density of urban areas using aerial images. First
of all, the Bing Maps REST Services has been used to easy download aerial images.
Then, a Convolutional Neural Network has been developed in order to estimate
the population density and distribution and to define the risk-based map for the
UAS flights.

Due to the big amount of computational effort needed to train an enough depth
CNN, the pre-trained CNN VGG16 has been chosen as starting point thanks to its
specificity for large-scale image recognition and its capability to classify common
objects over 1000 categories. As a starting point, the pre-trained CNN has been
readapted to recognize and classify 224 x 224 RGB images taken from Bing Maps.
Then, more and more complexity has been added with the goal of classifying images
into multiple ranges of population density values in order to distinguish which
zones are with an higher population density, or rather, an higher risk.
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As last step, to get even more accurate results, it has been decided to develop
another training approach which would avoid errors due to misleading images.
Therefore, the Neural Network has been trained through the numerical regression
to predict the exact value of the population density of aerial images. This value
could be used to compute risk-maps and to plan safe paths for UAS.
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Chapter 1

Introduction

The use of Unmanned Aircraft Systems (UASs) is growing over time to provide
several applications, such as data collection, surveillance, mapping, search and
rescue, to name a few. However, even if their technology is growing very fast,
it is not the same for their safety. In fact, human safety when UASs are used
to provide autonomous flying over urban areas has been questioned. At the
moment, the national aviation authorities, such as ENAC (Ente Nazionale per
l’Aviazione Civile) in Italy, EASA (European Aviation Safety Agency), as the
European agency, and FAA (Federal Aviation Administration) in the US, provide
rules for the lightweight unmanned aircraft operations. The majority part of this
operation must be performed in Visual Line-Of-Sight (VLOS) and, to provide
operations over populated areas, they require the use of harmless drones. However
lastly, these agencies are opening to perform also Beyond Visual Line-Of-Sight
(BVLOS) even over cities. Urban area are characterized by high population density
therefore a potential UAS crash may involve people injuries or even people death,
as a consequence, it is essential to preserve human safety in mission planning. So,
the importance of a risk-based approach of UAS flight is also highlighted by ENAC
and FAA.

This thesis is based on a solid preliminary work done by the research group,
in which a path planning algorithm for UASs has been developed to determine a
safe flight mission.The aim of this thesis is to extend the current risk assessment
tool by developing a Convolutional Neural Network to estimate the population
density over urban areas. Then, the estimated population density will be used as
input layer for the risk assessment. The thesis is carried out within the activities
of the Amazon Research Award “From Shortest to Safest Path Navigation: An
AI-Powered Framework for Risk-Aware Autonomous Navigation of UASs” granted
to Prof. Rizzo.
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1 – Introduction

1.1 Previous work
The previous work [1] [2] done by the research team is a tool for the risk assessment,
to enable risk-informed decision making. It can be schematized as in Figure 1.1.

Figure 1.1: Previous workflow structure

This tool is based on the definition of a risk map that quantifies the risk for
the population on ground when UASs flies over a urban area. The risk map is
a two-dimensional cell-based map in which each cell is associated to a specific
risk value. Cells are squared-shaped and they represent a bounded area with
labeled geographical references. The risk map is generated as the sum of multiple
contribution of several layers, that in turn are a location-based map, containing
useful data. The layers to compose the risk map are the following:

• population density layer;

• sheltering layer;

• obstacle layer;

• no-fly zone layer.

Therefore, the risk value is computed as a probability in time to have a fatalities
as a consequence of three different events:

• the loss of control of the vehicle with uncontrolled crash on the ground, it is
considered four descent event types;

• the impact with at least one person after a crash;

• the impact falls into a fatality.

Thus, this probability can be expressed as the product of the probabilities that
the three above events could happen:

Pcasualty(x, y) = Pevent · Pimpact(x, y) · Pfatality(x, y) (1.1)

2



1 – Introduction

In order to generate the risk map from which compute the lowest risk path, the
Pcasualty is computed for each descent event type and for each cell of the map.

The population density layer is one of the most important elements in the risk
assessment, since it describes how many people can be involved in a casualties due
to a drone crash on ground. The attention is focused on the Pimpact, that is the
probability to impact at least one person when a UAS crashes down on ground. It
is a function of the impact area and the population density and is defined as:

Pimpact(x, y) = ρ(x, y) · Aexp (1.2)

where ρ is the population density and Aexp is the exposed area to the crash.
Thus, it is compulsory to have a fine resolution grid with the population density.

However, this grid is not always available or it has too wide resolution to be used
for UASs path planning over cities. So, it is requested to develop a methodology
in order to create the population density layer autonomously without any need of
third part data.

1.1.1 Population density estimation state of art
In the literature, there are several works whose aim is to quantify people distri-
bution due to the fact that is a fundamental component of many decision making
process, such as gauge future demand of food and water, evacuation planning, risk
management and more.

As the processing image tools are improving rapidly with the usage of the
convolutional neural network [3] [4], in the [5] authors proposed a deep learning
approach to estimate population density from aerial images. The goal reached by
this research group is to create a grid of predicted population density based on
classification, with cell dimension of 0.01°x0.01° (≈ 1105 m2 at the equator). Since
an important component of neural networks requires a "ground truth" to be used
for input labeling purpose to train the network in order to reach a generalization of
the problem to be able to predict also never seen data. Thus, the most fundamental
part is that "ground truth" on which rely on, but unfortunately doesn’t exist any
official database. In this case the US Census was used that in turn provides an
estimation of the population density.

Also the work in [6] proposed a deep learning approach that in this case is based
on the numerical regression prediction, using census data of Tanzania and Kenya.

Both approaches observe the same issue such as the prediction on abandoned
buildings, stadium and others misleading features within a aerial image.

3



1 – Introduction

1.2 Current work
The methodology proposed in this thesis is an Artificial Intelligent approach to
estimate the population density over urban areas to compute the risk map for
UASs risk-informed path planning. It is an upgrade of research group and it can
be sketched as in Figure 1.2.

Figure 1.2: The main architecture of the proposed methodology

The aim is to estimate population density over specific areas to be used as
input layer for the risk assessment. A deep learning approach was used due to the
absence of an official population density distribution database for each country,
so it was decide to develop a non-linear methodology to estimate it. As "ground
truth" is required a tiny grid resolution, that’s why a database containing a realistic
estimation of the population density is used.

As output of the machine learning approach was followed a classification approach
based on population density division for the images, as in the literature. Then in
order to create the same layer that was used as input for the risk assessment input
in the previous work, was followed also the numerical regression approach in which
the exact value of population density was tried to predict.

1.3 Outline
The thesis is organized as follow. In chapter 2 the main theoretical aspects of
neural network environment will be analyzed, whereas the chapter 3 deals with
the software utilized for the development of the project. Chapter 4 will deploy the
whole project development in details. Finally the chapter 5 discuss the obtained
results and the further improvements.

4



Chapter 2

Introduction to Neural
Network

In this chapter some basic concepts about Neural Networks (NNs) are explained
(Figure 2.1). The basic idea behind a Neural Network is to simulate lots of densely
interconnected brain cells inside a computer to provide is image processing, pattern
recognizing or making decisions. The concept behind this simple but fundamentals
idea is that if it works in nature, it should work artificially on a computer.

The first attempt towards neural network was born in 1943 by the neurophysiolo-
gist Warren McCulloch and mathematician Walter Pitts who wrote a paper on how
brain neurons works. They modeled a simple neural networks through electrical
circuits. In 1949, The organization of behaviour by Donald Hebb, reinforced the
concept of the experience of neurons that creates strengthened pathways between
linked neurons. Only in 1959 the researchers Bernard Widrow and Marcian Hoff of
Stanford University create the first attempt of a neural network, called Madaline,
applied on a real-world problem. The aim of this network was the reduction of
phone line echoes through an adaptive filter. Moving forwards with the decades the
theoretical comprehension behind neural networks is growing but the future of them
lies only on hardware development. As with the human brain, the machine learning
needs attempts, training or large example cases before it is able to make properly
decisions, this could be done within reasonable amount of time only if the hardware
is powerful enough. In the last years, thanks to the growth of computational
power,researchers develop even more accurate Neural Networks. This encourage
the use of machine learning on even more fields such as image recognition or system
description for those that are not explainable by physics law [7] [8].

To conclude, the goal is to develop a neural network which is trained with a
whole bunch of data which comes in the form of different inputs along with labels
of what they are supposed to become. Once it has been trained, the NN has to be

5



2 – Introduction to Neural Network

able to perform good prediction also for data never seen before, generalizing what
is beyond the input argument.

Figure 2.1: An example of fully connected Neural Network structure

2.1 Basic Neural Network structure
The most basic neural network, also known as Multilayer perceptron or fully
connected layers, is composed by neurons which are split into different layers, those
are of three types (Figure 2.2):

• Input layer ;

• Hidden layer ;

• Output layer.

There’s no intrinsically difference between them excepting that the Input layer
is directly linked to the input and the Output layer that is linked to the output,
whereas the Hidden layers have connections only between other layers. From a
programmer point a view, while the design of input and output layers is easily
understandable, for the hidden layer is quite an art of design because there’s no
specific rules that define how many neurons per layer or how many hidden layers
should be used to have the best performances. To solve this issue, researcher
develop some heuristic way to design those layers but in most of the cases it’s just
a trade off between the number of layers against the time required to train the
neural network.

6



2 – Introduction to Neural Network

Figure 2.2: Fully connected Neural Network structure

2.1.1 Neural Networks Artificial Neurons
The core of each Neural Network are the artificial neurons. The first attempt to
develop those neurons has been done in the fifties in the USA with the so called
perceptron.

A perceptron [9] (Figure 2.3) takes one or more binary value as input to produce
a single binary output value, so it is basically a container that holds a number, also
known as activation.

Figure 2.3: Perceptron (Artificial Neuron)

7



2 – Introduction to Neural Network

The way in which the output is produced is realized thanks to introduction of
weights and biases. While the former expresses the relative importance of the i-th
input to the output, the latter through the weighted sum of each input component
decides if the output should be either 0 or 1, or in a more biological way, if neurons
light up. That could be expressed in such algebraic way:

output =


0 if q

i
wiInputi − b ≤ 0

1 if q
i

wiInputi − b > 0
(2.1)

Through this mathematical decision process output’s main contribution are
highlighted and, as a consequence, a decision is taken. It is important to highlight
that each neuron is linked to all previous neurons layer, so the weights are kind of
representation of how strength are that links. Therefore as the number of layer
increases, every neuron takes a decision based on the output previously computed,
so every step leads to a more abstract level therefore, more complex choices could
be taken.

The perceptron could be seen in another fashion, i.e. as a NAND gate, if the
right value of weights and biases are chosen (Figure 2.4).

Figure 2.4: NAND gate

As could be easily seen from Table 2.1, only if both binary inputs are equal to 1
the output would be a 0, so exactly as a NAND gate.

As the computational power is growing fast over time, researcher understand
that a neuron which has a binary output is strongly boundary due to the fact that
even a small change for biases and weights could lead only to a flipped or fixed
output, in other words only a deeply change is allowed. So using perceptron it’s
very difficult to perfectly adapt the neural network to different input datasets.

8



2 – Introduction to Neural Network

Input 1 Input 2 Output
0 0 0 ·(−2) + 0 · (−2) + 3 = 3 =⇒ 1
0 1 0 ·(−2) + 1 · (−2) + 3 = 1 =⇒ 1
1 0 1 ·(−2) + 0 · (−2) + 3 = 1 =⇒ 1
1 1 1 ·(−2) + 1 · (−2) + 3 = −1 =⇒ 0

Table 2.1: NAND logic

That’s the reason why the Sigmoid neurons has been developed whose output is
no more binary but corresponds to the Sigmoid function shown in Figure 2.5. From
now, the neuron doesn’t hold a binary number but a float one, included between 0
and 1.

output =


0 if σ(q

i
wiInputi) − b ≤ 0

1 if σ(q
i

wiInputi) − b > 0
with σ = 1

1 + e−x
(2.2)

Figure 2.5: Sigmoid function

9



2 – Introduction to Neural Network

The Sigmoid function represents a different manner in which the neurons are
fired, generally is called activation function. So the use of Sigmoid neurons provide
a smoothed output that, given even a small variation for weights and biases, is
able to produce a ∆output linear dependent with these variations.

Once the concept of different activation function was developed, in addition to
Sigmoid others function was used in order to allow the model to create even more
complex maps between inputs and outputs, that’s essential if dealing with complex
data such as images and videos. Figure 2.6 and Figure 2.7 show smoothed outputs
of different of activation function.

Figure 2.6: Hyperbolic tangent func-
tion

Figure 2.7: ReLU function

2.1.2 Descendent gradient
Until now, we have explained that, given an input, neurons light up through
mathematical process that produces an output based on bias and weight values.
Therefore, the relevant point is to get the best possible improvements with training
data through an algorithm that autonomously adjusts all the weights and biases,
considering that they are random initialized. So a Cost function is defined in order
to quantify how well the training is going on, initially as parameter to be monitored
as been chosen the MSE (Mean Squared Error).

C(w, b) = MSE(w, b) ≡ 1
2n

Ø
ëy(x) − aë2 (2.3)

where

• w represents all the weights in the network;

10



2 – Introduction to Neural Network

• b represents all the biases in the network;

• x is the input;

• y is the labeled output;

• a is the predicted output.

It can be easily understand that C(w,b) is a non-negative function, sum of
non-negative terms, furthermore, more it becomes smaller, more accurate is the
result.

So our goal is the achieve of C(w,b) ≈ 0, then in other words minimizing that
function through the gradient descent. It is an easy task if we would find the global
minimum of a function f(x,y), since it could be done analytical. Unfortunately,
when talking about NN it’s dealing with a function dependent on thousand and
thousand of parameters, so even for the most powerful it could be freaky. Therefore,
the alternative solution is the use of the gradient of the cost function:

∇C ≡
1 δC

δv1
, ...,

δC

δvn

2
(2.4)

In the Equation (2.4), v is a generic vector, representing weights and biases,
from which the cost function depends. Moreover, it can be approximated that a
variation on v causes a variation on C :

∆C ≈ ∇C · ∆v (2.5)
From this point it’s possible to choose ∆v in order to have ∆C < 0 in such this

way:

∆v = −η∇C (2.6)
where η is a small positive parameter, also known as learning rate. Replacing

δv of Equation (2.7) with Equation (2.6):

∆C = −ηë∇Cë2 (2.7)
This guarantee that ∆C is non-positive so C will always decrease. Summing

up, what happens is that every step the gradient according to (2.7) finds an even
more minimum until it reaches a local minima, if lucky it could corresponds also
to the global one. Another adjustment is to use a fixed variation step ë∆vë = Ô,
with Ô > 0, so what is done is trying to finding on which direction the cost function
decreases more rapidly. This is the so called stochastic descent gradient. To be
clear, it’s not mandatory to use the a MSE as cost function but only a choice. For
example also the MAE (Mean Absolute Error) could be used, or a cost function
build ad hoc for a specific network.
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2 – Introduction to Neural Network

2.1.3 Backpropagation
Backpropagation is an algorithm that messes up the computation of the stochastic
descent gradient speeding up considerably the training time. The reason why this
is done is for ensuring that changes that minimize the cost function involve all
weights and biases of all layers all together. In other words, it’s important to be
focused on all the complete structure not to a specific layer or, worst, to a specific
neuron.

Once an input is given to a NN, the output will be either the "answer" and
"error", how far the predicted value is from the real one. This error is the basis
to compute the gradient to adjust weights and biases. Instead of moving forward
through the network as when it is given an input, the idea is to back propagate the
error, or rather, to compute the error from the last layer moving backward until
the first one is reached. Since the backpropagation is a very complex mathematical
problem, below is presented a simplified way just to have a better understanding.
Let’s consider:

output = σ
1 Ø

wl
ia

l
i − b

2
(2.8)

where:

• σ is the activation function;

• wl
i is the weight of the i-th neuron of l-th layer;

• al
i is the activation value of the i-th neuron of (l-1)-th layer;

• b is the bias;

If the NN has 4 layers the output of the last will be equal to σ
1 q

w4
i a4

i − b
2

for the i-th neuron. The problem is that the predicted output is not exactly the
real one so it must be change a bit. In order to modify it, b, w4

i or a4
i has to be

changed. Focusing on a4
i , this parameter is the input of i-th neuron of l-th layer

but it can be seen as the output of i-th neuron of previous layer.

a4
i = output = σ

1 Ø
w3

i a3
i − b

2
(2.9)

Therefore if this activation value has to be modified, weights and biases of the
last-second layer must be changed but also this output has an activation value that
depends on the previous layer parameters and, so on, until the very first layer is
reached. That’s the concept behind the idea of the backpropagation of the error.
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2.2 Introduction to Convolutional Neural Net-
works

A CNN (Convolutional Neural Network) is a specific deep learning algorithm which
takes as input an image and it’s able to underline the main objects, colors or
patterns, so to differentiate one from another. It has the same structure of a
common neural network but it is composed by specific layers that let in an more
easily way to classify images. The whole structure was thought to better fit an
image database through the usage of relevant filters, the core central part an image
processing. The filters basically simplify images in such a way that the CNN could
understand also the more sophisticated ones. It is composed by first layers whose
aim is to extract the features, through layer such as Convolutional and Pooling
which have specific connected neurons. Lastly there are the fully connected layers
that provide the output.

2.2.1 Input image

Figure 2.8: RGB input image matrices example

The input image (Figure 2.8) is a bi-dimensional matrix, for grey-scale images,
or a three-dimensional matrix, for RGB (Red-Green-Blue) images. In Figure 2.8 is
shown a 9 pixels image that represents a 3×3×3 matrix as input for the CNN, that
looks like quite simple to process. However, considering a 4K RGB image there
are 4096×2160 pixels that corresponds to 26542080 parameters. So the aim of the
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CNN is to reduce those parameters in a such a way they are more easily processed
but without loosing feature that may are critical to have a good prediction.

2.2.2 Convolutional 2D layer
As said in the above introduction, the aim of this layer is to extract, as mush as
possible, high-level features through the convolutional operation which is based on
kernels, or rather, filters.

Filters are simple matrices that are multiplied by submatrices of the image,
they slide right till it parses all the image width and then hop down to the left
beginning until the whole image is not covered. In Figure 2.9 a simple example is
briefly presented.

Figure 2.9: Convolutional operation example

As could be seen, the amount of cells that the filters slide to the right, or down,
after each computation is equal to 1, so called Non-Strided kernel, but it could be
increase as a project preference. Kernel has a depth equal to the image one, 1 for
the greyscale images or 3 for the RGB ones. As the computational operation are
finished, two ways for the output are presented, on one hand the dimension of the
output is reduced with respect to the input one and on the other hand the filter
operation doesn’t affect the output dimension. In case of the former is the Valid
Padding or Same Padding for the latter, this is done by the augmentation of the
image size of the matrix by 1 with values equal to 0 (i.e. a 3x3 matrix turn into
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a 4x4 matrix with the top and the left line composed by only 0 to not affect the
image features.

A CNN doesn’t have a single Convolutional layer but can have multiple ones,
where, conventionally, the first one is used to extract basic features as edges, colors
while the following ones try to extract at each step more high-level features in order
to be able to have a wholesome understanding of the data.

2.2.3 Pooling 2D layer
After an image is convolved, the Pooling layer has the goal to reduce the spatial
size of the matrix to decrease the computational effort to process the data. In
addition, the Pooling layer is a features highlighter for the dominant ones and, as
a consequence, a noise suppressant. For the pooling operation must be set the filter
and the Stride value, that is how many cells has the filter to slide right or down. In
this case the filter dimension, width and height, represent the size of the submatrix
on which two possible operations can be done: the Max Pooling, the most used,
or alternatively the Average Pooling. As the name suggests, for the first case the
computed value is the maximum within the submatrix covered by the filter, while
the second one computes not the maximum but the average value. Similar to the
convolutional layer, the pooling operation affects the output dimension. However,
the same concept of Same Padding and Valid Padding can be applied also for this
layer. Figure 2.10 shows an example of pooling operation.

Figure 2.10: Max pooling operation example
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2.2.4 Flatten layer
This layer takes as input the convolved and pooled maps in order to transform them
into a single column vector that is attached to the fully connected layer which will
provide the output. Flatting a tensor means to remove all the dimensions except
for one. Thus, it takes the output and reshapes it in order to have a single column
vector whose length is equal to number of elements contained by the output tensor.

2.2.5 Dense layer
The Dense layer is one of the most simple and used, it is the regular fully connected
layer. It takes as input the previous results, from the Flatten layer if it is the
first one, or, otherwise from another Dense layer, and after the below computation
it produces an output, whose number is equal to number of neurons that it is
composed by.

output = activation(dot(input, kernel) + bias) (2.10)
where

• activation is the activation function of the single neurons, it could be Sigmoid,
ReLU, linear or others;

• kernel is the weights vector;

• dot() is the dot product between the weights vector and input
The aim of this layer is to learn non-linear combinations of the high-level

features extracted from the convolutional and pooling layers that finally leads to
a classification operation of the input image. The higher the number of neurons,
the higher the numbers of features that the layer is able to consider as essential
to do a good prediction. This doesn’t means that the neurons must be set as the
higher value possible, considering the available computation power, because this
could fall into overfitting or underfitting. Each Dense layer add to a CNN a number
of parameters equal to the product of the number of input neurons and output
neurons, exemplifying the number weights, plus the number of output neurons,
exemplifying the number of biases.

2.2.6 Dropout layer
This layer doesn’t affect the processed input but only the neurons. It is specifically
used to simply the training while preventing overfitting. It set to 0 the input
learning rate of a pre-set rate of neurons, that change every epoch. So it basically
freeze weights and biases of randomly chosen neurons, with a specific rate that is a
parameter of the layer to be set.
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2.3 Transfer learning
Even though machine learning achieved even more better results, it still has some
limitations in some specific scenario. The computational power, time spent to
train, collection of sufficient amount of data could be a huge problems. That’s
why is used the transfer learning approach, following the generalization theory of
transfer learning that says that transfer is the result of the generalization experience.
Transfer learning is based on a Neural Network already trained by someone else for
its specific task, and, then re-used as a starting point to develop another Network
to provide another task. It’s a technique that’s made machine learning more easier
to be performed. Researcher demonstrate that Neural Network trained to extract
feature on a big amount of data, such as ImageNet with over 1.4 million images, are
highly transferable to a high variety of recognition tasks. Obviously, the more two
problems are related each other, the easier is that the Neural Network positively
reacts to the new task. Once the Neural Network is compiled we have a network
whose first part is completely trained for a similar task whereas the second part is
built with new fully connected layers with random initialized values for weights
and biases. As suggestion, the transferred Neural Network model has to be taken
as it is. In other words, when starting train a new complete model, the aim is to
fit weights and biases for the new layers while those of transferred layers has to be
frozen, otherwise the whole concept of transfer learning is meaningful. As optional
step, once the network reaches a good value of accuracy, the fine-tuning could be
done which consists in unfreezing the complete model and re-train everything with
a low level of learning rate. In this way, there’s the possibility the re-adapt the
pre-trained model to new data in order to reach a better accuracy in prediction.

The Figure 2.11 reports an example showing a graphically idea of how the
Transfer learning works. Transfer learning is very useful also because there’s no
the exact point where the new NN must be linked to the the just trained one but
it is a project decision. In order to take the best decision many considerations
must be done, starting from the amount of data available till the computational
power, or rather, the similarity between old and new tasks. It’s important to keep
in mind that generally first convolutional layers detect just simple features as edges,
patterns, texture. Only the last layers are able to recognize high-level features. To
sum up, transfer learning is perfect to optimize training time and also to reach
better prediction results even if a small input data is used or low computational
power is available.
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Figure 2.11: Transfer Learning example
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Chapter 3

Software

In this chapter we will be focused on those essential software to develop a complete
structure for a NNs. So not only the network structure is considered but also how
it is tested after training or how the database is created. It is crucial to understand
that every single part of the whole structure is fundamental. Someone can built a
NN structure that perfectly adapt to do his task, minimizing the total number of
neurons or choosing an ad hoc activation function and so on. However, if the input
dataset is not well-finished, due to a not enough variety or quantity of the image,
the train will fail, running up against overfitting or underfitting.

The whole project is developed using Python. Python it is an object-oriented,
high-level programming language with a Rapid Application Development. Moreover,
it supports lots of packages and modules, essential to connect different components
building a complete structure.

This chapter will analyze those software, Python libraries, API or whatever has
been used for programming, underlining the more useful aspects that involve the
creation of a NN.

3.1 Bing Maps REST Services Application Pro-
gramming Interface

It is a REST (Representational State Transfer) Services Application Programming
Interfaces (API) developed by Microsoft[10]. A REST service is a software ar-
chitectural style that provides interoperability between local computer script and
Internet following a client-server approach. It allows to access and manipulate the
resources provided by the API through a set of predefined stateless operations.
Moreover, if the HTTP (HyperText Transfer Protocol) is used the CRUD (Create
Read Update Delete) methods are exposed and, as a consequence, the action to be
taken is defined by the Uniform Resource Locator (URL).

19



3 – Software

Using HTTP or HTTPS protocols, a REST Services API is accessible using the
Python library requests. For more details go to section 3.4.1.

This API provides an easily way to create static maps that can be downloaded as
images. A token is required for accessing to the API, but after a quickly registration
it’s possible to download a limited amount of image per (50.000 images per day).
Thus, the services perfectly adapt to the need of create a consistent input database.
The image is given as response of the HTTP GET request. So, in order to save it,
a for-cycle has implemented to ensure that image data are decompressed, those
data are saved in 128 byte chunks in binary mode file and then saved into a jpg
format.

Bing Maps offers a very useful services because there are several parameters that
could be set in order to choice the retrieved image exactly as wanted. Regarding
those parameters, not all are compulsory, most of all are optional but this let the
possibility to really customize images. As it is evident, one required parameter is
to specify where is needed the static map, it can be specified in two different ways:

• centerPoint : the center point of the area that the image has to capture, it
has to be provided with two numbers representing latitude and longitude. In
addition also the zoomLevel has to be set. As the name suggest, it expresses
how much the image is zoomed choosing from a value between 0 and 20(i.e.
zoomLevel = 19 is equal to a 100x100 meters image). Unluckily, the docu-
mentation doesn’t explain the correspondence between zoomLevel value and
image width and height (previous example is got empirically);

• BoundingBox : this second way is very suitable if the wanted images must
cover a specific area that it is specified through four parameter: south latitude,
west longitude, north latitude, east longitude. These four parameters are the
boundaries of the image. Therefore, it is the best way to obtain an image with
a fixed a priori known dimensions.

Another important aspect is the choice of image characteristics that could be so
heterogeneous. The variety of the choice includes the possibility to get image of:

• Street map;

• Aerial, an overhead view;

• Aerial with Labels, an overhead view with road and buildings in addition;

• Roads

• others;

Moreover, the resolution of the image can be set. Width can vary between 80
and 2000 while the height between 80 and 1500, that’s quite a good range. Not
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analyzing other features such as the pushpin on the map, possibility to set a route
and several others.

Figure 3.1: Aerial image over Politecnico of Turin

The Figure 3.1 illustrate an image example that was used as database to train
the Network. It is an image with 250×250 meters of dimension fixed by the
BoundingBox, Aerial with labels type, 800×800 pixels as resolution. All of this
parameters can be seen from the URL used for the request:

https://dev.virtualearth.net/REST/V1/Imagery/Map/Aerial?
mapArea=45.060983,7.657832,45.06324886018748,7.658736209994505&
mapLayer=Basemap,Buildings&imagerySet=AerialWithLabels&mapSize:
800,800&key=token
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3.2 TensorFlow
TensorFlow is an open source end-to-end platform for machine learning initially
developed by Google. Embedded and mobile systems support TensorFlow, it runs
on every GPUs, CPUs and also on TPUs (Tensor Processing Units), a specialized
hardware to perform math tensor.

Figure 3.2: TensorFlow environment structure

The Figure 3.2 simply explain where TensorFlow acts in a machine learning
environment. So starting from the low level hardware reaching more complex
software, it is composed by:

• hardware;

• distributed execution engine, it abstracts away the hardware with distributed
execution, based on runtime information that basically manages the data flow
with the best efficiency;

• User frontend, programming language used by the programmer to interface
with TensorFlow;
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• provides common layers used for built a NN;

• it offers also high-level API, such as Keras (see 3.2.1)

• provides also trained model to be used for transfer learning.

3.2.1 Keras
Keras [11] is the high-level API of TensorFlow, an interface for developing deep
learning problems using the advantages of TensorFlow platform. It provides essential
abstractions and building blocks for elaborating machine learning solutions. In
other words, Tensorflow provides the environment on which compute the gradient
descent while Keras API provides tools to really built on your own the Neural
Network. In addition to the model creation, this API offers all the needed tools
to the machine learning workflow starting from the data processing and training
functions until output deployments. Thanks to the easy-to-use API, NNs all around
the world get an enormous growth in the machine learning field due to the not
difficult way into the model can be built. Instead of coding with hundreds and
hundreds lines to implement just a single layer, Keras offers the way to create
a layer just re-calling it and setting within the function some parameters, such
as padding type, stride, filter size, output shape and so on. In addition, it holds
out the available open source pre-trained NNs. To sum up, it really extends the
possibility to develop a machine learning approach to everyone.

3.2.2 VGG 16
VGG 16 [3] is a CNN developed by Karen Simonyan and Andrew Zisserman during
the yearly ImageNet Large Scale Visual Recognition Challenge (ILSVRC)[12]
organized by ImageNet on 2014. This CNN is the one used as basis of the model
developed for this thesis goal. So, this section briefly explains how it was thought
and developed.

Imagenet is an online database of image whose purpose is only to create this
dataset to be used by researcher to develop even more complex algorithm to
recognize, manipulate, or whatever, multimedia data. This online database it’s
not the owner of the image but it provides URL to be utilized for educational and
research purposes, the philosophy is "good research needs good resource"[13]. So,
during this competition the best researcher works on challenge to better classify
over 1000 classes the image dataset.

The VGG research group ends the competition with the first and the second
place in the localisation and classification tracks respectively and made the the two
best-performing models publicly available to encourage further research on image
processing.

23



3 – Software

Figure 3.3: VGG 16 architecture

Figure 3.3 shows the architecture of the Convolutional Neural Network model.
The compliant input of the model is an RGB image of 224×224 pixels. The whole
architecture consists on 16 weight layers implemented in the following way:

• 2 Convolutional2D layer with 64 output filters;

• MaxPooling layer;

• 2 Convolutional2D layer with 128 output filters;

• MaxPooling layer;

• 3 Convolutional2D layer with 256 output filters;

• MaxPooling layer;

• 3 Convolutional2D layer with 512 output filters;

• MaxPooling layer;

• 3 Convolutional2D layer with 512 output filters;

• MaxPooling layer;
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• Flatten layer;

• Dense layer with 4096 neurons;

• Dense layer with 4096 neurons;

• Dense layer with 1000 neurons;

• Softmax layer;

Differently from previous network models, the peculiarity of this one is its depth
(16 layer) more than the other netowrks, feasible due to the usage of 3×3 filters
into the convolutional layer. Such filters are with the minimum size to recognize
and understand the notion of left/right or up/down. The Convolutional layers have
stride value equal to 1 with the same padding option that doesn’t affect the spatial
domain of the matrix.The MaxPooling layer is performed with a 2×2 filter and
a stride equal to 2, its task is to reduce the spatial domain of the image matrix.
Finally the last fully connected layers, that ends with a Softmax activation function
that helps to better classify image.

Just to highlight how much ImageNet and researchers work are important, this
VGG 16 Neural Network model was trained for three weeks with four NVIDIA
Titan Black GPUs, everyone costs about 2.500 € each. Therefore, it was a huge
job because not everyone can have this hardware.

3.3 Scikit-learn
Scikit-learn is an open source library for machine learning[14] that provides tools
for data preprocessing or model evaluation.

3.3.1 Test
This section is focused on the output of the NN. As just said, the whole NN aspects
are fundamentals even the output and also how to analyze it to understand if
there’s something that is went wrong. The output let the developer understand if
the model is[15]:

• underfitting (Figure 3.4), the model is not able to recognize the main pattern
maybe due to a too small database or training time;
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Figure 3.4: Underfitting example

• overfitting (Figure 3.5), happens when a model is too trained on a database.
So, on one hand it reach an overall cost function value very tiny, on the other
hand the model is not able to generalize the main pattern but only minor ones
that almost all are present only on traning database. To sum up, the model
become almost perfect to predict the training data but it’s not able to predict
those one that it never seen before.

Figure 3.5: Overfitting example

To be specified that exist two ways to choose the output of a NN:

• Classification, in which a certain input is labeled into a specific class represented
by a neuron on the last layer (at least 2 classes are needed but for VGG 16
the classification is over 1000);
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• Numerical regression, in which a certain input as represented by a single number
(integer, float) on the neuron output. So the NN is forced to manipulate data
in order to find that function that generalize the dataset.

Below sketched, some methods provided by Scikit-learn to judge how far the
model is from a good generalization of the problem in order to do those adjustments
that improve model performance. If the model is well-trained those functions are
just a demonstration.

Confusion matrix

A confusion matrix is a table used for classification problem on machine learning,
it helps to visualize the performance of a NN[16].

predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 27 3 55 31
Class 2 23 2 64 33
Class 3 22 3 50 41
Class 4 7 0 37 82

Table 3.1: Confusion matrix

Table 3.1 is representing a real example done on a trained NN with never seen
images. As labels indicate, rows represents the ground truth, while columns the
predicted value from the NN. In an ideal condition the matrix would be diagonal
that means that the NN is able to correct predict all the images given as input,
but in real life it’s quite impossible to achieve. This table is useful not only for
hoping that is diagonal but also too see how the error is done. To explain it with
an example, if studying the first column of value it can be seen that there are 79
(27 + 23 + 22 + 7) predicted to belong to first class but only 27 really belong to
to that class. Let’s focusing on the prediction error, it can be noticed that only 7
values are wrongly predicted to fourth class that’s a good value with respect to
the 23 and 22 errors respectively from second and third class. Therefore, can be
figured out that the maybe either the model is not sufficiently trained, or more
probably, that the database has quite similar images that belong to first, second
and third class. To sum up, this table let understand not only how good the model
is, but also gives an idea of which direction the work has to be changed in order to
improve performance.

27



3 – Software

Classification report

This report is a numerical way to check how good the model is. It is based on
the confusion matrix, that it computes itself, to calculate those scores that gives a
better idea on how is reacting the model to the training[17].

This report provides:

• precision, is the ability of the model to classify an image belonging to a class
that actually belongs to a different one, right predicted values belonging to class n

all predicted values belonging to class n ;

• recall, is the ability of the model to classify an image belonging to a class that
actually belongs to that one, right predicted values belonging to class n

true values belonging to class n ;

• f1-score, is a weighted harmonic mean of precision and recall, equal to
2 recall·precision

recall+precision , where the 1 is the best score, while 0 is the worst. It is
not a score that gives an evaluation of a CNN training but rather is used to
compare two different neural networks results;

• support, is the number of total instances of a specific class that are collected
within the test dataset.

precision recall f1-score support
Class 1 0.34 0.23 0.28 116
Class 2 0.25 0.02 0.03 122
Class 3 0.24 0.43 0.31 116
Class 4 0.44 0.65 0.52 126
accuracy 0.34 480

macro average 0.32 0.33 0.29 480
weighted average 0.32 0.34 0.29 480

Table 3.2: Classification report

Table 3.2 shows an example of classification report, directly linked to the
confusion matrix previously explained.

Coefficient of determination

Widely used in statistics, the coefficient of determination, or R2, is the proportion
between the variance in the dependent variables, the predicted ones, with respect to
independent ones. On machine learning is used when a NN is develop on numerical
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regression, or rather, to predict an exact value not to classify. Thus, it measures
how far are the prediction from the ground truth in such this way:

R2 = 1 −

q
i

(ypredicted
i − ȳ)2

q
i

(ypredicted
i − ytrue

i )2
(3.1)

where ȳ is the variance.

3.4 Python packages
Python is one of the most popular programming language nowadays, since it has a
simpler syntax, is faster and there are a huge variety of libraries. Below the main
used in this thesis are explained.

3.4.1 Requests
It a simple and elegant Python library. It allows to send HTTP 1.1 requests in a
very easily way. So, one hand there is the Bing Maps Services API that offers an
interface as a server, on the other hand there is the Python library request that let
the implementation as a client. Practically, it allows to send those specific HTTP
requests to a server that if the request has been done successfully it gives back the
image as response. For thesis purpose, only the get method was implemented, it
can be used only to retrieve data that what is needed. Moreover, a very useful
stuff is that with the requests library there’s no need to manually add the query to
the URL, simplifying the creation of the complete URL.

Figure 3.6: Request query example
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Figure 3.6 shows a query example used in the code. The script reads this query
from a .txt file and just adds it as a parameter of the function get. So from the
user point of view, it’s very practical that just changing few parameters in a file
there’s the possibility to retrieve a different image. Finally, to complete the URL,
the running script computes every step the necessary GEO reference. Just in case,
was developed both method to catch images either the one with only the center
point or the one with the boundary area.

3.4.2 Pyproj

Pyproj is a Python interface to PROJ that is a cartographic projections and
coordinate transformations library. This library implements the forward and inverse
geodetic computation. Let’s focus on the latter. This one involves the possibility to
determine the forward and back azimuths and in addition also the distance given
the latitudes and longitudes of initial and end point. This computation are based
on the World Geodetic System 1984 (WGS84), it a geodetic coordinates system
based on a reference ellipsoid realized in 1984. This method is to one used by the
GPS. Therefore, this library is used both for:

• in case the GEO references of all the images are given, a method was im-
plemented to computes the distance between two adjacent images to avoid
overlapping;

• in case is requested a database over a specific city given a starting point, a
method was implemented to autonomously compute all the GEO references
for images based on retention of distances between images, as before to avoid
overlapping.

3.4.3 Numpy

Numpy is fundamental Python library for scientific computing, it provides a
wide variety of operation that could be done on arrays such as algebraic, shape
manipulation and so on. Python doesn’t have arrays but only lists, the latter has
a fixed dimension while the former grows dynamically. Vectorization is the absence
of any explicit loop, that is what Numpy basically do. This concept is useful either
to have less code, that means less bug, and a faster computation. Considering that
a NN is trained with a huge image database, where each image is a matrix collected
within an input vector, it’s clear why this library is fundamental for thesis purpose.
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3.4.4 Matplotlib
As the name suggest, Matplotlib is a library whose aim is to emulate the Matlab
graphical commands using Python, but it is completely separated from Matlab.
Used to plot training value over time or also to have a graphical representation for
both predicted output over real one or how the input data are distributed.
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Chapter 4

Project development

This chapter analyzes how the project was developed step by step, covering all
the relevant aspects that lead to final results. It starts with the first approach
to machine learning with TensorFlow and Keras and then continue going deeper
into the neural networks environment. The goal to achieve is to built and train a
Convolutional Neural Network that is able to estimate the population density over
urban areas. The thesis work is based on the image processing concept in fact the
estimation has to be reached given as input an aerial image that is then processed
by the neural network to achieve the goal.

The development can be divided into three different phases:

• a first approach to the neural network environment with a bi-class classification
problem;

• a second step that consists in a multi-class classification problem based on
population density;

• a last step in which was built a CNN to directly estimate the population
density value through numerical regression.

4.1 Bi-class classification problem
In this first phase of the project the NN environment was approached just to
develop a network that is able to classify aerial images into two different ranges,
that are:

• city;

• country.
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Also for this first attempt is used the VGG 16 as base model for the complete
Neural Network structure. Considering that this is the first trial, the VGG 16 was
used as just the researchers train it without taking out any layer, moreover all
the weights and biases are fixed, in other words they are specifically set as not
trainable parameters. This choice has a limitations that is that the input images
must respect a resolution size, the one that was used to firstly train this network,
a 224×224 pixels RGB images. To this base model were added others Dense layer
in order to reduce the number of output neurons. It has to be moved from 1000
into 2, so only two neurons that predict the output. This means that there is a
neuron that lights up when the input image belongs to country class and another
neuron which instead lights up when the input can be associated to city class.

The first attempt is introduced below highlighting all the steps that lead to the
final trained NN. Moreover, all the set parameters are briefly explained.

As a starting point, the input database of aerial images was created and, as said
before, it is fundamental if wanted a NN strong enough to generalize this problem.
Therefore, images are not captured casually but they are chosen and everyone
was checked in order to avoid those ones that could be misleading. Errors due to
deceived images are frequently, it’s reasonable because for example an image taken
over a city could catch a park or a stadium that could lead to misunderstandings.
Photos cover an area of 250×250 meters. So to create this database, images
belonging to country class are quite simple to find out, on the contrary images
belonging to city are a little bit more difficult to identify. That’s why to collect
images from the latter class are picked from several, looking for those ones that
clearly represents city avoiding those which contain big tree-lined avenue, car
parking, stadium and so on. In Figure 4.1 and Figure 4.2 are shown an image
example belonging to each class.

A script autonomously collects images within an infinite while-cycle given as
input to cover an area over three big city: Rome, Milan and Turin. The request
to the Bing Maps API needs the 4 parameters (south latitude, west longitude,
north latitude, east longitude) in order to use the boundingBox, since a fixed area
for each cell is compulsory. So, the script starts from the left-down corner (south
latitude and west longitude of the whole covered area are the GEO references of
this starting point), it computes the coordinates for an area of 250×250 meters and
then requests the image from Bing Maps API. Once it is downloaded and saved,
longitude is increased so it slides right to the next cell and the process is repeated
until the last point is reached, with coordinates south latitude and east longitude.
Once the first line is done, the scripts compute the latitude in order to hop up to
the next line of cells to be saved. This is done autonomously until the cell with
GEO reference north latitude and west longitude, or even a little bit greater, is
caught. This downloading flow for the images is presented in Figure 4.3.
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Figure 4.1: Example of an aerial image
classified in the City class

Figure 4.2: Example of an aerial image
classified in the Country class

Figure 4.3: Graphical represetation of the order used to download the aerial
images of a specific large area
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After that an enough big database is created, images are looked over to find
500 belonging to both classes, city and country. Below are two example of images
chosen to belong to that classification.

Once the images has been picked, the core script starts. It concerns the database
loading, the neural network creation, training and evaluation.

Firstly there is the database generation method, where downloaded images are
transformed in a usable way for the neural network, it is done through specific
functions provided by Keras. Every single photo of the database follows this flow:

• load_img(), the image is loaded as a PIL (Python Imaging Library) instance;

• img_to_array(), the image is transformed into a (224,224,3) matrix, a three-
dimensional matrix where each pixel has its specific between 0 and 255 for all
three Red-Green-Blue channels;

• the matrix is labeled with the right belonging class, that is 0 and 1 respectively
for country and city class;

• matrix and label are appended to the complete vectors respectively for the
input and output of the NN;

At the end of this process, two different vectors representing the input image
and the directly linked labeled output. So, the input is a three-dimensional matrix
where the i-th image in i-th position is identified by the label in i-th position of the
output vector. To fit the model in the next step, this two vectors are split in half,
250 and 250, in order to create:

• training set, those inputs used to train the network, in other words, used to
compute adjustments to do on weights and biases;

• validation set, those inputs used while training to check if the network is
not overfitting on training set. Therefore, they are used to confirm that the
adjustments proposed after a training epoch are for a generalization of the
problem.

The further step is the creation and training of the Neural Network. Firstly the
VGG 16 model is loaded and the new fully connected layers are attached to it. As
just said, the aim is to reduce the number of the outputs until 2. This opportunity
is offered by the Dense layer in which could be set the parameter for the output
shape. Hardly, the NN get a good prediction value if the output is moved from
1000 to 2 in one single step, that’s way some intermediate step are not compulsory
but recommended.
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It’s chosen to put three fully connected layers in such this way:

• Dense, with 256 neurons output;

• Dense, with 64 neurons output;

• Dense, with 2 neurons output.

The final configuration, VGG 16 plus the new layers, was plotted through the
specific function plot_model, provided by Keras. It is shown in the Figure 4.4. The
"?" concerns the amount of items that the neural network has to manage, therefore,
it is unknown a priori.

Figure 4.4: Test 1 - Convolutional Neural Network configuration

Weights and biases of the new layer are randomly initialized with a uniform
distribution.

Successively the real training part starts, it is implemented thanks to the
compile() and fit() functions provided by Keras API. The former configures the
NN for the training, specifying:

• loss, the loss function to be minimized, also known as cost function. The
categoricalcrossentropy was chosen;

• optimizer, algorithm that implements the gradient descendent. The SGD
(Stochastic Gradient Descent) was chosen;
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• metrics, one or more parameters used to judge how good the training is. The
accuracy was chosen.

Instead, the fit() is the function that really starts the train, also this one need
some input arguments to be specified:

• training and validation sets, both image input and labeled output;

• epochs, how many time the entire dataset is used to train the model, basically
how long is the training section. 100 epochs was used;

• batch_size, usually the whole database is not given to the model as a unique
bunch of data but it is subdivided into smaller batches, the size is specified by
this parameter. There’s no mathematical rules to fix it but as rule of thumb
it is chosen to be a 2x. In addition, it depends on the database size because a
too small size involves overfitting while a too wide size involves underfitting.
A value equal to 32 was chosen;

• callbacks, the possibility of monitoring one or more parameters to determine
if a train has to be stopped due to a no more increasing performances of the
model. As an example a callback can monitor the loss function and epoch
after epoch check if there’s an improvement on it. Moreover, this callback
check if is not exceeded a pre-fixed number of epochs, known as (patience),
without any increase on performances. If the threshold of epochs is overpass,
the callback stops the training and save the model with the best result, not the
one of the last epoch. Used because when setting the training span through
epochs, it’s unknown if the model needs all of them, less or more. So in case
it needs less epochs, it is very useful to avoid both overfitting and waste of
time.In both training and validation sets we have decided to monitor accuracy
and loss function.

The final step is the model evaluation through tests to check out if the model is
able to correctly classify never seen images among country or city classes.

Table 4.1 (at the end of the section) shows the results of the test done on the first
trained neural network. It shows where the NN classify the input image and which
is the probability related to that classification. It is done on 20 images, 10 for each
class, that the trained neural netowrk has never seen before. Immediately, it can
be noticed that the NN is not well-trained due to the fact that all the probabilities
are around the 50% with a peak on 53.44%. Therefore, is not important that
maybe some of them are correctly predicted because the classification probabilities
highlight the uncertainty of the neural network. As an example, if looking at Image
9 for the NN it belongs to country class with a probability of 51.98% that can be
seen also that for the NN there’s a probability of 48.02% to belong to city class.
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This firstly result are a classical problem of underfitting. This problem can be
provoked by:

• too low training span, NN doesn’t have the physical time to reach the minimum
of the cost function;

• too small input dataset, NN doesn’t have enough data to find the main pattern
that better generalize the problem;

• too much neurons added with the Dense layers, the training has to modify
too much weights and biases and it cannot with this database size or training
span;

• too few neurons added with the Dense layers, the number of weights and
biases are not sufficient to have a better generalization of the problem.

So after that results, was decided to increase the database dimension was doubled,
from 500 images to 1000 images while all the other parameters are left as for the
first test.

As can be seen from Table 4.2 there is an improvement on prediction accuracy.
Values are still around the 50% but there is a generally grows up, in fact the
probability peak is 59.59%, higher with respect to the 53.44% of the previous test.
Since was achieved better performance just expanding the input dimension, it was
chosen to double again the size of the database, from 1000 to 2000 images. As
before, the other parameters are fixed.

Table 4.3 shows the test results done where the neural network classification
has quite perfect results. The worst case of prediction is 86.87%. To be noticed
that there are 14 over 21 images with an error on prediction less than 1% and the
average accuracy value of prediction is 97.79%. Moreover, there’s only one error on
prediction.

Figure 4.5 shows the evolution over epochs of the accuracy and the loss function
of this last test. As can be seen, the accuracy reaches quite perfect values, around
97%. Moreover, the trend of the curve follows the correct behaviour: a rapid
increase during the firstly epochs, due to random initialization of weights and
biases, followed by a little growth of both parameters, the search of the global
minimum and the accuracy. Both the curves follow this shape, train line and test
line (validation set).
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Figure 4.5: Test 3 - Loss and accuracy trend

To sum up, the last one trained CNN has an input database enough big to
get quite perfect values on prediction among which class belong images, that are
selected one by one. So trying to achieve better results it’s possible but instead of
perfectly fine-tune a CNN on this kind of problem, has been chosen to go ahead
into a more complex classification problem.
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Image True class Predicted class Prediction probability
1 Country Country 51.69%
2 Country Country 50.26%
3 Country Country 52.79%
4 Country Country 52.19%
5 Country City 50.66%
6 Country Country 52.16%
7 Country Country 52.24%
8 Country Country 51.80%
9 Country Country 51.98%
10 Country Country 52.22%
11 City City 52.89%
12 City City 53.23%
13 City Country 51.99%
14 City City 52.83%
15 City City 53.44%
16 City City 52.37%
17 City Country 50.70%
18 City Country 50.10%
19 City Country 50.62%
20 City Country 50.28%

Table 4.1: Test 1 - Classification results
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Image True class Predicted class Prediction probability
1 Country Country 52.49%
2 Country Country 50.43%
3 Country Country 52.93%
4 Country Country 53.98%
5 Country City 50.22%
6 Country Country 52.21%
7 Country Country 53.74%
8 Country Country 53.69%
9 Country Country 53.16%
10 Country Country 52.37%
11 City City 56.81%
12 City City 58.08%
13 City Country 53.29%
14 City City 55.94%
15 City City 59.59%
16 City City 54.79%
17 City Country 50.58%
18 City Country 51.63%
19 City Country 50.76%
20 City Country 51.43%

Table 4.2: Test 2 - Classification results
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Image True class Predicted class Prediction probability
1 Country Country 99.70%
2 Country Country 93.45%
3 Country Country 99.94%
4 Country Country 99.86%
5 Country Country 95.95%
6 Country Country 98.94%
7 Country Country 99.90%
8 Country Country 99.62%
9 Country Country 93.86%
10 Country Country 99.68%
11 City City 99.83%
12 City City 99.89%
13 City Country 99.25%
14 City City 99.59%
15 City City 99.93%
16 City City 99.87%
17 City City 90.47%
18 City City 86.87%
19 City City 99.69%
20 City City 99.52%

Table 4.3: Test 3 - Classification results
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4.2 Multi-class classification problem
A multi-class problem deals with classification where the images are to be collocated
into more than two ranges. In this case we decided to classify into 4 ranges. The
structure of the network could be quite similar but the learning problem grows up
exponentially. Therefore, this kind of problem cannot be approached as the one in
the previous section. In other words, all the input images for training cannot be
selected in a human way but is needed a numerical ground truth on which rely on,
to be used for labeling purpose. To solve this issue, was used a database which
contain an estimation of the population density for 2018 100×100 meters cells
over urban area. Moreover, connected to this value of population density is linked
the GEO coordinates of the center point of each cell. Firstly, this fundamental
database was used to download the images for the training input vector.

Once the database is downloaded, it has to be linked with an output. As first
attempt, we decided to equally distribute range limits among the minimum and
maximum value of the population density within the dataset. Thus, each image as
its own population density value that directly link this image to a class label, where
the first class presents the lowest population density values whereas the fourth the
highest values. The database was then split into three categories:

• training set, same purpose as the previous section;

• validation set, same purpose as the previous section;

• test set, images used after a CNN is completely trained to test it, computing
the confusion matrix and classification report.

Divided in such this way: 1020 images was for training set whereas 548 was for
the validation test, proportioned respectively as 65% and 35%. The remaining 450
were used for the test set.

Dataset was used to train a neural network with the same structure as the last
test developed in the previous section. So, the complete transferred model plus
three fully connected layers with respectively 256, 64 and 4 neurons as output.
Only the last layer was changed, where each output neuron is designate to represent
one class among the four possible choices, due to the new classification problem.

The test results are shown in Table 4.4 and Table 4.5. Clearly both tables show
up that the training was not successfully done. Especially the support column
of the classification report highlights that this range division is not appropriate
because the input images are not equally distributed among the four ranges. The
majority part was condensed into a single class so reasonably also the training
images are not well-divided. Thus, this kind of division leads to an underfitting
problem for those data belonging to Class 1 and 4 while images belonging to Class
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predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 0 0 12 5
Class 2 0 0 173 168
Class 3 0 0 35 47
Class 4 0 0 3 7

Table 4.4: Test 1 - Confusion matrix results

precision recall f1-score support
Class 1 0.00 0.00 0.00 17
Class 2 0.00 0.00 0.00 341
Class 3 0.16 0.43 0.23 82
Class 4 0.03 0.70 0.06 10
accuracy 0.09 450

macro average 0.05 0.28 0.07 450
weighted average 0.03 0.09 0.04 450

Table 4.5: Test 1 - Classification report results

2 are overfit. Therefore, a database structured in such this way will lead to a failed
training for sure, it must be modified.

To solve this issue, a new arrangement for the range limit to it are attached to
better divide input data into the the four classes. In this case, the attention was
focused not on the value of population density itself but to divide images in such a
way that to the same quantity belongs to each class, net of small delta. Moreover,
a random shuffling was applied to the database before dividing it into the three
sets, training, validation and test. It is shuffled either to avoid possibility to give
as input sequential images and to assign to each set an equally distribution of data
belonging to each class, net of small delta. Practically, the input vector is shuffled
once if the equally distribution is still holding after the shuffling, otherwise the
vector is shuffled and checked again until data are well-posed to start training the
CNN.
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Then the CNN was trained again with the same structure but with the restruc-
tured database. Results are shown in Table 4.6 and Table 4.7.

predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 114 2 2 4
Class 2 111 1 1 8
Class 3 112 1 0 12
Class 4 83 1 1 27

Table 4.6: Test 2 - Confusion matrix results

precision recall f1-score support
Class 1 0.27 0.93 0.42 122
Class 2 0.20 0.01 0.02 121
Class 3 0.00 0.00 0.00 125
Class 4 0.53 0.24 0.33 112
accuracy 0.30 480

macro average 0.05 0.28 0.07 480
weighted average 0.03 0.09 0.04 480

Table 4.7: Test 2 - Classification report results

The support column, Table 4.7, shows that to each class belongs the same
amount of images. Nevertheless, the CNN is not enough depth to able to classify
images among all the four classes. That’s why a series of tests were done in order to
gradually increase the depth, adding new Dense layer and also adding neurons to
each layer of the fully connected ones. There is a gradually increase because more
it’s not necessarily better, it’s important to avoid a too much growth of parameters
otherwise the CNN could reach even worst results.

Table 4.8 introduces the CNN architecture for a series of tests whose aim is to
increase the neural network depth. Each one represents a specific test configuration
for the neural network structure, the first two column are those tests whose results
have just been explained.
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Convolutional Neural Network architecture
Test Layers

1 VGG Dense Dense Dense
16 (256) (64) (4)

2 VGG Dense Dense Dense
16 (256) (64) (4)

3 VGG Dense Dense Dense
16 (512) (64) (4)

4 VGG Dense Dense Dense
16 (512) (256) (4)

5 VGG Dense Dense Dense Dense
16 (512) (256) (64) (4)

6 VGG Dense Dropout Dense Dense Dense
16 (512) (0.3) (256) (64) (4)

7 VGG Dense Dropout Dense Dropout Dense Dense
16 (512) (0.3) (256) (0.3) (64) (4)

8 VGG Dense Dense Dense Dense Dense
16 (738) (512) (256) (64) (4)

Table 4.8: CNN configurations for tests

For those tests are increased both depth, adding new hidden layer, and size
of each layer, adding neurons per layers, as just said, there’s no theoretical rule
of thumb to determine this changes. That’s why neurons and layers were added
slowly. Moreover as it increases the quantity of weights and biases, was added to
the model structure also a Dropout layer from Test 6 with a rate of frozen neurons
of 0.3, to avoid possible overfitting caused by too much parameters that has to be
train.

As expected, adding more complexity to the CNN let it grows its ability to
classify images among the four classes, thanks to more parameters needed to better
generalize such a huge difficult classification problem. Below are analyzed Test 7
and Test 8 results, judging how the new structures react to training.
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predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 13 88 4 14
Class 2 11 81 16 21
Class 3 2 68 13 31
Class 4 10 29 8 71

Table 4.9: Test 7 - Confusion matrix results

precision recall f1-score support
Class 1 0.36 0.11 0.17 119
Class 2 0.30 0.63 0.41 129
Class 3 0.32 0.11 0.17 125
Class 4 0.52 0.60 0.56 118
accuracy 0.37 480

macro average 0.38 0.36 0.33 480
weighted average 0.37 0.37 0.33 480

Table 4.10: Test 7 - Classification report results

Results of Test 7, on Table 4.9 and Table 4.10, demonstrate that for this kind of
classification problem the CNN required a more complex structure. Nevertheless,
even if the accuracy average value of classification increases until 0.37, clearly it is
not sufficient. Moreover, from the confusion matrix on Table 4.9 could be figured
out that there are too much prediction errors between non consecutive classes. This
way of thinking could be done due to this specific class division. In other words,
each class has a range of minimum and maximum population density in which an
image has to be classified, from the lowest values of Class 1 ranges to the highest
of Class 4 ranges. Therefore, there’s a big difference between predicting an image
to belong the lowest range of population density or to the highest. That means
that the CNN is not able to recognize those features that let it able to estimate
how many people could stay in that specific area. As an example, it can be figured
out just focusing on first column of Table 4.9.. It can be seen that there are 10
images predicted to belong to Class 1 that actually are part of Class 4. Thus, 10
images, probably photos over the city center, are predicted as a park, for example.
This problem is reasonably linked to misleading images, for example abandoned
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factories have almost zero persons on that area but from an overhead point of view
it appears as populated. The same reasoning can be done on column four of the
same table: there are 14 images predicted on Class 4 but actually they are part of
Class 1. The situation is the opposite but both are caused probably by misleading
images within the database.

precision recall f1-score support
Class 1 0.34 0.23 0.28 116
Class 2 0.25 0.02 0.03 122
Class 3 0.24 0.43 0.31 116
Class 4 0.44 0.65 0.52 126
accuracy 0.34 480

macro average 0.32 0.33 0.29 480
weighted average 0.32 0.34 0.29 480

Table 4.11: Test 8 - Classification report results

For the Test 8 only the classification report on Table 4.11 was reported because
it is an example of overfitting. It can be understood from the comparison between
the classification report of that test and the previous discussed above. Even if the
complexity of the neural network is increased that didn’t lead to a better prediction.
That’s happen due to the too much weights and biases to be set with respect to
the input database size. So again, more is not better.

Summing up, the Test 7 highlights the requirement to focus on those images
that could be misleading. Therefore, the work started with those images that
belong to Class 1 that were selected and checked one by one. Every single image
was examined in order to check if it was congruous with respect to the others that
full fill the same belonging class.

Figure 4.6 and Figure 4.7 are both images belonging to the Class 1 and, as it is
quite evident, photos are very different one from the other.

This was happened because the database was divided in order to have each class
with the same quantity of images but this kind of operation doesn’t care about how
images are composed by. As Table 4.5 figures out, in fact the majority of images
have similar values for population density so a division in this way can lead to have
two opposite images belonging to the same Class 1. Images which reveal a very
low population density are few. To fix this issue, was decided to transform that
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Figure 4.6: Example of an image clas-
sified in Class 1

Figure 4.7: Example of an image clas-
sified in Class 1

Class 1. Fixing the thresholds values of the population density of that class, were
chosen 95 images among all to be the ones that represent a very low population
density value. In order to avoid possible underfitting due to the quantity difference
between Class 1 and the others, these 95 images were overlapped that is a common
practice when there’s no other way to add images to database. Practically, they
were just copied until the right quantity was reached. After that each 95 copied
images were rotated with different angles. That’s why, from a neural network point
of view a rotate image is analyzed as a different one with different features. The
leftover part of the database was divided as in the previous tests among the other
three classes. Due to overlapping the database contained 2523 images so it is bigger
than before. That’s why also the quantity of images per set was changed into 1312
for training, 672 for validation, 539 for test. This new database was then tested
on a CNN whose structure is the one with the best results, Test 7 of Table 4.8.
So it is composed by the VGG 16 complete model plus 4 fully connected layers
with respectively 512, 256, 64 and 4 neurons as output, without any dropout layer.
Results are listed on Table 4.12 and on Table 4.13.

If focusing on the first row of the confusion matrix (Table 4.12) could be seen
that almost all images are predicted correctly, confirmed by the 0.83 recall value of
Class 1 into Table 4.13. Therefore, the work done on database for what concern
Class 1 images had lead to a better classification. In addition, also the precision
value of Class 1 raise up due to less error of predicting an image belonging to that
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predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 99 10 1 9
Class 2 12 71 27 34
Class 3 18 59 21 38
Class 4 28 32 16 64

Table 4.12: Test 9 - Confusion matrix results

precision recall f1-score support
Class 1 0.63 0.83 0.72 119
Class 2 0.41 0.49 0.45 144
Class 3 0.32 0.15 0.21 136
Class 4 0.44 0.46 0.45 140
accuracy 0.47 539

macro average 0.45 0.48 0.46 539
weighted average 0.45 0.47 0.45 539

Table 4.13: Test 9 - Classification report results

class while it actually belongs to another one. First column of Table 4.12 highlights
that there are still data predicted wrongly predicted on Class 1. That’s means
that the images belonging to other classes are also misleading. Therefore it was
decided to check one by one images of others classes looking for those that cause
misunderstanding during the CNN training.

Starting from Class 3, each image belonging to that class was selected and
analyzed, checking its robustness. In other words, each photo was examined with
respect to the others and it was judged as consistent for that range of population
density. This was done because the used database deploys an estimation of
population density over urban area that is a collection of multiple factors that not
all of them can be caught through an aerial image. After all the images ranked as
misleading were selected, they were substituted with a rotate photo taken from
those left in the same class. The substituted image was not chosen casually but
was used the ones that are in the population density neighbourhood of the image
that has to be removed. After all, 59 images are removed and replaced. Once the

50



4 – Project development

images belonging to Class 3 are substituted, the same way of thinking was applied
to those that are part of Class 4. In this case 50 photos are removed and replaced.

Finally, a new CNN was trained in order to check if the new modified database
lead to better prediction result. As before, the CNN was trained with the same
configuration of layers but for this attempt was modified the division quantity
for the training and evaluation categories (training, validation and test) that
respectively had 1477, 795, 251. It was reduced the test set because this set is used
to compute the confusion matrix and classification report, so to evaluate the CNN
instead of the training and validation sets whose purpose is modify the network
parameters to reach better prediction results. Hence, it was decided not so much
to reduce that test set but to enlarge the others because a bigger database can
improve the training due to a more variety of photos on which the CNN is trained.
Even if those categories were modified, the database was still randomly shuffled as
before in order to still have an equilibrium of quantity for each class and also an
equilibrium of quantity for each phase set.

The CNN was trained with the modified database, results are listed on Table
4.14 and Table 4.15.

predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 58 8 0 2
Class 2 8 45 3 1
Class 3 13 28 8 9
Class 4 15 22 7 24

Table 4.14: Test 10 - Confusion matrix results

The new results show an increasing accuracy that affects all the classes, except
for the Class 1 that still maintains the optimal prediction values already reached.
There is an improvement even for the Class 2 predictions, whose belonging database
was not modified, however it reflects the adjustments done for the others. The
worst improvement is on Class 3 prediction that is the only one that basically
preserve the same accuracy on prediction, very low. In addition, it can be noticed
that the higher is the population density, the worst the CNN is able to correctly
predict images. In fact Class 3 and Class 4 lead to worst results compared to the
other two.
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precision recall f1-score support
Class 1 0.62 0.85 0.72 68
Class 2 0.44 0.79 0.56 57
Class 3 0.44 0.14 0.21 58
Class 4 0.67 0.35 0.46 68
accuracy 0.54 251

macro average 0.54 0.53 0.49 251
weighted average 0.55 0.54 0.50 251

Table 4.15: Test 10 - Classification report results

Finally, was arisen the possibility to enlarge the input database thanks to new
population density data estimations over a predetermined area. It was done a
trade-off between the covered area of each image and the number of image because
the larger the area is, the lower is the number of input data. As an example, if it
had been chosen a photo which covers an area of 250×250 meters, in this case the
database would have had 7315 numerical values of population density estimation.
On the contrary, if wanted an higher number of estimated values, this would run
up against a too reduced dimension for each photo in which it’s not possible to
recognize any pattern. Finally, it was decided to select 150×150 meters as covered
area per cell. So, the downloaded images are a little bit bigger than before, this let
each one of them to include within itself a better pan, for example more buildings
avoiding those images which present a single huge crossroad. This dimension for
the covered area corresponds to a database composed by 20382 elements. That’s
almost ten times bigger than the one used so far.

Once the database has been enlarged with all the new downloaded images, it
had been used to train a new neural network. In addition, also the neural network
complexity was raised up, considering that finding the main features could be more
difficult if there are too input data with respect to the complexity of the CNN, this
could lead to underfitting. Thus as first attempt, the decision was fallen back into
a CNN whose structure is the one shown on Table 4.8 for the Test 8 configuration.
The reason why is that this more complex structure for a neural network was
fallen back into overfitting when tested on the previous database due to too much
weights and biases to be set with respect to quantity of input population density
estimations. Nevertheless, for this attempt was available a new database bigger
than before. In addition, an adjustment was done on an argument for the compile()
function within which was modified the batch_size, from 32 to 256. This is done

52



4 – Project development

in order to avoid possible underfitting or overfitting due to a wrongly proportion
between new database size and batch dimension. Moreover, this adjustment helps
to speed up the training time. A new database implies also new value for the
training, validation and test sets. However, excluded those images for the test set, it
holds the proportion of 65% and 35% between respectively training and validation
sets. So, images were subdivided into chunks of 11294, 6082, 3006 respectively for
the training, validation and test sets. The remaining code wasn’t modified.

predicted value
Class 1 Class 2 Class 3 Class 4

true value

Class 1 511 173 37 3
Class 2 289 300 151 20
Class 3 60 199 402 98
Class 4 8 44 311 400

Table 4.16: Test 11 - Confusion matrix results

precision recall f1-score support
Class 1 0.59 0.71 0.64 724
Class 2 0.42 0.39 0.41 760
Class 3 0.45 0.53 0.48 759
Class 4 0.77 0.52 0.62 763
accuracy 0.54 3006

macro average 0.56 0.54 0.54 3006
weighted average 0.56 0.54 0.54 3006

Table 4.17: Test 11 - Classification report results

As can been from Table 4.16 and Table 4.17, even if the previous trained neural
networks had have several modifications such as complexity of the networks or
images substitution, the enriched database on which the new CNN was trained lead
to better results on prediction. That means that the preceding database wasn’t
big enough to be able to find those generalize features to classify images. The
confusion matrix columns show that the classification errors of the trained CNN
are higher on the nearest class with respect to the correct one. As an example, for
the first column there are 289 images wrongly predicted on Class 2, 60 on Class 3
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and only 8 on Class 4. Thus, if the CNN wrongly predicts an image classification,
the probability that the error is the nearest class is very high. In other words,
this confusion matrix shows that the neural networks has understood which are
the main difference between classes and that the images are differently divided in
classes based on an increasing value among them. Same reasoning can be done for
all classes. It’s reasonable to think that if applied the same method used before to
check database composition it’s possible to get even better scores, because there
still are misleading images.

Summing up, these final scores highlight that the CNN understand the increasing
order of the classes but instead of repeating the same checking operations on the
new database it’s possible to go to the further step that is the numerical regression
to estimate population density, the final goal of this thesis.

4.3 Numerical regression to estimate population
density

A numerical regression approach is used to find that function that most nearly pass
through the input data. In a neural network environment the first part composed
by convolutional and pooling layer has still the aim to extract features from images
while the last fully connected layer has now the goal to find that function that best
fit the data. This target is specified to the neural network just arranging the last
layer, also known as output layer, of the fully connected ones with a single neuron.
In this way the CNN is forced not to classify the input data, as a matter of fact at
the end of the CNN there’s no more 2 or more neurons. On the contrary there a
single neuron whose objective is to predict a single specific numerical value. So the
aim of the CNN is to set weights and biases in order to be able to correctly fit all
the input data.

Practically, the CNN was built as so far, it was changed only the last layer
output from n neurons to a single one. In addition, also its activation function was
changed from softmax, specific for classifying, into linear because for the numerical
regression it’s not wanted to modify the numerical output, what the CNN is trying
to predict. The other layers which compose the fully connected layers maintain the
same ReLU activation function.

Obviously, also the tests to evaluate the neural network performances were
changed, the confusion matrix and the classification report are no more useful. So
the new tests were inclusive of a graphical approach and a numerical one. For a
graphical approach was intended that the predicted output was used to create a
scatter plot on which the x axis defines the real population density value, whereas
the y axis defines the predicted one. If a model perfectly predict all the value,
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all the points of the scatter plot have to lie on the bisector. Therefore, with the
graphical approach is analyzed how much the plotted point are far away from
the bisector and if from their shape can be figured out a line. In addition to the
plot, also the coefficient of determination, see section 3.3.1 for more details, was
used as complementary to the graphical approach. So, the plot gives the visual
representation of the predicted output, whereas the coefficient of determination
gives the numerical value of how good the prediction is.

As always, the first attempt was done with the same architecture of the last test
done, it is shown in Figure 4.8.

Figure 4.8: Test 1 - Convolutional Neural Network configuration

The database used as input is the one downloaded for the last test of the
Multiclass problem section, with 20382 elements whose division sets are now adjusted.
Training set was modified to have 11264 elements, whereas training set had 6144
too. The remaining 2974 images were used for the test phase. This calibration
was done in order to have the first two sets to be multiple of the batch_size value,
256. That’s because was wanted that the last batch of the training epoch is still
equal to 256, so this could be done if and only if the training and validation sets
quantities are multiple of that number.

As before, before the training the database is still shuffled with the same criteria
but in this case was done over 10 ranges, that was just a project decision and didn’t
have any symbolism. The aim was still to avoid the possibility to give as input
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sequential images and to allot to each set an equally distribution of the images.
Thus, using 10 ranges means to increase the randomness and variety for each set.

Last but not least, it was revised also the compile() function that configures
the CNN for the training. For the loss function to be minimized was chosen the
mean squared error and for the metrics was chosen the mean absolute error. In
this way was possible to directly check during training the error on prediction.
Moreover was changed also the optimizer, it was used the adam, it implements the
Adam algorithm that is a stochastic gradient descent method based on adaptive
estimation of first-order and second-order moments.

Once everything was modified, the first attempt of training the CNN with this
new goal was done, the resulting scatter plot is shown in Figure 4.9.

Figure 4.9: Test 1 - Scatter plot results

As can been seen from the figure, the CNN was not able to find that function
that fits the input data. The shape of the scatter plot doesn’t lie on the bisector,
on the contrary its shape is not a line but only a points cloud. Moreover, the
plot highlights that the population density value to be estimated have a very tiny
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value and its distribution it’s not uniform. So, it’s difficult to discern points whose
distribution is gathered close to 0 instead of being uniformly distributed.

So, the further step was to redistribute all the labeled output data. It was done
firstly changing from a linear distribution into a logarithm one. After that, the new
data were scaled uniformly in a range between 0 and 1. Finally, the new scaled
data are employed to train a new CNN whose architecture was the same as the
first attempt (Figure 4.8).

Figure 4.10: Test 2 - Scatter plot results

Figure 4.10 clearly exposes a scatter plot whose shape is similar to a thick line
and its orientation is quite similar to the bisector of that plane, the continuous line
plotted. From the plot can be highlighted that the central values are well predicted,
whereas the errors become bigger when getting closest to boundary limits. The
graphical result is also supported by the coefficient of determination value that is
0.54. It is a good value considering that 0.75 [5] value is an optimal prediction
value.

This last test has produced an optimal result on estimating the population
density value given as input an aerial image. So the aim now is to reduced the thick

57



4 – Project development

of that plot and was decided to initialize a further step to create and train a more
adapted CNN to that specific scope. As said on the introduction, the architecture
of the CNNs trained so far were based on the VGG 16 model that was not modified
at all but on its output layer were attached fully connected ones to classify images
before and then estimate a numerical value. However, the complete VGG 16 model
was trained to classify common objects over 1000 classes, so weights and biases
were set to pursue that purpose. These VGG 16 parameters were set always as not
trainable ones. As just said, the firstly convolutional layers of the model extract
low-level features from the images instead of the lastly ones that are responsible
of extracting the high-level and more complex characteristics of the images. So,
was decided to attach two more convolutional layers to the transferred model in
order to train specific layers for high-level features. Those new layers have to
train to directly recognize specific characteristics for population density estimation
instead of being adapted from another image processing goal. So, the VGG 16
model was "cut" from the Flatten layer due to the fact that the convolutional layer
works with bi or three-dimensional matrix not with a vector, therefore the new
two convolutional layers were attached directly to the last pooling layer of the
transferred model. To be more specific, all the VGG 16 fully connected layers
were "cut" and they were replaced with identical ones. Nevertheless, even if the
structures are identical, there’s a fundamental difference between them that is that
the new layers has randomly initialized weights and biases instead of just set ones.

Figure 4.11: Test 3 - Convolutional Neural Network configuration
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Figure 4.11 shows the new convolutional neural network architecture. It was
tested on the same database division for each phase set, results are shown in scatter
plot of Figure 4.12.

Figure 4.12: Test 3 - Scatter plot results

The scatter plot shows that the points follow the line but there are too much wide
prediction error for all the values, from the lowest to the highest. The coefficient of
determination is 0.43. Therefore, it seems that CNN starts to understand the main
features to generalize the problem but it could need more training epochs, in fact
the train stops only after the whole 100 epochs that means that the CNN need
more time and computational effort to have better prediction. In addition, also an
even more depth structure for the neural network could help to improve estimation
performance.
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Chapter 5

Conclusion and future work

In this thesis a Convolutional Neural Network was developed both to classify
aerial images, based on population density values, and to directly estimate the
population density over urban area. The aim is to extend the previous work done
by the research team that concerns a risk-informed path planning for UASs in
order to perform autonomous operations in BVLOS over urban areas. An artificial
intelligent methodology was proposed in order to compensate for the lack of data
regarding the population density distribution, in fact they are not always easily
obtainable or even accessible.

Starting from a pre-trained Convolutional Neural Network model, the VGG 16,
initially we developed a Convolutional Neural Network that was trained in order
to classify aerial images into two different categories: city or country. For this first
classification problem was achieved quite perfect results with 95% of accuracy.

The successive step was to develop a Convolutional Neural Network whose aim is
still the images classification applied on a more complex problem, i.e. a prediction
among four different classes with increasing population density values. As ground
truth to support the training, it was used a database which contains a realistic
estimation of the population density, covering Milan, Turin and Rome. For this
classification problem, all the tests done lead to the optimal results achieving a
55% of accuracy for prediction.

The last method implemented was based on numerical regression approach to
directly estimate the population density value to be used to create layers for the
risk-aware UAS path planning. Also this method achieves optimal results with a
coefficient of determination of 0.54, a good results compared with the literature [5].

Moreover, we developed one last preliminary step with a new customized Con-
volutional Neural Network. The plotted results highlight that the new customized
CNN has promising features, suitable to be extended and improved to obtain even
better results on estimating population density.
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Future works will include the use of a more compliant database to avoid all
the possible misunderstandings due to misleading images. Even the Convolutional
Neural Network architecture has to be more customized, in order to find the optimal
trade-off between complexity of the network and its performances. In addition,
further training have to be supported by a specific hardware for neural networks.

Finally, once the CNN was correctly able to estimate population density dis-
tribution, the next step will be the creation of a network that is able to predict
values from dynamic maps.
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