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Summary

Nowadays, it is widely known that localization systems changed our daily routine.
A lot of people are using them but, currently, with localization systems, we are
mainly referring to outdoor localization and navigation systems based on global po-
sitioning system (GPS). Despite outdoor localization being widely used and highly
developed, there is still no standard technology for indoor localization purposes.
This issue arises because the satellite based signals are largely attenuated when
passing through walls and ceilings, leading to a loss of precision.
An interesting alternative, for indoor applications, that does not require installing
and maintaining costly equipment in the building is the geomagnetic fingerprinting.
In modern buildings, the earth’s magnetic field is distorted due to the presence of
ferromagnetic construction materials. The distortion can be used to define every
location by its magnetic fingerprint. All the current smartphones are equipped with
the magnetometer, thus, it is possible to use this sensor associated with the mag-
netic map of the building, to design a smartphone-based indoor localization system.
In the thesis, a reliable 3-dimensional magnetic map fingerprint method has been
investigated. Subsequently, an already existing 2D indoor localization system has
been extended to work in 3D. Finally, the performance of the indoor localization
engine using the 2D and 3D magnetic maps has been compared.
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Chapter 1

Introduction

During the last few decades, positioning systems have become one of the main
research fields among an increasing number of universities, research centers and
companies, which can be evenly seen in the growing number of location based ser-
vices (LBS). The impact of the global positioning system (GPS) has been significant
as it has changed completely the way we move in the cities. Despite GPS being very
well known and highly developed, it is suitable for outdoor localization purposes
only. GPS is based on the Global Navigation Satellite System (GNSS). Satellite
signals suffer of significant degradation when passing through materials and struc-
tures of buildings [5]. This fact results in a limited capability of using GPS as an
indoor positioning system. Regarding indoor localization applications, the interest
is justified by a wide range of LBS. One of the most common applications could
be localization and navigation when moving inside unknown buildings, such as air-
ports, hospitals or shopping malls. Furthermore, indoor localization systems can be
very interesting for companies in the proximity marketing business or for museums
willing to offer personalized tours to the visitors. Other new applications exist such
as shopping routing (e.g. inside grocery shops), management of emergencies or new
spatial games. Considering the high number of applications of LBS, there isn’t still
a common standard technology available to pursuit an efficient result, as a trade-off
between precision and cost deploying of the infrastructure.

1.1 State of the art
A wide range of approaches have been tried to find a solution to the indoor lo-
calization problem: light based systems (i.e. LiDAR technology), radio frequency
(RF) based systems (i.e. RADAR technology), ultra wide band (UWB) based sys-
tems, bluetooth based systems, WiFi based systems, computer vision based systems,
dead reckoning based systems and magnetic field based systems [5]. All the listed
methods can be classified essentially in 2 classes depending on how they are used:
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1 – Introduction

infrastructure-free and infrastructure-based approaches.
As indicated by the names, the infrastructure-free approaches are the ones not need-
ing any hardware infrastructure to be deployed, while, in contrast, infrastructure-
based approaches are the ones requiring certain hardware to be installed on the site
where the indoor localization system is deployed [22]. Although they can be based
on different core technologies, the infrastructure-based systems all rely on "ranging",
measuring the distance between two (or more) devices. Usually one of the devices
is the target device, the one to be localized. Between the infrastructure-based sys-
tems, the UWB technology is reportedly known to be very precise, achieving an
accuracy below 0.5m. Its drawback is the infrastructure overhead in terms of costs
and deploying time, that make it difficult to be widely used [5][22]. A common
approach for both the infrastructure-based and the infrastructure-free systems is
the so called "fingerprinting". This technique consists of two stages; in the first
stage, also known as "offline stage" or "training stage", some signals (usually WiFi,
bluetooth or the magnetic field) are measured at defined positions and stored as fin-
gerprints in database. During the second stage, known as online stage, "the position
corresponding to new measured signal quantities is estimated using the positions
associated with the stored fingerprints that are the most similar when compared
to the new measurements" [5]. Between the infrastructure-based systems using the
fingerprinting approach, there are the WiFi based systems, where the measured
signals are the wireless signals present in the area of interest. An example could be
a shopping mall, where there are usually several WiFi routers giving the internet
connection to the users. For the WiFi based systems, the stored measure for the
fingerprint is usually the received signal strength (RSS) at specific locations [5].
On the opposite side, there are the infrastructure-free systems where location esti-
mation relies only on the sensors typically embedded in smartphones and tablets
(such as gyroscope, accelerometer, magnetometer). For fingerprinting approaches,
the relevant importance of magnetic field fingerprinting has been found out. The
magnetic field doesn’t need any hardware deployed at all on the site and several
surveys on the topic are showing it has better accuracy in localization than WiFi
fingerprinting [5][18][22].
The magnetic field fingerprinting is based on a physical phenomenon called mag-
netic distortion, strictly related to the magnetic induction. The earth’s magnetic
field, also known as geomagnetic field, can be considered constant and pointing to-
ward the magnetic north pole of the planet. However, inside buildings, the presence
of ferromagnetic construction materials and objects lead to the magnetic distortion
phenomenon [18][6]. The ferromagnetic materials, previously magnetized due to the
magnetic induction phenomenon, keep a residual induction that is responsible of a
new magnetic field. As a consequence, inside buildings, the local magnetic field is
the sum of two components: the earth’s magnetic field and the magnetic field cre-
ated by ferromagnetic materials. The total magnetic field measured inside buildings
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can be seen as if the earth’s magnetic field is distorted by the ferrous objects (mag-
netic distortion). Due to this physical behaviour, each position in indoor spaces
is defined by its own magnetic fingerprint and it’s been proved that the magnetic
fingerprint can be considered as stable in time [2].

As described before, the fingerprinting approach includes an offline stage and an
online stage. The offline stage is usually realized in two steps: at first the magnetic
measures are collected and then, during the map construction step, the magnetic
map is created [18]. In this context, the majority of the relevant studies focus on
smartphone-based indoor localization systems. Taking into account that most of
the people own a smartphone, these systems are the most attractive ones.
In Magicol [27] the proposed magnetic measurement step consists of a surveyor
walking along predefined paths, keeping the smartphone in a fixed position. Using
the inertial measurements, coming from the accelerometer and the gyroscope, it’s
finally possible to detect the user changes of direction. In this way, it’s possible
to match the magnetic measures with a position on the floorplan. The measured
magnetic data are finally interpolated to create the magnetic map. The drawback
of this procedure is the fact that the data are user dependent and prone to errors:
a data cleaning step is further required. Magicol suggests also to extend the mag-
netic capture procedure via crowdsourcing. This technique consists to query the
final users of the indoor localization system to capture the magnetic field, following
the previously exposed procedure.
Another approach is proposed by mPILOT [7]. The study field of mPILOT is a
corridor. They propose to take 100 magnetic measurements on the same walking
straight line, with a distance of 1m between each measure. Consequently, an inter-
polation is performed to find the missing magnetic values all over the corridor. In
this survey, there is no investigation about the 2D behaviour of the magnetic field.
Measuring the magnetic field along a straight line only is a limiting unidimensional
constraint.
From the magnetic map reliability point of view, a step further is made by MaLoc
[6]. MaLoc’s aim is to generate a magnetic map reproducing the 2D behaviour
of the magnetic field in a defined area of interest of the building. They propose
to measure the magnetic field along "short" parallel lines, with spacing of 60cm
between each parallel line, till the whole area is completely measured. As in the
previously described studies, it is performed an interpolation to find the missing
values between the measured lines. The MaLoc drawback is the time consuming
procedure. Despite being very accurate, capturing the magnetic field along short
lines spaced by 60cm takes long time even for small maps.
All the three methods previously described were based on the assumption that the
magnetic field doesn’t change along the height. Considering that the user’s smart-
phone moves in the 3D space, ignoring the height information could result in a loss
of precision of the system. The importance of the 3-dimensional behaviour of the
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magnetic field in fingerprinting approaches has been investigated in several stud-
ies and it has been proved that the height of the magnetic sensor influences the
measurement’s value. In other words, the magnetic field is height-dependent inside
buildings [1][4][3].
Currently, one of the biggest shortcomings of 3-dimensional magnetic fingerprint-
ing is the measurements collection. An high number of measurements is required to
have a good model of the magnetic map. Furthermore, for each measure an accurate
positioning is needed to assign the measurements to the ground truth positions [1].

1.2 Context of the work
This thesis is based on the Magnetic Indoor Localization Engine (MILE or engine)
that Sony is developing in the Stuttgart Technology Center (STC). The MILE com-
bines measurements from several sensors, embedded in the user’s smartphone, to
obtain a final system that, based on the geomagnetic fingerprint, is able to overcome
magnetic field ambiguities. Even though a magnetic map gives absolute informa-
tion about the location, it could happen that multiple locations have a very similar
magnetic fingerprint. This ambiguity is overcome through a Pedestrian Dead Reck-
oning (PDR) solution, estimating the user motion.
As exposed in 1.1, geomagnetic fingerprint based indoor localization solutions gen-
erally require an offline phase during which the magnetic fingerprint of a selected
area is created. In this regard, the MILE needs a surveyor that walks in the local-
ization area with a magnetic sensor (e.g. the smartphone), in order to capture the
magnetic field following multiple predefined reference points. The reference points
are usually selected as corner points or other characteristic points of the floorplan.
Once the surveyor accomplishes his task, all the collected data are interpolated
to estimate the magnetic field values at non surveyed points of the floorplan. In
this way, the 2-dimensional magnetic map of the area is generated. The magnetic
map constitutes the database of the MILE and in the online phase, it is compared
to the magnetic field values measured by the user’s smartphone. There are some
drawbacks in the described procedure, firstly related to the surveying procedure.
The current surveying method could result to be very tedious, as the surveyor has
to accurately follow the reference points, trying to walk with a constant speed be-
tween them. The accuracy of the surveyor directly influences the accuracy of the
position where each magnetic measure is assigned. Overall, the matching between
the magnetic field and its position has direct impact on the final magnetic finger-
print map. A non-reliable magnetic map, not describing the real magnetic field,
will lead to lack of precision of the position estimation. Another drawback is that,
even assuming to have an accurate surveyor, the described procedure is unsuitable
for large scale indoor environments because of its time consuming requirements.
Moreover, like other indoor localization techniques exposed in 1.1, the fingerprint
is based on the assumption of having a magnetic field that does not vary along the
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height. This means that, if we describe the localization area with a 3D reference
frame Kxyz, with xy coincident with the floor and z indicating the height, ignoring
the height, the magnetic field B is:

B = f(x, y) (1.1)

In other words, the final 2-dimensional magnetic map is assumed to describe the
magnetic field from the floor till the ceiling, not depending on the height of the
measurements. This simplification could influence the final accuracy of the MILE.

1.3 Objective of the work
Considering the context of the work and the current drawbacks it presents, there
are different areas the thesis wants to investigate. The main objective is to study
the 3D behaviour of the magnetic field in indoor spaces and to extend the MILE
to be able to work in 3D. To extend the MILE, two steps are performed. At first
the map generation process is extended to generate a 3D magnetic map. The new
obtained 3-dimensional magnetic map constitutes the magnetic fingerprint of the
chosen localization area and it’s fed to the MILE. Thereafter, the engine framework
is extended to be able to work in the 3D space.
In the end, the final goal is to carry out an analysis of the possible improvements
of the engine positioning accuracy, using a 3D magnetic map against the state of
the art 2D magnetic map. In this regard, during the final analysis it is of interest
to find out if using a 3D magnetic map, it is possible to achieve the height tracking
of the user’s smartphone.
To accomplish the main goals, at first, the current 2D map generation framework
is modified to improve the interpolation and extrapolation technique targeting the
creation of a more realistic map. Consequently, it is investigated and chosen, based
on a thorough evaluation, the best 3-dimensional interpolation and extrapolation
method for the 3D map generation. Additionally, two V-SLAM (visual - simulta-
neous localization and mapping) systems are evaluated with the aim of providing
an alternative process to the current tedious magnetic measurements collection.

1.4 Organization
The thesis development is organized as follows:

• In Chapter 2, the magnetic indoor localization engine (MILE) is described.

• In Chapter 3, the current 2D magnetic interpolation-extrapolation methods
are described and analysed. Additional 2D methods are introduced. Finally, a
detailed evaluation of all the 2D methods is performed.
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• In Chapter 4, the magnetic measurement setup is designed to capture new
magnetic measurements.

• In Chapter 5, the 3D magnetic map generation procedure is implemented. The
3D interpolation-extrapolation methods are introduced and evaluated. Finally,
the MILE is extended to be able to support the 3D mode.

• In Chapter 6, a thorough evaluation of the 3D against 2D performances is
conducted. The height tracking capability of the 3D MILE is analysed and a
possible integration of the smartphones’ barometers is investigated.

• In Chapter 7, the final conclusions and future work suggestions are reported.
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Chapter 2

The Magnetic Indoor
Localization Engine

In this chapter, the Magnetic Indoor Localization Engine, MILE, introduced in
Section 1.2, is analyzed in depth. As described before, the MILE uses a sensor fusion
approach to perform the localization of the user equipped with his smartphone. The
key idea of this localization system is to locate the user employing the magnetic
anomalies present inside buildings. The only magnetic measurements are not enough
to properly reach the localization goal. There exist magnetic ambiguities in the
localization area. These are present because many locations inside buildings have
similar magnetic fingerprints. As a consequence, even if the magnetic fingerprint
gives absolute information about the location, the MILE could return an incorrect
localization estimation. To overcome this drawback, the engine uses a Pedestrian
Dead Reckoning (PDR) technique, able to estimate the user motion. Using the
PDR along with the magnetic fingerprint of the localization area, it is possible
to compensate for magnetic ambiguities. Moreover, the PDR does not provide the
exact motion estimation of the user. Its output is affected by a cumulative error that
leads to drifts of the user motion result. In this case, the magnetic field is capable
of compensating for cumulative errors of the PDR. The integration of the magnetic
fingerprint and the PDR is exploiting the sensor fusion approach. As already seen
in Section 2.1, different sensors are used to reach a common goal.
In Figure 2.1, it is shown the MILE architecture, explained in detail in the next
sections.

2.1 Sensors
The hardware equipment needed to run the engine consists of standard smartphone
sensors, as the ones included in the IMU (inertial measurement unit) of nowadays
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2 – The Magnetic Indoor Localization Engine

Figure 2.1: Magnetic Indoor Localization Engine (MILE) architecture

smartphones. The sensors are the accelerometer, measuring the accelerations of the
smartphone, the gyroscope, measuring the angular velocities of the smartphone,
and the magnetometer used to measure the local magnetic field sensed by the
smartphone. The outputs of these sensors are 3-dimensional vectors in the cartesian
coordinate system of the device. Moreover, to solve the initialization problem of
the particle filter (see Section 2.5), some Bluetooth beacons are deployed in the
localization area (by the provider of the MILE system).

2.2 Sensor processing
2.2.1 Calibration
In order to make the MILE independent from the smartphone model, it is neces-
sary to introduce a calibration process for the magnetometers. This necessity arises
because, without a proper calibration of the magnetic sensor, different smartphones
measure different magnetic fields at the same point in space. As known from lit-
erature [6][18], the magnetic field vector Bp sensed by a smartphone in the sensor
coordinate system can be modeled as:

Bp = WRBe + V (2.1)

where W is the vector representing the contribution of the soft iron effect, V is the
vector representing the contribution of the hard iron offset, Be is the local mag-
netic field vector in the earth coordinate system and R is the rotation matrix to
transpose the measurements from the earth coordinate system to the smartphone
coordinate system. The hard iron offset V is generated by ferromagnetic materials
close to the magnetic sensor, which create their own constant magnetic field (e.g.

8
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the smartphone speaker magnet). The soft iron effect W is instead generated by
unmagnetized ferromagnetic materials. When close to the magnetic sensor, they
react to the external magnetic field introducing their magnetic interference (e.g.
iron and nikel on the chip-set PCB, they do not necessarily generate a magnetic
field by themselves). The vectorsW and V are smartphone dependent and they can
change over time. They represent the contributions that an appropriate calibration
method should cancel. After calibration, all the smartphones should measure the
magnetic field without hard iron offset and soft iron effect.
In this regard, there are two possible approaches implemented in the MILE. The
first calibration approach, known as ellipsoid, is a calibration method based on
the least squares ellipsoid fitting algorithm [8]. This method is directly applied,
inside the engine, to the raw uncalibrated magnetic measurements sensed by the
smartphone. It requires a user iteration to compute the ellipsoid fitting parameters.
To do so, the user has to follow a routine before each magnetic capture, rotating
the smartphone around its geometrical center. The second calibration approach,
known as android, is a calibration method directly implemented inside the smart-
phone firmware. The android calibration is based on an ellipsoid fitting algorithm
similar to the one used in the ellipsoid calibration method. Unfortunately, it is not
possible to check the algorithm differences between the two approaches because,
in the android calibration, the smartphone outputs directly the calibrated mag-
netic field values. Currently, there is no recommended calibration method between
the ellipsoid and the android. The choice of a preferential method will be further
discussed during the thesis development, in Section 5.2.3.

2.2.2 Magnetic Field Representation and Orientation Com-
pensation

A necessary condition to properly run the MILE is that the magnetic fingerprint
map and the magnetic field sensed by the target smartphone have to refer to the
same reference system. For this purpose, the earth cartesian system Kxyz is chosen
as the reference system, with xy defining the earth floor and z describing the height
variation. In general, the smartphone magnetic sensor outputs the magnetic field
vector B = [bi, bj, bk] in the internal sensor cartesian reference system Kijk. To
obtain the correct orientation estimation of the magnetic field in the earth Kxyz

reference system, Android smartphones provide directly the orientation (in Kxyz

reference frame) through an internal algorithm providing the output in form of
quaternions. The smartphone orientation is used inside the MILE for two objec-
tives. At first, to transpose the magnetic sensor measurements in the Kxyz reference
system, B = [bx, by, bz]. Secondly, it is a necessary input for the PDR, as will be
explained in Section 2.3.

Once the magnetic measures are in the earth reference system, there is a change
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of coordinates used to describe the magnetic field B. Instead of using the cartesian
coordinates [bx, by, bz], it’s used a different representation, describing the magnetic
field B by its magnitude, inclination and azimuth. In the new set of coordinates,
named as mia, the magnitude is the intensity of the magnetic field vector B, mea-
sured in microtesla µT . The inclination is the angle between the magnetic field
vector B and the earth floor (the plane xy in the earth coordinate system). The
azimuth is the angle between the magnetic field vector B and the true magnetic
north. In figure 2.2 the relation between the cartesian coordinates [bx, by, bz] and
the new set of coordinates [m, i, a] it’s shown. The choice of using the mia coordi-

Figure 2.2: Relation between xyz and mia coordinates

nates is justified by practical advantages they can bring in a development phase.
For example, the possibility to easily switch, if needed, to different fingerprinting
modes. In fact, as reported by [18], some indoor localization systems are using a
1D fingerprint of the magnetic field, storing only the magnetic magnitude.

2.3 Pedestrian Dead Reckoning - PDR
Inside the MILE, the particle filter is the core part and it is updated through a time
trigger every 1s interval. At each trigger the PDR, whose objective is to compute the
user movement, passes to the particle filter the new estimated relative displacement
and heading change. The PDR is implemented as a deep neural network (DNN)
using as input accelerometer, gyroscope and magnetic readings. Its output is a 3D
vector describing the movement in the smartphone reference system Kijk. As the
particle filter works in the earth reference system Kxyz, a 3D rotation is performed
knowing the smartphone orientation (section 2.2.2). In this way, the output vector
belongs to the required reference frame. The PDR accuracy suffers of an error
accumulating over time. This error will be considered during the covariance matrix
tuning of the likelihood modes, as will be described in Section 2.5.
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2.4 Database magnetic map
The database magnetic map is the ground truth magnetic map of the area where
the magnetic localization system is deployed. The magnetic map is the result of the
map generation process, investigated in Chapter 3 and Chapter 5. In its starting
version, it is saved inside the MILE as a 2-dimensional grid map, in form of a
matrix. Each grid point is defined by its 2D coordinates (x, y) in the absolute
reference system xyz. For each grid point, the three magnetic field components,
magnitude, inclination and azimuth, defined in Section 2.2.2, are saved. The default
resolution of the grid map is set to 0.25m and there is the possibility to change it.
In this way, the default grid map is made up of squared grid points of dimension
0.25m× 0.25m, like in Figure 2.3b. Referring to Figure 2.3b, it is necessary to note
that not all the grid points are obtained through a direct measure of the magnetic
field. As described in Section 1.2, the surveyor, measuring the magnetic field of the
localization area, walks on a predetermined trajectory. The grid points derived from
the trajectory are labelled as "measured grid points" (Figure 2.3a) and their value
is the actual measured value. All the other grid points, labelled as "non-measured
grid points", are computed through an interpolation or extrapolation procedure.

2.5 Particle filter localization
The core of the engine is a particle filter, a popular filtering method used for lo-
calization purposes. A particle filter is a non-parametric recursive Bayes filter [17].
It aims to find the posterior distribution of the states of a Markov process using a
finite number of samples, called particles. Each of the particles represents a hypo-
thetical state of the process. According to the likelihood of the hypothesis compared
to real measurements, a weight is assigned to all the particles. The weighted particle
set represents the posterior distribution mentioned before. One of its main features
is the fact that it can describe even multimodal distributions. In the MILE, the
Markov process is the user movement. The engine uses a 4-dimensional particle fil-
ter, defining the user state as s = [x, y, θ, l]. Where x and y are the 2D coordinates
of the user in the localization area, θ is the motion heading and l is the step length.
The number of particles is set to 5000 and each particle k is defined as χtk = (stk, wtk)
with stk state and wtk weight of the kth particle at time t. Areas of the state space
where the particles are dense will represent areas where it is most likely to find the
user true location.
As shown in Figure 2.4, the first step of the particle filter is the initialization. In
this step, the 5000 particles are created. Their states are initialized around a known
starting point according to a gaussian distribution. For this purpose, a bluetooth
beacons approach is under developement.
Once the particles are initialized, there are three core steps recursively repeated
inside the filter: updating, weighting and resampling. The three steps are triggered
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(a) Measured grid points, reflecting the sur-
veyed trajectory

(b) Magnetic magnitude map, note the pres-
ence of both measured and non-measured
grid points

Figure 2.3: Example of magnetic grid map.

every 1s interval, when, as seen in Section 2.3, the PDR inputs the particle filter
with the estimated walked distance and heading change. In the updating step, the
particle states at time t are updated following the motion model (2.2), starting
from the previous step states, at time t− 1.

θtk = θt−1
k + ∆θt + nθ (2.2a)

ltk = lt + nl (2.2b)
xtk = xt−1

k + ltk · cos(θtk) (2.2c)
ytk = yt−1

k + ltk · sin(θtk) (2.2d)

In the motion model (2.2), ∆θt and lt are, respectively, the heading change and the
movement length in the earth plane xy at time t, derived from the PDR output. nθ
and nl are two additive gaussian noises used to handle, respectively, the heading
change and the movement length uncertainties.
The second of the core particle filter steps is the weighting step. In this step,
also known as likelihood update step, the particles are weighted according to their
similarity with some measured observations zt. The likelihood is performed through
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Figure 2.4: Particle filter workflow

the following gaussian pseudo-distribution observation model P (zt|st):

P (zt|st) = 1ñ
(2π)ndet(C)

exp [−1
2(zt − obs(st))TC−1(zt − obs(st))] (2.3)

where n is the dimension of the observation zt, C is the covariance matrix and
obs(st) is the function returning the observation values for the considered state st.
The MILE likelihood step uses three sub-likelihood observation modes. Subse-
quently, to obtain the final overall likelihood, the product of the sub-likelihoods
is performed. The three likelihood modes are denoted as Pmag, magnetic likelihood,
P pdr, PDR likelihood and P flr, floorplan likelihood.
For the magnetic mode Pmag, the measurement vector is zt = [mt, it, at]. It is a 3D
vector containing the magnitude mt, the inclination it and the azimuth at of the
magnetic field measured at time t. In this mode the obs(st) function performs a
linear interpolation based on the magnetic database grid maps (Section 2.4). The
aim of the interpolation is to get the magnitude, the inclination and the azimuth
estimates for all the k particles at time t, χtk, according to their states stk. The
magnitude, the inclination and the azimuth are assumed to be uncorrelated [10],
therefore the covariance matrix C is a 3× 3 diagonal matrix.
For the PDR mode, P pdr, the measurement vector is zt = [lt, θt], containing the
step length and the motion heading coming from the PDR (section 2.3). In this
mode the obs(st) function returns the step length and the motion heading for each
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particle. As for the previous mode, Pmag, the two measurements are assumed to
be uncorrelated and the covariance matrix C is a 2× 2 diagonal matrix. Note that
usually the PDR is affected by a cumulative error (Section 2.3) and the motion
model already includes the position estimation. Consequently, a low weight is given
to this sub-likelihood setting high values to the covariance matrix.
The last sub-likelihood, floorplan mode P flr, differs from the others because it does
not use the gaussian pseudo-distribution observation model. In this mode, the floor-
plan of the localization area brings the information about the "no-go areas" and the
walls. Particles that are falling into a no-go area or passing through a wall are as-
signed with a floorplan likelihood equal to P flr = 0. On the opposite, all the particles
that are following the floorplan restrictions are assigned with a floorplan likelihood
equal to P flr = 1. In Figure 2.5 an example of the floorplan mode is shown, with
green particles following the floorplan constraints and red ones trying to perform
non-allowed movements.

Figure 2.5: Floorplan mode behaviour

Finally, the overall likelihood for each particle k is computed as:

Pk = Pmag
k · P pdr

k · P flr
k (2.4)

The resulting likelihoods are then normalized to obtain the particle weights. In this
way, the sum of the weights of all the N particles is equal to 1: qN

k=1wk = 1.
The third particle filter inner step is the resampling step. In this phase, the particles
are resampled to keep and duplicate only the particles with higher weight while
discarding the lower weighted ones. This procedure is based on the assumption
that particles with higher weight describe the user’s true state more likely than
particles with a lower weight. Thus, all the particles are resampled with a probability
proportional to their weight. To do this, inside the MILE, a set of N samples
between 0 and 1 is generated, with N number of particles. Subsequently, using the
CDF (cumulative distribution function) given by the normalized particle weights
wk, a new particle set is drawn with replacement from the current particle set. For
the sample generation, a systematic approach is used. It generates N uniformly
distributed samples (between 0 and 1) where each of the samples in the spaces of
width 1

N
is located relatively in the same position.

The resampled particles are used as input for the successive particle filter call.
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As can be visualized in Figure 2.6, their weighted average gives the user position
estimation.

Figure 2.6: Particle filter localization example
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Chapter 3

2-dimensional magnetic map
generation

In this chapter, the 2D magnetic map generation and the improvements aimed to
generate a reliable map are analyzed. All the results shown in this chapter are
obtained from magnetic measurements that were captured prior to the thesis. The
test bed consists of two different office environments that were surveyed using the
magnetic sensor of a smartphone.

3.1 Map generation framework
The 2D map generation process aims to generate the 2D magnetic map based on
magnetic measurements taken along a known trajectory (Section 1.2). As explained
in Section 2.4, the MILE works on a 2-dimensional grid map where only part of
the grid points are directly measured (measured grid points). The other part of
the grid points is obtained through an interpolation or extrapolation process. The
interpolation-extrapolation process influences the accuracy of the final map since
not all the interpolation-extrapolation techniques give reliable results. In this con-
text, it’s necessary to differentiate between interpolation and extrapolation. The
interpolation is the mathematical process used for estimating values lying within
a known dataset. On the opposite, the extrapolation is the mathematical process
aimed to extrapolate values lying beyond a known dataset [26]. The boundary be-
tween the two areas, the interpolated and the extrapolated one, is known as convex
hull and it is visualized in Figure 3.1 by the orange line.
Before analyzing the available interpolation and extrapolation techniques, it’s nec-
essary to understand how differences between sensors frequencies are handled. Usu-
ally, different sensors refer to different clocks. This means that data coming from
the IMU, the magnetometer or from the Android internal orientation estimation,
have different rates. To manage these differences, before the map generation starts,
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Figure 3.1: Convex hull

a resampling of all the sensors measures to a common sampling frequency, typically
set to 50Hz, is performed. The chosen frequency is relatively high compared to the
surveyor walking speed during the magnetic field capture. This fact leads to grid
points defined by more than a single measurement. The following approach is ap-
plied: at first all the measures are assigned to the closest grid points. Subsequently,
for all the grid points defined by more than a single measurement a median filter is
applied. In this way, each grid point is defined by a single magnetic measure that
is the median value of all the measures previously assigned to that grid point.
At the current phase of the MILE development, the whole framework is developed
on MATLAB [23], including the map generation step. Considered this, the applied
interpolation and extrapolation techniques were all based on the software’s built-in
functions. The development environment gives the possibility to choose between two
families of 2D interpolation (and extrapolation) functions. The difference between
the two classes is the type of the data they handle, that can be gridded or scattered.
In a 2D environment as the one we are considering, gridded data are those data
that are equally spaced in both x and y dimensions. Referring to Figure 3.1, our
data belong to the scattered category in the considered scenario, since there is no
constant pattern for their spatial distribution. For interpolation and extrapolation
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of scattered data, there are two MATLAB built-in functions: scatteredInterpolant
and griddata. Both functions use the Delaunay triangulations of the scattered sam-
ple points to perform the interpolation-extrapolation process. Even though the two
functions are based on Delaunay triangulations, they differ in the triangulation
method they use. Furthermore, they have the possibility to choose between several
interpolation and extrapolation methods.
The scatteredInterpolant function performs both interpolation and extrapolation
of some input data. In particular, the available interpolation methods are the linear
interpolation, the nearest neighbor interpolation and the natural neighbor interpo-
lation. For the extrapolation, scatteredInterpolant gives the possibility to choose
between linear extrapolation and nearest neighbor extrapolation.
In contrast to scatteredInterpolant, the griddata function performs only interpola-
tions. To overcome this shortcoming of griddata, an integration with scatteredInter-
polant is performed to obtain a complete map. In other words, when using griddata
in the map generation framework is performed a griddata interpolation coupled
with a scatteredInterpolant extrapolation. The available interpolation methods for
the griddata function are the linear interpolation, the nearest neighbor interpola-
tion, the natural neighbor interpolation, the cubic interpolation and the biharmonic
spline interpolation (called v4 in MATLAB).
All the available interpolation and extrapolation methods are based on different ap-
proaches that lead to different output results. The quality of the interpolation can
be evaluated by the continuity of the result. It can vary from discontinuous, in the
case of nearest neighbor interpolation, to continuity C2 for cubic and biharmonic
interpolations. At the current development step of the map generation framework,
there is no preferential function or preferential interpolation-extrapolation method
for the magnetic map creation. This is because all the interpolation-extrapolation
methods are producing very similar results between them. The only method clearly
producing a discontinuous result is the nearest neighbor interpolation, not feasi-
ble with the expected real magnetic field behaviour. Before evaluating which of
the available methods is most suitable for reproducing a realistic magnetic field
behaviour, it is necessary to deal with some recurrent interpolation-extrapolation
problems in the next Section 3.2.

3.2 2D magnetic map issues

A first step to choose the best interpolation-extrapolation method is to analyze
the results and try to find a key metrics to evaluate them. In order to do this, it’s
necessary to understand what is the physical meaning of the interpolation extrap-
olation result. With this in mind, it is finally possible to evaluate the reliability of
the outcome. In the map generation process, the physical quantity that we want
to estimate, based on some known measurements, is the distorted earth’s magnetic
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field. As already described in Chapter 1, while outdoor the magnetic field is more-
over constantly pointing towards the earth magnetic north pole, indoor there is not
a constant model for it. Thus, in this case, it’s not possible to know the a priori
ground truth of the magnetic field behaviour. Nevertheless, we can expect that the
magnetic field, as a natural field, should vary in a continuous manner and without
strong discontinuities all across indoor spaces. The previous one is the basic as-
sumption to start the evaluation of all the map generation methods. Consequently,
the methods producing a smooth result are considered the more suitable ones.
During the evaluation of the magnetic maps that are obtained through the MAT-
LAB built-in functions, it is observed that their outcomes occasionally suffer of
some errors. The errors are usually located around the convex hull and they tend
to propagate in the extrapolation area of the map. The reason for the errors to
be in the extrapolation area is that the extrapolation is usually more difficult and
unconstrained than the interpolation. It can be considered the main weakness point
of the map generation framework. In Figure 3.2a and 3.2b it is possible to notice,
in the red squared areas, the typical errors found when using, respectively, linear
extrapolation and nearest neighbor extrapolation.
Considering Figure 3.2a, it is clear that when using a linear extrapolation there is

(a) Linear extrapolation errors (b) Nearest extrapolation errors

Figure 3.2: Example of non natural reconstruction of the magnetic field using MAT-
LAB built-in functions.
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the generation of high peaks in extrapolated areas. Furthermore, for some of the
evaluated methods using linear extrapolation there could be also a step disconti-
nuity along the edge of the convex hull (top left red box in Figure 3.2a). Whereas,
when using the nearest neighbor extrapolation there is the creation of the errors
shown in figure 3.2b. In this case, there is a step discontinuity starting from the
last grid point on the convex hull edge and propagating inside the extrapolated
area. A necessary observation is that, even if the extrapolation area of the map is
usually smaller than the interpolation area, it is not possible to underestimate the
errors happening in that area. This because, as will be described in later stages,
the engine performance is very sensitive to magnetic fluctuations.
After a first visual analysis, it is possible to conclude that all the considered MAT-
LAB built-in functions were suffering the described defects. Some of the methods
were suffering them more and some others less. In Figure 3.3, the result for the mag-
netic magnitude obtained using griddata function with natural interpolation and
nearest extrapolation is shown. The overall map looks smooth but it still presents
the typical error related to nearest extrapolation.

Figure 3.3: Magnetic magnitude map using griddata natural interpolation and near-
est extrapolation.

As a consequence, before numerically evaluate the best performing function,
additional map generation methodologies not relying on the MATLAB built-in
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functions are studied in Section 3.3.

3.3 Additional interpolation and extrapolation ap-
proaches

To avoid the previously exposed problems deriving from the MATLAB built-in in-
terpolation and extrapolation functions, new methods are investigated. In this re-
gard, a similarity between the magnetic map generation problem and the so called
image inpainting problem has been found. Image inpainting is a term that comes
from the art restoration field, describing a craftsman trying to restore damaged
paintings following the style of the original artist [11]. Referring to the already seen
Figure 2.3a, the map containing the only measured grid points can be seen as the
corrupted painting. All the missing values are the points of the painting we want
to restore, following the original behaviour, that in this case is the real magnetic
field behaviour.
The digital image inpainting is a well known problem and nowadays there are many
methods used to solve it [20]. One of the most common methods relies on using par-
tial differential equations (PDE) for each of the missing values of the image or the
magnetic map. To use this inpainting method in the map generation framework,
a function [13], that is available on the MATLAB "File Exchange" community,
is integrated into the framework. The function enables to inpaint a matrix over
missing values with five different boundary conditions. Between the five boundary
conditions, only two of them are found to be suitable for map generation purposes,
returning realistic magnetic maps as a result. The first of the two methods is based
on PDE, thus, from now on, it will be mentioned as inpaint PDE. It solves the
Laplacian equation for each missing value by considering the four adjacent neigh-
bors (two on the x axis and two on the y axis) as constraints. In Figure 3.4, it is
noticeable that with this method there is still the same problem as the linear ex-
trapolation, with the magnetic field diverging outside the convex hull. The second
of the two feasible methods has been named inpaint NaNs (NaN stands for Not-
a-Number). It uses the "spring metaphor", which means that each of the missing
values is modelled as if it is connected with a spring to the 8 neighbors. In this
method, a linear system of 8 equations is solved for each of the missing values. A
"spring" weight equal to 1 is assigned to each of the neighbors along the x and y
axis while "spring" weight equal to 1√

2 is assigned to the diagonal neighbors.
Another common methodology that is employed for image inpainting purposes
uses the discrete cosine transform (DCT). In this regard, another inpainting tech-
nique [15][16], taken from the MATLAB "File Exchange" community, is added to
the map generation framework. The function, in the following referred as inpaint
DCT, performs an iterative process based on discrete cosine transforms. At first,
a DCT of the input data is performed. After that, a nearest interpolation is made
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Figure 3.4: Inpaint PDE magnetic magnitude map

in the transform domain. Finally, an inverse discrete cosine transforms (IDCT) is
performed. The iterative process converges to the estimated magnetic map.
In Figure 3.5a and 3.5b, it is possible to see the result of the magnitude map ob-
tained using, respectively, inpaint NaNs and inpaint DCT. A relevant result is that
using these two methods, the generated maps are not suffering of the previously
described problems. Even though both methods provide smooth results, there is a
trend of inpaint NaNs to create sharp peaks coincident with some of the measured
grid points. Furthermore, sometimes, it tends to flatten interpolated and extrapo-
lated areas. This effect, known as ghost behaviour [20], usually arises when there
are large "holes" between the measured grid points, or, in the image processing field,
between the known pixels. In Figure 3.6a and 3.6b, the described behaviour can
be noticed. In Figure 3.6a, referring to inpaint NaNs, the brightest grid point is a
measured grid point. All around it, it is possible to notice that the other grid points
are flattened, thus, a sharp peak of the magnetic field is generated. In Figure 3.6b,
referring to inpaint DCT, the same area of Figure 3.6a is shown. In this case, it is
possible to notice that inpaint DCT generates a smoother peak. Generally, since
extrapolation is more prone to errors, it is necessary to consider that the surveyor
should maximize the area he is surveying during the magnetic capture for map
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generation. In this way, there are more measured grid points for the interpolation-
extrapolation procedure and the ghost behaviour could be avoided. In fact, if the
surveyed area is well covered, it should be unlikely to have big missing values holes.
Note that, as the final objective of the thesis is to evaluate the 3D magnetic map,

(a) Magnitude inpaint NaNs (b) Magnitude inpaint DCT

Figure 3.5: Magnetic magnitude maps obtained using inpaint NaNs and inpaint
DCT

all the three added map generation methods (inpaint PDE, inpaint NaNs and in-
paint DCT) have corresponding functions able to perform a 3D inpainting. The
newly added methods differ from the MATLAB built-in functions because they do
not provide a parametric function as output of their computations. Their output is
a 2D (for the three dimensional case a 3D) matrix, same size as the input matrix,
with all the missing values replaced with estimated values. In this way, the frame-
work generates magnetic map whose resolution change is constrained, currently,
only to multiples of the smallest grid point dimension (i.e. from 0.25m× 0.25m to
0.5m× 0.5m, 0.75m× 0.75m...).
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(a) Magnitude map inpaint NaNs (b) Magnitude map inpaint DCT

Figure 3.6: Peak of the magnetic magnitude maps obtained using inpaint NaNs and
inpaint DCT

3.4 2D methods evaluation

After the integration of the three additional interpolation-extrapolation methods
in the map generation framework is concluded, it is possible to perform a detailed
evaluation of all the available approaches. The objective is to choose which one is
the most suitable map generation method for the MILE. At this step of the thesis
development, the only available data are two magnetic captures taken in two dif-
ferent office environments prior the thesis. They will be used to generate two maps:
map 1 and map 2.
In a first approach, the idea is to assume that the key metrics to evaluate the
methods could be the magnetic field behaviour of the interpolated-extrapolated
grid points compared to the magnetic field behaviour of the measured grid points.
To analyse these behaviours, some statistics about the measured and the estimated
(through interpolation-extrapolation) values are calculated: the mean value and
the standard deviation. In Table 3.1 the average absolute difference between the
measured values and the interpolated-extrapolated values is shown. Considering
this table, it is not possible to derive meaningful conclusions. The only clear result
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is that using griddata cubic interpolation and linear extrapolation the estimated
map is far from the real magnetic field behaviour. The statistics confirm the visual
analysis of the output map. Furthermore, there is a tendency of the methods using
linear extrapolation to have mean values difference higher than the correspondent
methods using nearest extrapolation. This is mostly due to the divergence of the
magnetic field, seen in Section 3.2, when using linear extrapolation. Beyond the
discussed considerations, there is no further indication about which method repro-
duces the natural magnetic field the best.

Mean values ∆ [µT ]

function interp. extrap. map 1 map 2

scatteredInterpolant linear linear 1.47 1.02
scatteredInterpolant linear nearest 0.61 0.56
scatteredInterpolant natural linear 1.45 1.11
scatteredInterpolant natural nearest 0.60 0.65

griddata linear linear 1.01 1.21
griddata linear nearest 0.44 0.81
griddata natural linear 1.06 1.22
griddata natural nearest 0.41 0.92
griddata cubic linear 8.44 4.76
griddata cubic nearest 1.48 0.57
griddata v4 linear 1.18 1.35
griddata v4 nearest 0.54 0.96

inpaint PDE - - 0.76 1.84
inpaint NaNs - - 0.51 0.74

inpaint DCT - - 0.64 1.10

Table 3.1: Average absolute difference between mean values of measured grid points
and estimated grid points.

In Table 3.2, the average absolute difference between standard deviations of
measured grid points and estimated grid points is shown. The standard deviation
analysis should give information about the magnetic field oscillation around its
mean value. Comparing the standard deviations of measured grid points and es-
timated grid points it would be possible to find which interpolation-extrapolation
methods generate a map close to the natural magnetic field behaviour.
Considering Table 3.2, it is possible to notice that there are four methods with
less than 1µT difference, for both the maps, between the measured and the esti-
mated standard deviations. Consequently, these four methods generate a magnetic
field whose oscillation around its mean value is comparable with the real measured
one. This analysis is still not capable to detect the interpolation and extrapolation
errors shown in Section 3.2. Furthermore, the inpaint NaNs method, that has been
previously described as a good method, is not performing well in this evaluation.
The presence of the flattened values outside the border of the convex hull is in-
fluencing the computation of the standard deviation. As mentioned before, these
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Standard deviation ∆ [µT ]

function interp. extrap. map 1 map 2

scatteredInterpolant linear linear 1.05 1.26
scatteredInterpolant linear nearest 0.98 0.76
scatteredInterpolant natural linear 1.02 1.24
scatteredInterpolant natural nearest 1.16 0.83

griddata linear linear 1.14 1.17
griddata linear nearest 1.15 1.16
griddata natural linear 0.99 1.18
griddata natural nearest 1.34 1.26
griddata cubic linear 21.46 32.45
griddata cubic nearest 1.22 2.57
griddata v4 linear 0.60 0.64
griddata v4 nearest 0.64 0.09

inpaint PDE - - 1.45 3.02
inpaint NaNs - - 2.15 1.25

inpaint DCT - - 0.94 0.41

Table 3.2: Average absolute difference between standard deviation of measured grid
points and estimated grid points.

flattened areas could be avoided with a careful survey of the floorplan when captur-
ing the magnetic field. Following these results, there is the need to design a further
evaluation metric that is able to consider the errors happening in the interpolation-
extrapolation step.

A new evaluation approach is applied based on computing the smoothness of the
maps generated with the available methods. As earlier described, the real magnetic
field is assumed to change smoothly and without discontinuities. To evaluate the
smoothness, a convolution approach is used. The new evaluation approach com-
putes the standard deviation of the difference between each grid point with its
eight neighbors. The difference between diagonal neighbors is evaluated with a
weight of 1√

2 , while the neighbors along the x and y directions are weighted 1. With
this evaluation metric, the interpolation-extrapolation technique showing the low-
est standard deviation is supposed to be the smoothest. In Table 3.3, the results
for the smoothness computed in the described way are shown.
Based on the evaluation of the smoothness, it is evident that inpaint NaNs and
inpaint DCT (as expected) produce a magnetic map smoother than the ones pro-
duced by the MATLAB built-in functions. Furthermore, the method using griddata
natural interpolation and nearest extrapolation is quite close to the smoothness per-
formance obtained by inpaint DCT. As seen in Figure 3.3, although the overall map
looks smooth it still suffers of the nearest neighbor extrapolation error.
Finally, considering the results coming from the previous evaluations and the visual
analysis of the generated maps, it is noticed that inpaint NaNs and inpaint DCT
provide promising results. They do not suffer of the extrapolation errors described
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Smoothness

function interp. extrap. map 1 map 2

scatteredInterpolant linear linear 3.20 2.11
scatteredInterpolant linear nearest 2.91 2.18
scatteredInterpolant natural linear 3.04 2.03
scatteredInterpolant natural nearest 2.73 2.11

griddata linear linear 3.23 2.24
griddata linear nearest 2.77 1.88
griddata natural linear 3.07 2.13
griddata natural nearest 2.57 1.78
griddata cubic linear 7.39 14.73
griddata cubic nearest 3.79 6.42
griddata v4 linear 3.10 2.18
griddata v4 nearest 2.74 1.84

inpaint PDE - - 2.97 2.16
inpaint NaNs - - 2.32 1.53

inpaint DCT - - 2.55 1.71

Table 3.3: Smoothness coefficients, lower value represents smoother map.

before and they are performing well in the smoothness evaluation. Inpaint DCT is
performing good also in the magnetic field statistical behaviour analysis. Neverthe-
less, the results obtained from the previous key metrics analysis are not enough to
conclude that the new added methods provide better performances in the MILE.
As a matter of fact, some of the MATLAB built-in methods provided results close
to the ones of the new added methods. All the methods will be further evaluated
during the performance evaluation of Chapter 6.
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Chapter 4

Magnetic measurement
setup

In this chapter, a magnetic measurement setup able to measure the 3-dimensional
magnetic field is proposed. In contrast to the previous Chapter 3, where the data
were already available and captured prior the thesis, new data is required to pursuit
the main goal of the thesis: the 3-dimensional magnetic fingerprinting. The new data
are captured in the office location where the thesis is developed. For this purpose,
it is possible to use the surveying method (Section 1.2) described in the previous
chapters or, alternatively, to design a new setup able to capture magnetic data in
a more efficient way. Considering that one additional dimension has to be captured
for the 3D map, it has been decided to design a new approach. In fact, for 3D
magnetic measurements, the state of the art method is time consuming. It would
require to carefully follow the surveying procedure for different heights.

4.1 New 3D measurement setup
To be able to design a new magnetic recording setup, it is necessary to know the
requirements for a 3-dimensional magnetic map. In the 2D map generation process,
the map was seen as a grid, in form of a matrix, with some measured grid points and
some interpolated or extrapolated grid points. For the 3D map generation the map
has to be a multi level grid, with each of the levels representing a different height
of the magnetic map. This is translated to an array of matrices in the MATLAB
map generation framework. As in the 2D map generation, also in 3D, there will
be measured grid points and estimated (interpolated or extrapolated) grid points.
The difference is that in 3D, the measured grid points belong to different levels, i.e.
different heights. With this in mind, to record the data for the 3-dimensional map
generation process, a recording setup able to capture the magnetic field at different
heights at the same time is designed. With the state of the art surveying process of
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the magnetic field, the measurements are taken one height level at the time. With
the new proposed method, it is possible to measure several height levels at the same
time.
To accomplish the simultaneous measurement of the magnetic field at different
heights, the cart setup shown in Figure 4.1 is built.

Figure 4.1: Cart setup for 3D magnetic captures

A basic requirement for building a functional cart is to use non-magnetic ma-
terials. The usage of magnetic materials would interfere with the magnetic mea-
surements, thus, it has to be avoided. For this purpose, the main components of
the cart are made of polypropylene, a non-magnetic polymer. The only magnetic
materials are the bearings and the mechanical parts used to fix the wheels to the
moving base. Their presence can be neglected as investigations showed that they
are producing a magnetic interference in a small area around them. The magnetic
interference can be measured in a range of 5 to 10 centimeters away from them.
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The objective of the cart setup is to use different sensors simultaneously at differ-
ent heights. To hold the smartphones, the folder shown in Figure 4.2 is 3D-printed
using PLA, a non-magnetic polymer.

Figure 4.2: 3D-printed folder to locate the smartphone

As can be seen from Figure 4.1, the 3D-printed folders can be set at different
height levels. A total of 7 levels is provided, from 25cm to 175cm. The minimum
distance between the available levels is set to 25cm, following the 2D spacing of the
grid points seen in 2.4.
Considering the materials used to build smartphones, they can be seen as active
magnetic devices. This observation leads us to think that smartphones located in
different levels could interfere reciprocally during magnetic measurements. To check
if it is feasible to have 2 smartphones measuring the magnetic field, with 25cm spac-
ing, a test is conducted. One smartphone is located inside one of the folders and
a magnetic capture is started. The cart is kept in the same position. In this way,
the smartphone measures a constant magnetic field. After a defined time interval,
another smartphone is continuously moved around the fixed smartphone, at a dis-
tance of 25cm. Finally the magnetic signals measured by the fixed smartphone are
analyzed. The aim is to check if there are differences, in the magnetic capture, be-
tween the two phases of the experiment. Figure 4.3 shows the result of the test for
the magnetometer x axis. The blue signal is the magnetic measurement taken when
the second smartphone was not moving around. The corresponding phase of the
experiment is named "interference-off". The orange signal describes the magnetic
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measurement carried out with the second smartphone moving around, at 25cm dis-
tance. This phase is named "interference-on".

Figure 4.3: Interference test result, x axis

From a visual analysis, it is possible to observe that the interference-off and
the interference-on signals are two very similar noisy signals. The interference-off
mean value is −45.054µT and its standard deviation is equal to 0.292µT . The
interference-on mean value is −45.093µT and its standard deviation is equal to
0.289µT . Considering the similarity of these parameters, confirmed also from the
analysis of the y and z axis, it is concluded that there is not any reciprocal inter-
ference between smartphones spaced by 25cm.

4.2 V-SLAM analysis
As seen so far, a crucial step of the map generation process is the matching of the
magnetic measurements with their ground truth position. In the state of the art
method, this step usually takes long time and requires precision from the surveyor.
The surveyor has to carefully follow some reference points with constant speed and
he, or she, has to hold the smartphone in a fixed position (Section 1.2). With the
cart setup, the aim is to propose an approach to speed up the procedure. For this
purpose, the idea is to introduce a V-SLAM setup in the cart. The V-SLAM is a
class of computational algorithms widely used for robotics, autonomous driving,
augmented reality (AR) and virtual reality (VR) applications. The objective of a
V-SLAM algorithm is to simultaneously perform localization and mapping in an
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unknown environment [28]. Introducing a V-SLAM in the cart setup, it is possible
to keep track of the position of the cart while capturing magnetic measurements.
The history of all the positions gives the trajectory of the cart. The V-SLAM returns
also the timestamp related to each position. This means that the surveyor is not
constrained in driving the cart at a constant velocity, the V-SLAM will anyway keep
track of the position at each time instant. The trajectory, associated with the time
information, enables a straightforward coupling of the magnetic measurements with
their ground truth position. Two V-SLAM algorithms are analyzed in the following
subsections.

4.2.1 Google ARCore
ARCore is the platform developed by Google to create augmented reality applica-
tions. It provides three main capabilities: motion tracking, environmental under-
standing and light estimation of the environment [9]. To do this, ARCore uses the
smartphone’s camera to extract the main features of the environment. The features
are used as references to understand how the smartphone is moving in the new
scenario. The estimated movement is combined with data coming from the IMU to
get the smartphone position and orientation within the environment.
In the context of this thesis, the focus is on tracking the smartphone position and
orientation while it takes magnetic measurements in parallel. For this purpose, AR-
Core is employed on the android smartphones that are fixed in the cart setup.
The capture routine for the usage of ARCore consists in walking twice around the
localization area. During the first walk, named "preparatory" walk, the smartphone
runs ARCore without saving the estimated trajectory. This phase is performed to
allow ARCore to capture the main features of the environment. During the sec-
ond walk, the actual estimated trajectory is saved. The double step procedure is
introduced because preinvestigations showed that ARCore performs better when it
already knows the main features of the environment.
To evaluate ARCore performances, a first test is carried out walking in the office
area while holding the smartphone in the hands, not using the cart. The aim is to
find if there are some influencing factors of the final ARCore result.
Different ARCore captures are performed with different approaches. Walking tests
at low velocity and high velocity are performed. Single and double directional
"preparatory" walk are tested, to check possible improvements of the preliminary
feature extraction from the unknown environment. Also, different trajectories (ran-
domly intersecting or non-intersecting paths) are tested.
Analyzing all the estimated trajectories, it is not possible to choose a best perform-
ing ARCore approach. All the proposed approaches give similar results and are
affected by the same errors, shown in Figure 4.4 and 4.5. In Figure 4.4, a trajectory
affected by a noticeable jump discontinuity is shown. For this error, the trajectory
suffers from sudden jumps that produce a discontinuous trajectory instead of a
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Figure 4.4: Example of ARCore result affected by jump discontinuity

Figure 4.5: Example of ARCore result affected by length drift

continuous one. In Figure 4.5, a trajectory affected by a length drift problem is
shown. The length drift problem in V-SLAM systems is a well known problem and
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it represents an open issue in the research field [30]. It leads to a non-reliable esti-
mation of the trajectory length, with extension and/or constriction of some parts
of the trajectory. In Figure 4.5, this is shown as a shrinking of the walked area of
the upper corridor and as an overlapping of the trajectory with furnishings of the
floorplan.
New issues are detected using ARCore on smartphones fixed in the cart’s folders.
The cart setup does not provide any suspension to the smartphones. All the high
frequency mechanical vibrations are transmitted directly from the cart’s wheels to
the smartphones. The vibrations are translated to a blurry image captured by the
smartphone’s camera. To handle this problem, the cart is moved at slow velocity,
trying to reduce the impact of the vibrations on the captured images. Eventually,
the slow velocity is not enough to reduce the images blurriness and the VSLAM
produces worse results. Even though ARCore uses IMU data, it is not able to
compensate for all the vibrations. The results show more jump discontinuities and
length drifts than the ones obtained when the smartphone is held in the hand (as
Figure 4.4 and 4.5).
Another issue is the fact that the results are device and height dependent. Smart-
phones fixed at different heights produce different trajectories. The same smart-
phone produces different results depending on the height it is fixed. Generally, it
is noticed that if the V-SLAM is run on smartphones at higher height levels, it
produces better results. This is explained by a larger view of the environment and,
consequently, a more effective feature extraction for ARCore. Regarding the device
dependence, usually, more powerful smartphones provide more accurate results.
In Figure 4.6 and 4.7, two trajectories obtained from two different smartphones,
a Sony Xperia 5 at 1m height and a Sony Xperia XZ3 at 0.5m respectively, are
shown. As expected, the higher smartphone gives a better result. Nevertheless, it
still returns a lot of jump discontinuities and length drifts (visible where the tra-
jectory overlaps the floorplan furnishings).
The choice of the trajectory for the map generation and a post-processing step,
that is necessary to fix the described errors, will be introduced in Section 4.3.
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Figure 4.6: Trajectory obtained using ARCore applied to a Sony Xperia 5, fixed to
the cart at 1m height

Figure 4.7: Trajectory obtained using ARCore applied to a Sony Xperia XZ3, fixed
to the cart at 0.5m height
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4.2.2 PSG V-SLAM

The PSG V-SLAM is a V-SLAM system developed by the "Perception Systems
Group" in the Sony Technology Center. As ARCore, the PSG V-SLAM is based on
a sensor fusion approach. It uses camera images and inertial measurements coming
from the device’s IMU. The main features extracted from the images come from the
floor and from the ceiling of the environment. For this reason, it is recommended
to record the images at a middle height between the floor and the ceiling. The IMU
data and the images are used, as in ARCore, to get the device position, orientation
and to better understand its movements within the environment.
In contrast to ARCore, the PSG V-SLAM runs offline and it is not executed on
the device. The V-SLAM is performed on a server with high computational power
after the data are recorded. Considering that the V-SLAM is introduced for mag-
netic map generation purposes and that the aim is not to design a real-time map
generation process, the PSG V-SLAM offline execution is not a drawback.
To use the PSG V-SLAM, a GoPro Hero 8 is added to the measuring cart setup
shown in Figure 4.1. The GoPro captures video and IMU data that is subsequently
processed by the PSG V-SLAM. In Figure 4.8 and 4.9, two trajectory results are
shown. Both results are obtained using PSG V-SLAM based on GoPro videos that
are recorded using the cart setup.

Figure 4.8: Trajectory obtained using PSG V-SLAM applied to a video recorded
by a GoPro, fixed to the cart at 1.5m height
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Figure 4.9: Trajectory obtained using PSG V-SLAM applied to a video recorded
by a GoPro, fixed to the cart at 1.25m height

In Figure 4.8 and 4.9, the PSG V-SLAM produces continuous output trajec-
tories. The jump discontinuity problem, described for Google ARCore in Section
4.2.1 and visible in Figure 4.4, is not present when using the PSG V-SLAM. Despite
solving the jump discontinuity problem, the PSG V-SLAM output trajectories are
still affected by the length drift problem. As described before, this is a non-trivial
problem and its solution is not object of study in the context of this thesis. In the
following Section 4.3, a post-processing routine is introduced to mitigate trajecto-
ries errors.
In contrast to ARCore V-SLAM, the PSG V-SLAM does not require a double walk
within the analyzed environment. Furthermore, considering multiple tests, the PSG
V-SLAM’s capability to provide good results handling the steady cart vibrations
is proven. This robustness of the PSG V-SLAM enables the possibility to increase
the cart velocity during the data capture phase. In this regard, the same area that
was covered using ARCore and considering only the second walk in 10 minutes and
59 seconds (Figure 4.6), is covered with PSG V-SLAM in 6 minutes and 37 seconds
(Figure 4.8).

Summarizing the observations of the previous Section 4.2, it was found that AR-
Core results suffer of the jump discontinuity and of the length drift problem. Fur-
thermore, for ARCore it is necessary to walk twice in the localization area. The
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advantage of using ARCore is that the trajectories results are available right after
the capture is finished due to the fact that the V-SLAM runs directly online on
the smartphone. On the opposite, considering PSG V-SLAM, it was found that its
results suffer of the length drift problem only. Moreover, with PSG V-SLAM, there
is not the requirement to walk twice in the localization area and it is possible to
move the cart with higher velocity due to its robustness. The disadvantage of using
PSG V-SLAM is that the trajecory results are not available right after the capture
is taken. It is necessary to perform the V-SLAM on the server. Usually, this step
takes up to 2 hours for a 8 minutes track.

4.3 Trajectory correction

In the previous Section 4.2, two V-SLAM systems were introduced with the aim to
keep track of the cart position within the environment during the magnetic mea-
surement phase. In this section, a post-processing routine is presented to improve
the V-SLAM trajectories results. Afterwords, the final choice on the most suitable
V-SLAM approach for magnetic map generation is made.
For both the V-SLAM systems, a trajectory correction step is performed. The cor-
rection step is necessary to ensure a high quality of the magnetic map. As a matter
of fact, using the trajectory as it is given by the V-SLAM systems leads to a wrong
magnetic map. Due to the incorrect matching of the magnetic measures and their
ground truth positions, the generated magnetic map does not describe the real
magnetic field. To improve the V-SLAM trajectories, a correction step based on
reference points and Helmert transformations is introduced. The Helmert transfor-
mation is a 3D transformation consisting of a roto-translation and a scaling of a
set of points [29]. It is a similarity transformation. At first, some reference points
are introduced in the floorplan. The reference points are some known points manu-
ally set on the floorplan. Usually, they are set by checking the recorded video from
the cart during the data capture. Whenever a misalignment between the position
shown in the recorded video and the raw trajectory result is found, a reference
point is set in correspondence of the position estimated by the video analysis. Once
N reference points are set, the raw trajectory is divided in N − 1 segments. For
each segment, a Helmert transformation is performed forcing the trajectory to pass
through the reference points. Finally, the transformed trajectory is similar to the
true trajectory.
In Figure 4.10 and 4.11, two corrected trajectories are shown, returned respectively
from ARCore and PSG V-SLAM.
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Figure 4.10: Transformed ARCore V-SLAM trajectory

Figure 4.11: Transformed PSG V-SLAM trajectory

In this context, the reference points choice is important, as it is influencing the
final trajectory. Currently, the choice of the reference points is performed manually
and it depends on the accuracy of the person performing this task. To obtain a
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precise reconstruction of the trajectory, this procedure is time consuming and takes
up to 3 hours, as in the case of the 58 reference points set in Figure 4.10.
From Figure 4.10 and 4.11, it is evident that the PSG V-SLAM trajectory, af-
fected by the only length drift problem, requires almost a quarter of the number
of reference points used for ARCore trajectory. In Figure 4.10, referring to ARCore
V-SLAM, 58 reference points are used. In Figure 4.11, referring to PSG V-SLAM,
14 reference points are used. The difference between the two approaches is mainly
due to the absence of the jump discontinuities in PSG V-SLAM trajectories. In
fact, the jump discontinuities require a lot of reference points more. Consequently,
more time is needed to set all the reference points. Overall, considering the previous
observations, the PSG V-SLAM is chosen as the system used during the magnetic
measurement process, responsible to track the cart position.
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Chapter 5

3-dimensional magnetic map
generation and MILE
extension

In this chapter, the central topic is the 3-dimensional magnetic map generation
process. Once a reliable magnetic measurement setup is designed, the 3D magnetic
map of the localization area can be generated. At first, the 3D map generation
procedure is described. Consequently, different 3D interpolation-extrapolation ap-
proaches are introduced and evaluated to have a realistic magnetic map. Finally,
the MILE is extended to be able to work in 3-dimensional space.

5.1 3D map generation
Once the V-SLAM system has been chosen, it is possible to execute the 3D map
generation process. As described in the previous Section 4.3, a GoPro is added to
the cart setup of to use the PSG V-SLAM, as shown in Figure 5.1. The task of
the GoPro is to record the video, that will be processed with the PSG V-SLAM,
while, simultaneously, some smartphones are used to capture the magnetic field of
the surveyed environment.
To capture the magnetic recording on the smartphones and the video on the GoPro,
the procedure is manually executed following the next consecutive steps:

1. All the needed smartphones are calibrated. The choice on which calibration
method to be used will be further discussed in the next Section 5.2.

2. The magnetic capture is started for all the smartphones.

3. The GoPro video recording is started.
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Figure 5.1: GoPro fixed to the cart

4. The cart is moved around the surveyed environment, accurately covering the
whole area.

5. The GoPro video recording is ended.

6. The magnetic capture is ended for all the smartphones.

As described before, the GoPro is used to keep track of the position of the cart dur-
ing the magnetic measurement phase. Considering the described procedure, there is
a delay between the start of the magnetic capture of each of the used smartphones
and the start of the GoPro video. It is noticeable also the delay between the end
of the GoPro video recording and the end of the magnetic measurements. In this
context, a synchronization step between the video and the magnetic measurements
is needed. To perform this task, a cross correlation is applied to the accelerome-
ter data recorded by the smartphones and from the GoPro. The cross correlation
is a signal processing technique useful to align two discrete-time signals, if one is
delayed with respect to the other [24]. The accelerometer data are discrete-time
signals whose sampling frequency is defined by the sensor. To perform a successful
cross correlation, it is necessary that the two signals, in our case the accelerometer
data, have the same sampling frequency. In the considered case, all the devices
and the GoPro have different sampling frequencies. Thus, before performing the
cross correlation, a preliminary resampling to a common frequency is needed. All
the accelerometer signals are resampled to 50Hz, the sampling frequency of the
GoPro accelerometer. Subsequently, the cross correlation is performed between the
accelerometer data of each of the smartphones and the GoPro. In Figure 5.2, an
example of the cross correlation between one of the smartphones and the GoPro is
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visualized.
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Figure 5.2: Cross correlation example and alignment

In Figure 5.2, in the left graph, two asynchronous signals are shown. In the right
graph, one of the two signals, the "smartphone 1" signal is delayed by 1489 sam-
ples in order to synchronize it to the GoPro signal. The timestamp of the 1490th
"smartphone 1" sample is used as first magnetic measure timestamp. All the mag-
netic measures captured before are not considered. Actually, the discarded magnetic
measures belong to the time interval during which the operator is setting up the
cart before starting the GoPro video recording. After synchronization, the last mag-
netic measure corresponds to the last synchronous sample between the GoPro and
the smartphone. After that sample, all the magnetic measures belong to the time
interval starting after the operator ends the GoPro video recording.
Once the magnetic measurements are correctly matched with the positions on the
floorplan, it is necessary to get the smartphones orientation along the walked trajec-
tory. The orientation is required to correctly transform the magnetic measurements
from the sensor reference frame Kijk to the earth reference frame Kxyz. During the
magnetic measurement phase, the smartphones and the GoPro move rigidly fixed to
the cart. If their pose on the cart is carefully fixed, it is possible to assume that all
the devices have the same orientation. In this way, the GoPro orientation obtained
from V-SLAM is associated to all the smartphones. To do so, it is necessary to
notice that the V-SLAM reference frame Kabc is different from the sensor reference
frame Kijk. Consequently, a rotation is performed from Kabc to Kijk in order to
have the sensor orientation in the correct reference frame.
Finally, having the magnetic field sensed by different smartphones at different
heights and knowing the smartphones orientation, the 3-dimensional magnetic map
is generated. In this context, four 3-dimensional interpolation-extrapolation meth-
ods are evaluated: inpaint DCT 3D, inpaint PDE 3D, inpaint NaNs 3D and interp3.
The first three methods, inpaint DCT 3D, inpaint PDE 3D and inpaint NaNs 3D are
the natural extensions to 3D of the methods described in Section 3.3, inpaint DCT,
inpaint PDE and inpaint NaNs. The fourth method, interp3, is a MATLAB built-
in function to perform 3-dimensional interpolation and extrapolation. It provides
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different interpolation-extrapolation algorithms. The interp3 function requires, as
input, an array of 2D matrices where each of the array elements is a 2D map related
to a specific height. A basic requirement is that each of these 2D maps has to be
fully defined, without missing values. This means that, as we measure only some
trajectory grid points for each height, a preliminary 2D interpolation-extrapolation
is performed for each measured height before using interp3.

5.2 3D map evaluation

In this section, the 3D map generation methods inpaint DCT 3D, inpaint PDE
3D, inpaint NaNs 3D and interp3 are evaluated. Subsequently, in Section 5.2.3, an
evaluation of the available calibration methods is performed.
Besides evaluating the 2D behaviour of the magnetic field at a fixed height, for a
3D magnetic map the analysis of the vertical section of the map is additionally
possible. Through the vertical section analysis, some early observations about the
magnetic field behaviour along the height can be formulated. In Figure 5.3, 5.4 and
5.5, the vertical section is generated using, respectively, inpaint DCT 3D, inpaint
PDE 3D and inpaint NaNs 3D. In Figure 5.6 and 5.7, the same vertical sections
are obtained using, respectively, interp3 spline and interp3 makima. Both spline
and makima algorithms are based on two different modified cubic interpolations
provided by MATLAB [19]. Other interpolation algorithms for interp3 exist but,
in this context, they provide unreliable results. In figure 5.8, an example of wrong
result is shown, obtained using interp3 cubic.

Figure 5.3: Magnetic map magnitude vertical section generated by inpaint DCT 3D
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Figure 5.4: Magnetic map magnitude vertical section generated by inpaint PDE 3D
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Figure 5.5: Magnetic map magnitude vertical section generated by inpaint NaNs
3D

Figure 5.6: Magnetic map magnitude vertical section generated by interp3 spline
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Figure 5.7: Magnetic map magnitude vertical section generated by interp3 makima
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Figure 5.8: Magnetic map magnitude vertical section generated by interp3 cubic

In the previous pictures, the measured levels are the ones at height 0.5m, 1.0m
and 1.5m. Thus, in the vertical sections from Figure 5.3 to 5.8, there are two interpo-
lated levels (heights 0.75m and 1.25m) and three fully extrapolated levels (heights
0.25m, 1.75m and 2.00m). From the vertical sections, it is clear that the extrapo-
lation is critical. For inpaint PDE 3D (Figure 5.4), interp3 spline (Figure 5.6) and
interp3 makima (Figure 5.7), it is evident the creation of unexpected peaks in ex-
trapolated levels. These peaks at heights 1.75m and 2.00m are not realistic because,
considering the magnetic field behaviour at low heights, a smoother evolution at
high heights is expected. The vertical sections obtained using inpaint DCT 3D and
inpaint NaNs 3D provide more realistic results. With respect to Figure 5.3 and 5.5,
the magnetic field behaviour seems to be smoother and more natural compared to
the results obtained using inpaint PDE 3D and interp3.

To evaluate 3D magnetic maps, the most accurate way would be to directly compare
them with the ground truth magnetic map. In this way, the map generation method
that shows less differences with the ground truth map is the one producing the best
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result. Unfortunately, the ground truth map is by itself a generated map, affected
by uncertainties as the smartphones sensitivity, the accuracy of the trajectory used
for map generation and from the chosen interpolation-extrapolation algorithm. In
the following subsections, some evaluation metrics are introduced that are useful
to evaluate the generated magnetic maps without the need of a ground truth map.
For a final evaluation of the magnetic maps, their performances within the MILE
will be investigated in Chapter 6.

5.2.1 Smoothness
A first approach to evaluate the 3D magnetic maps, is the evaluation of their
smoothness. For this metric, the same smoothness computation approach explained
in Section 3.4 is adopted. In the case of a 3D map, the computation is iterated for
each of the height levels. For this purpose, a new magnetic map is generated based
on measurements taken at three heights, 0.25m, 0.75m and 1.25m. The measure-
ments are taken using the cart setup and following the 3D map generation procedure
described in Section 5.1. The test bed and the generated magnetic maps can be
found in Appendix A. The final magnetic map consists of six height levels, with
three of them containing some measured grid points, two of them fully interpo-
lated and one fully extrapolated. A total of five magnetic maps are generated using
inpaint DCT 3D, inpaint PDE 3D, inpaint NaNs 3D, interp3 spline and interp3
makima. For both interp3 methods, the preliminary 2D interpolation-extrapolation
is performed using inpaint DCT (the 2D version). The results of the smoothness
analysis are shown in the next Table 5.1.

3D smoothness

height [m] inpaint DCT 3D inpaint PDE 3D inpaint NaNs 3D interp3 spline interp3 makima

0.25 0.76 1.62 0.74 0.81 0.81
0.50 0.57 1.17 0.39 0.66 0.64
0.75 0.62 0.99 0.61 0.64 0.64
1.00 0.48 0.86 0.32 0.55 0.54
1.25 0.65 1.08 0.65 0.69 0.69
1.50 0.63 1.46 0.35 1.40 1.12

Table 5.1: Smoothness coefficients for the 6 heights 3D magnetic map, lower value
represents smoother map.

Referring to the previous table, it is noticeable that, like it was for the 2D
evaluation, the inpaint NaNs method produces the smoothest map also in 3D.
Furthermore, comparing the smoothness of inpaint NaNs 3D between height lev-
els that contain some measured grid points (0.25m, 0.75m and 1.25m) and the 3
interpolated-extrapolated levels (0.50m, 1.00m and 1.50m), there is a big difference
between the smoothness coefficients values. This result is confirmed from the visual
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analysis of the inpaint NaNs 3D map, where a flattened behaviour of the magnetic
field is noticed for the interpolated-extrapolated levels. In other words, also in 3D,
inpaint NaNs suffers of the previously described ghost behaviour (Section 3.3).
For what concerns inpaint DCT 3D and inpaint PDE 3D, they show opposite
smoothness behaviours. The inpaint DCT 3D shows a constantly low value in Ta-
ble 5.1, confirming a smooth map for all the levels. On the other side, inpaint PDE
3D presents high values of the smoothness coefficients, describing a map with dif-
ferent spikes in all the levels.
Regarding the 3D magnetic maps obtained using interp3, it is observed that the
extrapolated levels show a clearly worse performance in terms of smoothness. The
last observation is justified by the previous considerations about the vertical sec-
tions shown in Figure 5.6 and 5.7.
However, the only smoothness metric is not enough to accurately evaluate the 3D
map generation methods; further evaluation metrics are required.

5.2.2 Statistical behaviour of the 3D magnetic field

As in the 2D methods evaluation (Section 3.4), another approach for the evalua-
tion of the 3D magnetic map generation methods is based on the magnetic field
statistical behaviour. The method consists in comparing the mean values and the
standard deviations of measured grid points and estimated (through interpolation-
extrapolation) grid points. From the comparison, an evaluation on which of the map
generation methods generate a realistic magnetic field is obtained. For the purpose
of this evaluation, the same 3D magnetic maps of the smoothness analysis (Section
5.2.1) are used. In the 3-dimensional case, the comparison between measured grid
points and interpolated-extrapolated grid points is made for all the three measured
levels (0.25m, 0.75m and 1.25m). In the following Tables 5.2 and 5.3, the average
results of the three levels comparisons are shown.

Method Mean values ∆ [µT ]
inpaint DCT 3D 0.11
inpaint PDE 3D 2.62
inpaint NaNs 3D 0.05
interp3 spline 0.19
interp3 makima 0.19

Table 5.2: Average absolute difference between mean values of measured grid points
and estimated grid points of the 3D magnetic map.
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Method Standard deviation ∆ [µT ]
inpaint DCT 3D 0.37
inpaint PDE 3D 5.73
inpaint NaNs 3D 1.31
interp3 spline 0.43
interp3 makima 0.42

Table 5.3: Average absolute difference between standard deviations of measured
grid points and estimated grid points of the 3D magnetic map.

Referring to Table 5.2, it is not possible to reach conclusive results. Apart from
inpaint PDE 3D, the average difference between the mean values of measured grid
points and estimated grid points is very similar for the other four proposed 3D map
generation methods.
A slightly different result is found in Table 5.3. In this case, inpaint PDE 3D and
inpaint NaNs 3D show a clear high standard deviation difference. Inpaint DCT
3D and the two interp3 methods still provide similar results. Table 5.3 shows the
average absolute difference between standard deviations of measured grid points
and estimated grid points. As described in Section 3.4, the standard deviation of
the magnetic field can be seen as a number that describes its oscillation around
its mean value. The difference of the standard deviations shows how different the
oscillation of the measured grid points’ magnetic field is compared to the one of
estimated grid points. Low values of this metric indicate map generation methods
that generate a realistic magnetic field behaviours. Consequently, according to the
described approach, inpaint PDE 3D is the worse of the considered methods. More-
over, it follows that inpaint DCT 3D and the two interp3 methods generate the
most realistic magnetic field behaviour between the analyzed methods.
Nevertheless, comparing the magnetic maps generated using inpaint PDE 3D and
inpaint DCT 3D, it is found that the biggest difference between the two maps be-
longs to grid points outside the convex hull or grid points coincident with no-go
areas. In Figure 5.9, the green areas of the map are those areas were the difference
between inpaint DCT 3D and inpaint PDE 3D is less than the mean difference
between the two maps. On the opposite, the red areas of the map are those areas
were the difference between inpaint DCT 3D and inpaint PDE 3D is higher than
the mean difference.
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Figure 5.9: Comparison between inpaint DCT 3D and inpaint PDE 3D

Referring to the previous comparison and considering that most of the differ-
ences belong to not commonly walked areas, it is not possible to conclude which is
the preferable map generation method.
The evaluations will be further discussed in Chapter 6, in the context of the per-
formance evaluation inside the MILE.

5.2.3 Calibration methods evaluation

In Section 2.2.1, the two calibration approaches available in the MILE were de-
scribed. They are the ellipsoid method and the android method. To evaluate which
of the two calibration methods is the most reliable one, a test is performed as
schematized in Figure 5.10. A magnetic capture is performed, in the same test bed
area used in the previous Section 5.1 and 5.3. For the purpose of the test, five
levels are measured from 0.25m to 1.25m using the cart setup with five different
smartphones. Subsequently, the five levels are split in two groups. The first group,
that consists of level 1 (0.25m), level 3 (0.75m) and level 5 (1.25m), is used to
generate Map 1. Thus, Map 1 consists of three measured levels and 2 interpolated-
extrapolated levels. The second group, that consists of level 2 (0.50m) and level 4
(1.00m), is used to generate Map 2. Thus, Map 2 consists of two measured levels
and three interpolated-extrapolated levels. The obtained 3D magnetic maps are
compared level by level. In each comparison, the measured grid points of one map
are compared with the correspondent grid points of the other map.
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Figure 5.10: Test scheme used for calibration methods evaluation

The expected outcome of the comparisons is to have higher differences for those
levels where the calibration did not perform well. As now the focus is on the cali-
bration methods evaluation, for the described test both the maps, Map 1 and Map
2, can be generated using independently one of the previously described 3D map
generation methods. The following Tables 5.4 and 5.5 show results referring to maps
generated using inpaint DCT 3D.

Ellipsoid calibration
Level Magnitude ∆ [µT ] Inclination ∆ [deg] Azimuth ∆ [deg]
1 1.85 3.11 9.12
2 1.44 1.64 5.30
3 1.84 0.94 2.63
4 1.60 0.84 2.35
5 1.23 2.53 6.21

Table 5.4: Evaluation test results for ellipsoid calibration

Android calibration
Level Magnitude ∆ [µT ] Inclination ∆ [deg] Azimuth ∆ [deg]
1 2.84 5.66 18.83
2 3.58 5.96 16.44
3 5.20 4.85 11.11
4 2.15 1.90 4.03
5 0.91 1.57 2.88

Table 5.5: Evaluation test results for android calibration
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From the tables, it is possible to conclude that the ellipsoid calibration shows
more stable results compared to the ones of android calibration. Referring to Table
5.5, the first three levels have an high difference comparing the measured and the
estimated grid points. This outcome can be explained assuming that at least one of
the three levels has magnetic measurements affected by a poor calibration. In fact,
if level 2 is the level that suffers from a poor calibration, also the levels adjacent to
it are influenced by level 2 values. To prove this assumption, a new map is generated
following the same procedure that is used for obtaining the results of Table 5.4 and
5.5. This time an ellipsoid calibration is used, where the calibration parameters for
level 2 are manually changed to emulate a wrong calibration for level 2. The result
of this test is shown in Table 5.6.

Faked ellipsoid calibration
Level Magnitude ∆ [µT ] Inclination ∆ [deg] Azimuth ∆ [deg]
1 7.30 24.09 57.47
2 6.74 21.30 60.02
3 3.40 10.22 29.59
4 1.60 0.84 2.35
5 3.13 2.89 8.70

Table 5.6: Evaluation test results for the faked ellipsoid calibration

In Table 5.6, it is evident that if one level is affected by a poor calibration, it
influences also the adjacent levels. Consequently, it is proven that in Table 5.5 at
least one of the first three levels is affected by a bad calibration. Eventually, it is
possible to conclude that the android calibration method results are smartphone
dependent, thus, it is preferable to use ellipsoid calibration.

In the context of the test of Figure 5.10, it has been tried to use the level by level
comparison to benchmark the available 3D map generation methods. Theoretically,
comparing the measured grid points of one of the two maps with the correspondent
estimated grid points of the other map, it could be possible to evaluate which of the
map generation methods provide a result most similar to the real measured mag-
netic field. In practice, in the considered test, the estimated grid points are always
found in between the two measured grid points of the two adjacent measured levels.
Thus, as a result of the comparison, it is not possible to find differences between
the different 3D interpolation-extrapolation methods. In fact, the main differences
between the 3D maps are located on grid points far from the measured grid points,
where the ground truth data are not available.
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5.3 MILE 3D extension
In this section, the MILE framework is extended to work in 3-dimensional space.
As seen so far, a new 3D magnetic map generation process has been introduced in
the previous sections. To be able to use a 3D magnetic map inside the MILE, an
extension of the engine capabilities is needed. As seen in Section 2.5, the state of
the art MILE is based on a 4-dimensional particle filter. It defines the user state as
a 4-dimensional vector s = [x, y, θ, l]. Where x and y are the 2D coordinates of the
user in the localization area, θ is the motion heading and l is the step length. In
order to use a 3D magnetic map instead of the state of the art 2D map, the height z
is added to the user state vector. The extended user state is a 5-dimensional vector
s = [x, y, z, θ, l].
Considering the previous vector state extension, the core of the MILE becomes a 5-
dimensional particle filter. The particle filter workflow remains the same described
in Section 2.5 and in Figure 2.4. Nevertheless, some modifications are necessary to
handle the additional state variable z.
In the particles initialization step, z is initialized according to a uniform distribution
between 0m and 2m. During the performance evaluation phase (Chapter 6), the
height tracking capability of the engine will be evaluated. As a second option, the
initialization of z according to a gaussian distribution that is centered at 1.25m is
implemented.
Concerning the updating step, a fifth equation is added to the 2D motion model
(Equations 2.2). The new motion model is given by:

θtk = θt−1
k + ∆θt + nθ (5.1a)

ltk = lt + nl (5.1b)
xtk = xt−1

k + ltk · cos(θtk) (5.1c)
ytk = yt−1

k + ltk · sin(θtk) (5.1d)
ztk = zt−1

k + ∆zt + nz (5.1e)

where ∆θt, lt and ∆zt are, respectively, the heading change, the movement length
(in the earth plane xy) and the estimated height variation derived from the PDR
output. nθ, nl and nz are three additive gaussian noises used to handle, respectively,
the heading change, the movement length and the estimated height variation un-
certainties.
Regarding the weighting step, the observation model P (zt|st) is the same as in the
2D case, described by equation 2.3. In this step, the only modification is related
with the observation function obs(st) used in the magnetic likelihood mode Pmag.
The observation function returns the magnetic map values at the particles posi-
tions for the considered state st, at time t. In the 3D MILE, obs(st) performs a
3-dimensional linear interpolation based on the 3D magnetic map grid points.
For the resampling step and the position estimation step is not required any change.
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They execute the same instructions both for the 2D and the 3D MILE, with the
difference that the 3D MILE estimated position is returned in 3-dimensional space.
Due to the described modifications, the MILE is provided of the 3D capability. If a
2D database magnetic map is chosen, the MILE executes the 2D version described
in Section 2.5. If a 3D database map is chosen, the MILE executes the 3D version
described in the current section.
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Chapter 6

Performance evaluation

In this chapter, the performances of the MILE using 3D and 2D maps are investi-
gated and compared. The objective is to analyse the positioning accuracy, using 3D
magnetic maps instead of 2D magnetic maps, and to find out the height tracking
capabilities of the 3D engine.

6.1 Test bed and dataset collection
For the performance evaluation, a new office area is chosen as test bed. The area
used for the 3D map evaluation (Section 5.2), shown in Appendix A, is not suit-
able for the MILE performances analysis. For a reliable performance evaluation, a
bigger area is needed, where multiple paths can be walked. The office area shown
in Figure 6.1, defined by the red rectangle, is chosen. The selected area is a 452m2

office area and, as visible from the picture, it gives the possibility to walk along
different loops.
To generate the magnetic map using the procedure described in Section 5.1, four
smartphones are fixed at different heights. A Nokia 9 at 0.25m, a Sony Xperia XZ3
at 0.75m, a Sony Xperia 5 at 1.25m and a Google Pixel 4 at 1.75m. Based on the
magnetic measurements at the four levels, the 3D magnetic map is generated with
eight levels, from 0.25m to 2.00m heights, with 25cm spacing between the levels. To
generate the magnetic map, the ellipsoid calibration of the magnetic sensor is used,
according to the results of Section 5.2.3. As one of the objectives is to compare the
3D vs 2D performances, the 2D magnetic map is generated using only the measure-
ments from the smartphone at the height 1.25m. The choice of the height for the
2D magnetic map is based on the average height a smartphone is typically held by
an adult user in portrait mode. The raw trajectory, the corrected trajectory and
the magnetic maps are shown in Appendix B. For what concerns the 3D magnetic
map (for this example generated using inpaint DCT 3D), it is noticeable that the
average vertical difference of the magnitude, between 0.25m and 2.00m, is 3.46µT .
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Figure 6.1: Test bed for performance evaluation

The highest vertical difference is 29.85µT and the lowest is 0µT . If we limit the
investigation to the typical utilization range of a smartphone, i.e. analyzing the
vertical differences between 1.00m and 2.00m, the following results are obtained:
the average vertical difference becomes 2.51µT , the highest vertical difference is
18.55µT and the lowest is 0µT . From the previous observation, possible advantages
are expected when using the 3D magnetic map instead of the 2D map. In general,
the average vertical difference seems to be relatively low (2.51µT ) compared to
the full range of vertical differences (0µT -18.55µT ). Thus, in different areas of the
localization area, the 3D magnetic map will not increase the amount of magnetic
information given by the 2D map.

Once the magnetic maps are generated, a first dataset of human walks is cap-
tured for the performance evaluation. For this purpose, the following five Android
smartphones are used:

• Sony Xperia 5

• Sony Xperia XZ3
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• Google Pixel 4

• Nokia 9

• Samsung Galaxy s10e

The dataset, named Dataset 1, consists of measurements captured at four differ-
ent heights: 1.00m, 1.25m, 1.50m and 1.75m. Each of the smartphones is used to
capture six walks of 2 minutes, for each of the measured heights. In this way, for
each of the measured heights, a total of 1 hour of walking is recorded. Overall, the
complete dataset consists of 4 hours of human walks.
A second dataset, named Dataset 2, is recorded using the five smartphones at vari-
able heights during the walk. Each of the smartphones is used to capture two walks
of 3 minutes. During the first minute of walk, the smartphones are held at 1.00m
height. During the second minute they are held at 1.25m height and, finally, during
the third minute they are held at 1.50m height. Overall, the second dataset consists
of 30 minutes of human walks at variable heights that will be useful to evaluate the
height tracking capability of the MILE. For both the datasets, the ellipsoid cali-
bration of the magnetic sensor is used according to the results described in Section
5.2.3.
To keep the smartphone height at a constant level during the measurements, a ref-
erence signal in form of a tape on the surveyor’s body is fixed at a reference height.
Thus, the surveyor walks around the selected area trying to keep the smartphone in
correspondence of the reference height. In this regard, the smartphone oscillations
during the walk are used (and necessary) to perform the PDR estimation (Section
2.3). The human walk track capture procedure consists of two steps. In the first
step the smartphone’s sensor is calibrated according to the previously described
procedure (Section 2.2.1). In the second step, the surveyor walks around the eval-
uation area keeping track of his ground truth positions within the floorplan. To
keep track of the ground truth 2D positions, an app is used that was developed
for the purpose of the indoor localization project. Using the app, the surveyor sets
some reference points by tapping on the floorplan during his walk, in real time.
Usually, some characteristic points are set as reference points, like the end of a cor-
ridor, a shelf or a specific table. The ground truth position between two successive
reference points is computed as a linear interpolation over the time between the
two reference points. In Figure 6.2, the ground truth trajectory in green and the
MILE estimated positions in red are shown. Using the described procedure, the
ground truth trajectory depends on the surveyor’s accuracy during the reference
points setting. For this reason, to perform a reliable performance evaluation, the
whole dataset is captured by the same surveyor. In this way, the obtained results
are affected by the same surveyor’s accuracy.

57



6 – Performance evaluation

50 52 54 56 58 60 62 64 66 68

[m]

26

24

22

20

18

16

14

12

10

8

6

4

2

-0

[m
]

Figure 6.2: Ground truth walk (in green) and MILE estimated localization (in red)

6.2 Localization accuracy

The localization accuracy performances are used to benchmark the magnetic maps
performances within the MILE. All the previously described 2D and 3D magnetic
maps are tested, one at the time, as database magnetic map of the MILE. In this
context, the walk recordings introduced in the previous Section 6.1 are used to
simulate a user of the indoor localization system. After each of the walk record-
ings is processed by the MILE, a cumulative distributive function (CDF) of the
estimation error is used to evaluate the MILE performance. The estimation error
is computed as the distance between the estimated position and the ground truth
position, obtained as described in the previous Section 6.1. In Figure 6.3, the CDF
for a walk simulation example is shown. Referring to Figure 6.3, the 50% of the
CDF can be used as metric to evaluate the accuracy of the MILE. The 80% and
90% of the CDF can be used as metrics to evaluate the robustness of the MILE.
As described in Section 2.5, one of the core steps of the particle filter is the
weighting step. In this step a gaussian pseudo-distribution model is employed as
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Figure 6.3: CDF of the estimation error for a sample walk

observation model, to weight all the particles according to their similarity with some
measured observations. As described in Section 2.5, the weighting step (or likeli-
hood update step) is divided into three sub-likelihood observation modes: Pmag,
P pdr and P flr. It was described that only the magnetic mode Pmag and the PDR
mode P pdr use the gaussian pseudo-distribution model. The models for the two
modes, Pmag and P pdr, require to set a covariance matrix, respectively Cmag and
Cpdr. As in this thesis no modifications are made to the PDR, for the covariance
matrix the focus will be on Cmag, covariance matrix of the magnetic mode.
As seen in 2.5, the covariance matrix Cmag is a 3 × 3 diagonal matrix equal to
Cmag = diag{Cm, C i, Ca}. Cm, C i and Ca are respectively the magnitude, the in-
clination and the azimuth covariances. High values for these parameters mean that
in the weighting step a low weight is assigned to the correspondent magnetic field
dimension. On the opposite, low values for the covariances mean that in the weight-
ing step a high weight is assigned to the correspondent magnetic field dimension. In
general, the covariances are set to have a magnetic measurements weight that grows
in parallel with the database magnetic map accuracy. In fact, the difference between
the measured magnetic field and the correspondent magnetic field obtained from
database map at the same position will be lower for accurate magnetic maps. Thus,
the covariance can be set low. Early investigations on the MILE found that the az-
imuth covariance Ca has to be set to a high value also for accurate magnetic maps.
The azimuth obtained from the Android internal algorithm, described in Section
2.2.2, is not accurate since there is not any absolute reference for its computation.
On the opposite, the inclination computation is more accurate because it can be
referenced to the earth’s gravity acceleration. Following the previous observations,
the azimuth covariance is set to Ca = 270deg2, the same value used in the state
of the art MILE. In this way, a low weight is assigned to the magnetic azimuth
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measurement during the weighting step.
To tune the magnitude covariance Cm and the inclination covariance C i, a param-
eter optimization is performed. Dataset 1, described in the previous Section 6.1,
is split into two chunks of 2 hours each: 50% of walk captures of each height is
assigned to the train Dataset 1, the other 50% of walk captures is assigned to the
test Dataset 1. The train set is used to perform an iterative process with the aim
to choose the covariances Cm and C i that optimize the engine performances for a
given magnetic map. Subsequently, once the covariances Cm and C i are correctly
set for each of the evaluated magnetic maps, the test set is used to perform the
final localization accuracy evaluation.

In the training procedure, the MILE processes the train dataset walks and the
outcomes are evaluated. The MILE observation model covariances Cm and C i are
iteratively changed to search for the covariances that provide the best performance.
At first, high covariances values are set, equal to Cm = 100µT 2 and C i = 400deg2.
Successively, these values are decreased, with variable step size, till when there is
not any performance improvement. In this regard, the performance is evaluated as a
balanced trade-off between localization accuracy (50% of the CDF) and localization
robustness (80% of the CDF). The improvement is evaluated looking at the average
value between accuracy and robustness for each step. In Appendix C, the results of
the training process are shown for all the maps. In general, the best performances
for the 2D magnetic maps are obtained with higher covariance values, Cm = 20µT 2

and C i = 30deg2, than for the 3D maps, Cm = 10µT 2 and C i = 15deg2. This means
that, in the 2D MILE a lower weight is assigned to the magnetic measurements. In
fact, as the 2D magnetic map is measured at 1.25m, it cannot describe accurately
the magnetic field at different heights. As a result, if the user holds the smartphone
at other heights, the difference between the measured magnetic field and the mag-
netic map value at the same position is larger than the 3D case. The covariances
obtained as results of the training are shown in the next Table 6.1.

Map Cm [µT 2] C i [deg2]
2D 20 30
3D 10 15

Table 6.1: Magnitude and inclination covariances for 2D and 3D maps

Once the model’s covariances are correctly set, the test dataset is used to evaluate
the magnetic maps performances. The test dataset consists of 2 hours of captures:
30 minutes at 1.00m, 30 minutes at 1.25m, 30 minutes at 1.50m and 30 minutes at
1.75m. Different simulations are performed. At first, the whole test dataset is fed
to the MILE to evaluate the overall performance of the engine considering different
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heights simultaneously. In Tables 6.2 and 6.3, the results of the first simulations
obtained using, respectively, 3D magnetic maps and 2D magnetic maps are shown.
Note that for interp3 maps, the preliminary 2D interpolation-extrapolation is per-
formed using inpaint DCT 2D. Comparing the results, all the 3D maps outperform
the 2D maps. Considering the best 3D performance, obtained using interp3 spline,
against the best 2D performance, obtained using griddata v4 nearest, it is possible
to conclude that with the 3D map there is an improvement of 0.5m of localization
accuracy and 0.4− 0.6m of robustness.

3D performance - test dataset

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 1.9 4.6 6.9
inpaint PDE 3D - 1.9 4.7 6.8
inpaint NaNs 3D - 2.2 4.7 6.8

interp3 makima 1.9 4.6 6.9
interp3 spline 1.8 4.6 7.0

Table 6.2: 3D performance of the test dataset.

2D performance - test dataset

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear linear 2.6 5.6 8.0
scatteredInterpolant linear nearest 2.3 5.1 7.7
scatteredInterpolant natural linear 2.7 5.6 7.9
scatteredInterpolant natural nearest 2.4 5.2 7.7

griddata linear linear 2.7 5.8 8.0
griddata linear nearest 2.4 5.4 7.9
griddata natural linear 2.6 5.6 7.9
griddata natural nearest 2.4 5.3 7.7
griddata cubic linear 2.6 5.6 8.1
griddata cubic nearest 2.3 5.3 7.9
griddata v4 linear 2.5 5.4 7.6
griddata v4 nearest 2.3 5.0 7.6

inpaint PDE - - 2.4 5.3 7.7
inpaint NaNs - - 2.4 5.2 7.6
inpaint DCT - - 2.3 5.1 7.7

Table 6.3: 2D performance of the test dataset.

Another result of the previous Tables 6.2 and 6.3 is that, both for 3D and 2D,
there is not any clear preferable map generation method. For the 2D case of Ta-
ble 6.3, it is possible to observe that, considering the same function and the same
interpolation method, the nearest extrapolated maps usually perform better than
the correspondent linearly extrapolated maps. This observation roughly confirms
the result found during the 2D smoothness analysis shown in Table 3.3. Apart from
the linearly extrapolated maps, all the other 2D map generation methods perfor-
mances are very similar between them. Different maps show a localization accuracy
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performance of 2.3− 2.4m and robustness around 7.6− 7.7m. It is not possible to
choose one single method as reference for the 2D magnetic maps. Also in Table 6.2,
that refers to the 3D case, it is not possible to choose a single 3D map generation
method. All the 3D performances show similar results. The average localization
accuracy is 1.8− 1.9m and the robustness 6.8− 6.9m. In Section 5.2.2 it was found
that the magnetic field statistical behaviour of inpaint PDE 3D was quite different
compared to the other methods. Moreover, it was also found that the main differ-
ences belong to not commonly walked areas or to no-go areas. Considering this,
the results of Table 6.2 can be explained by the fact that along commonly walked
paths the magnetic differences between different maps are lower.
To better evaluate the magnetic maps performances, the second set of simulations is
performed one height at the time. The test Dataset 1 is divided and it is processed
level by level inside the MILE. In the following tables the main results for each of
the heights is shown. Considering the results similarity, only the best performing
maps are shown.

3D performance - height 1.00m

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 1.3 2.7 3.7
inpaint PDE 3D - 1.4 2.7 3.7
inpaint NaNs 3D - 1.4 3.0 4.1

interp3 makima 1.3 2.6 3.8
interp3 spline 1.3 2.6 3.6

Table 6.4: 3D performance of the test tracks captured at 1.00m height.

2D performance - height 1.00m

function interp. extrap. 50% [m] 80% [m] 90% [m]

griddata v4 linear 1.6 3.0 3.7
griddata v4 nearest 1.6 3.0 3.8

inpaint PDE - - 1.6 3.0 3.8
inpaint NaNs - - 1.7 3.1 3.9
inpaint DCT - - 1.5 2.9 3.8

Table 6.5: 2D performance of the tracks captured at 1.00m height.
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3D performance - height 1.25m

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 1.9 4.0 5.6
inpaint PDE 3D - 2.0 4.2 5.7
inpaint NaNs 3D - 2.2 4.7 6.8

interp3 makima 2.0 4.3 6.0
interp3 spline 1.8 4.0 5.6

Table 6.6: 3D performance of the test tracks captured at 1.25m height.

2D performance - height 1.25m

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant natural nearest 2.4 4.6 6.0
griddata cubic nearest 2.3 4.7 6.3
griddata v4 nearest 2.3 4.8 6.2

inpaint PDE - - 2.3 4.6 6.1
inpaint NaNs - - 2.3 4.8 6.2

Table 6.7: 2D performance of the test tracks captured at 1.25m height.

3D performance - height 1.50m

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 1.2 2.4 3.3
inpaint PDE 3D - 1.2 2.4 3.2
inpaint NaNs 3D - 1.6 3.3 4.1

interp3 makima 1.2 2.3 3.3
interp3 spline 1.2 2.2 3.2

Table 6.8: 3D performance of the test tracks captured at 1.50m height.

2D performance - height 1.50m

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear nearest 1.7 3.2 3.9
scatteredInterpolant natural nearest 1.8 3.2 4.0

griddata cubic nearest 1.7 3.1 4.0
griddata v4 nearest 1.8 3.3 4.0

inpaint DCT - - 1.8 3.4 4.2

Table 6.9: 2D performance of the test tracks captured at 1.50m height.
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3D performance - height 1.75m

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 5.0 8.2 9.8
inpaint PDE 3D - 5.3 8.4 10.2
inpaint NaNs 3D - 4.6 7.8 9.6

interp3 makima 4.9 8.4 10.1
interp3 spline 5.2 8.5 10.4

Table 6.10: 3D performance of the test tracks captured at 1.75m height.

2D performance - height 1.75m

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear nearest 6.0 9.1 10.5
griddata natural nearest 6.0 9.2 10.6
griddata v4 nearest 5.9 9.1 10.4

inpaint NaNs - - 6.0 8.8 10.4
inpaint DCT - - 6.0 9.2 10.8

Table 6.11: 2D performance of the test tracks captured at 1.75m height.

Referring to the previous tables, the MILE performances with both 3D and
2D maps at height 1.75m are worse compared to lower heights. Considering, as
an example for 3D maps, inpaint DCT 3D, the accuracy and robustness values
at 1.75m height are, respectively, 5.0m and 9.8m. At lower heights the worse per-
formance is found at level 1.25m, where the accuracy and robustness values are,
respectively, 1.9m and 5.6m. It is possible to notice a consistent difference between
the two heights. The same result is found for 2D maps. As an example, consider-
ing griddata v4 nearest, the accuracy and robustness values at 1.75m height are,
respectively, 5.9m and 10.4m. At lower heights the worse performance is found at
level 1.25m, where the accuracy and robustness values are, respectively, 2.3m and
6.2m. For the 2D maps, the result can be explained by the fact that the 2D maps
are generated at 1.25m while the considered walks are recorded at 1.75m. For the
3D maps, it is more difficult to find an explanation of the result. A first hypothesis
to explain the result is that the magnetic field at height 1.75m can have a lower
magnetic diversity along the whole level. If this is the case, it would be more dif-
ficult for the MILE to correctly obtain localization information from the magnetic
field. To check if the hypothesis is confirmed, the ranges of the magnetic magnitude
maps are compared for different levels. At 1.75m the range is equal to 18.14µT ,
while at lower levels they are 15.88µT at 1.50m, 18.16µT at 1.25m and 19.57µT
at 1.00m. The range at 1.75m is found to be in line with lower heights. A further
comparison is made analysing the average standard deviation of the magnetic field
for the considered heights. At 1.75m the standard deviation is equal to 2.39µT ,
while at lower levels they are 2.27µT at 1.50m, 2.30µT at 1.25m and 2.31µT at
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1.00m. It is found that the standard deviations at the considered heights are sim-
ilar. The hypothesis of lower magnetic diversity at height 1.75m is not confirmed.
As the MILE localization is performed by a sensor fusion approach, also the results
coming from the PDR are evaluated. In the next Figures 6.4a and 6.4b, two PDR
results of respectively 1.75m and 1.25m heights are shown.
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Figure 6.4: PDR results for a 1.75m and a 1.25m heights recordings

In the previous Figure 6.4a, it is possible to observe that the PDR result at 1.75m
is a discontinuous trajectory. Comparing it to the PDR result at 1.25m, shown in
Figure 6.4b, the PDR output trajectory at 1.75m is definitely worse than the result
obtained at 1.25m. The PDR results are depending on the walking style of the user.
Thus, the PDR outcome difference for 1.75m and 1.25m heights is explained by a
different user walking style for the two cases. Finally, the PDR bad results at 1.75m
height explain also the MILE poor localization performance at that height.
Referring to the results shown from Table 6.4 to Table 6.9, the MILE performances
at non measured levels, 1.00m and 1.50m, are better than the performance at the
measured level, 1.25m. This result is found both for 3D and 2D magnetic maps.
This observation might be explained by the fact that measured levels depend on
the smartphone used to measure it. On the opposite, interpolated levels as 1.00m
and 1.50m are located between two measured levels. Consequently, their magnetic
field, obtained as interpolation of the 2 adjacent measured levels, might host the
influence of two smartphones. To check the validity of the hypothesis, the walk
tracks measured by the Sony Xperia 5 are tested level by level. If the hypothesis
is correct, the Sony Xperia 5, used to generate the map at 1.25m height, will not
experience a different outcome at that height. The result is shown in Figure 6.5.
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Figure 6.5: Xperia 5 results at different heights

In the CDFs shown in the previous figure it is noticeable that also the Sony
Xperia 5 performances are worse at 1.25m than 1.00m and 1.50m. Thus, it is not
possible to conclude that the measured levels depend on the smartphones used to
measure it. From the statistical behaviour of the magnetic field at 1.25m, described
before, it is not possible to notice strange results for that specific height. Also con-
sidering the visual analysis of the magnetic maps, shown in Appendix B, the 1.25m
height does not seem to be different than the other heights. A further analysis of
the described engine performances at measured heights is left as future work.
In general, from Table 6.4 to 6.11, the improved performance of the 3D MILE is
confirmed. Both for localization accuracy and robustness, the 3D mode shows bet-
ter results than 2D mode. Also for the considered set of simulations, apart from the
linearly extrapolated maps, all the 2D maps show similar results. Regarding the 3D
maps, the inpaint NaNs 3D maps usually perform slightly worse than the other 3D
maps. Apart from inpaint NaNs 3D, the 3D maps performances are all similar.

A final performance evaluation is performed using Dataset 2, with walk recordings
captured at variable heights from 1.00m to 1.50m. In this dataset, 1.75m height
is not considered due to the previously described PDR issue. In Figure 6.6, the
best 3D performance, obtained using inpaint DCT 3D, is compared to the best
2D performance, obtained using griddata cubic nearest. Inpaint DCT 3D shows
a localization accuracy of 1.1m and a robustness of 3.0m. Griddata cubic nearest
returns a localization accuracy of 1.5m and a robustness of 3.6m. As expected, the
3D map improves the localization accuracy by 0.4m and the localization robustness
by 0.6m.
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Figure 6.6: Comparison between the best 3D against the best 2D performances,
using Dataset 2

6.3 Height tracking capability

To test the height tracking capability of the 3D MILE, two evaluations are per-
formed. For both the evaluations, the estimated heights mean values and standard
deviations are used as evaluation metrics.
At first, the test Dataset 1 is processed by the 3D MILE one height level at the time.
All the walk recordings of the considered dataset consist of 2 minutes recordings
at fixed heights: 1.00m, 1.25m, 1.50m and 1.75m. In Table 6.12, the mean values
of the estimated heights are shown for each of the levels of the test Dataset 1. In
Table 6.13, the standard deviations of the estimated heights are shown for each of
the levels of the test Dataset 1. Both the mean values and standard deviations are
reported for all the available 3D magnetic maps.

Height mean values [m] for test Dataset 1

target height [m] inpaint DCT 3D inpaint PDE 3D inpaint NaNs 3D interp3 makima interp3 spline

1.00 1.13 1.10 1.09 1.11 1.11
1.25 1.44 1.36 1.41 1.41 1.43
1.50 1.50 1.45 1.47 1.47 1.47
1.75 1.77 1.76 1.75 1.77 1.75

Table 6.12: Estimated heights mean values for test Dataset 1.
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Height standard deviations [m] for test Dataset 1

height [m] inpaint DCT 3D inpaint PDE 3D inpaint NaNs 3D interp3 makima interp3 spline

1.00 0.38 0.36 0.39 0.37 0.37
1.25 0.25 0.24 0.29 0.25 0.26
1.50 0.21 0.20 0.22 0.22 0.22
1.75 0.21 0.21 0.22 0.21 0.22

Table 6.13: Estimated heights standard deviations for test Dataset 1.

In the previous tables, a first result is that all the five 3D maps show similar
height tracking performances. Overall, it is found that the mean value of the esti-
mated heights is really close to the target height for levels 1.50m and 1.75m. On
the opposite, for lower levels, especially 1.25m, the mean estimated height differs
from the target height. In general, referring to Table 6.13 the estimated heights
standard deviations are relatively high. This means that the estimated height is
not converging to the target height for a lot of walk recordings of Dataset 1. In
Figure 6.7 and 6.8, two examples of height tracking performances are shown, with
target height equal to 1.00m. In Figure 6.7, the estimated height is constantly over
the target height of 1.00m, while, in Figure 6.8, the estimated height converges
to 1.00m after an initial phase of wrong height estimation. Consequently, the first
result represents an example of bad height tracking of the 3D MILE and the second
result represents an example of good height tracking of the 3D MILE.
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Figure 6.7: Example of bad height tracking result. The target height is 1.00m.
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Figure 6.8: Example of good height tracking result. The target height is 1.00m.

A further evaluation of the 3D MILE height tracking capability is performed
employing Dataset 2. The Dataset 2 captures consist of 3 minutes of recordings at
variable heights. During the first minute, the smartphone is held at 1.00m height,
during the second minute at 1.25m and during the third minute at 1.50m. As in the
previous case, in Tables 6.14 and 6.15 are shown, respectively, the mean values and
the standard deviations of the estimated heights relative to different target heights.

Height mean values [m] for Dataset 2

target height [m] inpaint DCT 3D inpaint PDE 3D inpaint NaNs 3D interp3 makima interp3 spline

1.00 1.45 1.40 1.42 1.40 1.39
1.25 1.49 1.39 1.47 1.42 1.43
1.50 1.60 1.51 1.59 1.55 1.54

Table 6.14: Estimated heights mean values for test Dataset 2.

Height standard deviations [m] for Dataset 2

height [m] inpaint DCT 3D inpaint PDE 3D inpaint NaNs 3D interp3 makima interp3 spline

1.00 0.25 0.24 0.25 0.25 0.26
1.25 0.26 0.28 0.26 0.29 0.32
1.50 0.22 0.26 0.23 0.26 0.28

Table 6.15: Estimated heights standard deviations for test Dataset 2.

In Table 6.14, it is possible to observe that the average height tracking accuracy
for Dataset 2 is lower than the one found in Table 6.12 for Dataset 1. This result
might be explained by the fact that the smartphone is held for only 1 minute at a
same height in Dataset 2, against the 2 minutes in Dataset 1. Thus, for Dataset 2,
the MILE height tracking is not able to converge to the target height and the results
are less precise. Referring to Table 6.15, the standard deviations are confirmed to
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be high, describing high variability of the height estimations.
As described so far, the MILE performance depends on many factors like the mag-
netic map precision and the PDR accuracy. The PDR has a central role in the
motion model (5.1). Beside computing the estimated movement length and head-
ing change, the PDR provides also the estimated height variation in equation (5.1e).
With this in mind, the PDR results for the z dimension are evaluated for Dataset
2. In this case, the expected outcome is to have a 25cm height increase after the
first minute and after the second minute of walk. The evaluation shows that the
outcome does not satisfy the expectations: the PDR height variation is uncorrelated
with respect to the real smartphone height variations. In Figure 6.9, an example
of PDR height estimation is shown for a Dataset 2 capture. The initial height is
referenced to 0m.

0 20 40 60 80 100 120 140 160 180 200

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

h
e
ig

h
t 
[m

]

Figure 6.9: PDR height estimation outcome

Finally, it is possible to conclude that the 3D MILE height tracking capability is
not accurate. The state of the art PDR is not precise for computing height variations
and the only magnetic data are not enough to reach a precise height estimation.
From the result of Figure 6.6, the 2D localization accuracy of the 3D MILE is 1.1m.
Considering this, the height estimation is a challenging task due to the required
accuracy, that is higher than the current engine capabilities.

6.4 Barometer sensor analysis
To improve the height tracking performance of the 3D MILE, a possible integra-
tion of the smartphones barometers with the engine is investigated. Barometers are
sensors used to measure air pressure and, nowadays, they are integrated in many
smartphones. The measured barometric pressure depends on environmental factors
like the altitude, the weather and the temperature [25]. Due to the previous de-
pendencies, the barometric pressure cannot be used to obtain absolute estimation
of the height position of the sensor. Nevertheless, it can be used to acquire useful
information about relative movements along the height dimension. Theoretically,
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the barometer pressure increases moving the barometer from a starting height to a
lower height and viceversa, thus, it is possible to measure a height variation.
In the context of the thesis, the two barometer sensors that are embedded in
the previously presented five smartphones are investigated. They are the Bosch
pressure sensor BMP380 [12] and the STMicroelectronics sensor LPS22HB [21].
The BMP380 is embedded in the Sony Xperia 5, Sony Xperia XZ3, Pixel 4 and
Nokia 9 while the LPS22HB is embedded in the Samsung s10e. In the Bosch sen-
sor datasheet, it is indicated that the BMP380 sensor has a relative accuracy of
±0.06hPa that corresponds, according to the Bosch documentation, to height vari-
ation of ±50cm. In the STMicroelectronics sensor datasheet, only the relative ac-
curacy of the LPS22HB sensor as ±0.1hPa is indicated. Based to the specification
sheets of the two sensors, the usage of both the barometers seems to be challenging
for the purposes of the thesis. Nevertheless, a simple offline investigation is per-
formed. The objective is to check if the barometer sensors are capable to detect
height variations in the order of ±0.25cm, which is the distance between different
levels of the 3D maps used in Section 6.3. The test consists of measuring the baro-
metric pressure at three heights spaced by 0.25cm. The smartphones are moved
from one level to the next one every 60 seconds intervals. Subsequently, as the sig-
nal is very noisy, the median value of each phase of the experiment is computed.
Using the median value, the aim is to consider only the direct component of the
signal. The objective is to check if there is a constant difference between the median
values of measured pressures at different heights. The raw pressure signal is shown
in Figure 6.10 by the blue line. In the same Figure 6.10, the median value during
the three phases of the experiment is shown in red.
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Figure 6.10: Barometric sensor test outcome

In the previous Figure 6.10, the spikes at t = 60s and t = 120s are generated
by the smartphone movement from one of the heights to the successive height. In
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general, the median values of the three phases of the experiment decrease every
time the smartphone height is increased, following the expectations. Moreover, the
noise component of the signal is relatively high compared to the median values
differences. To better evaluate the pressure signal behaviour, the test is repeated
for eight measurements for each barometer model. The results are shown in the
following Tables 6.16 and 6.17. For Table 6.16, the Bosch BMP380 embedded in
the Pixel 4 is used. For Table 6.17, the Samsung s10e is used as it is the only
available smartphone equipped with the LPS22HB barometer. In the two tables
the difference between the median values of the three phases of the experiment are
reported.

BMP380 - difference of the median values [hPa]

height jump 1 2 3 4 5 6 7 8

from 1.00m to 1.25m 0.019 0.034 0.017 0.018 0.041 0.011 0.059 -0.008
from 1.25m to 1.50m 0.042 0.031 0.022 -0.001 -0.004 0.005 -0.045 0.048
from 1.00m to 1.50m 0.061 0.065 0.040 0.017 0.037 0.016 0.015 0.040

Table 6.16: Barometer BMP380 differences of the barometric pressure median values
for different height jumps.

LPS22HB - difference of the median values [hPa]

height jump 1 2 3 4 5 6 7 8

from 1.00m to 1.25m 0.028 0.022 0.015 0.004 0.010 0.011 0.029 0.025
from 1.25m to 1.50m 0.020 0.023 -0.022 0.035 0.003 0.048 0.010 0.030
from 1.00m to 1.50m 0.048 0.046 -0.007 0.039 0.013 0.059 0.039 0.054

Table 6.17: Barometer LPS22HB differences of the barometric pressure median
values for different height jumps.

Referring to the two tables, the differences between median values do not con-
verge to a unique value. It is observed that for some height increases the barometric
pressure difference does not confirm the expected outcome and it is negative. For
some other height increases, the pressure difference is almost zero. Overall, the
random behaviour shown in Tables 6.16 and 6.17 is explained by the fact that the
accuracy of the sensors is less than the resolution needed for height tracking pur-
poses. Nevertheless, in a future work the barometer can be integrated in the MILE
for floor level detection. In fact, there are some surveys showing the reliability of
the pressure sensor results for the purpose of floor level detection [14].
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Conclusions and future work

In the thesis, a 3-dimensional magnetic fingerprinting approach for indoor localiza-
tion engines is discussed.
At first, a survey about the state of the art magnetic fingerprinting approaches is
conducted. It is found that, although some surveys show promising results, there
still does not exist any reliable indoor localization system based on 3D magnetic
maps.
The magnetic indoor localization engine, MILE, is introduced. The interpolation
step of the available 2D map generation method is evaluated. Furthermore, addi-
tional interpolation approaches are added to improve the quality of 2D magnetic
maps.
A new measurement setup is designed to measure the 3-dimensional magnetic field.
The new proposed setup is designed to simplify the time consuming state of the
art magnetic measurement procedure. To reduce the effort during the measurement
step, two V-SLAM systems are integrated into the measurement setup and evalu-
ated. The map generation framework is extended to generate 3D magnetic maps
using the 3D magnetic measurements captured with the new setup. In this context,
different 3-dimensional interpolation-extrapolation methods are introduced in the
framework.
An approach is proposed for 2D and 3D magnetic maps in order to evaluate the
quality of the magnetic maps. For this evaluation, the magnetic field statistical
behaviour and the smoothness of the maps are considered as key metrics.
Moreover, the MILE is extended to be able to work in 3D. The vertical dimension
z is added to the particle filter states, that corresponds to the height information.
Both the map generation framework and the MILE are tested in office areas. A
final evaluation of the localization performances of the 3D framework against 2D
framework is performed. The most important result is that, using 3D maps, there is
a performance improvement both in terms of localization accuracy, 40− 50cm, and
localization robustness, 40− 60cm. Also, it is found that the choice of a single 3D
magnetic interpolation method and a single 2D magnetic interpolation method is a
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challenging task. Although there is a clear performance difference between 3D and
2D maps, most of the considered methods have similar performances within the
two classes. Nevertheless, the recommended 3D maps are inpaint DCT and interp3
spline. Regarding the several 2D maps with similar outcomes, the recommended
map is griddata v4 nearest, as it is found to be between the best performing 2D
maps in every simulation. Moreover, it is found that the results of the evaluation
approach used to evaluate the quality of magnetic maps do not completely match
the performances evaluation. The only matching result between map quality eval-
uation and performance analysis is that, in general, the 2D magnetic maps using
linear extrapolation perform worse than the other 2D maps.
Finally, the height tracking capability of the 3DMILE is evaluated. The results show
that it is not possible to reach an accurate height tracking of the smartphones in
the current stage of the development. Furthermore, to improve the height tracking,
two smartphone’s embedded barometers are analysed. As a result of the analysis,
the accuracy of the barometers is not enough to reach the required resolution.

The thesis conclusions open the way to new developing fields of the MILE. Dif-
ferent tasks are suggested as future works.
The smartphones dependencies of the measured magnetic maps have to be further
analysed. In fact, from the evaluations performed in the thesis, it is still not clear
why the 3D MILE performances are better for interpolated levels than for measured
levels.
Considering the different performances of different 3D maps height levels, a possi-
ble development of an adaptive parameter optimization for the observation model
covariances is suggested.
Regarding the 2D MILE, there is the possibility to use the vertical variation of the
magnetic field, taken from 3D maps, to assign a reliability value to the 2D magnetic
maps. In the proposed way, 2D grid points with high vertical variation of the 3D
magnetic field will be given with a lower reliability, thus, lower weight.
Regarding the map generation process, it is found that the trajectory correction
phase requires a time consuming manual reference point setting. Further V-SLAM
systems can be investigated to obtain better trajectories, reducing the number of
reference points, thus, the time impact of the current procedure.
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Appendix A

Test bed for 3D maps
evaluation

In Figure A.1, the original and the corrected (after Helmert transformations) tra-
jectories used for 3D maps evaluation are shown. In Figure A.2, the heading for the
corrected trajectory is shown.

12

3

4

5

67

8

9

10

11 12

13

14
12

3

4

5

67

8

9

10

11

12

13

14
12

3

4

5

67

8

9

10

11 12

13

14

2 4 6 8 10 12 14 16 18 20 22 24

[m]

2

-0

-2

-4

-6

-8

-10

[m
] original

transformed

target

Figure A.1: Original and transformed trajectories used for 3D maps evaluation
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A – Test bed for 3D maps evaluation
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Figure A.2: Smartphone heading along the trajectory used for 3D maps evaluation

In Figures A.3-A.8, an example of magnetic map is shown. For conciseness, only
the magnitude map obtained using inpaint DCT 3D is visualized. In the images, it
is possible to notice that low heights, 0.25m and 0.50m, show more peaks (visible
in bright yellow and dark blue) due to the proximity to the floor. This is explained
by the presence of ferromagnetic construction materials inside the floor.
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A – Test bed for 3D maps evaluation

Figure A.3: Magnetic magnitude at height 0.25m obtained using inpaint DCT 3D

Figure A.4: Magnetic magnitude at height 0.50m obtained using inpaint DCT 3D
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A – Test bed for 3D maps evaluation

Figure A.5: Magnetic magnitude at height 0.75m obtained using inpaint DCT 3D

Figure A.6: Magnetic magnitude at height 1.00m obtained using inpaint DCT 3D

78



A – Test bed for 3D maps evaluation

Figure A.7: Magnetic magnitude at height 1.25m obtained using inpaint DCT 3D

Figure A.8: Magnetic magnitude at height 1.50m obtained using inpaint DCT 3D
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Appendix B

Test bed for performance
evaluation

In Figure B.1, the original and the corrected (after Helmert transformations) tra-
jectories used for 3D performance evaluation are shown. In Figure B.2, the heading
for the corrected trajectory is shown.
In Figures B.3-B.10, an example of 3D magnetic map used for performance evalu-
ation is attached. For conciseness, only the magnitude map obtained using inpaint
DCT 3D is visualized. In the images, it is possible to notice that low heights, 0.25m
and 0.50m, show more peaks (visible in bright yellow and dark blue) due to the
proximity to the floor. This is explained by the presence of ferromagnetic construc-
tion materials inside the floor. For this reason, the magnitude color scale at heights
0.25m and 0.50m has been adapted to a different range than the other heights.
In Figure B.11, an example of 2D magnetic magnitude map used for performance
evaluation is shown. For conciseness, only the result obtained using inpaint DCT
is visualized.
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B – Test bed for performance evaluation
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Figure B.1: Original and transformed trajectories used for 3D performance evalua-
tion
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B – Test bed for performance evaluation
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Figure B.2: Smartphone heading along the trajectory used for 3D performance
evaluation
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B – Test bed for performance evaluation

Figure B.3: Magnetic magnitude at height 0.25m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.4: Magnetic magnitude at height 0.50m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.5: Magnetic magnitude at height 0.75m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.6: Magnetic magnitude at height 1.00m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.7: Magnetic magnitude at height 1.25m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.8: Magnetic magnitude at height 1.50m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.9: Magnetic magnitude at height 1.75m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.10: Magnetic magnitude at height 2.00m obtained using inpaint DCT 3D
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B – Test bed for performance evaluation

Figure B.11: Magnetic magnitude obtained using inpaint DCT
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Appendix C

Model training results

In Tables C.1-C.10, the results of the training procedure for different covariances
sets are reported. The 2D maps best performances are obtained using Cm = 20µT 2

and C i = 30deg2. The 3D maps best performances are obtained using Cm = 10µT 2

and C i = 15deg2. In this regard, it is chosen to not set covariances lower than
Cm = 10µT 2 and C i = 15deg2. In fact, from preliminary analysis, it was necessary
to leave space for device variabilities. Thus, too tight covariances are avoided.

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 2.5 5.0 7.8
inpaint PDE 3D - 2.6 5.1 7.8
inpaint NaNs 3D - 2.6 5.1 7.6

interp3 makima 2.5 5.1 7.8
interp3 spline 2.6 5.2 7.6

Table C.1: 3D performance of the test dataset for Cm = 100µT 2 and C i = 400deg2.

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear linear 2.9 5.4 7.4
scatteredInterpolant linear nearest 2.6 5.1 7.3
scatteredInterpolant natural linear 2.8 5.3 7.6
scatteredInterpolant natural nearest 2.6 5.2 7.3

griddata linear linear 2.8 5.3 7.5
griddata linear nearest 2.5 5.1 7.3
griddata natural linear 2.8 5.3 7.5
griddata natural nearest 2.7 5.0 7.3
griddata cubic linear 2.7 5.2 7.6
griddata cubic nearest 2.5 5.1 7.4
griddata v4 linear 2.5 5.1 7.3
griddata v4 nearest 2.5 5.0 7.4

inpaint PDE - - 2.6 5.1 7.3
inpaint NaNs - - 2.5 5.0 7.3
inpaint DCT - - 2.6 5.0 7.4

Table C.2: 2D performance of the test dataset for Cm = 100µT 2 and C i = 400deg2.
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C – Model training results

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 2.3 4.7 7.1
inpaint PDE 3D - 2.4 4.9 7.3
inpaint NaNs 3D - 2.5 5.0 7.3

interp3 makima 2.4 4.8 7.3
interp3 spline 2.4 4.8 7.4

Table C.3: 3D performance of the test dataset for Cm = 60µT 2 and C i = 150deg2.

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear linear 2.8 5.3 7.4
scatteredInterpolant linear nearest 2.5 5 7.2
scatteredInterpolant natural linear 2.7 5.2 7.5
scatteredInterpolant natural nearest 2.5 5.0 7.3

griddata linear linear 2.7 5.2 7.4
griddata linear nearest 2.4 5.0 7.2
griddata natural linear 2.7 5.3 7.4
griddata natural nearest 2.5 5.1 7.4
griddata cubic linear 2.5 5.3 7.6
griddata cubic nearest 2.4 5.0 7.3
griddata v4 linear 2.4 5.1 7.2
griddata v4 nearest 2.4 4.9 7.1

inpaint PDE - - 2.5 5.0 7.2
inpaint NaNs - - 2.4 4.9 7.2
inpaint DCT - - 2.5 5.0 7.4

Table C.4: 2D performance of the test dataset for Cm = 60µT 2 and C i = 150deg2.

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 2.3 4.7 7.0
inpaint PDE 3D - 2.3 4.7 7.1
inpaint NaNs 3D - 2.3 4.9 7.3

interp3 makima 2.2 4.8 6.9
interp3 spline 2.3 4.6 6.8

Table C.5: 3D performance of the test dataset for Cm = 40µT 2 and C i = 60deg2.
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C – Model training results

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear linear 2.7 5.1 7.1
scatteredInterpolant linear nearest 2.4 4.9 7.0
scatteredInterpolant natural linear 2.6 5.1 7.5
scatteredInterpolant natural nearest 2.4 4.9 7.0

griddata linear linear 2.6 5.2 7.2
griddata linear nearest 2.4 5.0 7.2
griddata natural linear 2.6 5.2 7.4
griddata natural nearest 2.5 5.0 7.1
griddata cubic linear 2.5 5.2 7.3
griddata cubic nearest 2.4 5.0 7.2
griddata v4 linear 2.4 5.0 7.1
griddata v4 nearest 2.3 4.9 7.1

inpaint PDE - - 2.4 4.9 7.0
inpaint NaNs - - 2.4 4.9 7.2
inpaint DCT - - 2.4 4.9 7.1

Table C.6: 2D performance of the test dataset for Cm = 40µT 2 and C i = 60deg2.

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 2.1 4.9 7.3
inpaint PDE 3D - 2.0 4.3 6.3
inpaint NaNs 3D - 2.2 4.7 6.5

interp3 makima 2.0 4.6 7.0
interp3 spline 2.0 4.6 6.9

Table C.7: 3D performance of the test dataset for Cm = 20µT 2 and C i = 30deg2.

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear linear 2.5 5.3 7.2
scatteredInterpolant linear nearest 2.3 4.9 6.8
scatteredInterpolant natural linear 2.5 5.3 7.2
scatteredInterpolant natural nearest 2.3 4.9 7.0

griddata linear linear 2.5 5.4 7.3
griddata linear nearest 2.4 5.0 7.0
griddata natural linear 2.5 5.4 7.4
griddata natural nearest 2.4 5.1 7.1
griddata cubic linear 2.5 5.2 7.3
griddata cubic nearest 2.3 4.9 7.0
griddata v4 linear 2.4 5.0 6.9
griddata v4 nearest 2.3 5.0 6.9

inpaint PDE - - 2.3 4.8 6.8
inpaint NaNs - - 2.3 4.9 6.8
inpaint DCT - - 2.3 5.0 6.9

Table C.8: 2D performance of the test dataset for Cm = 20µT 2 and C i = 30deg2.
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C – Model training results

function mode 50% [m] 80% [m] 90% [m]

inpaint DCT 3D - 1.8 4.2 5.9
inpaint PDE 3D - 1.9 4.3 6.1
inpaint NaNs 3D - 2.0 4.6 6.4

interp3 makima 1.9 4.4 6.7
interp3 spline 1.8 4.3 6.1

Table C.9: 3D performance of the test dataset for Cm = 10µT 2 and C i = 15deg2.

function interp. extrap. 50% [m] 80% [m] 90% [m]

scatteredInterpolant linear linear 2.7 5.5 7.5
scatteredInterpolant linear nearest 2.3 4.9 6.8
scatteredInterpolant natural linear 2.5 5.5 7.4
scatteredInterpolant natural nearest 2.3 5.0 6.9

griddata linear linear 2.7 5.7 7.6
griddata linear nearest 2.4 5.1 7.1
griddata natural linear 2.8 5.8 7.8
griddata natural nearest 2.3 5.2 7.1
griddata cubic linear 2.6 5.6 7.5
griddata cubic nearest 2.4 5.2 7.3
griddata v4 linear 2.5 5.4 7.2
griddata v4 nearest 2.3 5.0 7.0

inpaint PDE - - 2.4 5.1 7.0
inpaint NaNs - - 2.4 5.0 6.7
inpaint DCT - - 2.4 5.2 7.0

Table C.10: 2D performance of the test dataset for Cm = 10µT 2 and C i = 15deg2.
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