IIT Facolta di Ingegneria

Universitat politecnica de Catalunya

|zhikevich neural model and STDP
learning algorithm mapping

on spiking neural network hardware emulator

Thesis project carried out online at the UPC
Master degree in Electronic Engineering

Advisor: Jordi Madrenas
Advisor: Guido Masera

Author: Antonio Caruso

November 29, 2020

Contents

Abbreviations

Abstract

1 Introduction

1.1

1.2

1.3

Review of Neural Networks
1.1.1 The Neural model
1.1.2 Spiking neural models
1.1.3 Leaky Integrate and Fire (LIF)
1.1.4 Hodgkin—Huxley
1.1.5 Izhikevich
1.1.6 Spike Timing Dependent Plasticity (STDP)
Review of the HEENS architecture
1.2.1 HEENS network topology
1.2.2 Operation phases of HEENS
1.2.3 HEENS multi-processor
1.2.4 System Setup and Software contribute . . .
Motivation and objectives

2 Izhikevich algorithm mapping on HEENS

2.1
2.2

2.3

2.4
2.5
2.6
2.7

Izhikevich algorithm
Matching HEENS and MatLAB model
2.2.1 Fixed point model
2.2.2 Introduction of rounding in HEENS
2.2.3 Gaussian noise introduction
MatLAB simulation
2.3.1 MatLAB setup scripts
SNMEM organization for Izhikevich model
Assembly file L.
Simulation in QuestaSim

Simulating different types of Neuron

3 STDP algorithm mapping on HEENS

3.1
3.2
3.3
3.4

STDP algorithm
MatLAB simulation
STDP in HEENS architecture
SNMEM organization for SDTP

iii

,...
© 00 00 O U b R R W N <

e e
w N O

14
14
17
17
18
19
22
23
24
25
29
31

ii

3.5 Assembly code 42

3.6 Simulation in QuestaSim 46
4 Conclusions and future work 50
A Instruction Set 53
B PE parameters 55
C Izhikevich model assembly program 57
D Netlist file 63
E Neuron file 65
F Neuron gen.m 66
G STDP netlist gen.m 69
H Izhi net.m 70
I MATLAB Fixed point algorithm version 73
J LFSR gaussian noise.m 75
K LFSR test.m 76
L Simulating different types of neurons 78
M ALU 83
N Network with STDP assembly program 93
O Network with STDP at neuron level assembly program 101

P Network with STDP at connection level assembly program 110

Abbreviations

AER Address Event Representation
ALU Arithmetic and Logic Unit
BRAM Block Random Access Memory
EPSP Excitatory Post-Synaptic Potential
HEENS Hardware Emulator of Evolved Neural System
IF Integrate and Fire

IPh Initialization Phase

IPSP Inhibitory Post-Synaptic Potential
ISA Instruction Set Architecture

LFSR Linear-Feedback Shift Register
LIF Leaky Integrate and Fire

LIFO Last In First Out

LSB Less Significant Bit

LSW Less significant word

ND Neural processing Device

MC Master Chip

MSB Most Significant Bit

MSW Most significant word

PE Processing Element

PSP Post-Synaptic Potential

SIMD Single Instruction Multiple Data
SNN Spiking Neural Network

VHDL Very High speed integrated circuits Hardware Description Language

iii

Abstract

The proposal of this thesis is to embed the Izhikevich neuron model and a full custom ”Spike timing
dependent plasticity” (STDP) learning algorithm in an architecture called HEENS (Hardware Em-
ulator of Evolved Neural System). HEENS is a multi-chip structure developed at the ”Universitat
Politecnica de Catalunya” (UPC) based on a ring link topology connecting several SIMD processors
reproducing each one a group of neuron of a Spiking neural network (SNN). The Izhikevich neuron
model is a worldwide adopted mathematical model for reproducing the neural membrane potential
evolution, observed in some mammalian cortex, along time and according to external stimuli. STDP
is a biological learning algorithm which shapes the strength of a synaptic connection according to
the timing with which that connection takes part to the overall spiking activity of the post and pre-
synaptic neurons.

This master thesis project, in particular, acts at algorithm level and at instruction level as well at
architectural level. It takes place analysing the mathematical models for the right data parallelism,
writing the assembly program describing the neural routine, modifying the instruction set and the
existing hardware of the HEENS architecture, in order to fulfil the biological model computational
needs. The comparison between the actual behaviour of HEENS to that of the mathematical models
is performed via MatLAB scripts. In the following:

Chapter 1 reviews the basic concepts of the neural networks and briefly details the HEENS archi-
tecture for what is of close interest to this text.

Chapter 2 deals with the Izhikevich neural model, which is first analysed in order to detect the min-
imum data parallelism needed, then a rounding scheme is introduced at hardware level and a custom
LFSR-made gaussian noise generator is designed at hardware/firmware level to accomplish with the
biological background noise, finally the developed assembly program is described and a neural network
is simulated at RTL level and validated in MatLAB.

Chapter 3 first details the STDP rule adopted, then the integration of the model in HEENS and
the ISA enhancement are presented, the developed assembly program is therefore explained and few
test networks are set up in order to better show and demonstrate the algorithm characteristics and
outcomes. Finally, in Chapter 4 conclusions and future work are presented.

The performed simulations showed how the results in HEENS, obtained with a fine tuned fixed point
arithmetic, well approximate the outcomes of floating point MatLAB model in every application. This
project allows HEENS to embody the Izhikevich neural model with good biological consistency and
flexibility. This is assured by the possibility to randomize or fix neural parameters, which allow to
represent a mixed-neuron-type neural network or a precise kind of neurons.

Anty-simmetric Hebbian STDP has been integrated and tested with different granularity: from con-
nection level, to neuron level, to the support of the entire network, which guarantees the best perfor-
mance. The test networks, mapped in HEENS and simulated at RTL level in Chapter 3, allowed to

validate the algorithm and clearly visualize the trend of the main STDP parameters.

iv

CHAPTER 1

Introduction

From the 20th century, biological mechanisms of the brain behaviour have become more and more
interesting for the research communities in information fields due to the computational power of the
systems they inspire. In fact, despite the lack of consensus about the information processing actually
involved in brain, biological processes have served as reference for recent computational models. The
first Artificial Neural Networks (ANNs) were developed as simplified versions of biological neural net-
works in terms of structure and function. Today, the third generation of artificial network is that of
the Spiking Neural Networks (SNNs), which reach a more realistic modelling by utilizing true biolog-
ical features, like spikes, to transmit information between neurons.

The proposal of this thesis is to embed the Izhikevich neuron model and a full custom ”Spike timing
dependent plasticity” (STDP) learning algorithm in an architecture called HEENS (Hardware Em-
ulator of Evolved Neural System). HEENS is a multi-chip structure developed at the ”Universitat
Politecnica de Catalunya” (UPC) based on a ring link topology connecting several SIMD processors
reproducing each one a group of neuron of a Spiking neural network.

This chapter has two different purposes, addressed in its two sections:

e first section aims to introduce the basic concepts of the neural networks. In particular, an
insight of the features of the Spiking neural networks (SNNs) and a review of the principal

neuron models in literature.

e In the second section, the HEENS architecture is briefly detailed for what is of close interest.

1.1 Review of Neural Networks

The idea of being inspired by the way in which the brain performs neural computation for building
computer-based algorithms has been present for more than eighty years [14]. These bio-inspired
algorithms of neural computation are referred to as ANNs; they contain a set of computational units
(neurons) interconnected via directed edges (synapses between neurons) which process information
according to a specified set of rules and equations (the model of information processing in neural
circuits). Different choices for their connectivity or dynamics have given rise to a vast range of different
types of models which have been thoroughly studied in computer science over the last decades, and
which have enjoyed a revived interest in recent years due to the success of Deep Learning [7]. With
the aim of a brief Historical classification, the three neural networks discussed in the following are

represented in Fig.1.1.

Multi-layer perceptrons / artificial

Perceptrons neural network Spiking neural network
b X1

o Ol A Lo
X2 X3 o

" § AF B
Figure 1.1: a) Perceptron model b) Multi-perceprons model or ANN c) Spiking neural network. [20]

The simplest neural network can be identified in the perceptron model, where hand-crafted features
are employed as input to the network [20]. Outputs of the perceptron are binary numbers obtained
through hard thresholding. The second type of neural network is sometimes called a multilayer
perceptron (MLP). In an MLP, a non-linear activation function (or transfer function) is associated
with each neuron. Popular choices for the non-linear activation function are the sigmoid function, the
hyperbolic tangent function, and the rectifier function. The output of each neuron is a continuous
variable instead of a binary state[20]. The MLP is widely adopted by the machine learning community,
as it can be easily implemented on general-purpose processors. This type of neural network is so
popular that the phrase “artificial neural network” (ANN) is often used to specify it exclusively.
Advances in consolidating the vast number of new findings and insights from neuroscience into such
computational models in a biologically plausible way have been largely lacking in the ANN community.
While it has been known for long that neurons communicate with spikes (electrical pulse emitted by a
neuron typically after that a potential function overcomes a threshold), it was only in the early 1990s
when studies found evidence for biological brains making use of the exact timing of single spikes to
encode information [1]. This observation gave rise to SNNs which, compared to the previous two types
of neural networks, resembles more to a biological neural network in the sense that single spikes are
used to transport information, instead of the average of them as in ANNs. It is well-known that SNNs
are more powerful and advanced than ANNs, as the dynamics of an SNN is much more complicated
and the information carried by an SNN could be much richer. Today, however, several critical issues
and open questions in the SNNs field regarding, for example, the way in which the spikes are encoded

and decoded for information transport are still present.

1.1.1 The Neural model

As discussed in the previous section, in a SNN, a neuron is a computational unit of the network with a
certain activation function which determines the way in which the neuron evolves along time, receives
and manages information under the form of a spike and spikes in turn. A stylized biological structure
of a neuron is presented in Fig.1.2 together with a mathematical modelled version.

In a first approximation, neuron can be thought composed by:

Action potential

QUTPUT
—— INPUTS
gxan = S OUTPUT
— .t 1 binary
— synapsg A2 L ayent
Action patentia A3 I,
INFUT —
dendrites dendrites

Figure 1.2: a)Stylized biological structure of a neuron b) Neuron modelled as a computational unit which receive
inputs, manage them and evolve according to an activation function, produce a spiking output when a certain quantity
exceeds a threshold. [6]

A central nucleus or ”Soma”.

Several dendrites which interact with outside as input/output nodes.

e The “Axon”, physical link between cells where electrical impulsive quantity travel.

The "synapses”, terminations of the dendrite link which actually transmit biologically the spike

between neurons.

The Neural mathematical model is instead better explained in Fig.1.3. At each input (synapse) can be
assigned some weights and delays (W, d) which can evolve according to some rules, changing therefore
the strength of the link. The inputs received will be added up, some neural parameters representing
the biological state of the neuron (usually its membrane potential) therefore will evolve according
to an activation function and eventually a spike is produced when the membrane potential overcame
a threshold, this spike will in turn propagate toward the connected neurons.

In the next sections, some possible models for the neural activation function and a possible rule for

synapse weight evolution will be presented.

R output spiking nEuanf,J_l.l_.,
input spiking neuron i - \(

A

5

| - S

Figure 1.3: Neural model as weighted sum of incoming spikes, [13]

1.1.2 Spiking neural models

As said, the general model for a spiking neuron can be the one in Fig.1.3. What is still to be fixed is
the activation function of the neuron itself, i.e. the way in which the neuron evolves with time and
stimuli. The key parameter for characterizing the behaviour of the neuron is its membrane potential,
which biologically represents the electric potential of the membrane which above a threshold induces
the spike. Together with the membrane potential, other potential, parameters or non-synaptic input
(modelled as noise) can characterize the cell. Some very popular models are now summarized.

1.1.3 Leaky Integrate and Fire (LIF)

pre=synaptic post=synaptic

L 1 L

L x_,_____ﬂ___,_..ﬂ-_,_,______,_../

KON Synapse soma spike generation
Figure 1.4: LIF circuit model [13]

In Leaky Integrate-and-Fire (LIF) model, a neuron is considered as an electrical circuit. Model consists

of capacitor C in parallel with resistor R, driven by a current I(t):
I(t)=1Igr+ Iap (1.1)

The standard form of the model is defined as:

Tmdu/dt = —u(t) + RI(t) (1.2)

where 7,, = RC' is the membrane time constant.
Spikes events are characterized by a firing time and after, the potential is reset to a resting potential
u,. Also, a refractory period can be included, during which the neuron is insensible to external
stimuli. LIF model is simple and computationally effective, and it is the most widely used spiking

neuron model despite other more biologically realistic models.

1.1.4 Hodgkin—Huxley

In Hodgkin—Huxley [8] model, a semipermeable cell membrane separates the interior of the cell from
the extracellular liquid, acting as a capacitor (C). When an input current I(t) is injected into the cell,
it may add further charge on C, or leak through the channels in the cell membrane. Because of active
ion transport through the cell membrane, the ion concentration inside the cell is different from that
in the extracellular liquid. The Nernst potential generated by the difference in ion concentration is
represented by a battery. Without cover detail of minor interest for this text, can be stressed how this
model, even if of good precision, uses one equation for the current and three differential equations for
other parameters becoming very time and resource consuming.

1.1.5 Izhikevich

+— peak 30 MV

. 5 AZ M-
v'=0.04v="+5v+140-u+| 05| «LTSTC . =
u'=a(bv-u) 2 b
+ reset © 2 2 I8
: wit) g 0 .HS.IB_CII .FS @4 .
if v=30mV, oot ey, o -4 FSLTSRZ CH
thenv-c, u-us+d rEset a4 hraea § 2iEns
ult) - o005 eTC
sensitivity b 0 002 0.1 -85 55 50
parameter a parameter ¢
regular spiking (RS) intrinsically bursting (1B) chattering (CH) fast spiking (FS)
| |] I
vit))J)I“ '.'l
1 vl vilY
LU _ _T I
thalamo-cortical (TC) thalamo-cortical (TC) resonator {RZ) low-threshold spiking (LTS)

| 20 mv
40 ms

-63 my

Figure 1.5: Known types of neurons correspond to different values of the parameters a, b, ¢, d. RS, IB, and CH are
cortical excitatory neurons. FS and LTS are cortical inhibitory interneurons. Each inset shows a voltage response of
the model neuron to a step of dc current I = 10 (bottom).[9]

As biological plausible as the Hodgkin—Huxley model, Izhikevich model [9] presents the computational
efficiency of LIF models. It is defined by the following set of differential equations:

v =0.04v + 50+ 140 —u + T (1.3)
v = albxv—u) (1.4)

with the auxiliary after-spike resetting:
if v>30mV, thanv=candu=u-+d (1.5)

Here, v and u are dimensionless variables, and a, b, ¢, and d are dimensionless parameters called
"neural parameters”, v’ is the derivative with respect to time. The variable ”v” represents the mem-
brane potential of the neuron and ”u” represents a membrane recovery variable. The parameter ”a”
influences proportionally the time scale of the recovery variable, ”b” describes the sensitivity of the
recovery variable to the sub threshold fluctuations of the membrane potential, ”c¢” describes the after-
spike reset value for membrane potential (typical value is —65mV’), ”d” describes after-spike reset of

the recovery variable (typical value is 2). ”I” term represents the external stimuli, sum of synaptic
currents or injected DC currents.

Depending basically on four parameters, the model can reproduce spiking and bursting (repetitive
and discrete groups of spikes) behaviour of known types of cortical neurons, as illustrate in Fig.1.5.
Neocortical neurons in the mammalian brain can be, indeed, classified into several types according to

the pattern of spiking and bursting seen in intracellular recordings [9]. Each type can be modelled

according to a specific combination of the neural parameters, they are:

e RS (regular spiking) neurons are the most typical neurons in the cortex. When presented with a
prolonged stimulus (injected step of dc-current) the neurons fire a few spikes with short inter-spikes
period and then the period increases. In the model, this corresponds to ¢ = 65 mV (deep voltage
reset) and d = 8 (large after-spike jump of u).

e IB (intrinsically bursting) neurons fire a stereotypical burst of spikes followed by repetitive single
spikes. In the model, this corresponds to ¢ = 55 mV (high voltage reset) and d = 4 (large after-spike
jump of u). During the initial burst, variable u builds up and eventually switches the dynamics from
bursting to spiking.

e CH (chattering) neurons can fire stereotypical bursts of closely spaced spikes. The inter-burst
frequency can be as high as 40 Hz. In the model, this corresponds to ¢ = 50 mV (very high voltage
reset) and d = 2 (moderate after-spike jump of u).

All inhibitory cortical cells are instead divided into the following two classes:

e F'S (fast spiking) neurons can fire periodic trains of action potentials with extremely high frequency
practically without any adaptation (slowing down). In the model, this corresponds to a between 0
and 1 (fast recovery).

o LTS (low-threshold spiking) neurons can also fire high-frequency trains of action potentials, but with
a noticeable spike frequency adaptation. These neurons have low firing thresholds, which is accounted
for by b between 0 and 25 in the model. To achieve a better quantitative fit with real LTS neurons,

other parameters of the model need to be changed as well.

1.1.6 Spike Timing Dependent Plasticity (STDP)

T
@ ! @
eld | 2
d ! o
- | €=
o o
s N =
o | =%
o] | @
c H =
= 1 =
w I wy
T !I T
-40 0 40
time [ms] time [ms]
T T |
. | ! |
slc | s d sle
s | © | © |
5 5 | 5
R e ey I T e
B /ﬁ\ = } = |
g . g | g |
& ! & | & |
T '1 T T I T T } T
-60 0 60 25 0 25 -40 0 40
time [ms] time [ms] time [ms]

Figure 1.6: STDP rules. Positive times correspond to the postsynaptic spike following the presynaptic spike, negative
times the opposite. (a): antisymmetric Hebbian rule; (b): antisymmetric Hebbian rule with differential dynamics; (c):

symmetric Hebbian rule; (d): symmetric anti-Hebbian rule; (e): asymmetric anti-Hebbian rule. modified from [15]

Synapses change their strength according to the activity of both pre-synaptic and post-synaptic
neurons. This property, called plasticity, is assumed to be associated with synapse formation, pruning
and learning in general. Plasticity can introduce two kinds of alteration in the synaptic transmission:
long-term potentiation (LTP), and long-term depression (LTD); these concepts are associated with a

persistent increase or decrease in the amplitude of the excitatory postsynaptic potentials (EPSP). Don-

ald Hebb [3] was the first to emphasize a causality relation between the presynaptic and postsynaptic
spikes suggesting that the efficiency of a connection from a pre- to a postsynaptic neuron is increased
if the presynaptic cell contributes persistently to firing the postsynaptic cell. Hebb, however, did not
provide a rule for the decreasing of the strength, nor did he address the issue of the effective time
window of this causality. Recent experiments suggest that both strengthening, and depression obey
the timing of pre— and postsynaptic spikes. First observed by Bell et al. [2], Spike-timing-dependent
synaptic plasticity (STDP) is a mechanism to explain the synaptic strength modification based on
such spiking order. What has been observed is that in some cases the correlation is consistent with
the Hebb’s one for which the pre- before post- spike enforce the link, others revealed the opposite. In
addition, an Antisymmetric Hebbian rule has been observed in the mammalian cortex, and in cultured
hippocampal neurons. It has been proposed to explain the origin of LTP, i.e. a mechanism for rein-
forcement of synapses repeatedly activated shortly before the occurrence of a postsynaptic spike [12].
It has also been proposed to explain LTD, which corresponds to the weakening of synapses strength
whenever the presynaptic cell is repeatedly activated shortly after the occurrence of a postsynaptic
spike. This is the rule adopted for our model. The following figures 1.6 show the different kind of
Hebbian relations previously presented.

1.2 Review of the HEENS architecture

This thesis project aims to improve the HEENS (Hardware Emulator of Evolvable Neural Systems)
architecture, that has been developed by the Advanced Hardware Architecture team of the Depart-
ment of Electronics Engineering of Universitat Polithecnica de Catalunya (UPC), in order to make it
able to embody, and thus execute as algorithms, the Izhikevich neuron model and the STDP rule.

HEENS is an evolution of a previous architecture, called SNAVA (”Spiking Neural-Networks Archi-
tecture for Versatile”)[16], in which the functionality and the resource occupancy of the elementary
processing element simulating the behaviour of the single neuron (PE) is improved, and the archi-
tecture can be on-line reconfigured. In fact, HEENS allows to load and run via software different
models of neurons and change their synaptic interconnection without re-synthesize the project. This
chapter deals with the principal features of the HEENS architecture, better explaining the different
phases of execution of the neural algorithm and the design solutions at hardware level which make
this architecture specialized and efficient for the neural network purpose. In particular, it reviews the
features of the architecture strictly needed in order to understand which are the results of this project

and the environment in which it is developed.

1.2.1 HEENS network topology

HEENS is a multi-chip architecture of SNN emulator in real time. The multi-chip structure is imple-
mented by multiple FPGA connected in a ring topology which communicate each other exchanging
information under the form of spiking events. In particular, the ”Spikes” are encoded in a serial bus
with the Address Event representation (AER) protocol, which associates with the information of a
spike, the address of the neuron from which it was generated, sending thus its address and not the
spike itself.

The ring topology is a Point to Point communication scheme with a Master chip (MC), which ac-
counts for the set-up operations of the entire network, and several slave chips called Neuromorphic
chips (NC). Each chip can be seen as a node of the network and during the execution of the neuronal
operations the MC acts as a normal NC. The ring topology is a convenient scheme, because it allows
to change the desired number of connected FPGAs, and thus to expand the network, without any
change in the communication protocol (i.e. the way in which the information is shared and different
chips communicate) if not the updating of the number of "nodes” in the network. Information transit
across every chip of the network and, inside the NCs, the neuronal algorithm is executed by many
neurons (i.e. PE) in a SIMD multiprocessor array called PEs array. Fig.1.7, gives an idea of the ring

topology.

2:!-‘- L MC # NC élll NC J
‘j—h

‘E.'_ll

Figure 1.7: Point to Point ring topology with a Master chip and several Slaves chips [5]

The details of the AER protocols, which are explained in [5], are not treated in the following. In the
chapter are instead detailed the operation phases of the architecture and the hardware details of the

array of processing elements (PEs array) inside each NC.

1.2.2 Operation phases of HEENS

HEENS founds its functioning emulating the biologic behaviour of the neurons.

1
2
s
™ - <
/

start 4—@

lf/,',) st ﬁ' ; & Ne
Rst 7&\ 5
wom R
AP : |

ED_ETEC _GFD‘ - ||
\\ﬁ'_fﬁ.‘ o '.'-ll
com ff C_*{I;'l"h | DJP'D:D eo_dist i ﬁ

emg A

Figure 1.8: Operation cycle and the corresponding of each phase in the biologic structure of the neuron. [18]

Its operation cycle includes five phases executed strictly in a sequential way:

e Initialization (IPh): All the operation for the multi-chip platform set up are executed. Each
node is identified with an ID and the size of the ring is specified. Thus, basically it configures

the ring network.

e Configuration (CPh): All the configuration data needed by each PE inside each chip are now
dispatched. This data are the neural parameters, synaptic connection and weights as well as the

full instruction code to be executed for the desired neural algorithm.

e FExecution (EPh): This phase acts to emulate the operations done by the soma. The neuronal al-
gorithm is processed and variables like membrane potential, recovery potentials, synaptic weights

are updated. Each PE uses a complete set of its own parameters.

e FEvolution (EvPh): At the end of each cycle every NC becomes receptive with respect to an
evolution command sent by the MC. If it is present, the involved neurons are modified according

to incoming information before of the new cycle.

e Distribution (DPh): The spikes arisen during the execution phase are dispatched, according
to the synaptic connections fixed during the configuration phase, from a PE to another placed
inside the same NC or in a different one. In both cases the dispatch is done through the serial
bus. If the spike comes from a neuron (i.e. PE) of the same NC the spike is said to be ”local”,

otherwise it is ”global”. This phase can be thought as corresponding to the axon.

Fig.1.8 remarks the correspondence between the different phases of operation and the biological
structure of a neuron, explaining the evolution of the operation cycle driven by some control signals,
used as flags to jump from a phase to another. Once that the IPh and CPh are done, the network

10

basically executes repeating an emulation cycle, made by EPh and DPh. The Fig.1.9 better explains

this concept in the form of a timing diagram.

&

+ #

| iPh ‘ CPh | EPh

CPh| DPh ‘ EPh

DPh | Eph | DPh | EPh

Emulation Cycla

Initial sefup

eo_dis T T . T

evol == T
¥ EvPh

Figure 1.9: Operation cycle can be thought as the sum of two components: The setup made by TPh and CPh, the
emulation cycle made by EPh and DPh. According to the control signal ”evol”, the evolution phase can be executed.[18]

1.2.3 HEENS multi-processor

The scheme of the multi-processor which corresponds to each NC of the network is presented in
Fig.1.10. Each multiprocessor executes the neuronal task according to the user settings. The HEENS
multiprocessor is a SIMD array, with a single control unit and an array of PEs, each identified
according to its position in terms of row and column. The SIMD structure is very useful to reduce
area without losing performance according that every neuron executes the same program. In fact,
no Jumps are executed if a condition is taken, simply the PEs that do not execute the condition are

disabled (frozen). Each multi-processor is basically made by:

e Communication buses
e PEs array
e Control unit

e AER-SRT controller

The communication buses allow the transition of configuration data and execution data from and
toward the array of PEs. As shown in Fig.1.10, HEEN S _add and HEEN S _data are received by each
of PE using an address/data format. These data are multiplexed by the ”config” signal, dependent on

o . AER-SRT Controller >

Tspikn_ou'.

B0_8Nes

| Contral Unit PE

spiken | %
Instruction HEENE_add
Loty

mlk

Memaory "
IMEM pkg_add

FE
|

FE FE FE
|
.:E

pkg_data .
HEEME,
Sequencer dat,_seq =2 -
FE

e & [&] -

@g@

Figure 1.10: HEENS multi-processor blocks view.[18]

11

SNRAM & [RiRe

4 x 15bies LFER

[
i
[+
Local SL-]. "‘i :
VRS Mamary wi| -
[
L
Global Memary |
—= =15
o-H Encoding | |Conwersion| | ;":'_ !
Memory Mamory E_i FREEZE LIFD
H @ :
Encoding Conwersion £
r.c—H — H o
Memaory Mamary =
L=

Figure 1.11: Internal structure of a single PE.[18]

the phase of operation, which chooses between configuration signals (pkg-data, pkg-add) or instruc-
tions from the sequencer (data_seq) and the incoming spike (Spike_in). Spike_in encodes the spike
information under the form of chip address, row, column, virtual layer (more in the following). The
AER-SRT controller is the interface between the NC and the serial bus, which receives with the
signal Spike_out the spikes produced into the NC. Further details about the encode of instructions
and control signals are not strictly necessary for the continuation, so they are not treated. See [5] for
further details.

PE array is a matrix of PEs. There are NxM physical PEs, organized in a square matrix logic
structure. Each PE, however, is multiplexed in time in order to be able to execute up to 8 neurons
laying in different virtual layers. Each PE (neuron) is thus addressed by its row (from 0 to N —1), its
column (from 0 to M — 1), its virtual layer (from 0 to vlayers — 1). Each of this set up parameters is
fixed at configuration step and editable by the user in the python script ”param.py” in appendix B.
This file is heavily commented and will be considered again in these pages to better explain the size
and configuration of the network.

The single PE has the structure shown in Fig.1.11. Basically, it contains a bank of general-purpose
registers with shadow registers supporting "move” instructions from and toward the register RO.
RO is, in fact, the accumulator where the ALU result is stored, and arithmetic instructions execute
an operation involving RO and the chosen register. The ALU has a Zero flag and a Carry flag,
it performs 16 bits fixed point logic and arithmetic operations. The architecture can perform signed
addition, subtractions and multiplications (implemented with DSPs) and, during this project, unsigned
additions and multiplications have been introduced. The register bank input is multiplexed between
ALU result, data coming from outside the PE, the content of the SNRAM memory and the content of
four LFSR register used to implement Gaussian Noise (more in future chapters). BP is the "block ram
pointer” (Bram pointer), addressing the SNRAM. SNRAM is the Synaptic Neural Memory where
neural parameters, synapses parameters, seeds of the LFSRs and shadow registers for all the virtual
layers of the PE are stored. As said before, the PE can receive local spikes (i.e. coming from the same
NC) and global spikes (i.e. coming from other nodes). local memory stores in each row the synapse

number associated with the incoming spikes. For example, if the neuron 0,3,0 (virt, row, col) address

12

the Icl memory, at that position of the memory it is written which is the synapse associated with that

neuron. The number of bits for local memory is:
Nofbits =2"1"¢ xlogy(Sy, — 1) (1.6)

Where Sp, is the total number of synapses supported. After the decoding of the S;, — 1 word, the
synapse position associated with the incoming spike is stored in the ”local Spike register”, each of
whose bits are inputs for the multiplexer with BP as selection signal. For each memory position, the
corresponding bit of the ”local Spike register”, which is basically a flag, becomes the output of the
multiplexer and indicates the presence of a spike. When the LOADSP instruction is performed, the
Spike flag (S7) is stored in the LSB of the accumulator (RO(0)), and the registers RO and R1 are
filled with the content of the row of the SN RAM addressed by BP. Global memory block model the
connections between different NCs in a similar way. In this case there are more fields to be decoded.
This project does not deal with global connections, for further details refer to [5] and [16].

The freeze LIFO allows the processor to execute nested conditional instructions. In HEENS there
are no jump instructions, but all the PEs execute the same code. If a condition is taken, part of code
is executed as it is, if it is un-taken, that part of code is replaced by NOPs and the hardware is frozen.
There are 8 levels of nested freeze conditions in HEENS, supported thanks to a LIFO in which the
sequencer PUSH a '1” when the condition is taken and then POP it when the conditional part is over.
Conditional operations depend on the status of the ”Z” (Zero) and ”C” (Carry) flags of the ALU.
They are FREEZEC (freeze if Carry is '1’), FREEZENC (freeze if Carry is °0’),FREEZEZ (freeze if
Zero flag is '1°),FREEZENZ (freeze if Zero flag is ’0’). The conditional part ends with the instruction
UNFREEZE.

Control Unit manages the flow of data and instructions toward the PE array thanks to the Se-
quencer activity. HEENS-MP is a SIMD Harvard architecture, the processing elements have their
own parameters in SNRAM but global data and instructions are fetched from a single memory block
called "IMEM”. These data arrive to the PE in the signals ”data_in” and ”opcode”. For sake of
simplicity, no further details are treated here. The appendix A shows the full custom Instruction Set,
the kind of operations which the architecture is able to perform, with relative explanation.

1.2.4 System Setup and Software contribute

System Setup is fully made by means of several python scripts, some of the most important files they

receive in input are:
e Assembly file: describes the routine executed by all the neurons.
e Netlist file: defines the synaptic connections between the neurons of the network.
e Neuron file: declares the value of the parameters to be stored in SNMEM.

e Mnemonic file of instructions declares instruction mnemonic words and their machine-level val-

ues.

Appendix B shows the file params.py, which fixes the dimension of the PE array and of the memory
blocks inside the PE. During the Setup of the system, the assembly code is read and compiled in
order to assign the right space in memory to store neural and synaptic parameters and to write the
compiled machine code in the ZIMEM”. The assembly files developed in this project are reported in
appendices and will be described in future chapters.

13

The Netlist file, shown in appendix D, is read in order to write each connection in the lclmemory and
store the synaptic parameters, in it specified, in the SNRAM. The Neuron file, shown in appendix
E, fixes and organizes the neural parameters to be stored in SNRAM specifying their memory location.

The two appendices before cited, explain in detail the structure of the two files.

1.3 Motivation and objectives

This chapter presented the main properties of the NNs and of the HEENS architecture, focusing on the
SNN which the HEENS architecture aims to emulate. The SIMD structure, the AER protocol with
the addressing of the spikes and the neural phases presented, make HEENS able to be intrinsically
efficient in the main SNN tasks and in reproducing its biologic features. If, therefore, the architecture
is efficient and well customized on its purpose, an equally efficient and biologically faithful model must
be adopted in order to emulate in the architecture the actual neural activity. As it has been discussed,
using biophysically accurate Hodgkin—Huxley-type models is computationally prohibitive, since it can
simulate only a handful of neurons in real time. On the other end, using an integrate-and-fire model
is computationally effective, but the model is unrealistically simple and incapable of producing the
dynamics exhibited by cortical neurons. The need for more biological accuracy makes the Izhikevich
model preferred and a good trade-off between cost and performance. The proposal of this project is
thus, as first objective, to map in HEENS architecture the Izhikevich model described in 1.1.5. This
allows to simulate large-scale networks of spiking neurons with a “one-fits-all” choice of the function
in 3.2, but also to reproduce the behaviour of a single neuron of multiple types according to different
parameter values. The second objective of this project is the implementation in HEENS of an STDP
algorithm inspired by that shown in [10] and customized to the resources of the architecture. For a
neural network is indeed fundamental to be able to evolve according to some rules which consider the
behaviour of the system as a whole. As already described, STDP is a rule which shapes the strength of
a synaptic connection and thus the connectivity between neurons according to the inter-spike timing.
To embody this model, therefore, makes it possible for the network to evolve over time according to
its activity, specializing in a task with a biologically recognised dynamic.

In this project several neural models have been developed and several networks have been tested
combining the different properties until now described, in order to appreciate the different dynamics.
In fact, all the tested models integrates the Izhikevich neuron, while the outcomes of the application
of the STDP with different granularity (to the entire network, or to selected neurons, or to selected

connections) have been tested.

CHAPTER 2

|zhikevich algorithm mapping on HEENS

2.1 Izhikevich algorithm

One of the targets of this thesis project is the mapping on HEENS architecture of the Izhikevich neural

model, which has been already presented in section

1.1.5. In order to better describe its algorithmic

features, we can refer to the folowing MatLAB script, originally included in a paper published by

Izhikevich in 2003. Since the routine performed in

HEENS has the same structure, it can be useful

to analyze in detail the different blocks of this program, each shown with a different colour:

% Created
% Excitatory
Ne=800; Ni=200;

re=rand (Ne,1); ri=rand(Ni,1);
a=[0.02+xones(Ne,1); 0.02+0.08x*ri |;
b=[0.2%xones(Ne,1); 0.25—-0.05*ri];
c=[—65+15%re."2; —65%ones(Ni,1)];
d=[8—6%re."2; 2xones(Ni,1)];

S=[0.5xrand (Ne+Ni,Ne), —rand (Ne+Ni, Ni) |;

by Eugene M. Izhikevich , February

neurons Inhibitory neurons

v=—65%ones (NetNi,1); % Initial values of v

u=b.*xv; % Initial values of u

firings =[]; % spike timings

for t=1:1000 % simulation of 1000
I=[5*randn(Ne, 1) ;2*randn (Ni,1) |;
fired=find (v>=30); % indices of

t+0xfired , fired |;

ms

% thalamic
spikes
firings=[firings;
v(fired)=c(fired);
u(fired)=u(fired)+d(fired);
I=I4sum(S(:, fired) ,2);

2003

25,

input

v=v+0.5%(0.04%v."24+5%v+140—u+I); % step 0.5 ms

v=v+40.5%(0.04%v." 245%v+140—u+1); % for
u=uta.x*(b.xv—u); % stability

end;

plot (firings (:,1) ,firings (:,2),7.7);

The first block initialize the number of ”excitatory”

of excitatory or inhibitory is not well placed from a

14

numerical

and "inhibitory” Neurons. Even if the definition

biological point of view, due to only the synapses

15

can be of a type, in this model we imagine that excitatory neurons create only connections with a
positive synaptic weight and inhibitory with a negative sign. According to several biologic results, is
assumed the presence in the Brain of a quarter inhibitory synapses w.r.t the excitatory ones. As can
be noticed, this ratio is maintained in this program and will be in whole this project.

In the first block, all the neural parameters and the synaptic weights ”S” are generated randomly
according to the rectangular distribution "rand”. These values are as well printed on file in order
to be used by HEENS architecture for its simulation (more in the following). Note that Inhibitory
Synapses (the Ni columns from the column Ne+ 1 of the S matrix) are stronger then excitatory ones
(the first Ne colums).

In the Second block, membrane potential ”v” and recovery potential "u” are initialized. The initial
membrane potential of all the neurons is fixed at —65uV. The "firings” matrix is then initialize
as an empty structure, it will be filled at each cycle with the addresses of the spiking neurons in
order to print the spike pattern. In the third block is described the execution loop. This program
aims to simulate 1000 cycles, and due to biologically every cycle is pretended to be executed in
1ms, the simulation is of 1000ms. In the third block, thalamic input noise "I” is defined according
to a MatLAB Gaussian distribution function called "randn”, then the neuron which fired (whose
membrane potential overcomes the threshold of 30uV) are identified and stored in the ”firings”

matrix and their potentials are updated according to:

v = 0.040% + 50 + 140 —u + I (2.1)

!

u' =a(b*xv—u) (2.2)
with the auxiliary after-spike resetting:
if v>30uV, thanv=candu=u+d (2.3)

The parameter ”"c¢” represent thus the resting potential, i.e. the potential of reset after spike,
different for all the neurons. It worth to stress that the thalamic input is stronger (the randn function
is multiplied by 5) in the excitatory neurons than in the inhibitory (randn x 2). The fourth block
includes the numeric version of the Izhikevich set of differential equations, in which, for sake of stability,
the membrane potential routine is divided in two steps. It is worth to stress that in the ”I” term are
contained both the thalamic input and the sum of the synaptic weights of the fired connections. At
the end of the file a firing pattern is plotted, it is a graphical representation of what neuron has spiked
and in which time instant. An example for a network of 40 neurons and a simulation of 1000ms is

shown in Fig.2.1

16

0 T T T T T T T T T
e * #* *
* * * * *-*
5 * * * #-
* * * *
* * g * ¥ *
* *
10 * *
. . * * * o * *
¥ % *
= - -
5 15 " N N *
s * * "
(b
>20F * * oot T
g * *
= #* £ % * #*
f=1 * * * *
t 25 ﬁ-ﬁ# . #* % % % e .
* * * *
30 r * * p
_;*
3B * * * * oL * * 3
Ll Lo | I L i L I-;+e L I -*I- i L -*-I -*TI
40 Gl o o o i i e o
0 100 200 300 400 500 600 VOO 800 900
time [ms]

Figure 2.1: Example of the firing pattern for a network of 40 neurons and a simulation of 1000ms

17

2.2 Matching HEENS and MatLAB model

Once analyzed the algorithm, must be clarified what grade of compatibility this can have with the
HEENS architecture. In fact, there some important differences between the already presented algo-
rithm and what can be performed in HEENS:

e MatLAB model supports floating point operations, this is not reproducible in HEENS where
only fixed point operations can be performed. A fixed point model must be inserted in the
MatLAB script.

e HEENS architecture doesn’t perform any kind of hardware rounding. This could affect the
possibility to obtain improved results in the hardware emulator and match the MatLAB results.
Some kind of rounding must be inserted in HEENS.

e The Gaussian Noise by which is modeled the thalamic input is not supported in HEENS. A
Hardware Gaussian Noise generator must be designed and its model must be inserted in MatLAB
in order to make the HEENS and MatLAB simulations compatible.

Based on what has been seen, in order to simulate the algorithm before of the actual mapping,
make some important design choices and then compare the floating point ”infinite precise” model
with the fixed point one actually implemented in HEENS, it is of great interest reproduce HEENS
computational capability in MatLAB. This means introducing in the MatLAB script some custom

functions which emulate real operations in HEENS. The following sections deal with this necessity.

2.2.1 Fixed point model

The ”fixed point designer” app of the MatLAB suite allows the generation of a custom MatLAB
function executing operations with fixed precision. The user is requested to specify the format and
decimal precision for each variable, the parallelism of arithmetic operations, the type of rounding to
be performed and several other parameters (For further detail refer to Appendix I). These kind of
features allow to reproduce the arithmetic capability of HEENS and eventually to shape it according
to needs.

In order to find the minimum decimal precision able to well approximate the floating point model,
three fixed point membrane potential models are tested, with 5, 6 or 7 fractional bits respectively
in a 16 bits word. In all the three cases, the tested network features 16 fully connected neurons
with randomly generated parameters. A 8-decimal digit model is not considered because, analyzing
the floating point model, can be found that the membrane potential minimum value is around -90uV.
With such dynamic, an 8-fractional digits representation in HEENS would for sure saturate performing
the Izhikevich algorithm. The results are shown in Figs.2.2, 2.3, 2.4, which represent the membrane
potential of three neurons for each resolution value. Only the version with 7-fractional bits gives
reasonable performance and doesn’t present parasitic spikes.

A binary number with 7 fractional bits represents numbers with a resolution of 7.81 % 1072, and thus,
this number can be considered the "unitary scale value” of the system. Considering the physical
quantity of the neural model, in order to facilitate debugging and design, the final chosen resolution is
the near 101073, in Volt 10x10~3mV . In HEENS, therefore, every Voltage quantity of the algorithm
will be expressed in multiple of 10uV and the LSB, thus, corresponds to this value.

18

Membrane potential [mV]

Membrane potential [mV]

Membrane potential [mV]

bl

Wi

}/»‘MWL-L '\W W "\f

0 100

200

300 400 500
time

600

Membrane potential [mV]

80

60

40

20

-20

-40 ‘ J ‘ “‘
Bl st i
-100

0 100 200 300 400 500
time

600

Membrane patental [mV]

\/ﬁW" 1}\\,,”\m WM\“ il i Mlu,

o 100 20 0 00 0 00
time.

Figure 2.2: Comparison between floating point and 5-decimal digit fixed point models for 3 neurons.

‘ N 1
,M»,m""‘w’a'wm/J,M‘W«MWM”- okt

0 100 200

300

400 500 600 700
time

800

Membrane potential [m\V]

|
N W** e WMWWW

0 300 400 500 600 700

time

800

Membrane potential [mV]

" ,w,\‘ M

‘(:(.{\M "’\ /v W“"\‘” n“;r M"Tl W*

50 100 150 200 250 300 350 400 450 500 550
time

Figure 2.3: Comparison between floating point and 6-decimal digit fixed point models for 3 neurons.

” u\‘l WM/,‘MW/ b m ﬂ
-80

Mj’y‘M m m%

100

200

300 400 500
time

600

Membrane potential [mV]

g \WN\‘ Ly \\“‘ Ul g W'Wﬂ 'y

100 200 300 400 500
time

600

Membrane potential [mV]

,‘ﬂ%‘ ﬂ\,ﬁ\;l"\n%‘f' Ih

1 J
| | 1Mk
u«w“’r***‘""WW\ wwq\‘;.M‘n'J\},\’

100 200 300 400 500 600
time

Figure 2.4: Comparison between floating point and 7-decimal digit fixed point models for 3 neurons.

2.2.2 Introduction of rounding in HEENS

In the section 3.9 it is shown as the MatLAB fixed point model with ”Nearest” rounding (which rounds

toward the nearest integer) has exactly the same spiking pattern of the infinite precise version, while

the model with the "Floor” rounding (which simply truncates the results) makes several mistakes.

To better emulate the ideal performance, it is thus necessary to introduce in HEENS some form of
rounding with the minor possible hardware cost. With this aim, the following rounding solutions have
been developed and introduced in the architecture:

e Rounding to the nearest integer when the arithmetic shift ”SHRAN” instruction is performed.
No rounding is executed with the non-arithmetic shift instruction "SHRN”.

e Conditional rounding when "MUL” or "MULS” instruction are performed. The MSbit of the
LSW of the result is put in the carry flag after each multiplication, with a "FREEZEC” in-

19

struction the content of the flag can be verified and eventually the MSW is incremented by

one.

These solutions provide an "on demand” rounding when multiplications are performed, with thus a
code overhead, and an automatic rounding when a shift is performed. Due to the most of operations
are performed with shifts, a good precision is achieved without a big code overhead.

For sake of completeness, the Appendix M shows the ALU of the PE described in VHDL. The rounding
of the result of an arithmetic right shift, in particular, is described from line 329.

2.2.3 (Gaussian noise introduction

As said before, Izhikevich algorithm includes a term called ”I” which is mathematically represented
with a Gaussian Noise of different intensity if considered applied to an excitatory or an inhibitory
neuron.

HEENS Processing element features a rectangular (or uniform) noise generator, made by a 64-bits
LFSR, which is not actually needed by the Izhikevich model. It is thus replaced by an algorithmic
emulation of a Gaussian Noise obtained thanks to four 16-bits LFSRs in Galois configuration.

As well known, an LFSR is simply a shift register whose input bit, at each clock cycle, is a linear
function of its previous state. The initial value of the LFSR is called ”seed” and, due to the stream
of values produced by the register is completely determined by its previous state, the operation of the
register is deterministic and thus the same state can reappear after a complete cycle. However, with
a well chosen feedback function, the repetition cycle of the input pattern is very long, and thus it can
be considered a generator of pseudo-random values. Galois LFSR is simply an LFSR characterized
by a particular feedback function, which is shown in 2.5.

14

16 13 11 1
DDF)D{ol | le JololiTiTiolofo]o])—‘

Figure 2.5: Galois 16-bit LFSR [17]

In [11] Gaussian noise is obtained from the uniform noise made by four LFSRs by means of shift and
additions exploiting basically the central limit theorem. The logic structure proposed in [11] and used
in our design is that of 2.6.

However, this kind of implementation would need the presence of three additions, two made in par-
allel, and thus the physical presence of at least two arithmetic units, which makes it quite hardware
expensive. If compared with the actual noise generator, moreover, this solution appear to be far
more expensive. In order to maintain approximately the same cost of the old implementation, all the
operations are executed in firmware by means of the unique ALU of the Processing element. Gaussian
noise generator is therefore realized as a routine of the assembly source file, whose functioning is based
on a matrix of four VHDL described 16-bits LFSRs, whose states are loaded in parallel in the register
file.

20

LFSR 1 > >
+ — >>
LFSR 2 BN - .
+)—
LFSR 3 > > <
+ — >>
LFSR 4 — > ;

Figure 2.6: Model for generating Gaussian noise distribution with 4 LFSRs

Once realized a MatLAB model of the matrix of four galois LFSRs (see Appendix J), the real quality
of the noise generated is verified thanks to the custom MatLAB script attached in Appendix K, where
a distribution of 10° pseudo-random values obtained by simulation is mapped against the best-fit
Gaussian distribution (MatLAB fitdist function). The first picture of Fig. 2.7 show the histogram
obtained by the 10° samples randomly generated by the 4-LFSRs system, together with the line
interpolating the histogram (in red) and the best-fit Gaussian shape (in yellow). The second
picture of Fig. 2.7 shows the error (i.e difference) obtained comparing, in the center of each bin of the
histogram, the value of the bin and the value of the interpolating shape. Considering the mean value
of the square of the error just described, can be obtained the MSE (Mean square error), which is the
average squared difference between the estimated values and the actual value and thus corresponds
to the expected value of the squared error loss. When the Gaussian distribution generated by the
4-LFSRs model is compared with MatLAB best-fit function the MSE, results to be:

N
MSEppsr =1/N % Z(YLFSR — Yaaussian)? = 0.0461 with N = samples (2.4)
n=1

In order to appreciate the quality of the results, this value can be compared with the MSE obtained
considering the Gaussian distribution made by the "randn” MatLAB function, which results to be of
the order of MSEranpN = 0.0130.
The two pictures in the bottom of Fig.2.7, instead, show the shapes of the Gaussian distribution
resulting from the 4-LFSRs model and the "randn” MatLAB function in the case of 10° samples.
In fig.2.8 the main logic blocks of the Gaussian_noise subroutine developed in HEENS are described.
At the beginning of the algorithm an instruction called SEED initialize all the LFSRs, then two
instructions called "RANDON” and "RANDOFF” enable the evolution of the states, then " LLFSR”
instruction loads the state of the four Galois LFSRs in registers RO, R1, SR0, SR1. An algorithm of
shifts and additions is thus performed together with a final portion of the routine which recognizes
what kind of neuron (exc. or inh.) is the PE emulating (remember that all the PEs execute exactly
the same algorithm) and multiplies it by different coefficients. This implementation actually allows to
obtain a good and low cost Gaussian noise, with the overhead of 35 clock cycles, which is a reasonable
outcome.
The Gaussian_noise subroutine is included in the assembly file of Appendix C and its full custom
MatLAB model called ” LFSR_Gaussian_noise” is introduced in izhi_net.m program in order to
compare the simulations made in MatLAB and those made in HEENS, at RTL level, according to
exactly the same noise source.

The izhi_net.m program and its simulation results are the topic of the next section.

21

Normalized occurrence
Error
o

Sample Samples

(a) (b)

12000

12000
10000
10000
8000
8000

Occurrence

6000

Occurrence
g
8

4000
4000

2000 2000

-3 -2 -1 o 1 2 3 -5 -4 -
Sample Sample

(c) (d)

Figure 2.7: a) Distribution of pseudo-random values obtained by the 4-LFSR model is mapped against the MatLAB
best-fit Gaussian distribution. b) Error between 4-LFSRs model distribution and the best-fitted Gaussian shape.
Distribution made by 4-LFSRs model (c) and by "randn” function (d) with 10® samples.

SEED initializes all LFSRs

v

RANDON and arbitrary
RANDOFF

v
SUMs & SHIFTs algorithm

v

LLFSR instruction loads
states in register file

v
Exc
or
/ Inh? Y
Scale “ * Scale
factor 1 factor 2
- ~
Sa r's
RET

Figure 2.8: Gaussian_noise subroutine blocks view

22

2.3 MatLAB simulation

Appendix H contains the entire MatLAB code of the izhi_net.m program including both the floating
point ”infinite precise” and the HEENS-like versions of the Izhikevich neural algorithm. The program
is inspired by that presented in the first section and modified according to what said in the previous
section. Thus, the fixed-point precision of HEENS is emulated with the 7-fractional part function
described before (which corresponds to have a resolution of 7.81uV’), and the Gaussian noise is gen-
erated by the 4-LFSR structure of the previous section. Just setting the Number of excitatory and
inhibitory Neurons (again, this is not an accurate definition as said in 1.1.5) and running the program
(the STDP part is to be considered commented in this section), a fully connected network is simulated
for the number of cycles decided in the ”for” instruction. In addition, at the end of the code, the pro-
gram prints in the same graph the membrane potential temporal evolution of all the neurons of both
models, and the superimposition of their spiking patterns. The figures in 2.9 show the comparison
between the spiking pattern of the floating point model (0) and the fixed point model () for a 550ms
simulation. The figures show the results in two case: in the left the fixed point model uses the ”Floor”
rounding which simply truncates the result, in the right the model supports the rounding toward the
nearest integer value, called ”Nearest”. As can be seen, the first case presents several parasitic spikes
which would totally drive out the network evolution, while in the second case the two spike patterns
are identical. Therefore, the insertion in HEENS of the two rounding techniques already discussed in

2.2.2 is necessary.

0 T 0
@ @
2 * * 2
@ ® @ @
4 ® ® ® * 4 ® ® ®
® ® * ® ®
§ 6 * ® 5 6 @
é ® ® § B ®
o 8 ® * ® o 8 ® @
= @ * = @ @
@ 10 ® * a0t ®
® ® @ @
12 L3 @ ® 12 @ @ @
14 14
16 - . - - - . - - - - 18 - . - - - . - - - -
0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550
time [ms] time [ms]

Figure 2.9: Comparison between the spiking pattern of the floating point model (o) and the fixed point model (*).
a) "Floor” rounding performed, b) ”Nearest” rounding performed.

It has been thus demonstrated that the fixed point model with a 7.81uV resolution and the ”Nearest”
rounding can emulate faithfully the floating point model. Thus, these are the kind of features that
must be mapped on HEENS.

Next section details the generation of input files for HEENS architecture via MatLAB scripts. Then,
in 2.4, the mapping of these parameters in HEENS is detailed.

23

2.3.1 MatLAB setup scripts

Neural params Synaptic params

‘ Izhi_net.m ‘
Membrane potential
along time

I plot \

‘ Neuron_gen ‘ Netlist_gen ‘

Phyton setup
scripts

Figure 2.10: Purpose of the MatLAB scripts in this project

As said in 1.2.4, the entire HEENS architecture is setup by means of python scripts, whose principal
input files have been already described and among which there are the files Neuron.txzt and Netlist.lst.
As can be noticed looking at the MatLAB program described in 2.1, some of the neural parameters to
be stored in Neuron.txt and Netlist.lst need to be randomly generated according to bio-inspired rules
and therefore the entire files need to be automatically generated for sake of simplicity. For example,
as described in Appendix D and E, each of the number in the Neuron file is the decimal conversion
of two randomly generated and concatenated 16-bits binary numbers representing neural parameters
a, b, ¢, d, u, v and so on.

In order to easily generate these random parameters, Netlist and Neuron files are generated via the
MatLAB scripts netlist_gen and Neuron_gen shown in Appendix F and Appendix G. In this way,
the entire Neural Network is simulated in HEENS and in MatLAB starting from the same parameters,
and executing exactly the same algorithm, in order to verify and compare the correct functioning and
the reliability of the results obtained in HEENS.

Fig.2.10 shows how the effort of MatLAB in this project can be summarized. First it is executed
the program izhi_net, which generates all the parameters and simulates the network, then the scripts
netlist_gen and Neuron_gen before discussed generate the Netlist.lst and Neuron.tzt input files
needed by python scripts. Next section describes how these parameters are stored and managed in
HEENS.

24

2.4 SNMEM organization for Izhikevich model

This section aims to describe how data necessary to execute the Izhikevich algorithm are stored and
managed in HEENS. With the already cited file Neuron.tzt, the data to be stored in memory are
provided to the compiler together with their destination address. Synaptical neural memory contains
32-bit words, at each "LOAD” instruction the 16 most significant bits (16MSb) are moved to R1,
the 16 less significant bits (16LSb) are moved to R0O. In each memory row is therefore a 32-bit word
which is the concatenation of two 16-bit words. In particular, for each neuron, the parameters of 2.1

are specified:

Memory row 16 MSBs 16 LSBs

NEUaddr0 membrane potential ”v” 16.0 | recovery potential "u” Q16.0
NEUaddr0+ 1 parameter ”b” 16.0 parameter "d” Q16.0
NEUaddr0 + 2 parameter "a” (16.0 parameter "c¢” @16.0

Noiseaddr(16 bit seed 16 bit seed
Noiseaddr(+ 1 16 bit seed 16 bit seed

Table 2.1: Neural parameters stored in memory

Where the format 16.0 indicates an integer number with the sign bit, 15 integer digits and ’0’ decimal
digits. It is worth to stress again that the four seeds are loaded in the four LFSRs used for Gaussian
noise generation.

All the neural parameters before described are loaded in register file at the beginning of the operations
and moved during the algorithm execution, with the particular case of the membrane potential which
is the only data which never change position but always remain in R2 in order to be monitored during
simulation (more details in future). The synapses as well are written in SNRAM through the file
Netlist.lst and the memory organization for each neuron ”i” linked to the neuron ”j” with 0 < j < 15

(where J = 0 stays for the neuron itself), results to be:

Memory row 16 MSBs 16 LSBs

SYN addr0 weight Py ; So
SYN addr0 +1 | weight P ; S
SYN addr0 +2 | weight P ; So

SYN addr +15 Welght P1577; 515

Table 2.2: synapses stored in memory

The work of this project is mostly focused at algorithmic and instruction level. However, In order
to fulfil to computational exigences of the algorithm such as the presence of the square elevation, of
conditional instructions, of the noise routine, some modifications in hardware and an extension of
the instruction set were necessary. Without going into detail, beyond the already described rounding
techniques, the original instruction set has been expanded with an unsigned multiplication and an
unsigned addition, together with a modification of the "LLFSR” instruction which loads the content
of the four registers in parallel into RO,R1,SW1 and SW2.

Next section details the mapping of the Izhikevich model in HEENS through the assembly program,
in which the whole neural algorithm is described at instruction level.

25

2.5 Assembly file

The assembly program executing the Izhikevich neural model is included in Appendix C. As said,

this assembly file describes the entire neural routine performed in HEENS. Just to sum it up, it

has been mentioned before that during the set up operation of the architecture (made in the C'Ph),

the assembly program, the netlist and the neuron files are the inputs for some phyton scripts which

creates the memories of each PE, compile the assembly code creating the machine level program to be

written inside the "IMEM” of the NC and set up the array of PEs. In this section, a brief overview

of the structure of the assembly program is done. Each block is described in order to better explain

its function, the hardware resources exploitation, the main program tasks and compare this program

with its MatLAB version izhi_net.m.

In blue the first piece of code of the program is shown :

e A define section states how many virtual layers are involved in this model, the number of global

synapses and the number of steps in which the membrane potential algorithm is performed.

According to the MatLAB program published by Izhikevich, the membrane potential evolution

is divided in two steps for numerical stability.

e For sake of simplicity and graphical result fruition in ” QuestaSim” environment, in which HEENS

architecture has been simulated, only one virtual layer is used in this program. Nevertheless

the whole model is designed to support 8 virtual layers, in fact 16 synapses are assigned to each

virtual layer in the section ”Virtual layers”.

e Constants and parameters are then defined. Each voltage quantity is of course written as multiple

of the 10uV unit, each number n > 1 is written as it is, and each number n < 1 is written as

itself multiplied for 2'6 in order to be right shifted after the multiplication taking only the 16

MSBs of the 32-bit result.

Network definitions

define virtual_layers 0 ; From 0 up to 7
define gsynapses 2 ; Up to 32 global synapses
define n_step 1; number of steps—1
.DATA

Virtual layers
VO = 70000000F” ; Number of assigned synapses
]
V7 = ”0000000F” ; Number of assigned synapses
VLAYERS="00000000” ; Number of virtual layers

Membrane potential parameters common to all

;multiple of 10uV

VTHRES="FFFFF63C” Threshold voltage —25 mV

N70="00001B58” ; 70mV,
N0002="000068DC” ;
NO001="00000028F”; 0.01, The noise generated by LFSR is

REST_POT="FFFFE6IC” ;
N5="00000005" ;

—6500

General constants

(s—1) to the main layer

(s=1) to virtual

(n—1).

layer 7

neurons

100 time bigger than

necessary .

26

[--]

The next part of the code is shown in green. The first address for synaptic parameters in SNRAM
is fixed for all virtual layers. Our algorithm without plasticity involves 1 row for each synapse, thus
a total of 16 rows in memory per virtual layer. The same is then specified for Neural parameters
in SNRAM: in our model there are 3 memory rows of synaptic parameters stored in memory, thus
NEU_ADDR1 — NEU_ADDRO = 3.

; Neural and Synaptic RAM addresses

SYN_ADDRO="00000000" ; First address of Synaptic parameters in SNRAM for V = 0.
SYN_ADDRI="00000010" ; First address of Synaptic parameters in SNRAM for V = 1.

]

SYN_ADDR7="00000070" ; First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000090" ; First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3” ; First address of Neural parameters in SNRAM (995) for V = 0.
NEU_ADDRI="000003E6” ; First address of Neural parameters in SNRAM (997) for V = 1.
NEU_ADDR2="000003E9” ; First address of Neural parameters in SNRAM (999) for V = 2.
]

NEU_ADDR7="000003F8” ; First address of Neural parameters in SNRAM (1009) for V = 7.

SEED_ADDRL = ”000003FD” ; Address of noise seed in SNRAM
SEED_ADDRH = ”000003FE” ; Address of noise seed in SNRAM
PEID = ”000003FF” ; Address of PE Identifier number

In the following portion of code in violet all the subroutines are defined.

.CODE

b
GOTO MAIN ; Jump to main program

3

o skoRskokokskok ook ok ok skokokokokokokokokokokokokokokokk. PROCEDURES BEGIIN st sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok ok ok ok ok

.RANDOM_INIT ; Uses RO and Rl

]

RET

.LOAD NEURON ; Uses RO, R1, R2, R3, RH
]

RET

.DETECTSPIKE ; Uses RO,R3,SW5, SW6 and R2
]

RET

.SYNAPSE_CALC ; at time: 15916...

]

RET

.GAUSS.NOISE ; Uses SW0, R2, R6 and R7
]

RET

.MEMBRANE POTENTIAL ; Uses RO,R4,R7 32808
]

RET

.RECOVERY_UPDATE ;uses R3,R5,R6

]

RET

.SUM_NOISE_AND_Ws

]

RET

.STORENEURON ;uses RO,R3 and R1

27

[-]
RET

stk ok skok ok skok ok skokskok ok sk ok Rk ok R skokokokokk k. PROCEDURES EIND sk sk s s sk sk sk sk sk sk sk ok sk sk ok skok ok skok ok skok ok skok ok sk ok
The Maroon block shows the main program which execute the ”emulation cycle”.
e LAY ERV states and saves in memory the information of how many virtual layers are used.
e The subroutine RAN DOM _I NIT initialize all LFSRs with the seeds defined in the file Neuron.txt.
e The instruction for the compiler .EX ECLOOP starts the neural execution loop.
e LOOPuirtuallayers ensures the repetition of the same routine for all the virtual layers.

e Routine starts with LOAD_NFEURON subroutine which stores in register file the neural pa-
rameters and the membrane potentials contained in SNRAM. Access in memory of course is

time consuming, thus, in order to avoid it, all the needed data are now and not again loaded.

e The subroutine DETECT_SPIKEFE, verifies if the membrane potential of the neuron overcomes
the threshold and eventually push a spike in the LIFO. If a spike is detected, the potentials are
updated according to:

v(it+1)=c;ult+1)=ult)+d (2.5)

e The first address of synaptic parameters in SNRAM is read by READM PV SY Nsppgro and a
LOOPYV instruction executes the SYNAPSE_CALC subroutine for the neuron of the virtual
layer. In SYNAPSE_CALC the weights of the synapses which have spiked are added together
creating the final synaptic term to be added to the membrane potential of the post-synaptic

neuron ¢. It is:
N—1

Pi(t) =Y WyixS;(b). (2.6)

<

where P;(t) is the final input term, j is the index of the pre-synaptic neuron, N is the number of
connections (equal to the number of neurons in our fully connected network), W), is the weight
of the synaptic connection from the neuron j to the neuron i, S;(t) is a binary value which
indicates if the neuron has fired or not.

e A sample following the Gaussian distribution is then generated, as already described, by the
GAUSS_NOISE subroutine.

e In the following, the ”LOOP” instruction executes twice the half step of the membrane potential
algorithm described by the subroutine M EM BRANE_POTENTIAL. it is:
v(t+1) = v(t) + 1/2 % (0.004v(t)* 4 0.5 * v(t) — u(t) + 140). (2.7)

e The incoming synaptic input P;(¢) and the thalamic one are added to the membrane potential
in the subroutine SUM _NOISE_AN D _W s. This last subroutine basically embody the term [
in the MatLAB Izhikevich algorithm.

e The RECOV ERY .UPDATE routine execute the membrane recovery variable differential equa-
tion:

u(t+1) =u(t) +ax* (bxv(t) — u(t)). (2.8)

28

e The membrane and neural parameters are stored back in memory with the STORENEURON
routine and the "virtual layers” loop is ended after the increment of the virtual number. When
all the virtual layers are executed, the ”execution loop” ends and then spiking distribution is
performing, thus completing the emulation loop.

o skoRskok Rk ok Rk ok Rk okokokokokokokokokkokokokokokx. MATIN PROGRAMME . BEGIIN stk sk sk sk sk sk s sk ok sk sk ok sk sk ok ok ok ok ok k% ok
.MAIN

; Virtual operation init

LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—virtual operation
LDALL ACC, VLAYERS ; Load defined virtual layers to PE array

SPMOV 0 ; VIRT <= ACC

; Initial instructions
GOSUB RANDOMINIT ; For noise initialization

.EXECLOOP ; Execution loop
LOOP virtual_layers ; Neuron loop for virtual operation
NOP ;to prevent pipeline error

GOSUB LOADNEURON
GOSUB DETECT_SPIKE
(]
READMPV SYN_ADDRO
LOADBP
LOOPV VO ;synaptic loop. Reads number of current—layer synapses
NOP ;to prevent pipeline error
GOSUB SYNAPSE_CALC
ENDL
SWAPS R3 ;SYNAPSE sum to SW3
GOSUB GAUSS_NOISE
LOOP n_step
NOP
GOSUB MEMBRANEPOTENTIAL ; Calculate membrane potential
GOSUB SUM_NOISE_AND_Ws
ENDL
GOSUB RECOVERY_UPDATE
GOSUB STORENEURON
INCV
ENDL
.FINISH
NOP ;Empty pipeline wait NOPs
NOP
NOP
SPKDIS ; Distribute spikes
GOTO EXEC_LOOP ; Execution loop

Finally, it worth to stress that this program executes the same tasks, in the same order, of its MatLLAB
version.

29

2.6 Simulation in QuestaSim

QuestaSim is a multi-language HDL simulation environment by Mentor Graphics for hardware descrip-
tion languages such as VHDL or System Verilog. It offers high-performance and advanced debugging
capabilities, it is used in multi-million gates design. Our entire Architecture is loaded in QuestaSim,
compiled and executed with tcl macros, the result of the RTL simulations is visible in a timing diagram
form with the ”Wave” tool of the suite. The wave tool of QuestaSim is the only one used to verify
and debug the HEENS architecture during all the phases of this project. In particular, with this tool
it is possible to known the content of each register, the ALU operations and results and the presence
of spikes can be immediately recognized graphically. Moreover, The ”analog format” option allows
us to see the time evolution of the neural variables (such as the membrane potential) in a quantized
cartesian graph, appreciating its typical shape in a very user-friendly way.

Once the assembly program has been translated and the memories of each PE are written, the VHDL
files describing the architecture are compiled and the network is simulated for an user defined time
lapse, allowing to visualize as many emulation cycles as needed. Fig.2.11 shows the spike pattern
obtained for a simulation in Questasim of 550 cycles. The network is the same already simulated with
MatLAB, shown in 2.9 and reported here for clarity. As it can be noticed, the two spike patterns are

almost identical.

‘SPIKE_DISPLAY(0)

xe_a
 spike_dspiO)O)L)
* spike_di

+ spike_dspiO)0)2)
spike_dispi(O)(1)(0)
* spike_dsplO)(XD)
“ spike_dispi(0)1)(2)
 spike_dspO)
* spike_d
+ splks_dspiO)2Y)
ISPIO)E)Z)

7 spike_dispi(0)(3)(2)
spike_dispi0)2)E)

Spiking neuron
[+-]
®
®

0 50 100 150 200 250 300 350 400 450 500 550
time [ms]

Figure 2.11: a)Spiking pattern obtained simulating a 16 neurons fully connected network in Questasim b) MatLAB
simulation of the same Network with floating point arithmetic (o) and fixed point arithmetic (*).

30

Fig. 2.12 shows the analog representation of the membrane potential of all the 16 neurons. As it can

be noticed, noise continuously affects membrane potential and each peak corresponds to a spike.

P il
ar W g Al

P, P T P Y

PLTRY W

Figure 2.12: Membrane potential of all the 16 neurons of the Network

31

2.7 Simulating different types of Neuron

As discussed in 1.1.5 and shown in 1.5, Izhikevich model aims to imitate different types of cortical
neurons according to well chosen a, b, ¢ and d parameters. In 1.5 in particular, the characteristic
membrane behaviour of three types of excitatory neurons called RS, IB and CH, and two kind of
inhibitory called FS and LTS are presented. The aim of this section is to simulate in MatLAB
and HEENS some of these known neurons using the parameters already indicated in 1.1.5, in order
to demonstrate the capability of our model in reproducing some of their characteristics, such as
spike pattern and membrane recovery interval. In particular, in Fig.2.14 three kinds of neurons, two
excitatory and one inhibitory, are simulated individually in MatLAB. Each simulation is driven by a
constant 10mV input and the following neural parameters:

-CH:a=002b=02c=-50d=2
-RS:a=002b=02c=-55d=4
-FS:a=0020=02c=-65d=38

In 7 Appendix L” the used assembly program is shown. This is actually identical to the more generic
previously presented, with the only exceptions that here all the parameters are defined in the assembly
program and stored as constants in IMEM and the noise sub-routine simply add the constant 10mV
value. The fig.2.13 shows the membrane potential and the spike pattern of two neurons for each type,
obtained in Questasim. The two neurons differ only for the initial membrane values, they are, in fact,
basically shifted in time, but they behave in the same way. Note that at the ”e” of Fig.2.14 the blue
and the orange curves are perfectly superimposed and so the reader may be misled not seeing the blue

curve. The coincidence of the two results can be verified looking at the spiking pattern in ”{”.

n’LLA‘L/ﬂ»L—LJJM’",.,w‘l"_JLfL/L—‘t 4. I e [‘M«‘Lz’,/ﬂi_.fm «’.W,JL/‘LJL
/ ‘ ‘L./'} MJMLJ ..-r,,«J_.,:{_A_.x"Lr-’",‘L.J,,-J ,»|_.,'L/‘M..J,M«J,“,HL‘»’,-|_,/|

Figure 2.13: Membrane potential behaviour and the spike pattern obtained in HEENS for:
a) CH neuron; b) RS neuron; ¢) FS neuron.

32

80 2
col 18 E
181 —
40
141 g

o

membrane potential [mV]
o
Spiking neuron

-20 o8y |
06 —
-40
04t g
-60 0zl |
50 0
0 100 150 200 250 0 50 100 150 200 250 300 350 400 450 500
time [ms] time [ms]
(a) (b)
100 2
80 i 18 E
60 — 167]
s 1al]
E i .
T c
£ S12t —
§ 20] 3
g T
a o
I3
g2 o] =
g Z 08 1
£ 20 @
g 1 L 1
2 06
-40 ‘
04t g
\‘ li | ‘
-60 /j / % 02F]
| {
50 0
0 50 100 150 200 500 0 50 100 150 200 250 300 350 400 450 500
time [ms] time [ms]
(c) (d)
100 2
80 18 E
60 167]
s 1al]
E w0 .
T c
£ S12t —
§ 20 3
a o
I3
g2 o £
g Z 08 1
£ 20 @
@ L 4
g ‘ ‘ ‘ ‘ 06
| IR I i 04} 1
I i JW i I I L\ it
-60 ! V / b q 02} —
&0 0
50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
time [ms] time [ms]

() (f)

Figure 2.14: Membrane potential behaviour and the spike pattern obtained in MatLAB for:
a,b) CH neuron; c¢,d) RS neuron; e,f) FS neuron. In blue, as usual, is shown the floating point model, in orange the
fixed point model. In the right column, for sake of clarity, is shown only the outcome of the floating point.

CHAPTER 3

STDP algorithm mapping on HEENS

3.1 STDP algorithm

As discussed in 1.1.6, ”Spike timing dependent plasticity” is a property of synapse connections consist-
ing in a variation of their strength due to the relative time lapse between presynaptic and postsynaptic
neurons’ spikes. As already said, in nature, many types of relations which can impact in different ways
on the strength of a link have been found, which in different ways keep account of the spikes in order
to introduce some mechanisms that cause those long period depression and potentiation phenomena
already described. The relation chosen in our model is called Anti-symmetric Hebbian rule and it is
described by the Fig. 3.1.

This kind of relation can be easily visualized considering that positive time values relate to a positive
value of the quantity: tpostsynspike — tpresynspike, and thus, for example, 40ms means that the postsy-
naptic spike happened 40ms after the pre-synaptic one and vice versa the opposite value. According
to the previous assumption, in the Antisymmetric Hebbian relation, a link is as more reinforced as
more the presynaptic neuron spikes immediately before the postsynaptic, or in other words, as more
the pre-spike determines the post-spike. However, the figure 3.1 shows that for very small value of
time there is not significant change in the synapse. This keeps in consideration, if present, a possible
refractory, and thus ”insensible”, period immediately after spike. Once qualitatively understood the
relation occurring between spikes, must be identified an analytical rule and then obtain from it an al-
gorithmic version able to be inserted in HEENS and to be fully compatible with the Izhikevich model.
The Izhikevich model, indeed, features some constant synapse weights which are added together by

the receptive neuron when there are spikes. Can be thus simply written for each synapse:

Wji = Sj * Pji (31)

E}

=

=

=

8

e |

g |

N |

w I
T !I T

-40 0 40

time [ms]

Figure 3.1: Anti-symmetric Hebbian rule. modified from [15]

33

34

Where "W” is the synaptic weight to be added and coming from the neuron

737, 7S” is a binary
variable equal to "1’ if the neuron fired, "P” is the intrinsic weight of the synapse. Inserting STDP
makes "W?” changing according to time and pre/post-synaptic spikes and thus consider a new term

called L(j) which describes this variation. The relation thus became:

which states that the weight of the link which connect the presynaptic neuron ”j” and the postsynaptic

99399 99 29
1

one differs from zero only when ”j” spikes and change its original value ”"P” according to the
parameter L which is function of times and spikes.

Javier Iglesias in [10] proposes an STDP model in which ”W?” depends on an integer variable called
”A” which change its value when a real values variable exceeds some threshold. In our model we
don’t use any threshold or quantized integer value, but the same real values variable introduced by
Iglesias becomes our ”L”. This means basically to admit a continuous variation of "W” with ”L”.

The equation which describe this variation is:

L]l(t + 1) = LJZ * Kact + Sz(t) * Mj(t) - Sj(t) * Ml(t) (33)

Here, ”L” changes at each algorithmic step according to a decay coefficient K,.; and according to
some quantities called M; and M; added if a post or pre-spike happens. The coefficient M (t) may be
viewed as the ”memory” of the latest inter-spike interval, and assumes the form: (in this case written
for i, but equal for j)

Mi(t+1) = Si(t) % Mgz + (1 — Si(t)) % My(t) % Koy (3.4)

M; assumes a reset maximum value M,,,, after each spike, decreasing otherwise according to a decay
constant called Kj,,,. Summarizing, with the generation of a postsynaptic spike (i.e. when Si = 1), the
value Lji receives an increment which is a decreasing function of the elapsed time from the previous
presynaptic spike. On the other hand, when a spike arrives at the synapse, the variable ”L” decreases
as function of the elapsed time from the previous postsynaptic spike. The trends of "M” coefficients
and the resulting variations of ”L” can be better visualized with the Fig.3.2. At each spike, "M”
coefficients reset and ”L” is decreased or increased according to ”M” values. If no one spike occurs,

71" decreases slowly according to the K, coefficient.

Figure 3.2: "M” and ”L” trends when spikes occurs. At each pre(post)synaptic spike, M;(jy reset its value and "L”
receives a decrement(increment) according to the value of M at the spike instant. If no spikes occurs M coefficients
decay with Ksyn and ”L” decay very slowly with Kact (not shown). [10]

35

Iglesias in [10] describes "K” coefficients with exponentials:
Koy = et/ Tsum Koo = et/ Tact (3.5)

Our choice is to assume "K” constants equal to all neurons and, according to values considered
reasonable by the literature, equal to 7sy, = 40 ms and 74, = 11000 ms. Moreover, for an algorithmic
purpose it is convenient to approximate the exponential behaviour with a linear one (i.e. Taylor series
approach), writing:

y_e—t/T
—t/T
de / :_;1*6_25/7_
dt T
dy _ —y
dt T
—yx A
Ay~ y* At
-
—y(n
y(n+ 1)~ y(m) ~ ~4)

In our case, the constants are:
Kgyn = Toyn — 1/Tsyn = 39/40 !+ = 10999 /11000. (3.6)

The relations 3.3 and 3.2, considering ¢ and ¢ + 1 an arbitrary algorithmic step and its next, thus
simply become:

Lji(t+1) = Lj; * Kooy + Si(t) * Mj(t) — S;(t) = M;(2). (3.7)
M) (t+1) = Sy (t) ¥ Myae + (1 = Si(t)) * My (t) * KL, (3.8)
It worth to be stress that the sign ”-” in the equation 3.7 realize the anti-symmetric rule.

It is clear that the value of M., gives a scale of how much STDP is effective, of how much at most
L changes its value for each spike. Moreover "L” must describe both the potentiation and depression
phenomena according to its value, i.e. according to a value bigger or minor than 1. Considering the
mapping of this algorithm in HEENS, due to Fixed point arithmetic is naturally able only to deal
with integer number, our design choice is to give to ”L” an initial value of L;,;; = 20 and to M a

maximum value of M., = 2. Re-writing 3.2 as:

Sj (t) * Pji * Lij (t, Si, Sj)

Wii(t) = 20 (3.9)
and thus:
W jionar () = Sj(t) * Pyi * Lijinie _ S;(t) * Pji #20 S;(t) * Py (3.10)
20 20
and re-writing 3.4 as:
M;(t+1) = S;(t) % 2+ (1 — Si(t)) * M;(t) * K, (3.11)

The normalized form in 3.9 has been chosen because it is easy and user friendly in the development

phase, precise and efficient because it needs no rounding if not at the final normalizing division.

36

Another equally reasonable choice is to set Mmax = 1 and thus to have basically a less effective
STDP. The details about the introduction of the STDP algorithm in HEENS are treated in future
sections. Before, as usual, the model is inserted and simulated in MatLAB. This is the topic of the

next section.

3.2 MatLAB simulation

In APPENDIX H is described the MatLAB program simulating a 16 neurons SNN supporting the
Izhikevich neural model and STDP. The program has been already presented in Chapter 3, but
ignoring the sections which start at the lines ”64” and ”74” which describe STDP routine for the
floating point and the fixed-point models of the membrane potential. Considering for example the
piece of code relative to the floating point part (line ”64”), the two equations already presented in 3.4
and 3.5 are executed for all neurons through a for cycle and then Sf which represents our Pj; * Lj;
product is updated. Note that alpha and beta are respectively the decay constants K/, and K,
and the fixed-point section executes the same operation.

The Fig.3.3 plot on the same graph the spike pattern of the floating point model (o) and of the fixed
point model (*) both implementing STDP for 30.000ms and thus 30.000 cycles, as can be seen the
two models behave in a similar way but moving forward with time there are some errors. This can
reassure us about the reliability of our model but at the same time it reveals that our fixed-point
model is not able to perfectly replicate the ideal behaviour when very small changes appear as in the
STDP routine.

0 T T T T T

B TEP D SOP BB W BH B P M P WO WO PO PO 3000 WWIPP R0 PO ST IIP WP W I SO CEAD GEP P S GO D S B B
2 @ 3P BEPP IS ® 2P @ 2OPEPE G0 WD GRS P O 2D CEDRINVIVEI® W CCWRO CCOIWE 2 PR W O VW ¢ PP
B RO CCHPP PO FONIEWP S 2P W CWW P CREE NS CNWIBVIW 20 2P RERP WP IR W P WO WS
4 FRED OGP GO B 6D ¢ BHHD 6 © HD S & W @ BEED WIOOPO OB B B 2 WEI® © D OB @S G BB 3P 6D o dee e
(@ S NS S EBEP COP WO 88D PP BEE ¢ PO WINIPCPEEC B WP S WWRE O WPE B INWRWS S W WIWPWE® B
64 B PEP 20 PR MO WP WO CIWITCIINE 200 P IWIRICUN IS 23 OWITP 2 PFCCWRE WV IP ¢ WPIIWIORE WP WG
Pe P P WHAS OB © PP O WP VWL B P B coEEe © @ P3P GG DS O EDO GO WPHOTED U VPO IVEO BB D

[0® B0 ©IH ¢ WBE® B © CHEPCOM D CWBO CBOI BB WM CHBD WD B G WD D CWHD MM WHE O ¢ PV CHBIIEI B © WSS

Spiking neuron
®

o @ee © CHEWHE WIDO VTHDEW WHE O EC @ C PP WP IO P 0O OB © CIOWHWOW® WV B P WO 0P W © WEWD WO

Ve & &6 6 B 60 & VDB DHUMBE 66 © 66 © IPE © TP WD T B @ © © DLW W PPV GED ® @ apeg

3P OO GOOI BHD © WHO G WPEBE © 6 WBHHHO BO S G GNP © GHOWEOCCWIE D €D OIM® TPV WIIDOH OO P © WD G

12 PR ED ¢ &P D WHSOWD GG IO CIBMWE © GO ® 0O THO @ G WO B O OND W + 9P R C CP? I WO PC PO VAWM WPV O © © @ W

1 o ! ! ! !
0 0.5 1 15 2 25

time [ms] x10%

Figure 3.3: 30.000ms simulation of a 16-neurons SNN supporting STDP. (o) is the floating-point model of the network,
(*) the HEENS-like fixed point model.

It can be furthermore interesting to compare two networks different only by whether to implement
STDP and evaluate their different evolution in time. This kind of comparison is done in Fig.3.4,3.5,3.6
for different size of network and simulation time. As can be noticed, despite in a first moment there
are not relevant differences between the models, moving forward with time the two networks start to
behave in a different way, some spikes are shifted in time or not present, new spikes appear. However,

it is still very complicated to recognise the STDP features clearly from these kinds of simulations,

37

0 T T T T T

PEE R D DO B W B* @@ e WO 0 @ WO OEC OO PWE PO0D WP P TRV G PP MW SO W W P GO WD GBS B 00 D S D G|
2 @ 20 BEWS SCIWR® 232 @ PP P OWID GOP 2 C 3P CENNRINVIVI® P COWRO I WE 2P W B S OBWW © 98P
P eRece R GROOR P ENE @ W@ @ I WP CRET TR TRODI® TSP B WD IWE PP WP GBW® S WP WBDS
4 DO @90 PO @ @0 © GNP @0 @ GNP P00 @ 0®m 00 D BOOODO PPREWP ® OB 0O WOOWH © @ S @D @ G W@ P P ® e @4
(@ @6 eHR® © 20 00 @O ORBD G0 BEE © PO WMV CIV I RBB® O IHBE ©0 WS BP R COWE @ ® @ OB B P82 @
6 &P SUWS SCC RNE® WS WL WO CIVCEINE S VIW R CCUWM I G0 DI G0 PCCITWRR WP ¢ WIIWPORW W WG
Pe @HP 2P0 WRES OB S 20 PO WP PV B SO B coEee @ @ PP G PO @ EHOO GHIS HOTB W WSO CWEO WB D

foe eee 0B © WEO @ © C@EPCOM D LWDE C PRI PP CHEE O G WO @ @D DB GO GNP AWM MOD VP CBO PAPEIOW B © WD D

Spiking neuron
B

o GBEE @ CWOWEWO WHDD PEHVEE® WHE OO OO © © PO WHPI WO OO WO W@ © PELEIWAWO® WHD D © O ©P 80 O eBe®O @D

10 & 66 © BIES @ 6 POEDDBOEDEG 00 © 00 O ¢Bed © OGO G GO PO O © 6 o @ eDed 88 & ®aebig
@ PEPO COOM BHE © HHE P OPEB®E © © WHEWH DO GO GO ¢ CHOCWECCCBIMOID ©I O IOCOD WIWOD 0O OB © WO VW

12 PR E S T O WRIPWO W GI0 CIDTED ¢ GO ® 0O 00 W CWOBP O® W B® O WP 0D PWE WO WO PO AW BB OE © © © WH

| | | | 1
0 0.5 1 15 2 25
time [ms] x10*

Figure 3.4: 30.000ms simulation of a 16-neuron SNN, (o) is the spike symbol for the network supporting STDP, (*)
is the spike symbol for the network not supporting STDP.

and thus, in the following, some examples of network will be presented in order to stress, and clearly
visualize, the STDP features.
In order to measure the growth or degrowth rate of the synapse weights with respect their initial
value, it can be considered the matrix S of initial synapse weights and the matrix Sii of the final
weights and calculate.

Svar = ((Sii — S)./S) % 100 (3.12)

Where Swvar stays for ”variation of S” and the symbol ”.” means that the operation is done on every
element of Sii and S in the same position. Taking the maximum and minimum of Svar, we found the
most grown and the most degrown synapse in percentage. Considering for example the 16-neurons

network, it results to be:

Svaryrax = —48% Svary iy = —100% (3.13)

after 30 ms, thus, all the synapses are decreased, but in different measures.

38

0
@ @ @‘@ @@‘ @Je @@‘ @@@@‘@@ @‘@ @ ‘@@ ‘ ®®I® & @ Q@ @ @
LX) ®® ® ® ®0 P EO D © O ® O ® ® & ® ® ©® ® ® ® % 66 © b B L
®® ® %6 8@ ©® ® €6 ® @ © O e® @ ®© ¢ @ © ® e® % ® @ ® ® ® @ @ A0k ®® L
® © @ ® ©° & ® 0P @0 PP @ ®® ® € ® @@ ® ©® @®® © ® @ ® ® ® @
5 LX) @ ® @ @@ @ e * @ @ @ 220 @@ eee @ ees & & @ & &9 & ® 8@ &
e® ®68 & 68 O ® 8 @ * @ ee @ 66 88 & © ® © 6O PEOE O 6 & O e o LX)
®® 96 B8 P & O 68 @ 8 ® ® ® @ 36 8% ® GG © 6 VO ® &F ® 9% 39
® ® Ok @ @ ® e o ® e ® 00 2306 @ ® ® ® 0 @ ® ® ® ® ® ® @
@& @ & & e O & & ® e & @ LY T XY & & & > e & & b @ @6 ® B4 & @ @
10e @ ® ® PEDD BB ® BB @ @ @ @B o & & &® ®®® © 6 60 ® ®® @ ® & |
a8 @ ® © & @ e B0 O BBEBE B &8 88 @ ® e® ® e & e ® @ ® 886 ® ¥
® @ @ ® @ ® ® ®® & @ ® ® % ® ©® @8 ® ® ® @& & ® & @ ®® 8 L
5 63060 G206 6 © 686 SO S OO S & 00 & & ® & & & ® & ®8 & & & @ ® e e &
2 e &8 ® ® & © 888 & & @ ® o @ ® & @ & @ ese 0@ &8 ® e @ e @
15— ® @ ®® @86 @ ® © @ &6 ® GPE® @ @ ®0® D @ ® ®3 ® ® © ©0 60
] e ® ® 3 & ©8 6 ©6 &8 & 6 ® 3 © & B8 © BBHE ® 8 26 © 88 ® © 808 & ©8 L
& |ee e 2200 @ ® ®@ @ ® @ ©® @ @ © © @@ e e ® @ @ €@ @ 92 @ © ® ©% ® I® §
® @ ® & ® 06 ® BB D © B OO VOO @ ® BB © BPO G B OO 6 O ® ®
e @ 288 @ @ LAY LX) ® @ ® 200 9@ & @8 a8 e ® ® @
20 — se®® & & & B -1 ® &® @ & o @68 & & & & OO © B & B O ® ®® —
@ @ ® @@ @ ©® ©® @ %6® ©® @ © ® @ O ® @8 PO € 23 © @ %3 ®%0 @ ®
@ @ ® & e e @@ L4 @ @ ® @ ¢ & @ ® @ ® @ @ ® PP ED @ ® @ @
6 ® & ®B @ ® & ® ® & ® OB B 666 OO ® ® ® P © 660 B 66 & BB *O B0
B 288 & & 26 #0 & ©® @88 & © o 2 & @ @8 ® & @ @ © ©86 © © & ©O8 a
25/ 6 OB DD 3D © GPG ©GF THE IPHD 36 © D PEOCIPT DD B CEWEH G PRI D IO © W IPEC OB ® VOO D GO VIVE TG HID B WS S B
@ 86 @ & ® & @ & 08 @ & & 606 ® E) e @6 & & @ o 8 e ®
® @D ® 388 ® ®8 0 ® & ® 8 ® ®® ® LACX: ®® @ ® ® @ ® ® &
® ® ®
30 4 e Lo ved s @ | e Lo se | | e <l 2 |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
time [ms]

Figure 3.5: 11.000ms simulation of a 30-neuron SNN, (o) is the spike symbol for the network supporting STDP, (*)
is the spike symbol for the network not supporting STDP.

k4 w%g
e &
%% 0% e

3
&
®;
B g G

[
®,
B

o

&,

o0 %

L]
k-2 ®%%
O

®,
Lo
)

@ @
&

3

% &
S

$%

w@

Spiking neuron

s %
® g

@

*B BB B D B DD

-3 & B ® 4 &
B & GEID EBED OIS & B DD BED BP BIPHED S BRBBB B ED 4B

@ @ @ @I S@ @g & & ® & 4 @ *
DD B WS ++ @ & 8k & *0 BABET® @ B0 OB H BBO G & KD GEPFE D g0

&F
& ot e DU R LI Lo % 00t L B0 0BT W2 B WU,
® Kk &

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time [ms]

Figure 3.6: 11.000ms simulation of a 128-neuron SNN, (o) is the spike symbol for the network supporting STDP, (*)
is the spike symbol for the network not supporting STDP.

39

3.3 STDP in HEENS architecture

In this Chapter have already been presented the equations describing the STDP model first adopted
and then customized for this project. The initial value of the STDP parameters ”L” and "M” have
been defined as L;ni¢ = 20, Minit = Myar = 2. The decay time constants chosen are, instead,
Taet = 11000ms for the decay of ”L” parameter and 7,.; = 40ms for what concerns ”M” parameter. As

said, Synapse strength decays according to an exponential trend, in our algorithm, instead, this kind of

behaviour is approximate piecewise linear with the coefficients K., = 299%0=% and K/, = 4051 This
data must be encoded in HEENS to allow good precision in calculations and algorithmic efficiency.
Thanks to the introduction of the unsigned multiplication, the two rational decay constants can be

stored in HEENS as:
~ 11000 — 1

K, = 000 * 216 = (0.99991 * 51¢) 15 = (65530.04)10 = (FFFA)pes (3.14)
/ 40 —1 16 16
Ky = =g *2°= (0.975 5'9) 10 = (63897.6)10 = (F999)pcx (3.15)

It is worth to stress again that these coefficients must be seen as unsigned numbers (otherwise they
would appear as negative numbers) and thus managed with unsigned arithmetic. Another option
would have been to store half their values, this would allow the use of signed arithmetic, but would
have meant less precision.

At each step, this constant must be eventually multiplied with the synapse variables ”"L” and "M”.
To appreciate the variation deriving, the "L” and "M” parameters must be stored with a compatible
precision and thus in a format containing fractional digits enough to be sensitive to the operation. In

particular, the main synaptic parameters are encoded as follows:

e L is an unsigned number, its initial value is 20 and it must be able at least to duplicate its value.
There is therefore no need for a sign bit and its integer part can be reasonably encoded in 6
bits. When multiplied by the coefficient K/, which can be approximated as K/, = 0.9999, it
needs theoretically one millionth of precision. Our choice is to store L in an entire memory row
(32bits) and align, in the most significant word, its fractional digits to those of "M” parameters.
This means provide it basically 26 fractional digits, since the 10 still available using a single 16

bits word would not be enough.

e M is an unsigned number, its initial and maximum value is 2. There is therefore no need for
a sign bit and its integer part can be reasonably encoded in 2 bits. When multiplied by the
coefficient K, which is K., = 0.975, it needs theoretically one thousandth of precision, which
corresponds to 10 decimal digits (271% = 1/1024). Thus, the bits needed to encode the value
are actually 12, we can therefore store the value in a 16 bits word and encode in the same word

also, for example, the spike flag bit. This will be shown in the next section.

e P represents the ”static” synaptic strength. It is a signed number and its value is biologically
hypothesized to be between —1mV and 1mV. It must be thus encoded as a number between
—100 < P < 100 and thus need at least 7 bits. However, for sake of simplicity and flexibility

the value is stored as 16 bits signed integer.

It is worth to stress that supporting STDP doesn’t need any substantial hardware modification but
only a small modification in the selection signal of the MUX downstream of the Icl spike register.

In fact, the STDP subroutine performs two accesses in memory, but just the first one is a LOADSP
instruction which loads the Sj pre-synaptic spike flag into the first position of the accumulator (See

40

BP(4 downto 1)

BP(2 downto 0)

Sel

Syn ' Sj

Figure 3.7: Spike decoding chain. In the top of the picture, the part of "BP” which drives the "MUX” change from
BP(3 downto 0) (NO STDP) to BP(4 downto 1) (STDP)

APPENDRIX A). Therefore, due to, as said in Chapter 1, the selection signal of the MU X is the BP,
it must select a different value of the lcl spike register every multiple of two of the address in memory.
In order to do this, the selection signal simply changes from BP(3downto0) to BP(4downtol). In
order to not re-synthesize the entire architecture for this small change, moreover, the two portions of
the signal can be simply multiplexed by a selection signal external at the PE. The Fig.3.7 shows the
structure (modified from an idea of [19]).

Next section details the organization in SNMEM of all the parameters already described.

3.4 SNMEM organization for SDTP

This section aims to describe how data needed to execute the STDP algorithm are stored and managed
in HEENS. This section is in addition to and expand what has already been described in 2.4, which
is recommended to read first. With the introduction of STDP, the content of the SNRAM for each
neuron of a virtual layer becomes:

Memory row 16 MSbs 16 LSbs

NEUaddr0 membrane potential ”v” 16.0 | recovery potential "u” Q16.0
NEUaddr0+ 1 parameter ”b” 16.0 parameter ”d” Q16.0
NEUaddr0 + 2 parameter "a” 16.0 parameter "¢” @16.0
NEUaddr0 + 3 STDP flag* M; unsigned Q6.10

NoiseaddrQ 16-bit seed 16-bit seed
Noiseaddr0 + 1 16 bit seed 16 bit seed

Table 3.1: Neural parameters stored in memory

Where the format unsigned 06.10 indicates an unsigned integer number with 6 integer digits and 10
decimal digits. And the initial value of M; is 4 %20, stored for algorithm efficiency as double its value,
to be right shifted during the algorithm obtaining the value of 2 % 2'°, with thus 10 digits of decimal
precision.

*The STDP flag is present only in the version of the program which supports the presence of STDP

41

at neuron level (more details in the next section).
In the algorithm supporting STDP, synaptic parameters are allocated into two memory rows of
SNRAM instead that in a single row. Allocation in SNMEM of the synaptic parameters of each

neuron ”i” linked to the neuron ”j” (0 < j < 15 where J = 0 stays for the neuron itself) becomes:

Memory row 16 MSBs 16 LSBs
SYN addr0 weight Py ; &Sp* My unsigned Q5.10 & Sy

SYN addr0 +1 Lg,; unsigned Q6.10 Lo, LS 16 bits

SYN addr0 +2 weight P ; M unsigned Q05.10 & S

SYN addr0 +3 | L;; unsigned 6.10 L;; LS 16 bits

SYN addr0 +4 weight Ps ; M unsigned @5.10 & S

SYN addr0 +5 Lo ; unsigned 6.10 Ly ; LS 16 bits

SYN addr0 430 weight Pi5 ; M5 unsigned Q5.10 & Si5

SYN addr0 +31 | Ly5; unsigned Q6.10 Ly5,; unsigned Q0.16

Table 3.2: synapses stored in memory

*The spike flag S, is present only in the version of the program which supports the plasticity at
connection level.
As reported in APPENDIX D, initial synaptic parameters are written in memory by netlist.lst and
each line of the file is of the form:

#lidlvirlcl lidlvilrlc| synN MSwl, LSwl, MSw2, LSw2
and for example the first line is:
0000O0O0O0O0O0 9 2048 20480 0

where P = 9, J\f[j,init = A{maz = 2% 210 Lji,init = 20 * 210.

42

3.5 Assembly code

This section refers to the common features of the assembly programs in APPENDIX N, APPENDIX
P, APPENDIX Q. These three programs describe the neural routine of networks supporting STDP

at different level:
e APPENDIX N shows a program when STDP is supported by default by the entire network.

e APPENDIX P shows a program when STDP is supported at a neuron level. This means that
according to the STDP flag, presented in the previous section and stored, for each neuron, in
the SNMEM as shown in 3.1, the STDP is applied to all the pre-syn connection of the neuron.

e APPENDIX Q shows a program when STDP is supported at connection level. This means that
according to the flag .S}, presented in the previous section, stored for each connection as LSB of
the "P” parameter and shown in 3.2, the STDP is applied to the single connection.

Based on the above, in the first case the program executes automatically STDP, in the second it tests
for each neuron, in the third case it tests for each synapse according to S, and thus the efficiency of
the algorithm is reduced.

All three programs, however, are like the one previously detailed in chapter 3 and shown in the
APPENDIX C, with the difference that the STDP equations, if supported, must be executed for
each synapse according to the pre-synaptic activity. This basically introduces changes in each sub-
routine, because more parameters must be handled, but most of all are different the operations done in
STDP_SYNAPSE_CALC, the sub-routine now in charge of the synaptic operations. During it, both
the rows of the SNMEM storing ”P”, ”"M” and ”L” are updated, together with the usual operations
of routing operated in Synaptic Local Memory. An additional sub routine called Mi updates the M
parameter of the post-synaptic neuron (i.e. the neuron which is operating the routine) if in turn the

neuron spikes. The sections of the assembly program are:

Network definitions

define virtual_layers 0 ; From 0 up to 7
define gsynapses 2 ; Up to 32 global synapses

define n_step 1;
.DATA

; Virtual layers

VO = ”0000000F” ; Number of assigned synapses (s—1) to the main layer
[

V7 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 7
VLAYERS="00000000” ; Number of virtual layers (n—1).

Membrane potential parameters common to all neurons

;multiple of 10uV

VTHRES="FFFFF63C” ; Threshold voltage —25 mV

N70="00001B58” ; 70mV,

N0002="000068DC” ;

NO001="00000028F”; 0.01, The noise generated by LFSR is 100 time bigger than necessary.
REST POT="FFFFE69C” ; —6500

N5="00000005";

43

; Neural and Synaptic RAM addresses

SYN_ADDRO="00000000" ; First address of Synaptic parameters in SNRAM for V = 0.
SYN_ADDRI1="00000020" ; First address of Synaptic parameters in SNRAM for V = 1.
SYN_ADDR2="00000040" ; First address of Synaptic parameters in SNRAM for V = 2.
...

SYN_ADDR7="000000E0” ; First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000090" ; First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3” ; First address of Neural parameters in SNRAM (995) for V =
NEU_ADDRI="000003E7” ; First address of Neural parameters in SNRAM (999) for V =1
NEU_ADDR2="000003EB” ; First address of Neural parameters in SNRAM () for V = 2.
(o]

NEU_ADDR7="000003FF” ; First address of Neural parameters in SNRAM () for V = 7.
SEED_ADDRL = ”000003FD” Address of noise seed in SNRAM

SEED_ADDRH = ”000003FE” ; Address of noise seed in SNRAM

PEID = ”000003FF” Address of PE Identifier number

; STDP constants

K_syn= ”0000F99A” ; (40ms—1ms/40)

K_act= "0000FFFA”; (11000—1/11000)

NO025= 700000666 ;

1/40=0.025 to be multiplied to sum of weights

Which differs from the previous version because the space in SNMEM for synaptic parameters is

double, and the plasticity constants must be declared.

.CODE

GOTO MAIN ;
.RANDOM_INI
]

RET
.LOADNEURON
]

RET
.DETECT_SPIKE
]

RET
.STDP_SYNAPSE_CALC
]

RET
.GAUSS_NOISE

.RECOVERY_UPDATE
]

RET
.SUM_NOISE_AND_Ws
]

RET
.STORENEURON

(-]

Jump to main program

ook koK ok ok ok ook ok okok ok ook skokokokokokokokokk k. PROCEDURES BEGIIN st sk sk sk sk sk sk s sk sk ok sk sk ok sk sk ok sk sk % ok sk ok ok ok ok ok ok

44

RET
s skokskokokkok ook okok sk okokokokokok ok okokokokokokokk. PROCEDURES EIND stk sk s sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk ok ok ok

Every subroutine is slightly different from the previous version. Furthermore ”Mi” subroutine is
added.

.MAIN

; Virtual operation init

LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—virtual operation
LDALL ACC, VLAYERS ; Load defined virtual layers to PE array

SPMOV 0 ; VIRT <= ACC

; Initial instructions
GOSUB RANDOMINIT ; For noise initialization

.EXECLOOP ; Execution loop

LOOP virtual_layers ; Neuron loop for virtual operation
NOP ;to prevent pipeline error
GOSUB LOADNEURON
GOSUB DETECT_SPIKE

SWAPS R3 ;SYNAPSE Sum will be store IN R3
MOVA R5
SHRN 5
SHRN 5
MOVR R5
READMPV SYN_ADDRO
LOADBP
LOOPV VO ;synaptic loop. Reads number of current—layer synapses
NOP ;to prevent pipeline error
GOSUB STDP_SYNAPSE_CALC
ENDL
SWAPS R3 ;SYNAPSE sum to SW3
GOSUB Mi
GOSUB GAUSS_NOISE
LOOP n_step
NOP

GOSUB MEMBRANE POTENTIAL ; Calculate membrane potential
GOSUB SUM_NOISE_AND_Ws

ENDL

GOSUB RECOVERY_UPDATE

GOSUB STORENEURON

RST R3;

MOVSR R3;

INCV

ENDL

.FINISH
NOP ;Empty pipeline wait NOPs
NOP
NOP
SPKDIS ; Distribute spikes
GOTO EXEC_LOOP ; Execution loop

Similar to the previous one for what concerns order and tasks.

STDP routine performs two accesses in memory for each synapse, for a total number of 32 accesses

in the case of a fully connected 16 neurons network, and for each synapse it tests if there is a spike

11} _I_LL_l__I__ A A LA L A AR AR __JJ_I_I_LL___.!___I_L I

T T A A T R A e R e Ty Ty i EAEEBALEEE y

fu”ﬂ,.mm, AELRRRERI P PRARIEVRPERERR VR ERVRARARRRPEREIT O O ORUARN VIR RN R IRNY Y TR

P
I,I|.Irr LELL
T

4_1_1 I.JJr

|
Il_llul_i_l_'\I |_|_|J_F_LI|_Iu|u|u|u|_] _"_'I_II.II.II.II.I F 4 Il_lululul_ll_L'\I Lll_lulul_ll_i_i_ __Iululul_ll_l _l__ll_ll_lulul_l_i_ __\.llulull_ll_i_i_ |_||_|u|u||.|] _'l_'\l_ll.lluI _n_r !, Lll_lululull_l_ LR & |_|||. JI F 4 I I

Figure 3.8: Synaptic subroutine duration

incoming and eventually sum up it to an accumulator. This subroutine is for sure the more time-
consuming task in the emulation cycle.

The emulation cycle duration is an important factor, both to correctly size the length of the simulation,
both to be sure that biological performances are fulfil. It can be determined experimentally simply
looking at the wave window and detecting the time lapse before the algorithm is repeated. For
the network entirely supporting STDP, the cycle duration turns out to be approximately equal to
15,54us. Assuming in a first approximation that the only part of the program strictly depending
from the number of neurons is the synaptic_calculation subroutine, which is repeated as many times
as many are the neurons, it is interesting consider the cycle length as a function of the number of
neurons as follows:

To(N) = N s tg + teonst = 15.54us (3.16)

where T is the emulation cycle duration, N is the number of neurons, ¢, is the duration of the
synaptic_calculation subroutine, t.ons: is the duration of the part of code which does not depend on

the number of neurons in the network. In our simulation, t; ~ 0.8us as shown in 3.8.

Using this formula, if it is requested to know the cycle length of a 16 physical neurons network using
all the 8 virtual layers, it can be considered as a 128 neurons fully connected network and it can be
written:

Te(16 % 8) = 16 * 8+ ts + teonst (3.17)

or writing according to the result 3.16
To(16%8) = 16 % 8 ts + teonst = 15.54 — 16 % 0.8 + 128 % (0.8) = 105.14us (3.18)

Which provides a worst-case prediction.
As can be noticed, T¢ in this equation grows linearly with the increase of the size of the network. It
is clear therefore that is very important have an efficient synaptic_calculation algorithm and this will

be again treated in a following section.

46

3.6 Simulation in QuestaSim

In this chapter the STDP formulas and the implementation of the algorithm in HEENS have been
presented. It has been shown, moreover, that in a wide fully connected network, as that simulated in
3.2, it is really hard to identify the outcomes of plasticity and predict the evolution of the synaptic
connections, and therefore of the spiking pattern, in an intuitive way. For these reasons, this section
aims to show the actual functioning of the developed algorithm, and therefore the main features
of the STDP rule, through two example networks and the graphical representation of the neural
variables offered by the ”Wave” tool of Questasim. The two networks to be analysed supports STDP
at connection level. The first Network is that of 3.9. According to the structure of the Netlist.lst file
already described; it is defined as:

C

[vlrlc| synN MSwl, LSwil, MSw2, LSw2
1 1000 2048 20480
1 5000 2048 20480
1 1000 2048 20480
1 5001 2048 20480
1 5000 2048 20480
2

|id
00
01
02
03
10
10 2000 2048 20480

O O O O O O —
w = NN O O —
O O O O O O —
O O O O O O —
O O O O O o

/1000 ™
N\ s000 / '_'\

_

4 W\/ N

pl el

5000

/ \
/1000 ™
b /\ -
q q / \ 5001 / \ /2000

wﬂ,n,\/ \/

Figure 3.9: First example network, the orange connection support STDP property, which is encoded in the ”1” value
of the LSB

Our interest is to underline the modification introduced by plasticity and, with this aim, the couples of
neurons ”00”-"01” and ”702”-"03” are designed exactly identical (they have the same neural parameters
and the same noise seeds), with the only exception that the link between ”02” and ”03” supports
plasticity and thus it is expected to present a different evolution along time. The neurons ”00” and
702”7 are sources of spikes realized imposing a reset membrane potential near to the threshold and a

feedback self-spike big enough to overcame it and generate a new spike. The sources are, however,

” ’7

not continuous due to at each spike emitted the membrane recovery variable is increased of the

” 77

amount described in the parameter ”d” and, according to 3.2, the recovery variable is at each

7 77

step subtracted to the membrane potential ”v”. Thus, at a certain moment, the variable will be

47

|— SPIKE_DISPLAY(0)

Figure 3.10: Questasim simulation of the first example network. In the top the spike pattern, in the bottom the

analog shape of the membrane potential.

big enough to prevent a new spike.

Fig.3.10 shows the network simulated in Questasim. As can be seen, in absence of plasticity (couple
7007-"01") the behaviour of the system is almost periodical. After the first burst of spikes, the
membrane potential of the neuron ”00” increases slowly according to the differential equation in 3.2,
with only the background noise as external stimulus, then the burst repeats almost identical.

Even if in a fist moment the behaviour of the couple ”027-703” is of the same kind, then it deviates
from that of other couple for action of plasticity. Indeed, the second spike of the neuron 703" is shifted
and this happens also in the second burst with in turn also a different behaviour of the neuron ”10”.

/1000 ™
\
N/ a
/[5000 N\
e |I: 10 |
/1000 ™
.\ / \‘\. . /
N/ .
5000 N\
.'I‘ .'I‘ [02 | ——— | 03 |

Figure 3.11: Second example network, the orange connection support STDP property, which is encoded in the ”1”
value of the LSB

We can analyse the same kind of behaviour under another perspective with the network in Fig. 3.11.
In this case, the two couples ”007-"01” and ”02”-"03” are totally identical, while the connection ”03”-
710”7 supports STDP. It can be therefore studied the variation of the spiking pattern of the neuron
7107, the trend of its plasticity parameter "M” and the variation of the parameter ” Loz 10”. It is
worth to stress that it has been associated a bigger weight to the ”01-10” connection (5000) w.r.t the
”03-10” connection (2000) in order to make the ”10” dependent more on ”01” and, in this way, favour

the decrease of L when 710" spike due to ”01” instead of ”03”. The simulation of this second network

48

is shown in the Fig.3.12. In the top is shown the usual spiking pattern, in the mid of the picture is

represented the ” My3” and ” M;0” parameters (pre and post-synaptic M parameter of the connection

”03”-710”), in the bottom the ” Loz 19" parameter.

Figure 3.12: Questasim simulation of the second example network. In the top is shown the usual spiking pattern, in
the mid of the picture is represented the ” Mp3” and ” M10” parameters, in the bottom the ” Lo3,10” parameter.

99397
1

As can be seen, at each spike of the neuron, the ” M;” parameter is reset to the maximum value
and otherwise it decreases with an approximated exponential behaviour. At the same time, looking
at the 7 Lo3 10” parameter, it is decreased of the relative "M” amount after each spike of the neuron
703" and increased at each spike of the neuron ”704”.

The behaviour of the "M” parameters can be better analysed considering the Fig. 3.13. As can be
seen, due to the first neuron emits initially a spike at each cycle, the M parameter remains constant

and equal to its maximum value.

Figure 3.13: Analog representation of the membrane potential and of the ”M” plasticity parameters for all the neurons.

The behaviour of the "L” parameter can be, instead, better analysed considering the Fig.3.14, zoom
of the first burst in 3.12. It must be stressed that "L” decreases the next cycle w.r.t the pre-syn
spike, while it is increased in the same cycle in which happens the post-syn spike, and this happens
immediately before of spike representation on the screen, because the spike is dispatched at the end of
the cycle. According to this, the first variation of L can be explained as follows: after the first spike
of the neuron 7307, the "L.” parameter is decreased. Then, the second spike of 730" and the first of

”710” compensate each other because they happen in sequence and L does not change, finally the L

49

is increased by the second spike of 710”. With the same logic it can be explained the entire trend of
” L77 .

The figure is not able to well describe it, but must be stressed that in the meanwhile L is decreasing
very slowly according to its decay coefficient K., and this is the reason why there are tiny negative

steps along the line, which must be evaluated as a lack of resolution of the ”wave tool”.

Figure 3.14: Zoom of the first burst in 3.12

What said demonstrate that the link is effectively strengthened or weakened according to the pre-
synaptic and post-synaptic activity and the plasticity parameters evolves according to the equations
3.4 and 3.5.

CHAPTER 4

Conclusions and future work

This thesis presented the introduction in the HEENS multi-chip architecture of the Izhichevich neu-
ral model and of the "spike timing dependent plasticity” (STDP) learning rule. In particular, an
algorithmic version of the two models has been described at instruction level in order to be executed
by the HEENS architecture inside an assembly routine which describes the evolution along time and
according to external stimuli of each neuron of a SNN. During the development phase, in both cases

the project followed the same approach:
1. The Model is described as algorithm in MatLLAB and tested with floating point precision.

2. The fixed-point computational features and the data organization in HEENS are emulated in
MatLAB.

3. The two models obtained in MatLAB are compared in order to make some important design

choice about parallelism, and evaluate the necessity of new hardware resources.

4. The algorithm is described at instruction level, and the entire routine of each neuron of the

network is described in an assembly program.

5. The same networks are simulated in MatLAB and, at RTL level, in QuestaSim and the two

outcomes are compared.

The results showed that the fixed point HEENS arithmetic can well approximate the floating-point
version of the Izhikevich model according to a resolution of 10uV’, 16 bits words and a round to nearest
integer technique.

The Izhikevich model has been introduced with success and the Gaussian noise generator needed to
imitate the thalamic input in the brain has been designed and implemented in a hybrid hardware-
firmware configuration based on four LFSRs.

Different types of neurons have been simulated obtaining a very similar behaviour with respect to the
biological one. In particular, two types of excitatory neuron (RS, CH) and one inhibitory (FS) have
been tested.

In Chapter 2 it has been simulated, both in MatLAB and HEENS, a 16-neuron SNN executing the
Izhikevich routine, obtaining optimal matching between the two outcomes. At the same time, the
hardware computational cycle duration has proven to be able to reproduce biologic performance and
thus to perform the entire network routine in less than 1ms. Furthermore, even supporting STDP
rule, it has been demonstrated that for sure also a 128 neurons SNN can achieve this goal.

The STDP rule has been introduced in the MatLLAB program and some useful information about

50

51

the LTP and LTD of the neurons along the simulation time have been obtained, showing that in
general, but even more in small networks, the depression phonomenon is more incisive. Moreover, in
Chapter 3 some networks have been tested in order to better show the results of the mapping of the
STDP in HEENS. In this case, particular attention has been given to the trend of the main plasticity
parameters (M and L), and how the spike pattern is modified by the insertion of the plasticity rule in
the entire network, or at neuron level, or at connection level.

These kinds of results are a good entry point for the obtainment of a biologically accurate Spiking
neural network, but there are other possible improvements to be addressed. Indeed, if the Izhikevich
neuron model developed is widely adopted for generic purpose and guarantees good performance, the
STDP introduced realizes only the antisymmetric Hebbian rule, while, as said, in the mammalian
cortex other types of relationships have been identified. However, different Hebbian rules can be
obtained simply changing the sign of the term added in formula 3.4, and so are ready to be used
without great effort. Furthermore, the STDP routine developed allows to apply the plasticity rule to
all the desired connections but does not consider differences in the rule of the inhibitory connections
w.r.t those excitatory. In [4], for example, it is in fact hypothesised a variation of the strength of the
inhibitory connections as a function of the strength of the excitatory connections of the same neuron,
and other types of different relation are described in literature.

On the architecture side, moreover, there are several possible solutions to explore in order to speed
up execution and improve precision. The STDP routine in HEENS, for example, make access twice
per neuron to the memory. This, for sure, reduces performance and makes also more difficult handle,
update and store data in the right memory position without time consuming inter-transfers inside
the register file. This could be improved with more registers in the register file, or a new bank of
shadow registers and it would benefit from a greater improvement with a bigger size of the memory
row. In fact, a double width memory with a 64 bit word per row, instead of the current 32-bit, and
the parallel loading of each of the four 16 bits words contained in the register file, would speed up
execution allowing a single access to the memory.

In addition, with the aim of address short term improvements, together with more registers available,
would be useful realize ”common instructions”, i.e. instructions involving at the same time multiple
registers, in order to execute common shift, movements and so on. For example, for the ”Membrane
potential” routine can be useful operate a simultaneous shift of RO and R1, and for the ”synaptic
calculation” routine, moreover, would be useful a simultaneous swap of RO and R1.

During this project, it has been developed a first version of unsigned arithmetic in HEENS, with the
insertion of an unsigned addition AD DU and multiplication MU L. Future improvement could include
more unsigned instructions and achieve better and more efficient hardware integration of these tasks.
Considering the rounding, for example, the techniques until now adopted include ”to nearest integer”
scheme for the right shift instruction, but only an algorithmic rounding for the multiplication. A
hardware circuit for the rounding of the result of the multiplication would improve the precision. On
the hardware side, an important weight must be given to the test and the integration of the system in
FPGA, operation which could not be done during this project but which must be addressed in each
step of the development, in order to assure a good resources exploitation and the actual functioning of
the architecture. Another interesting aspect in which put more attention would be that of precision.
A bigger test campaign, simulating more and wider networks, indeed, would allow to identify the more
suitable resolution for our model and at the same time to shape resolution according to the actual
need of a certain application.

The development of applications for the neural network, and specifically tasks naturally sized for the
SNNs, is the goal both in the mid-term and in the long-term. In the mid-term, some tasks to be

52

addressed can be, as an example, filter transfer functions and generic data processing. In the long-
term, the aim is to integrate a SNN in a real biological system, making it communicate with the
nervous system. Together with all these improvements and objectives, a separate mention must be
reserved to the development of a graphical interface and a user-friendly configuration environment
for the architecture. This would allow a better control, an easier test and for sure a general shorter

development time, which is a fundamental objective.

APPENDIX A

Instruction Set

The instruction set of HEENS is described in the following. The instructions which have been modi-
fied during this project are shown in orange. The flag field stresses if the instruction can change the
values of the ”"Carry” and ”Zero” flags. In the right column, the operations done by each instruction

are described.

instruction Group | Class| __Format Opcode | Hex] Flags* | En** Function
o [Nop SEQ NOP 000000 | 00 No operation
1 |toAl REGISTERS LDALLreg **** | 000001 | 01| z*** | /i _|reg <= DMEM (from sequencer
2 |LFsR MOVEMENT LLFSR 000010 | 02| 7 / ;
3 |LoADSP LOADSP LOADSP 000011 | 03
4 [sToRes STOREB STOREB 000100 | 04
s [STORESP STORESP STORESP | 000101 | 05 7
6 [STOREPS __ ISTOREPS STOREPS | 000110 | 06 /i
7 [RsT REGISTERS RST reg 000111 | 07| 2 |
8 [sET SETreg 001000 | 08 | 2+ |/
9 [sHIN SHIN n 001001 | 09 | GZ | /F _JACC<= ACC <<n, (1 <= n<=7), (n = number of positions)
10 [SHRN SHRN n 001010 | 0A| G2 | /F_JACC<=ACC>> n, (1<=n <= 7), (n = number of positions)
11 |RTL TL 001011 0B | C, JF__|ACC <= ACC <<, carry = ACC(msb) Rotate Accumulator Left
12 [RTR TR 001100 | 0C| ¢, JF_IACC <= ACC >>, carry = ACC{lsb) Rotate Accumulator Right
13 [iNc NC 001101 | 00| G, JF_IACC<=ACC+1
14 |DEC ARITHMETIC DEC 001110 | OE| G, JF_|ACC<=ACC-1
15 [LOADSN LOADSN LOADSN | 001111 | OF | G, /F__|RL& ACC <= BRAM(BP)
16 |ADD ARITHMETIC ADD__reg__| 010000 CZ | /F_|ACC<= ACC +reg (saturated addition)
17 [sUl [ARITHMETIC SUB reg | 0100 CZ | /F_|ACC<= ACC~reg (saturated subtraction)
18 |MUL [ARITHMETIC MUL reg 0100 JF_|ACC& RI<=ACC * reg (Unsigned product)
19 |MULS ARITHVIETIC MULSreg__| 0100 /F__|ACCR R <= ACC * reg (signed product)
20 [AND 0GIC AND _reg__| 01010 JF__JACC <= ACCAND reg
21 [or oGIC OR reg |0 5 /F__|ACC<=ACCOR reg
22 [INV 0GIC INV_reg | O 6 JF_|ACC<=INVreg
23 [XoR 0GIC XOR reg__ | 0 7 JF_JACC <= ACC XOR reg
24 [MOVA OVEMENT MOVA reg | 011000 | 18 /F_|ACC<=reg
25 [MOVR MOVEMENT MOVR reg | 011001 | 19 JF_|reg <= ACC
26 [SWAPS MOVEMENT SWAPS reg | 011010 | 1A | z°** | /F _|reg <=> shadow_reg (Swap register)
27 [MOVRS MOVEMENT MOVRS reg__| 011011 | 1B | 27** | /F _|reg <= shadow_re
28 [Lo0| SEQ L0OP n 0 c Push LOOP_BUFFER(n-1];Push PC_BUFFER(PC+1)
29 [LooPV SEQ LOOPV **** | 0 D Push LOOP_BUFFER(DMEM-1);Push PC_BUFFER(PC+
30 [ENDI SEQ ENDL 0 1E |If LOOP_BUFFER = 0 then pop LOOP_BUFFER; pop PC_BUFFER; clse LOOP_BUFFER <= LOOP_BUFFER - L; PC <= PC_BUFFER
31 [GosUB SEQ GOSUB addr | 011111 | 1F PC <= addr; Push PC_BUFFER(PC+1)
32 [RET SEQ RET 100000 |PC<=PC_BUFFER
33 |FREEZEC CONDITIONAI FREEZEC 100001 |if C=T then F <= 1; push F_BUFFER(1)
34 |FREEZENC __|CONDITIONA FREEZENC | 100010 if C=0 then F <= 1; push F_BUFFER(1)
35 |FREEZEZ CONDITIONAI FREEZEZ 100011 |ifZ=1 then F <= 1; push F_BUFFER(1)
36 |FREEZENZ __|CONDITIONAL FREEZENZ | 100100 F it =0 then F <= 1; push F_BUFFER(1)
37 [UNFREEZE __|CONDITIONAL UNFREEZE_| 100 F F <= pop F_BUFFER
38 [HALT SEQ HALT 100 |INT quencer halted until external input signal INT_ACK=1
SETZ 100: 3 JFJz<=1
SETC 101000 | 28 [| /FJSets the carry flogs C<= 1
CLRZ 101001 | 29| 2 JF_|Clears the zero flags <= 0
CLRC 101010 | 2A| C | /F |Clears the zero flags C<=0
RANDON 101011 | 28 JF_|random_en <= 1; LFSR becomes source register for LLFSR
SEED 101100 | 2C JF__|LFSR(O)()<= ACC; LFSR (1)()<=RL; LFSR(2)(:)<-LFSRO)CLLFSRBICI<=LFSRULI(2);
RANDOFF__| 101101 | 2D JF_Irandom_en <= 0; LFSR_STEP <=0; LFSR disabled
SPKDIS 101110 | 2€ eo_exec <= 1, Stops the sequencer and stores spikes until input signal cam_en <= O (from AER control unit

53

54

SEQ 4 | READMPaddr | 101111 | 2F |DMEM <= BRAM(address)
SEQ RST_SEQ 10000 | 30 IJumEs to RESET state
ARITHMETIC ADDUreg [110001 §31] Cz /F|unsigned ADD
SEQ LAYERV n 10010 | 32 [VLAYERS <= n; CURR_VLAYER <= 0; defines number of virtual layers (currently 0 <= n <= 7)
SEQ GOTO addr 10011 | 33 PC <= addr
REGISTERS SHLANn | 110100 | 34| GZ JF__JACC <= ACC <<n, (1 <= n <= 7), Arithmetic shift
REGISTERS SHRAN n 1135] ¢z JF__JACC <= ACC>>n, (1 <=n <= 7), Arithmetic shift wih rounding
LOADBP LOADBP **** 036 /F_IBP <= DMEM Loads PE BRAM pointer.
REGISTERS BITSET n 1137 2 / IACC[n) <1
REGISTERS BITCLR n 000 | 38| 7 /F_|AcC(n)
SPMOV SPMOV n 001 | 39 / |sEeca| MOVE. n = 0: VIRT <= ACC;
SEQ INCV. 010 | 3A [VLAYER <= VLAYER + 1
SEQ READMPV addr 0. 3B IDMEM <= BRAM(address + VLAYER)
MOVEMENT MOVSR reg 100 | 3C JF_|shadow_reg <= reg
*Flags If the given instruction can change the indicated flag

* Ep

F: Frozen flag. /F= not(F) means unfrozen and the indicated instructions become enabled

*¥#%Z can change only if ACC is set or reset (not in case of other registers)

**** See macros

MACRO INSTRUCTIONS: Cc

into

It is recommended to use macro instructions instead

1 [toALL 1

LDALL reg, const

Elementary instructions:

LDALLreg __|reg <= const

29 |LoOPV |

LOOPV vp

Elementary instructions:

NOP

READMPV vp

LOOPV.

LOADBP bE

Elementary instructions:

NOP

READMP bE

LOADBP

NOP READ BRAM (addr(const)
READMP const _|DMEM <= const

v
of the associated simple instructions

IreE <= DMEM|(const) (from seguencer)

Push LOOP_BUFFER(DMEM(vp)-1);Push PC BUFFﬂPG'l)

IBP <= DMEM bE Loads PE BRAM pointer.

11
12
13

14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

APPENDIX B

PE parameters

Chip parameters

rows = 4 #10

cols = 4 #10

vlayers = 8 # Number of virtual layers
synapses = 16 # Number of synapses per PE
Limit (maxmium) parameters

row_max = 16 # Maximum number of rows that can be encoded
col_-max = 16 # Maximum number of columns that can be encoded
virt_max = 8 # Maximum number of virtual layers

syn.max = row._max * col_max # Maximum number of synapses per PE (could be eventually

more)

Local spike memory

AR A

syn_rows=2 #IHE ONLY PARAMETER TO BE CHANGED IN ORDER TO USE DOUBLE ROWS NETLIST OR
NOT (2 or 1)

Icl_-ram_width = 7 # local memory data bits of RAM

lcl_ram_size = 2%%lcl_.ram_width # Maximum number of synapses per PE

Icl_syn_memory = syn_rowsxrows % cols #added to eventually write double rows

Icl_syn = rows * cols #16 # — 1 for no synapse. Number of local synapses,

lsyn_vl = [16, 16, 16, 16, 16, 16, 16, 16] # Local synapses assigned to each virtual
layer

Isyn_base_addr = [0, 16, 32, 48, 64, 80, 96, 112] # Local synapses: Initial memory
address for each virtual layer

Isyn_vl_addr=[lsyn_base_addr[i]*syn_rows for i in range(7)]

Global spike memory

global_syn = 32 # — 1 for no synapse. Number of global synapses

Synapse and neural memory

sn_ram_size = 1024 # synaptic_neural memory addresses

sn_ram_width = 32 # synaptic_neural memory data width

PE array parameters

PEID_bits = int (math.log(rows * cols, 2)) # number of bits for the PE ID

PEID_bits = 4 # number of bits for the PE ID

Auxiliary functions
def text_-2_int (data):
if data[0] = '—’: # Negative value
data = data[1l:]
if data.isdigit ():
int_.number = — int (data)
else:

55

38 print (’Error: Not an integer number —’, data)

39 int_-number = ’ERR’

40 elif data.isdigit ():

41 int_number = int (data)

42 elif data[0:2] = "0X':

43 int_.number = int (data[2:], 16)

44 else:

45 print (’Error: Not an integer number ’, data)
46 int_.number = 'ERR’

47 return int_number

APPENDIX C

|zhikevich model assembly program

1 ; GOTO CODE

23

3 ; Izhikevic model for 16 fully connected neurons network
4

5 define virtual_layers 0 ; From 0 up to 7

6 define gsynapses 2 ; Up to 32 global synapses

define n_step 1;

8

9 .DATA

10

11 ; Virtual layers

12

13 VO = 70000000F” ; Number of assigned synapses (s—1) to the main layer
14 V1 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 1
15 V2 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 2
16 V3 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 3
17 V4 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 4
18 V5 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 5
19 V6 = ?0000000F” ; Number of assigned synapses (s—1) to virtual layer 6
20 V7 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 7

21 ;VLAYERS="00000003” ; Number of virtual layers.
22 VLAYERS="00000000” ; Number of virtual layers (n—1).

23

24 ; Membrane potential parameters common to all neurons
25

26 ;multiple of 10uV

27 VITHRES="FFFFF63C” ; Threshold voltage —25 mV

28 N70="00001B58” ; 70mV,

29 N0002="000068DC”; 0.0002%2"27

30 N001="00000028F”; 0.01, The noise generated by LFSR is 100 time bigger than necessary.
31 REST POT="FFFFE69C” ; —6500

32 N5="00000005";

34

35 ;

36 ; Neural and Synaptic RAM addresses

37 SYN_ADDRO="00000000” ; First address of Synaptic parameters in SNRAM for V = 0
38 SYN_ADDRI="00000010" ; First address of Synaptic parameters in SNRAM for V = 1
39 SYN_ADDR2="00000020" ; First address of Synaptic parameters in SNRAM for V = 2
40 SYN_ADDR3="00000030" ; First address of Synaptic parameters in SNRAM for V = 3
41 SYN_ADDR4="00000040" ; First address of Synaptic parameters in SNRAM for V = 4

57

43
45
46
47
48
49
50
51
52

53

56

85

87
88
89
90
91
92
93
94
95
96
97
98
99

o8

SYN_ADDR5="00000050" First address of Synaptic parameters in SNRAM for V = 5.
SYN_ADDR6="00000060" First address of Synaptic parameters in SNRAM for V = 6.
SYN_ADDR7="00000070" First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000090" First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3" First address of Neural parameters in SNRAM (995) for V =
NEU_ADDRI="000003E6” First address of Neural parameters in SNRAM (997) for V =
NEU_ADDR2="000003E9” First address of Neural parameters in SNRAM (999) for V =
NEU_ADDR3="000003EC” First address of Neural parameters in SNRAM (1001) for V =
NEU_ADDR4=" 000003EF” First address of Neural parameters in SNRAM (1003) for V =
NEU_ADDR5=" 000003F2” First address of Neural parameters in SNRAM (1005) for V =
NEU_ADDR6="000003F5” First address of Neural parameters in SNRAM (1007) for V =
NEU_ADDR7="000003F8” First address of Neural parameters in SNRAM (1009) for V =
SEED_ADDRL = ”000003FD” ; Address of noise seed in SNRAM

SEED_ADDRH = ”000003FE” ; Address of noise seed in SNRAM

PEID = ”000003FF” Address of PE Identifier number

.CODE

b
GOTO MAIN ; Jump to main program

)

s skokskokokokok ook ok ok okokok ok ok kokokokokokokokokx. PROCEDURES BEGIIN st sksk ok sk sk sk sk s sk sk ok sk sk ok sk sk ok ok koK ok koK ok ok ok ok

3

.RANDOM_INIT ; Uses RO and R1
LOADBP SEED_ADDRL

LOADSN

SEED

LOADBP SEED_ADDRH

LOADSN

SEED ;

RET

.LOADNEURON ; Uses RO, R1,
READMPV NEU_ADDRO ;

LOADBP

LOADSN

STORESP

MOVR R2

MOVA R1 ; ACCG<=u
MOVR R3 ; put r3<=u
LOADSN ;
STORESP

MOVR R5 ; Rb<=d
SWAPS R5 ; SWix=d
MOVA R1 ; ACCG=RI<=b;
MOVR R5 ; Rb<=b
LOADSN

MOVR R6 ; R6<=C
SWAPS R6 ; SWe<=C
MOVA R1

MOVR R6 ; R6<=A
MARK

RET

.DETECT_SPIKE ;

LDALL ACC VTHRES

R2,

load ACCG<=d; Rl<=b
; FAKE STORE ONLY TO MAKE PC+1

Uses RO,R3 and R2

R3, R5
Address of real neuron + virt

; SNRAM pointer to currently processed neuron

Load Neural parameters from SNRAM to Rl<=u & ACCG<=Vmem
; FAKE STORE ONLY TO MAKE PC+1

Move Vmem from ACC to R2

(valid also for non—virtual)

N O U s W

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

99

SUB R2
SHLN 1
RST ACC
FREEZENC

)

)

Compare Vth — Vmem
subtraction sign to C flag

; If positive, freeze

;REMEMBER: C stays in SW6.
SWAPS R6

MOVA R6
MOVR R2
MOVA R3

)

ACK= u

;REMEMBER: d stays in SW5.
SWAPS R5; R5<=D

ADD R5;

ACG= u+d

SWAPS R5;

MOVR R3
SET ACC
UNFREEZE
STOREPS
RET

i

)

u<= u+d

; Push spikes

.GAUSS.NOISE ; Uses SWO0, R2, R6 and R7

RANDON
RANDOFF
LLFSR
ADD R1
SHRAN 1
MOVR R7
SWAPS RO
SWAPS R1
ADD R1
SHRAN 1
ADD R7
LDALL R7
MULS R7
FREEZENC
INC

UNFREEZE
MOVR R4
SWAPS R6
MOVA R6
SWAPS R6
LDALL R7
SUB R7
MOVA R4

; LFSR ON
;LFSR OFF. Arbitrarily heres
; Noise seeds to ACC, R1, SRO, SRI1

N001; ACC=OUTPUT
:NOISE IN ACC

;NOISE IN R4

REST_POT

FREEZEZ
LDALL R7 N5;

MULS R7
NOP

MOVA R1
SHRAN 1
UNFREEZE

MOVSR ACC ;TO STORE 1/2 THE NOISE

RET

i

.SYNAPSE_CALC
LOADSP ; Load Synaptic parameters and spike to Rl & ACC

SHRN 1 ; Move spike to flag C
FREEZENC
MOVA R1 ; Synaptic parameter to ACC

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

60

ADD R3;

MOVR R3;
UNFREEZE
RST ACC

STORESP ; Stores synaptic parameter and increases BP for

RET

.MEMBRANE POTENTIAL ; Uses RO,R4,R7
MOVA R2

MULS RO ; v7™2x%2712

NOP ; Check if needed

; Shift ROR1 4 positions left

SHILN 4 ; Shift Accumulator 274

MOVR R4

MOVA R1 ; Move LS part (R1) to RO (2716)
SHRN 4

SHRAN 4

SHRAN 4 ; 2716/2"12 = 274

ADD R4 ; Combine and obtain v"2/2712

LDALL R4 NO0002 ; 0.0002%2"°27 is in R4

MULS R4 ; v°2%2°(—12)%0.0002%2°27/2°16 = 0.0002%v 22" (—1)
NOP ; Check if needed

SHLN 1 ; Shift Accumulator 271

MOVR R4

MOVA R1 ; Move LS part (R1) to RO (2716)
SHRN 5

SHRAN 5

SHRAN 5 ; 2716/2"15 = 2°1

ADD R4 ; Combine and obtain 0.0002xv"2
MOVR R7;

MOVA R2; ACx=Vinit

SHRAN 2; ACC<=0.25%xVinit ;

ADD R2; ACK=ACC+Vinit=1.25%Vinit
SHLAN 1;

ADD R7;

LDALL R4 N70; R4<=70

ADD R4;

MOVR R7

RST ACC

SUB R3; ACC= u

SHRAN 1;

ADD R7;

ADD R2; ACC=ACG+Vinit

MOVR R2; Back to R2 where membrane potential is stored
RET

.SUM_NOISE_AND_Ws

MOVRS ACC ;NOISE TO ACC
ADD R2 ;ADD NOISE TO SIGNAL

SWAPS R3 ;SYN. contribute

ADD R3; add to membrane potential
MOVR R2; store membrane potential
SWAPS R3;

RET

.RECOVERY_UPDATE ;uses R3,R5,R6
MOVA R2; ACCG=Vinit
MULS Rb ; ACGk=R5+%ACC=Bx* Vinit

next synapse processing

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

61

FREEZENC
INC
UNFREEZE
SUB R3 ;ACGc= ACG-R3= ACG-Uinit
;REMEMBER: A is in R6
MULS R6; ACCG<=A%ACC;
FREEZENC
INC
UNFREEZE
ADD R3; ACC=ACC+Uinit
MOVR. R3; Back to R3 where recovery value is stored
RET
.STORENEURON ; uses RO,R3 and Rl
MOVA R3 ;move u from R3 to acc
MOVR R1 ;move u from ACC to RI1
MOVA R2 ; Move Vmem from R2 to ACC
READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)
LOADBP ; SNRAM pointer to currently processed neuron
STORESP ; Store u&Vmem to SNRAM
RET

sk ok ok ok ok ok ok ok ok ok ok ok kkkk k ok ok ok ok kkk ok k k. PROCEDURIES EIND sk s s s 5 5 5 5 5 5 5 5 % % % % % % % % kK Kk ok ok ok ok

kR ok ok sk ok Rk ok kR okokokokokok kR sk okkkok k. MAIN PROGRAMME . BEGIIN stk sk sk sk sk sk sk sk ok s ok ok ok ok ok ok ok ok ok k% ok
.MAIN

)

; Virtual operation init

LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—virtual operation
LDALL ACC, VLAYERS ; Load defined virtual layers to PE array

SPMOV 0 ; VIRT <= ACC

; Initial instructions
GOSUB RANDOM.INIT ; For noise initialization

.EXECLOOP ; Execution loop

LOOP virtual_layers ; Neuron loop for virtual operation
NOP ;to prevent pipeline error
GOSUB LOADNEURON
GOSUB DETECT_SPIKE
GOSUB GAUSS_NOISE
READMPV SYN_ADDRO

LOADBP

SWAPS R3 ;SYNAPSE Sum will be store IN SW3

LOOPV VO ;synaptic loop. Reads number of current—layer synapses
NOP ;to prevent pipeline error
GOSUB SYNAPSE_CALC

ENDL

MOVA R3 ;move to acc synapse sum

SHRAN 1;

MOVR. R3 ;move to R3

SWAPS R3 ;SYNAPSE sum to SW3

LOOP n_step

NOP

62

274 GOSUB MEMBRANE POTENTIAL ; Calculate
275 GOSUB SUM_NOISE_AND_Ws

276 ENDL

277 GOSUB RECOVERY_UPDATE

278 GOSUB STORENEURON

279 INCV

280 ENDL

281 .FINISH

282 NOP ;Empty pipeline wait NOPs
283 NOP

284 NOP

285 SPKDIS ; Distribute spikes

286 GOTO EXEC_LOOP ; Execution loop

membrane potential according

izhikevic

19
20

APPENDIX D

Netlist file describes the connections between neurons through their synapses. The developed networks
are fully connected, so each of the 16 synapses (as many as the neurons) is used. This appendix shows
a small part of the entire file: from line 3 to 28 are described the connections of all neurons with the
first one (neuron 0), then with the second one (neuron 1) and so on. MSW and LSW (most and less
significant 16-bit words) are the initial content of the first and second rows of synaptic parameters
stored in SNRAM (see Chapter 3 for further details). First is shown the netlist for the network

implementing only the Izhikevich model, then is shown the netlist for the network supporting also

Netlist file

STDP. In this last case, the structure of the file becomes:

MSW1: synaptic initial weight, LSW1: synaptic recovery variable, MSW2: 16 MSBs of Plasticity

variable, LSW2: 16 LSBs of Plasticity variable.

#presyn postsyn

#i v or

#N izhikevic model

0

O O O O O O O O O O O O O O o oo oo oo o oo
O O O O O O O O O OO0 oo ooooooo oo
H H R O O OO0 WWWWNNNDNRE~HRFHKOOO

0

W N = O WNFEOWNRFOWNROWNROWN—

0

[=lelolelBoNoBelNolBeloloBoNoBeloleNololelNole ol el

0

O O O OO O OO OO0 000 oOo0 o000 oo o oo

O OO OO O OO OO0 OO0 OO0 oo oo o oo oo

= o= = RO OO0 00000000000 oo

© 00 N O U W NN = O

_
= O

_ = =
Ut W N

N O Ut W NN = O

© w ©
o o o

22

-55 0
—-16 0
—42 0

90
30
90
30
50
17
40
35

cli v r ¢ synN MSW LSW

o O O O O o o

o O ©O O O

63

22
23
24
25
26
27
28
29

15 2048 20480
17 2048 20480
15 2048 20480
17 2048 20480
7 2048 20480 0
18 2048 20480 0

o O O O©O O

1 #|presyn| |postsyn| synaptic parameters
2 #|i|v|r|c|] |i]v]r|c|] synN MSWI1, LSWI, MSW2, LSW2
30000000009 2048 20480 0
40001000013 2048 20480 0
50002000029 2048 20480 0
600030000 3 30 2048 20480 0
7001000004 50 2048 20480 0
8001100005 17 2048 20480 0
9001200006 39 2048 20480 0
1000130000 7 34 2048 20480 0
11700200000 8 18 2048 20480 0
12002100009 39 2048 20480 0
133002 20000 10 22 2048 20480 0
1400230000 11 3 2048 20480 0
1500300000 12 —10 2048 20480 0
16 00310000 13 —56 2048 20480 0
1700320000 14 —16 2048 20480 0
180 0330000 15 —42 2048 20480 0
1900000001 20 2048 20480 0
2000010001 9 2048 20480 0
2000020001 18 2048 20480

00030001

00100001

00110001

00120001

00130001

00200001

0 O T W NN = O

15

APPENDIX E

Neuron file

This appendix shows a small portion of the file Neuron.tzt. This file is used to store in SNRAM
the neural parameters for each neuron and each virtual layer. Line 1 indicates the row in memory
from which write the content of the file. Line 2 contains the initial membrane potential and recovery
variable values for all the 16 neurons of the virtual layer 0. Line 3 contains neural parameters ”b”
and ”d” for all the 16 neurons virt layer 0. Line 4 contains neural parameters ”"a” and ”¢” for all the
16 neurons virt layer 0. Line 5 contains syn parameter ”Mi” for all the 16 neurons virt layer 0. Line
6 contains the initial membrane potential and recovery variable values for all the 16 neurons of the
virtual layer 1 and so on...

From line 14 the seeds for all the LFSRs are stored.

@0x3E3

4209829532 4209829532 4209829532 4209829532 4209829532 4209829532 4209829532
4209829532 4209829532 4209829532 4209829532 4209829532 4209567388 4206945948
4205373084 4199474844

858981144 858981138 858981134 858980920 858980954 858981150 858980630 858980832
858980824 858981148 858980706 858980628 862322888 889258184 905052360 963510472

85976750 85976764 85976774 85977312 85977226 85976738 85978034 85977530 85977550
85976740 85977844 85978042 424208028 381085340 355853980 262334108

1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024

4209829532 4209829532 4209829532 4209829532 4209829532 4209829532 4209829532
4209829532 4209829532 4209829532 4209829532 4209829532 4209829532 4209829532
4209829532 4209829532

858980552 858980552 858980552 858980552 858980552 858980552 858980552 858980552
858980552 858980552 858980552 858980552 858980552 858980552 858980552 858980552

85976732 85976732 85976732 85976732 85976732 85976732 85976732 85976732 85976732
85976732 85976732 85976732 85976732 85976732 85976732 85976732

1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024

{

}

@Ox3FD 0 0 0O 0O OOOO0OO0OO0O0OO0O0O

994858813 375875946 1109291642 1161525770 1607624595 1173498293 548411170 2002736044
1239901623 491085887 1535858153 1752576516 1830184192 953383350 762532042
1299207043

211557160 1430131952 329865713 78534401 1127485282 891368206 1983513249 1978012910
553203795 1647773751 899895854 1749166241 1365065912 1861289903 481394589
305344913

65

APPENDIX F

Neuron gen.m

1 %Creator: Antonio Caruso, May 2020

2 %This program print the neural parameters and noise seeds in a file called neuron.txt
3 %It can be used stand alone or inside the ”Main” script, from whose

4 %workspace it takes input values.

5 %

6 %

7 %binary values of the same parameters are stored in binary_comp.txt for

8 %debugging

9

10 % o DEFINE GLOBAL PARAMETERS__________
11 virt=8;

12 virt_used=1;

13

14 % YDBECOMMENT if use stand alone

15 % Ne=12;

16 % Ni=4;

17 % seed=uint16 ((2"(15)—1)*rand (4 ,Ne+Ni));
18 % re=rand(virt ,Ne); ri=rand(virt ,Ni);

19 % a=[0.02%ones(virt ,Ne), 0.0240.08x*ri];
20 % c=[—65+15%re."2, —65%ones(virt ,Ni)];
21 % b=[0.2%ones (virt ,Ne), 0.25—-0.05*ri |;
22 % d=[8—6xre." 2, 2xones(virt ,Ni)];

23 % %

24

25 YDECOMMENT if used within main.m

26 seed=[ESeed , ISeed];
27 a=a.’;

28 c=c.’;

29 b=b.’;

30 d=d.’:

31 ¢(virt_used+1:virt ,:
32 a(virt_used+1:virt ,:
33 b(virt_used+1:virt ,:
34 d(virt_used+1:virt ,:
35

36 %STDP parameters

37 empty=zeros (8,16);
38 Mi= (2°14)xones(8,16);

39

40 %randomized membrane parameters
41 vinit=—65%ones (virt ,Net+Ni);

—65;

NN NN
Il
N o o

66

67

42 uinit=b.* vinit ;

43

44 % DEFINE MEMORY LINES COMPOSITION__________
45 inputl=[uinit;b;a;empty];

46 input2=[vinit;d;c;Mi];

47 typel =[1;0;0;2];%0 number, 1 voltage

418 type2=[1;1;1;2];

49 bit1=16;

50 bit2=16;

51 n_lines=size (typel,1) ;%numero linee di memoria per ogni layer
52 integer=zeros(n_lines ,Ne+Ni, "uint32’);

53

54 Y . __ PRINT SECTION

55 fileIDi = fopen(’neuron.txt’, 'w’);

56 fileIDb = fopen(’binary_comp.txt’, 'w’);%for debug

57 fprintf(fileIDi , @0x3E3\n’);

58

59 for v=1l:virt

60 for i=1l:n_lines

61 for j=1:Ne+Ni

62 [int , bin]=param_memory_line(inputl (v+virt*(i—1),j), input2(v4+virt=*(i—1),j), bitl,
bit2, typel(i), type2(i));

63 integer ((v—1)*3+1i,j)=int;

64 binar ((v—1)*3+i+j ,:)=bin;

65 fprintf (fileIDi , "%d%ls’ ,int ,’ ’);

66 fprintf (fileIDb , %s%ls’ ,bin,’ ’7);

67 end

68 fprintf(fileIDi, \n’);

69 fprintf(fileIDb, \n’);

70 end

71 end

72

73 fprintf(fileIDi, @0x3FD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n’);
74 fprintf(fileIDb , Hereinafter seeds\n’);

75

76 for i=1:Ne+Ni

77 [seedl(i),sbinl]=param_memory_line(seed(2,1),seed(1,i),16,16,2,2);
78 fprintf(fileIDi, %d ’,seedl(i));

79 fprintf(fileIDb , %s ’,sbinl);

80 end

81 fprintf(fileIDi, \n’);

82 fprintf (fileIDb, \n’);

83 for i=1:Ne+Ni

84 [seed2(i),sbin2]=param_memory_line(seed(4,1),seed(3,1),16,16,2,2);
85 fprintf(fileIDi , '%d ' ,seed2(i));

fprintf (fileIDb , '%s ’,sbin2);

87 end

88 fprintf(fileIDi, \n@1023 0 0 0 0 0 0 0 00O 00 0 0 0 O\n’);
89 fprintf(filelDi, # # # # # H#H##H#H#H#H#H#H#H#H#);

90 fclose (fileIDi);

91 fclose (fileIDb);

oo
(e

94 % _____ FUNCTION DEFINITION

95 %This function will write the binary word (and the corresponding int)

96 %of (bin(First input) concatenated bin(second input)) in bitl+bit2 bits.

97 %

98 %param_memory_line (parameter 1, parameter 2,bitlenghtl ,bitlenght2 ,typel, type2)

68

99 %types:0 are constant<l in HEENS, 1 are voltage, 2 are number;
100 %voltage are in mV;

101 function [int_word ,bin_word]= param_memory_line(b,a,lb,la,t1,t2)

102

103 if t1=t2

104 if t2==1

105 paraml_int=double (a)*100;%voltage to be written

106 param2_int=double (b)*100;

107 elseif t2==0

108 paraml_int=param_conv(a);

109 param?2_int=param_conv (b) ;

110 elseif t2==

111 paraml_int=double (a) ;

112 param?2_int=double (b) ;

113 else

114 error ("types of input must be or Number (2) or voltage (1) or numeric constant
in HEENS (0)”);

115 end

116 elseif (t1==0 && t2==1) %if one is a number and other is a voltage, the voltage must
be the 2nd input

117 paraml_int=double (a)*100;

118 param?2_int=param_conv (b);

119 else

120 error (7 field 5 and 6 are types of input, they must be voltage,hvoltage or number,
number or contant,voltage”);

121 end

122

123 LS16= conve(paraml_int,la) ;%custom function that converts binary 2’compl

124 MS16= conve(param2_int ,1lb) ;

125

126 word (1,1:1a)=(LS16);
=(MS16) ;

127 word (1,la+1:la+lb)

128

129 for i=1:(la+lb)

130 word_inv (i)=word ((la+lb)+1—1i);
131 end

132

133 bin_word=num2str (word_inv, *%1d) ;
134 int_word=double(bin2dec (bin_word));
135 end

APPENDIX G

STDP netlist gen.m

1 %Creator: Antonio Caruso, May 2020
2 %this file generates a fully connected network netlist for izhikevich algorithm
execution in HEENs

3
4 n=Ne+Ni;%Total number of neuron
.
5

6 Ni=floor (n/4);

7 Ne=n—Ni;

8 w=ceil (100%[0.5*rand (1,Ne),—rand(1,Ni)]);
9 p=round (100%S.") ;

0 Linit=20%2"10; % double line

11 M=2"11;

13 fileID = fopen(’Double_netlist.lst’,'w’);
14 fprintf(fileID , '#presyn postsyn \n#i v r c|i v r ¢ s ph pl \n#N izhikevic model \n’);

15 for i=1:n %exe 16 neuroni, 16 rows per ogni neurone

16 c=0;

17 rowi=floor ((i—1)/4);

18 coli=mod(i—1,4);

19 for j=I1:n

20 rowj=floor ((j—1)/4);

21 colj=mod(j—1,4);

22 %int_net= param_memory_line(p(j,i),Linit ,8,8,2,2);

23 P%fprintf (fileID ,’0 0 %d %d 0 0 %d %d %d %d %d\n’,rowj, colj ,rowi,coli ,j—1,
int_net ,256) ;

24 fprintf(fileID ,’0 0 %d %d 0 0 %d %d %d %d %d %d 0\n’,rowj,colj ,rowi,coli ,c,p(]
,i1),M, Linit);

25 P%fprintf (fileID ,’+ 0 0 %d %d 0 0 %d %d %d %d 0 \n’,rowj,colj ,rowi,coli,c,Linit
)3

26 Y%c=mod (c+1,16) ;

27 c=c+1;

28 end

29 end

30 fclose (fileID);

69

N =

T W

T W N~ O © 00 3O Ui WK O ®©OW-O ULk W~ O

36

w
3

APPENDIX H

|Izhi net.m

%Creator: Antonio Caruso, May 2020

%Starting from a nucleus of the script provided by Izhikevich
this algorithm reproduce Izhikevich algorithm execution

its pubblication ,
in HEENS, comparing

floating point model results with the fixed point one.A custom LFSRs inspired

gaussian noise is introduced to exactly reproduce that acting

evolution is introduced for both models.

Ne=12; Ni=4;
clkcycles=2;

%STDP constant

alpha=10999/11000;%plasticity coefficient decay
beta=39/40; %synaptic recovery variable decay
%Initial STDP parameters for both models
L=20xones (16,16) ;

M=2xones (16,1) ;

Lf=20%ones (16,16) ;

Mf=2+ones (16,1) ;

%lzhichevik model parameters
re=rand (Ne,1); ri=rand(Ni,1);
a=[0.02xones(Ne,1); 0.02+0.08xri];
b=[0.2%xones(Ne,1); 0.25—0.05*ri];
c=[—65+15%re."2; —65%ones(Ni,1)];
d=[8—6xre."2; 2xones(Ni,1)];

S=[0.5«rand (Ne+Ni,Ne), —rand (Ne+Ni,Ni)];
Sii=S;

v=—65%ones (Net+Ni,1); % Initial values of v
u=b.xv; % Initial values of u

vfi2=—65%ones (Ne+Ni,1) ;% Initial values of v for fixed point

uf2=b.xvf2;% Initial values of u for fixed point

f=zeros (Ne+Ni) ;

f2=zeros (Net+Ni) ;

firings =[]; % spike timings
firings3 =[];

ESeed=uint16 ((2°(15) —1)*rand (4,Ne));
ISeed=uint16 ((2°(15)—1)*rand (4,Ni));

70

in HEENS. STDP

38

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

71

Estate=int16 (ESeed) ;%exctitatory
Istate=int16 (ISeed) ;%inhibitory

%% simulation loop of 30000 ms
for t=1:30000

fl=zeros (16);

%LFSR_gaussian_noise is a custom function reproducing LFSR—made noise in

[ENoise , Estate]=LFSR_gaussian_noise (Estate ,Ne, clkcycles);
[INoise ,Istate]=LFSR_gaussian_noise (Istate ,Ni, clkcycles);

I=[5.*ENoise;2.% INoise |;% thalamic input
Tii=I;

fired=find (v>=-25);% indices of spikes for float
f1(fired)=1;
fired3=find (f2==1);% indices of spikes for fixed

firings=[firings; t40«fired ,fired];%matrix of spiked neuros
firings3=[firings3; t+0x«fired3 ,fired3];%matrix of spiked neuros for

%% SAMPLE PART FOR PLOT
vo(:,t)=v(:);%floating point version
vi2o0 (:,t)=vi2 (:);%.7fixed

9% STDP for floating point part
Lf=Lf.xalpha;
for i=1:16
for j=1:16
LE(j,i)=LE(1)+ (ME())+ F1(1)=ME(i)1 (j));
if Lf(j,i)<0 %to prevent synapse from change sign
Lf(j,1)=0;
end
end
Mf(i)=2%f1(i)4+(1—f1(1))*Mf(i)x*beta;
end
Sf=S.xLf./20;

%% STDP for fixed point part

3 L=L.xalpha;
for i=1:16
for j=1:16
L(j,i)=L(j, 1)+M(j)=f2 (1)-M(i)=f2(j));

L(
if L(J,1)<0 %to prevent synapse from change sign
L(j,i)=0;
end

end

M(i)=1%f2 (i)+(1—£2(i))*M(i)*beta;
end
Sii=S.xL./20;

%% AFTER SPIKE UPDATE %%
v(fired)=c(fired);
u(fired)=u(fired)+d(fired);

vi2 (fired3)=(c(fired3));

uf2 (fired3d)=(uf2(fired3)+d(fired3));

fixed

HEENSs

96

97

98

99
100
101
102
103
104
105
106
107
108
109

110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

72

9% mnoise and synapse sum
I=I+sum (Sf(:, fired) ,2);%floatin
Tii=Tii4sum(Sii(:,fired3) ,2);

%% MEMBRANE EVOLUTION YT TSI T o

%% FLOATING POINT %%%
v=v+0.5%(0.04%v."24+5+%v+140—u+I); % step 0.5 ms, for numerical
v=v+0.5%(0.04%v. 2+4+5+xv+140—u+1) ;%stability

u=uta.x*(b.kxv—u);

%% FIXED POINT 7 decimals %%%
Y%%memb_potential_net_fixpt7 is a custom function emulating HEENs fixed point
computational capability .
for i=1:16
[vi2(i),uf2(i),f2(i)]=memb_potential_net_fixpt7(vf2(i),uf2(i),a(i,1),b(i,1),Iii(i
1))

end
end

%% plot part

t=1:550;

for i=1:16
figure ('Name’, "membrane potential”);
plot (t,vo(i,t),t,vf20(i,t));

end

figure (’Name’, ”Spiking neurons comparison”)

plot (firings (:,1) ,firings (:,2),70”);%floating point model spiking pattern
hold on

plot (firings3 (:,1),firings3 (:,2),”«”);%fixed point model spiking pattern
set (gca, 'YDir’, 'reverse’)

xlabel ("time [ms] ");

ylabel (’Spiking neuron’);

axis ([0 550 0 16]);

APPENDIX |

MATLAB Fixed point algorithm version

The "fixed point designer” app of the MATLAB suite allows the generation of a custom MATLAB
function executing operation with fixed precision. The user is requested to specify the format and
decimal precision for each variable, the parallelism, the kind of rounding and several other parameters.

The input function is:

%Author: Antonio Caruso, April 2020
function v= memb_potential(a,b,c,d)
v=c;

u=b.x*xv;

vth=int16 (—25);

for t=2:1000 % simulation of 1000 ms
v=v+0.5%(0.04%v."24+5%v+140—u); % step 0.5 ms
v=v+0.5%(0.04%v. 2+5+«v+140—u); % for numerical
u=uta.*(b.xv—u); % stability

if (v>vth)
v=c;
u=u-+d ;
end
end
end

The output function is:

WITTTTISTTISTISTISTISTISTIS TSI TS STISTIS SIS TISSISSTIISTISTISIISTISTIS TSI o

% Generated by MATLAB 9.7 and Fixed—Point Designer 6.4 %
% %
function [v, u ,f | = memb_potential_net_fixpt7(v_-1,u-l,a,b,I)

fm = get_fimath () ;
u= fi(ul, 1, 16, 7, fm);
v = fi(v.l, 1, 16, 7, fm);

f=0;
vth=int16 (—25);

v="fi (v4£i (0.5, 0, 16, 16, fm)*(fi(0.04, 0, 16, 20, fm)*v. 24 i (5, 0, 3, 0, fm)svifi
(140, 0, 8, 0, fm)—ut+I), 1, 16, 7, fm); % step 0.5 ms

v(:)=v+fi (0.5, 0, 16, 16, fm)*(fi(0.04, 0, 16, 20, fm)*v."2+fi (5, 0, 3, 0, fm)*v+fi
(140, 0, 8, 0, fm)—ut+l); % for numerical

u=fi(uta.*(b.xv—u), 1, 16, 7, fm); % stability

73

74

if (v>vth)
f(:)=1;
end
end

%for better rounding you can use Nearest

function fm = get_fimath ()

instead of Floor

fm = fimath (’RoundingMethod’, ’Floor’ ,...

"OverflowAction’, ’Saturate’ ,...

"ProductMode’ ,’FullPrecision’ ,...
"SumMode’ ,’ FullPrecision ") ;

end

APPENDIX J

LFSR gaussian noise.m

%Author: Antonio Caruso, may 2020
%4—LFSRs model

LFSR=zeros (4,1);

LSB=LFSR;

samples=1000;

ST SERYJUR R

(=2

LFSR=[11249;30671;4088;23939];
LFSR=int16 (LFSR) ;

© 0

10 for c=1:samples

12 for j=1:4

13 LSB(j)=bitand (LFSR(j) ,1);
14 end

15

3 %d=LFSR;

17 %stepl=dec2bin (LFSR)

18 LFSR=Dbitsra (LFSR,1) ;

—
=]

19 %step2=dec2bin (LFSR)

20

21 for j=1:4%4 l1fsr

22 if LSB(j)==1

23 LFSR(j)= bitor (LFSR(j),int16 (—32768));
24 LFSR(j)=bitxor (LFSR(j) ,13312);
25 else

26 LFSR(j)= bitand (LFSR(j) ,32767);
27 end

28 end%4 LFSR

29

30 LFSRs=double (LFSR) ;
31 y(c)=((LFSRs(1)/2+LFSRs(2)/2)/2 + (LFSRs(3)/2+LFSRs(4)/2)/2)/2;

33 end%clock cicles

34 figure (2)
35 histogram (y)

(0]

=~ W N

at

10
11
12
13
14

15

25

33

35
36
37
38

40
41

APPENDIX K

LFSR test.m

%Author: Antonio Caruso, may 2020

%comparison between matlb random noise and 4—LFSRs model one
close all

hold on;

random=randn (100000,1) ;

random_pd=fitdist (random, 'Normal ") ;

%plot the histogram

h_random=histogram (random, ’Normalization ’, ' pdf’);

Nbins_r=h_random . NumBins;

[N,edges] = histcounts (random,Nbins_r, Normalization’, pdf’);
edges = edges(2:end) — (edges(2)—edges(1))/2;

y-random=pdf (random_pd , edges) ;

%plot the line interpolating the histogram

plot (edges ,N, edges ,y_random) ;

hold off;

figure (2)

plot (edges, y-random — N);

MSE R=mean ((y-random — N)."2);

P LFSR________________

LFSR=four_.-LFSR_test (100000) ;

LFSR=LFSR."’

LFSR.pd=fitdist (LFSR, 'Normal ') ;

%plot the histogram

figure (3)

h_LFSR=histogram (LFSR, 'Normalization’, pdf’);

hold on;

Nbins_L=h_LFSR.NumBins;

[N, edges] = histcounts (LFSR, Nbins_L, ’Normalization’, pdf’);

edges = edges(2:end) — (edges(2)—edges(1))/2;

y-LFSR=pdf (LFSR_pd, edges) ;

%plot the line interpolating the histogram
plot (edges ,N,edges ,y_.LFSR) ;

hold off;

76

77

figure (4)
plot (edges, y.LFSR — N);
MSE L=mean ((y-LFSR — N)."2)

)

APPENDIX L

Simulating different types of neurons

;. GOTO CODE

; Integrate and fire. Both non—virtual and virtual

4 ; DEFAULT operation without virtual layers

5 ; REMOVE: ’semicolon%VIRT ’ for operation with virtual layers
6

; Network definitions
define virtual_layers 0 ; From O up to 7

10 define gsynapses 2 ; Up to 32 global synapses
11 define n_step 1;

12

13 .DATA

14

15 ; Virtual layers

16

17 VO = 7000000017 ; Number of assigned synapses (s—1) to the main layer
18 V1 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 1
19 V2 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 2
20 V3 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 3
21 V4 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 4
22 V5 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 5
23 V6 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 6
24 V7 = 700000001” ; Number of assigned synapses (s—1) to virtual layer 7
25 VLAYERS="00000000” ; Number of virtual layers (n—1).

26

27 ; Membrane potential parameters common to all neurons

28

29 ;multiple of 10uV

30 VITHRES="FFFFF63C” ; Threshold voltage —25 mV

31 N70="00001B58”; 70mV,
32 N0002="000068DC”; 0.0002%2"27
33 ;NO001="00000028F”; 0.01, The noise generated by LFSR is 100 time bigger than necessary

34 REST_POT="FFFFE69C” ; —6500
N5="00000005" ;

w
ot

36

37 ;RS neural parameters:

38 izhi_B= 7000033337 ;0.2

39 izhi_D= 700000320” ;8mV

40 izhi_C= "FFFFE69C” ; —65mV resting potential

78

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56

57
58
59
60
61
62
63

65

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

79

izhi_A= "0000051E” ;

0.02

;FS neural parameters:

; —65mV resting potential

; —50mV resting potential

;izhi_B= 700003333” ;0.2
;izhi_D= ”7000000C8” ;2mV
;izhi_C= "FFFFE69C”
;izhi_A= 700001999”; 0.1
;CH neural parameters
;izhi_B= 700003333” ;0.2
;izhi_D= ”000000C8” ;2mV
;izhi_C= "FFFFECT8”
;izhi_A= ”0000051E”; 0.02

3

; Neural and Synaptic RAM addresses

)

SYN_ADDRO="00000000"” ; First address of Synaptic parameters in SNRAM for V = 0.
SYN_ADDRI1="00000002" ; First address of Synaptic parameters in SNRAM for V = 1.
SYN_ADDR2="00000004" ; First address of Synaptic parameters in SNRAM for V = 2.
SYN_ADDR3="00000006" ; First address of Synaptic parameters in SNRAM for V 3.
SYN_ADDR4="00000008" ; First address of Synaptic parameters in SNRAM for V = 4.
SYN_ADDR5="0000000A” ; First address of Synaptic parameters in SNRAM for V = 5.
SYN_ADDR6="0000000C” ; First address of Synaptic parameters in SNRAM for V 6.
SYN_ADDR7="0000000E” ; First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000064" ; First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3” ; First address of Neural parameters in SNRAM (995) for V =
NEU_ADDRI="000003E5” ; First address of Neural parameters in SNRAM (997) for V =
NEU_ADDR2="000003E7” ; First address of Neural parameters in SNRAM (999) for V =
NEU_ADDR3="000003E9” ; First address of Neural parameters in SNRAM (1001) for V =
NEU_ADDR4="000003EB” ; First address of Neural parameters in SNRAM (1003) for V =
NEU_ADDR5=" 000003ED” ; First address of Neural parameters in SNRAM (1005) for V
NEU_ADDRG6="000003EF” ; First address of Neural parameters in SNRAM (1007) for V =
NEU_ADDR7="000003F1” ; First address of Neural parameters in SNRAM (1009) for V =
SEEDH_ADDR = ”000003FD” ; Address of noise seed in SNRAM

SEEDL_ADDR = ”000003FE” ;

NOISE= ”000003E8”; noise for test is 10mV, 1280
y PEID = "000003FF” ; Address of PE Identifier number

.CODE

GOTO MAIN ; Jump to main program

3 koK ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok skok ok ok ok ok ok okok k. PROCEDURES BEGIIN sk sk sk s sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk ok ok sk ok sk ok sk ok ok

)

.RANDOM.INIT ;
LOADBP SEEDH_ADDR
LOADSN

SEED ; High seed
LOADBP SEEDL_ADDR
LOADSN

SEED ; Low seed

RET

.LOADNEURON ;
READMPV NEU_ADDRO ;
LOADBP

LOADSN

Uses RO, R1,
Address of real neuron + virt

Uses RO and RI1

R2,

R3, R5

(valid also for

; SNRAM pointer to currently processed neuron
Load Neural parameters from SNRAM to Rl<=u & ACCG<=Vmem

non—virtual)

N O Ut e W

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156

80

MOVR R2

MOVA R1

MOVR R3

MARK
RET

)
)

)

Move Vmem from ACC to R2
ACG=u
r3<=u

.MEMBRANE POTENTIAL ; Uses RO,R4,R7

MOVA R2
MULS RO
NOP

)

v 2%2712

; Shift ROR1 4 positions left

SHLN 4 ;
MOVR R4
MOVA R1
SHRN 4
SHRAN 4
SHRAN 4

)

)

Shift Accumulator 274

Move LS part (R1) to RO (2716)

2716/2712 = 274

ADD R4 ; Combine and obtain v"2/2712
LDALL R4 N0002 ; 0.0002%2°27 is in R4

MULS R4
NOP
SHLN 1 ;
MOVR R4
MOVA R1
SHRN 5
SHRAN 5
SHRAN 5
ADD R4
MOVR R7;
MOVA R2;
SHRAN 2;

)

)

)

v 2%27(—12)%0.0002%2727/2716 = 0.0002%v"2%2"(—1)

Shift Accumulator 271

Move LS part (R1) to RO (2716)
2°16/2715 = 271

Combine and obtain 0.0002xv"2

ACC<=Vinit
ACC<=0.25%Vinit ;

ADD R2; ACG<=ACGCH+Vinit=1.25*«Vinit

SHLAN 1;
ADD RT;

LDALL R4 N70; R4<=70

ADD R4;
MOVR R7
RST ACC
SUB R3;
SHRAN 1;
ADD R7;

ACC= u

ADD R2; ACC=ACCGHVinit

MOVR R2;
RET

.ADD_NOISE

Back to R2 where membrane potential

; Uses RO, R2 and R5

LDALL R7, NOISE

MOVA R7;
SHRAN 1;

MOVR R2 ;
RET

i

due to 2 steps
ADD R2 ; Add to Vmem

Back to R2

.SYNAPSE_CALC

LOADSP ; Load Synaptic parameters and spike to Rl & ACC
SHRN 1 ; Move spike to flag C
FREEZENC

MOVA R1 ; Synaptic parameter to ACC

is

stored

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

81

SWAPS R1;
ADD R1;
MOVR R1;
SWAPS R1;

UNFREEZE
RST ACC
STORESP ; Stores synaptic parameter and increases BP for next synapse processing

RET

.RECOVERY_UPDATE ;uses R3,R5,R6

MOVA R2 ;ACG<=Vinit

LDALL R5 izhi_B

MULS R5 ; ACGc=R5*ACC=Bx* Vinit

SUB R3 ;ACCG<= ACG-R3= ACG-Uinit

LDALL R6 izhi_A

MULS R6 ; ACGe=A=ACC;

ADD R3 ;ACG=ACCH+Uinit

MOVR R3 ;Back to R3 where recovery value is stored
RET

.DETECT-SPIKE ; Uses RO,R3 and R2
LDALL ACC VTHRES
SUB R2 ; Compare Vth — Vmem
SHLN 1 ;subtraction sign to C flag
RST ACC
FREEZENC ; If positive, freeze
LDALL R2 izhi_.C ; Vmem to resting potential
MOVA R3; ACK= u
LDALL R5 izhi_D
ADD R5; ACC= utd
MOVR R3; u<= u+td
SET ACC
UNFREEZE
STOREPS ; Push spikes
RET
.STORENEURON ; uses RO,R3 and R1
MOVA R3 ;move u from R3 to acc
MOVR R1 ;move u from ACC to RI1
MOVA R2 ; Move Vmem from R2 to ACC
READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)
LOADBP ; SNRAM pointer to currently processed neuron
STORESP ; Store u&Vmem to SNRAM
RET
3Rk sk ok sk ok sk ok ok ok ok ok ok ok kR kR sk ok sk ok sk ok k- PROCEDURIES . EIND sk s sk sk sk sk sk ok sk ok sk ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok
s skokskokok skok ok skokok skokokokokokok ok okokskokokskokx. MATIN PROGRAMME BEGIIN stk sk stk skt sksk sk sk ok sk sk ok sk ok skok ok sk

.MAIN

i

; Virtual operation init

LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—virtual operation
LDALL ACC, VLAYERS ; Load defined virtual layers to PE array

SPMOV 0 ; VIRT <= ACC

; Initial instructions

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

82

GOSUB RANDOM_INIT ; For noise initialization

.EXECLOOP ; Execution loop

LOOP virtual_layers ; Neuron loop for virtual operation
NOP ;to prevent pipeline error
GOSUB LOADNEURON
GOSUB DETECT_SPIKE
READMPV SYN_ADDRO

LOADBP

LOOPV VO ; synaptic loop. Reads number of current—layer synapses
NOP ;to prevent pipeline error
GOSUB SYNAPSE_CALC

ENDL

SWAPS R1; take synapse weight

MOVA R1; move to acc

SHRAN 1; divide cause 2 steps

MOVR R1; move to Rl

SWAPS R1; move to SWI1

LOOP n_step

NOP

GOSUB MEMBRANE POTENTIAL ; Calculate membrane potential according izhikevic

GOSUB ADD_NOISE
SWAPS RI1;
MOVA R2;
ADD R1;
MOVR R2;
SWAPS R1;
ENDL
GOSUB RECOVERY_UPDATE
GOSUB STORENEURON
INCV
ENDL
.FINISH
NOP ; Empty pipeline wait NOPs
NOP
NOP
SPKDIS ; Distribute spikes
GOTO EXECLOOP ; Execution loop

— =
= O © 0 N O Utk W NN =

= e
=W N

15
16
17

18

19

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

APPENDIX M

ALU

Project Name: HEENS
Design Name: ALU. vhd
Module Name: ALU — behavioral

Creator: Sergi Juan, Mireya Zapata & Jordi Madrenas
Company: Universitat Politecnica de Catalunya (UPC)

Description :
ALU of the Processing Element

Revision 1: Jordi Madrenas
09/07/2020: Connect to carry the MSbit of R1 in MUL/MULS to simplify RO round (Most
Significant 16—bit Word)

—Revision 2: Antonio Caruso
—10/08/2020: Rounding to nearest integer in SHRAN, Z flag fix, unsigned addition ”

ADDU” |

—unsigned multiplication "MUL” with result to RO Rl, signed multiplication "MULS”

with result to RO RI1.

Additional Comments:

lib
use
use
use

use

rary ieee;
ieee.std_logic_1164.all;
ieee.std_logic_arith.all;
ieee.std_logic_unsigned. all;

work . SNN_pkg. all ;

entity ALU is

port (
clk : in std_logic;
reset :in std_logic;
InA ¢ in std-logic_-vector (15 downto 0);
InB : in std_logic_vector (15 downto 0);

OP.CODE : in std_-logic_vector (5 downto 0);

83

39
40

42
43

45
46
47
49
50
51
52

65
66
67

68

70
71
72
73
74
75
76
"
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

84

end ALU;

OutCarry : out std_-logic;
OutZero : out std_-logic;

OutSolve : out std_logic_vector (31 downto 0)

)

architecture behavioral of ALU is

signal sumA std_-logic_vector (15 downto 0);
signal sumB std_logic_vector (15 downto 0);
signal sumA _reg std_logic_vector (15 downto 0);
signal sumB_reg std_logic_vector (15 downto 0);
signal sgn : std_logic_vector (15 downto 0);
signal res : std_logic_vector (31 downto 0);
signal out_res std_logic_vector (31 downto 0);
signal res_aux_add std_logic_vector (16 downto 0);
signal res_aux_sub std_logic_vector (16 downto 0);
signal res-MUL std_logic_vector (31 downto 0);
signal ressMULS std_logic_vector (31 downto 0);
signal res_inc_dec std_logic_vector (15 downto 0);
signal r-MULS std_logic_vector (31 downto 0);
signal r-MUL std_logic_vector (31 downto 0);
signal max_res_add : std_logic;
signal max_res_sub : std_-logic;
signal min_res_add : std_logic;
signal min_res_sub : std_-logic;
signal ShiftingBits : std_logic-vector (2 downto 0);
signal SetClr_Bit std_logic_vector (3 downto 0);
signal C.SHLN, CSHLAN, CSHRN, CRTL, CRTR, C.INC, CDEC, CADD, CADDU,
std_logic;
signal Z_RES,Z.SH, ZAND, ZOR, ZXOR : std_logic;
signal S_RST, S.SET,S.SH , S.SHLN, S.SHLAN, SSHRN, S.SHRAN, S_RTL, S_RTR,
S.OR, SXOR, S_BITSET, S_BITCLR std_logic_vector (15 downto 0);
signal signal ADD, signal ADDU: std_logic;
signal signal_SUB: std_logic;
signal signal INC: std_logic;
signal signal_ DEC: std_-logic;
signal signal MUL: std_logic;
begin
—— Opcode Decoding
signal ADD <= ’1’ when (OP.CODE = OP.ADD) else
07,
signal ADDU <= ’1’ when (OP.CODE = OPADDU) else
07,
signal_.SUB <= ’'1’ when (OP.CODE = OP_SUB) else
07;
signal MUL <= ’1’ when ((OP.CODE = MUL) OR (OP.CODE = MULS)) else
07,
signal . INC <= ’1’ when (OP.CODE = INC) else
07,
signal DEC <= ’'1’ when (OP.CODE = DEC) else
07;
—— Carry out

with

OP_CODE select

C.SUB

S_AND,

98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150

85

OutCarry <= C_SHLN
C_SHLAN
C_SHRN
C_RTL
CRTR
C_INC
CDEC
C_ADD
C_SUB

r-MULS (31) when MULS,

r-MUL(31) when MUL,

when
when
when
when
when
when
when
when
when

SHILN,
SHLAN,

SHRN,

RTL,

RTR,

INC,

DEC,

OP_ADD | OP_ADDU,
OP_SUB,

—— Introduced to allow for easy 16—bit rounding

Introduced to allow for easy 16—bit rounding

1 when SETC,
0’ when others;
— Zero out
with OP.CODE select
OutZero <= 1’ when SETZ | RST,
0 when CLRZ | SET,
Z_RES when INC | DEC | OP.ADD | OPADDU | OPSUB | BITSET | BITCLR,
Z_SH when SHLAN | SHRAN | SHRN |SHLN,
Z_-AND when OP_AND,
Z_OR when OP_OR,
ZXOR when OPXOR | INV,
07 when others;
— Output (ALU result)
with OP.CODE select
OutSolve <= x”0000” & S_RST when RST,
x”0000” & S_SET when SET,
x”70000” & S_SHLN when SHLN,
x”0000” & S_SHLAN when SHLAN,
x”0000” & S_SHRN when SHRN,
x”0000” & S_SHRAN when SHRAN,
x”0000” & S_RTL when RTL,
x”0000” & S_RTR when RTR,
out_res when OP_ADD | OPADDU | OP-SUB | MULS | MUL | INC | DEC |
BITCLR | BITSET,
x”0000” & S_AND when OP_AND,
x”0000” & S_OR when OP_OR,
x”0000” & SXOR when OPXOR,
x”0000” & SXOR when INV,
x” 000000007 when others;
with OP.CODE select
S_SH<= S_SHLN when SHLN,
S_SHLAN when SHLAN,
S_SHRN when SHRN,
S_SHRAN when SHRAN,
x”70000” when others;
— Aux. signal InA
with OP.CODE select
sumA <= InA when SHLN | SHLAN | SHRN | SHRAN | OPADD | OPADDU | OPSUB | MUL

| MULS | OPAND | OP.OR | OPXOR | BITSET | BITCLR | RTL | RTR | INC | DEC,

x”FFFF” when INV,

x”0000” when others;

151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

86

Aux. signal InB
with OP_.CODE select

sumB <= InB

x”0001” when INC,
x”"FFFF” when DEC,

x”0000”

Number of

bits to shif

t

when others;

ShiftingBits <= sumB(2 downto 0);
SetClr_Bit <= sumB(3 downto 0);

— ALU operations

Carry out

with ShiftingBits

C_SHLN <= sumA(N_bits —

with ShiftingBits

CSHLAN <= sumA(N_bits

with ShiftingBits
CSHRN <= sumA (0)

select
1) when
sumA (N_bits — 2) when
sumA (N_bits — 3) when
sumA (N_bits — 4) when
sumA (N_bits — 5) when
sumA (N_bits — 6) when
sumA (N_bits — 7) when
sumA (N_bits — 8) when
select
— 2) when
sumA (N_bits — 3) when
sumA (N_bits — 4) when
sumA (N_bits — 5) when
sumA (N_bits — 6) when
sumA (N_bits — 7) when
sumA (N_bits — 8) when
sumA (N_bits — 9) when
select
when 70017,
sumA (1) when 70107,
sumA (2) when 70117,
sumA (3) when 71007,
sumA (4) when 71017,
sumA (5) when 71107,
sumA (6) when 71117,
sumA (7) when others;
1);

CRTL <= sumA(N_bits —

CRTR <= sumA (0) ;

with sumA select
’1’ when x”7FFF” |

0’ when others;

C.INC <=

with sumA select
’1’ when x78000” ,
0’ when others;

CDEC <=

carry_add

: process (sumA, sumB,

”001”
”010”
70117
71007
71017
71107
71117

)

)

others

70017
70107
70117
”100”
71017
”110”
1117

others;

res)

)

)

when SHLN | SHLAN | SHRN | SHRAN | OPADD | OPADDU | OPSUB | MUL
| MULS | OPAND | OP.OR | OPXOR | BITSET | BITCLR | INV,

208 begin

209

210 if OP.CODE = OP_ADDU then

211 if ((sumA(15) = ’1’ OR sumB(15) = ’1’) AND res_aux-add (16) = ’1’) then
212 CADD <= ’'17;

213 else

214 CADD <= '0';

215 end if;

216 elsif OP.CODE = OP.ADD then

217 if ((sumA(15) = ’0’ AND sumB(15) = ’0’ AND res(15) = '17)

218 OR (sumA(15) = 1’ AND sumB(15) = "1’ AND res(15) = ’0’)) then
219 CADD <= '17;

220 else

221 CADD <= ’07;

222 end if;

223 else null;

224 end if;

225 end process;

226

227

228 carry-sub: process (sumA, sumB, res)

229 begin

230

231 if ((sumA(15) = ’1’7 AND sumB(15) = 0’ AND res(15) = ’0’)
232 OR (sumA(15) = ’0’ AND sumB(15) = ’1’ AND res(15) = ’1’)) then
233 CSUB <= ’17;

234 else

235 CSUB <= '0;

236 end if;

237

238 end process;

239

240 —— Zero out

241

242 With OP.CODE select

243 out_res<= res when OPADD | OPADDU | OP.SUB,
244 r-MULS when MULS,

245 r-MUL when MUL,

246 x70000” & res_inc_dec when INC | DEC,
247 x”0000” & S_BITSET when BITSET,
248 x”0000” & S_BITCLR when BITCLR,
249 x”00000000” when others;
250

251 with out_res select

252 Z_RES <= ’1’ when x”00000000” ,

253 0’ when others;

254

255 with S_SH select

256 Z_SH <= ’1’ when x”0000” ,

257 0’ when others;

258

259 with S_AND select

260 Z_.AND <= ’1’ when x”0000” ,

261 ’0’ when others;

262

263 with S_.OR select

264 Z.OR <= ’1’ when x”0000” ,

265 0’ when others;

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

317
318
319
320
321
322
323

88

with SXOR select

ZXOR <=

— Auxiliary

— Reset all

717
’0’ when others;

when x”70000” ,

OutSolve out

out bits

S-RST <= x”0000” ;

— Set all

out bits

SSET <= x”FFFF”;

— Sign vector to
sgn <= (others => sumA(N_bits — 1));

— Left

shift
with ShiftingBits

increase length

select

S_SHLN <= sumA(N_bits — 2 downto 0)
sumA (N_bits — 3 downto 0)
sumA (N_bits — 4 downto 0)
sumA (N_bits — 5 downto 0)
sumA (N_bits — 6 downto 0)
sumA (N_bits — 7 downto 0)
sumA (N_bits — 8 downto 0)
sumA when others;

—— Left arithmetic shift

with ShiftingBits select

S_SHLAN <= sgn(0) & sumA(N_bits — 3
sgn (0) & sumA(N_bits — 4
sgn (0) & sumA(N_bits — 5
sgn(0) & sumA(N_bits — 6
sgn(0) & sumA(N_bits — 7
sgn (0) & sumA(N_bits — 8
sgn (0) & sumA(N_bits — 9

sumA when others;

—— Right shift

with ShiftingBits select

SSHRN <= 70" & sumA ((N_bits
700" & sumA ((N_bits
70007 & sumA ((N_bits
”0000” & sumA ((N_bits
7000007 & sumA ((N_bits
7000000” & sumA ((N_bits
?0000000” & sumA ((N_bits

ot

S_SHRANround :

variable temp:

begin

sumA when hers;

process
std_logic_vector

case ShiftingBits is

(ShiftingBits , sumA, sgn)

& 707 when 70017,
& 7007 when 70107 ,
& 70007 when 70117,
& 70000” when 7100”7,
& 700000” when 71017,
& 7000000” when 71107,
& 70000000” when 71117,
downto 0) & 707 when ”001”
downto 0) & ”00” when 7010”7
downto 0) & 70007 when 7011”7
downto 0) & ”0000” when ”100”
downto 0) & ”00000” when 71017
downto 0) & 7000000” when 71107
downto 0) & 70000000” when 71117
— 1) downto 1) when 7001”7,
— 1) downto 2) when 70107,
— 1) downto 3) when 70117,
— 1) downto 4) when 71007,
— 1) downto 5) when 71017,
— 1) downto 6) when 71107,
— 1) downto 7) when 71117,

=(others => ’07);

(15 downto 0):

when 7001”7 => temp :=sgn(l downto 0)
when ”010” => temp :=sgn(2 downto
when 7011”7 =>temp := sgn(3 downto

& sumA ((N_bits — 2) downto 1);

0)
0)

& sumA ((N_bits — 2) downto 2);
& sumA ((N_bits — 2) downto 3);

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

356

357

358

359

360

361

362

363

364

365

366

367

368
369

89

when ”100” =>temp := sgn(4 downto 0) & sumA((N_bits —
when 7101”7 =>temp := sgn(5 downto 0) & sumA((N_bits —
when 7110”7 =>temp := sgn(6 downto 0) & sumA((N_bits —
when 7111”7 =>temp := sgn(7 downto 0) & sumA((N_bits —
when others => temp := sumA;
end case;
—rounding
if(sgn(0)=’0") then
if (conv_integer (unsigned(ShiftingBits)) > 0) then
if (SumA(conv_integer (unsigned (ShiftingBits)) —1) = ’1’) then
temp:= temp + 1 ;
else null;
end if;
else null;
end if;
else null;
end if;

S_SHRAN<= temp;
end process;

— Bit
with

set

SetClr_Bit

select

S_BITSET <= sumA (N _bits

”
A7

”
B7

%)
C:

99
D7,

— Bit clear

with SetClr_Bit

sumA (N_bits
sumA (N_bits

sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits

sumA (N_bits

select

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

1 downto

14)

R

&

&

10
10
10

10

when x”0”,
sumA (0) when x”17,

&
&

&

&

&

&

sumA

sumA

sumA

sumA

sumA

sumA

sumA

sumA

sumA

sumA

sumA

sumA

(N_bits
(N_bits
(N_bits
(N_bits
(N_bits
(N_bits
(N_bits
(N_bits
(N_bits
(N_bits
(N_bits

(N_bits

- 15

— 14

- 13

- 12

- 11

— 10

1) & ’1’ & sumA (N_bits — 3 downto 0)
717 & sumA(N_bits — 2 downto 0) when x”F”,
sumA when others;

S.BITCLR <= sumA(N_bits — 1 downto 1)

&

0’ when x70”,

downto
downto
downto

NN NN
— — — —

downto

downto
downto
downto
downto
downto
downto 0)
downto 0)
downto 0)
downto
downto
downto
downto 0)

when x”E” |

4);
5) ;
6) ;
7

when
when
when
when
when
when
when
when
when
when
when

when

370
371

372

373

374

377

378

379

380

381

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

90

”
9)

”
A7

”
B:

99
¢,

29
D7

Left

circular

sumA (N_bits
sumA (N_bits

sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits
sumA (N_bits

sumA (N_bits

— 1 downto 2) & ’0’ & sumA(0) when x”17,

— 1 downto 3) & 0’ & sumA (N_bits — 15 downto 0)
— 1 downto 4) & ’0’ & sumA (N_bits — 14 downto 0)
— 1 downto 5) & ’0’ & sumA (N_bits — 13 downto 0)
— 1 downto 6) & 0’ & sumA (N_bits — 12 downto 0)
— 1 downto 7) & ’0’ & sumA (N_bits — 11 downto 0)
— 1 downto 8) & ’0’ & sumA (N_bits — 10 downto 0)
— 1 downto 9) & ’0’ & sumA (N_bits — 9 downto 0)
— 1 downto 10) & ’0’ & sumA (N_bits — 8 downto 0)
— 1 downto 11) & ’0’ & sumA (N_bits — 7 downto 0)
— 1 downto 12) & ’0’ & sumA (N_bits — 6 downto 0)
— 1 downto 13) & ’0’ & sumA (N_bits — 5 downto 0)
— 1 downto 14) & 0’ & sumA (N_bits — 4 downto 0)

— 1) & 0’ & sumA (N_bits — 3 downto 0) when x”E”,

70’ & sumA(N_bits — 2 downto 0) when x”F” |
sumA when others;

shift

S.RTL <= sumA(N_bits — 2 downto 0) & sumA(N_bits — 1);

Right circul

ar shift

SRTR <= sumA(0) & sumA(N_bits — 1 downto 1);

Multiplication registers
sumA _reg_process process
begin
wait until clk event and clk = ’17;
if (reset = ’1’) then
sumA _reg <= (others = ’07);
elsif (signal MUL = ’1’) then
sumA _reg <= sumA;
end if;
end process;
sumB_reg_process process
begin
wait until clk event and clk = ’'17;
if (reset = ’1’) then
sumB_reg <= (others => ’07);
elsif (signal MUL = ’1’) then

sumB_reg <= sumB;

if;
end process;

end

— Arithmetic operations

when

when

when

when

when

when

when

when

when

when

when

when

416
417
418
419
420
421
422
423

424
425

426
427

428
429

430
431
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

91

res_aux_add <=
res_aux_sub <=
res_inc_dec (15

((’07 & sumA) + (’0’ & sumB));

((07 & sumA) — (’0’ & sumB)
res_aux_add (15 downto 0);

downto 0) <=

res. MUL <= sumA _reg * sumB_reg;

)

res.MULS <= signed (sumA_reg) x signed (sumB_reg);
r-MULS <= ressMULS(15 downto 0) & res_MULS(31 downto 16);
rMUL <= res:MUL(15 downto 0) & res_MUL(31 downto 16);

max_res_add <=

(16)) AND

max_res_sub <=
(16) AND

min_res_add <=
(16) AND (NOT

min_res_sub <=

(16)) AND (NOT

arithmetic:
, max_res_add ,
begin

res <= (others =>

if (signal_ ADDU =

process

’1’ when (((NOT sumA(15)

res_aux-add (15))) = 1’
07
’1’ when (((NOT sumA(15)
res_aux_sub (15))) = 1’
07
17 when ((sumA (15)
res_aux_add (15)))) = 1’
07
17 when ((sumA (15)
res_aux_sub (15)))) = 1’
07

min_res_add , max_res_sub

07);

’1’) then

(signal_ ADD, signal . ADDU,

) AND (NOT sumB(15))) AND ((NOT
else

) AND sumB(15)) AND (
else

AND sumB(15)) AND (
else

AND (NOT sumB(15))) AND ((NOT
else

signal _.SUB ,
, min_res_sub)

res_aux-add ,

res (15 downto 0) <= res_aux_add (15 downto 0);

elsif (signal ADD =

’1’) then

res (15 downto 0) <= res_aux_add (15 downto 0);

)

)

if (max_res_.add = ’1’) then
res(15 downto 0) <= x” 7FFF” ;
elsif (min_res_.add = ’1’) then
res (15 downto 0) <= x”80007;
end if;

elsif (signal-SUB =

’1’) then

res (15 downto 0) <= res_aux_sub (15 downto 0);

)

)

if (max_res_sub = ’1’) then
res (15 downto 0) <= x”7FFF”;
elsif (min_res_sub = ’1’) then
res (15 downto 0) <= x”80007;
end if;
end if;
end process;

—— Logic AND operation
S_AND <= sumA AND sumB;

— Logic OR operation
S-OR <= sumA OR sumB;

res_aux_add

res_aux_sub

res_aux_add

res_aux_sub

res_aux_sub

92

469 — Logic XOR and INV operation
470 SXOR <= sumA XOR sumB; — Do both XOR and INV operations
471

472 end behavioral;

APPENDIX N

Network with STDP assembly program

;. GOTO CODE

; Izhikevic model for 16 fully connected neurons network
4 ; DEFAULT operation without virtual layers
5 ; REMOVE: ’semicolon%VIRT ’ for operation with virtual layers

; Network definitions

;define virtual_layers 3 ; from 0 up to 7 (1 to 8 layers)
10 define virtual_layers 0 ; From 0 up to 7

11 define gsynapses 2 ; Up to 32 global synapses

12 define n_step 1;

14 .DATA

16 ; Virtual layers

17 VO = ”0000000F” ; Number of assigned synapses
18 V1
19 V2 = ”70000000F” ; Number of assigned synapses to virtual layer

() to the main layer
(s—1)
(s—1)
20 V3 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer
(s—1)
(s—1)
(s—1)
(s—1)

”0000000F” ; Number of assigned synapses to virtual layer

21 V4 = ”70000000F” ; Number of assigned synapses
22 V5 = ”0000000F” ; Number of assigned synapses
3 V6 = ”"0000000F” ; Number of assigned synapses
24 V7 = ”0000000F” ; Number of assigned synapses
5 ;VLAYERS="00000003” ; Number of virtual layers.
26 VLAYERS="00000000” ; Number of virtual layers (n-—1).

to virtual layer
to virtual layer

to virtual layer

N O U W N =

to virtual layer

27

28 ; Membrane potential parameters common to all neurons
29

30 ;multiple of 10uV

31 VIHRES="FFFFF63C” ; Threshold voltage —25 mV

32 N70="00001B58” ; 70mV,

33 N0002="000068DC” ;

34 N001="00000028F”; 0.01, The noise generated by LFSR is 100 time bigger than necessary.
35 REST_POT="FFFFE69C” ; —6500

36 N5="00000005";

38 ;____Randomized membrane value written in memory
39 ;IZH_B= 0.2

40 ;1ZH_D= 4mV

41 ;IZH_C= —65mV resting potential

93

43
44
45
46
47
48
49
50
51
52
53
54
55
56

57

59

85

87
88
89
90
91
92
93
94
95
96
97
98
99

94

;IZH_A= 7 0000051E”= 0.02

)

3

; Neural and Synaptic RAM addresses

SYN_ADDRO="00000000" ; First address of Synaptic parameters in SNRAM for V = 0.
SYN_ADDR1="00000020" ; First address of Synaptic parameters in SNRAM for V = 1.
SYN_ADDR2="00000040" ; First address of Synaptic parameters in SNRAM for V = 2.
SYN_ADDR3="00000060" ; First address of Synaptic parameters in SNRAM for V = 3.
SYN_ADDR4="00000080" ; First address of Synaptic parameters in SNRAM for V = 4.
SYN_ADDR5="000000A0” ; First address of Synaptic parameters in SNRAM for V = 5.
SYN_ADDR6="000000C0” ; First address of Synaptic parameters in SNRAM for V = 6.
SYN_ADDR7="000000E0” ; First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000090” ; First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3” ; First address of Neural parameters in SNRAM (995) for V
NEU_ADDRI="000003E7” ; First address of Neural parameters in SNRAM (999) for V
NEU_ADDR2="000003EB” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR3="000003EF” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR4=" 000003F3” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR5=" 000003F7” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDRG6="000003FB” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR7="000003FF” ; First address of Neural parameters in SNRAM () for V =
SEED_ADDRL = ”000003FD” Address of noise seed in SNRAM

SEED_ADDRH = ”000003FE” ; Address of noise seed in SNRAM

PEID = ”000003FF” Address of PE Identifier number

; General constants

K_syn= 7"0000F99A” ; (40ms—1ms/40)

K_act= ”0000FFFA” ; (11000—1/11000)

;N012= 7000003337 ; 1/80

N025= ”00000666” ; 1/40=0.025 to be multiplied to sum of weights

; NO5= ”?00000CCC”; 1/20

L_.MASK_LS= ”0000007F” ;
5 MMAX= "00000800" ;

; DEBUG

NOISE= " 000005007 ;
;addl= 70000D511”
;add2= 700000789”

.CODE

noise for

7 bit mask
1024/2=2"9 to be left

test is

b
GOTO MAIN ; Jump to main program

)

shifted

10mV,

1280

3 koK ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok skok ok ok ok ok ok kok ok PROCEDURES BEGIIN sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok sk sk ok sk sk ok sk ok sk ok ok

.RANDOM_INIT ~ ;
LOADBP SEED_ADDRL
LOADSN

SEED

LOADBP SEED_ADDRH
LOADSN

SEED ;

RET

.LOADNEURON ;

Uses RO and RI1

Uses RO, R1,

R2, R3,

R5

ﬂ@@ﬂkwwl

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

95

READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)
LOADBP ; SNRAM pointer to currently processed neuron
LOADSN ; Load Neural parameters from SNRAM to Rl<=u & ACC<=Vmem
STORESP ; FAKE STORE ONLY TO MAKE PC+1
MOVR R2 ; Move Vmem from ACC to R2
MOVA R1 ; ACCG<=u
MOVR R3 ; put r3<=u
LOADSN ; load ACGk=d; Rl<=b
STORESP ; FAKE STORE ONLY TO MAKE PC+1
MOVR R5 ; Rb<=d
SWAPS R5 ; SWix=d
MOVA R1 ; ACG<=RI<=b;
MOVR R5 ; Rb<=b
LOADSN
STORESP
MOVR R6 ; R6<=C
SWAPS R6 ; SW<=C
MOVA R1
MOVR R6 ; R6<=A
LOADSN
MOVR R4 ; R4<=Mi
MOVSR R4 ; SW&=Mi
MARK
RET
.DETECT_SPIKE ; Uses RO,R3,SW5, SW6 and R2
LDALL ACC VTHRES
SUB R2 ; Compare Vth — Vmem
SHLN 1 ;subtraction sign to C flag
FREEZEC ; if doesn’t spiked do:
SWAPS R5
RST R5
RST ACC; DA COMMENTARE
UNFREEZE
FREEZENC ; If spiked, do:
;REMEMBER: C stays in SW6.
SWAPS R6
MOVA R6
SWAPS R6
MOVR R2
MOVA R3 ;ACK= u
;REMEMBER: d stays in SW5.
SWAPS R5 ;R5<=D
ADD R5 ;ACCG<= u+d
MOVR R3 ;u<= utd
RST RO
INC ; 1 in ACC
SHLN 5
SHLN 5
MOVR R5 ; SET 11th bit of SW5 in order to stress the presence of spike
SET ACC
UNFREEZE
STOREPS ; Push spikes
RET
.STDP_SYNAPSE_CALC
LOADSP ; ACG=Mj&&Sj (t), Rl<=P
MOVSR R1 ; SWi<=P

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

203
204
205
206
207
208
209
210
211
212
213
214
215

96

MOVSR RO
SHRN 1
MUL R5
NOP
MOVA R1
MOVR R7
MOVRS RO
BITCLR 0

i SwO<=Mj&&Sj (t)
3 ACG=Mj
; ACG<=M;jx* Si

; R7<=PARTIAL<= Mj%Si(t)!!
; ACC<=Mj&&Sj (t)

LDALL R4 K_syn

MUL R4

; the stored wvalue of Sj is don’t care, it will be took by lcl_-mem

SWAPS RO
MOVR R1;
SHRN 1

FREEZENC

SWAPS ACC ; ACC<= MxKsyn= M(t+1), SWO=Mj&Sj (t) =Mj(t)

RST ACC
INC
SHLN 7
SHLN 4

; ACCG<= MxKsyn=M(t+1)&Sj

; ACG<=Mj&&Sj (t), SWk= M«Ksyn= M(t+1)

; if there is spike

replace M«Ksyn with 2%x11

)

M=2xx%11

)

SWAPS ACC ; ACGk= Mj ,SWik= 2xx11= M(t+1)

MOVRS R4
MOVA R7
SUB R4;
MOVR R7
UNFREEZE
MOVA R1
MOVRS R1
SWAPS RO
STORESP
NOP
LOADSN
SWAPS R7
MOVR R7
MOVRS ACC
SHRN 1
FREEZENC
MOVA R1
MOVR R4
SHRN 5;
SHRAN 5;
MOVRS R1
MULS R1
MOVA R1
ADD R3
MOVR R3
MOVA R4
MOVR. R1
UNFREEZE
LDALL R4
MOVA R1
MUL R4;
MOVSR ACC
MOVSR R1
MOVA R7
MUL R4
RST R4
MOVRS R1

;. R4<=Mi=SW4

; ACG= Partial

; ACG<= PARTIAL <= Si(t)*«Mj(t)—Sj(t)*Mi(t)
; R7<= PARTIAL

: ACCk= Mj&Sj ,SWoc= 2xx11= M(t+1)
; Rl <= P

ACG= M(t+1), SWk= Mj&Sj ,

;. MEMe=Mj&&Sj (t+1), MEMK=P

ACCG= L(15 downto 0), Rl<= L(31 downto 16)
. SW&= PARTIAL

; R7 <= L(15 downto 0)

; ACCGk= Mj&Sj

; se ¢’ lo spike
; ACGk= L(31 downto 16)= [L]*2°10

; Rl<=P

5 LxP

; ADD SUM OF WEIGHTS

; STORE SUM OF WEIGHTS

; Rl<=L(31 downto 16)

K_act ; ____ __ o _________
; ACGk= L(31 downto 16)

; SWOk= MSW of MSW

; SWik= LSW of MSW

; ACG=LSW of L

ACCG= MSW of LSW), Rl unuseful

;. RI<=LSW (MSW)

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

97

ADDU R1; ADD CHANGED IN ADDU NEW!!!
FREEZENC ; overflow
SET R4 ; Rd4<=-1 1741006799 ps
UNFREEZE
MOVR R7 ; R7<= L(15 downto 0)(t+1)
MOVRS ACC ; ACG<= MSW(MSW)
SUB R4 ; ACGk= L(31 downto 16)(t+1)
;RST R4
MOVR R1 ; Rl<=Lx2"10=
SWAPS R7 ; R7<= PARTIAL, SW&=L(15 downto 0)(t+1)
MOVA R7 ; in this way ACGk= PARTIAL =M x 2710
ADD R1
MOWR R1 ; RI<=L(31 downto 16)(t+1)
SWAPS R7 ;R7<=L(15 downto 0)(t+1)
MOVA R7
STORESP
RET

. Mi
MOVRS R4 ; Rd<= Mi
LDALL R7 MMAX
MOVA R5H
MUL R7
MOVA R1
SHRAN 1; NOTE THAT MMAX is MiMAXx*2 in order to be shifted
FREEZENZ
LDALL ACC K_syn
MUL R4
UNFREEZE
MOVR. R4
MOVSR R4 ;SW&k= Mi
RET

.GAUSS_NOISE ; Uses SW0, R2, R6 and RT
RANDON ; LFSR ON
RANDOFF ;LFSR OFF. Arbitrarily heres
LLFSR ; Noise seeds to ACC, R1, SRO, SR1
ADD R1
SHRAN 1
MOVR R7
SWAPS RO
SWAPS R1
ADD R1
SHRAN 1
ADD R7
LDALL R7 NO001; ACC=OUTPUT
MULS R7 ;NOISE IN ACC
FREEZENC
INC
UNFREEZE
MOVR R4 ;NOISE IN R4
SWAPS R6
MOVA R6
SWAPS R6

LDALL R7 RESTPOT ; tipical value of resting potential to be compared with the actual

one
SUB R7 ; compare it with the value of the parameter. if
MOVA R4

)

it

is

excitatory

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327
328
329
330

98

FREEZEZ
LDALL R7 Nb5;
MUL R7
NOP
MOVA R1
SHRAN 1

UNFREEZE
MOVSR ACC

RET

3

;TO STORE 1/2 THE NOISE

.MEMBRANE POTENTIAL ; Uses RO,R4,R7 32808

)

MOVA R2

MULS RO ; v"2%2712 (CHANGED MUL IN MULS!!)

NOP ; Check if needed
; Shift ROR1 4 positions

left

SHLN 4 ; Shift Accumulator 274

MOVR R4

MOVA R1 ; Move LS part
SHRN 4

SHRAN 4

SHRAN 4 ; 2°16/2°12 =

(R1) to RO (2°16)

2°4

ADD R4 ; Combine and obtain v"2/27°12

LDALL R4 NO0002

NOP ; Check if needed
SHLN 1
MOVR R4
MOVA R1 ; Move LS part
SHRN 5

SHRAN 5

SHRAN 5 ; 2°16/2"15 =
ADD R4

; 0.0002%2°27 is in R4
MULS R4 ; v°2x2°(—12)%0.0002%2°27/2°16 = 0.0002%v 2%2°(—1)

; Shift Accumulator 271

(R1) to RO (2°16)

271

; Combine and obtain 0.0002xv"2

MOVR R7;

MOVA R2; ACCG=Vinit

SHRAN 2; ACC<=0.25%xVinit ;
ADD R2; ACGK=ACC+Vinit=1.25%Vinit

SHLAN 1

ADD R7

LDALL R4 N70; R4<=70
ADD RA4:

MOVR R7

RST ACC

SUB R3; ACC— u
SHRAN 1;

ADD R7;

ADD R2; ACC=ACC+Vinit

MOVR R2; Back to R2 where membrane potential is
RET

.RECOVERY_UPDATE ;uses R3,R5,R6
MOVA R2; ACCG=Vinit

SWAPS R5;
MULS R5
FREEZENC
INC
UNFREEZE
SUB R3
;REMEMBER: A is in R6

; ACG<=R5*ACC=B* Vinit

;ACG<= ACG-R3= ACG-Uinit

stored

331 MULS R6; ACCG<=A*ACC;

332 FREEZENC

333 INC

334 UNFREEZE

335 ADD R3; ACCG<=ACC+Uinit

336 MOVR R3; Back to R3 where recovery value is stored
337 RET

338

339 .SUM_NOISE_AND_Ws

340 MOVRS ACC ; NOISE TO ACC

341 ADD R2 ;ADD NOISE TO SIGNAL

342 MOVR R2

343 SWAPS R3 ;SYN. contribute

344 LDALL RO NO025 ; 1/40

345 MULS R3

346 ADD R2;

347 MOVR R2; store membrane potential

348 SWAPS R3;

349 RET

350 ;

351 .STORENEURON ;uses RO,R3 and RI1

352 MOVA R3 ;move u from R3 to acc

353 MOVR R1 ;move u from ACC to Rl

354 MOVA R2 ; Move Vmem from R2 to ACC

355 READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)
356 LOADBP ; SNRAM pointer to currently processed neuron

357 STORESP ; Store u&Vmem to SNRAM

358 NOP

359 LOADSN

360 NOP

361 STORESP ;store second row

362 NOP

363 LOADSN

364 NOP

365 STORESP ;store third row

366 MOVRS R4;

367 MOVA R4,

368 RST R1

369 STORESP

370 RET

371 ;

372 5 skskokokskokorskokskokokokokokskokokokokokokok ok ok okok PROCEDURIES FIND sk st sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk ok sk ok skokok skok ok
373

3T4A 5 swskokskskok sk okokokkokok ok kokokkokkk ook ok okok MAIN PROGRAMME BEGIIN s sk sk s sk sk sk sk ok sk sk ok ok ok ok o ok ok ok ok ok %
375 .MAIN

376 ;

377

378 ; Virtual operation init

379 LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—virtual operation
380 LDALL ACC, VLAYERS ; Load defined virtual layers to PE array
381 SPMOV 0 ; VIRT <= ACC

382

383

384 ; Initial instructions

385 GOSUB RANDOMINIT ; For noise initialization
386

387 .EXECILOOP ; Execution loop
388

100

389 LOOP virtual_layers ; Neuron loop for virtual operation
390 NOP ;to prevent pipeline error

391 GOSUB LOAD_NEURON

392 GOSUB DETECT_SPIKE

393 SWAPS R3 ;SYNAPSE Sum will be store IN R3
394 MOVA Rb5

395 SHRN 5

396 SHRN 5

397 MOVR Rb5

398 READMPV SYN_ADDRO

399 LOADBP

400 LOOPV VO ;synaptic loop. Reads number of current—layer
401 NOP ;to prevent pipeline error

402 GOSUB STDP_SYNAPSE_CALC

403 ENDL

404 SWAPS R3 ;SYNAPSE sum to SW3

405 GOSUB Mi

406 GOSUB GAUSS_NOISE

407 LOOP n_step

408 NOP

409 GOSUB MEMBRANE POTENTIAL ; Calculate membrane potential
410 GOSUB SUM_NOISE_AND_Ws

411 ENDL

412 GOSUB RECOVERY_UPDATE

413 GOSUB STORENEURON

414 RST R3;

415 MOVSR R3;

416 INCV

417 ENDL

418 .FINISH

419 NOP ;Empty pipeline wait NOPs

420 NOP

421 NOP

422 SPKDIS ; Distribute spikes

423 GOTO EXECLOOP ; Execution loop

synapses

APPENDIX O

Network with STDP at neuron level

assembly program

1 ; GOTO CODE

2

3 ; Izhikevic model for 16 fully connected neurons network

| ; DEFAULT operation without virtual layers

5 ; REMOVE: ’semicolon%VIRT ° for operation with virtual layers

6

7 ; Network definitions

8

9 define virtual_layers 0 ; From 0 up to 7

10 define gsynapses 2 ; Up to 32 global synapses
11 define n_step 1; Number of step —1.

12

13 .DATA

14

15 ; Virtual layers

16 VO = ”0000000F” ; Number of assigned synapses (s—1) to the main layer
17 V1 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 1
18 V2 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 2
19 V3 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 3
20 V4 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 4
21 V5 = ”0000000F” ; Number of assigned synapses (s—1) to virtual layer 5
22 V6 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 6
23 V7 = ”0000000F” ; Number of assigned synapses (s—1) to virtual layer 7
24 VLAYERS="00000000” ; Number of virtual layers (n—1)

25

26 ; Membrane potential parameters common to all neurons

27

28 ;multiple of 10uV

29 VIHRES="FFFFF63C” ; Threshold voltage —25 mV

30 N70="00001B58”; 70mV,

31 N0002="000068DC” ;

32 NO001="00000028F”; 0.01, The noise generated by LFSR is 100 time bigger than necessary.
33 REST POT="FFFFE69C” ; —6500

34 N5="00000005";

35

36 ;__.__Randomized membrane value written in memory

37 ;I1ZH_B= 0.2

38 ;1ZH_D= 4mV

101

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

102

;IZH_C= —65mV resting potential
;IZH_A= 7 0000051E”= 0.02

3
)

; Neural and Synaptic RAM addresses

SYN_ADDRO="00000000" ; First address of Synaptic parameters in SNRAM for V = 0.
SYN_ADDRI="00000020" ; First address of Synaptic parameters in SNRAM for V = 1.
SYN_ADDR2="00000040" ; First address of Synaptic parameters in SNRAM for V = 2.
SYN_ADDR3="00000060" ; First address of Synaptic parameters in SNRAM for V = 3.
SYN_ADDRA4="00000080" ; First address of Synaptic parameters in SNRAM for V = 4.
SYN_ADDR5="000000A0” ; First address of Synaptic parameters in SNRAM for V = 5.
SYN_ADDR6="000000C0” ; First address of Synaptic parameters in SNRAM for V = 6.
SYN_ADDR7="000000E0” ; First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000090" ; First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3” ; First address of Neural parameters in SNRAM (995) for V
NEU_ADDRI1="000003E7” ; First address of Neural parameters in SNRAM (999) for V
NEU_ADDR2="000003EB” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR3="000003EF” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR4=" 000003F3” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR5="000003F7” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR6="000003FB” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR7="000003FF” ; First address of Neural parameters in SNRAM () for V =

;:FOR STDP TEST
NEU_ADDRO_4=" 000003E6” ;

SEED_ADDRL = ”000003FD” ; Address of noise seed in SNRAM
SEED_ADDRH = ”000003FE” ; Address of noise seed in SNRAM
PEID = ”000003FF” ; Address of PE Identifier number

; General constants

K_syn= ”"0000F99A” ; (40ms—1ms/40)
K_act= ”0000FFFA” ; (11000—1/11000)
N05= ”?00000CCC”; 1/20
L.MASK_LS= ”0000007F”; 7 bit mask

74 MMAX= 7000010007 ; 4096 to be right shifted

75
76
7
78

.CODE

79 GOTO MAIN ; Jump to main program

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

o koRskok kR Rk ok ko okokok ok kok koo kokokkokok k. PROCEDURES BEGIIN sk sk ok sk sk sk sk sk sk sk sk ok o ok sk % ok koK ok koK ok k% ok
.RANDOM_NIT ; Uses RO and Rl

LOADBP SEED_ADDRL

LOADSN

SEED

LOADBP SEED_ADDRH

LOADSN

SEED ;

RET

.LOADNEURON ; Uses RO, R1, R2, R3, R5

READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)

LOADBP ; SNRAM pointer to currently processed neuron
LOADSN ; Load Neural parameters from SNRAM to Rl<=u & ACG<=Vmem
STORESP ; FAKE STORE ONLY TO MAKE PC+1

\I@Cﬂ%wwl

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154 MOVA R4; put 0 or 1

103

MOVR R2 ; Move Vmem from ACC to R2

MOVA R1 ; ACC<=u

MOVR R3 ; put r3<=u

LOADSN ; load ACGk=d; Rl<=b
STORESP ; FAKE STORE ONLY TO MAKE PC+1
MOVR R5 ; Rb<=d
SWAPS R5 ; SWix=d
MOVA R1 ; ACG<=RIl<=b;
MOVR R5 ; Rb<=b
LOADSN
STORESP
MOVR R6 ; R6<=C
SWAPS R6 ; SW=C
MOVA R1
MOVR R6 ; R6<=A
LOADSN
MOVR R4 ; Rd<=Mi
MOVSR R4 ; SW&=Mi
MOVA R1;
MOVR R4 ;
MARK
RET
.DETECTSPIKE ; Uses RO,R3,SW5, SW6 and R2
LDALL ACC VTHRES
SUB R2 ; Compare Vth — Vmem
SHLN 1 ;subtraction sign to C flag
FREEZEC ;if doesn’t spiked do:
SWAPS R5
RST R5
RST ACC; DA COMMENTARE
UNFREEZE
FREEZENC ; If spiked, do:
;REMEMBER: C stays in SW6.
SWAPS R6
MOVA R6
SWAPS R6
MOVR R2
MOVA R3 ;ACK= u
;REMEMBER: d stays in SW5.
SWAPS R5 ;R5<=D
ADD R5 ;ACG<= ut+d
MOVR R3 ;u<= utd
RST RO
INC ; 1 in ACC
SHLN 5
SHLN 5
MOVR R5
SET ACC
UNFREEZE
STOREPS ; Push spikes
RET
.SYNAPSE_CALC
LOADSP ; ACG=Mj&&Sj (t), Rl<=P
MOVSR R1 ; SWik=P
MOVSR RO ; SwO<=Mj&&Sj (t)

; SET 11th bit of SW5 in order to stress the presence of spike

if this neuron has STDP or NOT

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

104

SHRN 1;
FREEZENC; if c¢=0 freeze , you must do STDP
MOVRS RO ; ACG=Mj&&Sj (t)
SHRN 1 ; Move spike to flag C
FREEZENC
MOVA R1 ; Synaptic parameter to ACC
ADD R3;
MOVR R3;
UNFREEZE
UNFREEZE
MOVA R4; put 0 or 1 if this neuron has STDP or NOT
SHRN 1;
FREEZEC; if c¢=1 freeze. you must not do STDP
MOVRS RO ; ACG=Mj&&Sj(t)
SHRN 1 ;. ACGx=Mj
MUL R5 ; ACG<=M;jx* Si
NOP
MOVA R1
MOVR R7 ; RT<=PARTIAL<= Mj*Si(t)!!
MOVRS RO ; ACG=Mj&&Sj (t)
BITCLR 0
LDALL R4 K_syn
MUL R4 ; ACGk= MxKsyn=M(t+1)&Sj
; the stored value of Sj is don’t care, it will be took by lcl-mem
SWAPS RO ; ACGK=Mj&&Sj (t), SWhk= M«Ksyn= M(t+1)
MOVR R1;
SHRN 1
FREEZENC ; if there is spike
SWAPS ACC ; ACCG= MxKsyn= M(t+1), SWOk=Mj&Sj(t) =Mj(t)
RST ACC ; replace M«xKsyn with 2x2xx11
INC
SHLN 7
SHLN 5 ; M=(2%2%%10)*2 MORE INCISIVE STDP
SWAPS ACC ; ACCk= Mj ,SWk= 2#2%x11= M(t+1)
MOVRS R4 ; R4<=Mi=SW4
MOVA R7 ; ACCG<= PARTIAL
SUB R4; ; ACCG<= PARTIAL <= Si(t)*Mj(t)—Sj(t)=«Mi(t)
MOVR R7 ; R7<= PARTIAL
UNFREEZE
MOVA R1
MOVRS R1 ; Rl <= P
SWAPS RO ; ACGk= M(t+1), SWk= Mj&Sj,
STORESP ; MEMK=Mj&&Sj (t+1), MEMK=P
NOP
LOADSN ; ACG= L(15 downto 0), Rl<= L(31 downto 16)
SWAPS R7 ; SW&= PARTIAL
MOVR R7 ; R7 <= L(15 downto 0)
MOVRS ACC ; ACG= Mj&Sj
SHRN 1
FREEZENC ; se c¢’ lo spike
MOVA R1 ; ACG= L(31 downto 16)= [L]%*2710=20%2"10
MOVR R4
SHRN 5;
SHRAN 5;
MOVRS R1; Rl<=P
MULS R1 ;
MOVA R1 ;

ADD R3

)

ADD SUM OF WEIGHTS

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

263
264
265
266
267
268
269
270

105

MOVR R3

MOVA R4

MOVR R1
UNFREEZE
LDALL R4
MOVA R1
MUL R4;
MOVSR ACC
MOVSR R1
MOVA RT7

; STORE SUM OF WEIGHTS

; Rl<=L(31 downto 16)

K_act ; - _____________

; ACGk= L(31 downto 16)

; SWO= MSW of MSW
; SWik= LSW of MSW
; ACG=LSW of L

MUL R4 ; ACCG= MSW of LSW), R1 unuseful

RST R4
MOVRS R1
ADDU R1;
FREEZENC
SET R4 ;
UNFREEZE
MOVR R7
MOVRS ACC
SUB R4
.RST R4
MOVR R1
SWAPS R7
MOVA R7
ADD R1
MOVR R1
SWAPS R7
MOVA R7
STORESP

UNFREEZE
RET

)

. Mi

MOVRS R4

: RI<=LSW(MSW)

; overflow
R4<=—1 1741006799 ps

; R7<= L(15 downto 0)(t+1)

;. ACC<= MSW(MSW)

; ACC<= L(31 downto 16)(t+1)

. Rl<=L%2"10=

: R7<= PARTIAL, SW«&=L(15 downto 0)(t+1) 2537731149 ps

; in this way ACGk= PARTIAL =M % 2710

; Rl<=L(31 downto 16)(t+1)

;R7<=L(15 downto 0)(t+1)

; Ra<= Mi

LDALL R7 MMAX

MOVA R5
MUL R7
MOVA R1

SHRAN 1; NOTE THAT MMAX is MiMAXx2

FREEZENZ

LDALL ACC K_syn

MUL R4
UNFREEZE
MOVR R4
MOVSR R4

RET

3

i SWhk= Mi

in order to be shifted

.GAUSS.NOISE ; Uses SWO0, R2, R6 and R7

RANDON
RANDOFF
LLFSR
ADD R1
SHRAN 1
MOVR R7
SWAPS RO
SWAPS R1
ADD R1
SHRAN 1

:LFSR ON

;LFSR OFF. Arbitrarily heres

; Noise seeds to ACC, RI1,

SRO, SR1

271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

106

ADD R7

LDALL R7 NO001; ACC=OUTPUT

MULS R7 ;NOISE IN ACC

FREEZENC

INC

UNFREEZE
MOVR R4 ;NOISE IN R4

SWAPS R6
MOVA R6

SWAPS R6

LDALL R7 RESTPOT; tipical value of resting potential to be compared with the actual

one
SUB R7 ; compare it with the value of the parameter. if =, it is excitatory
MOVA R4
FREEZEZ

LDALL R7 N5;

MUL R7

NOP

MOVA R1

SHRAN 1
UNFREEZE
MOVSR ACC ;TO STORE 1/2 THE NOISE

RET

)

.MEMBRANE POTENTIAL ; Uses RO,R4,R7

MOVA R2

MULS RO ; v"2%2712

NOP

; Shift ROR1 4 positions left

SHLN 4 ; Shift Accumulator 274

MOVR R4

MOVA R1 ; Move LS part (R1) to RO (2716)
SHRN 4

SHRAN 4

SHRAN 4 ; 2716/2712 = 274

ADD R4 ; Combine and obtain v~"2/2712
LDALL R4 NO0002 ; 0.0002%2°27 is in R4
MULS R4 ; v 2427 (—12)%0.0002%2"27/2716 = 0.0002xv"2%x2"(—1)
NOP

SHLN 1 ; Shift Accumulator 271

MOVR R4

MOVA R1 ; Move LS part (R1) to RO (2716)
SHRN 5

SHRAN 5

SHRAN 5 ; 2°16/2715 = 271

ADD R4 ; Combine and obtain 0.0002%xv"2
MOVR R7;

MOVA R2; ACCG<=Vinit

SHRAN 2; ACC<=0.25%Vinit ;

ADD R2; ACK=ACCH+Vinit=1.25%Vinit
SHLAN 1

ADD R7

LDALL R4 N70; R4<=70

ADD R4;

MOVR R7

RST ACC

SUB R3; ACC=— u

SHRAN 1;

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

107

ADD R7;
ADD R2;
MOVR R2;

RET

)

ACC=ACCH+Vinit
Back to R2 where membrane potential

.RECOVERY_UPDATE ;uses R3,R5,R6

MOVA R2;
SWAPS R5;
MULS R5
FREEZENC

INC
UNFREEZE
SUB R3

;REMEMBER: A is in R6
MULS R6;

FREEZENC

INC

UNFREEZE

ADD R3;

MOVR. R3;
RET

.SUM_NOISE_AND_Ws
MOVRS ACC
ADD R2
MOVR R2
SWAPS R3
MOVA R3
ADD R2;
MOVR R2;
SWAPS R3;
RET

.STORENEURON

ACG=Vinit

; ACCG<=R5*ACC=Bx* Vinit

is

;ACCk= ACG-R3= ACGC-Uinit

ACCK=A*ACC;

ACG=ACCHUinit

stored

Back to R3 where recovery value is stored

:NOISE TO ACC

;ADD NOISE TO SIGNAL

;SYN. contribute

store membrane potential

MOVA R3
MOVR R1
MOVA R2

LOADBP
STORESP
NOP
LOADSN
NOP
STORESP
NOP
LOADSN
NOP
STORESP
NOP
LOADSN
MOVRS R4;
MOVA R4;
STORESP
RET

)

;uses RO,R3 and RI1

;move u from R3 to acc
;move u from ACC to Rl

; Move Vmem from R2 to ACC
READMPV NEUADDRO ; Address of real neuron + virt

(valid also for non—virtual)

; SNRAM pointer to currently processed neuron

; Store u&Vmem to SNRAM

;store second row

;store third row

3 koK ok ok ok ok sk skok ok ok ok sk ok ok ok ok ok skok sk ok ok ok ok skok ok PROCEDURES EIND sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk ok ok sk ok sk ok ok

)

ok sk ok ok ok K ok sk sk ok ok ok skokokok ok ok skokok ok Rk ok ok MATIN PROGRAMME. BEGIIN sk sk s sk sk sk sk sk s sk sk sk sk sk ok ok sk sk ok ok % ok ok

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

108

.MAIN

; Virtual operation init

LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—virtual operation
LDALL ACC, VLAYERS ; Load defined virtual layers to PE array

SPMOV 0 ; VIRT <= ACC

; Initial instructions
GOSUB RANDOM_INIT ; For noise initialization

.EXECLOOP ; Execution loop

LOOP virtual_layers ; Neuron loop for virtual operation
NOP ;to prevent pipeline error
GOSUB LOADNEURON
GOSUB DETECT_SPIKE

SWAPS R3 ;SYNAPSE Sum will be store IN R3

MOVA R5

SHRN 5

SHRN 5

MOVR R5; put 0 o 1 in R5 if there is a spike or not

READMPV SYN_ADDRO
LOADBP
LOOPV VO ;synaptic loop. Reads number of current—layer synapses

NOP ;to prevent pipeline error
GOSUB SYNAPSE_CALC
ENDL
MOVA R3 ;move to acc synapse sum

SHRAN 1; save half the weight
MOVR R3 ;move to R3
READMPV NEU_ADDRO4 ; Address of real neuron + virt (valid also for non—virtual)

LOADBP ; SNRAM pointer to currently processed neuron
LOADSN ; ACCG<=Mi ;R1<=0 o 1 if must be done STDP or not
MOVA R1

SHRN 1;

FREEZEC; if 0 you have to perform STDP
LDALL RO NO5 ; 1/20
MULS R3
MOVR R3
GOSUB Mi
UNFREEZE
SWAPS R3 ;SYNAPSE sum to SW3
GOSUB GAUSS_NOISE
LOOP n_step
NOP
GOSUB MEMBRANEPOTENTIAL ; Calculate membrane potential
GOSUB SUM_NOISE_AND_Ws
ENDL
GOSUB RECOVERY_UPDATE
GOSUB STORENEURON
RST R3;
MOVSR R3;
INCV
ENDL
.FINISH
NOP ;Empty pipeline wait NOPs

109

444 NOP

445 NOP

446 SPKDIS ; Distribute spikes

447 GOTO EXECLOOP ; Execution loop

APPENDIX P

Network with STDP at connection level

assembly program

1 ; GOTO CODE

2

3 ; Izhikevic model for 16 fully connected neurons network

| ; DEFAULT operation without virtual layers

5 ; REMOVE: ’semicolon%VIRT ° for operation with virtual layers

; Network definitions
9 define virtual_layers 0 ; From 0 up to 7

10 define gsynapses 2 ; Up to 32 global synapses
11 define n_step 1; Number of step —1.

12

13 .DATA

14

15 ; Virtual layers

16 VO = ”0000000F” ; Number of assigned synapses (s—1) to the main layer
17 V1 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 1
18 V2 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 2
19 V3 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 3
20 V4 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 4
21 V5 = ”0000000F” ; Number of assigned synapses (s—1) to virtual layer 5
22 V6 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 6
23 V7 = 70000000F” ; Number of assigned synapses (s—1) to virtual layer 7
24 VLAYERS="00000000” ; Number of virtual layers (n—1)

25

26 ; Membrane potential parameters common to all neurons

27

28 ;multiple of 10uV

29 VIHRES="FFFFF63C” ; Threshold voltage —25 mV

30 N70="00001B58”; 70mV,

31 N0002="000068DC” ;

32 NO001="00000028F”; 0.01, The noise generated by LFSR is 100 time bigger than necessary.
33 REST POT="FFFFE69C” ; —6500

34 N5="00000005";

36 ;__.__Randomized membrane value written in memory

37 ;IZH.B= 0.2
38 ;IZH.D= 4mV

110

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

111

;IZH_C= —65mV resting potential
;IZH_A= 7 0000051E”= 0.02

3
)

; Neural and Synaptic RAM addresses

SYN_ADDRO="00000000" ; First address of Synaptic parameters in SNRAM for V = 0.
SYN_ADDRI="00000020" ; First address of Synaptic parameters in SNRAM for V = 1.
SYN_ADDR2="00000040" ; First address of Synaptic parameters in SNRAM for V = 2.
SYN_ADDR3="00000060" ; First address of Synaptic parameters in SNRAM for V = 3.
SYN_ADDRA4="00000080" ; First address of Synaptic parameters in SNRAM for V = 4.
SYN_ADDR5="000000A0” ; First address of Synaptic parameters in SNRAM for V = 5.
SYN_ADDR6="000000C0” ; First address of Synaptic parameters in SNRAM for V = 6.
SYN_ADDR7="000000E0” ; First address of Synaptic parameters in SNRAM for V = 7.
GSYN_ADDR="00000090" ; First address of Global Synaptic parameters in SNRAM.
NEU_ADDRO="000003E3” ; First address of Neural parameters in SNRAM (995) for V
NEU_ADDRI1="000003E7” ; First address of Neural parameters in SNRAM (999) for V
NEU_ADDR2="000003EB” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR3="000003EF” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR4=" 000003F3” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR5="000003F7” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR6="000003FB” ; First address of Neural parameters in SNRAM () for V =
NEU_ADDR7="000003FF” ; First address of Neural parameters in SNRAM () for V =

SEED_ADDRL = ”000003FD” ; Address of noise seed in SNRAM
SEED_ADDRH = ”000003FE” ; Address of noise seed in SNRAM
PEID = ”000003FF” ; Address of PE Identifier number

; General constants

K_syn= ”"0000F99A” ; (40ms—1ms/40)

K_act= ”0000FFFA” ; (11000—1/11000)

NO05= ”00000CCC”; 1/20

L.MASK_LS= ”0000007F”; 7 bit mask

MMAX= ”00000800” ; 4096/2=2"9 to be right shifted

.CODE

GOTO MAIN ; Jump to main program

o skoRskok Rk ok Rk ok kR ok ook R okokkokokkokokk. PROCEDURES BEGIIN 55k sk sk sk sk sk sk sk sk sk sk ok o ok ok % ok ok ok ok ok ok ok k% ok
.RANDOM_NIT ; Uses RO and RI1

LOADBP SEED_ADDRL

LOADSN

SEED

LOADBP SEED_ADDRH

LOADSN

SEED ;

RET

.LOADNEURON ; Uses RO, R1, R2, R3, R5

READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)
LOADBP ; SNRAM pointer to currently processed neuron

LOADSN ; Load Neural parameters from SNRAM to Rl<=u & ACG<=Vmem
STORESP ; FAKE STORE ONLY TO MAKE PC+1

MOVR R2 ; Move Vmem from ACC to R2
MOVA R1 ; ACC<=u
MOVR R3 ; put r3<=u

\I@Cﬂ%wwl

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

112

LOADSN ; load ACCGk=d; Rl<=b
STORESP ; FAKE STORE ONLY TO MAKE PC+1
MOVR R5 ; Rb&<=d

SWAPS R5 ; SWi<=d
MOVA R1 ; ACCG=Rl<=b;
MOVR R5 ; Rb<=b
LOADSN
STORESP
MOVR R6 ; R6<=C
SWAPS R6 ; SW=C
MOVA R1
MOVR R6 ; R6<=A
LOADSN
MOVR R4 ; Rd<=Mi
MOVSR R4 ; SW&=Mi
MARK
RET
.DETECT_SPIKE ; Uses RO,R3,SW5, SW6 and R2
LDALL ACC VTHRES
SUB R2 ; Compare Vth — Vmem
SHLN 1 ;subtraction sign to C flag
FREEZEC ;if doesn’t spiked do:
SWAPS R5
RST R5
RST ACC; DA COMMENTARE
UNFREEZE
FREEZENC ; If spiked, do:
;REMEMBER: C stays in SW6.
SWAPS R6
MOVA R6
SWAPS R6
MOVR R2
MOVA R3 ;ACG= u
;REMEMBER: d stays in SW5.
SWAPS R5 ;R5<=D
ADD R5 ;ACG<= utd
MOWR R3 ;u<= utd
RST RO
INC ; 1 in ACC
SHLN 5
SHLN 5
MOVR R5 ; SET 11th bit of SW5 in order to stress the presence
SET ACC
UNFREEZE
STOREPS ; Push spikes
RET
.SYNAPSE_CALC ;
LOADSP ; ACG=Mj&&Sj (t), Ri<=P

MOVSR R1 ; SWik=P
MOVSR RO ; SwO<=Mj&&Sj (t)
MOVA R1; put 0 or 1 if this neuron has STDP or NOT
SHRN 1;
FREEZEC; if c¢=1 freeze and do STDP
MOVRS RO ; ACG=Mj&&Sj (t)
SHRN 1 ; Move spike to flag C
FREEZENC

of spike

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

113

MOVA R1 ; Synaptic parameter to ACC
SHRN 1; to delete the STDP flag
ADD R3;
MOVR R3;
UNFREEZE
UNFREEZE
MOVA R1; put O or 1 if this neuron has STDP or NOT
SHRN 1;
MOVRS RO; ACG=Mj&&Sj (t)
FREEZENC; if c¢=1 do STDP
MOVRS RO ; ACG=Mj&&Sj(t)
SHRN 1 ;. ACGx=Mj
MUL R5 ; ACG<=Mjx* Si
NOP
MOVA R1
MOVR R7 ; RT<=PARTIAI<= Mj*Si(t)!!
MOVRS RO ; ACG=Mj&&Sj (t)
BITCLR 0
LDALL R4 K_syn
MUL R4 ; ACCG<= MxKsyn=M(t+1)&Sj
; the stored value of Sj is don’t care, it will be took by lcl-mem
SWAPS RO ; ACGK=Mj&&Sj (t), SWhk= M«Ksyn= M(t+1)
MOVR R1;
SHRN 1
FREEZENC ; if there is spike
SWAPS ACC ; ACCGk= MxKsyn= M(t+1), SWOk=Mj&Sj(t) =Mj(t)
RST ACC ; replace M«xKsyn with 2xx11
INC
SHLN 7
SHLN 4 ; M=(2%2%%10) LESS INCISIVE STDP
SWAPS ACC ; ACCG<= Mj ,SWk= 2#x11= M(t+1)
MOVRS R4 ; R4<=Mi=SW4
MOVA R7 ; ACCG<= PARTIAL
SUB R4; ; ACCG<= PARTIAL <= Si(t)*Mj(t)—Sj(t)=Mi(t)
MOVR R7 ; R7<= PARTIAL
UNFREEZE
MOVA R1
MOVRS R1 ; Rl <= P&F
SWAPS RO ; ACGk= M(t+1), SWk= Mj&Sj,
STORESP ; MEMK=Mj&&Sj (t+1), MEMK=P
NOP
MOVA R1
SHRN 1
MOVR R1
MOVSR R1 ; Rl<=P
LOADSN ; ACG= L(15 downto 0), Rl<= L(31 downto 16)
SWAPS R7 ; SW&= PARTIAL
MOVR R7 ; R7 <= L(15 downto 0)
MOVRS ACC ; ACCG= Mj&Sj
SHRN 1
FREEZENC ; se ¢’ lo spike
MOVA R1 ; ACG<= L(31 downto 16)= [L]*2°10=20%2"10
MOVR R4
SHRN 5
SHRAN 3 ; ACG<=L=*2

LDALL R1 NO5 ; 1/20 STORE +1 in order to delete the freeze

MULS R1 ;
FREEZENC

ACCG= Lx4/20. 21532000 ps

114

213 INC

214 UNFREEZE

215 MOVRS R1; Ril<=P

216 MULS R1 ; Ri<=L*Px4/20

217 MOVA R1

218 SHRAN 2 ; LxPx1/20

219 ADD R3 ; ADD SUM OF WEIGHTS

220 MOVR R3 ; STORE SUM OF WEIGHTS

221 MOVA R4

222 MOVR R1 ; RI<=L(31 downto 16)

223 UNFREEZE

224 LDALL R4 K_.act ; o _________
225 MOVA R1 ; ACCG<= L(31 downto 16)

226 MUL R4;

227 MOVSR ACC ; SWk= MSW of MSW

228 MOVSR R1 ; SWi<= LSW of MSW

229 MOVA R7 ; ACK=LSW of L

230 MUL R4 ; ACCG= MSW of LSW), Rl unuseful
231 RST R4

232 MOVRS R1 ; RI1<=LSW(MSW)

233 ADDU R1;

234 FREEZENC ; overflow

235 SET R4 ; R4<=—1 1741006799 ps

236 UNFREEZE

237 MOVR R7 ; R7<= L(15 downto 0)(t+1)
238 MOVRS ACC ; ACC<= MSW(MSW)

239 SUB R4 ; ACGk= L(31 downto 16)(t+1)
240 MOVR R1 ; Rl<=Lx2"10=

241 SWAPS R7 ; R7<= PARTIAL, SW7&=L(15 downto 0)(t+1)
242 MOVA RT ; in this way ACGk= PARTIAL =M x 2710
243 ADD R1

244 MOVR Rl ; RI<=L(31 downto 16)(t+1)
245 SWAPS R7 ; R7<=L(15 downto 0)(t-+1)
246 MOVA R7

247 STORESP

248 UNFREEZE

249 RET

250 ;

251 .Mi

252 MOVRS R4 ; Ri4<= Mi

253 LDALL R7 MMAX

254 MOVA Rb5

255 MUL R7

256 MOVA R1

257 SHRAN 1; NOTE THAT MMAX is MiMAX%2 in order to be shifted
258 FREEZENZ

259 LDALL ACC K_syn

260 MUL R4

261 UNFREEZE

262 MOVR R4

263 MOVSR R4 ;SW&k= Mi

264 RET

265 ;

266 .GAUSS.NOISE ; Uses SW0, R2, R6 and R7

267 RANDON ;LFSR ON

268 RANDOFF ;LFSR OFF. Arbitrarily heres
269 LLFSR ; Noise seeds to ACC, R1, SRO, SRI1

270 ADD R1

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

322
323
324
325
326
327

115

SHRAN 1
MOVR R7
SWAPS RO
SWAPS R1
ADD R1
SHRAN 1
ADD R7
LDALL R7
MULS R7
FREEZENC
INC
UNFREEZE
MOVR R4
SWAPS R6
MOVA R6
SWAPS R6
LDALL R7
one
SUB R7
MOVA R4

)

NO001; ACC=OUTPUT
:NOISE IN ACC

;NOISE IN R4

REST POT; tipical value of resting potential

compare it with the value of the parameter.

FREEZEZ
LDALL R7 N5;

MUL R7
NOP
MOVA R1
SHRAN 1
UNFREEZE

MOVSR ACC ;TO STORE 1/2 THE NOISE

RET

.MEMBRANE POTENTIAL ; Uses RO,R4,R7

MOVA R2
MULS RO

;o vi2%2712

NOP ; Check if needed
; Shift ROR1 4 positions left

SHLN 4
MOVR R4
MOVA R1
SHRN 4
SHRAN 4
SHRAN 4
ADD R4

)

)

Shift Accumulator 274

; Move LS part (R1) to RO (2716)

; 2716/2712 = 274
Combine and obtain v°2/2712

LDALL R4 N0002 ; 0.0002%2°27 is in R4
§ v2%2°(—12)%0.0002%2°27/2°16 = 0.0002%v " 22" (—1)
NOP ; Check if needed

MULS R4

SHLN 1
MOVR R4
MOVA R1
SHRN 5
SHRAN 5
SHRAN 5
ADD R4
MOVR R7;
MOVA R2;
SHRAN 2;
ADD R2;
SHLAN 1
ADD R7

)

)

Shift Accumulator 271

; Move LS part (R1) to RO (2716)

; 2A16/2A15 =271

Combine and obtain 0.0002xv"2
ACK=Vinit

ACC<=0.25%Vinit ;
ACCG<=ACGC+Vinit =1.25% Vinit

to be compared with the actual

if =, it is excitatory

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

116

LDALL R4 N70; R4<=70

ADD R4:
MOVR R7
RST ACC
SUB R3;
SHRAN 1;
ADD R7;

ACC= u

ADD R2; ACC=ACCGHVinit

MOVR R2;

RET

)

Back to R2 where membrane potential is stored

.RECOVERY_UPDATE ;uses R3,R5,R6

MOVA R2;
SWAPS R5;
MULS R5
FREEZENC
INC
UNFREEZE
SUB R3

ACCG=Vinit

i ACG<=R5*ACC=Bx* Vinit

;ACCk= ACG-R3= ACGC-Uinit

REMEMBER: A is in R6

MULS R6;
FREEZENC
INC
UNFREEZE
ADD R3;
MOVR R3;

RET

3

ACCG<=A*ACC;

ACC=ACC+Uinit
Back to R3 where recovery value is stored

.SUM_NOISE_AND_Ws

MOVRS ACC
ADD R2
MOVR R2
SWAPS R3
MOVA R3
ADD R2;
MOVR R2;
SWAPS R3;

RET

)

:NOISE TO ACC
:ADD NOISE TO SIGNAL

;SYN. contribute

store membrane potential

.STORENEURON ;uses RO,R3 and Rl

MOVA R3
MOVR R1
MOVA R2

;move u from R3 to acc
;move u from ACC to Rl
; Move Vmem from R2 to ACC

READMPV NEUADDRO ; Address of real neuron + virt (valid also for non—virtual)

LOADBP
STORESP
NOP
LOADSN
NOP
STORESP
NOP
LOADSN
NOP
STORESP
NOP
LOADSN
MOVRS R4;
MOVA R4;

; SNRAM pointer to currently processed neuron
; Store u&Vmem to SNRAM

;store second row

;store third row

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

117

STORESP
RET

)
;
;
.MAIN

)

; Virtual operation init

LAYERV virtual_layers ; Init sequencer vlayers. It is 0 for non—

LDALL ACC, VLAYERS ; Load defined virtual layers to PE array
SPMOV 0 ; VIRT <= ACC

; Initial instructions
GOSUB RANDOM_INIT ; For noise initialization

.EXECLOOP ; Execution loop

LOOP virtual_layers ; Neuron loop for virtual operation
NOP ;to prevent pipeline error
GOSUB LOAD_NEURON
GOSUB DETECT_SPIKE
SWAPS R3 ;SYNAPSE Sum will be store IN R3
MOVA R5
SHRN 5
SHRN 5
MOVR R5; put 0 o 1 in R5 if there is a spike or not
READMPV SYN_ADDRO
LOADBP
LOOPV VO ;synaptic loop. Reads number of current—layer
NOP ;to prevent pipeline error
GOSUB SYNAPSE_CALC
ENDL
MOVA R3 ;move to acc synapse sum
SHRAN 1; save half the weight
MOVR R3 ;move to R3
SWAPS R3 ;SYNAPSE sum to SW3
GOSUB Mi
GOSUB GAUSS_NOISE
LOOP n_step
NOP
GOSUB MEMBRANE POTENTIAL ; Calculate membrane potential
GOSUB SUM_NOISE_AND_Ws
ENDL
GOSUB RECOVERY_UPDATE
GOSUB STORENEURON
RST R3;
MOVSR R3;
INCV
ENDL
.FINISH
NOP ;Empty pipeline wait NOPs
NOP
NOP
SPKDIS ; Distribute spikes
GOTO EXECLOOP ; Execution loop

sk 3k sk ok ok ok ok ok ok ok ok ok ok sk sk ok sk kk k kkk sk k ok k k. PROCEDURIES EIND sk sk s s 5 s 5 -k 5 ok o o o 5 % % % % % 3 kK kK ok ok

ok sk ok ok ok K ok sk ok ok ok ok ok sk ok ok ok ok k ko ok ok ok ok ok ok MATN PROGRAMME BEGIIN sk sk s sk sk sk sk sk 5k sk ok sk sk ok % ok ok ok ok % ok ok

virtual operation

synapses

[1]

Bibliography

M. Abeles et al. “Spatiotemporal firing patterns in the frontal cortex of behaving monkeys.” In:
Journal of Neurophysiology 70 (1993), pp. 1629-1638.

C. C. Bell et al. “Synaptic plasticity in a cerebellum-like structure depends on temporal order”.
In: Nature 387 (1997), pp. 278-281.

Hebb D. “The organization of behaviour”. In: (1949).

J.A. D’amour and R. C. Froemke. “Inhibitory and Excitatory Spike-Timing-Dependent Plastic-

ity in the Auditory Cortex”. In: Neuron 86.2 (2015), pp. 514-528. DOI: :10.1016/j .neuron.
2015.03.014..

Dorta, Zapata, and J. Madrenas. “AER-SRT: Scalable spike distribution by means of syn-
chronous serial ring topology address event representation”. In: Neurocomputing 171 (2016),
pp. 1684-1690.

W. Gerstner and W. M. Kistler. “Spiking neuron models: Single neurons, populations, plasticity.”
In: Cambridge University Press (2002).

G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data with neural net-
works.” In: science 313 (2006), pp. 504-507.

A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current and its
application to conduction and excitation in nerve.” In: The Journal of Physiology. 117 (1952),
pp- 500-544.

E. Izhikevich. “Simple model of spiking neurons.” In: IEEE Transactions on Neural Networks
14.6 (2003), pp. 1569-1572.

Iglesias J. et al. “Dynamics of Pruning in Simulated Large-Scale Spiking Neural Networks”. In:
Biosystems (2005).

M. Kang. “FPGA implementation of Gaussian-distributed pseudorandomnumber generator”.
In: Conf. on Digital Content, Multimedia (2010).

S. R. Kelso, A. H. Ganong, and T. H. Brown. “Hebbian synapses in hippocampus.” In: roc
NatlAcad Sci U S A 83 (1986), pp. 5326-5330.

Jesus L. Lobo et al. “Spiking Neural Networks and online learning: An overview and perspec-
tives”. In: Neural Networks 121 (2020), pp. 88-100.

W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity.”
In: The Bulletin of Mathematical Biophysics 5 (1943), pp. 115-133.

P. Roberts and C. Bell. “Spike timing dependent synaptic plasticity in biological systems”. In:
Biol. Cybern. 87 (2002), pp. 392-403.

118

119

A. Sripad et al. “SNAVA—A real-time multi-FPGA multi-model spiking neural network simu-
lation architecture”. In: Neural NEtworks 97 (2018), pp. 28-45.

Wikipedia contributors. Linear-feedback shift register — Wikipedia, The Free Encyclopedia. [On-
line; accessed 8-November-2020]. 2020. URL: https://en.wikipedia.org/w/index.php?title=
Linear-feedback_shift_register&oldid=986763170.

M. Zapata and J. Madrenas. “Unpublished material regarding HEENS architecture”. In: ().

Zapata and J. Madrenas. “Compact Associative Memory for AER Spike Decoding in FPGA-
Based Evolvable SNN Emulation”. In: Artificial Neural Networks and Machine Learning (2016).

Nan Zheng and Pinaki Mazumder. Learning in energy-efficient neuromorphic computing : algo-
rithm and architecture co-design. Wiley-IEEE Press, 2020. 1sSBN: 9781119507390.

Acknowledgments

At the end of this "long and winding road” it is time to look back for once and not let everything
go unnoticed, but let it be remembered. This thesis is the last official assignment of my university
career, and the only thing I can do is to say thank you to the people who left a lasting impression on
it.

First, I want to start from the end and to thank my supervisor at UPC Jordi: even with all the
limitations imposed by COVID, even if a project with these modality was a first time for both of us,
even though a virtual link, Jordi has been always ready and available for my every need, patient and
intellectually stimulating in every step of our project. Thank you, Jordi.

Thanks to the entire Polito for such a high level of education and thanks to my advisor Guido Masera.
Thanks to my friend Corrado, companion of thesis and of a missed adventure, thanks to Danilo, fel-
low of stupid things in quarantine, thanks to all the friends who shared the Turin experience and the
Cernaia nights with me, such as Luca, Giuseppe, Roberta, la casta Antonio, Roberta Marineo, Ilaria,
Antonella, Francesca, Paola.

Now that I am arrived at the end, it is time for the begin.

Grazie a Marco e Dario per tutto quello che ha significato per me conversare con loro per tutti questi
anni.

Grazie a Danieli, Roberto, Toto, Luke (De Luca) per aver condiviso tutto sin dai banchi di Unipa:
tutte le risate, le imitazioni, i soprannomi, le assurdita, le difficolta, per essere stati i migliori ”ingeg-
neri atipici” che avrei potuto desiderare. Rivivrei ogni singolo giorno passato insieme.

Grazie ai Bazinga tutti perche in qualche modo ci siete stati sempre e molti di voi si sono dovuti
sorbire tutto il mio pessimismo pre-esame, ogni volta poi smentito.

Grazie ai 12BBR per avermi fatto vivere due vite.

Grazie a mia cugina Chiara per I’entusiasmo.

Un grazie immenso a Viviana per aver condiviso tutto, aver sopportato molto piu di quanto fosse
lecito ed essere stata ogni singolo passo di questo cammino.

Un grazie finale alla mia famiglia tutta per avermi permesso di studiare ed avermi supportato sem-
pre, un grazie speciale a mia madre per essere la promotrice di questa ricerca per la felicita che e

I’apprendimento.

120

