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Abstract

Nowadays the continuous increase in the world energy consumption is bringing
to the attention of everyone the problem of sustainability, since this demand still
relies mainly on non-renewable energy sources. In this context, smart energy grids
are emerging, as they allow to better exploit the distributed energy resources
(DER), which are based instead on a renewable and thus more sustainable energy
production. The thesis points out the front-running vulnerabilities and proposes
prevention strategies to mitigate possible attacks in a blockchain-based trading
system for electricity in prosumer communities.

An investigation of the blockchain front-running literature is presented in order
to define the problem in the analysed project. A complete redesign of the smart
contract is performed to implement front-running prevention strategies and to
improve the performance in term of computational complexity. In addition, a new
auction management approach to include electricity storage capabilities together
with selling strategies is introduced to achieve a complete decentralised auction
system and better exploit blockchain properties.

The thesis demonstrates that the front-running problem has to be evaluated on
a case-by-case basis to propose custom solutions. In particular, the results prove
that tailored front-running prevention strategies do not affect the functioning and
the performance of the system.
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Chapter 1

Introduction

1.1 Smart grids framework

The meaning and the importance of prosumer communities cannot be fully under-
stood without considering the global picture of the framework in which this concept
was born. An interesting insight is given by the work of Espe et al [1], which
reviews the recent literature around the concept of prosumer community based
smart grids. They explain that nowadays the world energy demand is increasing at
an unprecedented rate, and it is mostly supplied by non-renewable energy sources,
which cause environmental damages. Therefore, an energy transition towards
renewable sources is happening. It is here that smart grids come into play, deriving
from the introduction of digital communication in the electricity grid, with the
purpose of supporting this transition.

Smart grids allow the bidirectional exchange of energy and information on the
grid, thus giving the chance for a better exploitation of the power produced by
small-scale generators such as the distributed energy resources (DER), in which
prosumers are involved.

According to [2], prosumers can be defined as households equipped with a
decentralised production unit (DPU) for electricity, which is connected to the grid;
this DPU can be a photovoltaic (PV) system or a micro wind turbine. Therefore,
not only they consume electricity, but they are also able to produce it. The grid is
exploited to reach the energy balance: since production and consumption energy
profiles have different values along the day, when the electricity production exceeds
the consumption, the energy surplus is exported to the grid; viceversa, when the
energy need cannot be covered by the local production, the electricity is drawn
from the grid.
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Introduction

In Europe, some legislation concerning the possibility to have prosumer commu-
nities can be found. In particular, the recast of the Renewable Energy Directive
(Directive (EU) 2018/2001 [3]) provides a definition of Renewable Energy Communi-
ties (RECs) as legal entities (Art. 2.16), aimed at achieving environmental, economic
or social benefits rather than financial profits. However, European countries have
different legal frameworks for decentralised renewable energy (RE) production, as
explored by the study of Campos et al. [4]. Among the nine EU countries under
analysis there is for example Italy; their research work about the Italian legal
framework shows that in Italy RE systems can be installed for self-generation, but
households cannot sell the energy they produce among themselves.

In this heterogeneous scenario, there is space to investigate the creation and
the management of prosumer communities, because they present many potential
advantages for the society, in addition to the higher exploitation of renewable
energy. For example, they could provide higher reliability of the electricity system,
allow to reduce the investments for the infrastructure in the distribution network
and bring higher social welfare through the economical competition.

1.2 Smart grids and blockchain

In the smart grids context, different technologies have been studied in order to
provide hardware and platforms to ease the spread of distributed energy production
from renewable energy sources.

This thesis takes into consideration a blockchain-based trading system for
electricity in prosumers communities. The real innovation of the project is the
utilisation of the blockchain technology, which offers a secure and decentralised way
of recording the transactions payments. In particular, self-sustainable communities
can be encouraged by the economic performances of a decentralised platform, where
prosumers can decide for their own consumption and generation with selling and
purchasing strategies.

Blockchain is an innovative and powerful technology that can support the
development of numerous decentralised applications, but there is the possibility to
encounter obstacles. The thesis takes into account the blockchain front-running
problem with respect to the analysed system.
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1.3 Blockchain and front-running
Front-running is the illegal practice of taking advantage of non-public market
information regarding upcoming transactions and trades. The person who commits
a front-running activity benefits from a privileged position along the transmission
of information, in financial or non-financial systems.

Historically, traders might become aware of an upcoming large purchase by
overhearing the negotiation between the broker and their client and then try to beat
the broker’s speed to buy first. Because of the large purchase, the front-runner takes
advantage of the temporarily reduced supply of stock to make profit. Moreover, a
broker can front-run their own clients by purchasing stocks for themselves before
placing the offer of the client.

The first appearance of the practice of front-running was on the Chicago Board
Options Exchange (CBOE), the world’s first and largest organised stock options
exchange. In 1977, the Chicago Board Options Exchange defined front-running as:
“The practice of effecting an options transaction based upon non-public information
regarding an impending block transaction in the underlying stock, in order to
obtain a profit when the options market adjusts to the price at which the block
trades [5]. In jurisdictions with established securities regulation, like CBOE, the
front-running procedure is illegal and can be identified.

In a decentralised system, like blockchain, it is very difficult to identify and
punish the front-runner. Blockchain technology is used to build decentralised
applications (DApps), or smart contracts, in which each function call to the
DApp consists in a transaction processed by a decentralised network. Moreover,
blockchain introduces a new step in the process of finalising transactions called
mining. Miners have the duty to select the transactions, put them into a valid
block and incorporate it in the blockchain. Therefore, miners are in the best
position to conduct a front-running attack, since they observe the transaction
after it has been broadcast but before it is finalised. Malicious miners can at-
tempt to have their own transaction confirmed before or instead of the observed one.

Front-runners can attack all kind of DApp, but it is not necessarily beneficial. It
depends on the logic and mitigations that might be implemented in the DApp itself.
Accordingly, DApps need to be studied individually or in categories. In this thesis,
the front-running vulnerabilities of a blockchain-based trading system for electricity
in prosumers communities are analysed and the possible solutions are provided. In
particular, different categories of techniques to eliminate or mitigate front-running
are discussed, including transaction sequencing, cryptographic techniques like
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commit/reveal, and redesigning the functioning of the DApp to provide the same
utility while removing time dependencies.

1.4 Goal of the thesis
This thesis fits into the context of DER and RECs and aims at investigating the
front-running vulnerabilities of a blockchain-based trading system to allow electric-
ity transactions in a community of energy prosumers and consumers. Moreover, the
purpose is to completely redesign the system to implement front-running mitigation,
add functionalities and enhance the overall performances.

The system is composed by different software actors that communicate to each
others to offer a platform where the members of a community can register and
exchange electricity. The use of the blockchain technology offers a secure and
decentralised way of recording the transactions payments among prosumers. In
particular, after the registration, users can sell and buy electricity, according to
their electricity balance, trough an auction-based procedure.

The thesis aims to investigate the front-running vulnerabilities of the considered
system. It is designed using an hybrid approach to integrate the blockchain
advantages in a smart grids environment, which needs a strong relation with
physical supports. Possible front-running mitigations are implemented, together
with the introduction of the possibility to handle multiple contemporary actions for
each user for different time-steps. Moreover, a redesign of the auction’s life-cycle is
performed in order to fully automatise the selection of the auction winner and to
reduce the smart contract’s function calls expenses.
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Chapter 2

Front-running and
Blockchain

2.1 Blockchain

2.1.1 Blockchain introduction
The blockchain, as its name suggests, is a chain of blocks which contains information.
This technique has firstly been used by Satoshi Nakatomo in 2008 to create the
Bitcoin cryptocurrency [6]. The blockchain is defined as a distributed ledger based
on a peer-to-peer network in which everyone is allowed to participate. The most
interesting property is security, in fact once the data are registered inside the
blockchain, it is almost impossible to modify this information.

2.1.2 Cryptography
The blockchain systems extensively use cryptography techniques to ensure the
ledgers’ integrity. The integrity in this field consists in the ability to identify
possible mishandling or compromise of the information stored in the blockchain.
This property is crucial in public systems in which there is no predefined trust.
Integrity is fundamental in the private blockchain too, since the authenticated
nodes could also act in a wicked way [7].

The main function of the cryptography technique is to obfuscate a message
and make it unintelligible to unintended readers. The sender uses an encryption
algorithm, in conjunction with an encryption key, to encrypt the plain message
before sending it. The receiver, once they receive the encrypted message, uses the
correspondent decryption algorithm, combined with a decryption key, to decrypt
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the message and make it readable. In this way, who does not own both the keys
cannot read the data. There are two kinds of cryptography which differ by the
type of the employed keys:

• the symmetric cryptography, in which the two keys coincide, so there is only
one key used for both encrypting and decrypting the message;

• the asymmetric cryptography, a very complex technique in which the encryp-
tion key differs from the decryption key, but the two keys are generated in
such a way that they can only work in pairs: the information encrypted by the
first can only be decrypted by the second and vice-versa. Going into details,
each user owns two keys: a public key to be spread as much as possible and a
private key to be kept secret. To prove the authenticity of the message, it has
to be encrypted with the private key of the author; in this way the receiver
can decrypt the message with the sender’s public key. On the other hand, to
grant the confidentiality, the sender encrypts the message with the public key
of the receiver, in this way only the addressee can decrypt the message with
their private key, as is described in figure 2.1.

Figure 2.1: Asymmetric cryptography [8].

Since cryptography prevents unintended readers to have access to the message
but does not grant the integrity, another step is needed with respect to the normal
asymmetric one: the digest. It contains a data summary obtained through hash
algorithms and it consists of a string which uniquely identifies that data. The hash
algorithms have two main functions:

• from a string with arbitrary length they return a string with fixed length;

• they are irreversible functions, so from the result string it is impossible to
retrieve the input string with arbitrary length.

The hash function used in the blockchain is the SHA256, which has the property
of returning as a result an alphanumeric string with fixed length of 64 characters.
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It is called SHA256 because it actually finds a binary number composed of 256 bits
which results to be a string of 64 characters when it is transformed in hexadecimal
format.

2.1.3 Block structure
In the blockchain, each block is uniquely identified by a hash generated by the
SHA256 algorithm. The hash is calculated during the block creation and this string
identifies the block itself and its content, including the hash of the previous block.

A block is a data structure composed by an header and a list of transactions.
The header of the block consists of different fields: the previous block’s hash, the
timestamp, the Merkle tree, the difficulty and the nonce [9].

In the Merkle tree all the transactions contained in the block are present. This
tree is obtained in the following way: transactions are paired (i.e., groups of two
transactions each are formed) and the SHA256 algorithm is applied twice, in order
to create a single hash representing each pair; this operation is applied recursively,
until a unique hash for all the block, defined as the Merkle Root, is obtained.

It is possible to consider, as trivial example, a block with only four transactions:
the Merkle tree structure is presented in figure 2.2. The Merkle tree is always
binary and, if the transactions are odd, the last one is duplicated. In the end it
does not matter how many transactions are present in the block, as they are always
summarised in a 32-bytes hash.

2.1.4 Creation of a block
The peer-to-peer nodes are responsible for building a block and they are defined as
miners; they validate the new transactions and register them on the distributed
ledger. Mining is the mechanism that makes the blockchain secure and decentralised.

Miners compete in order to solve a computationally difficult mathematical prob-
lem based on the hash algorithm. The solution is called Proof-Of-Work. This is the
demonstration that the miner has spent a large amount of time and computational
and energetic resources (therefore economic ones, too). Once a block is solved, the
contained transactions can be considered confirmed and so the involved coins can
be spent.
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Figure 2.2: Merkle tree of a block containing four transactions [8].

When the miners solve the mathematical problem, they receive a prize that can
consist of either new coins or the fees contained in the transactions.

• In the first case, every time a new block is created by a miner, the system
gives them a reward which consists of a certain amount of crypto-currency
created from scratch. The process of the creation of the new amount of coins
is called mining because, like in a mine, the resources are destined to decrease
over time. In Bitcoin, for example, this amount decreases approximately every
four years.

• In the second case, the miner who wins the competition against the other nodes,
and so the first to publish the solution, receives the fee of the transactions
contained in the block. The creation of the new amount of crypto-currency is
meant to decrease; on the other hand, fees are destined to increase over time.

While a miner is waiting to find the Proof-Of-Work of the current block, they are
also listening to the network for new pending transactions. These new transactions
are added to the memory pool, or transaction pool, where they wait to be included
in a new block and validated.

When a miner is informed that the current block has a valid Proof-Of-Work,
they begin to build a candidate block by assembling the pending transactions in
the transaction pool, selecting the ones with greater priority. The block is defined
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as a candidate because it does not own a valid Proof-Of-Work yet.

The first thing that a miner does is to create a coinbase transaction which
contains the reward of the mined block. This transaction is different from all the
others because the coins are created from scratch. The second step is to create the
header, and in order to do that a miner has to compute the previous block’s hash.
Then, the Merkle Root is obtained as the summary of the transaction contained in
the block and so by the Merkle tree. The nodes also add the timestamp and a field
named difficulty, which represents the complexity of the mathematical problem
that has to be solved in order to insert the candidate block into the blockchain.
This parameter is given by the system and it varies over the time, it is designed to
keep approximately constant the average time needed to add a block to the chain.
The last field is the nonce, which consists of a string of data that changes randomly
over time until the hash of current building block begins with the number of zeros
contained in the difficulty parameters. When the right number of zeros is found,
the block can be successfully inserted in the blockchain, as represented in figure
2.3 [9].

Figure 2.3: New block addition to the blockchain [8].

2.2 Ethereum and DApp
2.2.1 Ethereum introduction
Blockchain technology is constant evolving and one of the latest developments is
the creation of the smart contracts. Smart contracts are simple programs saved on
the blockchain and they can be used to automatically exchange crypto-currencies
under predefined constraints.

The most widely used blockchain that supports smart contract is Ethereum.
Ethereum, created in 2013 by Vitalik Buterin, is designed to enable the smart
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contract implementation in a specified programming language called Solidity, which
uses a JavaScript-like syntax. The Ethereum blockchain is very close to the
previously described one, the only difference is the possibility to create operations
with any level of complexity thanks to the Patricia-Merkle tree. In particular,
Patricia-Merkle tree consists of three different trees for three kind of objects [10]:

• Transaction tree which is equivalent to the above described Merkle tree;

• Receipts tree containing data related to the result of each transaction;

• State tree representing the current state of the blockchain .

Each user in the blockchain is uniquely identified by the address of the respective
wallet. The wallet allow the user to deploy smart contracts and store crypto-
currencies, while the address, used to send and receive transactions, consists in a
unique series of letters and numbers.

2.2.2 Gas
In the Ethereum blockchain, the unit of measurement of operation’s computational
complexity is called "Gas". In particular, a Gas quantity is associated to each
transaction together with the gasPrice, which corresponds to the amount of Ether
(Ethereum crypto-currency) that the sender will pay to the miner for the performed
computational effort. The Gas functions are mainly two:

• guarantee a prize for the miners which execute the code and maintain secure
the blockchain;

• ensure that the transaction’s execution will not overcome the estimated time
limiting the founds loss in case of encountered errors.

It is important to notice that Gas is a unit of measurement of computational
complexity of a transaction and not a unit of measurement of the code length.
The code written in Solidity can be arbitrarily complex, short algorithms can
generate large amount of calculations, while longer algorithms can generate less
computational effort [10].

2.2.3 Smart contract
The key elements of Ethereum are the smart contracts, which can contain any kind
of algorithm that will be executed by each node during the creation of a new block.
Moreover, smart contracts are able to receive and send transactions between each
others.
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Each smart contract functioning is uniquely identified by an address on the
blockchain, which is assigned by a node special transaction during the contract
creation. Subsequently to the initial transaction, the smart contract will become
permanently part of the blockchain and its address will never be modified. In order
to call a method on the smart contract, a node has to send a transaction to the
address of the smart contract specifying the method and the input parameters.
The called method will be executed by the smart contract during the creation of
the new block. Each method can return values or store data on the blockchain
state [11].

2.2.4 DApps
The goal of Ethereum is to revolutionise Internet functioning, for the first time
is is possible to develop information systems without the need of third parties.
The classical network is replaced with a decentralised network able to support
anyone utilisation of decentralised web applications (DApp). DApps are based
on the smart contracts, which are impossible to be modified or manipulated and
autonomously work without intermediate entities as represented in figure 2.4.

Figure 2.4: Logic scheme of a DApp [8].

2.3 Advantages and disadvantages
The blockchain offers a lot of opportunities and applications in a continuously
increasing number of fields, but it is not always the best choice. For this reason,
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it is important to evaluate the advantages and the disadvantages, which can be
summarised as follows [11].

• Advantages:

– implementation of a distributed database maintained by nodes in which
each of them has access to the data and sees every transaction. This kind
of information storage prevents the loss of data in case of unexpected
events;

– thanks to the cryptographic algorithms, the trust between the parties is
granted without intermediaries;

– it can potentially become a global database in which everyone can write
and read;

– the transparency is granted. Everyone can read not only the final state of
the transactions, but also the complete states’ history;

– immutability, since data cannot be modified or deleted;
– decentralization, as the blockchain can exist without a central authority
and it cannot be manipulated, censured or interrupted.

12
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• Disadvantages:

– it is characterised by a high energy consumption for each transaction.
In Bitcoin, for example, a transaction can cost 6 dollars considering the
energy consumed by each node;

– the mining operation needs very expensive hardware and the majority of
the computational power is wasted;

– the local copy of the entire blockchain on each node needs a large amount
of storage capability;

– the addition of new information is slow. In Bitcoin, for example, the
creation of a block can take from 10 to 60 minutes. In Ethereum it takes
15 seconds;

– immutability and transparency can damage the privacy and the reputation
of the users;

– smart contracts cannot refer to external libraries, therefore the data needed
by the smart contract has to be inserted in advance in the blockchain;

– smart contracts can contain errors in the code, usually called bugs.

Taking into consideration these advantages and disadvantages, it can be under-
stood why the blockchain technology is suitable for the purposes of this project. In
particular, since the framework of distributed energy production is considered, also
the data regarding the energy transactions should be distributed, without the need
of a trusted third party, and this can be achieved through the use of the blockchain.
Secondly, the possibility of having a programmable blockchain allows to define
smart contracts to regulate these energy transactions. In addition, the blockchain
also offers a secure environment for the bilateral negotiations among prosumers.

2.4 Front-running in Blockchain

2.4.1 Taxonomy of front-running attacks
Font-running attacks on blockchain can be often reduced to one of a few basic
templates. The common circumstances could be that Alice is trying to invoke
a function on a contract that is in a particular state, and Mallory will try to
invoke her own function call on the same contract, in the same state, before Alice.
Focusing on what the malicious subject is trying to accomplish, it is possible to
identify three main cases [12]:
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• The first case is the displacement attack, in which it is not important to the
adversary for Alice’s function call to run after Mallory runs her function.
Alice’s transaction can have no meaningful effect or be orphaned. For example,
Alice trying to register a domain name and Mallory register it first or, in an
auction-based system, Alice trying to submit a bid in an auction and Mallory
submit it first.

• In the second type of attack, the insertion attack, Mallory runs her function,
the state of the contract change and the adversary needs that Alice’s original
function run on the modified state. In order to better explain the situation, it
is possible to imagine that if Alice places a purchase order on a blockchain
asset at a higher price than the best offer, Mallory will insert two transactions:
she will purchase at the best offer price and then offer the same asset for sale
at Alice’s slightly higher purchase price. If Alice’s transaction is then run
after, Mallory will profit the price difference without even hold the asset.

• In the last case, the suppression attack, after Mallory runs her function,
she tries to delay Alice from running her function. After the delay, she is
indifferent to whether Alice’s function runs or not. Alice’s transaction can
have no meaningful effect or be orphaned.

Each of these attacks has two variants, asymmetric and bulk. The attack is defined
asymmetric if Alice and Mallory are performing different operations. Instead, the
attack is called bulk if Mallory is trying to run a large set of functions for a limited
set of assets offered on a blockchain.

2.4.2 Cases of front-running in DApps
In order to better understand the effect that a front-running vulnerability can have,
it is important to give some examples from the most popular DApps. The authors of
"Transparent Dishonesty: Front-running Attacks on Blockchain." [12] categorised the
top 25 DApps from DAppradar.com in September 2018 into four principal use cases.

The fist category of DApp, Markets and Exchanges, are financial exchanges for
trading ether and Ethereum-based tokens. Two different situation are analysed un-
der the front-running vulnerability aspects. The fist considered DApp is a partially
centralised exchange called EtherDelta. As in traditional financial markets, one
method to manipulate the spot price of an asset, called "taker’s griefing attack",
consists in flooding the market with orders and cancel them when there are filling
orders. In EtherDelta, to prevent taker’s griefing attacks, the user needs to send
an Ethereum transaction to cancel each of his orders. In this particular case, a
front-runner can send a fill order transaction with higher gasPrice to get in front
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of the cancellation order and take the order before it is canceled. The described
attack is known as "cancellation grief" and follows the asymmetric displacement
template.
Another example of financial exchange DApps is Bancor. Bancor provides contin-
uous liquidity for digital assets without relying on brokers to match buyers with
sellers. In Ethereum blockchain, as described in section 2.2, when transactions are
broadcast to the network, they wait to be mined in a pending transaction pool
known as mempool. Since Bancor is based on Ethereum, the DApp transactions
are visible to everyone for some moments before being inserted in a block, leaving
Bancor vulnerable to front-running. Attackers can take advantage of the pending
time and gain profits by buying before the order and fill the original order with
slightly higher price.

The second use case of DApp is crypto-collectables. In particular, Cryptokitties
is the most popular DApp in the crypto-collectables category and third most active
overall. The DApp is designed around kitties, each of them is a cartoon kitten with a
set of unique features that define the rarity of the kitten itself. Kitties can be bought
and sold through auctions on the Ethereum blockchain. Moreover, kitties can breed
and give birth. When the two parents breed, the Cryptokitties smart contract
define from which future block the pregnancy can be completed. From that specific
moment, anyone can complete the pregnancy by calling giveBirth() method
and collect a reward in cryptocurrency. The attacker can perform a displacement
attack to front-run the giveBirth() function call in order to obtain financial profit.

The third identified category of DApp is Gambling Services. Fomo3D is the most
popular game on Ethereum in the sample taken in consideration by [12]. The goal
of the game is to be the last user to have purchased a ticket when a timer goes to
zero, anyone can buy a ticket and each purchase increases the timer by 30 seconds.
The popular opinion was that the game would never end but on August 22, 2018,
the first round of the game ended. The winner gained 10,469 Ether equivalent to
2.1M USD at the time. Deep blockchain analyses indicate that a very peculiar
winning strategy was implemented to displace any new ticket purchases that would
reset the counter. In particular, the winner seems to have started by deploying a
lot of DApps unrelated to the game that consume high amount gas. Then, the
winner placed multiple high gasPrice transactions to their DApps after they both 1
ticket at 3 minutes before the timer of the game reached zero. These transactions
congested the network and, since they had very high gasPrice, miners prioritised
them ahead of any new ticket purchases in Fomo3D. This attack is classified as a
suppression attack in the taxonomy presented in 2.4.1. The key difference between
the suppression attack and the displacement attack is that the front-runner, as in
the Fomo3D case, does not care at all about the execution of their transactions.
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The only goal of the attacker transactions is to delay all the others transaction of
at least 3 minutes.

The final use case is Name Services, which decentralise the web domain reg-
istration. Ethereum Name Service (ENS) is the most active naming service on
Ethereum. New .eth domain names are sold in a auction-based system, where
the startAuctionsAndBid() method leaks the hash of the domain and the initial
bid amount in the auction. In particular, users can bid for 3 days before the
2-day reveal phase begins, in which all bidders (winners and losers) must send a
transaction to reveal their bids for a specific domain or sacrifice their bid amount.
It is important to notice that if two user bid the same amount, the first to reveal
wins it. The attacker, using the leaked information, can steal the domain name
and win the auction with the same price of the original bidder by revealing it first.

2.4.3 Front-running prevention strategies
In the same way as front-running attacks strongly depends on the DApp imple-
mentation also the front-running mitigations must be investigated for each specific
DApp. In the different prevention strategies, it is possible to highlight common
patterns and classify them in three main categories: Transaction Sequencing, Con-
fidentiality and Design Practices [12].

The first category, Transaction Sequencing, is strictly related to the blockchain
on which the DApp is designed. The idea is to give a sequence to the transactions
to force an order during the mining process. Transaction priority is something that
depends on the implementation of the blockchain itself. For example, Ethereum
pending transactions are stored in the pools and miners draw from them when
forming blocks. As the term "pool" implies, there is no intrinsic order to how
transactions are drawn and miners are free to sequence them arbitrarily. Min-
ers can sequence transaction based on their personal preference. In most of the
case, miners, to maximize their profit, order the transactions with respect to their
gasPrice.
Force a transaction sequencing in a distributed network is generally not possible.
Because pending transactions can reach different nodes in a different order. The
solution could be to assign sequential number to transactions relying on a third
trusted party, but it is contrary to blockchain’s distributed trust. Although, it is
possible in the smart contract implementation, to design functions which accept
transactions that specify the current state of the contract as the only state to
execute on. In this type of implementation, transactions themselves enforce an
order over an existing blockchain.
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In the second category, Confidentiality, the mitigations are focused on techniques
to increase confidentiality and anonymity in DApps. In blockchains, all transactions
are public and, by extending these confidentiality protections, the attacker will not
know the transaction they are front-running. In particular, a DApp interaction
includes the following components: the identity of the sender, the address of the
contract the function is being invoked on, the name of the function being invoked,
the code of the DApp, the current state of the DApp and the parameters supplied
to the function. The applicability of confidentiality techniques must be evaluated
on a case-by-case basis in order to limit the public available information.
The commit/reveal approach, together with sequencing, can be integrated in smart
contract to protect the function call and the respective parameters. Once the DApp
receive the function call and the sequence is established, the confidentiality is lifted
and the function can only be executed in the order it was enqueued. One way
to implement this strategy is to evaluate and send the cryptographic hash of the
parameter with a random nonce to the smart contract. Then, once the sequencing
is performed, reveal the original parameter and nonce to the smart contract which
can verify the correctness of the previous commitment. It is important to notice
that it is a two-way communication approach that results in an increased gas to
pay, because of the two transactions needed. Moreover, aborting after the first
round could be an issue for the smart contract execution.

The last approach to mitigate front-running is called Design Practices and
assumes that front-running is unpreventable, therefore the only way to prevent it
is a redesign of DApp’s functionalities to remove any benefit from it. For example,
a method to discourage attackers can be to reduce time-dependency from the DApp.

It is important to notice, that each DApp and each smart contract must be
studied individually, in order to highlight specific font-running vulnerabilities
and possible mitigations. The purpose of the thesis is to analyse the case of a
blockchain-based trading system for electricity in prosumers communities and,
if needed, implement front-running protection strategies without affecting the
predefined requirements of the system.
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Chapter 3

Blockchain-based trading
system for electricity in
prosumers communities

3.1 System composition
3.1.1 System overview
In figure 3.1 it is possible to see how the system is organised in terms of actors and
their communication.
The core of the system is the web application, which behaves as a bonding element
between the prosumer community and the rest of the software actors, as described
in section 3.1.5. It is important to underline that each member of the community
interacts with the web platform in two ways:

• human-machine interaction. The user utilises the web application from their
computer to make energy and money-related decisions;

• smart meter-platform interaction. The user’s smart meter periodically sends
their energy balance to the system.

The web application also handles the majority of the data present in the system.
Personal information of the users are stored in a MongoDB collection, while the
smart contract is in charge of gathering data related to the decentralised monetary
transactions, as written in section 3.1.3. The system also needs to use an already
existing electricity grid, that is simulated using MatPower, as described in section
3.1.4. To this purpose, a Python web server is implemented to act as an interface
between the just mentioned MatPower simulation (implemented using MATLAB
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Figure 3.1: System overview: actors and communications.

language) and the system itself.

Prosumers community identify a group of households or micro-industrial com-
munity. From the electricity grid point of view, each user is identified by their
smart meter which is responsible to records information such as consumption and
production of electric energy. Smart meters communicate the information to the
consumer for greater clarity of consumption behavior, and electricity suppliers for
system monitoring and customer billing. In the implemented system, the smart
meter corresponds to a Python script implementing a RESTful web service and a
basic energy balance evaluation.

3.1.2 Key technologies
The key technologies that have been used in the project and the corresponding
descriptions can be summarised in the following list.

• Blockchain technology is used to record monetary transactions among the
users, and a smart contract developed on top of it serves as a regulator, as
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will be explained in section 3.1.3. In particular:

– Ethereum blockchain has been chosen among the different blockchain
environments, for the reasons described in section 2.2.

– MetaMask is a browser extension for Google Chrome, which can be found
at [13]. It provides each user with a wallet address, corresponding to
an Ethereum wallet, which contains the user’s Ethers, i.e. Ethereum’s
cryptocurrency. MetaMask manages wallets automatically; users only
have to create a password to access their account, and they can share
the public key that they are given, if they want to receive Ethers from
someone. Moreover, from Metamask the user can decide also to connect
to the main Ethereum blockchain or to other networks.

– During the development phase of the smart contract, it can be useful to
work on a local blockchain, instead of the real one, in order to run tests
without losing real Ethers. Ganache is a tool included in Truffle Suite
[14] and it is used for this purpose. It provides a local blockchain with up
to 100 fake accounts, which can be easily imported in Metamask, so that
they can interact with the web application of this project.

– Remix Integrated Development Environment (IDE) is an online tool where
it is possible to build Ethereum smart contracts with Solidity language.
It has been exploited to deploy the smart contract on Ganache virtual
blockchain, test all its functions and debug the corresponding transactions,
to check that the execution was performing as expected.

• The power flow simulation is used to check the feasibility of the electricity
transactions derived by the bilateral negotiations among users. It comprises
three main components:

– MATLAB Engine API for Python, which provides a Python package
named matlab that allows to call MATLAB functions directly from Python
scripts [15].

– MatPower, which is a MATLAB package for solving power flow and
optimal power flow problems [16].

– CherryPy, which is an object-oriented web framework, that allows to
implement HTTP servers in Python [17].

• The user interface chosen for the system is a web application implemented
following the MERN stack design, which consists of four main components:

– MongoDB is a document-oriented database which stores data in JSON
documents to make them flexible [18].
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– Express is a Node.js framework which provides a robust set of features
and HTTP methods for the web application [19].

– React is a JavaScript library to build components-based user interfaces
[20].

– Node is the event-driven JavaScript runtime environment on which the
web application is built [21].

3.1.3 Smart contract
The system presented in this thesis allows the users to exchange energy and com-
plete the corresponding payments using cryptocurrency, directly on the platform.
In order to regulate the money transactions, a smart contract is needed. The
smart contract that is developed on Ethereum blockchain make use of Solidity
as their programming language. This allows to directly manage payments and
accounts, without using third-party libraries [22]. A smart contract is compiled
and run on the Ethereum Virtual Machine (EVM), namely on top of the blockchain.

The choice of Ethereum as the blockchain where to implement the smart con-
tract for this project has not been dictated only by its suitability for decentralised
application development. One important aspect is also that Ethereum is the
most popular blockchain, so it has more nodes participating to the network and
it is more difficult for a group of malicious users to gain enough CPU power
to attack the blockchain. Moreover, Ethereum results more appealing than the
other blockchains because it has the lowest energy consumption due to the mining
process [23], which is an important feature for a project of this kind, inserted
in a sustainability perspective. In addition, the speed at which transactions are
recorded on Ethereum blockchain is higher, since 15 seconds are required to cre-
ate a block, while from 10 to 60 minutes would be needed for Bitcoin blockchain [11].

The smart contract (shown in appendix A) that has been implemented for this
project has the following methods:

• newUser function is called when a user registers on the web application, the
smart contract also registers them and keeps memory of the association of the
user’s smart meter ID with the user’s wallet address;

• createAuction method is implemented to handle the situation of an already
registered user who wants to sell electricity. In particular, to create a new
auction on the smart contract and make it available on the market, the user
has to specify the selling strategy and the base price;
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• placeBid can be used by other users to place bids in the specified auction by
sending the offer to the smart contract itself. If transaction value is be grater
than the current best one, the money of the bid is transferred to the smart
contract and the previous owner of the best offer is refunded by the smart
contract itself. This makes sure that the bidders actually pay the money that
they offer;

• closeAuction is called by the owner of the auction (the seller) to close the
specified auction, the method establishes the winner based on the strategy
defined during the creation of the auction and the sellers get their money from
the smart contract.

3.1.4 MatPower
The energy transactions that take place in the prosumers community are the
outcome of the bilateral negotiations among the users. In order to manage the
power flows inside the system and check the feasibility of the electricity exchanges
among prosumers, MatPower has been employed as simulation tool. MatPower is
an open-source power system simulation package of MATLAB for solving AC and
DC power flow and optimal power flow (OPF) problems [24].

The input file of a MatPower simulation is called MatPower case and consists
of a MATLAB M-file or MAT-file which returns a single MATLAB struct [16]. In
particular, a case is used to model a real power system, where each node of the
grid corresponds to a so called bus. In this thesis, each bus has been assigned to
one user of the community. Moreover, MatPower cases are identified by a number,
that defines the number of buses in the considered distribution network. Each case
contains a set of four matrices:

• bus data, in which each bus of the system is defined as load, generator or slack
bus1 by a specific type value (respectively 1,2 and 3). Moreover, this matrix
also specifies the real and reactive power demand of the buses;

• generator data, that specifies for each generator of the network the amount of
real and reactive power produced and the minimum and maximum values of
production;

• branch data, in which both physical characteristics of the lines, such as
reactance or resistance, and the branch flow limits are specified;

1The slack bus is used to guarantee the energy balance in the distribution network, by
compensating the system losses.
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• generator cost data, that defines the costs for active and reactive power
produced by the generators of the system.

In this work, a predefined case has been considered (predefined MatPower case:
case9 ) and, in order to adapt its structure to the features and purpose of this
power system simulation, some modifications have been made. In detail, the first
part of this customisation process consisted in setting to zero all the loads and the
generators present in the original case. Moreover, the slack bus that is used in
the simulation to model the Italian electricity provider has been set as a generator
with almost infinite power. In addition, flow constraints on the distribution lines
have been adapted to the amount of electricity exchanged among the system’s users.

As already presented in section 3.1.2, the power flow simulation has been per-
formed using MatPower, the MATLAB engine API for Python and the CherryPy
library. In the second part of this customisation process, a RESTful web server has
been implemented using CherryPy in order to put MatPower in communication
with the other components of the system, such as the web application and the
Python simulation. Moreover, the MATLAB Engine API has been employed to
run MatPower functions directly from Python. Then, the chosen case has been
customised using data coming from the external environment.

In MatPower the DC power flow is calculated using Newton-Raphson method
through the built-in function runDCpf. Once performed the simulation, the results
are packaged into a MATLAB struct and pretty-printed to the screen. Figure
3.2 shows the results of a MatPower DC power flow simulation and the system
summary, which specifies the number of generators (prosumers), the number of
loads (consumers) and the total power generated in the system. The bus data,
instead, displays in a more intuitive way the amount of electricity sold or purchased
by each bus (or user) of the community.

Then, in order to check the feasibility of the power transactions derived from
the bilateral negotiations among users, it is necessary to verify that the branch
flow constraints are not violated. In particular, the amount of power flowing on
each electrical line of the system must not exceed the physical limits of the line
itself, thus ensuring a proper operation of the entire distribution network. To this
purpose, at the end of each DC power flow simulation a feasibility check on each line
is performed and a boolean result (True if feasible, False if not) is returned to the
external environment using REST. It should also be mentioned that a MatPower
simulation is performed when a user place a bid, and the transaction is confirmed
only if the feasibility check is positive.
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(a) Power system summary. (b) Bus data.

Figure 3.2: DC Power flow results.

3.1.5 Web Application
The interaction between the user and the system is implemented through a web
application that follows the MERN stack design. Data are mainly stored in a
MongoDB database, but since the real innovation of this project is the utilisation
of the blockchain, there is the need of an interaction between the web application
and the smart contract described in section 3.1.3. This kind of communication is
enabled by MetaMask, which is a browser extension that allows the access to the
Ethereum enabled distributed applications by injecting the Ethereum web3 API
in every website implemented in a JavaScript context. In this project MetaMask
is used to manage the user wallet and their transactions, in fact, to let the web
application work properly, the user has to to login in this particular extension.

In order to match the project purpose there is the need to store some personal
information related to power grid. In this way the web application can directly
communicate with the smart meter to receive the power balance. Moreover, part of
these data are transmitted to the MatPower server during the place bid procedure
in order to validate the offer. This implies that the web application cannot be a
fully decentralised application (DApp). A central trusted authority for the grid
point of view is needed to store these sensible data in a secure database. The
main advantage of this hybrid solution is to grant both the economical transaction
decentralization and the necessary interaction with the grid.

Before starting to use the web application, the user has to complete the regis-
tration phase, which consists of the two steps showed in figure 3.3:

1. fill in the registration form, which is presented in two slightly different versions
(one for prosumers and one for simple consumers). In this project, the typology
of the user is identified by the last number of their smart meter ID, which
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is 0 for consumers and 1 for prosumers. When a user attempts to register
themselves as a prosumer, the energy source of their production is also needed
(wind or sun);

2. confirm the registration transaction to the smart contract trough the MetaMask
pop-up.

The personal information is stored in a MongoDB database using the smart
meter ID as a unique identifier. Thanks to this auxiliary database, in the smart
contract only the wallet address and smart meter ID are collected. Since the
blockchain is public, in this way the privacy requirement can be ensured.

Figure 3.3: Prosumer registration into the web application.

After that the transaction has been confirmed, the user can access the func-
tionality and the data available on the web application. The front-end showed in
figure 3.4 consists of the app bar at the top (which contains user information) and
of a layout composed by three tabs: Market, Offers and Transactions. Focusing
on the Market, it is possible to identify the representation of the market prices
history grouped by source and the Auctions section containing the list of the current
available energy auctions. The Offers tab contains all the received and placed
offers, while the Transactions tab shows the personal transactions history.

The interaction between the user and the web application can be summarised
in three phases corresponding to the auction life-cycle:
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Figure 3.4: Prosumer home page.

1. Selling phase. The first phase begin with the sell button in the Market tab.
During this phase a prosumer can put on the market their available energy
defining the strategy, the quantity of electricity and the correspondent price.
After the submission, the user has also to confirm the transaction to MetaMask
in order to register the auction also in the smart contract. Once the procedure
is successfully completed, the auction is on the market and it is able to collect
the bids that arrive during the buying phase.

2. Buying phase. Once the auction is on the market, the user can place their
bid by clicking the offer button of the preferred active auction and defining
amount of cryptocurrency they want to offer. In this moment, a call to the
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grid feasibility check is performed. If the transaction is feasible from the
grid point of view and the MetaMask transaction is confirmed, the offer is
registered both in the database and in the smart contract. Moreover, the
corresponding amount of eth is sent to the smart contract itself. In this way,
the system can prevent double spending and it can grant the payments.

3. Closing phase. Finally, the seller who received at least a bid from a buyer can
terminate the auction clicking on the Close button of the respective auction in
the Offer tab. The smart contract select the best offer under the predefined
strategy criteria and transfers the crypto-currency to the seller. The auction
is now closed and it is no more available on the market.

3.2 System improvements

3.2.1 Auction management
One of the main improvement to the system that the thesis proposes is the enhanced
auction management. The original system is based on a time-steps division of the
time. At the end of each time-step each user must have an electricity balance equal
to zero. In particular, prosumers have to sell all their energy and consumers have
to buy as much energy as possible from the market. This process is iteratively
performed during each time-step and the balance estimation is computed referring
to the immediate next time-step. Users can only buy or sell for the following
time-step and only one auction for user is available. A simile approach does not
take into consideration the personal needs and preferences of the user. Moreover,
the integration of a electricity storage system would not be admitted because of
the system constraints.

The presence of a battery is crucial for the energy management, the user can
take decisions on their own electricity and sell it to the community when they
prefer. The storage capability enables more complex market dynamics, for example
prosumers can maximise profits by buying in surplus when the price of electricity
is low, store the energy and sell it during an electricity shortage at much higher price.

The thesis project introduce a more sophisticated auction management approach.
A completely redesign of the auction process that span from the Python server to
the smart contract trough the web application is performed. Users can sell or buy
electricity for any future time-step, regardless the time-step they are in. Moreover,
a user can manage multiple contemporary auctions, each of them with its own price,
quantity, time-step and strategy (the auction’s strategy is explained in section
3.2.2). This new auction management implementation enables a wider range of
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opportunities for the user, making the system compatible with any kind of electric-
ity storage equipment. Prosumers can sell their electricity during the time-step
they prefer or they can buy, store and then resell the same electricity to make profit.

For what concern the electricity grid validation in MatPower, the Python
server can now keep track and update all the future transactions to always keep
synchronised the market and the smart grid model loads. Moreover, the entire
system enhancement has been made with the goal of do not affect the user interface,
in order to maintain the continuity in term of user experience.

3.2.2 Selling strategies
The second improvement that worth to be highlighted is the introduction of the
selling strategies. This addition enables the complete utilisation of the blockchain’s
decentralised transparency. In the original implementation of the system, the
winner selection is made by the seller outside the blockchain and criteria are not
public available. This selling scheme is subject to complaints about possible unfair
decisions.

In the updated system proposed by the thesis, the auction winner selection is
completely shifted to the smart contract. During the selling phase, prosumers select
one of the available selling strategy, the selection is communicated to the smart
contract, then it is utilised to identify the best offer under the defined criteria. The
system is designed to accept any kind of selling strategy and it is already proposed
with two basic strategies:

• the first one is FIFO which stands for "First In First Out". As the name
suggests, the first received bid is the one that wins the auction and the
cryptocurrency transaction is immediately performed by the smart contract.

• the second implemented strategy is called Max price and if selected, the smart
contract choose the winner as the bid corresponding to the maximum amount
of ether. The smart contract accepts new bids only if their are better than the
current best one. If a new better bid is received, the smart contract refund
the owner of the previous best offer and collect the new one. When the seller
close the auction, the smart contract complete the transaction and send the
money to the seller.

Once the auction is on the market, the seller has no more power of decision on the
winner selection, the criteria are public available and the transparency is ensured.

During the selling phase, the strategy selection enables also the update of
the future electricity transaction in the grid model in MatPower. The Python
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server receives the new best bid and immediately update the state of the grid
model in order to perform the feasibility check on the lines and loads. If the
transaction is positively assessed, the state of the grid model is updated and the
bid is communicated to the smart contract for the previously described procedures.

3.2.3 Smart contract efficiency
The original smart contract implementation is designed to collect all the bids from
the market in potentially big data structures. In particular, each auction is stored
in a mapping data structure and for each auction the bids are stored in a list. Once
the seller calls the original closeAuction() function, the selected winner bid ID
is communicated in the parameters and the smart contract has to search in the
nested structure, identify the winner and refund all the losers.

The selling strategy introduction enables a better way to handle the data in
the smart contract. By knowing the criteria under which a bid results to be
better than the others, it is possible to keep track of the current best one only.
In the project details, the smart contract receives the strategy information in the
createAuction() method. When the smart contract receives a new bid, it is able
to analyse the bid under the criteria defined by the strategy. If the received bid
results to be better than the previous best one, the best bid details are updated
and the previous winner is immediately refund. Finally, when the seller call the
closeAuction() function, the smart contract knows exactly who is the winner and
no further computations needs to be performed. The money are transferred to the
seller and auction is closed. In this new implementation, the amount of data stored
in the blockchain are drastically reduced. The improvements directly correspond
to an increased smart contract efficiency and so to a reduction of the costs of the
transactions in terms of gas consumption. In particular, it is possible to analyse
the computational complexity of the smart contract function and compare them
with the original implementation in table 3.1.

The smart contract redesign results in an overall improvement of the execution
and more important of the efficiency. From table 3.1 it is possible to notice that in
the original implementation the auction life-cycle on the smart contract coincide
with O(n2∗m) in term of computational complexity (with n the number of auctions
and m the number of bids per auction). In DApps the amount of stored data and
the computational complexity correspond to a real cost in term of gas consumption.
In the original system, an high number of auctions and bids is traduced in a very
high transactions costs due to the proportionality with respect to the computational
complexity. Instead, the smart contract implementation proposed in the thesis is
highly scalable. The number of auctions and bids do not impact on the transactions
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costs, in fact the auction life-cycle corresponds in O(1) in term of computational
complexity.

function original new
newUser() O(1) O(1)

createAuction() O(1) O(1)
placeBid() O(n) O(1)

closeAuction() O(n ∗m) O(1)

Table 3.1: Computational complexity of the smart contract’s functions in the
original and in the new implementation (n = number of auctions, m = number of
bids per auction)

3.3 Front-running

3.3.1 Vulnerabilities
In section 2.4, the front-running attacks on blockchain are introduced and grouped
in classes with common characteristics. In this section, the case of the blockchain-
based trading system in prosumer communities is analysed in order to highlight
the front-running vulnerabilities.

The goal of the thesis is to point out the importance of front-running prevention
strategies in the design of the DApp. The analyses has to be performed taking into
consideration the attacks described in section 2.4.1 with respect to the presented
system. Focusing on the system functioning, it is possible to identify at least one
vulnerability for each class of attack:

• in the implemented smart contract if two users bids in the same auction and
offers the same amount of money, only the first received one is considered,
while the second bid is discarded. If Mallory is a front-runner and sees Alice’s
pending placeBid() transaction, Mallory can perform a displacement attack
and call the placeBid() function in the same state offering the same amount
of money before the Alice’s pending transaction is mined. As in the definition
of the attack provided in section 2.4.1, it is not important that Alice’s function
call is executed after the front-runner one, because only the attacker bid will
be considered. If the seller chose a FIFO strategy and the attack is executed,
Mallory (the front-runner) will win the auction and Alice’s function call will
be orphaned.
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• The second considered case is a form of prevention of possible DApp’s future
changes. In particular, it is possible to imagine an auction-based strategy in
which the buyer can only bid for a fixed quantity over the current maximum
value of the auction. This kind of strategy is common in many auction-based
systems and it can be applied also in the analysed one. If the bid value depends
on the current state of the auction the transaction is subject to front-running.
For example, if Alice calls a method to place a bid that increase the current
value of the auction, Mallory can perform an insertion attack and place her
bid first. The state of the contract will change and Alice’s transaction runs of
a modified state of the contract and her offer will depend on Mallory’s one.

• In the last situation, the original implementation of the system is considered.
The time is divided in time-step and each auction is strictly related to the
time-step itself. In fact, at the end of each time-step all the active auctions
are closed. If Mallory (the attacker) calls the placeBid() function close to
the end of the time-step, she can perform a suppression attack to delay all the
other bids until the time-step ends. The results will be that Mallory wins the
auction and all the other bids will be orphaned because the auction will be no
more on the market.

The three described attacks highlights the importance of taking into account front-
running vulnerabilities during the design phase of the smart contract. Because
once the contract is deployed, it cannot be changed anymore and its limits and
bugs can only be solved by deploying a new one. Even if the brand new smart
contract is deployed on the Ethereum blockchain, the old one still be there and its
functions remains callable.

3.3.2 Implemented prevention strategies
Front-running prevention strategies presented in 2.4.3 are divided in three main
classes, each of them has to be considered in relation to the project vulnerabilities
identified in 3.3.1. The goal of the thesis is to redesign the smart contract imple-
menting the mitigations that best fits with the project needs.

The first category to be analysed is transaction sequencing. The idea is to force
a sequence to the transactions even if the blockchain does not support it. The
considered system is based on Ethereum, where pending transactions are stored
in a transaction pool called "mempool" in which there is no intrinsic order. The
only way to sequence the transactions, it is by acting on the smart contract. More
in details, is possible to define a function that accepts transactions that specify
the state of the blockchain as the only state to be executed on. In the presented
smart contract, a transaction sequencing front-running mitigation is implemented
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in the placeBid() function. Once the user place the bid on the user interface, the
web application call the smart contract function getTxReceived() that returns
the number of received bids for the specified auction. The number of received bids
corresponds to a state variable for that specific auction. The placeBid() function
requires that the current state of the auction corresponds to the one received in
as parameter. This is a simple approach that can be considered as a prevention
strategy for the insertion attack described in 3.3.1 in which the front-runner change
the state of the contract before executing the received transaction.

The second category is confidentiality which commonly consists in the com-
mit/reveal approach. The two-way communication results in a increased gas to pay
for the transactions execution. In the particular case of the analysed system, the
gas consumption is a constrain and an increment in this direction can compromise
the performance of the entire project. The outcome is that confidentiality is not
suitable and cannot be included in the project. It can be considered as a example
of the impossibility to standardise front-running mitigations, they must be tailored
over each specific smart contract.

Finally, the approach that results to be the best solution for the project is the
one that is defined in 2.4.3 as design practices. This last category assumes that
front-running is unpreventable. The only way to mitigate it is to redesign the
smart contract to remove any benefit from it or discourage attackers. The main
vulnerability of the presented DApp is the time dependency of the auction-based
system, therefore specific prevention strategies need to be tailored in order to do
not compromise the DApp functioning.
The first mitigation is the addition of a check in the placeBid() function, that
now requires that the gasPrice of the received transaction must be under a fixed
threshold of 21 Gwei (MetaMask default is 20 Gwei) to be accepted. The focus
is not on the the value of the threshold itself, but on its presence. In fact, it is
sufficient to select the gasPrice of a transaction equal to the threshold and the
transaction would not be subject to any front-running attack based on gasPrice.
The second strategy needs a redesign of the original system functioning. In the
original implementation, each auction is closed at the end of the respective time-
step. The front-runner can perform a suppression attack right before the end of
the time-step in order to win the auction. In the proposed auction management
approach, the auction is closed by the seller who can call the closeAuction()
function at any time regardless of the time-step and the results is that the attacker
cannot previously know the amount of time they need to perform a suppression
attack.
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3.3.3 Cost of the prevention strategies
The thesis purpose is to study front-running vulnerabilities of the considered sys-
tem and implement tailored attacks mitigations. In order to do that, the system
functioning must be maintained and system constraints must be considered.
One of the main restriction imposed by a platform to sell and buy electricity is
the cost-effectiveness. If the costs of the transactions overcome the cost of the
electricity itself the system usefulness fail.
The challenge is to implement front-running prevention strategies that do not affect
the transactions costs, with a minimum impact on the system functioning.

Summing up the implemented prevention strategies, it is possible to underline
the minimal impact they have on the system:

• the addition of the getTxReceived() function do not affect neither the costs
nor the functioning. The method is defined as "view" in the smart contract,
which means that only provides data to the web application. No computational
operations are performed. Therefore, the function can be called in background
and the user do not notice any difference with the previous implementation.

• The included require statement in the placeBid() function regarding the
gasPrice’s maximum value to be accepted is a O(1) operation which do not
affect neither the costs nor the functioning.

• The only change that slightly affect the functioning is the removed time-step
dependency of the auction, but the previously described potential beneficial
effects are much greater than the adjustment itself.

The implemented strategies to avoid front-running attacks successfully achieve
the goal of do not affect the costs and keeping as constant as possible the functioning
of the system. In particular, they not increase the computational complexity of
the transactions. Thus, the gas consumption remains the same and the overall cost
stay constant. This is an important achievement to demonstrate that customised
solutions to front-running can be designed to match every kind of faced constraint,
even in a complex and innovative system as the analysed one.
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Chapter 4

Future improvements

The thesis proposes a new implementation of the blockchain-based trading system
for prosumers communities together with new features, increased efficiency and
front-running prevention strategies.

An important future improvement, related to the easiness of use, is the develop-
ment of a mobile application to allow users interacting with the system from their
smartphones. This could be a great idea to let people accept the platform, since
nowadays it is much more common to do any kind of internet operation from a
mobile device than from a computer, especially because smartphones are almost
always close to people.
Moreover, an interesting field to explore would be the addition of more selling
strategies to best fits with users and market needs. In particular, different strategies
could be designed to optimise the overall energy affordability in order to over-
come the gap between decentralised renewable production and classical centralised
energy provisioning. The proposed implementation of the system is already set
up to accept additional strategies, only few changes has to be performed in the code.

Finally, it is reasonable to assume that the platform is ready to be tested in a real
world environment in order to measure the effectiveness of the system and establish
a communication with real smart meters. Further investigations can be performed
in the smart grids direction to better exploit the MatPower functionalities and
prosumers hardware interaction to optimise the electricity flow on the physical
grid.
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Chapter 5

Conclusions

The considered DApp is part of a more complex system that spans across multiple
technologies to ensure a communications between all the system actors. It is
possible to consider the analysed system as a very particular and innovative case
in decentralised applications world, in fact it is linked with physical infrastructures
of smart grid via the smart meter and MatPower tool.

The thesis propose a new implementation of the blockchain-based trading system
for electricity in prosumers communities with the following main improvements.
The fist one is the introduction of a new auction management approach, that
enables wider range of market opportunities for the users and it makes the system
compatible with any kind of electricity storage equipment. The second improve-
ment consists in the addition of the selling strategies to exploit the blockchain’s
decentralised transparency, together with the automation of the auction winner
selection. Moreover, the smart contract is completely redesigned to increase the
efficiency in term of computational complexity which correspond to a real cost for
the user. In particular, the auction life-cycle complexity is reduced from O(n2 ∗m)
(with n the number of auctions and m the number of bids per auction) to O(1).
The result is a smart contract that does not depend on the number of data stored
in the blockchain, therefore a constant transaction cost is ensured.
Finally, the front-running vulnerabilities of the system are identified and the
respective mitigations are implemented. Results underline the importance of a
case-by-base investigation of front-running in DApps in order to design tailored
solutions that do not affect the system functioning and constraints. The main
challenge of the presented system is the cost-effectiveness. For this reason, the
prevention strategies are studied with the goal of do not affect the transaction costs
and thus the computational complexity of the functions calls. Results demonstrate
that customised mitigation to front-running can be designed to match any kind of
constraint, even in a complex and innovative system as the analysed one.
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Appendix A

Smart contract

1 pragma sol idity ^ 0 . 6 . 1 2 ;
2

3 contract E l e c t r i c i t y T r a d i n g {
4 // map user wrt the WalletAddress
5 mapping( address => uint128 ) private usersByAddress ;
6

7 // map user wrt the SmartMeterId
8 mapping( uint128 => address ) private usersBySMId ;
9

10 // map the AuctionId with the respective Auction are
11 // indicized with their AuctionId
12 mapping( string => Auction ) public auc t i ons ;
13

14 //21000000000 wei = 21Gwei (MetaMask default is 20Gwei)
15 uint256 constant maxGasPrice = 21000000000; // [wei]
16

17 // An Auction contains the strategy and all the bids
18 // associated to a seller
19 struct Auction {
20 address payable s e l l e rWa l l e tAddr e s s ;
21 uint8 s t r a t e gy ; // 0: FIFO, 1: MaxPrice
22 uint256 basePr i ce ; // [wei]
23 address payable bestBidAddress ;
24 uint256 bestBidValue ; // monetary value of the bid [wei]
25 bool e x i s t s ;
26 uint128 txReceived ; // Current state of the auction.
27 }
28

29 // constructor
30 constructor ( ) public {}
31
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32

33

34 // Only a registered user can interact.
35 modifier onlyUsers {
36 require ( usersByAddress [msg . sender ] != 0 ,
37 "User not allowed" ) ;
38 _; // otherwise , the function is executed
39 }
40

41 // Register a new user:
42 // - WalletAddress -> SmartMeterId
43 // - SmartMeterId -> WalletAddress
44 function newUser ( uint128 _smartMeterId ) external {
45 // the new user must not be registered yet
46 require ( usersByAddress [msg . sender ] == 0 ,
47 "Wallet already registered" ) ;
48 require (
49 usersBySMId [ _smartMeterId ] == address (0 ) ,
50 "Smart Meter Id already registered"
51 ) ;
52

53 // register user
54 usersByAddress [msg . sender ] = _smartMeterId ;
55 usersBySMId [ _smartMeterId ] = msg . sender ;
56 }
57

58 // Create an instance of the auction structure auctions
59 function createAuct ion (
60 string memory _auctionId ,
61 uint8 _strategy ,
62 uint256 _basePrice
63 ) external onlyUsers {
64 // auctionId does not exist yet
65 require ( auc t i ons [ _auctionId ] . e x i s t s != true ,
66 "Auction already created" ) ;
67 // strategy is implemented
68 require ( _strategy == 0 | | _strategy == 1 ,
69 "Strategy not available" ) ;
70

71 // create a new auction
72 auc t i ons [ _auctionId ] = Auction ({
73 s e l l e rWa l l e tAddre s s : msg . sender ,
74 s t r a t e gy : _strategy ,
75 basePr i ce : _basePrice ,
76 bestBidAddress : address (0 ) ,
77 bestBidValue : 0 ,
78 txReceived : 0 ,
79 e x i s t s : true
80 }) ;
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81 }
82

83 function getTxReceived ( string memory _auctionId )
84 external
85 view
86 returns ( uint256 txReceived )
87 {
88 // define a pointer for the auction
89 Auction storage auct ion = auct i ons [ _auctionId ] ;
90

91 // auctionId must exists
92 require ( auct ion . e x i s t s == true ,
93 "Auction do not exists" ) ;
94 return auct ion . txReceived ;
95 }
96

97 // Place a bid.
98 // - check the requirements
99 // - receive the respective value

100 // - save as the best received offer
101 function placedBid ( string memory _auctionId , uint128 _txReceived )
102 external
103 payable
104 onlyUsers
105 {
106 // define a pointer for the auction
107 Auction storage auct ion = auct i ons [ _auctionId ] ;
108

109 // [Front -Running] design choice to fix a max gas price
110 // to limit the possible front -runner
111 require (
112 tx . gasprice < maxGasPrice ∗ 1 wei ,
113 "Gas price exceeded
114 (design choice to avoid front -running)"
115 ) ;
116

117 // auctionId must exists
118 require ( auct ion . e x i s t s == true ,
119 "Auction do not exists" ) ;
120

121 // [Fron-running]
122 require (
123 auct ion . txReceived == _txReceived ,
124 "The state of the auction has changed"
125 ) ;
126

127 // check that the msg.value is at least equal
128 // to the basePrice of the auction
129 require (
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130 msg . value >= auct ion . basePr i ce ∗ 1 wei ,
131 "The value of the bid is lower than
132 the base price of the auction"
133 ) ;
134

135 require (
136 msg . value > auct ion . bestBidValue ∗ 1 wei ,
137 "The value of the bid is lower or equal than the
138 current best bid"
139 ) ;
140

141 auct ion . txReceived++;
142

143 i f ( auct ion . s t r a t e gy == 0) {
144 // if FIFO strategy
145 auct ion . bestBidAddress = msg . sender ;
146 auct ion . bestBidValue = msg . value ;
147

148 // close the auction since the strategy is FIFO
149 c l o s e A u c t i o n I n t e r n a l ( _auctionId ) ;
150 } else i f ( auct ion . s t r a t e gy == 1) {
151 // MaxPrice strategy
152 i f (msg . value > auct ion . bestBidValue ) {
153 // if the 2 values are equal
154 // the winner is the first to arrive
155 // new best offer received
156 // refund the old best bidder
157 auct ion . bestBidAddress . transfer (
158 auct ion . bestBidValue ) ;
159

160 // Update the best offer
161 auct ion . bestBidAddress = msg . sender ;
162 auct ion . bestBidValue = msg . value ;
163 }
164 }
165 }
166

167 // Close the auction (internal call from "placeBid" function):
168 // - send money to the seller
169 // - remove the auction from the smart contract
170 function c l o s e A u c t i o n I n t e r n a l ( string memory _auctionId )
171 internal {
172 // define a pointer for the auction
173 Auction storage auct ion = auct i ons [ _auctionId ] ;
174

175 // addresses must be equal and assigned
176 assert (
177 msg . sender == auct ion . bestBidAddress &&
178 auct ion . bestBidAddress != address (0 )
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179 ) ;
180

181 // send money to the seller
182 auct ion . s e l l e rWa l l e tAddr e s s . transfer (
183 auct ion . bestBidValue ) ;
184

185 // delete the auction
186 delete auc t i ons [ _auctionId ] ;
187 }
188

189 // Close the auction:
190 // - send money to the seller
191 // - remove the auction from the smart contract
192 function c lo seAuct ion ( string memory _auctionId ) public payable

onlyUsers {
193

194 // define a pointer for the auction
195 Auction storage auct ion = auct i ons [ _auctionId ] ;
196

197 // auctionId must exists
198 require ( auct ion . e x i s t s == true ,
199 "Auction do not exists" ) ;
200

201 // the auction must be owned by the transaciton’s sender
202 require (
203 msg . sender == auct ion . s e l l e rWal l e tAddre s s ,
204 "You can only close your auctions"
205 ) ;
206

207 // at least one bid must be received
208 require ( auct ion . bestBidAddress != address (0 ) ,
209 "No received bids" ) ;
210

211 // send money to the seller
212 auct ion . s e l l e rWa l l e tAddr e s s . transfer ( auct ion . bestBidValue ) ;
213

214 // delete the auction
215 delete auc t i ons [ _auctionId ] ;
216 }
217 }
218 // end of the contract
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