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Introduction

An economy is made by sectors and their interconnections, understand the nature

of these connections is important to comprise how the system works, in fact, the

structure of a system determines its functionality. The input-output tables, pro-

vided by national statistical institutes, characterize the structure of an economy at

the sector level, tracking both direct and indirect supply-demand interdependen-

cies among sectors within the economy. However, packing all the information

together in a matrix may limit the possibility of investigating structural features

of the economy at the sectoral level.

This work analyzes each national input-output table as a complete and integrated

system making use of network science tools.

Network analysis emerges as a data-driven approach for characterizing the struc-

ture of network-like complex systems to understand the causality between the

system’s structure and its functionality; systems frequently studied are for in-

stance social networks, biological and metabolic networks and transportation

networks.

In the literature little attention has been paid to study the economy structure as a

network, the first paper on this subject was proposed in 1978 by P. Slater, where

the author focused on the study of the United States economic structure to iden-

tify sector clusters. However, the literature went in silence until the new century.

Recent studies on the subject could be classified in three branches. First, the

position of the sectors in the networks has been ranked according to different

centrality measures. Second, the sectors have been partitioned in clusters with a

higher amount of economical interactions. The third area of study is linked to the

performance of the economies, it deals with the resilience to the repercussion of

a shock within the considered network and with the development of economies.

This paper aims at understanding the Italian economy structure and which sec-

tors play a crucial role in the network.
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Chapter 1 introduces the basic concept of the network math, in order to provide

the reader the basis to follow the development of the thesis. Chapter 2 describes

the history of the input output tables, their economical interpretation and the con-

version from a matrix system to a graph system. Chapter 3, 4 and 5 deal instead

with the proper network analysis.

At first, the features shared by all the national graphs considered are presented,

in order to show the structure of the graphs in question and thus address the field

of investigation.

Following, the techniques of analysis used to investigate the Italian economy

have been introduced in detail. The Italian network, as all the national graph

derived, is weighted and directed, so the most complex graph system possible,

there are plenty of measures that try to adapt the unweighted analysis to our

case, in this paper it has been chosen to apply more traditional techniques and

relatively new ones that seem to take into account the economical interpretation

of the network. Chapter 4 is developed around the analysis of the Italian national

graph isolated from the other economies, it provides sector rankings according

to different measures and studies their evolutions in period 2000-2014.

Finally, sector 5 takes into consideration the other national graphs derived and

compares them to Italy; moreover, in this section a global analysis is presented

to understand the Italian industries impact on the whole world network.
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Chapter 1

Network Science

1.1 Definition of Network Science

Network science is an empirical subject which studies network models. Network

theory core assumption is that a cause, an effect, or an association between ob-

jects could be modelized as a network, where distinct elements are represented

by nodes (or vertices) and connected by links (or edges).

One can’t ignore that networks are part of everyday life: the supply chain net-

work, the transportation network, the telephone network, Internet and the bank-

ing network are just some of all the networks that characterize our reality. The

famous sentence “networks are everywhere” refers, not only, to the possibility

of considering many things in the world in relational terms, but it also states that

scientific explanation to several problems is aided by abstraction to such a con-

nected representation.

Network science’s origins date back to 1736 when Leonhard Euler, a swiss

mathematician, faced and solved the problem of how to best circumnavigate the

bridges of Königsberg. Its history, according to "Network Science: theory and

applications" by Ted G. Lewis, could be divided into three periods: pre-network

period (1736-1966), when it was purely the mathematic of graphs; the meso-

network period (1967-1998) when applications of networks were emerging from

the research literature; and the modern period (1998 - present) when network

science became “the new science of networks” and enjoyed a great diffusion. In

the last two decades, complex networks reached the center of research interest

thanks to an unprecedented computing power, massive data sets and new com-

putational modelling techniques available. The new popularity is proved by the
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enormous number of citing papers.

1.2 Graph Theory: definitions and concepts

1.2.1 Fundamentals

Graph

A graph is especially a way to describe a relation between the element of a

system. As in any mathematical abstraction, describing a phenomenon using

a graph representation puts focus on few peculiarities of interest, while many

others aren’t considered.

Definition 1.1 A graphG is an ordered pair (V (G), E(G)) consisting of a finite

set of vertices (also called points or nodes) V = {v1, v2, v3, ...}, a set of edges

(also called links or arcs) E = {e1, e2, e3, ...}, together with an incidence func-

tion ΨG that associates with each edge ofG an unordered pair of (not necessarily

distinct) vertices of G.

Usually the graph is denoted as G = (V,E) where E ⊆ V ⊗ V , whose elements

are not necessarily all distinct.

E is reflexive if (v, v) ∈ E for all v in V , it is anti-reflexive if (v, v) /∈ E for all

v in V and it is symmetric if (v1, v2) ∈ E 
 (v2, v1) ∈ E.

Let {u, v} be an edge, it may be represented as uv or vu. If e = uv is an edge of

graph G, it can be said that u and v are adjacent (or neighbors) in G, that u and

v are incident with edge e and that e joins u and v.

Isomorphism

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic to each

other if there is a one-to-one correspondence between their vertices and edges

such that any two vertices are adjacent in G1 if and only if their images in the

correspondence are adjacent in G2: the incidence relationship is preserved. The

isomorphism relation is written as G1 = G2 or G1
∼= G2 .

The required conditions for two graphs to be isomorphic are: same number of
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vertices, same number of edges, equal number of vertices with the same degree

and same degree sequences. To show that graphs are not isomorphic is sufficient

to find a property in one of them that is missing in the other.

In math terms

Definition 1.2 Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. A function

f : V1 → V2 is called a graph isomorphism if

• f is a one-to-one function

• for all a, b ∈ V1, {a, b} ∈ E1 if and only if {f(a), f(b)} ∈ E2.

Figure 1.1: Two isomorphic graphs

1.2.2 Directed graphs, undirected graphs and degree

Directed, undirected and weighted graphs

A graph D = (V,E) where every edge e ∈ E is associated with an ordered pair

of vertices, therefore, where each edge of D has a direction, is a directed graph
(or digraph). In the diagram of directed graphs, the direction is represented by an

arrow (or a directed curve) from the initial node to the terminal point. The edge

is said to be incident from the initial vertex and incident to the terminal vertex.

An un-directed graph G consists of a set V of vertices and a set E of edges such

that each e ∈ E is associated with an unordered pair of vertices.

Given a graph W = (V,E), whenever a real number can be assigned to an ex-

isting arc, the edge has a weight w and the graph W is called weighted graph.

Both directed and undirected graphs can be also weighted, the weights are pos-

itive or negative numbers. Usually, in many practical applications, the weights

indicate costs, distances, probabilities, time measures, etc.
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In figure 1.2 here is an example of directed graph, it shows the international fi-

nancial network, where the nodes are major financial institutions belonging to

the core and the links give the strongest existing relations among them; node

colors indicate different geographical areas: EU (red), US (blue), other coun-

tries (green); the thicker edges have a higher weight, they represent a stronger

connection.

Figure 1.2: Sample of a directed graph: the international financial network

Figure 1.3: Undirected graph representing Turin’s subway line

Degree, outdegree and indegree

The degree of a node means the number of incident edges, with edges that

join themselves (self-loops) counted twice. The degree of a node is indicated

deg(vertex).

In an undirected graph the total number of links can be expressed as

L =
1

2

N∑
i=1

ki (1.1)

where ki is the degree of vertex i and the factor 1
2

is added because every link is

counted twice. Another important property is the average degree, for an undi-

rected graph it’s

K =
1

N

N∑
i=1

ki =
2L

N
(1.2)
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where N is the number of nodes in the vertex set. In directed networks let kin be

the incoming degree and kout the outcoming degree. The total degree is the sum

of the incoming and the outcoming degrees

ki = ki
in + ki

out. (1.3)

The total number of links in a directed graph is

L =
N∑
i=1

ki
in =

N∑
i=1

ki
out (1.4)

Now the 1
2

factor is missing because each edge is counted only once since there

is a separated addition based on the verse. The average degree value is given

dividing the total number of links for the vertices’ total.

K =
L

N
(1.5)

A vertex with 0 degree is called isolated, while a vertex with degree 1 is called

pendent.

1.2.3 Graph classes

Null graphs

Any graph must have at least one vertex, but a graph may have only isolated

nodes. Null graphs have an empty set of edges and are represented as Nn with

the n indicating the vertices’ number.

Multigraph, pseudo graph and simple graph

In a multigraph loops are not allowed, but more than one edge can join two

vertices; these edges are called multiple (or parallel) edges.

A Pseudo graph has a structure in which loops and multiple edges are allowed.

A graph which has no either loops nor parallel edges is called Simple graph.

Complete graph

A graph is said to be complete if every pair of vertices has an edge. It is usually

indicated by Kn, where n is the number of vertices. It is complete because is not

possible to add any new edge and obtain a simple graph. For every n > 0, the

degree of each node is n− 1 and the number of links is n(n+2)
2

edges.
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Regular graph

A graph in which all vertices have equal degree r is called regular of degree r

or r−regular; hence the total number of edges of an r-graph with n vertices is
nr
2

. Note that every null graph is regular of degree 0 and every complete graph is

regular of degree n− 1.

Subgraph

A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if and only if V ′ ∈ X ,

and V ′ ∈ E. A graph G′ with all its vertices and edges in G is represented as

G′ ∈ G. All the edges and vertices ofGmight not be present inG′; but if a vertex

is present in G′, it has a corresponding vertex in G and any edge that connects

two vertices in G′ will also connect the corresponding vertices in G.

Bipartite graph

Let r ≥ 2 be an integer, a graph G = (V,E) is called r-partite if it can be parti-

tioned into r different disjoint sets, such that every edge joins different classes.

Definition 1.3 A graph G = (V,E) is bipartite if exists a partition V = A ∪ B

of the vertex set such that A and B are not empty and every (a, b) ∈ E → a ∈

A, b ∈ B.

A simple way to notice if a graph is bipartite is coloring the graph in two colors,

if each edge joins two nodes of the same color then the network is bipartite. In

contrast, in non-bipartite graph such a coloring is impossible, e.g. in a triangle

Bipartite graphs very often arise in real applications, they are extensively used in

modern coding theory, specially to decode codewords received from the channel.
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Figure 1.4: Bipartite graph for the leaner representation of the relationship between behavior and

innovation stages

1.3 Walks, Paths and Circuits

A graph G is connected if every pair of vertices in G are connected, otherwise

it’s disconnected; in a connected graph is possible to reach any vertex from any

other vertex. It follows that a complete graph is always connected and an isolated

graph never. Every graph G consists of 1 or more connected graphs, each of them

is a subgraph. A walk is defined as a finite alternative sequence of vertices and

edges, of the form

{viej, vi+1ej+1, ..., vkem}.

In a walk (or trial) each edge in the sequence is incident from the vertex preced-

ing and to the vertex following and no edges appear more than once. A u-v walk

is a walk from vertex u to v, if the first vertex u and the terminal v are coincident

the walk is closed, otherwise it is open. An open walk in which no vertex could

appear more than once is called path or trail.
A circuit is a path that begins and ends at the same vertex. A circuit that doesn’t

repeat vertices is called cycle or circuit.
The number of edges in a walk, and consequently in a path and in a circuit, is

called its length. A circuit or cycle with k length is called k-circuit or k-cycle.
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1.3.1 Eulerian paths

Königsberg’s bridges

The Eulerian paths were first discussed by Leonhard Euler while solving the

famous Seven Bridges of Königsberg problem, the issue that represented the be-

ginning of network mathematic.

Königsberg, Kalingrad today, was a very important city and trading center during

the Middle Age, with its strategical location on the river. The healthy economy

allowed the inhabitants to build seven bridges across the river, most of which

connected to the island. The people of the city decided to create a game for

themselves, their goal being to devise a way in which, while walking in the city,

they could cross each of the seven bridges only once.

Even though none of the citizens of Königsberg could invent such a route, still

they couldn’t prove that it was impossible. Euler found this problem trivial, this

simple question interested him, since neither geometry, nor algebra could solve

it. He discovered that the problem could be seen as a network, see figure 1.5,

with the different parts of the city represented by nodes and the bridges by links

connecting them.

Euler explained that was impossible to solve the citizen game, basing his state-

ment on a mathematical explanation. A network with the possibility to cross each

link only once, would have had an even number of edges for every central vertex,

while the initial and the final one would have had an odd number. This was not

possible in the city network, since every zone had an odd number of bridges,

from 3 in vertices C, B and D, to 5 in vertex A. Even though this couldn’t seem a

great result, it’s important, since in math proving a problem impossible to solve

spare a lot of time spent in trying to find a solution that could not exist.

Figure 1.5: The problem of the bridges of Königsberg: the map of the city (a) and its network

model (b)
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The network’s path the inhabitants of Königsberg needed is called Eulerian
path.

Definition 1.4 A path in a graph G is called Euler path if it includes every edge

exactly once. Similarly, a Eulerian circuit is a Eulerian trail that starts and ends

on the same vertex.

To have a Eulerian trail the graph must be connected and, as specified in the

previous discussion, any trail must enter and exit the same number of times at

each vertex that means that all degrees must be even. Euler proved that these

conditions are necessary and sufficient.

Theorem 1.1 A connected graph with even degrees has a Eulerian trail

Considering the case in which the trail departing from a, covering all the edges,

must reach point b, it’s clear that the initial and the terminal vertex must have

degree 1.

Theorem 1.2 A connected graph as a Trail Ta,b covering all edges just once if

and only if a and b are the only odd vertices.

1.3.2 Hamiltonian paths

Hamiltonian paths and cycles are named after that in 1859 William Rowan Hamil-

ton, a famous Irish mathematician, invented a particular puzzle known as the

icosian game (or Hamilton’s puzzle). Its main part was a regular dodecahedron

made of wood; whose corner were marked with names of famous cities. The

puzzle consisted in finding a route along the edges of the solid passing through

each city just once. The problem could also be analyzed through a graphic rep-

resentation (it’s possible to draw the graph without edge intersections).

Definition 1.5 A cycle that uses every vertex in a graph exactly once is called

a Hamilton cycle, and a path that uses every vertex in a graph exactly once is

called a Hamilton path.

In a graph G the Hamiltonian cycle is a closed trail passing only one time

through every node. In contrast to eulerian graphs mathematician have so far
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failed to find a general criterion.

In 1960 a Norwegian mathematician Øystein Ore discovered a sufficient condi-

tion for a graph to be Hamiltonian

Theorem 1.3 (Ore, 1960). If in a simple graphG = (X,E) , with |X| = n ≥ 3,

for every pair x and y of disjoint vertices then G is a Hamiltonian graph.

d(x) + d(y) ≥ n, (1.6)

then G is a Hamiltonian graph.

1.3.3 Tree

A tree is a connected graph and contains no cycles. This implies that there aren’t

multiple edges and that in a tree there’s only a path connecting one vertex with

another. Since there aren’t cycles the different branches stay apart once they are

separated.

Theorem 1.4 A tree with n vertices has n− 1 edges.

Trees have applications in several fields, for example in game theory are used to

represent the extensive form of a game and are really useful in solving dynamic

games.

Given a connected graph G = (V,E), a spanning tree S is a tree where V is

exactly the same of G and the edge set is a subset of that of G. The prob-

lem of finding a spanning tree of minimum (or maximum) weight is called the

minimum (maximum) spanning tree model and allows the use of an efficient

algorithm for any graph.

Given a weighted GraphG = (V,E) the aim is to build a minimum spanning tree

graph T (empty at the beginning). First of all, the edge set E must be ordered in

increasing order of weights, the algorithm consists in adding every edge one by

one, only if it doesn’t produce a cycle in T with the previously added edges. The

process stops when T is connected.

The algorithm produces a tree because it doesn’t include cycles and ends only

when T is connected.
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1.4 Graph Representation

1.4.1 Matrix

Adjacency and incidence matrix

The diagrammatic representation of a network is convenient for a visual study

but it’s only possible when the graph is reasonably small. Another possible rep-

resentation is using a matrix.

There are more types of matrix suitable to represent graphs, among these the ad-

jacency matrix and the incidence matrix.

The adjacency matrix of a graph G with n vertices and no parallel edges is

represented through a n by n matrix A = aij where the element

aij =

1, (i, j) ∈ E,

0, (i, j) /∈ E.
(1.7)

If there are more edges connecting node i and j the element aij value is equal to

number of arcs from i to j.

FromG could be derived n! different adjacency matrices, depending on the order

of the nodes; however, every couple of matrices is strictly related, from one

matrix it’s possible to derive the other just interchanging rows and columns.

The adjacency matrix of an undirected graph is symmetric and the entries along

the principal diagonal are all zeros if and only if the graph has no self-loops. A

node’s degree is a sum over either the rows or the columns of the matrix.

ki =
N∑
j=1

aij =
N∑
j=1

aji (1.8)

The adjacency matrix A = aij of a directed graph D with n vertices is analogues

to the precedent matrix, but the element aij = 1 if the directed arc from node i

to j exists in D, 0 otherwise. Note that A is not necessarily symmetric, the sum

of entries in row i is equal to the out degree of vertex vi and the sum of entries in

column j

ki
out =

N∑
j=1

aij, ki
in =

N∑
j=1

aji (1.9)

Given a graph G = (V,E) with n nodes and m arcs, is B = bij its incidence
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matrix; B is a n×m matrix where the element

bij =

1, if vi is vertex of ej,

0, if vi is not vertex of ej.
(1.10)

Note that a row with the entries sum null corresponds to an isolated vertex and

a row with a single unit corresponds to a pendent vertex; the number of entries

in a row is equal to the degree of the correspondent vertex. Each column of

B contains exactly two entries, identical columns represent multiple edges and

loops are represented using a column with only 1 entry.

Figure 1.6: Diagrammatic representation of a simple graph

A =



0 0 1 0 0 0 1

0 0 1 0 0 1 0

1 1 0 0 1 0 0

0 0 0 0 1 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0


Figure 1.7: Adjacency Matrix

B =



1 1 0 0 0 0

0 0 1 1 0 0

0 1 1 0 1 0

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 0

1 0 0 0 0 0


Figure 1.8: Incident Matrix

Eigenvalues, eigenvectors and spectrum of a Graph

The possibility of representing graphs through their adjacency matrices leads to

the idea of applying the eigenvectors and eigenvalues theory. The eigenvalues

are invariant with respect to the permutation of rows and columns, so they could

explain some graph’s properties not depending on the naming of the nodes.
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Definition 1.6 Let A(G) be the adjacency matrix of G. An element λ ∈ F is

an eigenvalue of G if and only if there exists a vector v ∈ F n, v 6= 0, with

A(G)v = λv. In this case v is called an eigenvector of A(G).

If λ is an eigenvalue of A every v is an eigenvector of A associated with λ. The

multiplicity of the zero λ is denoted by m(λ).

Definition 1.7 LetA(G) be the adjacency matrix ofG. The polynomial of degree

n in the variable z over the field F is given by:

pa(z) = det(zIn − A) = zn + an−1z
n-1 + ...+ a1z + a0 (1.11)

The characteristic polynomial previously defined is independent of the num-

bering of the edges in G.

Spectral graph theory is a branch of mathematic based on the study of the prop-

erties of a graph in relation to the characteristic polynomial, eigenvalues, and

eigenvectors of its matrices, such as the adjacency matrix. The sequence of a

graph eigenvalues together with their multiplicities is called its spectrum.

Definition 1.8 Let λi, i = 1, ..., n be the zeros of pa(z) in natural order. λ(G) =

λ1 ≤ λ2 ≤ ... ≤ λp = Λ(G). The largest eigenvalue Λ is called the spectral

radius of G. The spectrum of a graph G, denoted by Γ, is the set of eigenvalues

of A(G) together with their multiplicities:

Γ =

(
λ ... λi ... Λ

m(λ) ... m(λi) ... m(Λ)

)
(1.12)

1.4.2 Planar graphs

Plane and planar graphs

A graph is called planar if it has some geometric representation in the plane R2

such that none of its edges intersect (except possibly at end points).

In drawing graphs, nodes can be represented by points and edges by Jordan

curves. The Jordan curve is a continuous curve in the plane which connects

two nodes and has no intersection with itself.
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Theorem 1.5 (Jordan Curve Theorem) A closed Jordan curve L partitions the

plane into precisely two regions, bounded and unbounded, each having L as

boundary.

A region is connected if any pair of its points can be connected by a Jordan curve

laying inside the region. A plane embedding divides the plane into connected

regions called faces; a face is a region delimited by edges that doesn’t contain

another smaller edge delimited region. Each face is bounded with a cycle and

the number of nodes of such cycle is the size of the face.

Theorem 1.6 (Euler, 1750). Let G be a connected plane graph with n vertices,

e edges and f faces, then

n− e+ f = 2 (1.13)

It’s possible to rewrite the relation 1.13 as f = 2 + e − n. The reason why

the formula is valid for every connected network can be understood looking at

a simple graph. Let P be a graph with one edge connecting two nodes: e =

1, n = 2 and f = 1 meaning the unlimited external region. Adding one edge

incident only to one of the nodes, e and n increase by 1 and f stays constant, in

fact the there aren’t new regions. Adding an edge between the 2 existing nodes, e

increases by 1, n stays the same and f increases by 1 because an existing region

is divided in two different ones.

The smallest non-planar graphs

Theorem 1.7 (Kuratowski’s Theorem). Let G be a graph. Then G is non-planar

if and only if G contains a subgraph that is a subdivision of either K3,3 or K5.

K5 and K3,3, in figure (1.9), are the most reduced non-planar graphs that ev-

ery non-planar graph could contain; K5 in figure is a non-planar graph with the

smallest number of vertices, K3,3 is a non-planar graph with the smallest number

of edges.

One graph is homeomorphic if it’s possible to turn it into another one by adding

or removing vertices. Kuratowski’s theorem states that a finite graph G is not

planar, if and only if contains a subgraph homeomorphic to K5 or K3,3.
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Figure 1.9: Complete bipartite graph on six vertices, K3,3 and K5

It’s possible to prove that K5 is non-planar using Euler’s formula. Suppose

that K5 is planar. T is the sum of the sides of every face, since every side could

border on a maximum of 2 regions it’s possible to state that T ≤ 2e. Every face

is at least delimited by 3 arcs and since there are f faces 3f ≤ T . Joining these

relations it could be derived that 3f ≤ 2e. From Euler’s theorem is known that

e = n+ f − 2 and substituting the previous results, it’s derived e ≤ 3n− 6. This

automatically states that K5 isn’t planar, in fact the edges in the figure are 10,

while in order to be planar should be 9 as it’s easily derivable from the condition

e ≤ 3n− 6 where n is 5.

K3,3 can’t be proved non-planar with the previously derived disequation. It is

necessary to add another constraint. As it’s clear from the graph every cycle

in K3,3 has the same length and there aren’t triangles, assuming that every face

is limited by 4 sides and replicating the steps of the previous demonstration is

achieved that 4f ≤ 2e. Substituting in Euler’s formula lead to the conclusion

that a plane drawn of K3,3 has e ≤ 2n− 4. However, replacing the values n = 6

and e = 9 the condition isn’t satisfied and this proves that K3,3 is not planar.

1.5 Statistics on Graphs

The possibility for the systematic gathering and usage of data sets on large scale

networks prompt to the use of statistical analysis for a mathematical characteri-

zation of graphs. The statistical analysis has been initially focused on the small

world, the clustering and the degree distribution properties.
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1.5.1 Clustering coefficient

The concept of clustering in a graph refers to the tendency in many natural

networks to form groups where the density of links is larger than the average

(cliques). For an undirected graph the clustering level can be measured with the

clustering coefficient.
Given an undirected graph G, let i be a vertex with degree ki and ei the number

of edges between the neighbors of i. The clustering coefficient of node i is

ci =


2ei

ki(ki−1) , ifki ≥ 0,

0, otherwise.
(1.14)

1.5.2 Small-world properties

The small-world effect states that in several large-scale networks it is possible to

go from one vertex to any other passing through a small number of intermedi-

aries, so that the average distance between nodes is really short compared to the

network’s size. The average distance can be measured by the average shortest

path l connecting the two nodes. In mathematical terms the small-world prop-

erty is met if l scales logarithmically with the number of vertices.

The small-world concept is spread in the sociological context by the name of ”six

degree of separation”. According to "six degrees of separation", in a world of 6.6

billion people each person is just six introductions away from any other person

on the planet. This theory was empirically proved true in more researches. The

first study on the small world was conducted by Stanley Milgram in 1967. He

decided two targets, two different persons, a stockbroker in Boston and a divin-

ity student in Sharon, then he extracted a number of random people and said to

them to send a letter to the most probable person, in their personal network, to

know the targets. The experiment leaded to an average number of links sufficient

to reach the target of 5.2, a remarkable small number. Later in 1998 Duncan J.

Watts and Steven Strogatz proposed the Watts–Strogatz model, a random graph

generation model that produces graphs with small-world properties, including

short average path lengths and high clustering.
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1.5.3 Degree distribution

The simplest statistical characterization of a network is given by the sequence of

degrees ki of its vertices. The degree distribution P (k) for an undirected graph

is defined as the probability that a randomly selected node has degree k

∞∑
k=1

P (k) = 1 (1.15)

In the case of directed graphs, one must consider two different distributions, the

in-degree P (kin) and the out-degree P (kout) distributions, defined as the prob-

ability that a randomly chosen vertex has in-degree kin and out-degree kout, re-

spectively. For a network with N nodes the degree distribution is the normalized

histogram given by

P (k) =
Nk

N
(1.16)

Where Nk is the number of degree-k nodes. Therefore, the number of k-degree

vertices is easily derived as Nk = Npk

The degree distribution can lead to the individuation of most network properties

and its functional form determines many network phenomena, from robustness

to the spread of diseases.

1.6 Network Topologies

1.6.1 The Erdős–Rényi model

Random networks were among the earliest studied networks. The Erdős–Rényi

model was probably the first model able to describe large networks.

The process to generate an ER random graph starts with N isolated nodes, then

for every pair of nodes they are connected with probability p ∈ (0, 1), if p = 1

the nodes are fully connected, for p = 0 the nodes stay isolated. The expectation

of the number of edges is pN(N−1)
2

, the larger p, the denser the resultant network.

This generation process leads to simple graphs, no loops nor multiple edges, and

retrying the process with the same probability builds a different network, due to

the randomness.

For stochastic ER networks the probability that a randomly chosen vertex has
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degree k is the binomial distribution(
N − 1

k

)
pk(1− p)N-1-k (1.17)

Another way to derive the previous distribution is from the degree distribution

P (k) of a random network. The degree distribution depends on three terms: the

probability that there are k links, the probability that the remaining (N − 1− k)

are missing and the number of possible k links combinations chosen from the

N − 1 links.

Among the most significant discoveries of Erdős and Rényi, there is the property

that for p ≥ pc where the threshold pc ∼ ln(N)
N

( pc is in the same order of ln(N)
N

),

almost all random graphs generated with probability p will suddenly become

connected.

The average degree is then easily computed as K = (N −1)p, and the clustering

coefficient is ci = p since it is the simple probability that two nearest neighbors

of a vertex of degree i have an edge between them. The average of the shortest

path lengths between every couple of nodes in the network grows logarithmically

with the number of nodes, l ∼ ln(N).

Even though the exact form of the degree distribution of a random network is the

binomial distribution, for a very large number of nodes N →∞ the binomial is

well approximated by a Poisson distribution

pk = e-kk
k

k!
(1.18)

The Poisson distribution peaks at the average degree K and decay exponentially

fast at both sides, in particular nodes with a very high degree do not exist. This

kind of network is referred to as homogenous network. The procedure seen is

effective and has been used to represent many real world networks, but doesn’t

allow to change the size of the graph during the construction and for this reason

it originates a static random network.

1.6.2 Small-World network model

Networks with a high clustering coefficient and a short average path length are

the so called small network discovered by Watts and Strogatz in 1998.

The process to build a small-world network is:
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• start: from a circle network with N nodes, each one is connected to 2M

other vertices, where M is an integer > 0.

• growth: for every couple of disjoint nodes connect them with probability

p where 0 < p < 1.

This algorithm leads to the construction of a simple graph.

The clustering coefficient is redefined as

Cws =
average number of neighboring edges

total possible number of neighboring edges
(1.19)

1.6.3 The Barabási-Albert scale-free network model

Static networks are not suitable to describe some kind of real networks, charac-

terized by an evolving number of nodes and disposition of edges. Furthermore,

in the growth of a real network, a forthcoming node has the tendency to con-

nect itself to some “big” nodes (with large degrees) that are more important and

consequently, more attractive. This mechanism, is named preferential attach-
ment, reflecting that the probability of obtaining a higher connectivity in the

future growth is proportional to the present connectivity, the so-called “rich gets

richer” effect.

Barabási and Albert proposed a new network model, known as the Barabási-
Albert scale-free network model, that captures two essential features of many

complex networks: growth and preferential attachment.

The BA algorithm is as follows:

• Growth: Starting from a connected network of small size m0 ≥ 1, intro-

duce one new node to the existing network each time, and this new node

is connected to m existing nodes in the network simultaneously, where

1 ≤ m ≤ m0.

• (Linear) Preferential Attachment: The above-referred incoming new node

is simultaneously connected to each of the m existing nodes, according to

the following probability: for node i of degree ki,

pi =
ki∑N
j=1 kj

(1.20)
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The average degree of a BA scale free network is

K ∼ ln(N)

ln(lnN)
(1.21)

The node-degree distribution af a BA scale free network is given by

P (k) ∼ (kin)−λ (1.22)

where λ = 2 + a/m . The constant a represents the number of initial nodes, if

a = 0 the model falls back in the BA network. After t steps, the network will

haveN = t+m0 nodes andmt+m* edges, withm* the initial number of edges.

Theorem 1.8 Consider a continuously differentiable probability distribution func-

tion f(x). If, for any given constant a, there is a constant b such that the follow-

ing “scale-free” property holds:

f(ax) = bf(x), (1.23)

then, with the assumption of f(1)f ′(1) 6= 0, the function f (x) is uniquely deter-

mined by f(x) = f(1)x− λ, λ = −f(1)/f ′(1).

Building a large-scale network with a power-law degree distribution and with

2 ≤ λ ≤ 3, most nodes result to have very low degrees (i.e., with very few edges)

and there are only few nodes having very high degrees (i.e., with many edges).

This kind of complex networks is named heterogeneous networks, where the

high-degree nodes are also referred to as hubs.

1.6.4 Comparison

For a given network of any kind, if one node is being removed at a time (con-

sequently all the edges connecting it will also be removed), then at some point

the network will be broken to become disconnected. If the network remains con-

nected after some nodes have been removed, then the network is said to be robust

against node-removal. Comparing two networks, the ER random network and

the BA scale-free network, is found that the BA network is more robust than the

ER graph. This outcome is due to the heterogeneous distribution of nodes in the

network: most nodes have very small degrees and only a few nodes have large
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degrees; thus, randomly removing a fraction of nodes will very likely remove

some small nodes, which does not affect the network connectivity by too much

much. However, for exactly the same reason, any intentional removal of even a

very small fraction of high-degree nodes will significantly affect the topology of

the network, leading to drastic change of the network connectivity.

1.7 The use of Network Theory in Economics

1.7.1 Economic networks

Networks play a major role in modern life, suffice it to say that our world is more

connected than ever. Connected by communication, information and transporta-

tion networks.

The economic network theory is an emerging field that applies network math-

ematics in order to understand economic phenomena, relying on the evolving

nature and the representative strength of this instrument. The main reason to

solve economy related questions by means of networks is that this perspective

doesn’t consider only individual components, but allows to study the relations

between all the relevant parts in the system.

The economic system reflects the dynamic interaction among a multiplicity of

agents, whose increased interconnectivity of behaviors and information leads to

a huge complexity, difficult to predict and control. This complexity is increased

by the speed in the flow of information across the world, enabled by the techno-

logical progress.

Economic network theory is a wide field that contains a set of different networks

where each one has its specific meaning (in table 1.1 is possible to see some ap-

plications). Nodes can be industries, financial intermediaries, or even countries,

and arcs represent their mutual interaction, be it debit-credit relations, trade or

ownerships. The choice of nodes and edges identifies the purpose of the net-

work.

Over the past decades applications of networks in economics has significantly

increased. The main reason is, as previously exposed, the necessity to analyze

the interactions among the agents. Other two important factors are the increased

capacity of understanding the features of networks (e.g., how densely connected
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a market is, how segregated it is, etc.) and the amount of data available combined

with the improvements in computational capabilities that has allowed new tests

and applications of models.

Economists’ participation in the study of networks has contributed to the develop

of the literature. After the 2008 crises, concepts as networks and contagion have

entered in the economic and financial lexicon, since the traditional economic the-

ory couldn’t explain, neither predict, the collapse of the financial system and its

deep effects on the world economy. The 2008 crises highlighted how the propa-

gation of a shock through the financial network, can lead to a domino effect and

affect even stable intermediaries.

The research in economic networks advances on two paths. On one hand eco-

nomics and sociology (micro approach), while on the other hand physic complex

system and computer science (macro approach).

The socioeconomic approach centers on understanding how the individual be-

havior is influenced by the linkages structure, it looks at agent incentives in de-

veloping links, while it’s not suitable to predict realistic dynamic outcomes. In

this model every person can choose between individual incentives and network

aggregate welfare, since every individual choice has an impact on the overall

structure through contagion, information diffusion, opportunities and other fac-

tors. The micro perspective aims at understanding how the strategic behavior of

the agents is influenced by network architectures. In recent micro approaches,

the network is seen as the result of a network formation game, a link is added

or delated according to a specific decision that has been taken by the agent. The

agent’s choice is influenced by the information at the disposal and guided by the

attempt to anticipate what others may do. This approach relies on game theory,

whose scope is to identify situation of stability called Nash equilibria.

In contrast, the macro perspective emphasizes the statistical regularities of the

network, but can’t link them to the economic motivation of individual agents.

The complex-systems branch considers how the network-formation rules model

the emerging structure.

The study "Network theory and social economics - a promising conjunction?"

pointed out some recurring characteristics in socio-economic networks derived

from several researches: the high degree of clustering, the small world property

and the heavy tail.
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Table 1.1: A set of economic networks with the respective explanation

Table 1.1 lists some economic applications of network theory. Studies have

shown that social networks have a high degree of clustering if compared to non-

social networks. Clusters were identified in many economic networks, e.g. banks

in financial markets form clusters of dense trade relationships and countries in

the world trading network form clusters of thick relationships. In real networks

the degree distribution is highly asymmetric with the number of neighbors, the

degree is inversely proportional to the relative frequency of nodes with this num-

ber of neighbors. This is similar to a scale free distribution from the fact that the

shape doesn’t depend on the part of the distribution considered. The probability

of tail events in this distribution is high and averaging over a large number of

observations could be risky, in case the central limit theorem is not applicable.

Corporate ownership and lending networks have been proved heavy tailed, while

there are some doubts on other distributions claimed to be scale-free but that

could be also log-normal, exponential with cutoff and less regular distribution.

In addition, many economic networks present a core-periphery structure. Such a

structure indicates a densely connected core and a sparse periphery, so the vertex

set is composed by two groups of nodes, one of vertices that are really connected

and one of disperse vertices. Actors in the core occupy a dominant position and

they are favorite in trading with actor in the periphery. Core-periphery structure

29



can be found in bank networks, in supply chain networks and in international

trade networks. Looking for instance at the financial network, the reason why

core banks’ default tend to be high correlated could be explained by its struc-

ture, as the core has a small number of hubs and they are densely interconnected;

however, it should be kept in mind that banks are supported by the governments

and that the policy of the "too big to fail" has always prevailed.
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Chapter 2

From input-output tables to

national sector maps

The scope of this chapter is to introduce the national input output tables, ex-

plain how they work and the choice of path that has leaded this essay. The first

section illustrates the national accounting’s categorization of the money flows.

Consequently, the input output tables are introduced, from their history to their

structure and, finally, their applications. The last paragraph concerns the con-

struction of the national graphs analyzed in this work.

2.1 National accounting

An economy is made of sectors linked each other by commercial exchanges,

therefore, it’s important to understand the system’s structure in order to fully re-

alize its functionality. IO tables are part of the accounting data compiled by na-

tional statistical institutes and provide a general overview of the monetary flows

between economic sectors.

National accounting, despite not making use of the graph terminology, naturally

describes a network with sectors as nodes and money flows as edges. Tracking

of money flows involves substantially more complications than measurement of

other networks, because it involves different categories of transactions such as

output, consumption, income, and investment.

Generally, economies are composed of five sections: households, non-financial
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business, financial business, government, and non-profits.

Household consumption (purchases of goods and services) and value added are

the largest money flows. Value added partly corresponds to purchases of house-

hold sector labor by the business sector. They are collectively referred to as

the circular flow and constitute the backbone of sectoral money flow struc-

ture (James McNerneya et Al, 2013). Intermediate consumption, recorded in

input/output tables, is the second flow in size and represents purchases made by

industries for the production of goods by other industries. Goods purchased for

intermediate consumption are required inputs to produce finite goods.

Capital purchases are purchases needed to the production of other goods and that

can be used repeatedly for more than one accounting period, these are an impor-

tant exclusion from transactions classified as intermediate consumption.

The transactions underlying money flows in the accounting system are compiled

on an accrual basis (alternative to the cash-flow basis) . Revenues are recognized

when they are earned by the transfer of goods or the performance of a service.

Expenses are recognized when the associated revenues are earned. Money flows

within the full sector-level network are not conserved because they may disap-

pear from accidental loss or destruction and, more importantly, money is reg-

ularly created and destroyed by the financial sector. National accounting does

enforce a virtual conservation law, though, through the use of balancing items,

which are accounting entries that are calculated as the difference between other

accounting entries.

The I/O tables do enforce a virtual conservation law where the balancing item

is value-added, calculated as the difference between total sales by the business

sector and intermediate consumption sales. Value-added measures the value cre-

ated by production and encompasses all forms of personal income — employee

compensation, interest, dividends, and rent, as well as certain kinds of taxes and

depreciation.

Exploiting the conservation enforced by the definition of value-added, one can

equate money flows in and out of the business sector and deriving the GDP: The

figure (2.1) illustrates two approaches to calculating GDP, on the left side the rev-

enue method and on the right one the expenditure one. A third approach is con-

sidering the outputs, where value added is calculated as the difference between

all business sales and intermediate goods sales. All three approaches are used by
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statistical agencies to validate GDP calculations. They also provide equivalent

intuitive interpretations of GDP as a measure of total income, a measure of total

final expenditures, and as the net output of the business sector.

Figure 2.1: Gross domestic product

2.2 Input output tables (IOt)

2.2.1 IOt history

The first input-output model is attributable to the 20th-century economist Wass-

ily W. Leontief, that in 1973 earned the Nobel Prize in Economics.

Input − Output Analysis (E.Miller & D.Blair, 2009) clarifies that the idea of

developing an instrument of this kind is much older and probably dates back to

the beginning of the eighteenth century.

In 1758, François Quesnay, a French physician, leader of the Physiocrats1, wrote

the Tableau Economique, an economic model depicting the income flow be-

tween economic sectors. The Tableau is mostly known for its diagrammatic

representation of how expenditures can be traced within an economy. However,

it must be said that many of Quesnay’s and the Physiocrats’views were quite

controversial, as the theory that manufacturing and commerce didn’t contribute

1The Physiocrats were a group of French Enlightenment thinkers of the 1760s that sur-

rounded the French court physician, François Quesnay. The founding document of Physiocratic

school was Quesnay’s Tableau Économique (1759). To contemporaries, they were often referred

to simply as les économistes.
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to add value to the economy.

In 1820, Robert Torrens, a British army officer and journalist, suggested that

the economic surplus was the key to trace the share of income attributable to

sources. In his work on corn trade, he defined the agricultural rate of profit as the

ratio between net corn output and corn input. Essentially, he resumed the analyt-

ical connection between profits and production factors described in the Tableau

Économique, but at the same time, he denied the theory regarding the manufac-

turing sector not producing added value.

In 1920 Leontief described the economy as a circular flow in his doctoral thesis,

drawing on Quesnay’s Tableau and other studies. Then, in 1928 he published

part of his thesis, where he depicted a two-sector input–output system showing

production, distribution, and consumption characteristics of an economy as a sin-

gle integrated system of linear equations. In 1937, Leontief published the first

Input-Output model, revolutionizing both analytics and economics.

Leontief’s contributions went far beyond the table of transactions: he derived

the analytical basis that transformed the descriptive nature of the Tableau into

an empirical analytical tool. Today Leontief’s input–output analysis has become

one of the most widely applied methods in economics.

2.2.2 Input-Output properties

IOt structure

Every IO table is built around a matrix of monetary transactions where flow

values are expressed in currency. The basic principle of IO-tables is that outputs

of one industry are inputs of other industries. The rows of the table indicate the

amount of outputs sold by each industry, including both intermediate and final

goods, while the columns reflect the value of inputs bought by each industry.

The sales are inclusive of sales to the government, sales to the consumer, sales to

non-profit organization, gross fixed capital information2, change in inventories

and exports. Purchases, otherwise, consist of domestic and imports purchases,

value added and a negative flow given by taxes less subsidies on products.

2it measures the value of acquisitions of new or existing fixed assets by the business sector,

governments and households.
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Figure 2.2: Input output table format

The table itself implies a network, in fact its core could be read as a weighted,

directed adjacency matrix. Reversing the direction of the links in the network, the

network represents the money outflow from one industry to another in order to

purchase materials for production inputs. Let T be the adjacency matrix mapping

the money flows of the i-o table

T =



x1,1 x1,2 ... x1,n

x2,1 x2,2 ... x2,n
...

... . . . ...

xn−1,1 xn−1,2 ... xn−1,n

xn,1 xn,2 ... xn,n


(2.1)

Where xl,m stands for the monetary flow from industry l to industry m.

Another representation of the sectoral map as an adjacency matrix is through the

technical coefficients

A =


a1,1 a1,2 ... a1,n

a2,1 a2,2 ... a2,n
...

... . . . ...

an,1 an,2 ... an,n

 (2.2)

Each technical coefficient is derived as ratio between the flow from i to j and the

sum of all monetary flows from industry i, aij =
xij
Xi

where

n∑
j=1

aij = 1 ∀ i. (2.3)
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An important accounting identity in the table is that gross output (GO) of each

industry is equal to the sum of all uses of the output from that industry. In

economics, in fact, gross output is the measure of total economic activity in the

production of new goods and services in an accounting period. It is a much

broader measure of the economy than gross domestic product (GDP), which is

limited mainly to final output.

Leontief’s quantity model

The output of a single industry can be written as

Xi = ai1x1 + ai2x2 + . . . + ainxn + di (2.4)

where xi represents the total output of industry i, di is the final output to con-

sumer and aij are technical coefficients.

The (2.4) equation can be written as

x = Ax+ d (2.5)

Re-arranging:

x = (I − A)-1d (2.6)

Matrix L = (I − A)-1 is known as Leontief inverse matrix.

Note that, x by definition is bigger than d, because some of the goods produced

are used as intermediate inputs: not all the output leaves the system.

IOt assumptions and limitations

It’s necessary to make a few remarks on IOt limits. As previously mentioned,

the tables are filled with currency values. This means that is not possible to dis-

tinguish changes in quantities from changes in price. Moreover, some countries

only record flow between sector down to a minimum size, with the flows below

the threshold recorded as zeros or left blank, giving an incomplete graph topol-

ogy.

Since several exchanges may pass through small links, the elimination of some

minor flows could impact the network analysis. The cutoff flow size may repre-

sent as much as 30% of all n2 links, where n is the number of sectors (J McNer-

ney, 2009).
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It should be taken into account, that deriving a limited number of sectors from

the industrial scene requires some arbitrary choices, a different definition, in fact,

may cause an industry in one country to appear smaller (or larger) than expected

in comparison with other countries.

2.3 Input-output table analysis

2.3.1 Classical methods of analysis

Key sector

With the definition of ’key sectors’ are meant those sectors supposed to pursue

more effective industrial policies and to drive the economy towards increasing

sectoral interdependence and higher income levels.

The first one to identify the importance of sectoral linkages for economic de-

velopment was Hirschman (1958). In his work Hirschman stated that sectoral

connections are a measure of production efficiency in an economy. According

to his researches, within the industrial system, two mechanism subsist between

each pair of industries: the direct backward linkage (or input-provision effects)

and the direct forward linkage (or output-utilization effects). The first one reflects

the sector potentiality to induce the supply of inputs by other sectors, while the

second is a measure of the sector potential effect on the demand. Consequently,

key sector could be key pull sectors, with an above average backward strength,

or key push sectors, with a higher forward linkage index.

Under the input-output framework, the most known methods to identify key sec-

tors are the Classical Multiplier Method (CMM) based on Rasmussen (1957) and

the Hypothetical Extraction Method (HEM) introduced by Paelinck et al. (1965)

and Strassert (1968).

Classical Multiplier method (CMM)

The CMM is owed to Rasmussen (Rasmussen, 1957), and it’s based on the no-

tions of backward linkages and forward linkages. He identified the column sum

of the Leontief inverse as a measure of backward linkages and the row sum as an
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index of forward linkages. The column sum of L for sector j is given by

BLj =
[∑n

i=1 aij

]
(2.7)

also known as output multiplier or backward linkage. BLj measures the direct

and indirect output from every sector that leads to the production of one unit in

sector j. In the same way is possible to derive the input multiplier or forward

linkage

FLj =
[∑n

j=1 aij.
]

(2.8)

In order to compare each backward linkage with the average backward linkage

in the economy, Rasmussen suggested the use of an index measuring the relative

strength of a sector’s BL:

BLj =

∑n
i=1 aij

( 1
n
)
∑n

i=1

∑n
j=1 aij

(2.9)

where the numerator is the sector backward linkage and the denominator is the

average of all backward linkages.

The output multiplier has been widely used and as a standard measure of back-

ward linkages, while the forward linkage has been much more discussed in the

literature. Miller and Blair (2009) evidenced as the method relies on an unreal-

istic hypothesis: a simultaneous unit increase in final demand in all sectors of

the economy. Based on these arguments, the use of the row sums of the Leontief

inverse as a measure of forward linkages has been reduced over time.

Hypothetical Extraction method (HEM)

The HEM is a technique developed to measure the value of a sector within an

economic system. HEM quantifies the hypothetical output reduction in the over-

all economy resulting from the elimination of a sector of interest from the eco-

nomic system.

Let j be the depicted sector, it is extracted from matrix A of technical coeffi-

cients. Let A′ be (n−1)(n−1) obtained after the elimination of the j-th column

and j-th row.

Let X be a vector of outputs and Y a vector of final demands:

X ′ and Y ′ are the previous sectors after the extraction of the j-th sector.
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X =


x1

x2
...

xn

 (2.10) Y =


y1

y2
...

yn

 (2.11)

The IO model can be calculated with the matrix equation (2.6). For matrix A′

the Leontief inverse is derived from

X ′ = (I − A′)-1Y ′ (2.12)

The result itX − itX ′, given it an identity row vector of the right dimension, is

the difference in the total production with and without the extracted value.

Other methods, instead of deleting the j-th row and columns, replace the inter-

ested values with zeros.

2.3.2 Application of network theory in the IO frame

The idea of studying the structure of an economy as a network was first proposed

in 1978. Slater applied a maximum flow minimum cut algorithm from network

theory to the 1967 United States input-output table to identify sector clusters, but

then the literature went in silence until the past decade. Recent studies mainly

focused on three areas. First, the positions of particular sectors in the IO network

are examined using a variety of centrality measures. Second, researchers apply

various methods from network analysis to identify clusters or communities in IO

networks. Lastly, the structure of IO networks in relation to the performance of

economies they represent: resilience against economic shocks and development

level.

2.4 Construction of a country industry network

2.4.1 Graph construction

The national input-output tables processed in this thesis are taken from the World

Input Output Database, whose latest version was released in 2016 (WIOD2016R,
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for short). The database covers 43 countries for the period 2000-2014 and each

national table collects data for 56 sectors, classified according to the Interna-

tional Standard Industrial Classification revision 4 (ISIC)3.

The code written to derive the national graphs is developed in java and draws on

a database derived from the re-elaboration of the IO tables.

The db contains a table of the industries4, collecting their information: identifi-

cation code (the primary key) and short description. Moreover, there is a national

table for every country that brings together data from the IO historical set of the

country: for each couple of sectors the table reports the money flow per year

(expressed in Mn of US $)5.

And thirdly, there’s a GO table for each country reporting the gross output of

every sector for all the years.

The code has been provided with all the methods developed in order to obtain

easily the results needed.

2.4.2 Graphical output

The code includes a graphic interface developed according to the Model-View-

Controller design pattern6. Launching the program, the graphic interface ap-

pears, the user can choose the desired country from a choice box7, the year and

the percentage weight that makes a connection significant to be graphically rep-

resented. There are two buttons, one that builds the graph and returns a set of its

properties, while the other graphically represents the map.

The process behind the graph building is articulated as follows.

First of all, the program memorizes the country and the year concerned, returned

3ISIC is the international reference classification of productive activities, it’s the standard for

Countries to develop comparable national input-output tables. In the appendix table 2 presents

the list of all the sectors with their Id and description.
4Each national i-o table has been aggregated considering the same division on 56 sectors.
5The period of time is from 2000 to 2014.
6Model–view–controller (usually known as MVC) is a software design pattern commonly

used for developing user interfaces that divides the related program logic into three intercon-

nected elements. This is done to separate internal representations of information from the ways

information is presented to and accepted from the user.
7The possible countries are: China, France, Germany, Italy, Japan, Russia, Spain, UK and

USA.
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by the choicebox, and interacts with the db. The sectors are derived from the

industries table and each one is memorized in an object, named Sector, with its

identification code, name, gross output (GO) and all the relevant information for

the analysis; each sector gross output is referred to the country and year under

consideration and is obtained through a joinwith the specific GO table matching

the sectors’ Id.

Then all the monetary flows are saved in a list as object Linkage, a specific class

that allows to memorize the seller sector, the purchaser sector and the weight of

each linkage.

The kind of graph used to represent the networks is a directed pseudograph8 a

type of graph that allows loops and has directed arcs.

The graph’s vertices represent all the sectors, while the edges, rendered as ar-

rows, indicate the money flow and the respective inverse flow of goods and ser-

vices from one sector to another. Every edge is originated by the purchaser sector

and reaches the sector that sells the good, the edge’s weight, depending on the

graph version considered, is either the monetary flow between the two sectors

or its normalized version; the last one allows an analytical comparison between

different countries regardless the differences in size9.

Lastly, all the memorized sectors have been added as vertices and a directed edge

for every connection has been added scrolling through the Linkage list. For what

concern the graphic representation, nodes are drawn as circles, the higher the

node’s value, given by the sector GO, the bigger the circle’s diameter. The nodes

are filled in three different colors, green if the sector GO is less than 1% of the

total, red if between 1% and 5%, and blue if larger than 5%.

Every vertex has at its right a label with its identification code and, when posi-

tioning the cursor on a vertex, a label with the description appears.

The vertices disposition in the canvas space is the result of a ponderation of

the scalar attractive and repulsive forces between the nodes, the function that

distributes the nodes considers the distance and the values of each couple of ver-

tices. This permits to obtain a more harmonious and easier to read graph.

The national graphs are mostly fully connected, in fact, their graphical repre-

8the proper term should be pseudograph, but the class used in the code is a directed multi-

graph since java uses a different notation.
9Different works applied different normalization using for example the maximum flow in the

network as denominator.
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sentation doesn’t help to identify the differences and similarities between the

countries; therefore, it has been chosen to represent only the arcs whose weight

is more than a certain percentage of the total amount of commercial exchanges.

The default one is 0.01% but the user can choose also 0.05% or 0.1% from the

specific radio button. In addition, arcs with a higher weight have been high-

lighted in dark blue. The nodes location is kept the same refreshing the year or

the desired significative percentage.

Figure 2.3: Graph representation
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Chapter 3

Graph Analysis: illustration of the

techniques to analyze the sector

maps

This chapter outlines some of the metrics to analyze directed weighted graphs,

with the intention of depicting the key sector of the considered economy.

The first section presents the most used measures to valuate a graph, from degree

distribution to sector strengths, with a view to gaining a complete picture of the

network: the peculiarity is that every national map has homogenous features.

The other sections of the chapter propose and explain measures that will be fur-

ther applied separately for each national graph.

Sections 2 to 5 introduce each one a new index of analysis: assortativity, mod-

ularity, centrality and clustering. While the last paragraph proposes a failure

tolerance analysis headed to reproduce the effect of a shock in the country net-

work.

3.1 Properties of the country network

This section illustrates the characteristics of the sectorial maps built, all the ob-

servations made are thus related to every country table for the years from 2000

to 2014, unless otherwise specified.
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3.1.1 Network topology

Considering all the 135 graphs built (9 countries x 15 years), it appears that they

all have a high number of connections, with a density around 85-90%, except

for China (∼65%) and Russia (∼35%). The high degree of completeness is a

feature proper of highly aggregated I/O tables, as the national tables used in this

essay; using a country structure with more industries, for example around 500

industries, the network shows to be 20% complete at that level of aggregation

(Carvalho, 2009).

One of the most diffused methods to analyze a weighted directed graph is to ap-

proximate it by a binary graph, if the weights are sufficiently similar in size,

and/or by an undirected graph, if the adjacency matrix is almost symmetric.

However, this simplification is inadequate for the i-o graphs under considera-

tion.

Figure 3.1 illustrates the absence of symmetry between reciprocal edges and the

consequent impossibility to conduct this type of analysis1. The economic IO

network is asymmetric, the size of flow fij is unrelated to fji, in the cloud of

data there are flow from i to j having their reciprocal several times bigger. It also

points out the different sizes of the flows and that an approximation with an undi-

rected graph will compromise the amount of information each table carries. The

asymmetry between out-flows and in-flows of industries implies an asymmetry

between sectors as providers of goods and users of goods.

Figure 3.1: The scatter plot of size of a flow versus the size of the reciprocating flow, fij vs fji,

Italy 2014

1The scatter plot represents the Italian economy in 2014, but the same features are evident in

all the countries in the whole time horizon.
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3.1.2 Nodes’ categorization

The country networks are weighted and directed by construction, moreover, each

of their nodes could be categorized as transmitter, receiver, ordinary or isolated,

depending on its in and out-degree as is synthetically shown in the table.

Table 3.1: Vertices categorization

Taking into consideration all the 135 graphs, most nodes are ordinary (90.38%),

the number of isolated nodes is significative (8.39%), but most of them are in

Russia and China. Only France and China have transmitter nodes (just 7 over

7560 vertices). Receiver nodes are 1.14%, most of all in China, Japan and Russia.

3.1.3 Degree distribution

Unlike other network systems such as the internet, where the degree distribution

follows the power law, the national tables are characterized by the highly left-

skewed degree distributions. Most nodes enjoy high-degree connections because

the industries are highly aggregated. Furthermore, every national table is almost

complete with an average density of 80-90% (not considering Russia and China).

The graphs below represent the (in or out) degree distribution considering all the

countries2 and the entire time period 2000-2014. The frequency spike is 54 for

the in-degree and 52 for the out degree. The value 0 has a frequency of 3.5% as

in-degree and 4% as out-degree, since the networks have also isolated nodes.

2Russia and China weren’t considered because of their high number of isolated nodes.

45



Figure 3.2: In-degree and out-degree distribution

3.1.4 Weights’ distribution

To quantify the importance of a sector it has to be valued in the economic con-

text. Measures as gross output and value added do not consider the relationships

among the various nodes, so it’s important to visualize how the flows are dis-

tributed.

Edge weights are the representation of the transfer of money from an industry

to another. The magnitudes of money flows in different datasets differs because

economies vary in size and inflation or deflation systematically change the nom-

inal value of money3.

In figure 3.3 the empirical complementary cumulative distribution function is

plotted, from which appears that the tails of the national distributions have a

power like distribution. The power law behavior showed by the tail characterizes

also the global transfer network, as reported by the literature.

Figure 3.3: Weight distribution for each country, 2014

3In the WIOD all the flows are expressed in USA$.
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In figure 3.4 three national weights distribution are presented, and, for each one

the distribution’s lowest moment has been compared with its power trendline.

Figure 3.4: Italy, France and UK weight distribution

In Network structure of inter-industry flows (James McNerneya et Al, 2013) is

illustrated how the weights distribution can be reconducted to a Weibull or to a

log-normal distribution, evidencing for each country the best fit; with a sample

of 64 countries, 31 appear to be better represented by a Weibull and 34 by a

log-normal.

3.1.5 Sector Strengths

Node strength generalizes the concept of node degree to weighted networks:

it’s an important measure to quantify the size of a sector. Node strength is the

sum of the weights of the links surrounding a node. A directed graph has both

in-strength and out-strength characterizing each node

si
in =

∑
j

fji = F.i (3.1)

si
out =

∑
j

fij = Fi. (3.2)

si = si
in + si

out (3.3)

The normalized in-strength and out-strength distributions are defined as the frac-

tional contribution of each sector to the sum,

si
norm =

si∑
j sj

=
si
w
, (3.4)

with si as in(or out)-strength , and w as sum of the in(or out)-strengths in the

whole network.
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A sector’s strength represents how much the sector provides to the other indus-

tries in the economy, or how much it uses from them; if a sector uses the outputs

of many other sectors for its production, its in-strength tends to be higher (and if

its output is used for production by many sectors, its out-strength is higher).

It’s to note that the total provided to the economy doesn’t include output for final

consumption and input from labor: the in-strength and out-strength as defined

here are sums over intermediate consumption only (James McNerney, 2009).

The disadvantage is that two vertices with the same strength can be linked to a

different number of nodes, but having graphs with a density of 85-90% this issue

has less relief.

Figure 3.5: Scatter plot in-out strength considering all countries in year 2014

A strong correlation between the two measures is evident from graph 3.5, mean-

ing that a sector receiving a high money value as in flows transmits heavy out-

flows to the receiving sectors.

The in and out strength distributions, shown in figure 3.6 appear to be exponen-

tial, with approximately the same slope for both4. The fact that the industries

are both highly connected, as derived from the degree distribution, and asym-

metrically connected, as captured by the flow distribution, implies that the local

shocks are possible to propagate through the national economy and generate a

sizable disturbance.

4The plots represent data for year 2014, but an analog behavior characterizes the whole

period of time 2000-2014.
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Figure 3.6: Strength Distribution - USA 2014

3.2 Assortativity

Assortativity (or assortative mixing) coefficient (r) measures the tendencies of

nodes to connect with other nodes that have similar (or dissimilar) degrees as

themselves.

It ranges from –1 to +1, a positive coefficient means that similar nodes are more

likely to be connected, a negative one, instead, means that dissimilar vertices are

more likely to be connected.

There are two types of network structures: assortative and disassortative. An

assortative structure means that high degree vertices tend to connect with their

similar, while in disassortative networks, high degree networks tend to connect

with low degree vertices. A parameter that indicates whether the network is

assortative or not is Knni that indicates the average degree of the first neighbor-

hood of a node i of the network.

knni =
1

ki

∑
j∈V (i)

kj (3.5)

where V (i) is the set of vertices in the neighborhood of vertex i. From this

parameter it is possible to build a graph called Spectrum of correlation that com-

pares each node degree with its knn coefficient. If the network has an assortative

structure, the function shows a positive trend, otherwise knn has a negative trend.
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Figure 3.7: Assortative and disassortative structure

3.3 Modularity

3.3.1 Theory

The community detection problem is NP-hard, it’s prohibitively difficult to solve

exactly for large graphs, but a wide variety of heuristic algorithms exist.

Since the national graphs to analyze are relatively small networks, 56 vertices

each, the algorithm doesn’t pose restriction.

There are plenty of methods to find clusters, among these the Modularity maxi-

mization.

Since the countries’ networks are directed, the directed generalization of modu-

larity is seen. Modularity maximization involves searching for partitions of the

network into communities that yield high values of the modularity Q over all

possible partitions of the network.

The task then is to search over the many possible partitions of the network and

find the one with the highest score. In practice, the number of partitions is usually

extremely large, so that only a small fraction can be examined directly. Deter-

ministic algorithms are problematic because they fail to show the many alter-

native partitions. In Network structure of inter-industry flows (McNerney et Al,

2013), a stochastic search algorithm based on simulated annealing5 addresses

this problem and returns a different high-scoring partition in each run. They ran

the algorithm 100 times for each country, collecting the alternative partitions,

and compare them to test their robustness from run to run.

Then, the frequency with which node i is in the same cluster of node j was mem-

5An optimal search algorithm that returns the n most connected clusters.
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orized in the coclassification matrix (CCM). The concept is that the presence of

a nodes’ group repeated frequently will appear as a group of high frequency in

the CCM .

The clusters analysis conducted showed, unsurprisingly, that industries have a

higher tendency to transact with other industries of the similar type.

3.3.2 Implementation

For the purpose of this dissertation it has been chosen to apply the method illus-

trated in Community structure in directed networks (E. Leicht et Al, 2007).

The method has been shown to be both computationally efficient and highly ef-

fective in practical applications. The premise of the modularity optimization

method is that a good division of a network into communities will give high

values of the benefit function Q,

Q = (fraction of edges within communities)−(expected fraction of such edged)

(3.6)

The modularity for directed graphs is derived as

Q(c1, ...., cn) =
1

m

∑
ij

(aij −
kini k

out
i

m
)δ(ci, cj). (3.7)

where Aij = 1 if there is an edge pointing from node i to node j, ci is the

clustering community of node i, m =
∑

ij aij the total weight of all edges. The

delta function, known as Kronecker delta, returns 1 if ci corresponds to cj , 0

otherwise.

Note that edges make an higher contribute if kini and/or kouti are small.

The step before the clusters’ evaluation is their identification: this procedure

starts with the division of the network into just two communities.

Let si be 1 if it’s assigned to the first community,−1 if it’s assigned to the second.

Note that this implies that
∑

ij s
2
i = n. Equation can be re-written as

Q =
1

2m
sTBs (3.8)

where si is the vector whose elements are the si and B the so called modularity

matrix with elements

Bij = Aij −
kini k

out
i

m
(3.9)
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The goal is now to find s that maximizes Q for any given B.

Since in the undirected case the modularity matrix is symmetric, the lack of

symmetry of the direct case is solved by using

Q =
1

4m
sT (B +BT )s (3.10)

where matrix B + BT is symmetric per construction. Note that the constant 1
4m

is conventional, but doesn’t influence the positioning of Q maximum.

Q =
∑
i

vTi (B +BT )
∑
j

ajvj =
∑

β(vTi s)
2 (3.11)

with β representing the eigenvalue of B + BT corresponding to eigenvector vi.

Assuming the eigenvalues to be labelled in decreasing order β1 > β2 > .... > βn,

under the constraint sT s = n the maximum of Q is achieved when s was parallel

to the leading eigenvector v1, condition forbidden by si assuming values 1 or -1.

So, the optimal solution consists of a s vector whose element si = 1 if v(1)i > 0

and si = 0 if v(1)i < 06. where v(1)i is the i-th element of the eigenvector v1.

There are a variety of ways of generalizing the approach to more than two com-

munities but the simplest is repeated bisection.

Thus, the algorithm consists of dividing the network in two and then divide the

groups and so on, until the modularity coefficient stops to increase. The sub-

divisions following the first step require a generalization of the method above,

considering the change in modularity of the entire network when a community g

within in is divided.

∆Q =
1

2m
[
∑
i,j∈g

(Bij +Bji)
sisj + 1

2
−
∑
i,j∈g

(Bij +Bji)]s (3.12)

=
1

4m

∑
i,j∈g

[(Bij +Bji)− σij
∑
k∈g

(Bij +Bji)] (3.13)

=
1

4m
sT (B(g)B(g)T )s (3.14)

having

B
(g)
ij = Bij − σ

∑
k∈g

Bik (3.15)

6if v(1)i = 0 the sign of si is equally good.
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where B(g) is the submatrix of B having the sum of each row subtracted from

the diagonal element. Although B(g) is not symmetric B(g) +B(g)T is symmetric

and it’s possible to apply the same method as before.

So, after deriving this symmetric matrix, its eigenvalues and eigenvectors, matrix

s is valorized and the cluster partitioned. The algorithm stops if doesn’t find

divisions giving a positive value of ∆Q, when every community reaches this

state the algorithm ends.

3.4 Centrality

3.4.1 Centrality for weighted directed graphs

Centrality in network analysis is a measure of a node’s importance. There is a

number of measures of centrality in use. Three of the most used are betweenness

centrality, closeness centrality, and eigenvector centrality.

Most of the centrality indices are only concerned on the presence or absence of

a tie between two nodes (binary network), and when applied on weighted net-

works (in which an attribute is used to weight the tie between nodes) a loss of

information occurs. Moreover, betweenness and closeness centrality are based

on the shortest path, a concept that has low impact on the national graph studied

because of the high number of connections.

In the context economies the most appropriate centrality index is the eigenvector

centrality (James McNerney, 2009). In graph theory, eigenvector centrality (also

called eigencentrality or prestige score) is a measure of the influence of a node

in a network. Relative scores are assigned to all nodes in the network based on

the concept that connections to high-scoring nodes contribute more to the score

of the node in question than equal connections to low-scoring nodes. The con

of eigenvector centrality is that it can give strange results for directed graphs, in

particular, if a vertex is not in a strongly connected component of size at least 2,

then its eigenvector centrality will be 0. If the country network is dense enough,

every country i both imports to and exports from every other country j, then this

won’t be an issue.

In this work it has been chosen to apply the entropy based centrality, a new cen-

trality index suitable for weighted directed graphs, introduced and explained in
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detail in A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes

in Weighted Networks (Tong Qiao et Al, 2018).

3.4.2 Entropy based centrality

The total influence of a node is made of two parts: its local power and its indirect

power.

First, the complete network has been deconstructed into several serval subnet-

works centered on each node. The out-degree centrality of a node interprets the

purchasing flow, and the in-degree centrality reflects its sales.

Given a directed weighted graph G(V,E,W ), for a vertex vi, the i-centered sub-

graph represented by Gi is composed by node i and its neighbors. The sub-

graph degree centrality of node i and its neighbor j, referred as SDCi, equals

the sum of its in-degree centrality and its out-degree centrality, namely SDCi =

DCi
in +DCi

out.

If a node has only the in-degree centrality non null, the SDC of that node is given

by the SDCi = DCi
in and the same goes for the out-degree centrality.

In order to quantify the local power of a given node, the novel definition of

entropy centrality takes both structural entropy and frequency entropy into con-

sideration. The structural entropy, based on the topographic properties of the

subgraph, evaluates the activity and strength of a given node in specific subnet-

work. The frequency entropy, which takes advantage of information contained

in the weights of directed links, shows the accessibility of a given node.

The structural information entropy for node i is stated as

Ii
s = −

M+1∑
i=1

SDCi∑M+1
i=1 SDCi

log
M+1∑
i=1

SDCi∑M+1
i=1 SDCi

(3.16)

where M denotes the number of neighbors of node i.

The weight of directed links acts could be read as an indicator of the interaction

frequency. Of course, it’s clear that this is an approximation, since a high edge’s

weight between two industries doesn’t necessary indicate an high frequency flow,

but it could be due to the elevate price of the goods.

The previous consideration leads to the definition of the interaction frequency
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entropy of node i as follows,

Ii
f = −

M+1∑
j=1

fij∑M+1
j=1 fij

log
M+1∑
j=1

fij∑M+1
j=1 fij

(3.17)

where fij indicates the money flow of the directed edge from i to j.

The local influence of node i on its one-hop neighbors, denoted as LIi, equals

the summation of the structural information entropy and the frequency entropy,

multiplied by two coefficients respectively

LIi = w1 ∗ Iis + w2Ii
f (3.18)

where w1 e w2 represent the weight coefficients, respectively, and w1 + w2 = 1.

The indirect power of a node in the network is calculated through the two-hop

influence propagating model, whose core assumption is that meaningful influ-

ence can no longer be detectable beyond the boundary of three or four degrees.

The indirect influence of node i on its two-hop neighbor p is

IIip =

Nip∑
p=1

LIi ∗ LIj
Nip

(3.19)

where Nip is the total number of common one-hop neighbor between vertices i

and p. The indirect influence on vertex i two-hop neighbors, is denoted as

IIi =

∑Mi

p=1 IIip

Mi

(3.20)

where Mi corresponds to the number of two-hop neighbors of node i.

Therefore, the total influence of node i is

Ii = θiLIi + θ2IIi (3.21)

3.5 Clustering

The study of community structure in networks has a long history and their de-

tection is of great importance in all the disciplines where systems are often rep-

resented as graphs.

One of the most used metrics is the clustering coefficient, capable to quantify the

tendency of vertices to collect in clusters, with many edges joining vertices of
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the same cluster and comparatively few edges joining nodes of different commu-

nities. Such clusters can be considered as fairly independent compartments of a

graph.

The identification of industrial clusters using input–output tables (IOTs) has re-

ceived increasing attention from regional economists, economic geographers and

policymakers. Clustering allows industries to develop economies of scale, raise

their productivity, decrease transaction costs, and encourage innovation (Porter,

1990).

3.5.1 Clustering Coefficient

The clustering coefficient was originally introduced for binary, undirected graphs,

and the idea behind is that the extent to which i’s neighborhood is clustered

can be measured by the percentage of pairs of i’s neighbors that are themselves

neighbors.

Node’s i clustering coefficient (Ci) in undirected networks can be defined as the

ratio between all triangles actually formed by i and all the triangles i could have

formed. Therefore

Ci(A) =
1
2

∑
j 6=i
∑

h6=(i,j) aijaihajh
1
2
di(di − 1)

=
(A3)ii

di(di − 1)
(3.22)

where A is the adjacency matrix, with aij = 1 if there is a connection between

i and j, 0 otherwise, (A3)ii individuates the ith element of the main diagonal of

A3. Each product aijaihajh is meant to count whether a triangle exists or not

around i, while di is the degree of node i and the denominator quantifies the

number of triangles that could possibly exist.

Fagiolo’s work (Fagiolo, 2007) presents a weighted, directed version of the clus-

tering coefficient for any type of triangle pattern.

First, the clustering coefficient for a weighted undirected graph is introduced.

Given the NxN matrix W , symmetric, where wij takes account of the amount

exchanged between sectors i and j (normalized as a fraction of the receiving

sector money in-flow for the year considered). In this case, without a loss of

information, it can be stated that wii = 0 for all i. Let the clustering coefficient

be

C̃D
i (A) =

1
2

∑
j 6=i
∑

h6=(i,j)w
1/3
il w

1/3
ih w

1/3
jh

1
2
di(di − 1)

=
(W 1/3)3ii
di(di − 1)

(3.23)
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where W
1
3 = w

1
3
ij is obtained from W by taking the 3rd root of each entry and

1
2
di(di − 1) is the maximum number of triangles including i as a vertex.

The clustering coefficient captures the chunkiness of the network at the level of

triangles of nodes, so, analyzing a weighted directed network, it’s important to

consider the edges’ directions in each triangle.

Given matrixW , now wij is a value proportional to the weight of the money flow

from i to j in the network. The index considers the number of directed triangles

formed by i and valorized through the edges’ weights

C̃D
i (A) =

t̃Di
TDi

=
[(W 1/3 + (W t)1/3]3ii

2[dtoti (dtoti − 1)− 2d↔i ]
(3.24)

where di is the degree of node given by the sum of its in- and out-degree. Node i

can be possibly linked to a maximum of dtoti (dtoti −1) pairs of neighbors and with

each pair can form up to two triangles as the edge between them can be oriented

in two ways. However, this number also counts "false" triangles formed by i and

by a pair of directed edges pointing to the same node d↔i and for each of them

there are 2 false triangles.

The overall clustering coefficient for each type of graph is

CC = N−1
N∑
i

Ci (3.25)

in particular for the WDG

CC = N−1
N∑
i

C̃D
i (3.26)

The CC for weighted directed networks (3.26) considers all the possible triangles

as their direction was irrelevant.

In directed graphs, triangles with edges pointing in different directions have a

completely different interpretation. Looking at figure 3.8 there are 4 possible

patterns of directed triangles for i’s perspective: cycle, middleman, in and out. (i)

Cycle triangles with a cyclical path, (ii) middleman having one of i’s neighbors

reaching both the other not-i nodes directly and passing through i, (iii) in with

two inward edges to i and (iv) out where i holds two outward edges.

In order to measure clustering in directed network, it’s important to distinguish

between the motifs in figure 3.8.
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Figure 3.8: All eight different triangles with node i as one vertex

Each CC is derived from the ratio between the number of triangles of that pattern

with i as vertex and the total number of triangles of that pattern that i can form.

The CC for each pattern is given by

C̃∗i =
t̃∗i
T ∗i

(3.27)

where ∗ individuates the specific typology. Let T cyc1 , Tmid2 , T in3 , T
out
4 the maxi-

mum number of triangles per type that i can possibly form, and tcyc1 , tmid2 , tin3 , t
out
4

the actual number of triangles per type

Notice that,

TDi = dtoti (dtoti − 1)− 2d↔i = T cyc1 + Tmid2 + T in3 + T out4 . (3.28)

and the total clustering coefficient is

C̃∗i =
tcyc1 + tmid2 + tin3 + tout4

TDi
(3.29)

Table 3.2: Number of possible triangles for each pattern
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3.6 Cascading failure tolerance Analysis

The cascading failure tolerance analysis allows to classify sectors according to

their diffusion properties, a sector with good diffusion properties distributes the

effects of a shock to a wider set of industries as oppose to concentrate the effect

into itself or just a few others.

The idea to reproduce a cascading failure tolerance analysis has been taken from

Ranking the economic importance of countries and industries (Wei Li et Al,

2017). Their goal was to introduce a methodology to quantify the importance of

a given industry belonging to a given country for the global economic stability

with respect to other industries, both in the same countries and in others.

They assumed that the failure of an industry in country A does not reduce the

revenue of the other industries in that same country A, because the government

is able to make a quick adjustment, such as a central bailout, in order to mitigate

the impact to other industries within the country.

Here, the cascading failure analysis has been applied within each country and

within the global network, to evidence the connections among the industries.

The simple idea behind this analysis is that, if industry i fails, other industries as

suppliers won’t be able to sell their goods to industry i. The loss of each industry

is a reduction of revenues by a fraction p′, which is the revenue reduction caused

by industry i and divided by the industry j total revenues:

p′country,year =
x(i)

y(j)
(3.30)

The tolerance fraction p represents the threshold above which the revenues re-

duction has a significative impact on the industry, to the point of not manage to

operate normally. When the reduced revenues fraction p′(i) is larger than the

threshold, industry i fails. But, the failure of industry i, could trigger a series of

cascading failures. fails if p′ > p.

survives if p′ ≤ p.
(3.31)

Here, we assume that the threshold is the same for all industries, and that every

industry fails when its p′ > p.

The methodology can be schematically illustrated as follows. In step 1, industry

i fails. This causes other industries to fail if their p′ > p. Assume that in step
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2 industries j, k and l fail. The failure of these industries in step 2 will reduce

other industries’ revenue and cause more industries to have a reduced fraction

p′(i).

Eventually, the system reaches a steady state in which no more industries fail.

The surviving industries will all have a reduced revenue fraction that is smaller

than the tolerance fraction.

To determine how much the failure of each industry would impact the stability of

the economic network, the tolerance fraction p varies from 0 to 1 and measure the

fraction of surviving industries left in the network. When the tolerance fraction

approaches 0, any revenue reduction caused by the failure of one industry can

easily destroy almost all the other industries in the network, and the network will

collapse. When the tolerance fraction approaches 1, all the industries can sustain

a large reduction of revenue, and the failure of one industry will not affect the

others.

Chosen the percentage of the networks that is wanted save after the shock, the

algorithm is run for every sector. The result is a threshold for every sector7

that corresponds to the maximum revenue reduction percentage above which

the sector receiving the money flow fails. The higher the threshold the more

important the industry is in the spreading of the shock.

7The threshold applies to all the money flows reduction in the network.
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Chapter 4

Identification of the Italian key

sectors

This chapter aims at finding the most important sectors in the Italian economy.

The first paragraph presents an outlook at the Italian socio-economic context,

while the following sections deal with the analysis of the Italian graph. The car-

dinal concept in the development of the analysis is that importance of a node in

complex networks is based on the view that it is important if it occupies a strate-

gic position in the graph.

4.1 Outlook on the Italian economy and the indus-

tries’ relations

4.1.1 Evolution of the Gross domestic product

The Italian economy is one of the most influent economies in the world, it occu-

pies the ninth position in the international ranking for size.

In 21st century the Italian economy entered a phase of substantial stagnation,

characterized by extremely low growth.

The biennium 2007-2008 were the years of the USA financial crisis, during the

early phases of the financial collapse, Italian banks and investors had suffered
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little since they were not very heavily involved in highly speculative activities.

Italy began to show sign of the crisis in the second quarter of 2008 with the

pouring of the financial crisis on the real economy; as it possible to observe in

figure 4.1, the GDP growth was positive until 2008 when started its negative

path, despite of a brief period of recovery during 2010 and early 2011, with the

worsening of the sovereign debt crisis of some European countries and with the

growing climate of distrust towards Italy, high-debt country, the economy once

again encountered a setback and a new recession began1.

In the period of the great recession (2008-2013) the Italian economy suffered

the loss of a substantial part of its production capacity, but in the main time its

structure has evolved. Figure 4.2 shows as GDP starts decreasing in 2008, how

there is a slight recovery around 2010, but it also evidences that the Italian GDP

has not yet reached the amount it was in year 2000. The last months of 2014

showed weak signs of recovery, in a framework still characterized by recessive

trends that affected both the manufacturing industry and the service sectors more

related to industrial demand.

Figure 4.1: Italian GDP growth rate per year

Figure 4.2: Italian GDP distribution in USA$ for the period 1980-2019

1The GDP data have been taken from www.worldbank.org
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4.1.2 Economy structure and export

Italian industry is dominated by small and medium-sized enterprises, mostly

manufacturing, while large enterprises are few. In a developed economic sys-

tem, services play an increasingly important role; in Italy they explain about

73% of the added value of the economy, compared with the 20% represented by

the manufacture.

Much of the service provision is directly related to the production process (about

40% of the overall added value of the economic system). In particular, the use

of services as intermediate inputs affect the productivity of the economic system

either indirectly (through outsourcing production or abroad displacement of low

value added activities towards external suppliers), both directly. In figure 4.3 are

presented the six sectors for highest value added complemented by their gross

output, the industries don’t show the same ranking for the two metrics but there

is a positive correlation between the two indices.

Figure 4.3: The 6 sectors with the highest value added, Italy 2014

Made in Italy is one of the greatest prides of the country, it’s a sign of top quality

products and exclusive design apart. The impact of exportations on the national

GDP varies around 25% and 30%.

Table 4.1 shows the sectors with the highest export amount; these industries

have a stable position in the top ranking of exportations, while the others change

slightly position in the years. Italy is known worldwide for the products’ quality

and it isn’t surprising that the Italian export is based primarily on manufactur-

ing, with manufacture of machinery, textiles and food leading the way. Table 4.1

ranks the sectors which contribute most to exports.

The export performance in the considered period of time shows a tendency to

increase. It’s to be noted that the two decreases, in year 2009 and 2012, should

be considered in the context of the financial crisis and that, despite of the im-
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provement in 2014 the exports amount is not yet at the pre-crisis level.

Table 4.1: Ranking of industries for export amount, an extract of the 10 best exporter Italy 2014

In the biennium 2013-2014, the growth in exportation has involved mainly sec-

tors with low propensity to export, such as manufacture of other transport equip-

ment(no motor vehicles or trailers), health and social activities, postal services

and scientific research; all sectors with low export amount. Graph 4.4 shows the

export development with consideration on the role the five most important indus-

tries play, the height of the bar represents the total export amount and for every

year the development of the five main sectors is highlighted; from the graph

emerges that in the whole period machinery and textiles industries have played a

dominant role with a tendency to increase.

Figure 4.4: Exports in the time period 2000-2014, with focus on the main exporter sectors
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4.2 Italian network

4.2.1 Density and graphical representation

A first structural property of the economy is the density of the network, index of

the amount of interactions between sectors relative to the total number of con-

nections that could exist if all nodes were linked.

The density of the Italian graph in year 2014 is 89.67% that means the network

is really aggregated and each single node is almost connected with all the others.

The Italian density has always been around 90%, in the period considered, and it

has an increasing trend.

Figure 4.5: (a) Italian graph density evolution in the years (b) number of edges in the national

Italian graph with the threshold applied

The graphic representation of the Italian economy, figure 4.6 and 4.8, show only

the backbone of the network, to have an easier to read graph, because with a

density around 90% the complete graph may be confusing.

Identifying the backbone of a network is particularly interesting for IO networks,

by eliminating less important links, one can find the most essential structure

without being overwhelmed with massive amount of non-essential links. The

backbone of an economy extracted from the corresponding IO network reveals

the most essential linkages of all sectors of the economy. The stability of this

backbone makes the entire economy resilient even if some non-essential linkages

are weakened or broken. Early popular approaches to extract network backbone

include the minimum spanning tree method which removes links of a network to

minimize the total link weights while keeping all nodes connected or the use of

a predefined threshold. Here the second approach was applied, because it allows
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to visualize the most important connections and how they change in the time and

since the spanning tree would reduce the network flows represented to around

2% of the exiting connections.

The Italian map changes in the years, comparing figure 4.6, representing the sit-

uation in 2000, to figure 4.8, dated 2014, it’s possible to notice some differences.

In the latest graph, some nodes (E37-E39) have a higher gross output, in fact the

nodes have a higher radius and a different color, or a lower one(C23)2.

The number of blue arrows, the heaviest arcs in the network, is almost the same

in both periods. In both the years every "blue node" has at least one influent

edge, some of these edges also connect red nodes but there are few green nodes

connected by such edges, meaning that large money flows are not sporadical but

they go with bigger sectors. In addition, in the time period considered there was

not an homogeneous growth in the flows, but some connections have grown more

in spite of others. However, not all the heaviest connections in 2000 persists also

in year 2014, G46, strongly connected to M69-M70, and C13-15, transferring

heavy flows to G46 and G47, are no more heavily connected in 2014; In the sec-

ond graph, G46 develops a new strong connection with sector K64 and keeps the

one from C10-C12. K64 receives also a heavy money flow from vertex L68.

In both years the isolated nodes are the same, isolated nodes in this represen-

tation could also identify nodes connected but whose connections carry a low

amount of money, among these A02 (forestry), A03 (Fishing), T(Extraterritorial

bodies) and U (household as employees). The local centrality index shows how

the edges in the economy have both in-degree and out-degree around 50, except

for these industries. While the forestry and the fishing sector have a discrete

number of connections in both years, sector T and sector U stay isolated.

2As explained in chapter 2.4 the nodes have a dimension proportional to their gross output

and the colors help to figure out the changes; in ascendant order of GO size there are green, red

and blue nodes.
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Figure 4.6: Italian graph year 2000, backbone representation with 0.03% threshold

Figure 4.7: Italian graph year 2014, backbone representation with 0.03% threshold
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4.2.2 Modularity

This section shows the result application of the partitioning method illustrated in

section 3.4.1.

The group extraction is based on the condition that each partitioning increases

the modularity of the network, until there is an increase the process run; the

procedure has led to the identification of 6 groups listed below, except for the

biggest one that includes all the remaining nodes.

Group 1 consists of manufacturing industries of materials (metal and plastic),

construction and insurance. Group 2 agglomerates industries in the transport

business, water, air and couriers. Group 3 includes legal and administrative ser-

vices and the forestry and logging sector. Group 4 includes sectors belonging

to the social and academical domain, while group 5 encloses several services

industries plus manufacture of foods, chemicals and furniture.

• Group 1: Manufacture of rubber and plastic products, Manufacture of

basic metals, Manufacture of fabricated metal products (except machinery

and equipment), Construction and Insurance

• Group 2: Water transport, Air transport and Postal and courier activities

• Group 3: Legal and accounting activities ( head offices and management

consultancy activities), Administrative and support service activities and

Forestry and logging

• Group 4: Education, Human health and social work activities and Other

professional, scientific and technical activities; veterinary activities

• Group 5: Other service activities, Real estate activities, Computer pro-

gramming ( consultancy and related activities, information service activi-

ties), Accommodation and food service activities, Warehousing and sup-

port activities for transportation, Retail trade ( except of motor vehicles and

motorcycles), Wholesale trade(except of motor vehicles and motorcycles),

Wholesale and retail trade and repair of motor vehicles and motorcycles,

Sewerage; waste collection, treatment and disposal activities; materials re-

covery; remediation activities and other waste management services, Re-

pair and installation of machinery and equipment, Fishing and aquaculture,
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Manufacture of food products, beverages and tobacco products, Manufac-

ture of chemicals and chemical products and Manufacture of furniture;

other manufacturing

This analysis sees the national network only the presence and direction of the

edges, but not their weight. Group 5 is made of 14 sectors where each one is

connected with all the others and can’t be further divided. Also, the sectors be-

longing to the 6th group, not listed here for reading reasons, are fully connected;

Activities of extraterritorial organizations and Activities of households as em-

ployers are instead isolated.

Figure 4.8: Clusters, Italy 2014

4.2.3 Centrality

Centrality measure

The nodes’ centrality has been measured through the entropy based centrality

index introduced in chapter 3.2.2.

The index is obtained by the combination of the Local influence and of the In-

direct influence, however, for the purpose of this study greater importance has

been attached to the local index.

The Local Influence coefficient is itself a combination of two analysis, one on
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the structural connections and the other about the frequency of the interactions.

The Indirect Influence coefficient quantifies the ability of a node to reach, through

its first level neighbors, nodes not in its subgraph, the reason why it is frequently

0 depends on the nodes’ high degree; in fact, the more a node is connected the

less number of second level neighbors it has, and if the node is completed con-

nect except for isolated nodes this coefficient happens to be zero, a recurrent

condition in the graph. Both indices ranking have a week correlation with the

strength distribution.

Table 4.2: The best 10 sector for local centrality index

Figure 4.2 lists the ten sectors with the highest centrality index, among these

it’s possible to individuate similar sectors; there is a set of sectors related to the

machinery manufacture and wholesale transport field (C30, C33, G45 and G46);

moreover, there are 2 sectors of the research area, M72 and J58; the remain-

ing sectors are two manufacturer industries, pharmaceutical (C21) and electronic

(C33), Administrative activities (N) and Mining and quarrying (B). Among these

sectors just N, C33, G45 and G46 have 54 connections, the maximum degree

possible in the network since over 56 vertices 2 stay isolated, but also the other

are strongly connected (both their in and out degree are still more than 50).

The remaining sectors are in fact in the top 6 sectors for indirect centrality in table

4.3. In fact, considering both indices for not fully connected vertices, emerges

that the ranking is almost the same, so for the purpose of this analysis it has been

chosen to prioritize the local index ranking.
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Table 4.3: The best 10 sector for indirect centrality index

Centrality development in 2000-2014

The centrality values derived meet the requirements of the statistical correlation,

in fact, each sector has a value in every year and a correlation monotone between

every pair of sectors persists; moreover, for every year the sectors have been

ranked for decreasing centrality values and for each one an ordinal value has

been assigned. The application of the Kendall correlation method has led to the

heatmap in figure 4.9, where the color code ranges from green (low similarity)

to red (high similarity).

Figure 4.9: Heatmap of the centrality ranking Kendall correlation for the period 2000-2014

The heatmap in figure 4.9 shows as there is a strong positive correlation among

the centrality index ranking for all the couples of years in the period, all having

a correlation higher than 68%. However, it highlights also the presence of three

different areas of highest correlation, period 2000-2008, the biennium 2010-2011

and the last three year presented. This peculiar conformation is doubtless due to
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the changes brought by the financial crisis.

The main difference among the detected areas is that in the period 2000-2008

the sector with the highest centrality is Mining and quarrying(B), whose ranking

decreases, reaching the tenth place in the last three years. Another important

sector in the first area is Public administration and defense (O84) that loses more

than 10 positions. Instead, Publishing activities (J58) and Manufacturer of phar-

maceutical (C21), not among the the most central in the first period, gain a high

centrality coefficient in 2012-2014. Also the scientific research industries (M72)

and Telecommunications (J61) improve their ranking during the last years.

Table 4.4: Sectors with highest centrality ranking in period 2000-2008
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4.2.4 Clustering

The Italian clustering coefficient development and its components

The clustering coefficient of every sector per year has been detected using the

method introduced by Fagiolo and explained in detail in chapter 3. Among

the components of the clustering coefficient, several works showed how out-

clustering could provide meaningful insights related to risk spreading, especially

in the context of systemic financial risk. In particular, it may reflect higher risk

because failure of the purchaser node in an out-triangle can trigger simultaneous

non-repayments to the seller nodes, and this, can make them unable to honor

their own obligations. The implication of high cycle-clustering is more ambigu-

ous, since nodes in the considered triangles act as both purchaser and sellers in

the network, so the consequences of a node failure are unclear.

Figure 4.10: Italy clustering coefficient 2000-2014

The Italian economy is characterized by a stable value of different clustering

coefficients over time. In figure 4.10 the evolution of the clustering coefficient

in period 2000-2014 is shown, emphasizing its 4 components; while the total

weight of the clustering coefficient changes over the time, the relative fraction of

the different triangles remains approximately the same. The cycle coefficient is

consistently lower than all the other, proving that economies tend to be acyclic

at the small scale of 3 cycles.

The clustering components steadiness is presumably linked to the stability of

structural properties in the economy network.
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The clustering coefficient development shows a fall after 2009 whose possible

explanation is that the booming economy before 2008 introduced more interac-

tions between industries, hence higher clustering coefficient, and the effects of

the financial crisis stifled the excessive relationships.

Figure 4.11: Scatter plot strength

Figure 4.11 relates the clustering coefficient of each sector to its strength; for

the three typologies of strength considered, in-strength, out-strength and total

strength, the clustering coefficient appears to be positively correlated. So, sectors

with a higher level of strengths also have a higher level of weighted clustering

coefficients, that indicates that sectors with larger total flows tend to participate

in more intense trade clusters.

Clustering coefficient ranking through the period 2000-2014

Among the sector with the highest clustering coefficient in year 2014, there are

akin industries, sectors related to the legal and administrative domain (N and

M69-M70), the Real estate and the Construction sectors (L68 and F), Wholesale

trade and land transport (G46 and H49).

It’s peculiar how the manufacturing does not stand out for its high clustering, ex-

cept for manufacture of machinery and metal products(C28 and C25) and man-

ufacture of food, beverages and tobacco (C10-C12); their highest ranking could

be justified by the fact that the automotive and food sectors have always been

one of the strengths of Italy.

Table 4.5 lists the 10 sectors with the highest clustering coefficient for the year

2014. All these 10 sectors have a clustering coefficient higher than the national

level, and the first three sector are two times more clustered than the average in

the whole network.
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Table 4.5: Top 10 sectors for clustering coefficient

Figure 4.12 shows the positive correlation between the clustering coefficient

ranking for all the years considered, the minimum correlation is 88% which is a

really high value. Moreover, in the heatmap is possible to individuate two areas

of higher correlation, the period 2000-2008 and the years 2010-2014.

Even if the clustering coefficient results have been proved positively correlated

in the years, there is a gap between the two detected areas that could be con-

nected to the financial crisis and the deep impact it had. Note in figure 4.10 the

clustering is distributed over three different values, the time partitioning isn’t the

same observed in the heatmap, but they are similar, especially considering the

stability of the clustering in period 2000-2008.

The high level of correlation shows as for every year the sectors with the high-

est coefficient are almost the same, with slightly differences in the order. In the

whole period the podium is monopolized by Wholesale trade, except of motor

vehicles and motorcycles, Construction and Administrative and support service

activities. Among the highest ranked sectors there are also Manufacture of ma-

chinery, Legal and accounting activities and Land transport and transport via

pipelines.

The main change among the ranking is that with the second half of the time pe-

riod the financial sector (K64) gains a higher coefficient, while the Warehousing

sector (H52) loses points. In addition, also energy industries (D35) and Financial

service activities (K64) play a major role in the second detected area.
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Figure 4.12: Heatmap of the clustering coefficient Kendall correlation between each couple of

years (2000-2014)

4.2.5 Failure tolerance analysis

Analysis development

The application of the failure tolerance analysis to the Italian graph has required

some changes to the procedure explained in the previous chapter.

The implementation is to fail one sector at a time and find the threshold that

grants the network survival rate desired. Working on national graphs the failure

of an industry results in a loss for all industries that received money flow from

the sector under consideration. The adopted interpretation of the failure tolerance

analysis looks at the minimum threshold to make more than 30% of the network

survive, considering a higher threshold p value as sign of a major impact on the

vulnerability of the network. The choice of not focusing on the percentage of

nodes survived is justified by the fact that it takes similar values for each node

and consequently brings a low significance.

Thus, for the purpose of this analysis, the threshold p of an industry is the mea-

sure of its importance in the economic network, in fact, a sector with good dif-

fusion properties is such that it distributes the effects of a shock to a wider set of

other sectors as oppose to concentrate the effect into itself or just a few others,

so it shows a higher influence on the economy.

Figure 4.13 displays the behavior of the largest thresholds with different levels

of aggregation, the largest p increases from 2000 to 2008, and then decreases in

2009 and 2012, the other threshold show a similar, but less mark, behavior. In

addition, the average on the 4 largest threshold is still near to the largest thresh-
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old, while computing the average on eight values makes the threshold decrease

of almost 5%, meaning that there are just few really high thresholds.

Figure 4.13: Development of (a) the largest threshold in the time period, (b) the average of the 4

largest thresholds and (c) the average of the 8 largest thresholds

The results of the failure tolerance analysis have a positive correlation with gross

output, value added and out-strength of the nodes. A sector shows to have a

higher threshold if originates heavy weight edges with sectors which in turn are

heavily connected. Figure 4.14 evidences the correlation, in particular the com-

parison out strength-threshold.

Figure 4.14: Scatter plot of different measures in comparison with the failure tolerance analysis

thresholds
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Ranking in the different years

The threshold values range from really small values, around 0.1%, to high values

as 20-22%. In table 4.6 are listed the ten sector with the largest threshold. For

example, the largest threshold is around 22% and refers to sector I representing

Accommodation and food service activities industries, this threshold seems re-

ally high but in spite of that, in case sector I fell it would result in the failure of

the Food and beverage and the Fishing and aquaculture sectors (C10-C12 and

A03) just as first step, even with such a large threshold. Another example is

the failure of Manufacture of machinery and equipment (C28), where keeping

a threshold of 20% would still trigger the failure of Manufacture of fabricated

metal product (C25).

It is interesting to note that the percentage of surviving industries is always a very

high value, although the value to stop the procedure was just the 30% survival of

the network.

Table 4.6: Ranking the 10 sectors with the largest threshold derived from the tolerance failure

analysis

Comparing industry order rankings for different years allows to catch the simi-

larity in the economic environment across a period of fourteen years.

The heatmap of the Kendall correlation, figure 4.15, shows three areas of high

correlation between all the pair of years from 2000 and 2008, biennium 2010-

2011, and between year 2012, 2013 and 2014.

All the couple of years in the graph have a discrete correlation with a mini-

mum value around 74%. In the whole time period Construction (F), Manufac-

turer of machinery (C28) and manufacturer of food product (C10-C12) keep the

highest position in the ranking, while Accommodation and food activities stays

around the 8th place until 2009. In years 2009-2011 Retail trade (G47) acquires
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a large threshold, and Warehousing and support activities (H52) gains a place

in the top ten, despite its low ranking in period 2000-2008. Moreover, both

the manufacture of textiles and wearing apparel (C13-C15) and manufacture of

furniture(C31-C32) are far less important in the second area.

Figure 4.15: Heatmap of the failure tolerance analysis Kendall correlation between each couple

of years (2000-2014)
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Chapter 5

Comparison with the main

European and World systems

This chapter compares the Italian graph structure to the other national graphs

considered. The comparison is conducted using the density, the graphical fea-

tures, the assortativity, in year 2014, and the clustering coefficient development

in time period 2000-2014. Moreover, in the paragraph, a global failure tolerance

analysis is developed to rank the importance of the Italian sectors in the global

environment.

5.1 Outlook

In this study, countries that have strong trade relations with Italy and a high GDP

are considered; among these Italy supports increased trades with France and Ger-

many.

Figure 5.1 shows the GDP for each nation, we can see as the United States clearly

dominate the economic scene. China, the closest follower of USA, has a GDP

score which is 52% of USA’s GDP. Japan’s gross domestic product is about three

quarters of China’s value and Spain has the lowest current GDP in the considered

sample1.

When the per capita GDP is considered, figure 5.2, China loses seven position.

The first three countries are USA, Germany and United Kingdom, respectively.

1Data have been taken from www.worldbank.org
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Even the latest per GDP, Russia, has higher per capita GDP than China.

Figure 5.1: 2014 GDP ranking

Figure 5.2: 2014 GDP per capita ranking

In 2014 the Global economy keeps showing several signs of weakness and few

signs of strength. The country in the best condition seems to be the United States,

which may finally be on a sustainable and healthy growth path. During the years

of crisis, the world economy has relied on the emerging markets to keep the

global economy afloat. Together with the developing countries, they accounted

for three-quarters of global growth over the past half decade. However, a grow-

ing number of emerging markets are slowing down as the economic cycle turns.

Overall, the direction is positive, but global growth is still too low and too frag-

ile.

Figure 5.3 illustrates the GDP growth development in the time period. In the

biennium 2008-2009 all the countries exhibit a fall, with a negative growth in-

dex, except for China whose growth rate decreases but stays positive. For China

after a slight increase in 2011 the growth rate keeps lowering. Russia shows the

highest jump from 2008 to 2009, going from a +5% increase to lower than -5%
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decrease.

Figure 5.3: GDP growth

5.2 Networks’ properties

5.2.1 Graphs comparison

The first measure considered as comparison is the density, that is also indicator of

connectivity, table 3 in the appendix. No country has a density coefficient equal

to 1, meaning that some domestic sectors in these countries are not connected

to one another in terms of intermediate good flow. USA is the most connected

country (around 95% density), while the less connected are China and Russia,

respectively 67-69% and 33-34%.

The representation of the national input-output tables as graphs has led to the

identification of two groups; on one hand the European countries and the USA,

while on the other China, Russia and Japan. The main difference among these

two groups stays in the number of heavy edges and the fact that Russia and China

have a lower density than the other nations. The comparison between figure 5.4

and figure 5.5 well exemplifies the two groups. Russia, compared to Germany,

has more high weight edges connecting the sectors with highest gross output and

has a higher percentage of disconnected nodes in the backbone network; Rus-

sia is the most extreme example of this division, in fact, despite all the other

countries it has more nodes with a high gross output heavily connected, which

represents an economy centered around a reduced number of sectors.
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Figure 5.4: Germany, 2014

Figure 5.5: Russia, 2014
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5.2.2 Assortativity

Assortativity measures the propensity of a node to connect with vertices of sim-

ilar degree. Notice that when calculating the assortativity for in-degree, out-

degree, and total-degree, respectively, we consider the vertices as the neighbors

of a given node if they are connected with the given node by only incoming

edges, by only outgoing edges, and by either incoming or outgoing edges, re-

spectively.

This measure shows as for all the national graphs considered, high degree nodes

tend to be connected with vertices with the same degree. However, this index

loses value in the case of high density weighted directed graphs.

An alternative way to calculate the assortativity structure takes into account the

in(out)-strength of each node in comparison with the respective average value

of its neighbors. The negative assortativity correlation coefficient indicates that

there is a disassortative architecture in the network, meaning that there is a core-

periphery structure, while if the assortativity correlation coefficient is greater

than zero, then there is an assortative structure in the network.

Figure 5.6: In-assortativity and Out-assortativity, Italian graph in period 2000-2014

As it emerges from the graphs in figure 5.6, the Italian economy shows a disas-

sortative behavior; dealing with the same type of analysis on all national maps,

it turns out that the disassortative structure is common to all. This finding means

that heavy connected sectors are not just connected between their similar, but

they have significant connection also with "smaller" sectors. In figure 5.7 is

shown the disassortative structure of both the Spanish and French graph as a

sample.
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Figure 5.7: In-assortativity and Out-assortativity, France and Spain, period 2000-2014

5.2.3 Clustering

In this paragraph, the static and evolving clustering properties of the Italian

graph, derived using the method introduced by Fagiolo, are compared to the

other nations’ results.

As for the Italian case, for the whole sample of countries the clustering coeffi-

cient values has a positive correlation with the sector in(out)-strength.

The graphs in figure 5.8 show the development of the clustering coefficient of

the countries in comparison with the Italian case, in black; is evident how Japan

and Spain are less clustered than Italy, France, USA, Russia and China have a

higher clustering coefficient, the UK has lower values than Italy except for the

years 2008-2012, while Germany’s coefficient follows almost the same pattern

of the Italian one, but it assumes higher values in the financial crisis period

The clustering properties of each country undergo significant temporal change,

Japan and China are the most stable, while Russia and USA undergo heavy vari-

ations; in addition, there is not a stable trend for each country, especially USA

and Russia show to have opposite trends.

The financial crisis has triggered changes in the clustering property of the coun-

tries that are not homogenous, either an increase (Russia, Spain, UK and Ger-
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many) or a decrease (Italy, France, USA) of the average clustering coefficient.

Figure 5.8: Collection of graphs showing the development of the countries clustering coefficient

over the time

However, there are properties of the networks which are rather stable over time

as the development of the different components of the clustering coefficient. The

values of the fractions do slightly change over time, but the structure is stable,

as in the Italian graph, over time the relative fractions of the different triangles

remain approximately stable, with the cyclic coefficient having a smaller values

than the others; the fact that the cycle clustering coefficient is consistently lower

than all the others suggests that economies tends to be acyclic at the small scale

of 3-cycles. In figure 5.9 are reported UK and France as example, but this be-

havior effects all the national graphs considered.

In table 4, shown in the appendix, the clustering coefficients and the Herfindahl

index2, for each country in the time horizon, are listed. Small values of H cor-

respond to relatively uniform distribution, while large ones suggest the presence

of dominant players. In the group of nations examined, Russia has the highest

Herfindahl index, followed by China, while all the other nations have almost the

same values. This finding would appear to be supported by the observation of

the Russian backbone networks.

2The ordinary Herfindahl index is given by
∑N

i=1(
ci∑N

j=1 cj
)2, N is the number of sector and

Ci the clustering coefficient of sector i.
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Figure 5.9: The dynamics of the clustering coefficient triangle fractions

5.3 Failure tolerance analysis

Following several decades of rapid globalization, the global economic system

has become a complex network, composed by industries in different countries.

In such a highly interlinked system, local shocks involving single industrial sec-

tors may lead to a large disruption in the aggregate output. The cascading failure

tolerance analysis applied to the global network helps to identify and rank the

influence of the different industries in the stability of the world economy3.

For the analysis, the fourteen countries with the largest gross output dollar val-

ues in 2014 have been selected4 to compose the economical graph into which

the shock happens. The graph contains 784 vertices, collection of all the 56 in-

dustries of each selected country, and has edges which represent the money flow

among all industries regardless of their country, there are so both intra-country

and inter-country relations5.

The basic concept behind this procedure is that, differently from the analysis for

the Italian case, the failure of industry i in country C doesn’t affect the other

industries in that same country C, but only triggers money flow reduction for

the other countries; each State is, in fact, supposed to be able to make a quick

adjustment to weaken the impact of the shock to other sectors within the nation.

3In chapter 4 the failure tolerance analysis has been applied to the Italian graph, not consid-

ering the other countries.
4Australia, Brazil, Canada, China, France, Germany, India, Italy, Japan, Korea, Russia,

Spain, UK and USA.
5The data have been taken from the World input output table 2014 released by the WIOD in

2016.
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The procedure derives a threshold for each sector that grants at least a 90% sur-

vival rate of the global network built; the larger the threshold is, the more influent

the sector is in the economy. When the threshold p or a larger value is taken as

maximum revenue reduction that doesn’t cause failure, once the failure cascade

in the system is over, almost all the global network survives (more than 90% of

the remaining industries).

Figure 5.10 shows the reaction of the network to the failure of the Chemical

manufacturer sector in the USA and the Manufacturer of motor vehicles sector in

Germany as their thresholds rise; for both the industries the network survival rate

grows gradually with the threshold increase, until at a certain threshold there’s a

jump to a really high percentage of survival, this behavior affects all the indus-

tries under consideration.

Figure 5.10: Fraction of surviving industries as a function of the tolerance threshold for the

failure of a German sector, in red, and of a USA industry, in blue

The analysis has been run for all the countries and has led to a ranking of all the

industries. Considering just the Italian case, in table 5.1 are listed the 10 Italian

sectors with the highest threshold, with Manufacture of machinery equipment

(C28), Manufacturer of electrical equipment (C27) and Manufacturer of chemi-

cals (C20) on the podium.

Comparing the impact that the failure of an Italian industry has at national level

with that of the global one we can see that the values of the thresholds differ by

an order of magnitude, fully justified by the different sizes of the networks, and,

moreover, that the two rankings differ on the typology of sectors with the highest
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threshold, while the first ranking collects both services and production sectors,

the ranking derived by the global analysis is composed by mainly manufacturer

industries.

This may be motivated by the fact that the Italian service sectors are mainly fo-

cused on the Italian field, while the manufacturer industries, that have a strongest

history and background, have developed strong relationships with the other na-

tions, and are so capable of a major influence on the global economy.

It is interesting to notice how seven on the industries in figure 5.1 are part of the

top ten sectors for export amount, except for Wholesale, retail trade and repair

of motor vehicles, Construction and Human health activities. In addition, an in-

dustry as Manufacture of textiles and wearing apparel that is the second one for

exportations is not include in this last ranking.

Table 5.1: Ranking of the top 10 Italian industries for threshold derived from the global failure

tolerance analysis

Considering the global industries rank, it appears that the high threshold of the

manufacturer industries is a feature common to all the national economies, es-

pecially Manufacture of machinery and equipment (C28), Manufacture of motor

vehicles (C29) and Manufacture of other transport equipment (C30). Other two

industries with a significant threshold are Manufacture of computer, electronic

and optical productsand (C26) and Manufacture of chemicals and chemical prod-

ucts (C21).

Looking at the 30 largest thresholds in 2014, half of the industries belong just to

three countries, in order of importance United States, China and Germany6. In

Ranking the economic importance of countries and industries the methodology

6To rank the importance of a given country the average of the largest four tolerances of

industries is used.
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presented here was applied to the time horizon 1995-2011 in order to map the

development of the countries from year to year, from their analysis it emerges

that the economic importance of China relative to that of the United States shows

a consistent increase in the years.

The failure tolerance analysis represents indeed an instrument capable of finding

the key sector in the transmission of a shock on the global scale and of illustrat-

ing how the economic power architecture in the world’s economy is subject to

changes over time.
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Conclusion

The analysis developed in this thesis has allowed to study the Italian economy as

a set of interconnected agents and to overcome the static view provided by the

input output tables.

The national tables and the global input-output table have been converted into

weighted directed graphs mapping the money flow exchanged between one in-

dustry and another.

In the first place, the whole set of graphs has been studied for the purpose of

finding the main properties of such networks. All the national maps have been

shown to have some common features, such as high density, in-out degree left

skewed distributions and power law distribution of the edge weight tail. These

findings have helped to conduct more appropriate analysis in order to classify the

role each sector plays in the economy. The asymmetric flow distribution has led

the choice to model the economies with a weighted directed graph and, together

with the symmetry of the in and out-strength distribution have characterized the

network as an environment subject to the propagation of shocks that could gen-

erate a sizable disturbance.

The most significant among the considered indices are centrality, clustering and

the failure tolerance analysis threshold. The first one ranks the importance of a

sector considering the in and out degree and its out flows, the second one gives

an interpretation of the chunkiness level of the map and the most involved sec-

tors, while the last one classifies the sector regarding the role they play in the

spreading of a shock in the considered network. All of them prove to have a pos-

itive correlation with the values obtained in the different years, and, especially

they show to have two high correlation areas, period 2000-2008 and years 2012-

2014; this result shows that the financial crisis of 2008 had an impact also on the

relations between sectors in the Italian economy.
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The techniques of analysis developed haven’t shown a unique ranking of the Ital-

ian industries, but it’s possible to notice some sectors with a higher position in

all the procedures, that is certainly a demonstration of the degree of importance

they have in the national economy.

Among these sectors there are the Wholesale trade sector, the Construction in-

dustry and the Manufacturer of machinery. The rankings have shown how the

strategic place an industry occupies in the economic network doesn’t rely on the

value added it brings but, on its position, and relation with the whole system.

Consequently, a more targeted comparison with the national graphs of some Eu-

ropean and world system has been conducted. It has been found that all the

graphs share a common disassortative structure, where industries having high in

or out-strength tend to be connected with smaller sectors.

In addition, the clustering coefficient of each nation has a different development,

with USA and China having the largest variation over the time, but them all are

characterized by a stable proportion of the clustering’s components, sign of sta-

bility in the economic structure, and by the cycle clustering having a smaller

value, index of a network acyclic at the scale of 3. The Herfindahl index takes

on similar values for all the graphs, except for the higher values of Russia and

China, identifying them as systems with dominant players, property that is also

proved by the arrangement of heavy flows in the graphic representation of the

backbone of this networks.

To conclude the failure tolerance analysis run at the global level has shown dif-

ferent result regarding the ranking of the Italian industries, since it has attributed

a larger threshold mainly to manufacturer sectors. At the global level the analysis

has proved how the highest threshold industries belong mainly to three countries:

USA, China and Germany.

On the whole, it can be said that the industries belonging to the wider categories

of wholesale trade and retail, manufacture of machinery and motor vehicles and

construction play a key role in the Italian economy.

A limitation of the work done is that the input output tables covered the period

2000-2014 only and it would be interesting to see the changes that, at the Italian

and world level, happened in the following five years.

With regard to the failure tolerance analysis, it could be run on the different years

so as to see how the importance of Italy changes over time, in comparison with

94



the role of the main European and World countries.

Moreover, it could be worthwhile developing a partitioning algorithm that con-

siders the weighted edges of the national graphs to improve the clusters found

considering only the edges directions.

A last possible development could be to trace the same analysis making use of

different methods for the calculation of the properties seen, for example for cen-

trality and clustering, so as to have a comparison at the level of the individual

measures.
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Appendix

Additional tables
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Table 2: Collection of the input-output tables aggregated industries

Table 3: Graph density table
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Table 4: Clustering and Herfindahl coefficient for each national graph, year 2014

Table 5: Centrality, Italy 2014
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Table 6: Industry clustering coefficient per country, year 2014
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