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Abstract

In the last decades, artificial intelligence and machine learning have become
very popular showing incredible success in applications ranging from speech
recognition to computational biology. However, few attempts have been done
in the building or infrastructure field, where the potential of such method-
ologies is still unexplored.

The introduction of BIM (Building Information Modelling) and Infra-
BIM (in the case of infrastructural projects) for the design, analysis and
maintenance of projects makes available a big amount of data, along with a
collection of modelling strategies that can be embedded in machine learning
algorithms to solve complex problems.

The construction of the tunnels by tunnel boring machine (TBM) starts
from the design of a theoretical alignment, which is used by the TBM as
guidance to calculate at each step a new as-built alignment through a laser-
based machine that deviates as little as possible from the theoretical one.
However, there is a lack of information during the design phase because the
locations of the rings are unknown before starting the cunstruction phase.

This thesis aims to use machine learning algorithms, from the reinforce-
ment learning branch, to calculate the position of the rings defining the tun-
nel lining and figuring out the possible as-built alignement during the design
phase.
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This can be done by extrapolating the coordinates and altimetries of the
theoretical alignment and combining them with the data relative to the geom-
etry of the rings. After which a series of simulations are made out simulations
that allow the algorithm to understand, according to structural connections,
what ring’s rotations are better, in order to minimize the distance between
the as-built allignment and the theoretical alignment.
Subsequently, through the use of modelling software, the tunnel lining is
modelled in order to enable future analyses.

2



Contents

1 Introduction 4

2 Literature review 6
2.1 BIM methodology in infrastracture sector - InfraBIM . . . . . 6
2.2 Machine-Learning applications in tunnelling and building sector 8
2.3 Machine-Learning and Building Information Model . . . . . . 11

3 Methodology 14
3.1 Methodological approach . . . . . . . . . . . . . . . . . . . . . 16
3.2 Mechanised tunnelling overview . . . . . . . . . . . . . . . . . 17

3.2.1 Lining component’s geometry . . . . . . . . . . . . . . 19
3.3 Tunnel Information Model (TIM) . . . . . . . . . . . . . . . . 21

3.3.1 Ring modelling and data extraction . . . . . . . . . . . 22
3.4 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 Q-Learning approach . . . . . . . . . . . . . . . . . . . 25
3.4.2 Enviroment and agent setup . . . . . . . . . . . . . . . 31
3.4.3 Reinforcement Learning brain . . . . . . . . . . . . . . 36
3.4.4 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.5 Method validation . . . . . . . . . . . . . . . . . . . . 40

4 Results 46
4.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 TIM modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion 49

3



Chapter 1

Introduction

The aim of this thesis is to be able to create a TIM (Tunnel Information
Model) of a Tunnel’s lining made with an automatic method.
This model should deviate as little as possible from the theoretical align-
ment, elaborated through geotechnical and topographical analysis, to allow,
during the design phase, analysis, and studies to improve the construction
processes, such as, for example, the optimization of the minimum radius of
curvature.

At present, the operational alignment remains unknown until the mo-
ment of construction using a TBM (Tunnel Boring Machine) which chooses
the best position of the rings to deviate as little as possible from the theo-
retical alignment.

To fulfill this aim it was decided to adopt an innovative approach based
on automatic learning algorithms.

In the first part of the thesis, the applications of machine learning and
reinforcement learning in the building and infra-structural field are analyzed,
to better understand the potential of these methodologies.
These applications of ML (Machine Learning) and RL (Reinforcement Learn-
ing) range from construction management to the semantic enrichment of BIM
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models, and show how the use of artificial intelligence helps to solve complex
problems.

After which the problem to be solved is analyzed in detail, explaining
how the unions between the different rings that make up the tunnel lining
and how their union allows the tunnel to adapt to the different curvatures
and altimetry of the alignment.
It will then be explained how all the data necessary to solve the problem can
be extracted from the TIM model, to allow the development of the algorithm
in a python environment.

Then it will be explained how the algorithm has been adapted to solve
the problem, both at a geometric level and as learning parameters to be
adopted.
The method that has been chosen is a Reinforcement learning algorithm.
Reinforcement learning is a subcategory of machine learning based on the
interaction of an agent with an environment through actions and rewards.
This type of algorithm is perfectly suited to solve the proposed problem
because Reinforcement learning is based not on Dataset analysis but on sim-
ulations that reflect scenarios similar to reality.
The algorithm is based on Q-learning. This method allow to link possible
ring rotations, with the operating alignment that will be created, to achieve
the purpose. This connection is made through a table called "Q-table".
The compilation of this table takes place through simulations that, by test-
ing different ring positions, associate to each position a reward based on the
distance from the theoretical alignment.

At the end from the Q-table it’s possible to extract the coordinates and
rotations of the single rings to build a lining model.
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Chapter 2

Literature review

In recent years there has been a great development in the technological field,
which has allowed a rapid improvement in the computational power of the
machines, and in digital methodologies applicable to the building and infras-
tructure field, such as Building Information Modelling.
Driven by the increasing overall amount of data a sharp increase in the suc-
cessful deployment of techniques of ML has been seen for different tasks.

In this chapter is analized the applications of the BIM methodology ap-
plied to the infrastructure sector, afterwards applications of ML method-
ologies in tunnelling, building sector and direct applications with a BIM
model,are shown.

2.1 BIM methodology in infrastracture sec-
tor - InfraBIM

"A BIM is a digital representation of physical and functional characteristics
of a facility. As such it serves as a shared knowledge resource for information
about a facility forming a reliable basis for decisions during its lifecycle from
inception onward."[1]
Although BIM is now widely used in the construction sector, its development
for infrastructure is slower, due to various problems.
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2.1. BIM methodology in infrastracture sector - InfraBIM

These problems are mainly linked to the great complexity of the infras-
tructure works. In the construction sector it is relatively easier to plan and
determine the elements and activities to be used in construction because
there are typical design solutions and classification of technological elements.

Except in special cases, all the technical elements of a building, from
bricks to MEP systems, are homologated and standardised by the various
legislations for which they lend themselves well to a parametric formulation.

The digital representation of an infrastructure is a difficult operation,
both for the extension and for the elements that make it up, which do not
have defined shapes, think for example of earth movements for the formation
of a embankment or excavations for a tunnel.

In tunnelling a tunnel model can be used for different purposes. Having
a digital model of the work makes it possible to know the data necessary to
be able to carry out more effective analyses on the terrain or to calculate
more easily the materials and elements that will be used in the construction
phase.
In addition, it is possible to use the models to perform 4D simulations to
better understand the construction action that is processed by the TBM.

Ninić and Koch performed a careful analysis of how the development of
a TIM model works is carried out, as shown in Figure 2.1[2].

It is also interesting to understand how the current trend, in InfraBIM
modelling, is to combine classic design methods with computational design.
In "On-demand generation of as-built infrastructure information models for
mechanised Tunnelling from TBM data: A computational design approach"
[3] Getulli, Capone Bruttini and Rahimian, show how the combination of
visual programming with models can allow, for example, ondemand moni-
toring of the enclosure construction and automatic compilation of the data
available from the TBM.
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2.2. Machine-Learning applications in tunnelling and building sector

Figure 2.1: (Source: Ninić and Koch, 2017)
a) Main components of the urban tunnelling process:
1) soil, 2) lining, 3) TBM, 4)existing infrastructure, 5) grouting, 6) alignment;
b) tunnel information model with components modeled on different LoDs: soil,
lining, TBM and buildings

2.2 Machine-Learning applications in tunnelling
and building sector

Machine learning (ML) is the study of computer algorithms that improve
automatically through experience[4]. The problems that can be tackled with
machine learning can be divided into three main categories:

• Supervised learning: the machine is provided with a number of ex-
amples of inputs and their respective outputs and it must identify and
learn the rules that link them in order to be able to provide outputs for
new inputs. This category includes classification and regression prob-
lems, the aim of which is to assign new inputs to already known classes.
The inputs are discrete in the case of classification and continuous in
the case of regression.

• Unsupervised learning: only a series of inputs are provided to the
machine from which it must extract patterns and structures that link
them. This category includes clustering problems, whose goal is to
group a series of inputs into classes not previously known: the algorithm
must therefore discover the recurring patterns itself.
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2.2. Machine-Learning applications in tunnelling and building sector

• Reinforcement learning: the machine interacts with an external, dy-
namic environment in which it must accomplish a given goal. For each
action it carries out, the system returns a positive or negative feedback
in relation to the objective to be carried out: from this feedback the
machine learns. Learning by reinforcement finds applications in many
branches of computer science and statistics, such as game theory or
genetic algorithms, but also in other areas.

In the field of building and infrastructure only a few years ago it has
begun to look for applications of machine learning algorithms. But they can
be very useful in different areas.

In [5] Marcher, Erharter and Winkler carry out an analysis of the possible
applications of ML in the tunnelling field is carried out:

• Autonomous support installation,

• Automatic rock (mass) classification,

• Geological prognosis updating ahead of the tunnel face,

• Overcoming of limitations in the definition of constitutive behaviour of
soil and rock,

• Exploration of the applicability of reinforcement learning to fully au-
tomate different construction processes (self-driving TBMs).

The same article also describes how technological development will affect
the world of construction and tunnelling in the coming years. Saying that
great potential is seen in unsupervised Machine Learning approaches, where
the final classification is not imposed upon the data but learned from it, also
reiforcement learning seems to be trend-setting but has not been used for
specific tunnel applications yet.

Finally, it describes the steps that should be taken in order to realize
practical applications:

9



2.2. Machine-Learning applications in tunnelling and building sector

• Using ML for the optimization of design and construction phases as
well as automation and operational guidance in all kinds of operations
and maintenance of tunnel projects;

• Collecting as much high quality data as possible: all data from sensors
on TBMs as well as jumbos, drilling rigs, excavators etc., scanning and
photos from the tunnel face, all monitoring data;

• Combined use of BIM and ML;

• Standardization of input selection process and data partitioning meth-
ods;

• Standardization of ANN (Artificial Neural Network) model architec-
tures and performance measures of ANNs for tunnel engineering.

Figure 2.2: (Source: Marcher, Erharter, Winkler (2020)) Evolution timeline for
digitalization in tunnelling

ML algorithms also find important applications in the energy field.
In [6] Seyedzadeh, Rahimian, Oliver, Rodriguez and Glesk described how
to predict the energy performance of non-domestic buildings, this study is
conducted in England where non-domestic buildings contribute 20% of the
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2.3. Machine-Learning and Building Information Model

UK’s annual carbon emissions.

In the energy field we try to understand how to obtain better energy
analyses than those achievable with classic software, so that we can make
predictions on energy consumption trends.

The machine learning and deep learning algorithms also find a valid ap-
plication to help in the decision making processes on site.

The adoption of machine learning algorithms allows, for example, to re-
construct point clouds from simple photographs taken on-site, from these
models it is then possible to obtain the volumes of land to allow analysis on
transport and land classification as shown in [7].

2.3 Machine-Learning and Building Informa-
tion Model

Applications of machine learning algorithms become even more interesting
when implemented with Building Information Models (BIM).

These methods can be used not only to read data from a BIM model, but
also for parameter classification and database settings.
Several studies have shown how their application on coding and semantic
enrichment gives excellent results to overcome obstacles such as code com-
pliance checking, simulation, functional analysis and information exchange.

In [8] a method for code checking between the parameters of a BIM model
and building codes is presented using a similarity-based method and a super-
vised learning-based method that can associate building classifications with
IFC parameters.

Another area where code management and semantic enrichment is of
great importance is facility management where, as shown by [9] the ML can
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2.3. Machine-Learning and Building Information Model

be used to improve the management of Work orders (WO) and communicate
efficiently with the facility team.

Figure 2.3: (Source: Zhang and El-Gohary(2019)) Sample dashboard (landing
page with full building view).
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2.3. Machine-Learning and Building Information Model

Thanks to the data processed and associated with the model, it is possible
to return dashboards summarising the status of the WO in the case study
analyzed in the article.

Figure 2.4: (Source: Rahimiana, Seyedzadeh, Oliver, Rodriguez and Da-
wood(2020)) Above creating an object mask with human recognition using CNN.
Below output of semantic segmentation for identifying structural building parts).

The application of ML and DL algorithms in construction management
also has great potential. The use of these methodologies together with a
virtual reality application can allow on-demand monitoring of construction
projects as shown by [10].

In general, in the application of machine learning methods in the con-
struction sector, and in particular with the integration in BIM methodology,
one of the major stumbling blocks is the lack of big data to use.
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Chapter 3

Methodology

As illustrated above, the objective of this thesis work was to optimize, during
the design phase, the process that enables to create an operational alignment
for tunnels made using an automatic method.
To implement this process, it was designed an AI able to concerning the the-
oretical alignment under examination and the structural connections of the
rings that make up the tunnel lining, to reconstruct an operational alignment
as congruent as possible to the theoretical one.

In particular, the result obtained made it possible to develop a process
that allow to create operational alignments with a good correspondence with
the relative theoretical alignment, developing a maximum recorded deviation
of 1.00 cm.
The application of this process in the design phase is very effective in pre-
dicting the model useful for the TBM (Tunnel Boring Machine) to place the
structural rings making up the tunnel in the subsequent construction phase,
facilitating to optimize, for example, the definition of the minimum radii of
curvature.

In the first part of this chapter, the methodological approach developed
for the construction of the optimization process is described in detail, with
an overview of the operation of the TBMs and the structural rings that make
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up the tunnels.

Initially, the preparation and data collection phase necessary for the real-
ization of the algorithm used by the artificial intelligence is described, i.e. the
trend of the theoretical alignment and the rotation system of the structural
rings, with possible real assembly positions.
In particular, the operations necessary to create a TIM (Tunnel Information
Model) are described.

Through the use of Dynamo, visual programming platform, and Autodesk
Revit plugin, it is shown how it was possible to calculate the possible po-
sitions of the ring axis examined. The rotations data were subsequently
exported in Excel format, allowing to read this data in the Python program-
ming environment.

The operation of the automatic learning system through which thecon
cui artificial intelligence structured the algorithm is described below, which
has enabled to obtain the most accurate operating alignment.
Through the adoption of the reinforcement learning method, is illustrated
how it has been possible to structure the simulations, deepening the function-
ing of the algorithms based on Q-Learning and the functioning of a Q-Table,
a table that describes the behavior learned by artificial intelligence.

In the sub-chapter method validation, the methodology through which
the parameters enabling the definition of the maximum deviation from the
theoretical alignment has been deepened. This has allowed demonstrating,
moreover, how it was able to elaborate the operative alignment using the
deterministic method. This will be followed by an in-depth examination of
the system used to perform the simulations, to obtain the desired results.
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3.1. Methodological approach

Finally, an analysis of the results produced by the artificial intelligence
is presented and, through the information contained in the Q-Table, a TIM
model containing the sequence of structural rings in the determined positions
is reconstructed.

3.1 Methodological approach

Figure 3.1: Methodological workflow.

The methodological approach adopted in this thesis work is based on 5
fundamental parts:

• Extraction of data from the TIM model.
Having adopted the infraBIM methodology during the design phase,
the TIM model of the tunnel under examination contained all the infor-
mation and data necessary to solve the problem, create an operational
alignment corresponding to the theoretical alignment. Through the
TIM model, it was possible to analyze the structure of the structural
rings and the positions of the relative axes on the alignment.

• Setting the Environment and Brain in Python.
Once the necessary data had been extracted, the Environment and
Brain were set up in Python language. These are fundamental parts
for the construction and good functioning of a Reinforcement learning
algorithm and will be better explained in subchapter 3.4.
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3.2. Mechanised tunnelling overview

• Definition of the operational alignment using a deterministic approach.
Before starting with the simulations, the operating alignment for the
tunnel under examination was calculated using the deterministic method.
The objective was to obtain a comparison alignment, thus evaluating
the effectiveness of the defined Reinforcement learning algorithm.

• Elaboration of the simulations.
Once the phase of collecting the necessary data and creating the al-
gorithm based on artificial intelligence functioning was completed, 18
different simulations were carried out, each with different parameters.
This analysis has enabled to define the most effective settings for the
resolution of the final operating alignment. Once I highlighted these
parameters and set them correctly, a simulation was performed.

• Extracting the data produced by the simulation and reproducing a TIM
operating alignment.
From the simulation carried out, we extracted the relative Q-Table,
a table that contains all the information produced by the Q-Learning
algorithm. These data have allowed recreating the operating align-
ment in TIM format, with a maximum deviation from the theoretical
alignment of 1.00 cm.

3.2 Mechanised tunnelling overview

When we talk about highly mechanized excavations we are referring to those
tunnels that are made using TBM (Tunnel Boring Machine) machines.
This method of excavation and tunnel boring is particularly suitable for long
tunnels, at least 2/3 km long, because, although the time savings in excava-
tion and automatic construction of the structure is considerable, the cost of
transport, assembly, and disassembly of the machine is significant, and not
always convenient.

Excavation by TBM has carried out thanks to a cutter head that digs
into the earth and rock crushing the material, the head is pushed by jacks
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3.2. Mechanised tunnelling overview

placed at the tail which are connected to the rings already placed [13].
Proceeding with the excavation, the TBM places the new segments to form
the next rings. The excavation material produced during the operation of
the machine is automatically transported outside the tunnel to be disposed of.

Figure 3.2: (Source: Engineering Design Director(2019)) TBM machine parts.

The guidance system of the TBM constantly monitors the trend of the
tunnel axis to correct it when it deviates from the designed one.
The trend of the machine depends on numerous factors: sudden variations
in the torque of the cutting head, cutting head block, unexpected variations
in soil density, insufficient pressure of the pumped mortar to fill the space
between the extrados of the lining and the tunnel profile. Having to deal
with all these possible problems in the course of work at the moment it is
not possible a priori to know the exact position of the segments that will be
placed by the TBM.
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3.2. Mechanised tunnelling overview

3.2.1 Lining component’s geometry

The rings that make up the structure of the mechanized tunnels are prefab-
ricated elements that, as mentioned above, are placed directly by the TBM
machine during the excavation phases. The rings can have different shapes
[3]:

- Segments with parallel faces form straight rings - limited to straight
tunnel’s sections;

- Segments tapered on one side form left/right tapered rings - curved
tunnel’s sections;

- Segments tapered on both sides form universal tapered rings - straight
and curved tunnel’s sections.

In the case in question, the ring is tapered on both sides, this allows the
tunnel structure to adapt easily to both straight and curved tunnel’s sections
by simply changing its rotation concerning the previous one, as shown in
Figure 3.3.

Figure 3.3: (Surce: Getuli, Capone, Bruttini and Rahimian(2020)) Segment and
ring typologies: a) segments with parallel faces – straight rings; b) segments ta-
pered on one side – left-right tapered rings; c) segments tapered on both sides –
universal tapered rings.

The rings that form the structure of the tunnels are made up of several
segments with radial joints, to join the segments together, and longitudinal
joints, which allow the rings to be joined together.
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3.2. Mechanised tunnelling overview

Figure 3.4: Positioning matrix.

Depending on the number of longitudinal joints, the possible positions of
the ring are defined it is necessary that, despite the rotations, the longitudi-
nal joints are well aligned.
A positioning matrix is therefore defined which will be used by the TBM to
allow the correct positioning of the segments.

This matrix is processed in such a way that it does not allow a new seg-
ment that must be positioned to connect only to the longitudinal joints of
a single previously positioned segment. This matrix, therefore, depends on
the type of segment chosen for the construction of the ring. Different types
of segments can be used for mechanized tunnels: Rectangular lining, Rhom-
boidal lining, Trapezoidal lining.

In the case in question, a ring composed of 9 trapezoidal segments with
3 longitudinal joints each, 27 different positions are therefore possible Fig-
ure 3.5 and the positioning matrix will be as indicated in Figure 3.4.
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3.3. Tunnel Information Model (TIM)

Figure 3.5: (Source: Koneshwaran, Thambiratnam and Gallage (2015))Ring ge-
ometry example.

3.3 Tunnel Information Model (TIM)

Koch and Vonthron in [14] say that "all relevant data needed for the planning,
construction and maintenance of tunnels is collected, classified, structured
and linked into a holistic, object-oriented Tunnel Information Model" this
model is called TIM.
A complete TIM model must consist of several parts:

• The model of the lining, even if the precise position of the segments up
to the tunnel realization using the TBM is unknown, it is fundamental
already during the design phase to have a model of the tunnel lining
to optimize the analysis and execution of the subsequent phase of the
excavation;

• Soil model, a complete TIM model must also contain information re-
lating to the soil in which the tunnel will be built; this data is derived
from geognostic and geological surveys.

• TBMmodel, all information concerning the TBMmust also be included
within the TIM model: thrust force, torque, excavation time, pressure
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3.3. Tunnel Information Model (TIM)

monitoring system, and the transport system of the excavated mate-
rial. This model is particularly useful when excavation simulations are
performed.

• A model of the territory, this model represents the environment built in
the area where the tunnel will be located, it is, therefore, geo-referenced
and is useful to evaluate possible subsidence due to the excavation.

Since the design of a tunnel is a very complex project, to create a complete
and correct model it is necessary to use different software, in the case under
consideration only the lining model has been analyzed.

For the realization of the lining model, it was decided to use the Autodesk
Revit software, while Civil3D software was used for the design of the align-
ment. For the realization of a TIM model, however, it is necessary to make
the two software communicate to have all the information in a single model.
To allow this dialogue, the Dynamo visual programming plugin is used,
through which you can export the coordinates of the alignment from Civil3D
to a .xlsx file and, reading this file, recreate the alignment in Revit.

3.3.1 Ring modelling and data extraction

The modeling of the ring that forms the tunnel structure started from a .dxf
file containing the geometries of the segments and the ring that was designed.
This file was imported into a Revit family so that the geometries could be
converted into a solid, the ring family thus produced was in turn loaded into
a generic adaptive model so that the points needed for the location and an
R rotation parameter could be linked.

After re-creating the geometry of the ring in the program, the necessary
data was extrapolated to proceed with the application of the algorithm, these
exports were made by converting the necessary data into Excel tables using
the Dynamo plugin.
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3.3. Tunnel Information Model (TIM)

Figure 3.6: On the left, the ring in .dxf format, in the middle the model converted
to Revit fault, on the right the adaptive model of the ring.

The alignment has been divided into points 2m apart and the coor-
dinates (X, Y, Z) of these points have been exported in a file called "T-
Alignment.xlsx", this file will allow to reconstruct the theoretical alignment
through the python programming language.
The same alignment is also divided into 4 cm long parts and exported in a
file called "R-Alignment.xlsx", this second file will be used to calculate the
rewards during the following simulations.

The last data that is needed comes from the geometry of the ring and in
particular concerns the change of the ring axis at different rotations.
To extrapolate this data, the ring was recreated in Dynamo’s modeling en-
vironment and, by binding one of the two faces, the 27 possible rotations
were performed. From this operation, axis position changes were recorded
and this data was exported to a file called "Positions.xlsx".
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3.4. Reinforcement learning

Figure 3.7: Above the dynamo script.
Below the geometry of the axis at the different rotations.

3.4 Reinforcement learning

Abhishek Nandy and Manisha Biswas in [15] say that "Reinforcement Learn-
ing (RL) is an approach through which intelligent programs, known as agents,
workin a known or unknown environment to constantly adapt and learn based
on giving points."

Reinforcement learning implements the most natural concept of learning:
interact with an environment and react according to a feedback.
An RL algorithm can be thought as infant who is completely unaware of what
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3.4. Reinforcement learning

surround it and slowly start eating, waving is arms, playing, etc. without
an explicit teacher, but through a sensorimotor connection with its environ-
ment.
This connection produces a flow of information enabling the infant to learn
cause-effect relationships, consequences of actions and how to achieve goals,
which are then used in the future when similar conditions appear. RL builds
this procedure with four elements: agent, environment, action space and re-
wards.

By keeping the infant example, the infant is the agent, the environment
could be the house in which he is living, the action space is composed by
its possible behaviour and the rewards are the outcomes of its actions. For
instance, the infant see a lemon (environment), decides to eat the lemon (ac-
tion) and then it feels the sourness (reward). Clearly, an algorithm is way
less complicated then a sentence being, but interestingly it can learn how to
perform complicated tasks if guided in the right direction.

In practice RL problems involve learning a map environment-action, called
policy, which tells what action to perform according to the state of the en-
vironment in order to maximize a numerical rewards. In a single step the
agent observes the environment state, takes an action according to the cur-
rent policy, observe a reward and change the policy according to what has
been observed. In complicated application, this could be extended also to
future rewards, indeed current actions could affect not only the next state,
and so the next reward, but also future states and so future rewards.

3.4.1 Q-Learning approach

The mathematics behind reinforcement learning is based on Markov decision
processes (MDP) [16]. This models are used to model decision making where
on the one hand a part of the outcome is random and on the other hand it
is guided by a decision maker. An MDP consists of:

• a set of states S;
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3.4. Reinforcement learning

Figure 3.8: Reinforcement lerning mechanism.

• a set of actions A;

• a transition probability p(sÍ|s, a) with s, sÍ ∈ S and a ∈ A (or transition
function in deterministic cases);

• a reward function r(s, a) with s ∈ S and a ∈ A.

• a discount factor γ ∈ (0, 1).

The MDP is then represented by the realization of states, actions and re-
wards, meaning that over time there is an evolving state St, an action that is
taken At and a reward that is outputted Rt. This formalizes mathematically
what people call environment, and precisely the agent-environment interac-
tion:

1. the agent observes state st;

2. the agent chooses action at;

3. the environment output the reward rt according to r(st, at) and the
new state st+1 according to p(·|st, at).
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3.4. Reinforcement learning

Remark that capital letters are used for random variables, before actually
observing the values, while lower case is used for realizations, what is actu-
ally observed.

In general, the agent would like to optimize not only the current reward,
but also the future ones by using the discount factor γ (discounted reward).
This optimization is done according to a policy π(s) which tells how the
agent chooses the action to take given the state s ∈ S. The combination
of the discounted reward and policy creates the well-known quality function
(Q-function):

Qπ(s, a) = E
C ∞Ø

τ=t

γτ−tRτ

----St = s, At = a

D
, (3.1)

where E represent the expectation of the random variable q∞
τ=t γτ−tRτ , with

Rτ = r(Sτ , Aτ ) and Aτ = π(Sτ ). The intuition behind this quantity is that
the agent wants to quantify the future rewards and she/he gives them more
or less importance to future depending on the chosen discount factor γ.

However, future rewards have a stochastic nature which requires the use
of the expectation to quantify in mean how they behaves. As it is going to be
explained later, the stochastic element could be introduced by the transition
p or the policy π or both or not present at all, but this E-notation keeps
the range of applications as general as possible. Ideally, the policy π should
be chosen in such a way that maximizes Qπ, or better it should output the
sequence of actions that maximizes Qπ(s, a) given the current state s and the
current action a. The maximum of Qπ is called Qõ and defined as follows:

Qõ(s, a) := max
π

Qπ(s, a). (3.2)

Under the deterministic policy πõ(s) := arg maxa∈A Qõ(s, a) the optimal Q-
function Qõ satisfies the Bellman equation:

Qõ(s, a) = E
5
Rt + γ max

aÍ∈A
Qõ(St+1, aÍ)

----St = s, At = a
6

. (3.3)
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Intuitively, this equation represents the recursive nature of the Q-function.
If at time t + 1 we are able to maximize the Q-function, then surely we are
able to express the Q-function at time t by using the maximized Q-funtion
at t + 1 discounted by γ and the current reward Rt.

The next step is to learn Qõ(s, a), which can be seen as a table with
the states as rows and the actions as columns. This is possible only if S,A
are finite and relatively low-dimensional. In the case of continuous and/or
high-dimensional state space and action space Qõ(s, a) can be approximated
with deep neural networks [17], but this is behind the scope of this work.
Consider the case of Qõ(s, a) as a table, this is known in the literature as
Q-table. Define then Qõ as a matrix:

Qõ = (qs,a)s∈S,a∈A, (3.4)

then from the Bellman equation (3.3) we obtain:

qs,a = E
5
Rt + γ max

aÍ∈A
qSt+1,aÍ

----St = s, At = a
6

. (3.5)

It can be then observed that there are two important definition of the ele-
ments in the Q-table:

• the target value qs,a;

• the Bellman equation value:

E
5
Rt + γ max

aÍ∈A
qSt+1,aÍ

----St = s, At = a
6
≈ rt + γ max

aÍ∈A
qst+1,aÍ .

Note that the approximation of the Bellman equation value becomes an equal
when the overall procedure is deterministic, which is indeed the scenario
treated in this thesis. It is known from (3.3) that those two elements should
be equal. Hence the distance between target value qs,a and the Bellman
equation value should be quantified, this can be done with:

L(qs,a) =
3

qs,a − rt + γ max
aÍ∈A

qst+1,aÍ

42
, (3.6)

28



3.4. Reinforcement learning

which should be obviously minimized with respect to the target value qs,a.
To do so a common approach is gradient descent [19] which consists of min-
imizing a function L(x) by moving on the direction of the gradient ∇L(x)
with a step λ (learning rate), mathematically:

x = x− λ∇L(x). (3.7)

Algorithm 1 Q-table learning
1: Input the number of episodes E, the horizon T , the learning rate λ
2: Initialize qs,a = 0 for all a ∈ A, s ∈ S
3: for e = 1, . . . , E do
4: Set the initial state s0
5: for t = 1, . . . , T do
6: Choose action at−1
7: Input st−1, at−1 in the environment
8: Observe the new state st and the previous reward rt−1
9: Update the Q-table:

10: qst−1,at−1 = qst−1,at−1 − λ
1
qst−1,at−1 − rt−1 + γ maxaÍ∈A qst,aÍ

2
.

In the case of Q-learning ∇L(qs,a) = 2(qs,a − rt + γ maxaÍ∈A qst+1,aÍ) then
the gradient descent update with learning rate λ is going to be:

qs,a = qs,a − 2λ
3

qs,a − rt + γ max
aÍ∈A

qst+1,aÍ

4
, (3.8)

where without loss of generality we can exclude the 2 from the equation
(choose λ = λ/2). Given this learning rule, the only things that remains to
be set are the horizon T and the number of episodes E.
The horizon T represents how long the experiment is going to be, how many
states, rewards and actions are observed. The number of episodes tells how
many times we repeat the experiments, how many experiments of horizon T

are run. The overall procedure is synthetized in Algorithm 1.

To summarize the overall message of the section.

• Given an environment, the interaction agent-environment can be mod-
elled with a Markov decision process.
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3.4. Reinforcement learning

• The agent wants to maximize the discounted future reward given the
current action and the current state, which is called Q-function and
denoted with Qπ. This means that per each combination of action and
state the maximum value of Qπ has to be considered, which is denoted
with Qõ.

• Given Qõ the agent can choose action according to the maximum score
given the current state. Under this deterministic policy Qõ satisfies the
Bellman equation.

• Qõ is unknown, but it can be represented, under certain conditions,
as a table called Q-table. This Q-table has to satisfies the Bellman
equation.

• Given the constraint of the Bellman equation optimize the Q-table to
minimize the distance between the elements of the Q-table and the
respective Bellman equation formulation.

In practice, given the state s choosing the action as arg maxaÍ∈A qs,aÍ dur-
ing training raises exploration problems. This means that the gradient de-
scent is not able to explore all the possible trajectories, but on contrast it re-
mains stuck on local optima. Such an issue is called exploration-exploitation
dilemma[18], meaning that there is a trade-off between exploring and finding
the actual optima. Precisely, on one hand we can exploit the maxima straight
away (exploitation), but this lacks in exploring all the possible solutions; on
the other hand we can explore all the possible solutions (exploration), but
this going to be slow and it does not ensure to go in the right direction.
To overcome this problem a balance between exploration and exploitation has
to be found, a good compromise is Ô-Greedy [20]. Ô-Greedy simply chooses
with probability Ô the arg maxaÍ∈A qs,aÍ and with probability 1− Ô a random
action in the action space. Algorithm 1 is then reformulated as follow.
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3.4. Reinforcement learning

Algorithm 2 Q-table learning: Ô-Greedy
1: Input the number of episodes E, the horizon T , the learning rate λ
2: Initialize qs,a = 0 for all a ∈ A, s ∈ S
3: for e = 1, . . . , E do
4: Set the initial state s0
5: for t = 1, . . . , T do
6: Choose action:

7: at−1 =

arg maxaÍ∈A qst−1,aÍ with prob. Ô

sample uniformly from A with prob. 1− Ô

8: Input st−1, at−1 in the environment
9: Observe the new state st and the previous reward rt−1

10: Update the Q-table:
11: qst−1,at−1 = qst−1,at−1 − λ

1
qst−1,at−1 − rt−1 + γ maxaÍ∈A qst,aÍ

2
.

3.4.2 Enviroment and agent setup

To use the methodology described above, it is, therefore, necessary to set the
environment and the agent that will interact with it correctly.

These settings start with reading the data extracted from the TIM model,
as described in 3.3.1, reading the "T-Alignment.xlsx" file produces the axis of
the theoretical alignment, which is used as a graphic comparison for setting
the operating alignment that will be built as a concatenation of the axes of
the following rings.

The "Positions.xlsx" Figure 3.9 file is used to set the actions space, A,
this file consists of a first column with the ID of the different actions, i, a
column with the associated rotations, and finally 3 columns with the ax, ay,
az increments of the ring axis to the different rotations.

So, the action space, is defined as follows:

Ai=[1,27] = {ai
x, ai

y, ai
z} (3.9)

The positioning of the axes of the rings that make up the structure of the
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Figure 3.9: "Position.xlsx" value.

tunnel begins with the positioning of the first ring with the axis coinciding
with the theoretical alignment, then the axes of the following rings will be
positioned starting from the endpoint of the previous axis.

To carry out this operation, it was necessary to apply rigid translation
and rotation operations on the reference system of the new axis that is placed.

Starting from the first point of the placed axis the first operation that is
performed is the rotation on the XY plane and around the z-axis of an α

quantity equal to the angle between the x-axis and the xÍ-axis Figure 3.10.
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x = xÍcos(−α) + yÍsin(−α)

y = −xÍsin(−α) + yÍcos(−α)
(3.10)

The second operation to be performed is the rotation on the XZ plane
around the y-axis of a beta quantity equal to the angle between the x-axis
and the xÍ axis to align the two reference systems perfectly.

x = xÍcos(−β) + zÍsin(−β)

z = −xÍsin(−β) + zÍcos(−β)
(3.11)

Finally, since the systems are aligned, it is necessary to apply a rigid
translation of the new system of a length equal to the axis previously placed;
with the new reference system thus placed, it is possible to proceed with
the positioning of the new axis, with the parameters relative to the rotation
chosen in the action space Figure 3.10.


x = x + ai

x

y = y + ai
y

z = z + ai
z

(3.12)

Figure 3.10: a) xy rotation, b) xz rotation, c) Traslation

Repeating these operations for each loop that needs to be placed will then
obtain the operating alignment Figure 3.11.
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Figure 3.11: assembly of ring axes

Each action is then associated with a state described by the coordinates
of the end of the axis.

After setting the problem from a geometric point of view, we move on to
the definition of the mechanism for calculating the rewards.
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3.4. Reinforcement learning

The rewards are calculated based on the distance between the end of the
axis is placed (i.e. the new state), and the points in the "R-Alignment.xlsx"
file.

Since the rewards that are assigned to the different states must be pos-
itive, and higher when the state being analyzed is closer to the theoretical
alignment, the following form has been used for their calculation:

r = e−
√

(sx−xõ)2+(sy−yõ)2+(sz−zõ)2 (3.13)

Putting the negative distance as the exponent of the exponential what hap-
pens is that for a distance equal to 0, and therefore with an operative align-
ment coinciding with the theoretical alignment at that point, the reward will
be 1 while for a distance equal to 1 m the reward will be 0.37 and so on.

A tolerance parameter is also set, i.e. a maximum distance that if ex-
ceeded by a negative reward equal to −5 Figure 3.12.

When the new operating alignment exceeds the tolerance value the sim-
ulation ends and it is possible to analyze the data obtained.
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Figure 3.12: Calculation of rewards

3.4.3 Reinforcement Learning brain

The reinforcement learning brain is part of the algorithm where decisions are
made to successfully achieve the goal.

The environment sets the first state with the position of the axis coincid-
ing with the theoretical alignment, then the next at action is chosen in the
brain.

The actions, as previously described, are chosen within the action space,
to guarantee the correct choice of possible actions, however, the action space
is put in relation with the positioning matrix described in 3.2.1; in this
way the action space also varies according to the action chosen previously,
preventing the concatenation of actions that cannot be in sequence. With
the choice of the action at new state st+1 is therefore also determined, and
from st+1 a reward rt is calculated, which is used to update the qs,a of the at
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that led to the state st.

Figure 3.13: RL workflow

3.4.4 Baseline

After setting the algorithm’s environment, agent, and brain, before proceed-
ing with the simulations, and then with its training, an operational alignment
is calculated using a deterministic method.

This method uses the same functions that have been described previously
but, instead of using the distance to calculate rewards, it identifies among
the possible actions the one that minimizes the distance between the axis of
the new ring and the theoretical alignment as shown in 3.

Algorithm 3 Baseline
1: Input the number of horizon T
2: Set the initial state s0
3: for t = 1, . . . , T do
4: Choose action:
5: a = action that minimize distanze from theoretical alignment
6: Input st−1, at−1 in the environment
7: Observe the new state st
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3.4. Reinforcement learning

The calculation of the baseline has been performed both on a alignment
of about 400 m, composed of 200 rings, (which will be the number of hives
that will also be used for the application of the RL algorithm) and on a
alignment longer than about 2500 m.

On the first alignment, a maximum deviation of about 1.8 cm from the
theoretical alignment was obtained, while on the longest alignment the devi-
ation that is recorded reaches 8.8 cm. By carrying out intermediate tests, it
can be seen that by adopting a deterministic approach, increasing the length
of the theoretical alignment also increases the deviation of the operational
alignment from it Figure 3.14

Furthermore, it can be noted that, between ring 1005 and ring 1040, the
deviation between the alignments increases considerably, due to the presence
of a curve, and the impossibility of a deterministic approach to predict it.
Since on the first 200 rings the baseline has obtained a maximum deviation
from the theoretical aligmnet of 1.8 cm, it was decided to set the tolerance
parameter, describe in 3.4.2 to 1 cm.
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Figure 3.14: Above the Baseline table.
Below a graph showing the trend of the deviation from the theoretical alignment
as the number of rings increases.
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3.4.5 Method validation

As explained in 3.4.1 the Q-learning algorithm used depends on 3 main learn-
ing factors:

• discount factor, or Reward decay gamma;

• the learning rate lambda; item epsilon-Greedy.

The choice of these parameters can improve, or worsen, the learning ca-
pacity of the algorithm, measurable through the function L(qsa) minimized
through gradient descent.
The lower the value of the function, the better the result will be since it means
that a good approximation of the Bellman equation has been obtained.
To set the parameters correctly and therefore understand which combination
is better to guarantee good learning of the algorithm it is necessary to make
some simulations and evaluate the results obtained.

18 simulations of 10000 episodes were carried out to set the learning pa-
rameters.

This number of episodes is not enough to solve the whole alignment but
it allows to evaluate the learning parameters without losing too much time
in the computation.
The purpose of this operation is to obtain the best parameters to perform a
longer simulation that manages to place 200 loops correctly.
The table Figure 3.15 shows the values of the parameters used in the different
combinations.
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Figure 3.15: Value of differente combinations.

In the first 9 simulations that are carried out using a learning rate of 0.01,
as explained above we can say that this parameter indicates how much the
agent is willing to overwrite the old rewards with the new ones.

For low values of the learning rate the algorithm takes more time to learn
and overwrite the information, as can be seen by comparing the simulations
from 1 to 9 with the simulations from 10 to 18, with learning rate 0.01, the
first ones already after about 5000 episodes change the inclination of the
curve, indicating that the learning is proceeding faster Figure 3.16.

The simulations 3, 6, 9, 12, 15, 18 are performed with a value of epsilon-
Greedy equal to 0.95 the fact that this value is high and close to 1 indicates
that the exploration of the algorithm is limited and not all states will be
examined. From the comparison of these graphs with the respective sim-
ulations with epsilon-Greedy more bases it can be noticed how the above
mentioned combinations always reach lower values, and therefore a better
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Figure 3.16: Comparison between Combination 3 and 12.

Figure 3.17: Comparison between Combination 3 and 12.

approximation with the Bellman equation Figure 3.17.

Finally, comparing the simulations 3, 6, 9, 12, 15, 18 we can see how the
influence of the reward decay parameter, linked to the importance of future
rewards, acts both on the inclination of the curve and on the precision of
the algorithm, measurable as said by the lowest value of the L(qsa) function
Figure 3.18.
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Figure 3.18: L(qsa) results in combinations 10-18.
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Figure 3.19: L(qsa) results in combinations 1-9.
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Figure 3.20: L(qsa) results in combinations 10-18.
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Chapter 4

Results

As explained, the objective of this thesis is to be able to reconstruct an
operational alignment of the tunnel so that it deviates as little as possible
from the theoretical alignment that has been designed. Subsequently, using
this data, place the rings that make up the structure of the tunnel with the
correct rotations, to guarantee its correctness.

4.1 Data collection

To obtain a Q-table able to represent exactly which are the best positions
that the rings must assume along the alignment, simulations are performed
on an alignment with a length of about 400m.

For these simulations the parameters of combination 15 described in 3.4.1
have been adopted:

• discount factor gamma=0.85;

• learning rate lambda=0.001;

• epsilon Greedy=0.95.

To obtain the desired results, it was necessary to carry out 1,800,000 sim-
ulations. The large number of simulations required is due to the high state
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space dimension nature, which is difficult to manage by a method based on
simple Q-learning.
To speed up the construction process of the Q-table it was decided to divide
the simulations into 6 parts of 300’000 simulations each.
After 300,000 simulations, the algorithm can exactly place about 40 rings, so
the approach adopted for the placement of the 200 rings is sequential.
After having carried out the first part of the simulations, the Q-table will
contain the necessary information to be able to place the first 40 rings with
a maximum deviation from the theoretical path of 1 cm, therefore the fol-
lowing simulations can be made starting from ring 40 instead of ring 1 and
will enrich the Q-table with the new information of the following rings.

Although this sequential approach is not optimal for the Q-table, it was
decided to use it because, given the high dimensional nature of the state
space, it would be too expensive to solve the problem classically.
At the end of the simulations, the Q-table has a size of 27 columns, equal to
the number of available actions, and 162’544 rows, equal to the number of
states that have been taken into account by the algorithm.
Below are the graphs related to the placement of the rings in the simulations.

As you can see, as the number of simulations increases, the trend of the
rings that are placed increases.

4.2 TIM modelling

From the Q-table it is, therefore, possible to extract the positions of the rings
in terms of coordinates (state) and rotations (action).
With the help of the dynamo visual programming plugin, it is possible to
reconstruct the model of the tunnel lining.
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Figure 4.1: Alignment altimetric trend.

Figure 4.2: planimetric course of the tunell.

Figure 4.3: Detail showing 60 rings that make up the tunnel.
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Chapter 5

Conclusion

In conclusion, it can be said that the algorithm adopted was able to recon-
struct a aligment composed of 200 rings with a maximum deviation from the
theoretical alignment of 1 cm.
The construction of this alignment, however, was expensive from a compu-
tational point of view because the number of states to explore to obtain the
result is difficult to manage through a simple Q-learning method.

To obtain better results from the computational speed point of view it is
necessary, as explained in 3.4.1, to adopt algorithms using Artificial Neural
Network (ANN). Such a development, however, requires strong expertise in
Data Science.

It can also be said that thanks to the ease of extraction of the data
necessary for the algorithm to operate, i.e. coordinates of the theoretical
alignment and geometry of the ring that is used, the method developed and
easily replicable.
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