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CHAPTER 1 - EVALUATION OF DEBRIS EXTENTION IN A POST-DISASTER 
SCENARIO  

 

1. INTRODUCTION 

After a seismic event, a large amount of debris is generated from the damage of structures and it can 

be a critical obstacle to emergency operations and evacuations (Hirokawa and Osaragi 2016). 

Nevertheless, the analysis of post-disasters data can be used to reduce the social and economic losses 

by leading a procedure that can predict the optimal path for rescue operations and can increase the 

possibility for better action in terms of human security and safety. 

These data, mostly in form of pictures, videos, etc., are collected after every disaster by 

reconnaissance teams formed by professional engineers, academic researchers, graduate students, etc. 

This information can be used to identify potential gaps in existing research or the applications of 

engineering knowledge, defining the object of further investigations to change codes and laws.  

In literature, there are several studies focused on the damages caused by a large amount of debris, e.g. 

studies about strategies in debris management after seismic events ((Garcia et al. 2016), (Rafee et al. 

2008)), but few studies have focused on Machine Learning (ML) applications to forecast the 

extension of building-rubble after earthquakes. The purpose of this study is to forecast the extension 

of the debris (EOD) and the amount of rubble, giving a prediction of the practicability of roads in an 

urban area after an earthquake. Input data are magnitude, distance from the epicenter, year of 

construction, building height, number of stories, construction materials, and direction of debris 

extension.  This would ultimately allow civil protection agencies to plan their rescue operations while 

reducing the risk of getting stuck by extended rubble. The dimensions of debris extension are 

extracted from pictures, and ML algorithms are used to forecast the volume of debris produced. Using 

the methodologies of modern ML, it is possible to evaluate the accuracy of these predictions and 

continuously increase it adding new data that could be collected in future events.  

This document is organized into eight sections: in section 2 there is a literature review of ML 

application in civil engineering; in section 3 there is a literature review of the used ML algorithms; 
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in section 4 there is a description of input dataset; in section 4 there is a dataset analysis and a 

description of preprocessing phase; in section 6 there are algorithm configurations used in training 

phase; in section 7 results of the test phase are reported for comparison among algorithms; in section 

0 there are the concluding remarks. 

 

2. MACHINE LEARNING IN CIVIL ENGINEERING 

 

2.1. RESEARCH METHOD 

The research of considered articles was done on ISI Web of Science (WoS) database, based on its 

importance in the scientific community and on its larger amounts of registered publications. 

For the research process, WoS gives the possibility to apply several filters simultaneously; in 

particular, filters about (i) document type, (ii) topic, (iii) area of application, (iv) year of publication, 

and (v) times cited were used. Scientific journal articles and conference papers were selected as 

principal document types and, the initial sample of data was obtained using as topics “Machine 

Learning”. Table 1 shows the number of obtained results applying filter about the document type and 

the area of application. 

Table 1 – results of the first research 

Database Filter Keyword Results 

ISI Web of Science 

Topic Machine Learning 150544 

Document type Scientific Journal Articles 73972 

Area of application Civil Engineering 1139 

ISI Web of Science 

Topic Machine Learning 150544 

Document type Conference Papers 73444 

Area of application Civil Engineering 296 

 

The elevated number of results, obtained without the filter about the application area, shows that ML 

has a wide application in today’s scientific society, but, at the same time, the reduced number of civil 

engineering applications means that this field of research can have a significant increase in the future.  
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The first research collected several articles with a low correlation to the purpose of this work and a 

more detailed filter has been applied to the topic field. In particular, “Machine Learning algorithm*” 

AND “Machine Learning model*” AND “Machine Learning application*” has been set in the 

research field. This filter is used to reduce the selected articles to the ones that treat applications of 

ML to civil engineering, by the use of algorithms or models. Table 2 reports the number of collected 

works after the second research. 

Table 2 – Results of the second research 

Database Filter Keyword Results 

ISI Web of Science 

Topic 

Machine Learning 

Machine Learning Model* 

Machine Learning Algorithm* 

Machine Learning Application* 

7626 

Document type Scientific Journal Articles 4434 

Area of application Civil Engineering 113 

ISI Web of Science 

Topic 

Machine Learning 

Machine Learning Model* 

Machine Learning Algorithm* 

Machine Learning Application* 

7626 

Document type Conference Papers 3097 

Area of application Civil Engineering 12 

 

The number of articles decreases significantly with the described filter but, at the same time, the field 

of research is restricted to the only application of ML. 

After this selection, other steps have been applied to individuate the most appropriate articles for a 

literature review. 

 

2.1.1. Selection methodology 

In this section, the selection of literature papers to be reviewed has been investigated; this procedure 

included a five-step process. From each step, new information about papers was obtained and used 

for the selection of suitable ones.  
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Step 1. The research on the WoS browser starts using keywords and filters described in the 

previous paragraph; applying filters, from the 148567 total results, only 115 documents are 

considered for the next steps. In ‘Appendix A’ all the 115 works are reported.  

Step 2. Selected articles are organized for the year of publication and times cited. The former 

results are used to define the actual research frontier, the latter ones are used to define the most 

productive authors and their works. 

Step 3. The detection of diffused topics is done using a Citation Network (CN) among selected 

works in Step 1. Moreover, a brief manual screening of titles and abstracts was conducted. Papers in 

which the keywords of research were used with a different meaning were omitted. This step gives a 

clear picture of treated issues. 

Step 4. This step consists of an accurate reading of each selected paper, to define which are 

the most representative and to avoid repetitions. Features considered to the selection are the number 

of ML algorithms applied in each work and an exhaustive description of these methods. Some topics 

were omitted due to an incomplete treatment among papers. After this step, the final list of treated 

issues is obtained: (i) damage of structures; (ii) material compositions, (iii)  electrical request of cities, 

and (iv) management of post-disaster. This step selects 8 documents. 

Step 5. The last step consists of a bibliometric analysis of selected papers, to identify new 

documents about each algorithm. Articles that compare used algorithms and define positive and 

negative features of them were preferred. CNs among authors and cited authors are used to identify 

relevant researchers in the investigation field. After this step 18 new articles were selected.  

Next, 2 books about ML algorithms and 5 theses about ML applications were added to paper 

references, chosen from the author's knowledge. In conclusion, 25 different works are considered in 

this review.  
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2.1.2. Bibliometric analysis 

The literature review is a key step to analyze a new research topic and, according to Araújo (2006), 

the central part of bibliometrics is the quantitative method to classify scientific production. 

After the first selection of articles in Step 1, metadata of papers were imported as text files, to be read 

by BibExcel (v.2016-02-20, (Persson et al. 2009)). This software can process the browser results and 

investigate all the bibliographic aspects. In particular, input data were converted into a dialog-format 

and several analyses about topics, authors, or cited papers can be done; each analysis creates an output 

file in txt format. Subsequently, the output file can be converted into ‘net’ file, to obtain a CN using 

NetDraw (v.2.16, (Borgatti 2002)). CNs aim to understand relations among considered works and 

identify possible groups of connected topics or author collaboration. In this paper, relations about 

topics, authors, cited authors, and journals of publication were investigated. The use of CNs avoids 

the selection of repetitive topics and speeds up the research. 

The final results of the bibliometric analysis are explained as two numeric indexes: 

 the frequency obtained directly by BibExcel output; this index defines the number of 

repetitions of the concerned row data;  

 the centrality degree of each node in a network, obtained by analysis tools in NetDraw; 

according to Bordin et al. (2014), this index can be defined as the number of node connections 

in that network.  

In Step 3, CNs are used to identify the most important topics of selected articles. In particular, 

topics treated at least three times are considered. Table 3 shows the most diffused ones in the 115 

selected articles. 

Table 3 – Most cited topics 

Frequency Topic 

35 Machine learning 

11 Structural health monitoring 

7 Damage detection 

7 Support vector machines 

7 Artificial neural networks 

6 Neural networks 
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Frequency Topic 

5 Data mining 

5 Support vector machine 

5 Deep learning 

4 Prediction 

4 Compressive strength 

4 Artificial intelligence 

 

Subsequently, the same topics are organized into a CN to identify the connection among them.  

 

Figure 1 – Connections among most cited topics 

Figure 1 shows that in civil engineering, the most diffused topics about the ML applications are the 

‘Structural Health Monitoring (SHM)’, the ‘Damage detection’, and the ‘Support vector machines’ 

algorithms. However, there are additional research topics that have not been investigated sufficiently 

showing some gaps in the literature. 

In Step 5, bibliometric analysis is used to define the most productive authors in the ML field 

and two different analyses are conducted. The former selects the authors among the 115 starting 

papers, and the latter identifies the most cited authors connected with the same papers. Both analyses 

aim to define the pillars in the research field treated. Table 4 reports the results of the first author 

investigation, by identifying their affiliation and area of research. Each author has three collaborations 

among selected papers and only Lin ZB does not belong in the civil engineering field.  
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Table 4 – Most productive authors 

Frequency Author Affiliation State Area of research 

3 Chou JS National Taiwan University Taiwan Civil Engineering 

3 Gonzalez I Royal Institute of Technology Sweden Civil Engineering 

3 Hoang ND Duy Tan University Vietnam Civil Engineering 

3 Karoumi R Royal Institute of Technology Sweden Civil Engineering 

3 Lin ZB Nanjing University China Acoustic 

3 Pan H Jinggangshan University China Civil Engineering 

3 Stevens DK Utah State university USA Civil Engineering 

 

 

Figure 2 – Connection among most relevant authors 

 

Figure 2 shows the collaboration net among all the authors of the 115 papers, with more than two 

works. This analysis confirms that the culture of a specific area influences the collaboration teams 

and the preferences of leadership style. In this network, seven different teams can be distinguished, 

connected to different nationalities of authors. In the graph, the authors present in Table 4 are circled. 

Table 5 reports the results of the cited author investigation. Every cited article of 115 starting papers 

has been considered in this analysis. The most cited author is Breiman L., a professor of UC Berkeley, 

with 21 different collaboration in selected articles. The author concerned his study on the statistic 

field and proposed the Random Forests algorithm (explained in the next section). Moreover, this 

analysis shows that there are several connections between civil engineering and other fields of 

research, as informatics, mechanical engineering, and statistic, necessary to improve the knowledge 

in each area. 
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Table 5 – Most cited authors 

Frequency Author Affiliation State Area of research 

21 Breiman L UC Berkeley USA Statistics 

19 Vapnik V. Columbia University USA Statistics 

16 Chou JS National Taiwan University Taiwan Civil Engineering 

15 Yeh IC Tamkang University Taiwan Civil Engineering 

15 Cheng MY National Taiwan University Taiwan Civil Engineering 

12 Bishop C. M. Microsoft UK Informatics  

12 Worden K University of Sheffield UK Mechanical Engineering 

11 Huang GB Nanyang Technological University Singapore Electronic Engineering 

10 Figueiredo E Universidade Lusofona  Portugal Civil Engineering 

10 Kohavi R. Microsoft UK Informatics 

9 Yang XS Middlesex University UK Civil Engineering 

9 Samui P NIT Panta India Geotechnical Engineering 

9 Cha YJ University of Manitoba Canada Civil Engineering 

9 Adeli H The Ohio State University USA Civil Engineering 

9 Pal M NIT Kurukshetra India Civil Engineering 

9 Zhou J Central South University China Mining Engineering 

8 Deo RC University of Southern Queensland Australia Artificial Inteligence 

8 Friedman JH Stanford University USA Statistics 

8 Smola AJ Amazon Germany Machine Learning 

8 Rafiei MH Johns Hopkins University Italy Infrastructures Engineering 

8 Chau KW Hong Kong Polytechnic University China Civil Engineering 

8 Haykin S. McMaster University Canada Cognit Syst Lab 

 

 

Figure 3 – Connection among most-cited authors 
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Figure 3 is a CN among cited authors. It results that Vapnik V. is the most cited author about the ML 

application on civil engineering (29 citations). His most important works are selected in this review 

to explain the SVM algorithm (view next section). From the analysis of cited articles, of the selected 

sample, results that the mean value of citations among only the 115 articles is 0,29, i.e. considered 

studies are not both connected and there is no awareness of other works in the field. On the contrary, 

the mean value of citation papers of each work in the sample is 42,1, i.e. there are lots of citations 

outside the considered sample. 

Another bibliographic aspect, to consider for the selection of papers, is the scientific journal of 

publication. Using BibExcel, most diffused journals can be detected. Table 6 shows obtained results 

and defines the “Journal of computing in civil engineering” as the most relevant in civil engineering, 

with 41 different publications (the 36% of the entire sample of articles) and an impact factor of 2,554.  

Table 6 – Frequency of scientific journals publications 

Frequency Journals Impact Factor 

41 Journal of computing in civil engineering 2,554 

8 Journal of hydrologic engineering 1,438 

7 Journal of bridge engineering 1,840 

3 Journal of materials in civil engineering 1,984 

3 Journal of construction engineering and management 2,734 

3 Journal of environmental engineering 1,657 

3 Journal of transportation engineering part a: systems 0,641 

3 Journal of transportation engineering 1,520 

3 Journal of water resources planning and management 3,404 

 

The last analysis is done using browser tools of WoS, and it is about the trend publication of articles 

of ML in civil engineering. Studying all the articles of the sample, it results that the first publication 

was in 1996, and up to 2001, only 4 articles were published (3,45% of total). An important increase 

starts in 2011 with a peak in 2018, when 22 articles were published (19% of total). Figure 4  shows 

the trend of publication described. 
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Figure 4 – Trend of publications (1996-2019) 

 

2.1.3. Gap in literature 

The bibliometric analysis on treated topics in selected articles shows that the structural field is the 

most diffused, and the seismic approach is preferred to others. At the same time, SHM applications 

can be improved by future works, focusing on the post-earthquake stability of structures and 

communication routes to help the rescue organizations. The application of augmented reality can be 

also connected to this topic. 

An accurate interpretation of Figure 1 defines a range of topics that were not researched sufficiently 

in civil engineering and gaps in literature can be defined. Possible future works can improve the BIM 

approach of buildings and infrastructures, in agreement with the new design process of the last years. 

In this regard, is important to refine the knowledge of BIM software to obtain better results in the 

prediction of performance and the clash detection process. BIM software and ML can be used also to 

control the daily construction progress during the realization phase.  

Other possible applications of ML algorithms concern the geotechnical engineering and ground 

detection to improve the foundation structures design. Moreover, the ability of ML to provide 

information can be used to forecast the needs of users in an urban area.  
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3. MACHINE LEARNING ALGORITHMS 

Machine Learning is a computational technique with application in any field of research to improve 

human capacity. This field has started growing in the last ten years together with the computational 

power of computers. Today, ML algorithms have spread in everyday life and help human activities 

as detecting spam, recognizing people inside pictures, movie selection, etc. ML aims to give 

computers the ability to learn from input data and to make predictions, automating the decision-

making processes.   

In the current study, ML algorithms are used to forecast the debris extension, using post-disaster 

pictures dataset, that is treated with a supervised learning approach by regressor algorithms. In 

literature, there are several algorithms available based on different approaches and the best one to 

apply to each issue can be detected from general features of the input dataset and with an error 

comparison. The category of the algorithm to use can be detected from the graph in Figure 5, basing 

on the issue to treat and the dimension of the dataset. 

 

Figure 5 – Algorithm chart 

In the next paragraphs, supervised learning algorithms used in this study, are presented.  
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3.1. k-Nearest Neighbors Regressor (KNR) 

KNR algorithm aims to predict an output data point starting from the closest data in the training 

sample, its “nearest neighbors”; the “k” number defines how many points are used to evaluate the 

prediction (Goldberger et al. 2004). 

The objective of KNR is the minimization of distances among considered “k” neighbors; if d is the 

evaluated distance among input data (xi , yi) and training sample (x0 , y(x0)), the prediction is done by 

the mean values of distances as in Equation (1) : 

 
0

1

1
( )

k

i
i

y x d
K 

   (1) 

According to Johannesen et al. (2019), there are four available distances: (i) Manhattan/city block 

distance, (ii) Euclidean distance, (iii) Minkowski distance, and (iv) Chebychev distance. The 

recommended set of KNR is 5k   neighbors and evaluation of distances done using Euclidean 

distance (Equation (2)) to avoid overfitting. 

 
2

1

( , ) ( )
k

i i
i

d x y x y


   (2) 

Figure 6 shows how the prediction can change varying the value of k from 1 to 3.  In the first case, 

the target value is the same as the considered neighbor; in the latter, the prediction is given by the 

mean value of the 3 neighbors. 

 

Figure 6 – KNR with k=1 (left) and KNR with k=3 (right) 
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The limitation of the KNR model is that with a large training sample the prediction can be slow and 

the results are not accurate. 

 

3.2. Linear regression models (LM) 

Linear models used as regressors, fit the input data with a straight line (Figure 7) and uses loss 

function for predictions. They are widely used for their straightforward and robustness and chosen 

when the number of predictors (p) is higher (Big Data); moreover, several models allow the automatic 

selection of features in a dataset when an unsupervised learning process is required. 

 

Figure 7 – Predictions of a Linear model 

In literature, several linear regression models are presented; the algorithms selected for EOD 

detection are (i) Ridge Regression; (ii) LASSO model; (iii) Elastic Net.   

 

3.2.1. Ridge Regression  

In Ridge Regressor (Faber et al. 2017) to estimate the predictors bj , a penalty function is added as in 

Equation (3): 

 


2

2

2 2
0 2 2

1 1 1 1

p p pn

i j ij j j
i j j j

L penalty

y x RSS     
   



 
     

 
     

(3) 
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where λ2 is a tuning parameter. If λ2=0, there is no penalty and the model gives the same results of 

RSS. Instead, if λ2∞, the penalty is high and many coefficients will be close to zero, so there will 

be less variance in the model, but higher bias. The research of the optimal bias-variance trade-off is 

defined as “continuous shrinkage”. The limitations of this regression model are that the parameters 

can not be removed and their significance is difficult to be physically interpreted.  

 

3.2.2. LASSO model 

In the LASSO model (Tibshirani 1996) (Least Absolute Shrinkage and Selection Operator), the Ridge 

Regressor limitations are removed, so the final equation is modified as follow:  

 

1

2

0 1 1
1 1 1 1

| | | |
p p pn

i j ij j j
i j j j

L penalty

y x RSS     
   



 
     

 
   


 

(4) 

A new L1-penalty function, i.e. the sum of the absolute values of the predictors bj, is included 

(Equation (4)). As in Ridge Regressor model, when λ1 increases the predictors tend to zero, however 

because of the presence of the absolute value in the penalty function some predictors can become 

exactly null, and therefore they can be removed from the model.  As in Ridge Regression, if λ1=0, the 

L1-penalty function disappears and the model gives the same results of RSS. Instead, if λ1∞, all the 

predictors bj are null and they are removed from the model.   

In summary, the LASSO model does both continuous shrinkage and variable selection due to the L1-

penalty function, and several works in literature support this method for the extraction of the 

regression coefficient bj (Knight and Fu 2000), for the stability with input data that trends to infinity 

(Meinshausen and Bühlmann 2006), and for the high accuracy in sparsity conditions (Zhang and 

Huang 2008). 

Limitations of LASSO are presented by (Zou and Hastie 2005). It is less accurate when the number 

of predictors bj is more than the number of observations (n) because in that case, LASSO selects at 
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most n variables before it saturates.  Furthermore when there is a group of predictors that are highly 

correlated the LASSO tends to select only one variable from the group and does not care which one 

is selected.  

 

3.2.3. Elastic Net (EN) 

Elastic Net (EN) is a hybrid model that linearly combines the L1 and L2 penalties of the Ridge 

Regressor and the LASSO model (Zou and Hastie 2005).  The objective function that the Elastic Net 

regression is trying to solve is the following:  
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1 2, 2 1
1 1
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p p

j i j ij j j
j j

L y x       
 

      (5) 

where the λ1 part generates a sparse model and the λ2 part removes the limitation on the number of 

selected variables and stabilizes the λ1 regularization path.  

The solution of Equation (5) is equivalent to the optimization problem reported in Equation (6) : 

2ˆ argmin | |i j ijy x       s.t.   2

1 1

(1 ) | |
p p

j j
j j
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      for some t      with 2

1 2


 




 (6) 

For α=1 and α=0, EN becomes respectively a Ridge Regression and a LASSO model. When 0 1 

EN has characteristics of both models and avoids LASSO limitations, generating a reduced model by 

predictors removal. 

 

3.3. Decision Trees (DT) 

Decision Trees (DT) is an algorithm based on a decision graph in which predictions are based on 

“tests”, i.e. sequences of if/else questions that build a tree. Tests are chosen over all possible questions 

about the treated issue and those which predict high information are selected (Chongchong et al. 

2018). Each test aims to divide input data into two subsets, called “node”; in a tree structure the 

former node is called “root” and the latter ones are called “leaves”. If/else questions that connect a 

root node to a leaf are called “branch”. Figure 8 shows the growth of a tree. 
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Figure 8 – DT algorithm 

The growth of a tree will continue until a node contains a group of homogeneous data. With 

uncontrolled growth, the DT model tends to overfit and for this reason, a pruning strategy can be 

chosen from two possible approaches: 

• stopping the growth of the tree early (also called “pre-pruning”); 

• removing or collapsing nodes that contain little information (also called “post-pruning” or just 

pruning) 

An implementation of DT algorithm is presented by Di Girolamo et al. (2020).  In their work, authors 

introduced the idea of Classification and Regression Tree (CART), i.e. a method that, starting from 

the growing of a tree, defines a dynamical model of the problem to do predictions. The first step 

concerns in the creation of a tree (Tj) for each prediction required; then, a model as Equation (7) is 

associated with each leaf lij: 

 
,

1

( ) ' ( ) ' ( 1) '
j

ij ij ijx k j A x k B u k f





       (7) 

where ,' ; 'ij ijA B   and 'ijf  is defined with least square methodology. The last step consists in the 

derivation of a dynamical model, obtained with an extension of the state-space of input and variables. 

DT has two advantages over the other algorithms: the resulting model can be visualized easily and 

understood by non-experts, and the algorithms are completely invariant to the scaling of the data. The 

weakness of this method lies in the risk of overfitting data providing poor generalization, despite the 
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use of pre-pruning or post-pruning. Therefore, in most applications, both pruning approaches are 

used. 

 

3.4. Random Forests (RF) 

Random Forests (RF) is a combination of tree predictors where each tree growth depends on a random 

vector and follows the DT growing rules (Breiman 2001). If x is the input data and Θk is the random 

vector of the root nodes of each tree in the forest, the output prediction is the h(x, Θk) function. The 

result of the RF model is the average over k predictions of trees. 

Defined X, Y as random vectors that randomize the training set, 2
, ( ( , )X Y kE Y h X   the mean-squared 

generalization error for any function h(x, Θk), PE*(tree) the average generalization error of a single 

tree, and PE*(forest) the average generalization error of the forest, it can be demonstrated that  

(Theorem 11.2 (Breiman 2001)):  

 
*( ) *( )PE forest PE tree  (8) 

where   is the weighted correlation between the residual ( , )iY h X   and ( , )jY h X  . 

Equation (8) shows that RF decreases the error of a single Decision Tree, and the overfitting is 

reduced as more trees are added to the RF model. Furthermore, the distortion of the output by noisy 

input data is less than 5%. 

 

3.5. Support Vector Regression (SVR) 

SVR (Smola 1996) is a regression model based on the Support Vector Machine (SVM) algorithm 

presented by Vapnik (1995), (1998). In the SVM, the prediction is based on the identification of a 

hyperplane fitted to the input data and the evaluation of distances among input points and the plane. 

A generic formulation of the hyperplane is reported in Equation (9)  : 

 
( , ) ( )f x w x b     (9) 
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where w and b are parameters induced from the training sample, α is the Lagrangian multipliers used 

to define the optimization of w and b, x is the input data, and f(x,α) is the set of real function that 

contains the regression function f(x,α0). The hyperplane divides input data space into regions that 

identify different classes. Figure 9 shows the hyperplane function in a training set with a single 

variable. 

 

Figure 9 – SVR algorithm 

SVR algorithm is obtained from the introduction of the distance measurement between input and 

prediction. SVR aims to find a regression function that has at most a fixed deviation among target 

and inputs (ε) and it is as flat as possible. The regression function is given by the minimization of the 

empirical risk as shown in Equation (10): 
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   (10) 

where C is a fixed value, and *,  are slack variables representing upper and lower constraint of the 

j outputs. This method results useful to a pixel defragmentation analysis of images (Dibike et al. 

2001). 

 

3.6. Artificial Neural Network (ANN) 

According to Bilal et al. (2016), ANN defines a wide group of ML algorithms based on a network 

of connected neurons that output a prediction applying several filters to input features. Generally, in 
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each ANN algorithm, networks can be divided into three groups of layers: (i) the input layer, where 

the input features are collocated, (ii) hidden layers that contained neurons (functions), and (iii) the 

output layer. Neurons are weights function obtained from a random process or a backward 

propagation and their formulation changes for each algorithm. 

 

 

3.6.1. Multilayer Perceptron Regressor (MLP) 

A multilayer perceptron (MLP) is an Artificial Neural Networks (ANN) method in which neurons are 

called ‘perceptrons’ and have the formulation reported in Equation (11): 

 
2 1 1 2( ) ( )Tf x w g w x b b     (11) 

where w1 and w2 are the weights, b1 and b2 are the bias, and g(x) is the activation function ((Khadem 

and Hossein-Zadeh 2014),(Qi et al. 2018)).   

The network structure is composed of an input layer, two hidden layers, and an output layer as 

reported in Figure 10. 

 

Figure 10 – MLP structure 

Neurons try to simulate the same procedures that occur in the human brain. Each processing unit 

estimates a weighted sum of its inputs and uses an activation function to extract the single output 

value. The process starts with random initialization of weights that are continuously updated by a 
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backward propagation in the neurons. The iterative process starts with the definition of the error on 

the output value: 

 ( ) ( ) ( )j j je n d n y n   (12) 

where d is the target values, and y is the perceptrons prediction. Minimizing the error in Equation 

(12) by a cost function (Equation (13)) and applying the Gradient Descent in Equation (14), a cycle 

of iteration is completed. 

 21
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where η is the learning rate and vj is a local variable. The end of the process is set by a maximum 

number of iterations or by a specific cutting point. 

 

 

4. DATA COLLECTION 

 

4.1. Data sources 

The first part of the study involved collecting around 10.000 pictures from four different sources: 

 The Earthquake Engineering Institute (EERI); 

 Datacenterhub.org; 

 Db.concretecoalition.org; 

 The Geotechnical Extreme Events Reconnaissance (GEER). 

To apply the ML algorithms, it was necessary to manually select pictures in which the extent of the 

rubble was visible and could be measured by comparison with other known elements appearing in 

the pictures. Following this approach, a final database of 310 pictures from 25 different earthquakes 
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events was created; each picture shows at least a portion of the building that was damaged or collapsed 

and the extent of debris. This database was used to train and test the ML algorithm. The 25 different 

earthquakes covered and the number of pictures selected by each of them is shown in Table 7. 

Table 7 – Number of pictures of events 

Earthquake Year No. of Pictures 

Central Italy 2009 65 

Cephalonia (Greece) 2011 22 

Christchurch (New Zealand) 2011 13 

Ecuador 2016 54 

India  2001 28 

Loma Pietra (US) 1989 5 

Mexico Central 2017 20 

Nepal 2015 34 

Northern Iran 2017 1 

Northridge (US) 1994 2 

North-west Armenia 1988 5 

South Napa Valley (US) 2015 6 

Southern Taiwan 2016 24 

Turkey 1999 10 

Alaska 1964 3 

Algeria 1980 1 

Armenia 1988 1 

California 1994 4 

Chile 2010 4 

Haiti 2010 3 

Honduras 2009 1 

Indonesia 2005 1 

Japan 2012 1 

Korea 2017 1 

Oklahoma (USA) 2016 1 

 

4.2. Dataset features 

The learning process of ML algorithms starts from an input dataset made up of several data samples 

identified by features and an output value; learning consists in the extraction of weights of features 

needed to predict given outputs. The accuracy and the dimension of the dataset influence the 

prediction results. After a careful analysis, the following attributes have been identified as they are 

closely connected to the amount of debris made by each building: 

• Material: the buildings considered in this study are made of reinforced concrete or  

masonry and the behavior of the two materials is different in term of debris extension; 
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• Stories: : seismic forces applied to buildings and damage are dependent from the number 

of slabs of the building; 

• Year of construction: construction technologies and methodologies can vary during the 

years because of both different standards and construction techniques; 

• Magnitude: the stronger the ground motion, the higher the possibilities to damage 

buildings; 

• Distance from epicenter: the smaller the distance among buildings and epicenter, the 

greater the effects on structures; 

• Building height: tallest buildings could produce a bigger amount of rubble,  

• Direction of EOD: for each image, vertical or horizontal EOD can be evaluated.  

A valuation of dataset composition can be done analyzing the feature correlation with the EOD of the 

samples in the dataset. Table 8 and Figure 11 shows the results obtained with a Random Forest 

validation process. 

Table 8 – Correlation value of features 

Features Correlation 

Height of building 0.417 

Epicenter distance 0.208 

Magnitude 0.118 

Stories of building 0.094 

Year of construction 0.081 

Direction of evaluation 0.046 

Material 0.036 

 

Figure 11 – Correlation chart 
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4.3. Debris extension 

The main purpose of this study is to forecast the EOD after earthquakes based on different parameters 

of the structures. Unfortunately, this information is not present in the reports that are usually written 

after each seismic event. From each picture, a dimension whose size is well known is identified and 

compared with debris extension; the comparison was done using PhotoFilter, a photo editor, 

evaluating real distances from pixel coordinates. The sample id.061 test is reported; in Figure 12 the 

width of a car (P) is used as a reference and the dimension of debris (p) is evaluated. 

  

           Figure 12 – Depth (P) of a car and picture dimension (p) of debris                                    

To predict the EOD along one axis the proportion in Equation (15) is used: 

 P
d p

D
   

(15) 

where: 

• 1 2r rP x x         with x1r and x2r  pixel coordinates of the reference element; 

• 1 2d dp x x        with x1d and x2d  pixel coordinates of the debris extension; 

• D is the value in meters of the principal measure of the reference element; 

• d is the value in meters of the debris extension. 

The parameters used to evaluate the rubble shown in Figure 12 are summarized in Table 9. 
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Table 9 – input and output data in sample id.061 

Coefficient Value 

x1r 502 

x2r 334 

x1d 720 

x2d 371 

p 349 

P 168 

D (m) 1.8 

d  (m) 3,629 

 

To process the obtained EOD for each picture, results are normalized to the height of the building 

and their log10 value is considered. This post-processing is done to: 

 make the training data less sensitive to the scale of the features (e.g the height of a building 

heavily influences the amount of rubble); 

 minimize the variance of the dataset; 

 compare results with other models available in the literature; 

 make the optimization well-conditioned: most of the ML optimizations are solved using 

Gradient Descent and the speed of convergency depends on the scaling of the features. 

Unfortunately, it is not possible to collect all the parameters from each picture due to the lack of 

information. Therefore, Table 10 is summarized how many samples (pictures) provide information 

for each feature.  

Table 10 – Number of samples for features 

Feature # samples 

Material 310 

Stories 310 

Year of construction 66 

Magnitude 310 

Distance from 
epicenter 

278 

Height 310 

Direction of EOD 310 
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Undefined values of features are replaced with the medium value of the considering features; this is 

done to reduce dispersion in ML algorithm based on distances among data as Linear models, KNR, 

and SVR. 

 

5. DATA VISUALIZATION AND PREPROCESSING 

In this paragraph, data are divided according to the input features of the dataset. In each graph on the 

y-axis is reported the EOD value and on the x-axis is reported the corresponding feature. Moreover, 

masonry and concrete EOD results are divided using labels.  

Figure 13 reported the EOD value for respectively: (a) the epicenter distance, (b) the magnitude, (c) 

the stories of the building, (d) the year of construction, and (e) the building heigh. The direction of 

EOD evaluation is not reported in these graphs because it is not representative of the issue but is used 

to improve the accuracy of algorithms. 
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Figure 13 – Features charts: (a) the epicenter distance, (b) the magnitude, (c) the stories of buildings, (d) the year of 

construction, (e) the building heigh 

The distance from the epicenter (a) and the magnitude of the considered earthquake (b) are the 

features that could be identified more easily, so the data size is the largest; the stories of buildings (c) 

shows that the dataset mostly concentrates on buildings between 1 and 6 stories; the year of 

construction (d) was most difficult to identify because few earthquake reports reported this 

information, so the data size corresponding to this feature is the smallest; the building height (e) can 

be obtained from reports or the number of stories. To improve the accuracy of predictions, a 

logarithmic distribution of building heights is considered. 
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5.1. t-Distributed Stochastic Neighbour Embedding (t-SNE) 

The issue analyzed in this study is a multi-features regression in 7 dimensions that can not be 

visualized in a 3D or 2D space. The visualization of the data distribution among features may induce 

a validation from the user, based on the sparsity of data. In particular, a sparse dataset may produce 

a well generalized ML model to be applied at different samples for predictions. To avoid this 

limitation and to have an optimization of interpretation of predictions, the t-SNE tools can be used 

(Van der Maaten and Hinton 2008). 

The t-SNE method aims to create a map of analyzed data, where distances among points in the real 

space (“t” dimensional) are respected, i.e. data points are grouped with their neighbor data, so 

different groups are identified. This model applies two times a probability distribution of distances 

among points, using Barnes-Hut approximation, and minimize the Kullback-Leibler divergence by 

Gradient Descent. Figure 14 shows the application of t-SNE to the dataset of the current case study. 

Looking at the graph it is possible to say that the dataset can be divided into five different categories 

of samples; moreover, the R-squared value hardly could have a high score because for the same y-

value on the graph we have more than one data on the x-axis. 

 

Figure 14 – t-SNE chart 
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5.2. Preprocessing Data 

Overfitting, or high variance, is when an algorithm, which is used to fit a training set, can have high 

accuracy for the train set but a lower one for the predictions. In other words, overfitting occurs when 

the algorithm may accurately fit the training set but fail to generalize to new examples. For each 

algorithm, there are different pre-processing approaches to the dataset that can help to avoid 

overfitting or other prediction error. In particular, for distance-based methods, scaler processing can 

be used. For Python implementation, Scikit Learn proposes several possibilities and in this work, the 

following are used: 

 StandardScaler: this pre-processing ensures that for each feature the mean value is 0 and the 

variance is 1, bringing all the features to the same magnitude. In this way it is possible to 

avoid outliers point that could create problems for the accuracy; 

 MinMaxScaler: this procedure shifts the data such that all features are exactly between 0 and 

1. For a two-dimensional dataset, this means all data is contained within the maximum and 

the minimum value of the feature. 

 

6. DATA TESTING 

In this chapter, the algorithm tuning and the comparing models to find the best ML algorithm are 

reported.  

For each different model, several parameters or coefficients are needed to tune the algorithm to obtain 

the best result. In the next paragraphs, the parameter necessary to find the best fit regression are 

described. For further information, it is recommended to consult the documentation of Scikit-learn 

(2018) since in the concerned study only the parameters and the options of used algorithms are 

described. A self-tuning process has been used for the definition of the best parameters set for each 

algorithm; a wide range of values has been trained for each parameter and the set with the lowest 

MSE value has been chosen. Moreover, 100 random splits between training and test set have been 
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considered for three size ratio (85-15%, 80-20%, and 70-30%). Finally, the set with higher accuracy 

has been chosen for each algorithm. 

Next paragraphs reports the best set of parameters individuated. 

 

6.1. k-Nearest Neighbour Regressor (KNR) 

For the KNR algorithm, the parameters to tune are two:  

 the k-value of considered neighbors, i.e. the number of points taken into consideration to 

predictions for the X test;  

 the distance evaluation. 

The best set is: size-ratio=85%-15%, k=6, and distance= ‘manhattan’. 

 

6.2. Linear Models 

For Ridge Regression and LASSO model, the only parameter to tune is α, i.e. the regularization 

strength of respectively L2-penalty and L1-penalty coefficient. In Elastic Net, there is also the l1_ratio 

parameter used to define the ratio between λ1 and λ2. The best set for each algorithm is obtained from 

a size-ratio of 85%-15% and parameters are: 

 Ridge Regression: α=10 

 LASSO: α=0,001 

 ElasticNet: α= 0,01 and l1_ratio=0,5 

 

6.3. Decision Trees (DT) 

The coefficients used for DT are 4: 

 min_samples_split: gives the minimum number of samples required to split an internal node; 

 min_samples_leaf: is the minimum number of samples required to be at a leaf node; 

 max_depth: the maximum depth of a tree; 

 max_features: the maximum number of features to consider when looking for the best split. 
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The best set is: size-ratio=80%-20%, min_samples_split=20, min_samples_leaf=2, max_depth=5, 

and max_features=2. 

 

6.4. Random Forest (RF) 

The coefficients used for RF are 4: 

 min_samples_split: gives the minimum number of samples required to split an internal node; 

 min_samples_leaf: is the minimum number of samples required to be at a leaf node; 

 max_depth: the maximum depth of a tree; 

 max_features: the maximum number of features to consider when looking for the best split. 

The best set is: size-ratio=85%-15%, min_samples_split=5, min_samples_leaf=2, max_depth=6, and 

max_features=2. 

 

6.5. SVR 

The tuned parameters for SVR are 4:  

 C: specifies the strength of the regularization; 

 ε: specifies the epsilon-tube within which no penalty is associated with the loss function; 

 kernel: specifies the kernel type used in the algorithm; 

 gamma: a kernel coefficient; 

 degree: specifies the degree of the polynomial kernel function only with a ‘poly’ kernel; 

The best set is: size-ratio=85%-15%, C=1000, ε=0,1, kernel=linear, gamma=’scale’, and degree=2. 

 

6.6. MLP regressor 

ANN required several parameters to tune due to their nature of the multilayer connective framework. 

In the concerned study the parameters set are 7: 

 alpha: is the regularization parameter; 

 hidden_layer_sizes: is the number of neurons in the i-th hidden layer; 
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 activation: defines the activation function for the hidden layer; 

 solver: defines the solver for weight optimization; 

 max_iter: the maximum number of iteration.  

 

The best set is: size-ratio=80%-20%, alpha=0,001, hidden_layer_sizes=10, activation=’relu’, 

solver=’lbfgs’, and max_iter=350. 

 

6.7. Error evaluation  

6.7.1. R-squared value 

The R-squared value, also known as the “coefficient of correlation”, evaluates how much the scatter 

points are distant from the regression fit line calculated by the algorithm, providing a measure of the 

future prediction accuracy of new samples. The range of variation of R-squared is [0;1], where 1 is 

the best possible score and 0 is the worst, corresponding to a model that always predicts the y value, 

disregarding the input features. In this study, the R-squared value can be negative since the model is 

predicting descending values while the true data are growing and absolute values of R-squared are 

used for the comparison. 

Defined iy as the predicted value of the i-th sample and yi as the corresponding true value, the R-

squared (R2) coefficient of correlation estimated over nsamples has the formulation in Equation (16). 
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6.7.2. Mean Squared Error (MSE) 

The MSE of an estimator measures the average of the squares errors, i.e. the average squared 

difference between the predicted values and the input values. It is used to measure the quality of an 

estimator since it evaluates both the variance and the bias. MSE is always a non-negative and values 

close to zero correspond to high accuracy. 

Defined iy as the predicted value of the i-th sample and yi as the corresponding true value, MSE over 

nsamples is estimated in Equation (18). 
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7. RESULTS 

In this chapter, obtained results of R-squared value and MSE of each algorithm are reported in column 

graphs and comparison among methods is done. In particular, different bar colors are used to different 

test size: 

 Blue bars refer to the score with a test size data about 15% of the dataset; 

 Yellow bars refer to the score with a test size data about 20% of the dataset; 

 Red bars refer to the score with a test size data about 30% of the dataset. 

As explained in the previous paragraph, each algorithm is run with three different size-ratio of 

train/test set, with 100 random sample partitions, and with a self-tuning process of parameters. 

The results here reported for the comparison are the best ones for each algorithm. 

The MSE value is used for the first comparison and Figure 15 and Figure 16 show obtained results 

respectively for the training set and the test set. 
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Figure 15 – MSE comparison on the train set 

 

Figure 16 – MSE comparison on the test set 

In previous charts, it may be seen that the linear regression models and the SVR gives similar results 

for both training and test set; moreover, for KNR, linear models, SVR and RF, the lower the training 

set size, the higher the MSE value. DT and MLP has a higher error respectively for the 80-20% and 

30-70% sizes. RF has the lower MSE value, with a mean value of 0,044.  

According to this comparison, Randon Forest is the most accurate ML algorithm for the treated 

dataset to predict the EOD and a 85-15% partition of the input dataset has been chosen for its lower 

error evaluation. 



 

38 
 

Figure 17 shows the R-squared value of this configuration.  

 

Figure 17 – R-squared value of RF 

The low difference between test and training confirms that RF has great accuracy in the prediction of 

EOD and that the parameter configuration selected avoids overfitting and underfitting. In Table 11 

the numeric evaluation of the accuracy is reported; red values are the best results for R-squared and 

MSE evaluations.  

Table 11 – R-squared and MSE scores 

Algorithm 
Training set Test set 

15% 20% 30% 15% 20% 30% 

KNR 
R2 0,525 0,531 0,427 0,382 0,395 0,453 

MSE 0,058 0,058 0,063 0,046 0,048 0,069 

LASSO 
R2 0,410 0,412 0,398 0,487 0,417 0,461 

MSE 0,072 0,073 0,075 0,044 0,046 0,051 

Elastic Net 
R2 0,408 0,417 0,398 0,497 0,405 0,460 

MSE 0,072 0,073 0,075 0,043 0,047 0,051 

Ridge 
Regression 

R2 0,409 0,417 0,398 0,487 0,403 0,462 

MSE 0,072 0,073 0,075 0,044 0,047 0,051 

Decision 
Trees 

R2 0,445 0,355 0,391 0,475 0,357 0,529 

MSE 0,065 0,082 0072 0,055 0,044 0,052 

Random 
Forest 

R2 0,679 0,647 0,614 0,493 0,459 0,402 

MSE 0,038 0,044 0,049 0,043 0,042 0,052 

SVR 
R2 0,398 0,395 0,384 0,495 0,419 0,448 

MSE 0,073 0,075 0,077 0,043 0,046 0,052 

MLP 
R2 0,357 0,394 0,372 0,514 0,518 0,309 

MSE 0,074 0,072 0,083 0,059 0,052 0,052 

 



 

39 
 

 

8. CONCLUDING REMARKS 

The objective of this study is to assess the extension of debris (EOD) from pictures, caused by 

earthquake damage on civil structures, using ML algorithms. The starting input data is composed of 

310 pictures of post-disaster and related data, divided into 7 features, from 25 different earthquakes. 

Eight ML algorithms are trained and their performances in terms of EOD prediction are evaluated 

using R-squared and Mean Squared Error (MSE). 

During the training process, some parameters, different for each algorithm, are altered and tested to 

achieve the best score. 

Looking at the results, the main features of the present research can be summarized as follows: 

 RF gives the best MSE score on both training and test set and the best R-squared value; the 

R-squared evaluation shows that the algorithm does not suffer from overfitting; it is defined 

as the most accurate ML algorithm for the EOD evaluation with the used dataset; 

 Linear models and SVR gives are less accurate than RF; 

 KNR decreases significantly its accuracy as the dimension of the training set is reduced; 

 MLP results not appropriate to the treated dataset since it is not enough large. 

 

In conclusion, Random forest is the best choice for predicting the EOD and the performances suggest 

that there are some potential uses of ML methodologies in this field. It is appropriate to underline that 

collecting more pictures and data from other Earthquakes in the future could significantly improve 

results. 
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CHAPTER 2 - OBJECT DETECTION FOR THE EXTRACTION OF STRUCTURAL 
FEATURES 

 

9. INTRODUCTION 

Object detection is a relevant machine learning application that improves image processing during 

every computer vision research. The main aim is to identify relevant objects in images or videos and 

classify them with labels. Recent applications make possible a real-time detection of videos that 

improve automation as robot vision and autonomous driving. Moreover, object detection is used to 

improve security on the roads or to boost the productivity of industries. 

Most common applications are based on supervised learning and start from a dataset of images that 

contains specific categories of objects to detect. For each image in the dataset, the location of objects 

is defined with a rectangular box or with a ‘mask’. 

Object detection may be used to detect a specific instance, i.e. human faces, buildings, or several 

categories that include the most common natural and artificial objects. 

Datasets can be realized manually by the user or taken from open sources on the net, i.e. COCO 

dataset (Lin et al. 2014) and OpenImage Dataset (Kuznetsova et al. 2018). After the training phase, 

the algorithm can detect the selected categories of objects in images and/or videos, and the 

corresponding locations. Today, object detection is a field in continuous development and new 

methods and algorithms are a challenging task. There exist several applications that merge different 

machine learning algorithms to obtain an efficient training phase and feature extraction on the dataset. 

Convolutional Neural Networks (CNN), Random Forest (RF), Support Vector Machine (SVM), K-

Nearest Neighbor (KNR), and Linear models (LM) are the most commonly used algorithms.  

With post-processing of detection output, information is extracted from images and may be used in 

computer analysis. This work aims to define an automatic extraction process of features of building 

façade, to evaluate fragility curves of masonry structures; in particular, the opening ratio and the 

location of windows or doors will be detected. The post-processing may define an equivalent frame 

model (EFM) to realize a FEM representation of the structure that will be used to evaluate the capacity 
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curve and the fragility curves of the building. The main issue is the identification of a standard object 

detection method to extract opening locations from different points of view in the images. Several 

object detection methods have been tested and the more accurate is identified for the detection phase.  

This document is organized in four sections: in section 10 there is a literature review of the most 

common object detection methods and error evaluation approaches; in section 11 there is the 

individuation of the most accurate method and the feature extraction with the post-processing phase; 

in section 12 there is a description of fragility curves evaluation and the EFM definition; in section 

13 there are the concluding remarks. 

 

10. OBJECT DETECTION 

In the last ten years, several object detection methods have been published basing on machine learning 

algorithms described in section 3. In particular, CNN, RF, SVM, KNR, and LM are used. Each 

algorithm has been applied with different architecture to obtain a faster and more accurate method 

for each particular issue. 

Nguyen et al. (2020) published a state of the art of the most relevant methods for object detection of 

the last seven years.  

 

10.1. CNN Models 

The most commonly used category of algorithms is the CNN; depending on the number of connected 

layers, CNN returns greater accuracy but, at the same time, needs more computational resources and 

evaluating time. Layers of each CNN can be classified into four categories: 

 Convolutional layer (CONV): is the main layer and it is composed of kernels (filters) that 

contain learnable weights for the feature extraction. Its depth is the same as the input layer (i.e. 

treating RGB images, depth is 3), but its height and width are smaller than input. CONV layers 

slide on the image to find features and the accuracy and the computational cost depend on the 

stride of the sliding. 
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 Max pooling layer: is the layer that performs downsampling by a reduction of input size. It 

works sliding a filter on the input and reduces the computational cost and the probability of 

overfitting. 

 Fully connected layer (FC): is the layer that connects previous layers to all neurons. It is a vector 

that adds bias to input for neurons. 

 Softmax layer: is the layer that predicts the class object of a region proposal. It evaluates the 

probability of each region to be an object and output the class with the highest probability. 

 

10.2. Detection Methods 

Using different algorithms of machine learning, several object detection methods have been 

developed. In general, methods are divided into two classes:  

 Two-stage frameworks: the detection of objects is done in two-step; the first is the extraction 

of a region of interest (RoI), i.e. the possible locations of the object in the image, the second 

is the classification of each RoI; 

 One-stage frameworks: the detection of objects occurs in one step; each method learn 

bounding-box coordinates and class probability from image pixels. 

The ‘two-stage frameworks’ have better accuracy than ‘one-stage frameworks’, but they require a 

high computational cost and time-machine for the training and the evaluation phases. For this reason, 

‘one-stage frameworks’ are used for real-time object detection. 

Each method is based on an architecture model that defines the connection between layers or other 

method’s settings.  

 

10.2.1. Architecture model 

A pioneering work of this field is the AlexNet architecture (Krizhevsky et al. 2012): it consists of five 

CONV layers and three FC layers that work using a 11x11,5x5 and 3x3 kernels. ZF-Net (Zeiler and 

Fergus 2014) is an improvement of AlexNet; it is composed of 13 layers divided into CONV, LRN, 
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FC, and softmax layers. CONV layers are followed by a ReLU activation function. This model uses 

a 7x7 kernels. To avoid the problems about needed resources and time, ResNet (He et al. 2016) 

introduces the ‘residual block’, an architecture that uses skip-connections between layers, and 

DenseNet (Huang et al. 2018) proposes the ‘dense block’, which consists in layers densely connected 

where the input of a layer is the output of all previous ones.  

 

10.2.2. Two-stage frameworks 

The first step of each ‘two-stage framework’ method is the extraction of RoIs. A ‘Region of Interest’ 

(RoI) is a sample within a dataset identified for a particular purpose. For the object detection issue, 

an RoI is defined on a 2D dataset and identifies the boundaries of an object. RoIs are extracted from 

a feature map and must be processed to become bounding boxes. A region can be defined by a vector 

of 4 integers in two ways: 

 two coordinates of one corner, width, and height of the box; 

 two coordinates of two opposite corners of the box. 

To classify an RoI as positive, i.e. to consider the proposal region as an object to be classified among 

labels, an IoU ratio must be fixed. The ‘Intersection over Union’ (IoU) is an index that measures the 

overlap between two boundaries. In the object detection, IoU is used to evaluate the precision of the 

bounding-box predictions as it is described in Figure 18 and Equation (19).  

 

Figure 18 – IoU definition adapted  

 area of overlap
IoU

area of union
  (19) 

Below, relevant ‘two-stage frameworks’ are reported. 
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10.2.2.1. R-CNN 

R-CNN (Girshick et al. 2014) is a method based on a CNN end-to-end to classify a region proposal 

into an object or background. As it is only a classifier, its accuracy depends on the previous region 

proposal module. Selective Search or Edge Box are adopted for this issue. The CNNs are used to 

extract high-level features and the classification phase is done by several SVM algorithms. R-CNN 

requires 2000 region proposals (RoI) for every image to be analyzed. 

 

10.2.2.2. Fast R-CNN 

Fast R-CNN (Girshick 2015) was introduced to avoid limitations of R-CNN, in particular, to reduce 

the computational time. This method uses CNNs to create a feature map from the input image that is 

overlaid with the RoI. With a max-pooling layer a fixed-size vector of features is extracted from each 

RoI and location and classes of objects are evaluated by an FC layer and two softmax layers. Equation 

(20) defines the multi-task loss L used on each RoI to train classification and bounding-box 

regression. 

 ( , , , ) ( , ) [ 1] ( , )u u
cls locL p u t v L p u u L t v    (20) 

 

where p is the probability distribution (per RoI), u is the ground-truth class (per RoI), v is the ground-

truth bounding-box regression target, and Lcls and Lloc are defined respectively in Equation (21) and 

Equation (22). 

 ( , ) log( )cls uL p u p   (21) 
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 
 


 (22) 

 

In the method presented by Girshick, the minimum value of IoU to label an RoI as positive is 0.5. 
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10.2.2.3. Faster R-CNN 

Faster R-CNN, presented by Ren et al. (2017), is an implementation of Fast R-CNN. The main aim 

is to improve both the accuracy and speed of previous methods, sharing convolutional features among 

RoI individuation and classification phases. Faster R-CNN is composed of two modules: the first is 

the Region Proposal Networks (RPN) and the second is the Fast R-CNN.  

RPN is a fully-connected convolutional network with images as input and RoI and objectness scores 

as outputs. Objectness measures the probability of a region to be an object versus background. 

Generally, RoI has a rectangular shape, but RPN can treats also several shapes. To extract RoIs, RPN 

generates a feature map using a CNN and slides a CONV layer on this map; a rectified linear unit 

(ReLU) activation function is used to increase speed and convergence of this process. Each sliding 

window (CONV layer) generates a different vector, fed into a regression (reg) and softmax (cls) 

layers that evaluate the coordinates of RoIs and the probability of being object into the box. Figure 

19 shows the RPN architecture. 

 

Figure 19 – RPN architecture  

Each sliding-window location can predict a k number of region proposals that are called anchors. 

This means that the reg layer has 4k outputs (i.e. the coordinates of k boxes), and the cls layer has 2k 

outputs (i.e. the probability to be an object or background). The authors proposed to use k=9, to 

evaluate 3 different scales and 3 different aspect ratio. Each anchor in the sliding window can be 

labeled as positive, negative, or neither positive nor negative: for this classification IoU approach is 
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used. According to the authors, an anchor is labeled as positive (object) if its IoU ratio is the highest 

or if it is greater than 0.7, as negative (background) if its IoU ratio is less than 0.3; when the anchor 

is neither positive nor negative, it does not contribute to the training.  

After the individuation, RoIs are shared between RPN and Fast R-CNN using CONV layers. In 

particular, the model of ‘Alternating Training’ is adopted from the authors. This model consists of an 

iteration process of four steps: 

 Step 1: training of an RPN network starting from pre-trained weights or random weights; 

 Step 2: training of a Fast R-CNN network using RoI obtained in step 1; 

 Step 3: initializing RPN network training, fixing the shared CONV layer, and tuning only the 

layers unique to RPN; 

 Step 4: a unified network has been formed and it can be run for more iterations. 

The unified network obtained from Alternating Training is the unit-based of the Faster-RCNN. A 

schematic architecture is reported in Figure 20. 

 

Figure 20 – Faster-RCNN architecture  
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10.2.2.4. Mask R-CNN 

Mask R-CNN (He et al. 2017) is an implementation of Faster R-CNN, that introduced the object 

instance segmentation. The main aim is to classify each pixel of images into object categories, adding 

a third output at the Faster R-CNN. To each RoI, a new Fully Convolution Network (FCN) is applied 

that works in parallel with the cls layer and outputs a mask. A mask is a m x m matrix build on each 

positive RoI that identifies the real boundaries and shape of each object in the box; in the Mask R-

CNN, this matrix has not resorted to an FC layer like other object segmentation methods. The pixel-

to-pixel process of classification works with a feature map for each RoI and needs an alignment with 

the pixel position in the image. Usually, the feature map is extracted from a RoIPool layer that 

quantizes a floating-number RoI, divides each RoI into spatial bins which are themselves quantized, 

and aggregates features to each bin. Quantization generates a misalignment between pixels and, to 

avoid this problem, the authors introduced the ‘RoIAlign layer’. This layer removes the quantization 

process and uses bilinear interpolation to evaluate features at four sampled locations in each RoI bin. 

During training, the multi-task loss function in Equation (23) is used on each RoI. 

 cls box maskL L L L    (23) 

where Lmask is the average binary cross-entropy loss. 

 

10.2.2.5. SNIPER 

Scale Normalization for Image Pyramids with Efficient Resampling (Singh et al. 2018) is a pixel-

based method that generates chips in the image of k x k pixels at equal intervals of d pixels, at multiple 

scales. The image is also resized to each scale. Positive chips cover all the positive instances in the 

images and the background portions are not covered. Possible positive chips are selected from the 

region proposal pre-obtained. 
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10.2.3. One-stage frameworks 

 

10.2.3.1. YOLO 

The YOLO (You Only Look Once) family methods were the first that introduced a unique end-to-

end CNN for the bounding-box detection and the classification of objects. Every YOLO method is 

composed of three main parts: 

 Backbone: a CNN that creates a feature map at different scales; 

 Neck: layers that combine features for detection; 

 Head: layers that predict boxes and object labels. 

The difference between versions is in the architecture that combines these parts.  

YOLOv3 (Redmon and Farhadi 2018) is a method based on a CNN algorithm that predicts, 

for each image, a 3D tensor divided into N x N grid cells and was written using the Darknet 

framework. Boxes are identified as in YOLO9000, i.e. by four coordinates for each box (tx, ty, tw, th ), 

and e an objectness score evaluate the precision of box prediction. Those with a score under a fixed 

threshold are ignored by the algorithm; usually, the threshold is set to 0.5. 

For the classification, YOLOv3 uses a multilabel classification to predicts the possible classes of the 

bounding-box. The feature extractor is a hybrid method between Darknet-19 (used in YOLOv2) and 

modern network stuff. This network is called Darknet-53 and is made up of 53 CONV layers 

connected by shortcut connections. YOLOv3 uses 3 different scales during detection, obtained by 

downsampling input image dimension by 32, 16, and 8; this process improves the classification 

accuracy of small objects. 

YOLOv5 (Jocher et al. 2020) is the last update of YOLO family methods, published on the 

25th of June 2020. This version avoids some problems of the previous version YOLOv3 and YOLOv4 

and today it is considered the leader in real-time object detection. YOLOv5 is the first YOLO method 

with a naïve release written in PyTorch, that makes support and deployment easier than the Darknet 

framework. In this version, the developers added a process of ‘Data augmentation’ based on scaling, 
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color space adjustment, and mosaic augmentation of dataset images. Mosaic augmentation is the real 

innovation of YOLOv5, because improves the detection accuracy, helping the method to identify 

small objects generally not well detected.  

Another improvement is the ‘Auto learning bounding boxes anchors’ process: in the previous 

versions, boxes are predicted from a fixed list of anchor dimensions; with YOLOv5 the anchor 

detection is supported by K-means or genetic algorithms that adapted boxes to the input dataset. 

Moreover, YOLOv5 uses a CSP Backbone to extract image features. This model is based on a 

DenseNet, which connects layers of a CNN to bolster feature propagation and reduce the number of 

network parameters. In particular, CSP ResNext50 and CSP Darknet53 have been used for YOLOv5. 

The main consequence of this approach is the boosting of inference speed. 

 

10.2.3.2. RetinaNet 

RetinaNet (Lin et al. 2002) is a one-stage method that uses two different techniques for object 

detection: Feature Pyramid Network (FPN) backbone and focal loss. FPN backbone is adopted from 

ResNet architecture and is used to extract the feature map combining low-resolution, high-resolution, 

and semi-weak characteristics; focal loss improves the accuracy of detection changing weights in the 

loss function, adding the modulating factor (1 )ip  . The resulting formulation of loss is reported in 

Equation (15): 

 

1

( log( )(1 ) ) (1 ) log(1 ) )
k

i i i i i i
i

y p p y p p 



     (24) 

Figure 21 describes a scheme of the RetinaNet architecture, showing two subnetworks attached to 

FPN, the first for the classification of objects, and the second for the regression of boxes.  
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Figure 21 – RetinaNet architecture  

 

10.2.3.3. SSD 

Single-Shot Detector (Liu et al. 2020) is a high-speed detector usually used for real-time object 

detection. It is based on a VGG-16 network, made up of 16 CONV layers, concatenated with 3 FC 

layers and a softmax layer that return detection results. In the SSD, each CONV layer detects objects 

using a certain scale with k anchors and outputs 4k offsets and c objectness scores; detection is done 

using a m x n features map. The entire process needs kmn(c+4) filters.  

In the training process, the loss function is defined as a sum of the localization loss (Lloc) and the 

confidence loss (Lconf ) as in Equation (25): 

 1
( , , , ) ( ( , ) ( , , ))conf locL x c l g L x c L x l g

N
   (25) 

where x is the box index, c is the class confidence, l is the predicted box parameter, and g is the ground 

truth box parameter. In the SSD, the Lloc is a Smooth L1 loss between the predicted box and ground 

truth box, and the Lconf is the softmax loss over multiple class confidences.  

 

10.2.3.4. CenterNet 

CenterNet (Zhou et al. 2019) is an anchor-free method based on a single CNN without FPN. To 

localize an object, CenterNet considers the center point of the bounding box and regresses other 

properties from image features. Using a keypoint estimator Ŷ , it can be obtained a heatmap, offset 
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value Ô , and size value Ŝ ; center points are defined as the peak points of the heatmap, and bounding 

boxes are evaluated as reported in Equation (26): 

  ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ/ 2, / 2, / 2, / 2i i i i i i i i i i i ix x w y y h x x w y y h            (26) 

where ˆ ˆ( , )c i iP x y  are the detected center point of class c, ˆ ˆ,
ˆ ˆ ˆ( , )

i ix y i iO x y   is the offset prediction, 

and ˆ ˆ,
ˆˆ ˆ( , )

i ix y i iS w h  is the size prediction.  

The detection phase estimates a 3D bounding-box for each object and requires three additional 

attributes for each center point: depth, 3D dimensions, and orientation. In particular, depth d is a 

scalar obtained from the L1 loss function, 3D dimensions are three scalars, and orientation is a single 

scalar. According to the authors, CenterNet can be tested using several network architecture like 

ResNet-101, ResNet-18, Deep Layer Aggregation-34 (DLA-34), and Hourglass-104 which returns 

the best result. 

 

10.2.3.5. RCNet 

RCNet (Zhang et al. 2016) is a method based on a random CNet architecture that incorporates a 

Gradient Boosting Machine (GBM) into the framework. A CNet is a multilayer architecture in which 

the features extraction is done using three kinds of layers: 

 CONV layer: a layer that connects the input feature map with the output feature map using 

filters; 

 Nonlinearity layer: a pointwise function applied to each component of the feature map. 

Usually, this layer consists of a ReLU function; 

 Pooling layer: a layer that involves executing a max operation over the activation function. 

After the features extraction, a back-propagation of a soft-max loss function is applied to the network; 

the goal of the process is to minimize J(θ) function in Equation (27): 
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where the target output y is a 1-of-K vector with K number of outputs, L is the number of layers, l is 

the index of the layer number, h(xi,θ) is the CNet function, θ is the learned parameter, λ is a 

regularization term, and N is the number of the training sample. 

In the CNet architecture, each feature extraction stage can be considered as a complete learning 

process and all the extracted parameters are shared between stages; this approach generates 

overfitting. The innovation of the RCNet consists in the introduction of a filter bank (Wsfilter) and a 

random selection of a single filter (Wfilter) from each stage. 

 

10.2.4. Evaluation of error 

After the training phase, the validation phase occurs to evaluate the accuracy of the features extraction 

and the prediction of labels and bounding-boxes. With this error evaluation, methods can be compared 

and the more accurate can be individuated for a particular dataset.  

The first evaluation of method accuracy is obtained from the value of the used loss function; in 

particular, the lower the value of the loss, the higher the accuracy of the method. The loss function 

evaluates the difference between the true values and the estimated values and it considers several 

factors as the quality of the dataset, the number of features, and the accuracy of features extraction. 

Monitoring of the loss function value during the training phase can help the user to avoid overfitting 

or to stop the iteration process when it does not converge. 

According to Hui (2018), there are other two popular error indexes used for object detection: ‘Average 

Precision’ (AP) and ‘mean Average Precision’ (mAP). Both indexes are based on the concept of 

‘precision’ and ‘recall’: 

 ‘precision’ (p) measures the percentage of correct prediction; 

 ‘recall’ (r) measures the capacity to find the true positive on K total prediction. 

Both indexes are over 0 to 1; below mathematical formulations are reported: 
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Precision=

TP

TP FP
 (28) 

 

 
Recall=

TP

TP FN
 (29) 

 

with:  

TP= True Positive 

TN= True Negative 

FP= False Positive 

FN= False Negative 

 

In the evaluation of these indexes on bounding-boxes, it must be set a minimum value of IoU to define 

true and false predictions; generally, this value is 0.5IoU  . 

Average Precision (APv) is defined as the area under the precision-recall curve and its value is 

between 0 and 1 as p and r. Equation (30) shows the mathematical formulation of AP: 

 1

0
( )vAP p r dr   (30) 

where v is the minimum IoU for positive prediction expresses as a percentage. 

Often precision-recall curve is smoothed, replacing each precision value for recall r


 with the 

maximum precision value of any recall r   as in Equation (31). 

 
int ( ) max ( )erp

r r
p r p r


 

  (31) 

After this process, the curve will decrease monotonically with a zig-zag pattern. In Figure 22 the 

orange curve is the original relation and the green curve is the result of the smoothing process. 
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Figure 22 – Precision-Recall curve 

The smoothing process gives an AP value less suspectable to small variations of precision. 

Mean Average Precision (mAP) is the definition of AP proposed by COCO dataset developer. It is 

evaluated as the average of AP for IoU from 0.5 to 0.95 with a step size of 0.05 (AP@[.50:.05:.95]). 

 

10.3. Object Detection in Civil Engineering 

Object detection is a field of computer vision-based used in civil engineering for the prevention and 

evaluation of risk.  

In the last ten years, the relevant works about object detection can be divided into 4 categories: 

 Structural Health Monitoring (SHM); 

 Detection of the existing structure; 

 Seismic field; 

 Street object detection. 

 

10.3.1. Structural Health Monitoring 

The SHM is a field of civil engineering that monitors the performance of an existing structure and 

detect possible damages. 

 Cha et al. (2018) proposed in their work detection of damage on concrete and steel structure. 

In particular, five types of damages have been labeled: (i) concrete crack, (ii) steel corrosion medium, 

(iii) steel corrosion high, (iv) bolt corrosion, and (v) steel delamination. A Faster R-CNN method has 
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been used to detection on a dataset of 2366 images, with 4695 objects, collected from the authors. A 

data augmentation process has been used to expand the dataset. Training and detection phases have 

been performed using a Core i7-6700k @4 CPU with GeForce GTX 1080 GPU. The same method 

has been used for real-time detection of damage. 

 Li et al. (2019) presented a pixel-level damage detection method of concrete structures based 

on an FCN detector. This method predicts the pixel location of cracks or damages, using an FCN 

build on a DenseNet-121 architecture (Huang et al. 2018). Detected damages are labeled in four 

categories: (i) crack, (ii) spalling, (iii) efflorescence, and (v) hole. To realize this work, the authors 

used a dataset of 2750 images obtained after a data augmentation process. Training and detection 

have been performed in Linux system on a Intel Xeon CPU E5-2630 v4 @2.2 CPU with ASUS 

GeForce GTX 1080 Ti GPU. 

 Liang (2019) proposed an image-based approach for post-disaster inspection of reinforced 

concrete structures, divided into three detection levels. The first is the ‘system-level failure analysis’, 

which aims to define the existence of a system of a major failure in the image. This level is a binary 

classification task tackled with a CNN method on a dataset of 492 images. The VGG-16 (Simonyan 

and Zisserman 2014) architecture has been selected for this step. The second level is the ‘structural 

component-level detection’ with which structural components are detected in images. The Faster-

RCNN method has been applied to a dataset of 236 images for this issue. The third level is the ‘local-

level damage localization’ and it is applied only to images with detected failure in the first level. 

Damage detection occurs to visual changes in the structural components, such as delamination/spall 

area, cracking, and exposes rebar. Semantic pixel-wise segmentation is used to identify the real area 

of damage, using the CNN method presented by Badrinarayanan et al. (2017). A dataset of 436 images 

is used. All training and detection steps are conducted on three different computers: a Core i7-

6700HQ @2.6 CPU with GeForce GTX 1080 GPU, a Core i7-8700 @3.2 CPU with GeForce GTX 

1080 GPU, and a Core i7-8700k @3.7 CPU with GeForce GTX 1080 GPU. 
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10.3.2. Detection of the existing structure 

Image-vision based method can be used to improve the urban design by detection of buildings or 

infrastructures already existing. Proposing methods in literature have the aim to extract automatically 

urban objects from satellite images and to use them for landscape classification.  

 Inglada (2007) presented an urban detection method based on geometric features of objects. 

Eleven classes have been detected: isolated buildings (IB), paths and tracks (PT), crossroads (CR), 

bridges (BR), wide roads (WR), highways (HW), round-abouts (RA), narrow roads (NR), railways 

(RW), and suburbs (SB). The training dataset is made up of more than 150 images for each class; 

each image is 100x100 pixels with the object in the center. In this work, the geometric features used 

are the region boundaries and the alignments, both extracted from the Gestalt approach (Desolneux 

et al. 2000); the classification phase has been executed with an SVM algorithm applied to a features 

vector. 

 Aljumaily et al. (2017) proposed an urban detection method based on a ‘light detection and 

ranging’ (LiDAR) dataset applied to a ‘digital surface model’ (DSM), i.e. the dataset is composed of 

billion 3D coordinates of points, a timestamp, an intensity measurement, and an RGB color indicator 

for each point. The method is divided into three steps. The first is a MapReduce grid-based 

partitioning that divided the area of interest into smaller subspaces to reduce time machine during 

training. The second step consists of the detection of dense cubes and sparse cubes into each subspace; 

a dense cube is a 3D area in which points are grouped together that involved in forming part of the 

ground, roads, of buildings; a sparse cube is a 3D area in which points are dispersed and identify 

vegetation. The third step consists of a clustering process on dense cubes; sparse cubes are removed 

from the analysis and dense cubes are grouped into classes. For this method, a DBSCAN algorithm 

has been used (Xu and Tian 2015) on an Intel Core i7 @2.4 CPU. 
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10.3.3. Seismic field 

In the seismic field, image detection has been used for the prediction of vibration frequency by Liu 

et al. (2019). This application is a target-tracking technique, realized using a LED light and a marker 

mounted on the measurement target; vibration frequencies are obtained from a feedforward neural 

network without any additional image or signal preprocessing. The proposed network consists of a 

set of 1D CONV layers, followed by batch normalization and a ReLU, connected to the number of 

the measurement frequency range (MFR) by two fully connected layers. The MFR is the product of 

the frequency range and the reciprocal of the measurement frequency precision step. Outputs of MFR 

is provided to a softmax layer for the vibration frequency prediction. The training process is 

developed on simulated data obtained from a random algorithm and adding noise to simulate real-

world vibrations. The image-vision method is applied to a selected RoI of the original video to 

recognize every variation of brightness of pixels that correspond to a motion of the target. The method 

has been tested in laboratory and on the field site. The major limitation of this method is that when a 

different measurement range of frequency is required, a new model must be trained; moreover, only 

the principal frequency of the object can be detected by the approach. In this work, a computer with 

an NVidia GTX1060 GPU has been used. 

 

10.3.4. Street object detection 

The image-vision methods applied to street objects can be used to improves the efficiency of 

automation drive and system of security in the automotive field or to detect the health of asphalt and 

provides intervents. 

 Stallkamp et al. (2012) proposed a method for traffic signs detection. This work provides the 

application of several machine learning algorithms, to compare them and define the most accurate 

results. In particular, the application of four algorithms is reported: (i) linear classifier (LDA), (ii) 

multi-scale CNN, (iii) committee of CNNs, and (iv) Random Forest. The training dataset is made up 

of 10 h of video recorded on different German roads, with 144769 total labeled traffic signs, divided 
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into 70 classes. The best algorithms, according to the authors, is the committee of CNNs, with 99.46% 

of correct classifications. 

 Zhang et al. (2017) presented a method to detect asphalt damage from 3D images of pavement 

surface taken from PaveVision3D system mounted in a Digital Highway Data Vehicle (DHDV). This 

system can take images at speed of about 100 km/h. The authors introduced in this work CrackNet, a 

CNN architecture made up of two FC layers, one CONV layer, one 1x1 CONV layer, and an output 

layer. Input is a features map of 360 features and the output is a prediction class for all pixels. The 

training dataset has more than 5000 3D images and it has been run on two NVidia GeForce GTX 

TITAN Black GPU. 

 

11. DETECTION OF STRUCTURAL FEATURES 

Computer image-vision methods, described in the previous section, can be applied to extract structure 

features from images; both object detection and object segmentation methods can be used. The aim 

of this work is to present an application of object detection to obtain information about masonry 

structure that influences the structure capacity and the evaluation of fragility curves of an urban area.  

In particular, the opening ratio of building facades is obtained from images of Google Street View, 

by CNN algorithms applied to 7 object detection methods, implemented in Python by two Pytorch 

(v1.6.0) libraries: Detectron2 (Yuxin Wu et al. 2019) and YOLOv5 (Glenn Jocher et al. 2020). 

Methods have been chosen by comparison reports of both libraries for both accuracy and time-

machine. Each implementation required a set of parameters to optimize the accuracy of training and 

the time-machine; to set the best parameters and to define the more accurate method, a comparison is 

done using the AP value and the mAP value, evaluated on the validation set after 1000 iterations. In 

the next paragraphs details of the dataset, set of the algorithm, and error evaluation is reported for 

each method. 

The training, the validation, and the detection phases have been performed on the Google 

Colaboratory platform using an NVidia Tesla K80s GPU or an NVidia T4s GPU. 
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11.1. Database 

The input database of images was obtained from OpenImage Dataset, a free open-source database of 

Google which contains about 9 million images and labels with more than 600 different object 

categories. A starting dataset of 2000 images of the ‘opening’ category was downloaded and a 

selection, a resizing, and a split in training and validation set of images are done using ‘Roboflow’. 

A final dataset of 1000 images that contain 12786 openings, divided as 80% in the training set and 

20% in the validation set, is obtained and it is exported in the required format from Python libraries. 

In particular, the COCO format is selected for Detectron2, and the YOLO format is selected for 

YOLOv5. Both formats contain images as jpeg files and labels as text files. The COCO format 

provides a partition of images in two folders, ‘train’ and ‘valid’, and a text file in JSON format for 

each folder to define objects and labels. The JSON file structure is divided into five sections: 

 ‘info’: information about the creation of dataset; 

"info": [ "year":  

            "version":  

           "description":  

            "contributor":  

           "url":  

            "date_created":  ] 

 ‘licenses’: information about dataset download; 

"licenses": ["id": 1, 

           "url": , 

               "name":    ] 

 ‘categories’: name and number of object categories to detect; 

"categories": ["id": 0, 

                  "name": , 

                  "supercategory":    ] 
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 ‘images’: name, path to the file, and graphic features of each image; this section gives an ‘id’ 

number for each image 

     "images": ["id": , 

            "license": , 

            "file_name": , 

            "height": , 

            "width": , 

            "date_captured":  ] 

 ‘annotations’: label and bounding-box of each object in the dataset, associated with the ‘id’ 

number of images; bounding-boxes are defined from 4 numbers which are the pixel 

coordinates of two opposite corner of the box; 

"annotations": ["id": , 

                 "image_id": , 

               "category_id": , 

                "bbox": [ , , , ] 

              "area": , 

                "segmentation": [], 

               "iscrowd":  ] 

The YOLO format provides a partition of images in two folders as COCO format, and objects are 

defined from a YAML file and a text file for each image. The YAML file defines the path of training 

and validation image folders, the number of classes to detect, and the name of classes; the text file of 

the single image contains a row for each object in which the number of classes and the bounding-box 

are identified; in particular, bounding-box is defined with 4 numbers: two pixel cooridnates of one 

box corner, the width, and the hight of the box. Association between images and text files is done by 

naming corresponding files with the same name. 
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11.2. Two-stage frameworks 

Faster R-CNN has been selected for this work among two-stage framework methods; the 

implementation is done by Detectron2, i.e. a state-of-art library developed by Facebook that includes 

several object detection methods. For each model, the library proposes several backbone layers and 

ResNet architectures.  

In the training phase of each method, a configuration (‘cfg’) is required from the ‘DefaultTrainer’ 

script, in which several parameters can be set according to the used GPU and the dimension of the 

dataset; they are: 

 cfg.DATALOADER.NUM_WORKERS: the number of data loading threads, set to 2; 

 cfg.SOLVER.IMS_PER_BATCH: the number of images per batch across all machines, set to 

2; 

 cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE: the number of RoIs per training 

minibatch, set to 1024; 

 cfg.MODEL.ROI_HEADS.NUM_CLASSES: the number of object classes in the dataset, set to 

1; 

 cfg.SOLVER.BASE_LR: the maximum value of the learning rate during training, set to 0.001; 

  cfg.SOLVER.MAX_ITER: the number of iteration to do during the training process. 

For the Faster R-CNN method, 4 architectures have been selected: 

 Faster R-CNN with FPN ResNet 50; 

 Faster R-CNN with FPN ResNet 101; 

 Faster R-CNN with C4 ResNet 101; 

 Faster R-CNN with FPN ResNext 101. 
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11.3. One-stage frameworks 

YOLOv5 and RetinaNet methods have been chosen for the one-stage framework category. RetinaNet 

has been implemented by Detectron2 library and parameters have the same set showed in the previous 

section. The same ‘DefaultTrainier’ script has been used for the training phase. Two different 

architectures have been selected for this method: 

 RetinaNet with FPN ResNet 50; 

 RetinaNet with FPN ResNet 101. 

YOLOv5 implementation is done by the YOLO library that contains different YOLO architectures. 

The YOLOv5l is selected for this work, basing on a report of YOLO company about the accuracy 

and the time-machine of the proposed configurations. 

In the training phase, the ‘train’ script required a set of 3 parameters related to the dataset; they are: 

 img: an integer that defines the pixel dimension of images, set to 640; 

 batch: an integer that defines the batch size, i.e. the number of images to process 

simultaneously, set to 16; 

 epochs: an integer that defines the number of iterations to do. 
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11.4. Methods comparison 

To identify the best method of object detection for the treated issue, two types of comparison have 

been done after 1000 iterations. The former compares the error evaluation in terms of AP and mAP, 

as reported in Figure 23. 

 

Figure 23 - AP/mAP comparison 

The latter evaluates the method performance in relation to the time-machine needed, as reported in 

Figure 24. 

                             

Figure 24 - time-machine / mAP comparison 

Both comparisons show that only two methods (RetinaNet FPN R50 and FRCNN C4 R101) have low 

accuracy, while the others are close to the maximum value. The method that gives the best result is 
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the Faster R-CNN with FPN ResNext 101 with an mAP of 19.747, executed in 14 minutes. Moreover, 

Figure 24 shows that the YOLOv5l model needs a higher time-machine during the training phase to 

obtain an mAP value close to the best one. 

To increase the accuracy, more iterations have been run for the FRCNN FPN X101 method, 

monitoring the learning process by the ‘total_loss’ value and the mAP. Generally, with the succeeding 

of iterations, the total loss has a global decreasing trend but it can be variable in a restricted range of 

iterations. Monitoring the global trend, the iteration process can be stopped when the total loss 

increases, i.e. when the algorithm does not converge; steps of 2000 or 3000 iterations have been 

considered. Figure 25 reports error evaluation (a) and total loss (b) up to 12000 iterations. 

 

Figure 25 - Faster RCNN FPN X101 accuracy: a. error evaluation (left); b. total loss (b) 

The total loss starts to increase at 10000 iterations, but the decrease of AP and mAP value at 8000 

iterations suggest to stop the training process at 6000 iterations. The best score accuracy obtained is 

an AP value of 21.86 and an mAP value of 32.55 and the method with 6000 iterations is chosen for 

the detection phase.  

 

11.5. Detection 

The detection process of Faster RCNN FPN X101 is done using the ‘DefaultPredictor’ script of 

Detectron2 library and it is applied to a new set of images obtained from Google Street View. The 

dimension and resolution of images can influence the accuracy of detection as the perspective view. 
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For this reason, detection images are taken and edited in different ways to increase accuracy. In 

particular, three types of images are treated: 

 images extracted directly from Google Street View and processed with a perspective view; 

 images extracted from Google Street View and rectified by the photo editor ‘Fotus’ 

(AccaSoftware) ; 

 panoramic images extracted from ‘Street View Downloader’. 

Generally, the rectified images give the best detection, but also the panoramic view in which the 

building is in the center of the image has great accuracy. Perspective images are the worse ones 

because the far openings from the point of view are never detected. 

Figure 26 shows an example of each extraction. 

     

     (a)       (b) 
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 (c) 

Figure 26 – (a) perspective view; (b) rectified view; (c) panoramic view 

‘DefaultPredictor’ results of a new set of images can be extracted as a graphic representation or 

numeric tensors. Figure 27 reports an example of graphic extraction, in which objects are defined by 

a bounding-box and an accuracy score of that prediction. 

 

Figure 27 – Graphic result of detection 
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Numeric extraction is composed of three different tensors: 

 the label tensor: defines the number of the classes of each prediction; in this work ‘0’ identifies 

an opening; 

 the box tensor: defines the pixel coordinates of bounding-box for each prediction; 

 the score tensor: defines the percentage of accuracy of each prediction. 

Numeric results of Figure 27 are reported below. 

 Labels:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

 Boxes:        [  [ 873.2425  239.7522   996.8872   424.2485 ] 

  [ 878.0138  558.2391  1002.1027   738.8287 ] 

[ 468.5426  904.5457   665.0294  1082.7137 ] 

[ 1188.3962  239.7650  1389.0076   422.7645 ] 

[ 1220.9971  889.3556  1402.0692  1082.7384 ] 

[ 1587.6997  917.9448  1711.7898  1075.7483 ] 

[ 490.7195  549.0974   667.0352   755.8149 ] 

[ 156.8676  929.7191   261.0096  1081.9192 ] 

[ 1203.1855  546.8586  1398.3090   759.5513 ] 

[ 486.6751  235.4820   677.8959   414.4551 ] 

[ 139.3964  572.4117   289.3586   819.4720 ] 

[ 168.0329  287.8788   285.8762   446.1559 ] 

[ 1568.1112  593.8766  1693.2843   773.1409 ] 

[ 1551.1387  292.4910  1666.0417   453.9851 ] ] 

 

 Scores:   [ 0.975819 , 0.973603 , 0.968940 , 0.952717 , 0.941174      

0.940078 , 0.937691 , 0.932478 , 0.881045 , 0.878877 ,              

0.813660 , 0.777529 , 0.749650 , 0.651123 ] 

Appendix B reports other graphic and numeric extractions of the detection set. 
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In the reported images, it can be observed that the presence of objects (e.g. traffic lights, cars, people, 

lampposts, etc.) near or before an opening reduce the probability of detection; this limitation can be 

avoided by changing the perspective or panoramic point of view if possible. The manual photoshoot 

can solve the problem but is less fast and not always possible for the user. 

 

11.5.1. Post-processing functions 

If graphic results are used for user evaluation of the accuracy of detection, numeric results are used 

for the extraction of features. Four post-processing functions are implemented on Python for this 

work: 

 num_open: returns the number of detected opening in the image; 

 coord_box: return the bounding-box coordinates for each opening in the image; 

 eval_ratio: return the opening ratio for the building in the image; 

 coord_open: returns the detected opening location. 

To evaluate the opening ratio, the eval_ratio function needs as inputs the real dimension of the 

building (L and H) and the pixel coordinates of the L dimension. The total opening area is evaluated 

by a proportion of the real dimension of the building and pixel coordinates, and then it is compared 

with the total area of the building to evaluate the opening ratio. L and H data can be obtained 

automatically from the ‘Open Street Map’ dataset 

The coord_open function starts from eval_ratio results and estimates the real location of the openings 

in the building facade. This function is used to define geometric parameters of the frame model of the 

structure, as described in paragraph 12.2.  
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12. EVALUATION OF FRAGILITY CURVES 

The prevention and design of post-disaster rescue operation is a relevant issue of modern civil 

engineering. In particular earthquakes, explosions, or fire are dangerous events for buildings or 

infrastructures that can suffer significant damages or collapse. Both conditions need rescue operations 

to save human lives and to reduce the damage of other nearby structures.  

In the seismic field, the concept of seismic risk gives a numeric measurement of the probability of a 

structure to suffer damages that induce relevant losses for a community in a fixed period; its 

mathematic formulation is given by Equation (32): 

 
R H D L    (32) 

where H is the seismic hazard (i.e. the probability of being an earthquake in a geographic area and a 

fixed period); D is the vulnerability (i.e. the possibility that structures suffer damages), and L is the 

seismic exposition (i.e. the measure of the structure importance in relation to its urban location). 

These parameters, and in particular D, defines the fragility curves, that explains the relation between 

the probability of damage (PD) and intensity of the seismic event (I) for different damage states.  

In the seismic field, fragility curves are used for large-scale analysis of urban areas when a FEM 

investigation of each building is not possible. In literature, several evaluation approaches of fragility 

curves have been presented, and information about the location area and the features of the structures 

are required. 

The probability of failure of a structure is evaluated as a lognormal function referred to the selected 

test parameters of damage; data can be obtained from a computer simulation of seismic events or 

laboratory tests on a scaled sample of the structure. In particular, computer simulations are conducted 

applying static or dynamic non-linear analysis. 

This work aims to propose a method to define fragility curves of masonry building of a district or a 

city, collecting structure information from images (object detection) and online datasets. The 

probability of damage is evaluated according to the most common methods in literature and the 



 

70 
 

structure is analyzed by a simplified model (Marasco 2018). In the next sections, a literature review 

of PD evaluation and a description of the proposed method is reported. 

 

12.1. Related Works 

The evaluation models of the fragility curves reported in literature are based on a lognormal 

distribution of the probability that the evaluation parameter (IM) of damage exceeds the limit damage 

state (DS) considered. 

Erberik and Elnashai (2003), (2006) presented a simulation of 3300 time-histories with a non-

linear dynamic analysis of a flat-slab structure; the inter-story drift ratio (IDR) is adopted as the 

parameter of damage, depending on the spectral displacement of the input shake. Four fragility curves 

related to four limit states (LS1, LS2, LS3, LS4) are evaluated by calculating the area of the lognormal 

distribution over the horizontal line of the considered LS. The lognormal function is reported in 

Equation (33): 
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where θ is the median value of damage displacement threshold, β is the standard deviation, Φ is the 

standard normal cumulative distribution function, and d is the displacement of the structure. For each 

LS different values of θ and β are evaluated from a pushover analysis. 

Masi et al. (2009) reported an evaluation approach based on the Housner intensity (IH) 

parameter of damage, i.e. the integral of the pseudo-velocity response spectrum value between a 

period of 0.1 to 2.5. Non-linear dynamic analysis is performed on different structure samples with a 

different number of stories; the lognormal function used has the same structure of Equation (33) and 

evaluates the probability that damage exceeds the limit value of IH for the considered LS. According 

to FEMA, five LSs have been considered. 

Vazurkar U. Y. (2016) presented a work on the application of Hazus methodology (FEMA 

2011) for the evaluation of fragility curves. The ‘Federal Emergency Management Agency’ (FEMA) 
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developed the Hazus methodology in which fragility curves are estimated using a lognormal function, 

similar to the previous, reported in Equation (34):  

 

,
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where the median value ,d dsS  is obtained from the performance point of a pushover analysis and the 

standard deviation βds is obtained from Equation (35) : 

 

  2 2( , )ds C D TCONV      (35) 

where βC is the lognormal standard deviation that describes the variability of the capacity curve, βD 

is the lognormal standard deviation that describes the variability of the demand spectrum, and βT is 

the lognormal standard deviation that describes the variability of the threshold of damage state. The 

lognormal standard deviation βds can be considered as a measurement of the total variability of the 

fragility curve and can be also evaluated by using tables reported in Hazus – MH 2.1, depending on 

the level of design and the degradation factor (κ). This method can be applied both to structural and 

non-structural components at four different damage states. 

Cardone and Perrone (2015) presented a method for the evaluation of fragility curves of non-

structural components, in particular masonry infill walls. Five groups of masonry are identified in 

which the presence of opening is considered at three different levels: (i) no opening, (ii) windows, 

and (iii) French windows. Since there are two possible conditions of damage, the IDR is adopted for 

the in-plane damage evaluation and the Peak floor acceleration (PFA) is adopted for the out-of-plane 

collapse. This work shows as fragility curve fits depend on the opening ratio (OP) but a relation 

between the probability of damage and the presence of windows is not defined; the contribution of 

OP is considered only in the standard deviation β, i.e. the uncertainty on input parameters. 
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12.2. Component modeling 

The seismic investigation on masonry buildings results in a complicated process of modeling with 

possible overlooking of structural features. If detailed FEM models may be adopted for non-linear 

dynamic analysis, simplified models result faster to generate but need a validation phase to be used. 

The structure modeling adopted in this work is an Equivalent Frame Model (EFM) approximation 

based on the Simplified Analysis Method (SAM) presented by Magenes (2000). Similar to the POR 

method (Tomazevic 1978), the SAM provides modeling of the masonry wall as an equivalent 2D 

frame made by horizontal beams, vertical pier elements, and joints. Only the in-plane mechanisms 

of damage are considered. According to the authors, beams and piers are deformable and 

connecting joints have a rigid offset. Elastic-plastic behavior of components is considered and three 

failure criteria are adopted: (i) diagonal shear, (ii) sliding shear, and (iii) flexural/rocking. 

Dimensions of frame components depend on the location of openings in the facade as shown in 

Figure 28. 

 

Figure 28 - SAM method 

The adopted approximation, presented by Marasco, provides the same assumption of SAM, adding 

the conditions of the inextensibility of frames with concentrated nonlinearity properties in the most 

stressed sections (plastic hinges), lumped mass, and tri-linear backbone approximation of seismic 

response (Figure 29). 
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Figure 29 - Tri-linear backbone seismic response 

The first point (1) refers to the generation of the first flexural or shear plastic hinge, the second 

point (2) refers to the maximum structure capacity, and the third point (3) is the collapse condition. 

To define the stiffness matrix, a bending type frame with a shear-flexure behavior of elements is 

considered and Equation (36) is used: 
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where Ei and Gi are the elastic module and the shear elastic module of the i-th structural component.  

Non-linear parameters are defined by simplified procedures instead of pushover analysis, to reduce 

computational effort and time required. The procedures are resumed below: 

 the maximum shear capacity (V2 = V3) is evaluated with the kinematic theorem of the limit 

analysis, calculating λ multipliers for both global and local collapse mechanism; 

 the top displacement of collapse (u3) is evaluated as the sum of three contributes: (i) 

displacement Δ1 due to plastic hinges at the base of the column, (ii) displacement Δ2 due to 

rotation on the top of the column, and (iii) displacement Δ3 due to elastic deformation at 

each story; 

 the displacement of point 2 (u2) is evaluated with the equal energy rule applied with an 

iteration process. 
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The result of the approximation is an SDOF equivalent model of the structure reported in Figure 30.

 

Figure 30 - SDOF model 

 

12.3. Fragility curve 

The evaluation of fragility curves is based on the lognormal distribution of PD in relation to the 

selected IM parameter of the DSs, as reported in the previous section. The median value (θ) of IM 

and the standard deviation (β) of the capacity curve are required for the evaluation. 

The adopted approach (Marasco 2018) defines the PGA as the IM parameter and considers four 

DSs: slight, moderate, extensive, and complete damage. 

The first step of evaluation is the time-history analysis; the seismic scenario is defined by the 

GMSM method (Marasco and Cimellaro 2018) and 7 ground motions are individuated as 

representative of the seismic intensity of the site. Results of non-linear dynamic analysis conducted 

on the EFM by FEM software (SAP2000) are extracted as maximum absolute top displacement (i.e. 

refired to an SDOF system). The second step is the conversion of results in the maximum inter-

story drift (i.e. refired to an MDOF system), according to the lateral displacement distribution. 

Finally, the PGA damage state limits are derived based on the threshold proposed by Ghobarah 

(2004) and the median IM values (θ) and standard deviation (β) are defined.  

Application of object detection and feature extraction model, presented in this work, improve the 

speed and accuracy of the evaluation of fragility curves for a district or a city. The presented 
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functions in section 11.5.1 are used to define the EFM and the linear/non-linear features of the 

corresponding SDOF model; in particular, eval_ratio and coord_open functions are used to the 

stiffness matrix and the tri-linear fit of the capacity curve. Time-history analysis conducted by 

SAP2000 on the SDOF model gives input data for the fragility curve definition. 

 

12.4. Validation of the simplified model 

The proposed model is applied to the building in Figure 27 and the results are compared with a FEM 

investigation on the same frame. The masonry structure has been modeled with Poroton P800, which 

features are reported in Table 12. 

Table 12 - Material features 

Medium strength [N/mm2] 

(non-linear analysis) 

Compressive Strength (fm) 4.75 

Compressive Horizontal 
Strength (fhm) 

0.76 

Shear Strength (no vertical 
load) (fvm0) 

0.26 

Shear Strength (fvm) fvm0+0.4σn 

Max Shear Strength (fvm,lim) 0,98 

  

Deformation Parameters [N/mm2] 

(non-cracked masonry) 

Elasticity module (E) 3798 

Shear module (G) 1519 

Poisson module (ν) [adim.] 0.25 

 

Numeric results of opening detection are reported in section 11.5. The EFM geometric representation 

in Figure 31 has been used for both analyses. 
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Figure 31 - FEM model 

The FEM analysis performed in SAP2000 is based on the SAM model of the structure; the capacity 

curve obtained from a pushover analysis has been compared with that of the simplified model. 

 

Figure 32 - Capacity curves comparison 

Figure 32 shows that the simplified model accurately simulates the global capacity of the structure 

according to the equal energy rule; in particular, point (1) and (2) are aligned and point (3) define a 

plastic behavior that underestimates the top strength/displacement of the FEM analysis. 
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Figure 33 - Fragility curves comparison 

In Figure 33 the comparison between the fragility curve of the FEM model and the simplified model 

is reported. The PD evaluation of the SDOF model has 90% accuracy, so, obtained results can be 

considered as a valid approximation of the real behavior of the structure and can be used instead of 

the FEM model evaluation.  

 

13. CONCLUDING REMARKS 

Evaluation of the fragility curves of a district or a city is a relevant step for the prevention of seismic 

post-disaster scenarios. This work presented a Machine Learning (ML) application for the 

individuation of relevant features that influence the probability of damage of a masonry structure. In 

particular, an Object Detection (OD) model has been applied to pictures of symbolic structures in the 

considered urban area, to evaluate several fragility curves that identify the global behavior of the 

zone. Images have been extracted from Google Street View and processed by several OD models. An 

error evaluation on a test dataset identifies the Faster R-CNN ResNext101 FPN as the more accurate 

model for the individuation of openings in a building façade. From the numeric evaluation of location 

and dimensions of openings, a simplified Equivalent Frame Model (EFM) can be defined; the 

application of Marasco (2018) simplified analysis defines an equivalent SDOF model of the structure 
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with a characteristic tri-linear approximation of the elastic/plastic behavior. After a non-linear 

dynamic analysis of the SDOF model, fragility curves have been obtained as the lognormal 

distribution of the mean values of the interstorey drift (ID). Obtained results have been compared 

with a FEM analysis and the simplified model shows a 90% accuracy. The application of the 

presented process substantially reduces the needed time for the FEM definition and analysis of the 

structure: object detection model identifies the real location and the opening ratio of the façade in a 

few seconds per image, and the simplified SDOF model reduces the time-machine for the time-history 

analysis.  

Application of the presented work can improve the rescue operations in a post-disaster scenario, 

enabling a prediction of the most dangerous structures. 

Future works can improve object detection accuracy, implementing the used training dataset to 

identify openings in a different perspective point of view; moreover, a correlation between the 

probability of damage of buildings and the debris extent evaluation, presented in chapter 1 of this 

work, can be defined, applying object detection model to several damaged structure.  
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APPENDIX B –  

 Results of detection phase of Faster R-CNN ResNext101 FPN 
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Figure 34 – Detection 1 

 

Labels 
Boxes 

Scores 
Opening 

ratio x1 y1 x2 y2 

0 264,9231 177,0799 308,9836 228,7264 0,9586 

0,20 

0 666,9189 240,6361 680,7583 251,143 0,9483 

0 494,9333 378,5225 574,8807 463,0309 0,9438 

0 649,6607 184,165 658,3524 192,4658 0,9383 

0 663,0741 182,9074 671,899 192,6532 0,9319 

0 261,2491 278,5709 307,805 364,7436 0,9309 

0 346,085 169,4243 438,7928 251,0871 0,9303 

0 353,806 375,7302 432,5551 460,7808 0,8823 

0 134,6785 173,556 175,1445 243,638 0,8799 
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Figure 35 – Detection 2 

 

Labels 
Boxes 

Scores Opening 
ratio x1 y1 x2 y2 

0 601,7136 534,17 791,9277 857,0928 0,9735 

0,24 

0 302,2591 527,9074 477,4766 903,8524 0,9706 

0 609,5942 322,6937 773,3999 406,1789 0,9625 

0 0 411,3871 41,7848 489,8201 0,9587 

0 105,7011 370,7271 235,232 453,9614 0,9526 

0 337,6035 330,7029 492,9367 416,548 0,9458 

0 893,4379 334,0883 1046,692 420,3917 0,9418 

0 905,8902 540,6525 1100,887 898,6874 0,9302 

0 1136,83 371,481 1263,923 460,0085 0,8896 

0 1320,929 427,4391 1392,332 500,6025 0,8522 

0 1373,558 614,2265 1400 716,0573 0,7918 

0 600,1249 935,8387 663,2359 1039,604 0,7481 
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Figure 36 – Detection 3 

Labels 
Boxes 

Scores 
Opening 

ratio x1 y1 x2 y2 

0 1786,721 1615,783 2188,234 2374,762 0,9834 

0,30 

0 1767,858 606,485 2215,832 1123,798 0,9748 

0 2481,514 1643,323 2822,08 2366,295 0,9684 

0 801,8633 2739,573 1153,303 2943,128 0,9624 

0 113,7085 1456,73 192,5211 1602,908 0,9579 

0 2480,018 706,5493 2826,95 1227,07 0,9489 

0 756,5314 1621,03 1146,646 2366,004 0,9422 

0 742,2885 676,9799 1155,061 1313,304 0,9378 

0 923,7176 114,595 1373,576 343,9242 0,7698 
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Figure 37 – Detection 4 

Labels 
Boxes 

Scores 
Opening 

ratio x1 y1 x2 y2 

0 421,7081 216,8419 486,9183 311,9136 0,971 

0,16 

0 271,2592 419,1763 324,051 524,0217 0,969 

0 1164,787 615,371 1228,856 740,5356 0,9632 

0 1011,806 219,4588 1079,546 313,8314 0,955 

0 1157,957 220,3064 1224,743 311,6269 0,9539 

0 248,1903 615,7675 310,3988 732,5573 0,9532 

0 397,7978 612,9668 463,3754 733,7719 0,9527 

0 644,6409 218,1649 707,4723 312,8714 0,9506 

0 273,9719 211,4928 341,3835 308,6852 0,9481 

0 92,1222 615,0067 157,6589 735,4909 0,9375 

0 119,3639 416,4813 173,6559 520,2803 0,9364 

0 418,4767 417,3091 470,6307 527,0535 0,9325 

0 871,1489 620,8339 919,6293 734,5856 0,9118 

0 745,4019 617,6537 788,4359 728,9729 0,8904 

0 128,1592 210,7031 195,8229 312,469 0,8882 

0 875,9107 225,2632 931,3513 311,18 0,8839 

0 1020,156 420,9634 1069,437 524,7141 0,8607 

0 1167,805 422,5177 1217,766 526,9594 0,8511 

0 751,2126 225,9017 800,1953 312,5845 0,7997 

0 530,8936 619,312 578,6857 719,6852 0,7918 
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Figure 38 – Detection 5 

 

Labels 
Boxes 

Scores 
Opening 

ratio x1 y1 x2 y2 

0 527,6936 236,3896 593,7548 322,9989 0,9694 

0,25 

0 131,6558 115,0468 183,8259 209,9839 0,9549 

0 252,4915 110,6332 301,8715 208,3594 0,9522 

0 250,3833 238,4113 311,9686 325,0388 0,9287 

0 133,8308 393,1595 189,8949 492,2303 0,9075 

0 407,573 390,0988 471,3427 493,0115 0,8851 

0 542,261 375,0743 606,5684 534,3165 0,8646 

0 255,491 376,5842 318,0625 536,7421 0,8517 

0 390,6302 106,744 469,843 210,8477 0,8446 

0 516,5027 100,1982 601,3801 210,4067 0,8355 

0 24,7981 405,3992 49,6384 429,9466 0,7981 

0 9,5488 397,693 26,0396 425,6671 0,6672 

0 401,1602 238,1307 457,8889 340,6545 0,654 

0 133,4558 247,524 185,5396 339,3498 0,6287 
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Figure 39 – Detection 6 

Labels 
Boxes 

Scores Opening 
ratio x1 y1 x2 y2 

0 647,9697 279,6671 709,6572 391,3613 0,9618 

0,20 

0 290,0705 845,2998 362,196 949,9896 0,9508 

0 670,9411 620,9606 734,2631 740,2403 0,9508 

0 295,1574 404,8375 361,7502 510,3667 0,9495 

0 107,9881 233,5334 170,7815 358,3411 0,9321 

0 676,1906 849,7325 744,3848 950,8994 0,9204 

0 87,2241 606,2409 171,0699 729,7562 0,9125 

0 59,7456 840,3843 177,0385 952,1441 0,9101 

0 397,8985 159,3785 427,0435 187,3952 0,8855 

0 657,6363 419,8861 722,2132 509,5925 0,8813 

0 292,2739 246,6863 356,2957 343,4731 0,8529 

0 479,2304 596,794 565,2313 751,4935 0,8389 

0 468,8142 137,967 526,8753 197,5303 0,8268 

0 288,0509 583,6569 365,5146 769,4528 0,8137 

0 606,395 156,0153 684,7675 213,1385 0,7801 

0 415,5479 1213,654 429,2619 1245,67 0,7524 

0 476,2226 262,3134 529,4855 345,3856 0,7149 

0 496,3573 852,6243 569,3348 955,6214 0,6923 

0 81,5697 1032,096 144,9766 1179,976 0,6458 

0 476,3241 394,4429 564,0933 523,6514 0,6435 
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Figure 40 – Detection 7 

 

Labels 
Boxes 

Scores Opening 
ratio x1 y1 x2 y2 

0 572,2825 250,4203 614,1149 327,2379 0,9516 

0,15 

0 220,5804 127,0863 304,2824 246,1804 0,8893 

0 213,3818 429,5836 287,4757 518,627 0,8829 

0 211,0656 267,5049 296,3767 372,8186 0,8695 

0 433,9421 460,5418 491,7554 562,3473 0,8479 

0 571,7697 487,7219 625,519 568,302 0,8232 

0 436,2101 332,3547 490,872 417,7895 0,8168 

0 560,7852 770,5828 643,2183 908,4412 0,7735 

0 572,3752 363,7879 617,7044 455,1782 0,7652 

0 423,615 604,2324 500,0332 703,8224 0,6387 

0 194,42 558,4393 305,8589 714,4859 0,6387 

 

 

 

 

 

 

 



 

95 
 

REFERENCES 

Aljumaily, H., Laefer, D., and Cuadra, D. (2017). "Urban Point Cloud Mining Based on Density 
Clustering and MapReduce." Journal of Computing in Civil Engineering, 31, 04017021. 

Araújo, C. A. (2006). "Bibliometria: evolução histórica e questões atuais." Em questão, 12(1), 11-
32. 

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). "SegNet: A Deep Convolutional Encoder-
Decoder Architecture for Image Segmentation." IEEE Trans. Pattern Anal. Mach. Intell., 
39(12), 2481-2495. 

Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., Owolabi, H. A., Alaka, 
H. A., and Pasha, M. (2016). "Big Data in the construction industry: A review of present 
status, opportunities, and future trends." Adv. Eng. Inform., 30(3), 500-521. 

Bordin, A. S., Gonçalves, A. L., and Todesco, J. L. (2014). "Análise da colaboração científica 
departamental através de redes de coautoria." Perspectivas em Ciência da Informação, 
19(2), 37-52. 

Borgatti, S. 2002. NetDraw Software for Network Visualization, version 2.16, Analytic 
Technologies: Lexington, KY. 

Breiman, L. (2001). "Random forests." Mach. Learn., 45(1), 5-32. 
Cardone, D., and Perrone, G. (2015). "Developing fragility curves and loss functions for masonry 

infill walls." Earthquakes and Structures, 9, 257-279. 
Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk, O. (2018). "Autonomous 

Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple 
Damage Types." Computer-Aided Civil and Infrastructure Engineering, 33(9), 731-747. 

Chongchong, Q., Fourie, A., Ma, G., Tang, X., and Du, X. (2018). "Comparative Study of Hybrid 
Artificial Intelligence Approaches for Predicting Hangingwall Stability." Journal of 
Computing in Civil Engineering, 32(2), 04017086. 

Desolneux, A., Moisan, L., and Morel, J.-M. (2000). "Meaningful Alignments." International 
Journal of Computer Vision, 40(1), 7-23. 

Di Girolamo, G. D., Smarra, F., Gattulli, V., Potenza, F., Graziosi, F., and D'Innocenzo, A. (2020). 
"Data-driven optimal predictive control of seismic induced vibrations in frame structures." 
Structural Control and Health Monitoring, 27(4), e2514. 

Dibike, Y. B., Velickov, S., Solomatine, D., and Abbott, M. B. (2001). "Model Induction with 
Support Vector Machines: Introduction and Applications." Journal of Computing in Civil 
Engineering, 15(3), 208-216. 

Erberik, M. A., and Elnashai, A. S. (2003). "TECHNICAL REPORT 

MID-AMERICA EARTHQUAKE CENTER 

DS-9 PROJECT (RISK ASSESSMENT MODELING) ", University of Illinois  
Erberik, M. A., and Elnashai, A. S. (2006). "Loss Estimation Analysis of Flat-Slab Structures." 

Natural Hazards Review, 7(1), 26-37. 
Faber, F. A., Hutchison, L., Huang, B., Gilmer, J., Schoenholz, S. S., Dahl, G. E., Vinyals, O., 

Kearnes, S., Riley, P. F., and von Lilienfeld, O. A. (2017). "Prediction Errors of Molecular 
Machine Learning Models Lower than Hybrid DFT Error." J. Chem. Theory Comput., 
13(11), 5255-5264. 

FEMA (2011). "Hazus FEMA’s methodology for estimating potential losses from 

disasters, FEMA Federal Emergency Management Agency, Washington, 

D.C.". 
Garcia, S., Kahhat, R., and santa cruz, S. (2016). "Methodology to characterize and quantify debris 

generation in residential buildings after seismic events." Resources, Conservation and 
Recycling, 117. 



 

96 
 

Ghobarah, A. (2004). "On drift limits associated with different damage levels." International 
WorkshopBled, Slovenia. 

Girshick, R. "Fast r-cnn." Proc., Proceedings of the IEEE international conference on computer 
vision, 1440-1448. 

Girshick, R., Donahue, J., Darrell, T., and Malik, J. "Rich feature hierarchies for accurate object 
detection and semantic segmentation." Proc., Proceedings of the IEEE conference on 
computer vision and pattern recognition, 580-587. 

Glenn Jocher, Alex Stoken, Jirka Borovec, and, N., and, C., and, L. C., and, L., and, A. H., and, l., 
and, t., and, y., and, A., and, L. D., and, M., and, w., and, m. a., and, D., and, H., and, J. P., 
Lijun Yu, and, c., and, P. R., and, R. F., and, T. S., and, W. X., and, Y., and, E. R. C., and, 
h., and, p. d., and yzchen (2020). "YOLOv5." Zenodo. 

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. (2004). "Neighbourhood components 
analysis." Proceedings of the 17th International Conference on Neural Information 
Processing Systems, MIT Press, Vancouver, British Columbia, Canada, 513–520. 

He, K., Gkioxari, G., Dollár, P., and Girshick, R. "Mask r-cnn." Proc., Proceedings of the IEEE 
international conference on computer vision, 2961-2969. 

He, K., Zhang, X., Ren, S., and Sun, J. "Deep residual learning for image recognition." Proc., 
Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778. 

Hirokawa, N., and Osaragi, T. (2016). "Earthquake Disaster Simulation System: Integration of 
Models for Building Collapse, Road Blockage, and Fire Spread." Journal of Disaster 
Research, 11(2), 175-187. 

Huang, G., Zhuang, L., van der Maaten, L., and Weinberger, K. (2018). "Densely connected 
convolutional networks. arXiv 2018." arXiv preprint arXiv:1608.06993. 

Hui, J. (2018). "mAP (mean Average Precision) for Object Detection." 
<https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-
45c121a31173>. 

Inglada, J. (2007). "Automatic recognition of man-made objects in high resolution optical remote 
sensing images by SVM classification of geometric image features." Isprs Journal of 
Photogrammetry and Remote Sensing - ISPRS J PHOTOGRAMM, 62, 236-248. 

Jocher, G., Alex Stoken, Jirka Borovec, NanoCode012, ChristopherSTAN, Liu Changyu, Laughing, 
Adam Hogan, lorenzomammana, tkianai, yxNONG, AlexWang1900, Laurentiu Diaconu, 
Marc, wanghaoyang0106, ml5ah, Doug, Hatovix, Jake Poznanski, Lijun Yu, Prashant Rai, 
Russ Ferriday, Trevor Sullivan, Wang Xinyu, YuriRibeiro, Eduard Reñé Claramunt, 
hopesala, pritul dave, and yzchen. 2020. Ultralytics/yolov5: v.3.0, version v3.0Zenodo. 

Johannesen, N. J., Kolhe, M., and Goodwin, M. (2019). "Relative evaluation of regression tools for 
urban area electrical energy demand forecasting." Journal of cleaner production, 218, 555-
564. 

Khadem, A., and Hossein-Zadeh, G. A. (2014). "Estimation of direct nonlinear effective 
connectivity using information theory and multilayer perceptron." J. Neurosci. Methods, 
229, 53-67. 

Knight, K., and Fu, W. (2000). "Asymptotics for lasso-type estimators." Ann. Statist., 28(5), 1356-
1378. 

Krizhevsky, Sutskever, I., and Hinton, G. E. (2012). "ImageNet Classification with Deep 
Convolutional Neural Networks." 1097--1105. 

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., 
Malloci, M., and Duerig, T. (2018). "The open images dataset v4: Unified image 
classification, object detection, and visual relationship detection at scale." arXiv preprint 
arXiv:1811.00982. 

Li, S., Zhao, X., and Zhou, G. (2019). "Automatic pixel-level multiple damage detection of concrete 
structure using fully convolutional network." Computer-Aided Civil and Infrastructure 
Engineering, 34(7), 616-634. 



 

97 
 

Liang, X. (2019). "Image-based post-disaster inspection of reinforced concrete bridge systems using 
deep learning with Bayesian optimization." Computer-Aided Civil and Infrastructure 
Engineering, 34(5), 415-430. 

Lin, T., Goyal, P., Girshick, R., He, K., and Dollár, P. (2002). "Focal loss for dense object 
detection. arXiv 2017." arXiv preprint arXiv:1708.02002. 

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P., Ramanan, 
D., Dollár, P., and Zitnick, C. L. (2014). "Microsoft COCO: Common objects in context. 
arXiv 2014." arXiv preprint arXiv:1405.0312. 

Liu, J., Yang, X., and Zhu, M. (2019). "Neural Network with Confidence Kernel for Robust 
Vibration Frequency Prediction." Journal of Sensors, 2019, 6573513. 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., and Berg, A. (2020). "SSD: Single 
shot multibox detector. arXiv 2016." arXiv preprint arXiv:1512.02325. 

Magenes, G. (2000). "A method for pushover analysis in seismic assessment of masonry buildings." 
Marasco, S. (2018). "Large Scale Simulation of IDEAL 

CITY under Seismic Scenario." Politecnico di Torino. 
Marasco, S., and Cimellaro, G. P. (2018). "A new energy-based ground motion selection and 

modification method limiting the dynamic response dispersion and preserving the median 
demand." Bulletin of Earthquake Engineering, 16(2), 561-581. 

Masi, A., Vona, M., and Digrisolo, A. (2009). "Costruzione di curve di fragilità di alcune tipologie 
strutturali rappresentative di edifici esistenti in c.a. mediante analisi dinamiche non lineari." 

Meinshausen, N., and Bühlmann, P. (2006). "High-dimensional graphs and variable selection with 
the lasso." The annals of statistics, 34(3), 1436-1462. 

Nguyen, K., Huynh, N. T., Nguyen, P. C., Nguyen, K. D., Vo, N. D., and Nguyen, T. V. (2020). 
"Detecting Objects from Space: An Evaluation of Deep-Learning Modern Approaches." 
Electronics, 9(4), 18. 

Persson, O., Danell, R., and Wiborg Schneider, J. (2009). "How to use Bibexcel for various types of 
bibliometric analysis." Celebrating scholarly communication studies: A Festschrift for Olle 
Persson at his 60th Birthday, 9-24. 

Qi, C., Fourie, A., Ma, G., Tang, X., and Du, X. (2018). "Comparative Study of Hybrid Artificial 
Intelligence Approaches for Predicting Hangingwall Stability." Journal of Computing in 
Civil Engineering, 32(2), 04017086. 

Rafee, N., Karbassi, A. R., Nouri, J., Safari, E., and Mehrdadi, M. (2008). "Strategic Management 
of Municipal Debris aftermath of an earthquake." International Journal of Environmental 
Research (ISSN: 1735-6865) Vol 2 Num 2, 2. 

Redmon, J., and Farhadi, A. (2018). "YOLOv3: An Incremental Improvement." 
Ren, S. Q., He, K. M., Girshick, R., and Sun, J. (2017). "Faster R-CNN: Towards Real-Time Object 

Detection with Region Proposal Networks." IEEE Trans. Pattern Anal. Mach. Intell., 39(6), 
1137-1149. 

Scikit-learn, d. (2018). "Scikit-learn user guide." 
Simonyan, K., and Zisserman, A. (2014). "Very deep convolutional networks for large-scale image 

recognition." arXiv preprint arXiv:1409.1556. 
Singh, B., Najibi, M., and Davis, L. S. "Sniper: Efficient multi-scale training." Proc., Advances in 

neural information processing systems, 9310-9320. 
Smola, A. (1996). "Regression estimation with support vector learning machines." 
Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2012). "Man vs. computer: Benchmarking 

machine learning algorithms for traffic sign recognition." Neural Networks, 32, 323-332. 
Tibshirani, R. (1996). "Regression Shrinkage and Selection Via the Lasso." Journal of the Royal 

Statistical Society: Series B (Methodological), 58(1), 267-288. 
Tomazevic, M. (1978). " The Computer Program POR Report ZRMK." 



 

98 
 

Van der Maaten, L., and Hinton, G. (2008). "Visualizing Data using t-SNE." J. Mach. Learn. Res., 
9, 2579-2605. 

Vapnik, V. N. (1995). The nature of statistical learning theory, Springer-Verlag. 
Vapnik, V. N. (1998). Statistical Learning Theory, Wiley-Interscience. 
Vazurkar U. Y., C., D. J. (2016). "Development of Fragility Curves for RC Buildings." 

International Journal of Engineering Research. 
Xu, D., and Tian, Y. (2015). "A Comprehensive Survey of Clustering Algorithms." Annals of Data 

Science, 2(2), 165-193. 
Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Girshick, R. (2019). 

"Detectron2." 
Zeiler, M. D., and Fergus, R. "Visualizing and understanding convolutional networks." Proc., 

European conference on computer vision, Springer, 818-833. 
Zhang, A., Wang, K. C. P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J. Q., and Chen, 

C. (2017). "Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces 
Using a Deep-Learning Network." Computer-Aided Civil and Infrastructure Engineering, 
32(10), 805-819. 

Zhang, C. H., and Huang, J. (2008). "The sparsity and bias of the lasso selection in high-
dimensional linear regression." Ann. Stat., 36(4), 1567-1594. 

Zhang, F., Du, B., and Zhang, L. (2016). "Scene Classification via a Gradient Boosting Random 
Convolutional Network Framework." IEEE Transactions on Geoscience and Remote 
Sensing, 54(3), 1793-1802. 

Zhou, X., Wang, D., and Krähenbühl, P. (2019). "Objects as points." arXiv preprint 
arXiv:1904.07850. 

Zou, H., and Hastie, T. (2005). "Regularization and variable selection via the elastic net." J. R. Stat. 
Soc. Ser. B-Stat. Methodol., 67, 301-320. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


