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ABSTRACT 

For a long time, the working environment in the mining area has been very harsh, 
and more and more young people are unwilling to work there. Autonomous driving 
technology in the mining area can replace drivers, greatly improving the production 
efficiency and reducing the occurrence of safety accidents. 

As the final execution module in driverless vehicle technology, the control module 
is very important. This thesis will design the lateral and longitudinal controller 
respectively to enable the vehicle to track the planned trajectory stably and accurately. 

The longitudinal controller adopts the dual closed-loop PID control of speed and 
acceleration. Different speed requirements have been tested in a simulation 
environment, and they have also been verified on actual vehicles. 

The lateral controller adopts the lateral control algorithm based on geometric model 
like Pure Pursuit, Stanley, and the algorithm based on vehicle model such as Rear-
Wheel Feedback, LQR and MPC. In the simulation environment, the reference 
trajectory under different conditions is tested, and the advantages and disadvantages of 
each algorithm are finally evaluated by comparing errors. 

Keywards：Autonomous Vehicle, ROS, Control Algorithm 
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1. Introduction 

1.1 Background 

Society is constantly evolving and technology is improving day by day. Our society 
is full of "machine intelligence", from vacuum cleaner robots that help clean our home, 
to airplanes controlled by computer landing safely in unpredictable weather. Across the 
last century, we have witnessed more and more devices used to replace human such as 
washing machines, microwave ovens, motor vehicles, and personal computers and 
information technology that can improve productivity and convenience of life. 

As the most important mobility tool for human beings, vehicles not only improve 
people's travel efficiency, but also help many industrial activities. However, driving a 
car could be a boring, tedious, and dangerous activity. Every moment we must pay 
attention to the changes in the surrounding environment when driving. We will face the 
danger of extremely poor road conditions. We may question the skills or judgments of 
other drivers, and even we have to pay attention to our fatigue or mistakes. In fact, these 
driving behaviors and some skilled driving experience may cause the driver's attention 
to be negligent, and accidents may occur. Driver errors are the main cause of most 
accidents, and about half of these accidents are due to delays in driver response. 

Since 2000, with the development of disciplines such as artificial intelligence, 
pattern recognition, computer vision, and electronics, vehicles are no longer just a 
complex mechanical structure. It combines many electronic control systems and 
integrates many advanced scientific research results. For example, the application of 
the ABS system improves the safety and stability of the vehicle, and the application of 
the active suspension reduces the discomfort when people ride in the vehicle, and makes 
the vehicle's driving more stable. 

But what we hope more is that the car can have advanced functions such as 
automatic planning of driving paths, automatic recognition of roads, automatic driving, 
and so on, so that drivers can be released from boring driving behaviors, making driving 
safer. So now driverless vehicle technology gets more and more people's attention. 

1.2 General Autonomous Driving Technologies 

 
Figure 1.1 Hardware of Autonomous Vehicle 
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The autonomous driving vehicle is a kind of intelligent mobile robot that involves 
so many disciplines such as environment perception, localization and navigation, path 
and trajectory planning, and vehicle motion control[1]. Their research goal is to replace 
human drivers to conduct autonomous driving of the vehicle and thus improves driving 
safety and efficiency. 

The hardware configuration of autonomous vehicle is shown in Figure 1.1. 

 

Figure 1.2 Software Structure 

Figure 1.2 shows the software structure of autonomous driving system. 

Perception: The driverless vehicle is equipped with sensors like Lidar, radar and 
camera to get the information of the surrounding environment and obstacles such as 
moving vehicles and people as well as other things. The information is used to construct 
an environment model to get available space for driving. 

Prediction: When moving objects are detected by the perception module, the 
driverless system has to predict their future pose through their speed and direction to 
plan the reasonable behavior of ego vehicle to avoid collision. 

Localization: localization provides the accurate position of the ego vehicle which 
is necessary for the planning and control module. The commonly used methods are the 
GNSS RTK, Lidar localization, IMU, and the combination of these sensors using sensor 
fusion technology. 

Planning: It includes two parts: global planning (Routing) and local planning. The 
global planning refers to that after setting the endpoint of driving, the smart car obtains 
its position through the localization device, loads a high-definition map, and calculates 
the path from the current position to the endpoint through a path search algorithm. Local 
path planning refers to the real-time detection of road and obstacle information in front 
of the vehicle through the camera and lidar while the vehicle is running, and planning 
a reasonable path to bypass these obstacles. 
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Control: Vehicle motion control technology refers to making the vehicle track the 
target trajectory produced by planning module through appropriate control strategies. 
The motion control of the vehicle can be decomposed into longitudinal speed control 
and lateral steering control. There is a certain coupling relationship between the two, 
but they can be controlled separately in usual situation. 

1.3 The Autonomous Driving Vehicle in Mining Area 

1.3.1 Mining Area 

 
Figure 1.3 Mining Area 

One of the main jobs in the mining area is the transportation of ore materials. Each 
small or medium-sized coal mine needs more than 100 vehicles and more than 200 
drivers, so the mining area needs to recruit a large number of truck drivers to complete 
the transportation work, which means that there is a vast demand for autonomous 
driving technologies. 

But in recent years, fewer and fewer people are willing to work in the mining area, 
mainly for the following reasons: 

⚫ The working environment in the mining area is harsh, the air is full of dust, and 
even radioactive materials, which is very harmful to the human body. 

⚫ Poor road conditions and imperfect other infrastructures lead to high driving risk. 

⚫ The work place is far away from the city, people especially young people are not 
willing to work here. 

Therefore, the recruitment of drivers in the mining area is very difficult, and the 
labor cost is very large. The entire mining industry uses tens of billions to recruit truck 
drivers every year, and they have not yet solved the transportation safety and efficiency 
issues. Safety accidents in mining areas occur from time to time, and each occurrence 
is a misfortune of a family, and enterprises need to pay a large amount of compensation 
to their families. 
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If the autonomous driving technology is used to carry out unmanned transformation 
of the mining area, the annual employment cost and accident rate of the mining area 
can be greatly reduced. At the same time, by intelligently scheduling driverless trucks, 
industrial activities can be reasonably and effectively arranged, and the operation 
efficiency of the mining area can be greatly improved. 

 
1.3.2 Characteristics of Autonomous Driving in Mining Area 

At present, many enterprises focus on the development of autonomous driving 
passenger cars, but for the current technical level, urban roads are still too complicated, 
and there are too many uncontrollable variables, which is difficult to guarantee safety. 

As a closed scene, the mining area is more suitable for the deployment of 
autonomous driving technologies. 

⚫ The transportation roads in the mining area are almost determined. Each mine truck 
carries out point-to-point transportation on a relatively fixed route in a single shift, 
and the speed is often lower than 30km/h, which greatly reduces the real-time 
requirements for perception, planning and control modules. 

⚫ The mining area is not a road scenario, but an operation scenario. Unlike passenger 
cars, it won’t be restricted by too many laws and regulations. 

⚫ Driverless trucks have no passengers during operation, so the safety requirements 
will be slightly lower than that of passenger cars. 

 
Figure 1.4 Autonomous Minecart 
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1.4 Layout of The Thesis 

Chapter 2 introduces the current research situation of longitudinal and lateral 
control algorithm, as well as the centralized control algorithm to control longitudinal 
and lateral motion simultaneously. 

Chapter 3 introduces the Robot Operation System which can be used to construct 
the software frame of robot. Combined with Gazebo, which is a visualization simulation 
tool with physical engine and will be introduced detailed later, we can build a 
simulation platform to test and visualize the performance of control algorithm. 

Chapter 4 explains the design of longitudinal controller using dual closed-loop PID. 
In this case, it is necessary to take into account the ramp occurring frequently, and the 
physical limitation of actuators. 

Chapter 5 presents the design of lateral controller based on geometric, kinematic 
and dynamic vehicle model using Pure Pursuit, Stanley, Rear-Wheel Feedback, LQR 
and MPC algorithm. Then their simulation results are compared. 

Chapter 6 gives the conclusion of this thesis and introduces the challenge in more 
extreme condition for control module.  
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2. Literature Review of Vehicle Control 

2.1 Longitudinal Control 

Longitudinal control is based on vehicle and road information, by controlling the 
driving or braking of the intelligent vehicle, and accelerating or decelerating according 
to the planned speed, thereby achieving accurate and fast tracking of the planned 
longitudinal behavior. In order to solve the longitudinal control problem of intelligent 
vehicles, scholars at home and abroad have used different methods to do some 
discussion and research. 

CHOI S, et al[2] uses intelligent PID method to compensate the unmodeled 
dynamic characteristics in the longitudinal control of vehicle start-stop conditions. 

Kingston University SHAKOURI et al.[3] designed two controllers of gain 
scheduling PI and Linear Quadratic Regulator (LQR) to control the throttle opening. 
Among them, LQR depends on the accurate model. 

At University of Michigan XU et al.[4] proposed a longitudinal vehicle speed 
tracking method based on optimal preview control, introducing multi-point preview 
road gradient increments and expected vehicle speed increments into new state vectors 
to reconstruct the nonlinear optimal control problem into Augment the LQR problem 
and get an analytical solution to the optimization problem while reducing the 
computational burden. Compared with PI control, the tracking accuracy of the optimal 
preview control is higher and the action is smoother. 

In order to improve the system's robustness to parameter uncertainties and external 
disturbances, GERDES et al.[5] of the University of California at Berkeley adopted a 
sliding mode control method. First, the sliding mode control was used to calculate the 
speed or position closed-loop to obtain the desired acceleration, and then according to 
the inverse longitudinal dynamic model to calculate the driving/braking torque, and 
finally realize the tracking of the desired torque by the driving and braking actuators 
through sliding mode control. 

The University of Pavia, FERRARA et al.[6] used the second-order sliding mode 
control method to realize the longitudinal control of the vehicle fleet through the 
second-order sliding mode control method to ensure the safety distance of adjacent 
vehicles. 

Tongji University HANG et al.[7] combined RBF neural network with sliding 
mode control to design an adaptive vehicle speed control law. 

NARANJO J E, et al.[8, 9] adopts the fuzzy logic control method in longitudinal 
control. Although fuzzy control does not require accurate system modeling, the 
establishment of a practical rule base relies on expert knowledge and usually requires a 
large number of test calibrations. 
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2.2 Lateral Control 

The target of lateral control is to control the front wheel steering angle, so as to 
achieve accurate and fast tracking of planned path. 

Pure pursuit algorithm is the easiest lateral control method proposed by Carnegie 
Mellon University scholars[10, 11]. 

In 2005, Stanley Racing at Stanford University applied the Stanley algorithm to 
win the US Defense Advanced Research Projects Agency (DARPA) Desert Challenge 
[12]. The Stanley algorithm is more suitable for relatively higher speed driving 
conditions than the pure pursuit control algorithm, but it requires smoother desired path. 
In the case of unsatisfactory road curvature smoothness, it is prone to vehicle overshoot. 
Due to the neglect of the dynamic characteristics of the vehicle and the dynamic 
characteristics of the steering actuator, the tracking performance is poor when the lateral 
acceleration of the vehicle is large. 

At Stanford University HOFFMANN et al.[13] further improved the control law 
through yaw angular velocity deviation compensation and steering correction, which 
can improve the path tracking performance of Stanley algorithm to a certain extent. 

The above all are control theory researches based on vehicle geometric model. 

Beijing Institute of Technology Zhao Xijun et al.[14] adopted heading error 
feedback control, first determined the expected heading error from the kinematic 
relationship, and then designed a segmented fixed gain PID algorithm based on the 
vehicle-road dynamics model according to the driving speed. The method has good 
tracking effect on unstructured roads. 

The second University of Rome, MARINO et al.[15] proposed a lateral control 
method based on cascade PID, in which the outer loop circuit obtains the desired yaw 
rate according to the lateral displacement error, and the inner loop circuit uses PI control 
to achieve the yaw rate tracking and passes The pole configuration adjusts the controller 
parameters to ensure the gradual stability of the entire system. However, the algorithm 
is designed based on the linearized model of the kinematics of the vehicle relative to 
the path. It cannot guarantee the progressive signing of the lateral displacement error 
within a large range, and the algorithm does not consider the effect of actuator 
constraints on the control effect. 

University of Michigan XU et al.[16] proposed a path tracking algorithm based on 
optimal preview control, which introduces multi-point preview road curvature in a 
finite time window into the augmented state vector, and reconstructs the nonlinear 
optimal control problem into augmented LQR Problem, the optimal steering control 
law is composed of feedback control to stabilize tracking error and feedforward control 
to deal with future road curvature. Compared with the LQR control without preview, 
the optimal preview control can greatly reduce the tracking error and reduce the 
overshoot to make the steering operation smoother. 
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Based on the control framework of the combination of road curvature feedforward 
and LQR feedback, GOODARZI et al.[17] added direct yaw moment control on the 
basis of active steering of the front wheels to achieve the large lateral acceleration.. 
Introducing actuator conditions such as distributed drive to increase the control freedom 
of the system can not only improve the control margin of unmanned vehicles under 
extreme conditions, but also help to increase the response speed of lateral motion. 

Falcone et al. [18] of Sanio University designed a lateral controller based on 
nonlinear model predictive control and linear time-varying model predictive control for 
the lane change scenario of driverless vehicles on low-adhesion roads. Constraints limit 
the tire force in the linear region to ensure the stability of the vehicle. The analysis gives 
the asymptotic stability conditions of the linear time-varying model predictive control 
closed-loop system [19]. 

2.3 Centralized Control 

Lateral control and longitudinal control are always discussed separately in most 
case. But some experts and scholars at home and abroad have carried out relevant 
research about controlling longitudinal and lateral behavior coupled. 

University of California, Berkeley, LIM et al.[20] analyzed the coupling 
mechanism of vehicle longitudinal and lateral motion, and designed a control law to 
compensate for the coupling impact based on dynamic surface sliding mode control. 
Simulation shows that considering the coupling impact can effectively improve the 
trajectory tracking performance. However, when the algorithm uses the tire inverse 
model to solve the front wheel steering angle, the analytical solution cannot be obtained, 
and the mapping relationship is not accurate in practical applications. 

In order to expand the scope of application conditions, the Berkeley University of 
California LEE et al.[21] removed the above simplified assumptions and designed a 
robust adaptive control algorithm for the MIMO nonlinear system using the 
backstepping method. 

Some authors [22, 23] compensate the influence of parameter uncertainty, strong 
nonlinearity and coupling effects of trajectory tracking system through neural network. 

Massachusetts Institute of Technology PETERS et al.[24] proposed a trajectory 
tracking control method based on differential flat theory. The center position of the 
front axle is used as a differential flat output, and the stability analysis of the internal 
dynamic yaw dynamics during vehicle trajectory tracking is performed. 

In [25] more attention to the coupling characteristics of vertical and lateral 
movements of vehicles has been payed. But these studies have only been verified by 
simulation. 

Under the MPC framework, the longitudinal and lateral control can be transformed 
into the same constrained optimization problem to fully consider the vehicle motion 
coupling effect. The California Berkeley University GAO [26, 27] proposed two MPC-
based control architectures for vehicle obstacle avoidance, one is planning and control 
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layered implementation, and the other is planning and control implemented in the same 
MPC controller. The advantage of hierarchical control is that the planning can use a 
simpler model, the calculation amount is relatively smaller, and the integrated control 
can prevent the planning from generating unfeasible trajectories, but the real-time 
application is more difficult. 
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3. Simulation Environment 

3.1 Robot Operation System ROS 

ROS is a highly flexible software architecture for robot programs. It contains a 
large number of tool software, library code and agreed protocols, and aims to simplify 
the difficulty and complexity of the process of creating complex and robust robot 
behaviors across robot platforms. 

 

Figure 3.1 ROS Sign  

The main goal of ROS is to provide code reuse support for robot research and 
development.  

Figure 3.2 illustrates the communication mechanism of ROS.  

ROS is a distributed process (also known as "node") framework. These processes 
are encapsulated in packages and function packages that are easy to share and publish. 
Each node is independent of each other, and even the computer language of operation 
can be different. All the user needs to do is to define the message format for 
communication between the two nodes, so that the communication between different 
nodes can be carried out. 

 

Figure 3.2 ROS Communication Mechanism 

Another huge advantage of ROS is that it has a large number of open source 
libraries. When users only want to study a certain aspect of a system, they can use the 
open source function package to build other parts. For example, if you want to use ROS 
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to develop control algorithms for autonomous vehicles, you can first use the open 
source function package to implement the perception and planning module, and then 
implement the control module yourself. 

3.2 Visualized Simulator—Gazebo 

Gazebo is a 3D dynamic simulator that can accurately and effectively simulate 
robot in complex indoor and outdoor environments.  

Gazebo provides high-fidelity physical simulation, which provides a world, a 
complete set of sensor models, robot models (shown in Figure 3.3), and very user-
program-friendly interaction. 

 

Figure 3.3 Gazebo Vehicle Model 

Gazebo works well with ROS. Users can deploy software modules in ROS and then 
run the vehicle model in Gazebo.  

The workflow is demonstrated in Figure 3.4. The software module sends control 
commands to the vehicle model in Gazebo. With the physics engine, the vehicle model 
will start to move and continuously feedback its own localization and movement 
information to ROS for error calculation, so as to achieve closed-loop control. 

 
Figure 3.4 ROS-Gazebo Workflow 
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The right part of Figure 3.5 is real-time 3D simulation result, the left part is a plot 
which compares the reference trajectory and actual trajectory, and also shows the real 
time tracking error data. 

 

Figure 3.5 ROS-GAZEBO Simulation 

 

3.3 Test Trajectory 

Figure 3.6 is the reference trajectory, Figure 3.7 and 3.8 are the reference velocity 
and heading angle. They will be used to test the performance of control algorithms. 

 

Figure 3.6 Reference Path 
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Figure 3.7 Reference Heading 

 
Figure 3.8 Reference Velocity 

 In Figure 3.8, the higher velocity means the velocity of vehicle running in 
straight road, and the lower one means the velocity in bend. 
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4. Longitudinal Controller Design 

The longitudinal control of autonomous vehicles is mainly to study how to control 
the longitudinal movement of the vehicle, that is, to control the vehicle to drive at the 
desired speed, the distance between vehicles, the longitudinal acceleration of the 
vehicle, the throttle opening and the braking amount of the brake. 

Longitudinal control usually adopts a hierarchical control structure. The upper 
controller produces the acceleration compensation based on the distance or speed in a 
closed loop, and the lower controller controls the throttle and brake to track the desired 
acceleration. [28] 

The upper-level controller currently uses PID control. Its main advantage is that it 
does not rely on an accurate longitudinal model of the vehicle. Although the control 
effect under extreme conditions is average, the control conditions of the mining area 
are relatively normal, so it can also meet the control requirements. 

The lower-level controller can realize the real-time tracking of the desired 
acceleration through methods such as the inverse solution of vehicle longitudinal 
dynamics, engine MAP look-up table or PID control. 

 

4.1 Control principle block diagram 

If the accurate performance parameters of the engine can be obtained, we can 
establish an accurate Engine Map to build a calibration table. The longitudinal control 
block diagram is shown following [29] 

 
Figure 4.1 PID Control Block 1 

In Figure 4.1, the lower-level controller is implemented through a calibration table, 
which establishes the relationship between expected acceleration and throttle opening 
at the current vehicle speed, so that the vehicle can quickly and accurately track speed 
at any vehicle speed. 

The upper controller is the dual closed-loop control of position and speed, so that 
not only speed tracking can be carried out, but also position tracking can be realized. 

In fact, the control requirements of unmanned driving in the mining area are 
different from the urban road environment. There is no need for position tracking, and 
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only the task of speed tracking is required. At the same time, due to limited conditions, 
there is no way to get all the power-related parameters of the minecart, and it is 
impossible to establish an accurate vehicle longitudinal dynamics model and Engine 
Map. 

However, in actual driving behavior, human drivers do not understand the 
longitudinal dynamics of the vehicle and can also control the vehicle well. Therefore, 
both the upper and lower controllers can be designed with PID. [30] 

If it is under the full vehicle speed range, the lower-level controller using PID 
cannot achieve the best effect, because the optimal gains of PID vary with vehicle speed. 
Fortunately, the speed of the vehicle in the mining area is slow, and the speed range of 
the vehicle is also small. The PID can achieve relatively good results even without gain 
scheduling, so the following simplified version of the control block diagram is obtained, 
shown in Figure 4.2. 

 

Figure 4.2 PID Control Block 2 

4.2 Challenges 

Due to poor conditions in the mining area, there are the following problems. 

4.2.1 Slope Compensation 

There are long uphill and downhill in the mining area. When the mine truck is 
uphill, it will be affected by the component force of gravity along the ramp, resulting 
in an increase in resistance. This means that the vehicle needs to output more power to 
compensate, and the downhill is in contrast. The component force of the vehicle's 
gravity along the ramp can be calculated from the pitch angle 𝛼 of vehicle. [31] 

𝑠𝑙𝑜𝑝𝑒 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑔 ∗ 𝑠𝑖𝑛𝛼 

However, these ramp roads are not smooth. It is not accurate to calculate the slope 
compensation directly using the current vehicle pitch angle data provided by IMU. 
Therefore, it is necessary to deal with the obtained slope data for a period of time before 
the current time using median filter processing.  

4.2.2 Inaccurate Acceleration 
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GPS and IMU are installed on the mine truck. IMU can provide acceleration data, 
but due to the poor road conditions in the mining area, the vehicle is very bumpy during 
driving, so the acceleration can only be obtained by differential using speed data 
provided by GPS. But since the frequency of GPS is very high, and the velocity signal 
has error, differential processing will amplify the error.  

Therefore, a timer is used in the program, using the speed data subscribed from 
GPS every 0.01 s, and calculate the approximate value of the actual acceleration. 

4.3 PID 

PID controller is the most widely used automatic controller. It is suitable for 
occasions where the controlled object model is not well established. The principle is 
demonstrated in Figure 4.3. 

 
Figure 4.3 PID Principle 

It has the following advantages: 

⚫ no requirement for model 

⚫ simple principle 

⚫ easy implementation 

⚫ wide application 

⚫ independent control parameters 

 

4.3.1 Parameters Introduction 

a) Proportional gain 
Figure 4.4 shows the effect of proportional gain. 

⚫ As proportional gain increases, the response will be faster, but the overshoot also 
increase. 

⚫ If there is a steady-state error under proportional control, increasing proportional 
gain can reduce the steady-state error. 
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⚫ Proportional gain controller is only suitable for occasions where there is no steady 
state error. 

Figure 4.4 shows the effect of proportional gain. 

 

Figure 4.4 Effect of Proportional Gain 

b) Integral gain 
Figure 4.5 shows the effect of integrative gain. 

⚫ Increasing the integral term can eliminate the steady-state error, but it also enlarges 
the overshoot and reduce the system stability. The magnitude of integral gain 
affects the speed of elimination of steady-state errors. 

⚫ Due to the limitation of the actual actuator, special treatment is required to avoid 
integral saturation. 

⚫ Integral term cannot be used alone, PI controller is suitable for controlled objects 
with high requirement for steady-state accuracy. 

Figure 4.5 shows the effect of integrative gain. 

 

Figure 4.5 Effect of Integrative Gain 

c) Differential gain 
Figure 4.6 shows the effect of differential gain. 
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⚫ Increasing the differential term can effectively reduce the oscillation, but it should 
be noted that if there are noise or high frequency components in the signal, it will 
be amplified by the differentiator. 

⚫ Differential term cannot be used alone too, the PD controller is mainly used for 
controlled objects that require high dynamic performance and are not affected by 
high-frequency noise. 

 

Figure 4.6 Effect of Differential Gain 

 

 

4.3.2 Determine PID type 

For the upper controller, controller with proportional gain is enough. 

For the lower controller, the differential term is not allowed. Since the acceleration 
used is obtained by differential calculation of velocity, the difference between adjacent 
accelerations signal will be very large. If the differential term is used in this case, the 
error signal will be amplified largely. 

During the driving of the vehicle, the friction between road surface and tire, and 
the internal resistance of the vehicle, as well as the air resistance will cause steady-state 
error in the speed control process. Therefore, it is not enough to use the controller with 
only proportional gain, integral term can eliminate steady state error effectively. 

Therefore, PI controller is used.  

4.4 Simulation Result  

The longitudinal controller is tested in the scenario with velocity equal to 10m/s 
and 15m/s in simulation platform. 

Figure 4.7 and 4.8 indicate the result of velocity tracking with 10m/s and 15m/s 
velocity in curve.  

The average errors are 0.0456m/s and 0.221m/s respectively. 

The tracking error under higher velocity is larger. 
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Figure 4.7 Simulation Result of Vehicle Tracking at V=10 m/s 

 

Figure 4.8 Simulation Result of Vehicle Tracking at V=15m/s 

4.5 Real Truck Test 

The longitudinal controller is also tested in real truck in mining area for uphill and 
downhill. 

Figure 4.9 is the test route including uphill and downhill. 

off track due to lateral control 



Longitudinal Controller Design 

20 

 

 
Figure 4.9 Real Vehicle Test Environment 

Figure 4.10 shows the road condition in the flat road which is the first part of test 
route. 

 
Figure 4.10 Flat Road 

Figure 4.11, 4.12, 4.13 show the downhill condition. 

 
Figure 4.11 Downhill 1 
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Figure 4.12 Downhill 2 

 
Figure 4.13 Downhill 3 

Figure 4.14 is the uphill road part. 

 

Figure 4.14 Uphill 
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Figure 4.15 and 4.16 indicate the velocity tracking result in uphill and downhill 
condition.  

The average error is 0.09m/s and 0.04m/s respectively. 

 
Figure 4.15 Real Vehicle Test Results on Uphill 

 
Figure 4.16 Real Vehicle Test Results on Downhill 

shift gear for climbing 
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5. Lateral Controller Design 

The purpose of lateral control is to calculate an appropriate front wheel steering 
angle 𝛿 to control the vehicle to travel accurately along the trajectory output by the 
planning module. It is usually assumed that the longitudinal vehicle speed is constant 
and then the lateral motion controller is designed so that the lateral displacement error 
and heading angle error between the actual position of vehicle and the desired path 
gradually converge to zero. 

Lateral control methods can be divided into: 

⚫ control algorithm based on geometric model 

⚫ control algorithm based on kinematic model 

⚫ control algorithm based on dynamic model 

5.1 Control Methods Based on Geometric Model 

The geometric model refers to the geometric relationship of the automated vehicle 
when steering, including the relative pose relationship between the vehicle and the 
reference path and the Ackerman steering geometric model. 

The common algorithms for path tracking control of driverless vehicles based on 
geometric models include pure pursuit algorithm, and Stanley algorithm. 

5.1.1 Ackerman steering model 

The Ackerman steering model which is shown in Figure 5.1. 

 
Figure 5.1 Ackerman Steering Model 

Ackerman steering model describes the behavior of vehicle during turning. 

The relation between steering radius and steering angle of front wheel are: 
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 {

𝑡𝑎𝑛𝛿𝑓1 =
𝐿

𝑅−
𝑡

2

𝑡𝑎𝑛𝛿𝑓2 =
𝐿

𝑅+
𝑡

2

   (5.1) 

In order to simplify the vehicle motion behavior, an effective method is to use the 
single-track model shown in Figure 5.2, which assumes that the two front wheels have 
same steering angle all the time, so that we can use one front wheel and rear-wheel to 
represent the vehicle, like a bicycle. 

 

Figure 5.2 Ackerman Steering Single-Track Model 

 So that Equation (5.1) becomes: 

 𝑡𝑎𝑛𝛿𝑓 =
𝐿

𝑅
 (5.2) 

5.1.2 Pure Pursuit Control 

a) Principle 
Pure pursuit algorithm [11] is a path tracking control strategy proposed by scholars 

of Carnegie Mellon University. Figure 5.3 shows a schematic diagram of the geometric 
relationship of pure pursuit control. 

The basic principle is to calculate the steering radius 𝑅 of the vehicle to make the 
center point of the rear-axle of the vehicle follow a circular arc to reach the reference 
path target point 𝐺: (𝑔𝑥,  𝑔𝑦) with a forward-looking distance 𝑙𝑑. And then calculate 
the steering angle of the front wheels 𝛿𝑓 required for the steering radius 𝑅 based on 
the Ackerman steering model (Equation (5.2)). 
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Figure 5.3 Pure Pursuit Control 

According to the equation: 

 𝑙𝑑

sin(2𝛼)
=

𝑅

sin(
𝜋

2
−𝛼)

 (5.3) 

The steering radius 𝑅 and curvature 𝜌 are calculated by the following equations: 

 𝑅 =
𝑙𝑑

2sin𝛼
=

𝑙𝑑
2

2𝑒
 (5.4) 

 𝜌 =
1

𝑅
=

2

𝑙𝑑
2 𝑒 (5.5) 

Where: 𝑒 is the lateral displacement error between goal point and actual point. 

Combined with Ackerman steering model (Equation (5.2)), the steering angle of 
front wheel required by the radius is: 

 𝑡𝑎𝑛𝛿𝑓 =
2𝐿𝑠𝑖𝑛𝛼

𝑙𝑑
=

2𝐿

𝑙𝑑
2 𝑒 (5.6) 

where 𝐿 is wheelbase of the vehicle. 

From Equation (5.6), pure pursuit can be regarded as a proportional control method 
[10] whose input is the lateral displacement error between goal and actual point 𝑒, and 

proportional gain is 2𝐿
𝑙𝑑
2 . 

Therefore, the effect of algorithm depends on the choice of 𝑙𝑑. 
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Small 𝑙𝑑 means a large proportional gain which causes overshoot and oscillation 
during turning, and on the contrary, large 𝑙𝑑 will lead to the low response speed. 

  So that it is recommended to set the forward-distance 𝑙𝑑 related to the velocity: 

 𝑙𝑑 = 𝑉 ∗ 𝑇 (5.7) 
Where: 𝑉 is the current speed of vehicle and 𝑇 is a predetermined time. 

b) Pros and Cons 
Pros: 

⚫ It is easy to implement. 

⚫ It has good robust for the disturbance in road curvature. 

Cons： 

⚫ The effect of algorithm seriously depends on the choice of 𝑙𝑑, but it is actually 
difficult to get the optimal value. 

⚫ It doesn’t take into account the dynamic properties of vehicle and steering actuator, 
so that it is only applied in the case of low velocity and small lateral acceleration. 

c) Simulation Results 
Figure 5.4 and 5.6 is the result of path tracking and heading angle tracking of pure 

pursuit controller with velocity equal to 10m/s. The error of displacement and heading 
angle are plotted in Figure 5.4 and 5.6. 

The average lateral displacement error is 4.2737cm, the average heading error is 
0.2406deg which can be ignored. 

 
Figure 5.4 Path Tracking of Pure Pursuit at V=10 m/s 
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Figure 5.5 Lateral Displacement Error of Pure Pursuit at V=10 m/s 

From the error plot Figure 5.5 and 5.7, the lateral displacement error gets large 
when turning, and converge in straight road. 

 
Figure 5.6 Heading Tracking of Pure Pursuit at V=10 m/s 
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Figure 5.7 Heading Error of Pure Pursuit at V=10 m/s 

Figure 5.8 and 5.10 is the result of path tracking and heading angle tracking of pure 
pursuit controller with velocity equal to 15m/s. The error of displacement and heading 
angle are plotted in Figure 5.9 and 5.11. 

The average displacement error and heading error is 270.145cm and 4.1659deg. 

 
Figure 5.8 Path Tracking of Pure Pursuit at V=15 m/s 
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Figure 5.9 Lateral Displacement Error of Pure Pursuit at V=15 m/s 

The maximum error occurs during the turning on curve with radius equal to 20 
which exceeds the steering limitation of vehicle model. But from the Figure 5.9 and 
5.11, the error in other parts is very small.  

 
Figure 5.10 Heading Tracking of Pure Pursuit at V=15 m/s 
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Figure 5.11 Heading Error of Pure Pursuit at V=15 m/s 

5.1.3 Stanley Control 

a) Principle 
In 2005, Stanley University Stanley won the United States Defense Advanced 

Research Projects Agency (DARPA) Desert Challenge using Stanley algorithm. 

As shown in Figure 5.12, the Stanley algorithm[13] designs the nonlinear feedback 
control law according to the lateral displacement error 𝑦𝑒 and heading angle error 𝜑𝑒 
from the front axle center control point to the nearest desired path target point 
𝐺: (𝑔𝑥, 𝑔𝑦). The nonlinear controller can ensure that the lateral displacement error 𝑦𝑒 
exponent converges to 0. 

 
Figure 5.12 Stanley Control 
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Considering the symbol of Figure 5.12 it is possible to write the following 
equations: 

 𝛿 = 𝜑𝑒 + 𝛿𝑒 (5.8) 

 𝛿𝑒 = 𝑎𝑡𝑐𝑡𝑎𝑛
𝑦𝑒

𝑙𝑑
 (5.9) 

The effect of algorithm also depends on the choice of 𝑙𝑑, which is set to: 

 𝑙𝑑 = 𝑉 ∗ 𝑇 (5.10) 
Therefore:  

 𝛿 = 𝜑𝑒 + 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦𝑒

𝑉𝑇
 (5.11) 

b) Pros and Cons 
Pros: 

⚫ Compared to the pure pursuit algorithm, Stanley algorithm is more suitable for the 
relatively higher speed driving. 

⚫ Stanley algorithm responses faster than pure pursuit algorithm because it compares 
the center point of front axle to the reference goal point, and most vehicles are 
front-wheel steering. 

⚫ There is only one parameter, which is easy to adjust. 

Cons: 

⚫ Stanley algorithm has higher requirement for the smooth of reference trajectory. 

c) Simulation Result 

 

Figure 5.13 Path Tracking of Stanley at V=10 m/s 
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Figure 5.13 and 5.15 is the result of path tracking and heading angle tracking of 
Stanley controller with velocity equal to 10m/s. The error of displacement and heading 
angle are plotted in Figure 5.14 and 5.16. 

The average lateral displacement error is 2.59cm, the average heading error is 
0.1671deg which is better than the result of pure pursuit controller. 

Besides, its maximum error of lateral displacement(-10.96cm) and heading angle(-
3.88deg) are also smaller than that of pure pursuit controller. 

 

Figure 5.14 Lateral Displacement Error of Stanley at V=10 m/s 

 
Figure 5.15 Heading Tracking of Stanley at V=10 m/s 
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Figure 5.16 Heading Error of Stanley at V=10 m/s 

Figure 5.17 and 5.19 is the result of path tracking and heading angle tracking of 
Stanley controller with velocity equal to 15m/s. The error of displacement and heading 
angle are plotted in Figure 5.18 and 5.20. 

The average lateral displacement error is 79.99cm, the average heading error is 
1.85deg which is much less than the result of pure pursuit controller in same condition. 

The maximum error also occurs during the turning on curve with radius equal to 
20. Compared to the performance of pure pursuit controller, Stanley controller has 
shorter response time and smaller error on all the path. 

 
Figure 5.17 Path Tracking of Stanley at V=15 m/s 
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Figure 5.18 Lateral Displacement Error of Stanley at V=15 m/s 

 

 
Figure 5.19 Heading Tracking of Stanley at V=15 m/s 
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Figure 5.20 Heading Error of Stanley at V=15 m/s 

 

5.2 Vehicle Model 

Different from the geometric model which depends on the vehicle pose and 
Ackerman steering model, the vehicle kinematic model further considers the motion of 
vehicle, and the dynamic model takes into account the physical properties of the vehicle 
itself (such as mass, etc.) and the forces acting on the vehicle. 

5.2.1 Vehicle Kinematic Modeling 

When studying vehicle motion control problems based on kinematics model [32], 
it is usually assumed that the vehicle does not have sideslip, in another word, slip angle 
of the center of gravity is zero.  

 

Figure 5.21 Vehicle Kinematic Model 
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Figure 5.21 shows the schematic diagram of the kinematic model.  

The path-tracking control method based on the kinematic model does not consider 
the dynamic characteristics of the vehicle, and is simpler and more practical. 

It usually has a better control effect under the conditions of medium and low speed 
and small curvature than the algorithms based on geometric model. 

However, the actual vehicle has obvious sideslip and large lateral acceleration 
when turning under high speed, so the method based on kinematic model is not suitable 
for the conditions. 

The derivation of the vehicle kinematic model is shown followed. 

The velocity components alone 𝑋 and 𝑌 axis (Global Frame) are: 

 {
�̇� = 𝑉𝑐𝑜𝑠𝜑

�̇� = 𝑉𝑠𝑖𝑛𝜑
 (5.12) 

The derivative of heading angle are: 

 {
�̇� =

𝑉

𝑅

𝑡𝑎𝑛𝛿𝑓 =
𝐿

𝑅

 (5.13) 

Therefore, the differential equations of nonlinear vehicle kinematic model are: 

 {

𝑓1 = �̇� = 𝑉𝑐𝑜𝑠𝜑

𝑓2 = �̇� = 𝑉𝑠𝑖𝑛𝜑

𝑓3 = �̇� =
𝑉𝑡𝑎𝑛𝛿𝑓

𝑙

 (5.14) 

5.2.2 Vehicle Dynamic Modeling 

a) Introduction 
Because the path tracking control method based on geometric or kinematic model 

ignores the dynamic characteristics of the vehicle, the applicable working conditions 
have limitations. 

Therefore, in order to obtain a more accurate tracking control effect, especially in 
high-speed and large curvature conditions, it is necessary to consider the dynamic 
properties of the vehicle when designing the path tracking control algorithm. 

Autonomous driving vehicles are highly non-linear and complex dynamic systems 
with strong coupling characteristics. Although expanding the model dimensions can 
improve the accuracy of the model, it will also increase the difficulty of modeling and 
also bring huge challenges to the rapid computation. When modeling, it is necessary to 
make compromise between complexity and accuracy of the model. Therefore, the 
vehicle dynamics model with 3 degrees of freedom is commonly used [33]. 

The dynamic model [34] is established according to the external force and torque 
acting on the vehicle which mainly come from tires and air resistance. In the mining 
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area, the vehicle speed is relatively slow, so the influence of air resistance is so small 
that can be ignored. 

Therefore, under the following idealized assumptions, a 3DOF dynamic model 
describing vehicle motion is established: 

⚫ Assuming that the road is flat, so the influence caused by the vertical displacement 
of the road is ignored. 

⚫ Assuming the vehicle is rigid which ignores the influence of elastic elements like 
suspensions. 

⚫ Assuming that the input signal directly acts on the front wheels of the vehicle, 
ignoring the dynamic characteristics of the steering mechanism. 

⚫ Ignore the influence of air resistance. 

⚫ Assuming that the front wheel side slip angle is small (-4°~4°), the longitudinal 
and lateral tire force model are linear. [35] 

⚫ Ignoring the coupling characteristics of the lateral and longitudinal motion and load 
transfer of vehicle. 

b) Establishment of vehicle dynamic model 
Figure 5.22 shows the schematic diagram of the dynamic model. 

 
Figure 5.22 Vehicle Dynamic Model 

The forces and moment acting on vehicle are: 

 {

𝑚𝑎𝑥 = 2𝐹𝑥𝑓 + 2𝐹𝑥𝑟
𝑚𝑎𝑦 = 2𝐹𝑦𝑓 + 2𝐹𝑦𝑟
𝐼�̈� = 2𝑎𝐹𝑦𝑓 − 2𝑏𝐹𝑦𝑟

 (5.15) 
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When vehicle is turning, the acceleration can be divided into the linear and angular 
acceleration around center of gravity G.  

 {
𝑎𝑥 = �̈� − 𝑉𝑦�̇�

𝑎𝑦 = �̈� + 𝑉𝑥�̇�
 (5.16) 

All the force is provided by tire are: 

 

{
 

 
𝐹𝑥𝑓 = 𝐹𝑥1𝑐𝑜𝑠𝛿𝑓 − 𝐹𝑦1𝑠𝑖𝑛𝛿𝑓
𝐹𝑦𝑓 = 𝐹𝑥1𝑠𝑖𝑛𝛿𝑓 + 𝐹𝑦1𝑐𝑜𝑠𝛿𝑓

𝐹𝑥𝑟 = 𝐹𝑥2
𝐹𝑦𝑟 = 𝐹𝑦2

 (5.17) 

Where 𝐹𝑥𝑖 and 𝐹𝑦𝑖 are the longitudinal and lateral force of tire. 

Due to the assumption of small steering angle 𝛿𝑓, the force can be simplified: 

 

{
 

 
𝐹𝑥𝑓 = 𝐹𝑥1
𝐹𝑦𝑓 = 𝐹𝑦1
𝐹𝑥𝑟 = 𝐹𝑥2
𝐹𝑦𝑟 = 𝐹𝑦2

 (5.18) 

The direction of velocity of front and rear-wheel are: 

 {
𝑡𝑎𝑛𝛽𝑓 =

𝑉𝑦𝑓

𝑉𝑥𝑓
=

𝑉𝑦+𝑎�̇�

𝑉𝑥

𝑡𝑎𝑛𝛽𝑟 =
𝑉𝑦𝑟

𝑉𝑥𝑟
=

𝑉𝑦−𝑏�̇�

𝑉𝑥

 (5.19) 

Because 𝛽𝑓 and 𝛽𝑟 are small, so the Equation(5.19) can be transformed into: 

 {
𝛽𝑓 =

𝑉𝑦+𝑎�̇�

𝑉𝑥

𝛽𝑟 =
𝑉𝑦−𝑏�̇�

𝑉𝑥

 (5.20) 

The lateral forces are: 

 {
𝐹𝑦1 = 𝐶𝛼𝑓𝛼𝑓 = 𝐶𝛼𝑓(𝛿𝑓 − 𝛽𝑓) = 𝐶𝛼𝑓 (𝛿𝑓 −

𝑉𝑦+𝑎�̇�

𝑉𝑥
)

𝐹𝑦2 = 𝐶𝛼𝑟𝛼𝑟 = 𝐶𝛼𝑟(𝛿𝑟 − 𝛽𝑟) = −𝐶𝛼𝑟𝛽𝑟 = 𝐶𝛼𝑟
𝑏�̇�−𝑉𝑦

𝑉𝑥

 (5.21) 

The longitudinal forces are: 

 {
𝐹𝑥1 = 𝐶𝜎𝑓𝜎𝑓
𝐹𝑥2 = 𝐶𝜎𝑟𝜎𝑟

 (5.22) 

Therefore:  
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{
 
 

 
 

𝐹𝑥𝑓 = 𝐹𝑥1 = 𝐶𝜎𝑓𝜎𝑓
𝐹𝑥𝑟 = 𝐹𝑥2 = 𝐶𝜎𝑟𝜎𝑟

𝐹𝑦𝑓 = 𝐹𝑦1 = 𝐶𝛼𝑓 (𝛿𝑓 −
𝑉𝑦+𝑎�̇�

𝑉𝑥
)

𝐹𝑦𝑟 = 𝐹𝑦2 = 𝐶𝛼𝑟
𝑏�̇�−𝑉𝑦

𝑉𝑥

 (5.23) 

Combined with Equation (5.15) and (5.16), the final nonlinear dynamic model is: 

 

{
 
 
 
 

 
 
 
 

�̇� = �̇�𝑐𝑜𝑠𝜑 − �̇�𝑠𝑖𝑛𝜑

�̇� = �̇�𝑠𝑖𝑛𝜑 + �̇�𝑐𝑜𝑠𝜑
�̇� = �̇�

�̈� =
2𝐶𝛼𝑟∗𝑏−2𝐶𝛼𝑓∗𝑎

𝐼𝑧�̇�
�̇� −

2𝐶𝛼𝑟∗𝑏
2+2𝐶𝛼𝑓∗𝑎

2

𝐼𝑧�̇�
�̇� +

2𝐶𝛼𝑓𝑎

𝐼𝑧
𝛿𝑓

�̈� = �̇��̇� +
2(𝐶𝑠𝑓𝑠𝑓+𝐶𝑠𝑟𝑠𝑟)+2𝐶𝛼𝑓𝛿𝑓

2

𝑚
− 2𝐶𝛼𝑓𝛿𝑓

�̇�

𝑚�̇�
− 2𝐶𝛼𝑓𝛿𝑓

𝑎�̇�

𝑚�̇�
= 𝑎𝑐𝑐

�̈� = −
2𝐶𝛼𝑟+2𝐶𝛼𝑓

𝑚�̇�
�̇� − (�̇� +

−2𝐶𝛼𝑟∗𝑏+2𝐶𝛼𝑓∗𝑎

𝑚�̇�
) �̇� +

2𝐶𝛼𝑓

𝑚
𝛿𝑓

 (5.24) 

Equation (5.24) is built based on the global frame, but the model based on the 
vehicle coordinates frame system is more common: 

 

{
 
 
 
 

 
 
 
 

�̇� = �̇�
�̇� = �̇�
�̇� = �̇�

�̈� =
2𝐶𝛼𝑟∗𝑏−2𝐶𝛼𝑓∗𝑎

𝐼𝑧�̇�
�̇� −

2𝐶𝛼𝑟∗𝑏
2+2𝐶𝛼𝑓∗𝑎

2

𝐼𝑧�̇�
�̇� +

2𝐶𝛼𝑓𝑎

𝐼𝑧
𝛿𝑓

�̈� = �̇��̇� +
2(𝐶𝑠𝑓𝑠𝑓+𝐶𝑠𝑟𝑠𝑟)+2𝐶𝛼𝑓𝛿𝑓

2

𝑚
− 2𝐶𝛼𝑓𝛿𝑓

�̇�

𝑚�̇�
− 2𝐶𝛼𝑓𝛿𝑓

𝑎�̇�

𝑚�̇�
= 𝑎𝑐𝑐

�̈� = −
2𝐶𝛼𝑟+2𝐶𝛼𝑓

𝑚�̇�
�̇� − (�̇� +

−2𝐶𝛼𝑟∗𝑏+2𝐶𝛼𝑓∗𝑎

𝑚�̇�
) �̇� +

2𝐶𝛼𝑓

𝑚
𝛿𝑓

 (5.25) 

5.2.3 Model Linearization and Discretization 

a) Linearization 
Whether it is kinematic or dynamic modeling, the resulting model is nonlinear, 

although it can also be used for control, but the computational consumption will be very 
large, so in general, we will linearize the nonlinear system to get a linear system in the 
form of state space. 

There are many linearization methods, which can be roughly divided into 
approximate linearization and precise linearization. The approximate linearization 
method is simple and has a wide range of applications. The disadvantage is that it 
cannot be applied to occasions with very high control accuracy requirements. Precise 
linearization is often not universal and requires analysis for one specific systems. 

If there is a reference system: 

 �̇�𝑟 = 𝑓(𝜉𝑟 , 𝑢𝑟)  (5.26) 
The small deviation linearization method can be used. 
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The state and control quantity of the vehicle at any time satisfy the following 
relationship: 

 �̇� = 𝑓(𝜉, 𝑢) (5.27) 
Perform Taylor's first-order expansion at any point (𝜉𝑟 , 𝑢𝑟) to get: 

 �̇� = 𝑓(𝜉𝑟 , 𝑢𝑟) + 𝐽𝑓(𝜉)(𝜉 − 𝜉𝑟) + 𝐽𝑓(𝑢)(𝑢 − 𝑢𝑟) (5.28) 

Where 𝐽𝑓(𝜉) and 𝐽𝑓(𝑢) are the Jacobian matrix of 𝑓(𝜉𝑟 , 𝑢𝑟) with respect to 𝜉 
and 𝑢. 

Equation (5.28) subtract Equation (5.26): 

 �̇� − �̇�𝑟 = 𝐽𝑓(𝜉)(𝜉 − 𝜉𝑟) + 𝐽𝑓(𝑢)(𝑢 − 𝑢𝑟) (5.29) 

So that the linear system is: 

 �̇� = 𝐴(𝑡)𝜉 + 𝐵(𝑡)�̃� (5.30) 

Where: 

 

{
 
 

 
 𝜉 = 𝜉 − 𝜉𝑟
�̃� = 𝑢 − 𝑢𝑟
𝐴(𝑡) = 𝐽𝑓(𝜉)

𝐵(𝑡) = 𝐽𝑓(𝑢)

 (5.31) 

b) Discretization 
The model obtained above is continuous, which cannot be used to control the 

system by a digital controller. The model must be discrete, so the above continuous 
system needs to be discretized. 

The approximate discretization method of the continuous state space system is 
applied, which is suitable for the case where the sampling period is small and the 
accuracy of the discretization is not so high. 

Continuous system is:  

 ξ̇ = 𝐴ξ + 𝐵𝑢 (5.32) 

 �̇�(𝑘𝑇) = lim
𝑇→0

𝜉((𝑘+1)𝑇)−𝜉(𝑘𝑇)

𝑇
 (5.33) 

When 𝑇 → 0: 

 �̇�(𝑘𝑇) ≈
𝜉((𝑘+1)𝑇)−𝜉(𝑘𝑇)

𝑇
 (5.34) 

So that:  

 𝜉((𝑘+1)𝑇)−𝜉(𝑘𝑇)

𝑇
= 𝐴𝜉(𝑘𝑇) + 𝐵𝑢(𝑘𝑇)  (5.35) 
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 𝜉((𝑘 + 1)𝑇) = (𝐼 + 𝐴𝑇)𝜉(𝑘𝑇) + 𝐵𝑇𝑢(𝑘𝑇)  (5.36) 

Finally: 

 {
𝜉((𝑘 + 1)𝑇) = 𝐴′𝜉(𝑘𝑇) + 𝐵′𝑢(𝑘𝑇)

𝐴′ = 𝐼 + 𝐴𝑇
𝐵′ = 𝐵𝑇

 (5.37) 

 
c) Linear vehicle kinematic model 

The nonlinear vehicle dynamic model is: 

 {

𝑓1 = �̇� = 𝑉𝑐𝑜𝑠𝜑

𝑓2 = �̇� = 𝑉𝑠𝑖𝑛𝜑

𝑓3 = �̇� =
𝑉𝑡𝑎𝑛𝛿𝑓

𝑙

 (5.38) 

The state is:  

 𝜉 = [𝑋 𝑌 𝜑]𝑇 (5.39) 
The control quantity is:  

 𝑢 = 𝛿𝑓 (5.40) 
The state space matrices are: 

𝐴(𝑡) = 𝐽𝑓(𝜉) =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑋

𝜕𝑓1
𝜕𝑌

𝜕𝑓1
𝜕𝜑

𝜕𝑓2
𝜕𝑋

𝜕𝑓2
𝜕𝑌

𝜕𝑓2
𝜕𝜑

𝜕𝑓3
𝜕𝑋

𝜕𝑓3
𝜕𝑌

𝜕𝑓3
𝜕𝜑]
 
 
 
 
 
 

= [
0 0 −𝑉𝑟𝑠𝑖𝑛𝜑𝑟
0 0 𝑉𝑟𝑐𝑜𝑠𝜑𝑟
0 0 0

] 

𝐵(𝑡) = 𝐽𝑓(𝑢) =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝛿𝑓
𝜕𝑓2
𝜕𝛿𝑓
𝜕𝑓3
𝜕𝛿𝑓]

 
 
 
 
 
 

= [

0
0
𝑉𝑟

𝑙𝑐𝑜𝑠2(𝛿𝑓𝑟)

] 

The linear state space model is: 

 [
�̇� − �̇�𝑟
�̇� − �̇�𝑟
�̇� − �̇�𝑟

] = [
0 0 −𝑉𝑟𝑠𝑖𝑛𝜑𝑟
0 0 𝑉𝑟𝑐𝑜𝑠𝜑𝑟
0 0 0

] [
𝑋 − 𝑋𝑟
𝑌 − 𝑌𝑟
𝜑 − 𝜑𝑟

] + [

0
0
𝑉𝑟

𝑙𝑐𝑜𝑠2(𝛿𝑓𝑟)

] [𝛿𝑓 − 𝛿𝑓𝑟] (5.41) 

The discrete state space matrices are: 

 𝐴′ = 𝐼 + 𝑇𝐴 (5.42) 
 𝐵′ = 𝑇𝐵 (5.43) 
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The final discrete kinematic model is: 

 𝜉((𝑘 + 1)𝑇) = 𝐴′𝜉(𝑘𝑇) + 𝐵′𝑢(𝑘𝑇) (5.44) 

𝐴′ = [
1 0 −𝑇𝑉𝑟𝑠𝑖𝑛𝜑𝑟
0 1 𝑇𝑉𝑟𝑐𝑜𝑠𝜑𝑟
0 0 1

]    

𝐵′ = [

0
0
𝑉𝑟

𝑙𝑐𝑜𝑠2(𝛿𝑓𝑟)

] 

d) Linear vehicle dynamic model 
The nonlinear vehicle dynamic model is: 

 

{
 
 
 
 

 
 
 
 

�̇� = �̇�
�̇� = �̇�
�̇� = �̇�

�̈� =
2𝐶𝛼𝑟∗𝑏−2𝐶𝛼𝑓∗𝑎

𝐼𝑧�̇�
�̇� −

2𝐶𝛼𝑟∗𝑏
2+2𝐶𝛼𝑓∗𝑎

2

𝐼𝑧�̇�
�̇� +

2𝐶𝛼𝑓𝑎

𝐼𝑧
𝛿𝑓

�̈� = �̇��̇� +
2(𝐶𝑠𝑓𝑠𝑓+𝐶𝑠𝑟𝑠𝑟)+2𝐶𝛼𝑓𝛿𝑓

2

𝑚
− 2𝐶𝛼𝑓𝛿𝑓

�̇�

𝑚�̇�
− 2𝐶𝛼𝑓𝛿𝑓

𝑎�̇�

𝑚�̇�
= 𝑎𝑐𝑐

�̈� = −
2𝐶𝛼𝑟+2𝐶𝛼𝑓

𝑚�̇�
�̇� − (�̇� +

−2𝐶𝛼𝑟∗𝑏+2𝐶𝛼𝑓∗𝑎

𝑚�̇�
) �̇� +

2𝐶𝛼𝑓

𝑚
𝛿𝑓

 (5.45) 

The state is:  

 𝜉 = [𝑥 �̇� 𝑦 �̇� 𝜑 �̇�]𝑇 (5.46) 
The control quantity is:  

 𝑢 = [𝑎𝑐𝑐 𝛿𝑓]𝑇 (5.47) 
The state space matrices are: 

𝐴 =

[
 
 
 
 
 
 
 
 0 1 0
0 0 0
0 0 0

0
𝜕𝑓�̈�

𝜕�̇�
0

0 0 0

0
𝜕𝑓�̈�

𝜕�̇�
0

0 0 0
0 0 0
1 0 0

−
2𝐶𝛼𝑟 + 2𝐶𝛼𝑓

𝑚�̇�
0 −(�̇� +

−2𝐶𝛼𝑟𝑏 + 2𝐶𝛼𝑓𝑎

𝑚�̇�
)

0 0 1
2𝐶𝛼𝑟𝑏 − 2𝐶𝛼𝑓𝑎

𝐼𝑧�̇�
0 −

2𝐶𝛼𝑟𝑏
2 + 2𝐶𝛼𝑓𝑎

2

𝐼𝑧�̇� ]
 
 
 
 
 
 
 
 

 

𝐵 =

[
 
 
 
 
 
 
 
0 0
1 0
0 0

0
2𝐶𝛼𝑓

𝑚
0 0

0
2𝐶𝛼𝑓𝑎

𝐼𝑧 ]
 
 
 
 
 
 
 

 



Lateral Controller Design 

43 

 

If the model is only used for lateral control, the state space matrices be simplified 
into: 

𝐴 =

[
 
 
 
 
0 1

0 −
2𝐶𝛼𝑟+2𝐶𝛼𝑓

𝑚�̇�

0 0

0
2𝐶𝛼𝑟𝑏−2𝐶𝛼𝑓𝑎

𝐼𝑧�̇�

0 0

0 −(�̇� +
−2𝐶𝛼𝑟𝑏+2𝐶𝛼𝑓𝑎

𝑚�̇�
)

0 1

0 −
2𝐶𝛼𝑟𝑏

2+2𝐶𝛼𝑓𝑎
2

𝐼𝑧�̇� ]
 
 
 
 

         B =

[
 
 
 
 
0

2𝐶𝛼𝑓

𝑚

0
2𝐶𝛼𝑓𝑎

𝐼𝑧 ]
 
 
 
 

  

The final discrete dynamic model is: 

 [

�̇� − �̇�𝑟
�̈� − �̈�𝑟
�̇� − �̇�𝑟
�̈� − �̈�𝑟

] =

[
 
 
 
 
1 𝑇

0 1 − 2𝑇
𝐶𝛼𝑟+𝐶𝛼𝑓

𝑚�̇�

0 0

0 2𝑇
𝐶𝛼𝑟𝑏−𝐶𝛼𝑓𝑎

𝐼𝑧�̇�

0 0

0 −𝑇 (�̇� +
−2𝐶𝛼𝑟𝑏+2𝐶𝛼𝑓𝑎

𝑚�̇�
)

1 𝑇

0 1 − 2𝑇
𝐶𝛼𝑟𝑏

2+𝐶𝛼𝑓𝑎
2

𝐼𝑧�̇� ]
 
 
 
 

[

𝑦 − 𝑦𝑟
�̇� − �̇�𝑟
𝜑 − 𝜑𝑟
�̇� − �̇�𝑟

] 

 +

[
 
 
 
 
0

2𝑇𝐶𝛼𝑓

𝑚

0
2𝑇𝐶𝛼𝑓𝑎

𝐼𝑧 ]
 
 
 
 

[𝛿𝑓 − 𝛿𝑓𝑟] (5.48) 

 
5.2.4 Dynamic Model in terms of error variables 

The vehicle dynamics model obtained above is based on the vehicle coordinate 
frame, but for trajectory tracking, it is better to establish the dynamics model in terms 
of error with respect to road or reference trajectory[29]. 

 𝑎𝑦𝑑𝑒𝑠 =
�̇�2

𝑅
= �̇��̇�𝑑𝑒𝑠 (5.49) 

 �̈�1 = 𝑎𝑦 − 𝑎𝑦𝑑𝑒𝑠 = �̈� + �̇�(�̇� − �̇�𝑑𝑒𝑠) (5.50) 
Where:  

𝑒1: the distance of the center of gravity of the vehicle from the center line of the 
lane, so the �̈�1 means the error between the desired and actual lateral acceleration. 

𝑎𝑦𝑑𝑒𝑠: the desired lateral acceleration. 

So that the error between the desired and actual lateral velocity is: 

 �̇�1 = �̇� + �̇�(𝜑 − 𝜑𝑑𝑒𝑠)  (5.51) 
The error between the desired and actual lateral heading angle is: 

 𝑒2 = 𝜑 − 𝜑𝑑𝑒𝑠 (5.52) 
Therefore: 

 {
�̇� = �̇�1 − �̇�𝑒2
�̇� = �̇�2 + �̇�𝑑𝑒𝑠

 (5.53) 

Substituting Equation (5.53) into Equation (5.45), we get: 
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[

𝑒1̇
𝑒1̈
𝑒2̇
𝑒2̈

] =

[
 
 
 
 
0 1

0 −2
𝐶𝛼𝑟+𝐶𝛼𝑓

𝑚�̇�

0 0

0 2
𝐶𝛼𝑟∗𝑏−𝐶𝛼𝑓∗𝑎

𝐼𝑧�̇�

0 0

2
𝐶𝛼𝑟+𝐶𝛼𝑓

𝑚
2
𝐶𝛼𝑟∗𝑏−𝐶𝛼𝑓∗𝑎

𝑚�̇�

0 1

2
𝐶𝛼𝑓∗𝑎−𝐶𝛼𝑟∗𝑏

𝐼𝑧
−2

𝐶𝛼𝑟∗𝑏
2+𝐶𝛼𝑓∗𝑎

2

𝐼𝑧�̇� ]
 
 
 
 

[

𝑒1
𝑒1̇
𝑒2
𝑒2̇

] +

[
 
 
 
 
0

2𝐶𝛼𝑓

𝑚

0
2𝐶𝛼𝑓𝑎

𝐼𝑧 ]
 
 
 
 

𝛿𝑓 

 +

[
 
 
 
 

0

2
𝐶𝛼𝑟𝑏−𝐶𝛼𝑓𝑎

𝑚
− �̇�

0

−2
𝐶𝛼𝑟𝑏

2+𝐶𝛼𝑓𝑎
2

𝐼𝑧�̇� ]
 
 
 
 

�̇�𝑑𝑒𝑠 (5.54) 

5.3 Rear-Wheel Feedback Algorithm 

a) Principle 
Establish vehicle kinematic model in Frenet coordinate system: 

 

{
 

 
�̇� =

𝑣𝑐𝑜𝑠𝜑𝑒

1−𝜌(𝑠)𝑦𝑒

�̇�𝑒 = 𝑣𝑠𝑖𝑛𝜑𝑒

�̇�𝑒 =
𝑣𝑡𝑎𝑛𝛿𝑓

𝐿
−
𝑣𝜌(𝑠)𝑐𝑜𝑠𝜑𝑒

1−𝜌(𝑠)𝑦𝑒

 (5.55) 

Where 𝜌(𝑠) is the curvature of road on 𝑠. 

For the Rear-Wheel Feedback algorithm[36], in order to guarantee the stability of 
vehicle motion, the angular velocity is: 

 𝜔 =
𝑣𝜌(𝑠)cos𝜑𝑒 

1−𝜌(𝑠)𝑦𝑒
− (𝑘𝜑|𝑣|)𝜑𝑒 − (𝑘𝑒𝑣

sin(𝜑𝑒)

𝜑𝑒
)𝑦𝑒 (5.56) 

Where 𝑘𝜑 and 𝑘𝑒 are the gains for the heading error and lateral displacement 

error. 

Combined with Ackerman steering model Equation (5.2): 

 𝑡𝑎𝑛𝛿𝑓 =
𝐿

𝑅
=

𝜔𝐿

𝑣
 (5.57) 

b) Simulation Result 
Figure 5.23 and 5.25 is the result of path tracking and heading angle tracking of 

Rear-Wheel Feedback controller with velocity equal to 10m/s. The error of 
displacement and heading angle are plotted in Figure 5.24 and 5.26. 

The average lateral displacement error is 4.3668cm, the average heading error is 
0.2714deg which are worse sightly than the pure pursuit and Stanley controller, but still 
not bad. 
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Figure 5.23 Path Tracking of Rear-Wheel Feedback at V=10 m/s 

 
Figure 5.24 Lateral Displacement Error of Rear-Wheel Feedback at V=10 m/s 
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Figure 5.25 Heading Tracking of Rear-Wheel Feedback at V=10 m/s 

 

 
Figure 5.26 Heading Error of Rear-Wheel Feedback at V=10 m/s 

Figure 5.27 and 5.29 is the result of path tracking and heading angle tracking of 
Rear-Wheel Feedback controller with velocity equal to 15m/s.  

The error of displacement and heading angle are plotted in Figure 5.28 and 5.30. 
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The average lateral displacement error is 75.06cm, the average heading error is 
1.9662deg which is close to the result of Stanley controller, and better than the result 
of pure pursuit controller. 

 
Figure 5.27 Path Tracking of Rear-Wheel Feedback at V=15 m/s 

 

 
Figure 5.28 Lateral Displacement Error of Rear-Wheel Feedback at V=15 m/s 
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Figure 5.29 Heading Tracking of Rear-Wheel Feedback at V=15 m/s 

 

 
Figure 5.30 Heading Error of Rear-Wheel Feedback at V=15 m/s 
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5.4 LQR Control 

5.4.1 Introduction 

LQR is a linear quadratic regulator. Its control object is a linear system given in 
the form of state space in modern control theory, and the cost function is a quadratic 
function of state and control quantity[37].  

The LQR optimal design means that the designed state feedback controller 𝐾 
should make the quadratic cost function 𝐽 take the minimum value, and 𝐾 is uniquely 
determined by the weight matrix 𝑄 and 𝑅, so the choice of Q and R is particularly 
important.  

LQR theory is the earliest and most mature state space design method in modern 
control theory. Especially, LQR can obtain the optimal control law of state linear 
feedback, which is easy to form a closed-loop optimal control. 

5.4.2 LQR Formula Proof 

The cost function is: 

 𝐽 =
1

2
(∑ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢) + 𝑥𝑁

𝑇𝑄𝑜𝑥𝑁
𝑁−1
𝑡=0 )  (5.58) 

Where 𝑥 is the state error with respect to the reference state, 𝑢 is the feedback 
control quantity, 𝑥𝑁 is the final state error with respect to the reference state of the 
vehicle. 

𝑉𝜏𝑇𝑜𝑁(𝑧) is defined as the minimum cost from state 𝑧 at 𝑡 = 𝜏 to the final state: 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = min
𝑢𝜏…𝑢𝑁−1

∑ (𝑥𝑡
𝑇𝑄𝑥𝑡 + 𝑢𝑡

𝑇𝑅𝑢𝑡) +
𝑁−1
𝑡=𝜏 𝑥𝑁

𝑇𝑄0𝑥𝑁 (5.59) 

When 𝜏 = 𝑁, 𝑥𝑁 = 𝑧, so: 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = 𝑥𝑁
𝑇𝑄0𝑥𝑁 (5.60) 

When 𝜏 = 𝑁 − 1, 𝑥𝑁−1 = 𝑧, 𝑢𝑁−1 = 𝜔: 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = min
𝜔
(𝑥𝑁−1

𝑇 𝑄𝑥𝑁−1 + 𝑢𝑁−1
𝑇 𝑅𝑢𝑁−1) + 𝑥𝑁

𝑇𝑄0𝑥𝑁 (5.61) 

When 𝜏 = 𝑁 − 2, 𝑥𝑁−2 = 𝑧, 𝑢𝑁−2 = 𝜔: 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = min
𝜔
(𝑥𝑁−1

𝑇 𝑄𝑥𝑁−1 + 𝑢𝑁−1
𝑇 𝑅𝑢𝑁−1 + 𝑥𝑁−2

𝑇 𝑄𝑥𝑁−2 + 𝑢𝑁−2
𝑇 𝑅𝑢𝑁−2) +

𝑥𝑁
𝑇𝑄0𝑥𝑁  (5.62) 

Therefore, the relation between the adjacent 𝑉𝜏𝑇𝑜𝑁(𝑧) is: 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = min
𝜔
(𝑧𝑡
𝑇𝑄𝑧𝑡 + 𝜔

𝑇𝑅𝜔 + 𝑉𝜏+1𝑇𝑜𝑁(𝐴𝑧𝑡 + 𝐵𝜔)) (5.63) 

If the overall cost is minimum, the cost of every step must be minimum too. So, 
the problem has been transformed into a dynamic programming problem. 
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We suppose there is a matrix 𝑃, which satisfies: 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = 𝑧𝑡
𝑇𝑃𝑡𝑧𝑡 (5.64) 

So that:  

𝑉𝜏𝑇𝑜𝑁(𝑧) = min
𝜔
(𝑧𝑡

𝑇𝑄𝑧𝑡 + 𝜔
𝑇𝑅𝜔 + 𝑉𝜏+1𝑇𝑜𝑁(𝐴𝑧𝑡 + 𝐵𝜔)) 

= 𝑧𝑡
𝑇𝑄𝑧𝑡 +min

𝜔
(𝜔𝑇𝑅𝜔 + (𝐴𝑧𝑡 + 𝐵𝜔)

𝑇𝑃𝑡+1(𝐴𝑧𝑡 + 𝐵𝜔)) = 𝑧𝑡
𝑇𝑃𝑡𝑧𝑡 (5.65) 

The 𝜔 where the derivation = 0 is corresponding to the minimum cost. 

After derivation: 

 2𝜔𝑇𝑅 + 2(𝐴𝑧 + 𝐵𝜔)𝑇𝑃𝑡+1𝐵 = 0 (5.66) 
 𝜔∗ = −(𝑅 + 𝐵𝑇𝑃𝑡+1𝐵)

−1𝐵𝑇𝑃𝑡+1𝐴𝑧𝑡 (5.67) 
Substituting it into 𝑉𝜏𝑇𝑜𝑁(𝑧): 

 𝑉𝜏𝑇𝑜𝑁(𝑧) = 𝑧𝑡𝑇(𝑄 + 𝐴𝑇𝑃𝑡+1𝐴 − 𝐴𝑇𝑃𝑡+1𝐵(𝑅 + 𝐵𝑇𝑃𝑡+1𝐵)−1𝐵𝑇𝑃𝑡+1𝐴)𝑧𝑡 =
𝑧𝑡
𝑇𝑃𝑡𝑧𝑡  (5.68) 

Therefore:  

 𝑃𝑡 =  𝑄 + 𝐴𝑇𝑃𝑡+1𝐴 − 𝐴
𝑇𝑃𝑡+1𝐵(𝑅 + 𝐵

𝑇𝑃𝑡+1𝐵)
−1𝐵𝑇𝑃𝑡+1𝐴 (5.69) 

Solve step:  

⚫ Let 𝑃 = 𝑄. 

⚫ Iterating forward through Equation (5.69) to get 𝑃𝑡  until the difference 
between adjacent 𝑃𝑡 is lower than threshold, the steady state 𝑃𝑡 is the final 
𝑃.  

⚫ 𝐾 = −(𝑅 + 𝐵𝑇𝑃𝐵)−1𝐵𝑇𝑃𝐴.  

⚫ Feedback control quantity 𝑢 = −𝐾 ∗ 𝑥. 

5.4.3 Control Block  

 
Figure 5.31 LQR Control Block 

Figure 5.31 shows the control block of control module using LQR controller which 
includes the feedforward and feedback parts. 

Feedback control quantity:   
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 𝑢𝑓𝑏 = −𝐾 ∗ 𝑥 (5.70) 
Feedforward control quantity[38]: 

 𝑢𝑓𝑓 = arctan (𝜅𝐿)  (5.71) 
where 𝜅 is the curvature of preview point in reference path.  

The final control input for the vehicle is:  

 𝑢 = 𝑢𝑓𝑏 + 𝑢𝑓𝑓 (5.72) 
5.4.4 Simulation Result 

 
Figure 5.32 Path Tracking of LQR at V=10 m/s 

 
Figure 5.33 Lateral Displacement Error of LQR at V=10 m/s 
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Figure 5.32 and 5.34 is the result of path tracking and heading angle tracking of 
LQR controller with velocity equal to 10m/s. The error of displacement and heading 
angle are plotted in Figure 5.33 and 5.35. 

The average lateral displacement error is 2.9387cm, the average heading error is 
0.3429deg which are close to the result of Stanley controller and better than pure pursuit 
and rear wheel feedback controller. 

 
Figure 5.34 Heading Tracking of LQR at V=10 m/s 
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Figure 5.35 Heading Error of LQR at V=10 m/s 

Figure 5.36 and 5.38 is the result of path tracking and heading angle tracking of 
LQR controller with velocity equal to 15m/s.  

The error of displacement and heading angle are plotted in Figure 5.37 and 5.39. 

 
Figure 5.36 Path Tracking of LQR at V=15 m/s 

 

 
Figure 5.37 Lateral Displacement Error of LQR at V=15 m/s 
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The average lateral displacement error is 70.1713cm, the average heading error is 
1.4851deg which is best one compared to the pure pursuit, Stanley and rear wheel 
feedback controllers. 

 
Figure 5.38 Heading Tracking of LQR at V=15 m/s 

 

 
Figure 5.39 Heading Error of LQR at V=15 m/s 
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5.5 MPC  

5.5.1 Introduction  

Autonomous driving vehicle faces a dynamically changing complex environment 
and must meet safety and actuator constraints. The model predictive control algorithm 
has the ability to systematically consider predictive information and deal with multi-
constraints optimization problems.   

Linear time-varying model predictive control (MPC)[39] uses a linear time-varying 
model as the predictive model. Its biggest advantage is that the calculation is relatively 
simple and the real-time performance is good which is crucial for the motion control of 
autonomous vehicles.  

5.5.2 Principle  

The basic principle of model predictive control is shown in Figure 5.40.  

During the control process, there is a reference trajectory, as shown in the figure. 
Taking 𝑘  as the current timestamp, the controller combines the current control 
quantity and predictive model to predict the output state of the vehicle in the future time 
domain [𝑘, 𝑘 + 𝑁𝑝] which is also called the prediction horizon.   

By solving the optimization problem that satisfies the cost function and constraints, 
a control quantity sequences in the control time domain [𝑘, 𝑘 + 𝑁𝑐]  are obtained, as 
shown by the green rectangular wave in the figure. Then the first element of the control 
quantity sequences is applied to the controlled object as the actual control quantity.   

When it comes to the next moment 𝑘 + 1, repeat the above steps, so rolling to 
complete the optimization problems with constraints, in order to achieve continuous 
control of the controlled object.  

 
Figure 5.40 MPC Principle 

5.5.3 Increment Model  

Linear state space model is necessary for linear model predictive control.  
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There is a discrete linear vehicle model:  

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)  (5.73) 
In this case, the control quantity 𝑢(𝑘) is the feedback control quantity, and all the 

constraints are all about it.  

If 𝑢(𝑘) is control increment, by applying constraints on it, the change rate of the 
control quantity can be limited to achieve smoother and stable tracking.  

Let:  

 𝜉(𝑘|𝑡) = [
𝑥(𝑘|𝑡)

𝑢(𝑘 − 1|𝑡)
] (5.74) 

 ∆𝑢(𝑘|𝑡) = 𝑢(𝑘|𝑡) − 𝑢(𝑘 − 1|𝑡) (5.75) 
So that: 

 𝜉(𝑘 + 1|𝑡) = 𝐴𝑡
′𝜉(𝑘|𝑡) + 𝐵𝑡

′∆𝑢(𝑘|𝑡) (5.76) 
 𝜂(𝑘|𝑡) = 𝐶𝑡

′𝜉(𝑘|𝑡) (5.77) 
Where: 

𝐴𝑡
′ = [

𝐴𝑡 𝐵𝑡
0𝑚x𝑛 𝐼𝑚

] 

𝐵𝑡
′ = [

𝐵𝑡
𝐼𝑚
] 

𝐶𝑡
′ = [𝐶𝑡 0] 

5.5.4 Predictive Model  

Predictive model is the basis of model predictive control. Its main function is to 
predict the future output of the system based on the historical information and future 
input of the object.  

 𝜉(𝑘 + 1) = 𝐴𝜉(𝑘) + 𝐵𝑢(𝑘)  (5.78) 
The state of next sampling time is:  

 𝜉(𝑘 + 2) = 𝐴𝜉(𝑘 + 1) + 𝐵𝑢(𝑘 + 1)  (5.79) 

 𝜉(𝑘 + 2) = 𝐴(𝐴𝜉(𝑘) + 𝐵𝑢(𝑘)) + 𝐵𝑢(𝑘 + 1)  (5.80) 

So that as long as the initial state and all control sequences are known, the future 
state of the vehicle can be predicted, and the prediction model can be obtained.  

Let the prediction horizon is 𝑁𝑝 and control horizon is 𝑁𝑐, so that the future state 
of vehicle can be calculated as:  

𝜉(𝑡 + 𝑁𝑝|𝑡) = 𝐴𝑡
′𝑁𝑝𝜉(𝑡|𝑡) + 𝐴𝑡

′𝑁𝑝−1𝐵𝑡
′∆𝑢(𝑡|𝑡) + ⋯+ 𝐴𝑡

′𝑁𝑝−𝑁𝑐−1𝐵𝑡
′∆𝑢(𝑡 + 𝑁𝑐|𝑡)

  (5.81) 

𝜂(𝑡 + 𝑁𝑝|𝑡) = 𝐶𝑡
′(𝐴𝑡

′𝑁𝑝𝜉(𝑡|𝑡) + 𝐴𝑡
′𝑁𝑝−1𝐵𝑡

′∆𝑢(𝑡|𝑡) + ⋯+ 𝐴𝑡
′𝑁𝑝−𝑁𝑐−1𝐵𝑡

′∆𝑢(𝑡 + 𝑁𝑐|𝑡)) 
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  (5.82) 
The predictive model can be represented in the form of matrix:  

 𝑌(𝑡) = 𝛹𝑡𝜉(𝑘|𝑡) + 𝛩∆𝑈(𝑡) (5.83) 
Where: 

𝑌(𝑡) =

[
 
 
 
 
 
𝜂′(𝑘 + 1|𝑡)

𝜂′(𝑘 + 2|𝑡)
⋯

𝜂′(𝑘 + 𝑁𝑐|𝑡)
⋯

𝜂′(𝑘 + 𝑁𝑝|𝑡)]
 
 
 
 
 

    𝛹𝑡 =

[
 
 
 
 
 
 
𝐶𝑡
′𝐴𝑡
′

𝐶𝑡
′𝐴𝑡
′2

⋯

𝐶𝑡
′𝐴𝑡
′𝑁𝑐

⋯

𝐶𝑡
′𝐴𝑡
′𝑁𝑝
]
 
 
 
 
 
 

     

𝛩 =

[
 
 
 
 
 
 
 

𝐶𝑡
′𝐵𝑡

′ 0

𝐶𝑡
′𝐴𝑡
′𝐵𝑡

′ 𝐶𝑡
′𝐵𝑡

′

⋯ ⋯

𝐶𝑡
′𝐴𝑡
′𝑁𝑐−1𝐵𝑡

′ 𝐶𝑡
′𝐴𝑡
′𝑁𝑐−2𝐵𝑡

′

𝐶𝑡
′𝐴𝑡
′𝑁𝑐𝐵𝑡

′ 𝐶𝑡
′𝐴𝑡
′𝑁𝑐−1𝐵𝑡

′

⋮ ⋮

𝐶𝑡
′𝐴𝑡
′𝑁𝑃−1𝐵𝑡

′ 𝐶𝑡
′𝐴𝑡
′𝑁𝑃−2𝐵𝑡

′

0 0
0 0
⋱ ⋯
⋯ 𝐶𝑡

′𝐵𝑡
′

⋯ 𝐶𝑡
′𝐴𝑡
′𝐵𝑡

′

⋱ ⋮

⋯ 𝐶𝑡
′𝐴𝑡
′𝑁𝑃−𝑁𝑐𝐵𝑡

′
]
 
 
 
 
 
 
 

    ∆𝑈(𝑡) = [

∆𝑢(𝑘|𝑡)
∆𝑢(𝑘 + 1|𝑡)

⋯
∆𝑢(𝑘 + 𝑁𝑐|𝑡)

] 

 
5.5.5 Cost Function Design   

Actually, the control sequence ∆𝑈(𝑡) is unknown. Only by setting reasonable 
optimization goals and solving them, can the control sequence be obtained.  

The purpose of designing the cost function is to obtain the control quantity acting 
on the autonomous vehicle at the moment when the value of cost function is minimum 
which is also the optimization goal. 

First, in order to guarantee the path tracking accuracy and stability of the driverless 
vehicle in the lateral control process, the difference between the predicted value and the 
measured value of the output must be considered. 

Secondly, in order to ensure that the smooth change of the steering angle of front 
wheel which ensure the stable driving of the automated vehicle, an item related to the 
control increment has to be took into account. 

Therefore, the cost function is:  

 𝐽 = ∑ ‖𝑦′(𝑘 + 𝑖) − 𝑦𝑟
′(𝑘 + 𝑖)‖𝑄

2 +
𝑁𝑝
𝑖=0

∑ ‖∆𝑢(𝑘 + 𝑖)‖𝑅
2𝑁𝑐

𝑖=0  (5.84) 

The first term means the ability of algorithm to track reference trajectory in 
prediction horizon. The second term means the requirement of smooth control. The 
entire expression is used to evaluate the performance of MPC algorithm to track desired 
trajectory fast and stably.   
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However, the state space matrices are time-varying, the feasible solution cannot be 
obtained for the optimization goal sometimes. Therefore, it is necessary to add a 
relaxation factor into the cost function:  

 𝐽 = ∑ ‖𝑦′(𝑘 + 𝑖) − 𝑦𝑟
′(𝑘 + 𝑖)‖𝑄

2 +
𝑁𝑝
𝑖=0

∑ ‖∆𝑢(𝑘 + 𝑖)‖𝑅
2𝑁𝑐

𝑖=0 + 𝜌𝜀2 (5.85) 

where 𝜌 is the weight, and 𝜀 is a relaxation factor.  

5.5.6 Constraints  

In the actual control system, it is often necessary to meet some constraints of the 
system state quantity and the control quantity, shown following:  

Constraints for increment of control quantity:  

 ∆𝑢min(𝑡 + 𝑘) ≤ ∆𝑢(𝑡 + 𝑘) ≤ ∆𝑢max(𝑡 + 𝑘)    𝑘 = 0,1, …𝑁𝑐 − 1 (5.86) 
Constraints for control quantity:  

 𝑢min(𝑡 + 𝑘) ≤ 𝑢(𝑡 + 𝑘) ≤ 𝑢max(𝑡 + 𝑘)    𝑘 = 0,1, …𝑁𝑐 − 1 (5.87) 
Since in the vehicle model applied, the control quantity is the increment of steering 

angle with respect to the amount at last timestamp, so in the quadratic programming 
solver, it is necessary to transform the constraints for the steering angle, the Equation 
(5.87) into the form of the increment of steering angle. 

There is the relationship between them: 

{

𝑢(𝑘|𝑘) = ∆𝑢(𝑘|𝑘) + 𝑢(𝑘 − 1|𝑘)

𝑢(𝑘 + 1|𝑘) = ∆𝑢(𝑘 + 1|𝑘) + ∆𝑢(𝑘|𝑘) + 𝑢(𝑘 − 1|𝑘)
⋮

𝑢(𝑘 + 𝑁𝑐 − 1|𝑘) = ∆𝑢(𝑘 + 𝑁𝑐 − 1|𝑘) + ⋯∆𝑢(𝑘 + 1|𝑘) + ∆𝑢(𝑘|𝑘) + 𝑢(𝑘 − 1|𝑘)

 

which can be represented in the form of matrix: 

 𝑈(𝑘) = 𝐺∆𝑈(𝑘) + �̃� (5.88) 

 [

𝑢(𝑘|𝑘)

𝑢(𝑘 + 1|𝑘)
⋮

𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

] = [

1 0
⋮ ⋱

⋯ 0
⋱ ⋮

⋮ ⋱
1 ⋯

⋱ 0
⋯ 1

] [

∆𝑢(𝑘|𝑘)

∆𝑢(𝑘 + 1|𝑘)
⋮

∆𝑢(𝑘 + 𝑁𝑐 − 1|𝑘)

] + [

𝑢(𝑘 − 1|𝑘)

𝑢(𝑘 − 1|𝑘)
⋮

𝑢(𝑘 − 1|𝑘)

] 

So, the constraints for control quantity, Equation (5.87) is updated: 

 𝑈𝑚𝑖𝑛(𝑘) < 𝐺∆𝑈(𝑘) + �̃� < 𝑈𝑚𝑎𝑥(𝑘) (5.89) 
Constraints for output:   

 𝑦min(𝑡 + 𝑘) ≤ 𝑦(𝑡 + 𝑘) ≤ 𝑦max(𝑡 + 𝑘)    𝑘 = 0,1, …𝑁𝑐 − 1 (5.90) 
Combined with Equation (5.83) and (5.85): 

𝑌𝑚𝑖𝑛(𝑘) − 𝜀 < 𝛹𝑡𝜉(𝑘|𝑡) + 𝛩∆𝑈(𝑡) < 𝑌𝑚𝑎𝑥(𝑘) + 𝜀 
 𝐴∗(𝑘)∆𝑢(𝑘) < 𝑏∗(𝑘)  (5.91) 
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𝐴∗(𝑘) = [

𝐺 0
−𝐺 0
𝛩 0
−𝛩 0

] 

𝑏∗(𝑘) =

[
 
 
 
 

𝑈𝑚𝑎𝑥(𝑘) − �̃�

−𝑈𝑚𝑖𝑛(𝑘) + �̃�

𝑌𝑚𝑎𝑥(𝑘) + 𝜀 − 𝛹𝑡𝜉(𝑘|𝑡)

−𝑌𝑚𝑖𝑛(𝑘) + 𝜀 + 𝛹𝑡𝜉(𝑘|𝑡)]
 
 
 
 

 

5.5.7 Quadratic programming   

The cost function shown as Equation (5.85) can be converted into a quadratic 
programming problem in terms of the control sequence ∆𝑈(𝑡) through proper 
processing.  

𝐽 = (𝛹𝑡𝜉 + 𝛩∆𝑈 − 𝑌𝑟𝑒𝑓)
𝑇
𝑄(𝛹𝑡𝜉 + 𝛩∆𝑈 − 𝑌𝑟𝑒𝑓) + ∆𝑈

𝑇𝑅∆𝑈 + 𝜌𝜀2 

𝐸 = 𝛹𝑡𝜉 − 𝑌𝑟𝑒𝑓 

𝑌𝑟𝑒𝑓(𝑡) =

[
 
 
 
 
 
 
𝜂𝑟𝑒𝑓
′ (𝑘 + 1|𝑡)

𝜂𝑟𝑒𝑓
′ (𝑘 + 2|𝑡)

⋯
𝜂𝑟𝑒𝑓
′ (𝑘 + 𝑁𝑐|𝑡)

⋯
𝜂𝑟𝑒𝑓
′ (𝑘 + 𝑁𝑝|𝑡)]

 
 
 
 
 
 

 

So that: 

𝐽 = (𝐸 + 𝛩∆𝑈)𝑇𝑄(𝐸 + 𝛩∆𝑈) + ∆𝑈𝑇𝑅∆𝑈 + 𝜌𝜀2

= 𝐸𝑇𝑄𝐸 + (𝛩∆𝑈)𝑇𝑄(𝛩∆𝑈) + 2𝐸𝑇𝑄(𝛩∆𝑈) + (∆𝑈)𝑇𝑅∆𝑈 + 𝜌𝜀2

= (∆𝑈)𝑇(𝛩𝑇𝑄𝛩 + 𝑅)∆𝑈 + (2𝐸𝑇𝑄𝛩)∆𝑈 + 𝐸𝑇𝑄𝐸 + 𝜌𝜀2 
Therefore, the optimization goal can be transformed into:  

 min
∆𝑈(𝑡)

[∆𝑈(𝑡)𝑇 , 𝜀]𝑇𝐻[∆𝑈(𝑡)𝑇 , 𝜀] + 𝐺[∆𝑈(𝑡)𝑇 , 𝜀] (5.92) 

𝐻 = [
𝛩𝑇𝑄𝛩 + 𝑅 0

0 𝜌
] 

G = [2𝐸𝑇𝑄𝛩 0] 
∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈(𝑘) ≤ ∆𝑈𝑚𝑎𝑥,   𝑘 = 𝑡, … 𝑡 + 𝑁𝑐 − 1 

𝑈𝑚𝑖𝑛(𝑘) < 𝐺∆𝑈(𝑘) + �̃� < 𝑈𝑚𝑎𝑥(𝑘) 
𝐴∗(𝑘)∆𝑈(𝑘) < 𝑏∗(𝑘) 

The result of the quadratic programming problem is the control sequence:  

∆𝑈𝑡
∗ = [∆𝑢𝑡

∗ ∆𝑢𝑡+1
∗ … ∆𝑢𝑡+𝑁𝑐−1

∗ ] 
Taking the first element as the feedback control increment, and the feedback 

control quantity is:  

 𝑢𝑓𝑏 = 𝑢(𝑘 − 1) + ∆𝑢𝑡
∗ (5.93) 
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Feedforward control quantity[40]:   

 𝑢𝑓𝑓 = arctan (𝜅𝐿)  (5.94) 
The final control input for the vehicle is:  

 𝑢 = 𝑢𝑓𝑏 + 𝑢𝑓𝑓 (5.95) 
5.5.8 Simulation Result 

 
Figure 5.41 Path Tracking of MPC at V=10 m/s 

 
Figure 5.42 Lateral Displacement Error of MPC at V=10 m/s 
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Figure 5.41 and 5.43 is the result of path tracking and heading angle tracking of 
MPC controller with velocity equal to 10m/s. The error of displacement and heading 
angle are plotted in Figure 5.42 and 5.44. 

The average lateral displacement error is 1.4899cm, the average heading error is 
0.186deg which are the smallest.  

 
Figure 5.43 Heading Tracking of MPC at V=10 m/s 

 

 
Figure 5.44 Heading Error of MPC at V=10 m/s 
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Figure 5.45 and 5.47 is the result of path tracking and heading angle tracking of 
MPC controller with velocity equal to 15m/s.  

The error of displacement and heading angle are plotted in Figure 5.46 and 5.48. 

The average lateral displacement error is 56.835cm, the average heading error is 
1.3639deg which are also the best among all the controllers. 

 
Figure 5.45 Path Tracking of MPC at V=15 m/s 
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Figure 5.46 Lateral Displacement Error of MPC at V=15 m/s 

 
Figure 5.47 Heading Tracking of MPC at V=15 m/s 

 

 
Figure 5.48 Heading Error of MPC at V=15 m/s 
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5.6 Simulation Result Comparison   

Since the velocity limitation in mining area is 30km/h = 8.33m/s, so the velocity of 
test trajectory is 10m/s. In order to figure out the potential of control algorithms, the 
trajectory with V=15m/s is also tested. 

The following figures show the comparison of the performance of various control 
methods at different velocity. 

The table of error data are shown in Figure 5.49. 

 
Figure 5.49 Error Data Comparison of Different Controller 

Figure 5.50 shows the comparison of reference and actual path with velocity equal 
to 10m/s. 

In the case of V=10m/s, all the controllers can track reference path well. 

 

Figure 5.50 Path Tracking Comparison at V=10m/s 

Figure 5.51 and 5.52 show the detailed error data. 
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Figure 5.51 Lateral Displacement Error Comparison at V=10m/s 

 

Figure 5.52 Heading Error Comparison at V=10m/s 

As shown in the comparison plots of lateral displacement error and heading error, 
the largest error occurs at the bend where R is equal to 20m. 

The maximum average lateral displacement error is 4.367cm (Rear-Wheel 
Feedback), and the maximum average heading angle error is 0.343 degree (LQR). 
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The MPC Controller has the best performance. The average trajectory tracking 
error is about 1.49cm, the maximum error is 15.36cm, the average heading error is 
0.186 degree, and the maximum error is only 3.626 degree.  

The overall performance of the Stanley Controller is also very good, with an 
average tracking error of 2.59cm and a maximum deviation of 10.96cm. This is because 
the vehicle model used has a front wheel steering mechanism, and Stanley just uses the 
front wheel axle center and the target point for error analysis, which leads to faster 
response.  

The tracking error of the LQR Controller is also really small, but every time the 
road curvature changes, a large error will occur, which decreases overall performance. 

Although the overall data of the Rear-Wheel Feedback Controller and the Pure 
Pursuit Controller are relatively poor, the main error appears in the bend with the radius 
of 20m, and the error in other places is very small. It also reflects that the tracking 
ability of these two controllers are relatively weak in the case of large lateral 
acceleration. 

 

Figure 5.53 Path Tracking Comparison at V=15m/s 

Figure 5.53 illustrates the comparison of reference and actual path with velocity 
equal to 15m/s. 

All control algorithms are unable to track the curve with the radius of 20m precisely. 

MPC and LQR controllers can response faster than other controllers. 

The error of lateral displacement and heading angle are also plotted in Figure 5.54 
and 5.55. 



Lateral Controller Design 

67 

 

 

Figure 5.54 Lateral Displacement Error Comparison at V=15m/s 

 

Figure 5.55 Heading Error Comparison at V=15m/s 

MPC Controller is still the best one among them, which can quickly return to the 
reference trajectory smoothly. The average trajectory tracking error is 56.836cm, and 
the average heading angle error is 1.364 degree. 

LQR Controller also has good result in this test, the average trajectory tracking 
error is 70.171cm, and the average heading angle error is 1.485 degree. 
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The tracking error of Stanley Controller, the Rear-Wheel Feedback Controller are 
higher sightly than LQR.  

The Pure Pursuit Controller has the worst effect in this test. 
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6. Conclusions and Future Work 

6.1 Conclusions 

About longitudinal controller design, the dual closed-loop PID control of speed and 
acceleration can track the reference trajectory well under the velocity equals to 10m/s 
and 15m/s. 

In the lateral controller part, the MPC Controller has the best ability to track the 
planned trajectory in two different velocity conditions. The performance of LQR 
Controller is reduced sightly with the increasing velocity. 

Stanley Controller, Rear-Wheel Feedback Controller and the Pure Pursuit 
Controller are more suitable for the lateral control in low velocity. 

6.2 Future Work 

In summary, most of the current motion control researches is conducted in 
relatively simple conditions, and therefore rarely consider the nonlinear characteristics 
of tires, the coupling characteristics of the vehicle under large lateral acceleration, and 
the influence of tire force constraints. In addition, there are time-varying uncertainties 
in the road gradient, vehicle quality, tire-road adhesion coefficient and other parameters 
in the vehicle longitudinal dynamic model, which is an important challenge for the 
longitudinal motion control design. 

Based on this, further research on longitudinal motion control can be carried out 
around the following two aspects. 

On the one hand, consider the mechanism of the vehicle's nonlinear factors and 
coupling characteristics on the longitudinal control under extreme conditions, and 
establish a longitudinal and lateral tire force coordination mechanism to ensure the 
stability of the vehicle when controlling the longitudinal movement. 

On the other hand, in automated vehicles, multi-source sensor information fusion 
technology is used to estimate the parameters of the environment, and a closed-loop 
system composed of sensors and controllers is constructed, which makes the motion 
control system running in a complex dynamic environment has better adaptive 
capability and control accuracy. 

As for lateral control, for conventional working conditions with small lateral 
acceleration, simple geometric/kinematic models or linear dynamics models can 
usually meet the requirements. In extreme conditions like large lateral acceleration, the 
inaccuracy of the model may lead to deterioration of tracking performance. Therefore, 
it is necessary to consider factors such as tire nonlinearity, slip, roll/pitch motion, and 
actuator dynamic characteristics to establish high fidelity nonlinear dynamics model. 
However, the increase in the complexity of the model will inevitably bring about the 
increase in the difficulty of designing the control law and the increase in the amount of 
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calculation. How to construct a mathematical model with high fidelity for extreme 
conditions and easy to control realization needs further research.  

Beside there is no sufficient consideration about the complex working conditions 
such as discontinuous curvature and sudden changes in the road surface. The 
applicability and robustness still lack sufficient verification. 
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