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Chapter 1

Introduction

The growing complexity of business systems, combined with the huge amount

of available data, has made it necessary to adopt a modelling and optimizing

approach in order to solve high dimensional problems and automate decisions.

The function to be optimized could be a measure of expended time, costs, profits,

quality, but, in many cases, we may not know its analytical formulation and its

evaluation could be expensive in terms of time and/or costs.

Bayesian Optimization(BO) is the main optimization strategy used to solve this

class of problems characterized by an expensive black-box function. Besides, it has

been shown to outperform other state of the art global optimization algorithms

on a number of challenging benchmark functions [20]. It has been used in a wide

range of different problems (e.g adaptively choosing the sequence of molecular

compounds to test in drug discovery [17], tuning model hyperparameters in

Deep Neural Networks, optimizing a robot’s gait by the regulation of its control

parameters [16]).

With the wide spread of Machine Learning and discrete events simulations during

the last decade, researchers’ interest in this field, firstly developed by Kushner,

Mockus and Zilinskas in the 1970s, has increased.

Frazier [8], Shahriari [19] and Rasmussen & Williams’ [18] works are taken in

our dissertation as main literature references.

Bayesian Optimization algorithm is based on two main components, a Gaussian

Process, used as surrogate model for the objective function, and an acquisition

function that guides the decision about the next point to be evaluated.

The major constraint of this strategy is that the problem variables are typically

supposed to be continuous.
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1 – Introduction

Common approaches to overcome this limit are focused on the manipulation of

BO main components. Bergstra [4], Garrido-Merchan and Hernandez-Lobato [9]

base their studies on the surrogate model structure, whereas Luong [15] focuses

on a proper acquisition function choice. On the other hand, Baptista [3], whose

work is found on combinatorial structures, introduces a new approach which

merges BO with Simulated Annealing strategy.

In this work we propose two alternative approaches, the LSBO (Local Search

Bayesian Optimization) and the GBO (Genetic Bayesian Optimization) methods,

both of which stand out for the introduction of Metaheuristics strategies in the

manipulation of search space exploration of standard Bayesian Optimization.

The LSBO introduces the Local Search approach in the generation of the

neighbourhood of the current solution and so in the definition of the subset of

points on which the acquisition function is evaluated to detect the next candidate

solution. The GBO uses, instead, a Genetic Algorithm approach to guarantee

a wide and efficient space exploration. We don’t focus in this case only on the

current solution, but on a population of parents selected through a quasi-elitist

strategy. The neighbours, offspring of the selected population, are generated by

applying proper mutation and recombination operators on them. The aim of

this method, compared to the former, is not to lose the information provided by

the correlation among variables and thus exploit it in the reproduction phase.

The goodness of these proposed methods is supported by the results of the thesis

case study. The problem analysed is the upshot of a collaboration between the

Department of Mathematical Sciences of Politecnico di Torino and the TIM

group and concerns a coverage and capacity optimization problem designed on a

given high dimensional Mobile Network. The performance measures, related to

solution quality and computational time, highlight how both LSBO and GBO

methods outperform the traditional approach, chosen as a benchmark.

The dissertation is organized as follows. We start with a technical introduction

to the general optimization problem in Chapter 2. In Chapter 3 we recall the

theory behind Bayesian Optimization and we explain the main existing methods

to solve both continuous and discrete variables problems. Then, in Chapter 4

we summarize the main concepts concerning Metaheuristics theory and Genetic

Algorithm. Chapter 5 is the core of our thesis where the two proposed methods

are illustrated from a technical point of view and an application on Binary

Quadratic Programming is provided. In Chapter 6 we describe and fully analyse

the thesis case study. In the final Chapter 7 we summarize and comment the

results obtained and pave the way to future improvements.
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Chapter 2

The Problem

Optimization methods represent a powerful instrument widely used in science,

industry and economics applications where each process has a certain potential

to be optimized. An optimization problem is characterized by few main

components:

• the variables x = {xi, i = 1, . . . , d} of the problem. They are the input

parameters and represent the elements on which we take decisions. We high-

light that the complexity of the optimization problem grows exponentially

with the number of variables d.

• the set of feasible solutions X , also referred to as the set of configu-

rations or states. It represents all the possible values that the variable

of interest x can assume. It could be a continuous space X ⊂ Rd with d

number of problem variables, or a discrete subset of points.

• the objective function f : X −→ R. It represents the function that we

want to optimize (maximize/minimize). It assigns to each x ∈ X a real

number indicating its value, defining so a total order relation between any

pair of solutions in the configurations space. The objective function could

be for example a measure of expended time, costs, profits or quality. The

mathematical model will obviously be just an approximation of the real-life

problem, so use a model that well fits reality is essential to determine

interesting results.

An optimization problem is usually referred to as the couple (X , f). The main

goal when we solve an optimization problem is to find a global optimal solution

x∗ in the configuration space X .

3



2 – The Problem

Definition 2.0.1 (Global optimum). A solution x∗ ∈ X is a global op-

timum for f if f(x∗) is the best value among all possible solutions in the

configuration space X , that is, assuming a maximization problem,

f(x∗) ≥ f(x), ∀x ∈ X

Definition 2.0.2 (Local optimum). A solution x′ ∈ X is a local optimum

of f if there is a proper subset 1 N ⊂ X including x′ such that, supposing to

work with a maximization problem,

f(x′) ≥ f(x), ∀x ∈ N

but

f(x′) ≤ f(x∗)

with x∗ global optimum of the optimization problem.

The simplest way to solve an optimization problem is to use Exact Methods.

Despite that it is not always possible or appropriate to apply those methods

due to inner complexity of the problem or to a limited available time to provide

the solution. In many cases obtaining an accurate enough formulation of the

problem might be too difficult or expensive and so approximate algorithms are

adopted.

Many solutions have been proposed to face the problem of too large solution

space. Metaheuritics (described in chapter 4) are broadly adopted to reduce

the effective size of the space and to explore it efficiently without being stuck

prematurely in some local optima.

However, the objective function could be expensive to evaluate in terms of time

and/or costs and so the number of evaluations is severely limited, or furthermore

it could be a black-box function.

A function f : X −→ R is called a black-box function if it happens that:

• the domain X is known;

• it is possible to know the value of f in each point of X carrying on a

simulation;

• no other information is available for function f .

1The subset N is properly known as neighbourhood of x′. This will be widely explained
in section 4.2.1, both for continuous and discrete variables.
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2 – The Problem

In all these cases the Bayesian Optimization is broadly adopted. As we will

better see later in chapter 3, those methods are characterized by two main com-

ponents: a surrogate model (generally supposed to be a Gaussian Process), which

approximate the objective function of interest, and an acquisition function, built

from the surrogate model, used to decide the next point to evaluate. Most of the

BO methods assume the input variables x to be continuous as a consequence of

the continuous domain of the defined acquisition function. However, in real-world

application we often face problems described by discrete variables. When we

talk about discrete variables we consider x ∈ X with X discrete subset of points,

where the variable x could be both categorical or integer-valued.

This is a challenging problem because when BO samples the next point to evalu-

ate, it suggests a continuous point that however would be an invalid input for

function f . Furthermore we have exponentially many combinations of discrete

values with respect to the number of variables and so the search space becomes

soon too large and it is impractical to try all possible values.

In the following work we will focus on this main problem, analyse the existing

methods and propose two alternative solution approaches built by the combina-

tion of Bayesian Optimization and Metaheuristics strategies.
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Chapter 3

Background on Bayesian

Optimization

3.1 Continuous Bayesian Optimization

Standard Bayesian Optimization (BO) is an efficient machine-learning-based

optimization method used to find a global optimizer for the problem

max
x∈X

f(x) (3.1)

when f(x) is an expensive black-box function.

In Bayesian Optimization we usually consider the following underlying assump-

tions for the problem in (3.1) :

• The input vector x ∈ Rd, with typically d ≤ 20.

• The feasible set X is a simple set, typically a compact subset of Rd like a

hyper-rectangle {x ∈ Rd : ai ≤ xi ≤ bi, ai, bi ∈ R ∀i = 0, . . . , d− 1} or a

d-dimensional simplex.

• The objective function f : X = Rd −→ R is continuous but it has not

got a closed-form to compute derivative information nor a known special

structure like concavity or linearity.

• In addition f is expensive to evaluate. This means that only a little

number of evaluations may be performed due to amount of time needed or

monetary/opportunity cost.
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3 – Background on Bayesian Optimization

• The objective function f(x) could be considered with/without noise. In

case of noisy function we introduce a stochastic noise ε ∼ N (0, λ2). In this

case we would not consider f(xi) but the noisy value yi = f(xi) + ε.

Our goal is finding the global optimum in a minimum number of steps. To do this

BO incorporates prior belief about the objective function f and then updates

this prior with samples drawn from f to get a posterior that better approximates

it. The Bayesian model used for approximating the objective function is called

surrogate model. An acquisition function is used for deciding where to sample

next. This is a heuristic that directs sampling to areas where an improvement

over the current best observation is likely to trade off exploration and exploitation;

the optimum is located where the uncertainty in the surrogate model is large

(exploration) and/or where the model prediction is high (exploitation). The next

point to evaluate is selected maximizing the acquisition function.

The algorithm could be summarized as follows ([19]):

Algorithm 1: Bayesian Optimization

Initialize D1 as the set of all training evaluated pairs (x, y)

for n = 1,2, . . . do
xn+1 = argmaxxα(x;Dn)

Query objective function to obtain yn+1

Augment data Dn+1 = {Dn, (xn+1, yn+1)}
Update surrogate model

end

An example of the general procedure is illustrated in [Fig. 3.1].

3.1.1 Gaussian Process Regression

The Gaussian Process (GP) is the most widely adopted surrogate model.

Definition 3.1.1. A Gaussian Process is a collection of random variables, any

finite number of which have a joint Gaussian distribution.

In other words given a GP of the form f : X = Rd −→ R any finite set of k

points {xi ∈ Rd}ki=1 induces a multivariate Gaussian distribution on Rk. The

GP is a non-parametric model completely specified by the mean function µ0(x) :

X = Rd −→ R and the covariance function or kernel k(x, x′) : X × X −→ R
defined as follows:

µ0(x) = E
[
f(x)

]
k(x, x′) = E

[
(f(x)− µ0(x))(f(x′)− µ0(x′))

]
7



3 – Background on Bayesian Optimization

Figure 3.1: Example of the Bayesian Optimization procedure over three iterations.
Mean and confidence intervals are estimated through a probabilistic model of
the objective function. The next point to evaluate is chosen maximizing the
acquisition function. [19]

So we rewrite the Gaussian Process as:

f(x) ∼ GP(µ0(x), k(x, x′))

The prior mean function µ0 could potentially incorporate information from the

objective function, but in the general case it is assumed constant for convenience.

The covariance function (also denoted as kernel) k instead has to be chosen

properly to well fit the structure of the response function.

Prediction with noise-free observations

If we start our evaluation from a finite collection of points {xi ∈ Rd}ni=1 we

compute the mean vector evaluating the mean function µ0 at each xi and we

construct the covariance matrix by evaluating the kernel k at each pair xi, xj .

The resulting prior distribution is

f(x1:n) ∼ N (µ0(x1:n),K(x1:n, x1:n))

8



3 – Background on Bayesian Optimization

where f(x1:n) = [f(x1), . . . , f(xn)], µ0(x1:n) = [µ0(x1), . . . , µ0(xn)] and

K(x1:n, x1:n) = [k(x1, x1), . . . , k(x1, xn); . . . ; k(xn, x1), . . . , k(xn, xn)].

In our problem we are interested in incorporating the knowledge provided

by observed data in order to update the surrogate function to get a posterior

that better approximates the objective function f . Given that f is an expensive-

to-evaluate function we suppose we will not be able to compute its value at a

new point x and we want so to infer it.

We know that the joint distribution of the function f at x1:n and at the new

point x̃ according to the prior is:[
f(x1:n)

f(x̃)

]
∼ N

([
µ0(x1:n)

µ0(x̃)

]
,

[
K(x1:n, x1:n) K(x1:n, x̃)

K(x̃, x1:n) k(x̃, x̃)

])
(3.2)

Conditioning the joint Gaussian prior distribution on the given observations, we

compute the posterior of f(x̃) given f(x1:n):

f(x̃)|f(x1:n) ∼ N (µn(x̃), σ2
n(x̃)) (3.3)

with

µn(x̃) = K(x̃, x1:n)K(x1:n, x1:n)−1(f(x1:n)− µ0(x1:n)) + µ0(x̃)

σ2
n(x̃) = k(x̃, x̃)−K(x̃, x1:n)K(x1:n, x1:n)−1K(x1:n, x̃)

Prediction with noisy observations

We could generalize the previous explanation considering more realistic situations

characterized by noisy observations y = f(x)+ε. Assuming additive independent

and identically distributed Gaussian noise ε ∼ N (0, σ2
ε ), the prior covariance

function cov(·, ·) on the observations becomes:

cov(yi, yj) = k(xi, xj) + σ2
ε δij

where δij is the Kronecker delta. Or equivalently using vector notation

cov(y) = K(X,X) + σ2
ε I

where y represents the vector (y1, . . . , yn), X is the matrix x1:n where xi is a d

dimensional vector and I is the identity matrix.

In other words a diagonal matrix is added to the previous noise-free matrix.

9



3 – Background on Bayesian Optimization

The joint distribution computed in (3.2) takes the form:[
y

f(x̃)

]
∼ N

([
µ0(x1:n)

µ0(x̃)

]
,

[
K(x1:n, x1:n) + σ2

ε I K(x1:n, x̃)

K(x̃, x1:n) k(x̃, x̃)

])
(3.4)

Deriving from this one the conditional distribution as in (3.3) we have:

f(x̃)|y ∼ N
(
f(x̃), V ar(f(x̃))

)
(3.5)

with

f(x̃)
∆
= E

[
f(x̃)|y

]
= K(x̃, x1:n)(K(x1:n, x1:n) + σ2

ε I)−1(y − µ0(x1:n)) + µ0(x̃)

V ar(f(x̃)) = k(x̃, x̃)−K(x̃, x1:n)(K(x1:n, x1:n) + σ2
ε I)−1K(x1:n, x̃)

Suppose now prior means µ0 = 0. The previous expressions could be rewritten

as follows:

f(x̃) = K(x̃, x1:n)(K(x1:n, x1:n) + σ2
ε I)−1y (3.6)

V ar(f(x̃)) = k(x̃, x̃)−K(x̃, x1:n)(K(x1:n, x1:n) + σ2
ε I)−1K(x1:n, x̃) (3.7)

If we focus on the mean predictor in (3.6) we notice that it is a linear combination

of observations y. Another way to see this equation is as a linear combination of

n kernel functions, each one centred on an already observed point, by writing:

f(x̃) =

n∑
i=1

ξik(xi, x̃)

where ξ = (K + σ2
ε I)−1y.

We note also that the variance in (3.7) does not depend on the observed targets,

but only on the inputs, this is a property of the Gaussian distribution. The

variance is the difference between two terms: k(x̃, x̃) that is the prior covariance

and a positive term which collects the information the observations gives us

about the function.

GPR Algorithm

An implementation of the GP regression is shown in the following algorithm.

10



3 – Background on Bayesian Optimization

Algorithm 2: Gaussian Process Regression

input: X(inputs), y(targets), k (kernel), σ2
ε (noise level), x̃(test input)

Compute Cholesky decomposition L := cholesky(K + σ2
ε I)

Compute ξ from LTLξ = y

Define f(x̃) := K(x̃, x1:n)ξ

Compute v from Lv = K(x̃, x1:n)

Define V ar(f(x̃)) := k(x̃, x̃)− vT v
log p(y|X) := − 1

2y
T ξ −

∑
i logLii − n

2 log 2π

return: f(x̃) (mean), V ar(f(x̃)) (variance), log p(y|X)

We underline that the algorithm uses Cholesky decomposition instead of directly

inverting the matrix since it is faster and numerically more stable. The algorithm,

built for noise free observed data, returns mean and variance. To compute the

prediction distribution for noisy observations we have to add the noise variance

σ2
ε to the predictive variance of f(x̃).

The computational complexity is n3/6 for the Cholesky decomposition and n2/2

for solving the two following triangular systems (for each test case), where n is

the number of observations. The Cholesky decomposition must be recomputed

every time we change the kernel hyperparameters, i.e. at every iteration of our

algorithm.

The covariance function or kernel

The choice of the proper kernel is important because it encodes all the assump-

tions about the function we want to learn and furthermore it determines the

smoothness properties of samples drawn from the defined Gaussian Process. We

can choose among periodic and stationary kernels according to the response

function expected. A stationary covariance function is a function of x− x′ and

so it is invariant to translations in the input space. In addition if the kernel

is a function of x− x′ only then it is called isotropic and it is invariant to all

rigid motions. Finally a dot product covariance function depends only on x · x′

and it is invariant to a rotation of the coordinates about the origin but not to

translations.

Generally speaking we call kernel a function k of two arguments mapping a

pair of inputs x, x′ ∈ X into R. The term kernel comes from theory of integral

operators where the operator Tk is defined as:

(Tkf)(x) =

∫
X
k(x, x′)f(x′)dµ(x′)

11



3 – Background on Bayesian Optimization

where µ denotes a measure.

A kernel to be a covariance function must satisfy the following conditions:

• It must be symmetric k(x, x′) = k(x′, x);

• Given a set of input points {xi ∈ X |i = 1, . . . , n}, the matrix K, with

entries Kij = k(xi, xj), also known as Gram matrix, must be positive

semidefinite.

We recall that a n × n matrix K is positive semidefinite if vTKv ≥ 0 for all

vectors v ∈ Rn. A symmetric matrix is positive semidefinite (PSD) if and only

if all of its eigenvalues are non-negative.

A kernel is said to be positive semidefinite if∫
k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0 (3.8)

for all f ∈ L2(X , µ). Equivalently a kernel function which gives rise to PSD

Gram matrices for any choice of n ∈ N and D, where D = {(x1, y1), . . . , (xn, yn)}
is the set of already observed point, is positive semidefinite.

To easily prove that the kernel function of interest satisfies PSD requirement we

can take as f the weighted sum of delta functions at each xi and, since these

functions are limits of functions in L2(X , µ), then (3.8) implies that the Gram

matrix corresponding to any D is PSD.

As previously anticipated the choice of the kernel function affects the character-

istics of sampled function f . To better understand this relation now we focus on

mean square continuity and differentiability of stochastic processes.

Let x1, x2, . . . be a sequence of points and x∗ be a fixed point in Rd such that

|xk − x∗| −→ 0 as k −→ ∞. Then a process f(x) is continuous in mean

square at x∗ if

E
[
|f(xk)− f(x∗)|2

]
−→ 0 as k −→∞

If this holds for all x∗ ∈ A with A ⊂ Rd then f(x) is said to be continuous in

mean square over A. A random field is continuous in mean square at x∗ if and

only if its covariance function k(x, x′) is continuous at the point x = x′ = x∗.

For stationary covariance functions this reduces to checking continuity at k(0),

but we underline that mean square continuity doesn’t necessarily imply sample

function continuity.

12



3 – Background on Bayesian Optimization

The mean square derivative of f(x) in the i-th direction is defined as:

∂f(x)

∂xi
= lim
h→0

f(x+ hei)− f(x)

h

when the limit exists, where ei denotes the unit vector in the i-th direction.

The covariance function of ∂f(x)
∂xi

is given by ∂2k(x,x′)
∂xi∂x′i

. For stationary processes

if the 2k-th order partial derivative ∂2kk(x)
∂2xi1

...∂2xik
exists and is finite at x = 0

then the k-th order partial derivative ∂kf(x)
∂xi1

...∂xik
exists for all x ∈ Rd as a mean

square limit. So we deduce that the properties of kernel k around 0 determine

the smoothness properties (mean square differentiability) of a stationary

process.

Examples of covariance functions

A first example of covariance function is given by the squared exponential

kernel.

k(x, x′) = exp

(
−‖x− x

′‖22
2l2

)
where ‖·‖22 is the Euclidean distance and l is a hyperparameter known as char-

acteristic length scale. This one has the role of rescaling any point x by 1/l

before computing the kernel value. A short length scale makes function values

strongly correlated only if their respective inputs are very close to each other. In

particular the covariance is almost one between variables whose corresponding

inputs are very close and decreases as their distance in the input space increases.

This kernel is infinitely differentiable and this implies that the GP is very smooth.

This covariance function is isotropic, it depends only on ‖x− x′‖ and for this

reason it is also known as radial basis function (RBF).

Another important example of kernel, widely used for GPs, is given by the

Matérn Kernel, a stationary covariance function which incorporates a smooth-

ness parameter ν which grants greater flexibility in modelling functions.

k(x, x′) =
1

2ν−1Γ(ν)

(
2
√
ν‖x− x′‖22

l

)ν
Hν

(
2
√
ν‖x− x′‖22

l

)
where ν and l are two hyperparameters and Γ(·) and H(·) are respectively the

Gamma function and the Bessel function of order ν. Also this expression depends

on ‖x− x′‖ and so it is a Radial Basis Function. As before, l is the length-scale

13



3 – Background on Bayesian Optimization

parameter and it affects the smoothness of the GP. Instead ν is a hyperparameter

related to the number of times that the GP samples can be differentiated. When

ν −→∞ the Matérn kernel shrinks to the squared exponential kernel and when

ν = 0.5 it is reduced to the unsquared exponential kernel. Generalizing this

covariance function becomes very simple when ν is half-integer: ν = p + 1/2

where p ∈ N is a non-negative integer. In this case the function is reduced to a

product of an exponential and a polynomial of order p. The most widely adopted

values in machine learning community are ν = 3/2 and 5/2:

kν=3/2(x, x′) =

(
1 +
‖x− x′‖

√
3

l

)
e−
‖x−x′‖

√
3

l

kν=5/2(x, x′) =

(
1 +
‖x− x′‖

√
5

l
+

(x− x′)2

3l2

)
e−
‖x−x′‖

√
5

l

Figure 3.2: In (a) the covariance functions for different parameter of Matérn
kernel, in (b) random functions drawn from GPs with this kernel choice. [18]

3.1.2 Acquisition function

The acquisition function α is a heuristic used to decide where to sample next.

In our choice we would like to encourage exploration of never seen areas and

exploitation of areas near the actual optimum.

Generally speaking we say that a point is repeated (i.e. it has already been

observed) if it holds

xn+1 = [argmax
x∈X

αn(x)] ∈ Dn
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where αn(x) is the chosen acquisition function and Dn is the set of all observations

(x, y) up to iteration n. Given that query the function f on a new point xn+1 is

expensive, in the selection of α we pay attention to avoid repetitions.

Then, the acquisition function will be characterized by:

• high value for points expected to be optimal;

• high value for points we have not explored;

• low values for repeated points.

We will describe now some of the most commonly used acquisition functions. In

Figure 3.3 are displayed some examples for different values of the hyperparameters.

Figure 3.3: Examples of the acquisition functions described (PI, EI, UCB) for
different values of the parameter. The triangle marker indicates the maximum
of each function. [6]
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Probability of improvement (PI)

The Probability of improvement acquisition function focuses on maximizing the

probability of improvement over f(x∗) where x∗ is the current optimum value

x∗ = argmax
xi∈x1:k

f(xi).

PI(x) = P
[
f(x) ≥ f(x∗)

]
= Φ

(
µ(x)− f(x∗)− ξ

σ(x)

)
The choice of ξ is left to the user: usually it starts fairly high at the beginning

to drive exploration and decreases towards zero as the algorithm continues.

The main drawback of this acquisition function is that it is a pure exploita-

tion method and it doesn’t take into account the potential magnitude of the

improvement.

Expected Improvement (EI)

The Expected Improvement acquisition function takes into account both the

probability and the magnitude of the improvement the point can potentially

yield. The improvement I can be defined as follow:

I(x) = max{0, fn+1(x)− f(x∗)}

So I(x) is positive if the prediction makes better than the current best value

and it is zero otherwise. The new point xn+1 to query is found maximizing the

expected improvement:

xn+1 = argmax
x∈X

E
[

max{0, fn+1(x)− f(x∗)}|Dn
]

This can be evaluated analitically as:

EI(x) =

(µ(x)− f(x∗))Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where Z = µ(x)−f(x∗)
σ(x) and φ(·) and Φ(·) denote respectively the PDF and the

CDF of the standard normal distribution.

In order to generalize the function to control the trade-off between exploitation

(local search) and exploration (global search), a new formulation has been
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introduced:

EI(x) =

(µ(x)− f(x∗)− ξ)Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where Z = µ(x)−f(x∗)−ξ
σ(x) .

The parameter ξ determines the amount of exploration during optimization.

Higher ξ values lead to more exploration: if we increase ξ we reduce the weight

of the first addend of EI expression which is associated to the improvements

predicted by the posterior mean.

The parameter ξ is very similar to the one introduced in PI acquisition function

but as a whole EI is a valid alternative to PI as it exceeded the limits of this one.

Upper Confidence Bound (UCB)

The Upper Confidence Bound acquisition function takes the form

UCB(x;β) = µ(x) +
√
βσ(x)

where σ(x) =
√

Σ(x, y) is the marginal standard deviation of f(x).

It is based on the principle of being optimistic in the face of uncertainty: for every

query x it corresponds to effectively use a fixed probability best case scenario.

The parameter β regulates trade-off between exploration and exploitation in the

algorithm.

The next point to explore is so chosen as

xn+1 = argmax
x∈X

µn(x) +
√
βn+1σn(x) (3.9)

A natural interpretation of this strategy is that it greedily selects points x in

such a way that f(x) should be a reasonable upper bound on f(x∗) since the

argument in (3.9) is an upper quantile of the marginal posterior P
[
f(x)|yn

]
.

Another intuition about this sampling rule is given in [Fig.3.4]. Since the upper

and lower confidence bounds correspond to percentile points for f , the function

values are suboptimal with high probability at points where the UCB is smaller

than the highest lower confidence bound. The UCB sampling rule implicitly

cuts those regions out of the decision set.

17



3 – Background on Bayesian Optimization

Figure 3.4: The UCB acquisition function implicitly rules out regions of the
decision set where the upper confidence bound is less than the maximum lower
confidence bound. [21]

Looking at (3.9) we highlight that UCB acquisition function is a combination of

µn(x) and σn(x); so, its maximum value is determined by one of these scenarios:

• µn(x) dominates UCB(x;β). In this case the maximizer is completely

determined by µn while σn has no effects on the solution. Increasing βn

the influence of σn on the solution rises and as a consequence it introduces

some extra exploration in the optimization.

• σn(x) dominates UCB(x;β). In this case µn has no effects on the solution.

Repetitions of already observed points are not possible because σt is small

near existing observations.

• µn(x) and σn(x) are balanced. Adjusting βn can make σn dominant and so

it consequently stops repetitions. In this case it is also possible to adjust

the parameter l of the GP kernel which allows us not to use too high values

for βn. Changing the length scale l may cause slight misspecification of

the GP prior.

Ideally the hyperparameter βn should be chosen dynamically to decrease mono-

tonically with the function evaluation: this avoid sampling already observed

points.

3.2 Discrete Bayesian Optimization

In the previous section we have assumed the input variables x to be continuous,

i.e. x ∈ X ⊂ Rd, and have described the general structure of the standard

Bayesian Optimization method. Despite that, in real-world application it is not
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always the case, we could face with variables which take categorical or integer

values and so extra approximation became necessary. The configuration space

X can be more generally defined in those cases as a discrete subset of points

with a particular structure inferred. In the following work we will focus in

particular on integer-valued variables and will analyse some of the solutions

currently developed for this kind of problems.

3.2.1 GP surrogate model

Naive Approach

We have said before that the main problem is that f(·) cannot be evaluated at

all potential input locations, but only at those ones which are compatible with

the integer-valued variables. A naive approach to account for this is to optimize

the acquisition function α(·) assuming all variables taking values on the real line

and then replace them by the closest integer before evaluation. This method,

known as Naive BO, might not perform well because it can produce situations

in which the BO method always evaluates the objective at a repeated point. We

can find an example of this in [Fig. 3.5]. The function represented in the picture

admits only values on the grid x ∈ [−2, 10]. The black dots represent the already

evaluated points. Maximizing the acquisition function α(·) suggests a continuous

point (represented by the red star) x = 0.3. Since it is a continuous point, it

doesn’t belong to the grid and therefore it must be approximated to its closest

neighbour x = 0 which has already been evaluated.

Figure 3.5: Naive BO. Illustration of the repetition of already evaluated points
in Naive BO approach. [15]

The problem associated to this approach is that the actual objective is constant

in the intervals that are rounded to the same integer value but it is ignored by

the GP model and so generally it leads to sub-optimal results.
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Transformation approach

The Transformation method, developed by Garrido-Merchan and Hernandez-

Lobat [15], tries to solve the previously described problem. It considers the

objective to be constant in those regions of the input space that lead to the same

input variable configuration in which the objective has to be evaluated. This

property is introduced into the GP modifying the kernel k(·, ·). In section 3.1.1

we have seen RBF kernels which only depends on the distance between the input

points: if the distance between two points is zero, then correlation between them

is equal to one because the function values at both points will be the same. On

the bases of this fact we can build an alternative covariance function

k′(xi, xj) = k(T (xi), T (xj))

where T (x) is a transformation in which the input variables corresponding to an

integer-value input variable are rounded to the closest integer value.

Figure 3.6: Transformation approach. The transformation applied to the
covariance function makes it a step-wise function. The GP identifies a step-wise
objective function. [9]

In this way, the GP correctly identifies that the objective function is constant

inside intervals of real values that are rounded to the same integer and that the

uncertainty is the same on those intervals as reflected by the new covariance

function defined.

The problem of this method is that it makes the acquisition function a step-wise

function which is difficult to optimize.

Discrete-BO

The Discrete-BO Algorithm, proposed by Luong et al. [15], wants to solve the

repetition problem that occurs in the Naive BO method through the definition of

a new version of the UCB acquisition function (vd. Section 3.1.2). From general
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theory we know that an accurate choice of the parameters β and l is fundamental:

a large value of β causes more exploration, making the algorithm less efficient,

while the length scale l controls the smoothness of the surrogate model. At the

same time we know that a large misspecification leads to a requirement of more

samples to get accurate function estimation and this is not a negligible drawback

in case of expensive to evaluate functions. Choosing parameters β and l through

random search or grid search would be computationally expensive, thus Luong

proposes a systematic approach. Its method finds the new value of β and l by

solving the following optimization problem:

β∗, l∗ = argmin
∆β∈[0,βh], l∈(0,lh]

g(βt + ∆β, l)

g(βt + ∆β, l) = ∆β + ‖xt+1 − x′t+1‖2 + P (x′t+1)

(3.10)

where ∆β is the increment applied on βt as βt ← βt + ∆β; xt+1 is the new point

suggested by the original βt and lt, while x′t+1 is the one suggested by βt + ∆β

and adjusted l. The term P (x′t+1) is set to a constant C if round(x′t + 1) ∈ Dt
where Dt is the dataset of already visited points, otherwise is set to zero. βh

and lh are the upper limits for the two variables.

The problem in 3.10 has three goals:

• to minimize ∆β in order not to exceed too much previous βt to avoid

inefficiency;

• to minimize the distance between xt+1 and x′t+1 (represented by the

Euclidean norm term) because the algorithm should suggest a point close

to the current potential area for exploitation;

• to minimize a penalty factor that is given to make sure not to sample again

pre-existing observations.

The Discrete-BO algorithm is then summarized in the following Algorithm taken

from [15]:
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Algorithm 3: Discrete-BO Algorithm

input: GP model, initial data D0 = {(x0, y0)}, βh, lh

for t = 0, . . . , n do

Calculate βt as suggested for GP-UCB, estimate lt using Dt
Select xt+1 = argmaxx∈X α

UCB
t (x) with βt and lt

xt+1 = round(xt+1)

if x ∈ Dt then

Find the optimal β∗ and l∗ using 3.10

xt+1 = argmaxx∈X α
UCB
t (x) with β∗, l∗

xt+1 = round(xt+1)

Query the objective function to get yt+1

Augment Dt+1 = {Dt, (xt+1, yt+1)} and update GP

end

3.2.2 Alternative surrogate model

SMAC

The Sequential model-based optimization (SMAC) [11] [12] uses a random forest

(RF) as surrogate model of the black-box objective, instead of commonly used

GP. In random forest T random regression trees are iteratively fitted using

each time a bootstrap sample of training data, each obtained by drawing with

replacement from the observed data N instances. Then we compute the random

forest’s predictive mean µx and variance σ2
x for a new configuration x ∈ X as

the empirical mean and variance of its individual trees predictions for x.

The main steps of the algorithm are then the ones we have already analysed for

standard BO:

• Based on the data collected thus far, construct a model that predicts a

probability distribution for f ’s value at arbitrary point x ∈ X .

• Use the model to quantify the desirability of learning f(x) at each x ∈ X
(the commonly used acquisition function is the EI) and select

x∗ = argmax
x∈X

α(x)

• Evaluate f(x∗) resulting in new data point (x∗, f(x∗)).

SMAC uses as EI function the E
[
Iexp

]
criterion for log-transformed costs. Given

the predictive mean µx and the variance σ2
x of the log-transformed cost of a
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configuration x, it is defined as

EI(x) := E
[
Iexp(x)

]
= fminφ(v)− e 1

2σ
2
x+µx · Φ(v − σx)

where v = ln(fmin)−µx

σx
, Φ denotes the cumulative distribution function of a

standard normal distribution and fmin = µ(x∗) + σ(x∗) denotes the empirical

mean performance of the current best optimum x∗.

The definition is based on log-transformed cost because it has been found that

the logarithmic transformation of runtime data improves model quality. So

when we consider an observed data in SMAC we refer to the couple (xi, oi)

where oi = ln(yi). This transformation could have the drawback of changing

the cost metric that users aim to optimize, but this problem could be avoided

by computing the prediction in the leaf of a tree by “untransforming” the data,

computing the user-defined cost metric and then transforming the result again.

The main advantage of this algorithm is that RF has a low computational cost

and can naturally deal with discrete variables due to the tree-based structure

and improve performance in this kind of optimization problems.

TPE

The Tree Parzen estimator (TPE) [4] is a tree-based method which evaluates

the densities of good and bad candidates points in the search space. Instead of

evaluating p(y|x), it fits p(x|y) and p(y). Applying Bayesian rule we could in

fact represent p(y|x) as

p(y|x) =
p(x|y)p(y)

p(x)

TPE redefines p(x|y) by using two densities: l(x) which consider the observations

that are lower than a chosen threshold y∗ and g(x) that is estimated using the

rest of observations.

p(x|y) =

l(x) if y ≤ y∗

g(x) if y > y∗

where y∗ is set as a quantile γ of the observed y values, so that p(y < y∗) = γ.

The two densities l(x) and g(x) are modelled using Parzen Estimators (also known

as kernel density estimators). The Adaptive Parzen Estimator yields a model

over X by placing density in the vicinity of K observations B = {x1, . . . , xK}. If

we work with discrete variables, assuming the prior a vector of N probabilities

pi, the posterior vector elements were proportional to Npi +Ci where Ci counts
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the occurrences of choice i in B. If instead the variable is continuous then it is

specified either by a uniform prior over some interval (a, b), or by a Gaussian or

by a log-uniform distribution. Hence, the TPE substitutes an equally-weighted

mixture of that prior with Gaussian centred at each of the xi ∈ B and with stan-

dard deviation set to the greater of the distances to the left and right neighbour,

but clipped to remain in a reasonable range.

The main cons is that in order to model these distribution well it needs a large

number of observations at the beginning.

The parametrization of p(x, y) as p(x|y)p(y) is chosen to facilitate the optimiza-

tion of the EI function:

α(x) =

∫ y∗

−∞
(y∗−y)p(y|x)dy =

∫ y∗

−∞
(y∗−y)

p(x|y)p(y)

p(x)
dy ∝ (γ+

g(x)

l(x)
(1−γ))−1

where γ = p(y < y∗). The aim is to maximize the EI with respect to x that

means finding the best x ∈ X under the surrogate function p(y|x).

Looking at this expression we deduce that the TPE-EI criterion is easily maxi-

mized by choosing a point with high probability under l(x) and low probability

under g(x). The tree-structured form on l and g makes it easy to draw many

candidates according to l and evaluate them in terms of g(x)
l(x) . On each iteration

the algorithm returns the best candidate x∗ with the greatest EI.

Using this kind of model the objective function improves much more rapidly

than with random or grid search, reducing running time of the algorithm and

getting better scores.

BOCS-SA

The BOCS-SA algorithm developed by Baptista-Poloczek [3] is an evolution

of the standard Bayesian Optimization of Combinatorial Structures (BOCS)

Algorithm.

Firstly we recall the general structure of the BOCS Algorithm and we consider

a problem like

argmax
x∈X

f(x)

with X discrete structured domain of feasible points. We consider in particular

X = {0, 1}d. The function f : X −→ R is the expensive to evaluate function of

interest. A general model of f is thus given by
∑
S∈2X βSΠi∈Sxi where 2X is the

power set of the domain and βS is a real-valued coefficient. BOCS-SA considers

restricted models that contains only monomials up to order k because otherwise

the model would be impractical due to the exponential number of monomials. A
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higher order increases expressiveness but reduces accuracy if we have limited

data. A good trade-off is considering second-order models:

fβ(x) = β0 +
∑
j

βjxj +
∑
i,j>i

βijxixj

In this way the interaction terms are quadratic in x ∈ X but are linear in

β = (βi, βij) ∈ Rp with p = 1 + d+
(
d
2

)
. Since some form of regularization on x

is often required, the problem is usually restated as follows:

argmax
x∈X

fβ(x)− λP(x)

where P(x) = ‖x‖1 or P(x) = ‖x‖22.

The general algorithm structure is the following:

Algorithm 4: Bayesian Optimization of Combinatorial Structures

input: f(x)− λP(x); Nmax (sample budget); N0(initial dataset)

Sample initial dataset D0

Compute the posterior on β given the prior and D0

for t = 1 to Nmax −N0 do

Sample coefficients βt ∼ P (β|X, y)

Compute approximate solution xt for maxx∈X fβt
(x)− λP(x)

Evaluate f(xt) and append yt to y

Update the posterior P (β|X, y)

end for

return: argmaxx∈X fβt(x)− λP(x)

In order to compute the next to evaluate solution xt, defined as

xt = argmax
x∈X

fβt
(x)− λP(x),

given the characteristic of the objective function of interest, the algorithm applies

semidefinite programming.

The variant of the algorithm proposed in [3], denoted as BOCS-SA, replaces

semidefinite programming by stochastic local search, in particular by Simulated

Annealing. This performs a random walk on X starting from a point chosen

uniformly at random. The next point xt+1 is selected in the neighbourhood

N(xt) that contains all points with Hamming distance at most one from xt.
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Definition 3.2.1 (Hamming distance). The Hamming distance or L0-distance

between two vectors x, y ∈ X is the number of positions at which the corresponding

elements are different:

d0(x, y) = ‖x− y‖0 =
∑
i

1(xi 6= yi)

where 1(xi 6= yi) =

1 if xi 6= yi

0 otherwise
.

SA picks x ∈ N(xt) uniformly at random and evaluates obj(x). Then if the

observed objective value is better than the observation for xt, SA sets xt+1 = x.

Otherwise the point is adopted with probability exp
(
obj(x)−obj(xt)

Tt+1

)
where Tt+1

is the current temperature. SA starts with a high T that encourages exploration

and cools down over time to zoom in on a good solution.
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Chapter 4

Background on

Metaheuristics

Metaheuristics are a family of optimization methods which don’t guarantee the

optimality of the obtained solutions but provide ”acceptable” solutions in a

reasonable time for solving hard and complex problems. Metaheuristics are

commonly applied in many classes of problems like:

• Engineering design, topology and structural optimization in electronics,

telecommunications, auto motive, and robotics.

• Machine learning and data mining in bioinformatics, computational biology

and finance.

• System modelling, simulation and identification in chemistry, physics, and

biology; control, signal, and image processing.

• Planning in routing problems, robot planning, scheduling and production

problems, logistics and transportation, supply chain management.

As for previously described optimization methods also in this case we have to

take into account the trade-off between the exploration of the search space (diver-

sification) and the exploitation of the best solutions founded (intensification). In

intensification the promising regions, determined by the obtained good solutions,

are explored more thoroughly in the hope of improving them; in diversification,

instead, non explored regions must be visited to be sure that the search is not

confined only to a reduced number of regions in the configuration space.
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The main advantage of using metaheuristics is a restrictive assumption in for-

mulating the model. In fact, some optimization problems cannot be formulated

with an unambiguous analytical mathematical notation, or furthermore an ana-

lytical formulation should not exist at all, like for black-box functions. In those

cases the problem cannot be solved in an exhaustive manner and so the use of

metaheuristics provides an efficient alternative.

4.1 Introduction to Metaheuristics

Deterministic versus stochastic metaheuristics. A deterministic meta-

heuristic solves an optimization problem through deterministic decisions; exam-

ples are local search and tabu search methods. On the contrary, in stochastic

metaheuristics some random rules are applied during search; examples are sim-

ulated annealing and genetic algorithm. In the former case, using the same

initial solution, we will obtain the same final solution, whereas in stochastic

metaheuristics this is not guaranteed (i.e. the same initial solution could lead to

different final solutions).

Population-based search versus single-solution based search. Single-

solution based algorithms like simulated annealing and local search manipulate

a single solution during the search, while in population-based algorithms, like

genetic algorithms, a whole population of solution is evolved. From a technical

point of view we can say that single-solution based metaheuristics are exploitation

oriented because they intensify the search in local regions, whereas population-

based ones are exploration oriented, providing a better diversification in the

space.

4.1.1 Solution representation

When we work with a problem we have to provide a structure to its solutions.

This is not unique, the same problem could be represented in many different

way, but it has to respect some characteristics:

• Completeness. It should be able to represent all problem solutions.

• Connexity. Given two feasible solutions, it must exist a search path to

connect them.

• Efficiency. The representation must be easy to manipulate by the search

operators reducing space and time complexity.
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According to their structure we can distinguish two main classes of representa-

tions: linear and non linear.

Linear representations Linear representations may be viewed as strings of

symbols of a given alphabet. In many classical optimization problems, where

the variables denote the presence or absence of an element, binary encoding may

be used. It is for example the case of the well-known knapsack problem. In the

0/1 knapsack problem with k objects each solution is represented by a vector x

pf size k where

xi =

1 if object i is in the knapsack

0 otherwise
∀i = 1, . . . , k

This representation can be generalized to any discrete values based encoding

using an n-ary alphabet. In this case, each variable takes its value over the

defined alphabet and the encoding will be a vector of discrete variables. This

encoding may be used for those problems where the variables can take a finite

number of values, such as combinatorial optimization problems.

Non linear representations Non linear representations are more complex

encoding structures generally based on graphs and trees. The tree encoding is

used mainly for hierarchical structured optimization problems, in this case a

solution is represented by a tree of objects. The tree may encode an arithmetic

expression, a first-order predicate logic formula or a program. An example of use

is given by the tree encoding for regression problems. In this case given some

input and output values regression problem consist in finding the function that

will provide the best output for all inputs. Any X -expression can be drawn as a

tree of functions and terminals where the functions could be for example sine,

cosine, sum, whereas the terminals (i.e. leaves of the tree) represent constants

or variables of the problem.

Chosen the best fitting representation, we have to define the global structure of

the problem of, called Search space.

Definition 4.1.1. The search space is defined by a directed graph G = (X , E)

where the set of vertices X corresponds to the possible solutions of the problem

defined by the representation used to solve the problem, and the set of edges E

corresponds to the move operators used to generate new solutions.
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In the graph will exist an edge between solutions xi and xj if the solution xj

can be generated from the solution xi using a move operator (i.e. xi and xj are

neighbours). The graph is directed because the existence of a link (i, j) doesn’t

imply that also the link with reversed direction (j, i) exists. In addition we

highlight that using different neighbouring definitions we will generate different

search spaces.

One of the main properties that has to be verified when we describe a search

space is connectivity: for any two solutions xi and xj there should be a path

from xi and xj . This implies in particular that from any solution xi there will

be a path from xi to the global optimum of the problem x∗.

4.1.2 Performance Analysis

Exact optimization methods guarantee the global optimality of solutions so

the efficiency in terms of search time is the main indicator to evaluate the

performances of the algorithms. Instead, if we consider metaheuristic search

methods we have to evaluate also indicators related to the quality of the solution,

the computational effort and the robustness.

Solution Quality

The indicator used to measure the quality of the solution is based on measuring

the distance or the percent deviation of the obtained solution to one of the

following ones (graphically explained in [Fig. 4.1 ]):

Figure 4.1: Performance of the solution quality. Graphical explanation of the
different distances and percent deviations for a minimization problem. [23]

• Global optimal solution. This allows a more absolute performance

evaluation of the different metaheuristics. The difference can be evaluated

as

|f(s)− f(s∗)| or
|f(s)− f(s∗)|

f(s∗)
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where s is the obtained solution and s∗ the global optimal one. A drawback

of these formulas is that they are not invariant under different scaling of

the objective function. For this reason are usually preferred

|f(s)− f(s∗)|
|fworst − f(s∗)|

or
|f(s)− f(s∗)|

|Eunif (f)− f(s∗)|

where fworst represents the worst objective function and Eunif (f) denotes

expectation with respect to the uniform distribution of solutions.

The global optimal solution may be deduced by an exact algorithm or it

could be known a priori using constructed instances.

• Lower/upper bound solution. If we consider an optimization problem

for which the optimal solution is not available, tight lower/ upper bounds

may be considered as an alternative to global optimal solutions respectively

for a minimization/ maximization problem. These could be known or

easily computed using relaxation techniques like continuous relaxation or

Lagrangian relaxation.

• Best known solution. If we are working with a classical problem usually

there exist libraries of standard instances to compare with available ones in

literature. The best available solution is updated each time an improvement

is found.

• Requirements or actual implemented solution. For real-life prob-

lems we could be in the condition to have a threshold to satisfy.

Computational Effort

The time complexity of an algorithm is the number of steps required to solve

a problem of size n and it is defined in terms of the worst-case analysis. It is

evaluated in terms of CPU time or wall clock time, with or without input/output

and preprocessing/postprocessing time. The main drawback of computation

time measure is that it is influenced by computer characteristics such as the

hardware, operating system, language and compiler on which the metaheuristic

is executed. For this reason it is preferred to use indicators such as the number

of objective function evaluations, which is independent of the used computer

system. It is an acceptable measure for time-intensive and constant objective

functions.

31



4 – Background on Metaheuristics

Robustness

In literature we can find many different alternative definitions for robustness. It

can be used to measure the insensitivity against small deviations in the input

instances (data) or the parameters: the lower the variability the better the

robustness. It could also be used to measure the performance of the algorithms

according to different types of input instances and/or problems using the same

parameters: it could be overfitted for some instances and be less efficient for

others. In stochastic algorithms it may be also related to the average/deviation

behaviour of the algorithm over different runs of the algorithm on the same

instance.

4.2 Single-Solution Based Metaheuristics

The Single-Solution Based Metaheuristics are optimization methods which ex-

plore the search space using ”walks” or trajectories through neighbourhoods,

performed by iterative procedures that move from the current solution to another

admissible one. They are characterized by two main phases:

• In the generation phase a set of candidate solutions C(x) is generated

from the current solution x using local transformations;

• In the replacement phase a selection is performed from the candidate

set C(x) to replace the current solution. The new solution x′ ∈ C(x) would

be so the new solution for the next iteration.

4.2.1 Neighbourhood Definition

The first essential step to define a Single-Solution Based Metaheuristic is the

definition of the neighbourhood.

Definition 4.2.1 (Neighbourhood). A neighbourhood function N is a mapping

N : X −→ 2X that assigns to each solution x ∈ X a set of solutions N(x) ⊂ X .

A solution x′ in the neighbourhood of x is called neighbour of x and it is generated

by the application of a move operator that performs a small perturbation to the

solution x. When we define a neighbourhood we also study its locality that is

the effect on the solution when performing a perturbation. When small changes

in the representation reveal small changes in the solution the neighbourhood is

said to have a strong locality, otherwise we will refer to as weak locality.
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Before providing some further definitions on the neighbourhood we recall some

concepts about the notion of distance.

Definition 4.2.2. Let X be a set, a distance function or metric on X is any

mapping d : X × X −→ R such that, ∀x, y, z ∈ X :

• d(x, y) ≥ 0;

• d(x, y) = 0 ⇐⇒ x = y (separative property);

• d(x, y) = d(y, x) (symmetrical property);

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Definition 4.2.3. A function ‖·‖ : Rd −→ R defines a norm if it respect the

following properties:

• ‖x‖ ≥ 0 ∀x ∈ Rd and ‖x‖ = 0 ⇐⇒ x = 0

• ‖αx‖ = |α|‖x‖ for any vector x ∈ Rd and any scalar α ∈ R

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ Rd (triangle inequality)

The most commonly used norms are the lp − norms which are defined by

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

Hereinafter we will focus on the l1 − norm

‖x‖1 = |x1|+ |x2|+ · · ·+ |xd|

and the l2 − norm, broadly known as Euclidean norm

‖x‖2 =
√
x2

1 + x2
2 + · · ·+ x2

d =
√
xTx

Given a norm ‖·‖ and any two vectors x, y ∈ Rd the distance between x and y

with respect to this norm is defined as ‖x−y‖ and it is called induced distance.

Definition 4.2.4. The neighbourhood N(x) of a solution in a continuous

space is the ball with center x and radius equal to ε with ε > 0.

N(x) = {x′ ∈ X : ‖x′ − x‖ < ε}

with ‖·‖ selected norm (e.g. Euclidean norm).
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Definition 4.2.5. In a discrete optimization problem the neighbourhood N(x)

of a solution x is represented by the set

N(x) = {x′ ∈ X : d(x′, x) ≤ ε}

where d represents a given distance that is related to the move operator.

Figure 4.2: Example of neighbourhood respectively for a continuous and a
discrete (binary) space. [23]

Some graphical examples of neighbourhoods in continuous and discrete spaces

are shown in [Fig. 4.2].

As already seen in BOCS-SA the natural neighbourhood for binary represen-

tations is based on the Hamming distance. The Hamming neighbourhood for

binary encodings may be then extended to any discrete vector representation

using a given alphabet Σ. In this case the substitution can be generalized by

replacing the discrete value of a vector elements by one of the other characters

available in the alphabet. So if the cardinality of the alphabet Σ is k then the

size of the neighbourhood will be (k − 1) · n for a discrete vector of size n.

If we take back the notions about search space we could similarly provide a

notion of distance on the graph G, useful in the design of the search mechanism

of the algorithm.

Definition 4.2.6. Given two solutions xi, xj ∈ X , the distance d(xi, xj) is

defined as the length of the shortest path in the graph G, i.e. the minimum

number of applications of the move operator needed to move from xi to xj.

When we define the neighbourhood we have to trade-off between its size (or

diameter) and the computational complexity to explore it. The size of the
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neighbourhood for a given solution x is the number of neighbours of x. Designing

large neighbourhoods may improve the quality of the obtained solutions since

more neighbours are considered at each iteration, but in the meanwhile it requires

an additional computational time to generation and evaluation. The impact of

the neighbourhood size in local search is displayed in [Fig. 4.3 ]

Figure 4.3: Large neighborhoods improve the quality of the search because they
allow to explore much more solutions at each iteration. [23]

A commonly used strategy is to generate variable distance moves (k-distance

or k-exchange) with a distance of 2 or 3. Given a neighbourhood N defined by

neighbours of distance k = 1 from a solution x

N1(x) = {x′ ∈ X : d(x, x′) = 1}

similarly a larger neighbourhood Nk(x) of distance k is defined as the set

Nk(x) = Nk−1(x) ∪ {x′′|∃x′ ∈ Nk(x) : x′′ ∈ N1(x′)}

The distance k could be almost equal to n, where n is the size of the problem (i.e.

it is the maximum distance between any two solutions). Since Nn(x) represents

the whole search space finding the best solution in this neighbourhood is NP-hard

if the original problem is NP-hard.

4.2.2 Local Search

The local search is the simplest metaheuristic method. It starts at a given initial

solution, then, at each iteration, the heuristic replaces the current solution by

a neighbour that improves the objective function. It stops when there are no

more improving solutions among the neighbours of the current one, that is the
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local optimum is reached. The algorithm will generate a sequence of solutions

x1, . . . , xk ∈ X starting from an initial solution x0. The length k of this sequence

is unknown a priori and it depends on the time needed to satisfy the termination

criterion (i.e. reaching the local optimum). The elements of this sequence satisfy

the following properties:

• xi+1 ∈ N(xi) ∀i ∈ [0, k − 1], where N(xi) is the neighbourhood of xi

• f(xi+1) > f(xi) ∀i ∈ [0, k − 1] (maximization problem supposed)

• xk is a local optimum: f(xk) ≥ f(x) ∀x ∈ N(xk).

The whole algorithm should be summarized as follows:

Algorithm 5: Local Search

Generation of the initial solution x = x0

while not Termination Criterion do
Generate neighbourhood N(x) from current solution x

if there is no better neighbour then
Stop

end

x = x′ with x′ better neighbour in N(x)

end

Output Final solution found (local optima)

The better neighbour in N(x) can be selected using different strategies:

• Best improvement(steepest descent): in this case the best neighbour

is chosen as the one that improves the most the cost function. The explo-

ration of the neighbourhood is exhaustive and fully deterministic. For this

reason this type of exploration is time consuming for large neighbourhoods.

• First improvement: in this case the net solution is the one selected as

the first improving neighbour of the current one. This method implies a

partial evaluation of the neighbourhood.

• Random selection: here a random selection is applied to those neighbours

which improves the current solution.

The choice of the best strategies depends on each particular problem. In many

applications the first improving strategy leads to the same quality of solutions

as the best improving strategy using a smaller computational time and with a

lower probability of premature convergence to local optima.
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The convergence to local optima is the main drawback of the local search methods.

They work well if there are not too many local optima in the search space or if

the quality of the different local optima is more or less similar. In order to avoid

this problem we could apply different strategies:

• Iterating from different initial solutions. This strategy is applied for

example in multistart local search search ad iterated local search.

• Accepting nonimproving neighbours. In this case we enable moves

that degrade the current solution making it possible to move out the basin

of attraction of a given local optimum. Examples of this class of algorithms

are simulated annealing and tabu search.

• Changing the neighbourhood. This strategy consists in changing the

neighbourhood structure during the search.

• Changing the objective function or the input data of the problem.

In this case the problem is transformed by perturbing either the input data

or the objective function or the constraints of our problem. This approach

has been implemented in the guided local search and in noising methods.

4.3 Genetic Algorithm

The Genetic Algorithm is an optimization method which belongs to the class of

Population-Based Metaheuristcs. It takes inspiration from natural evolution

and genetics and reflects the process of natural selection where the fittest

individuals are selected in order to produce the offspring of the next generation.

This class of algorithms plays a main role in combinatorial problems in order

to avoid local optima, in particular it has been widely applied in problems of

business, engineering, science.

Instead of classical single solution algorithms, it starts and works at each step

with a population of candidate solutions. The main advantage of this is linked

to the possibility of better simultaneous exploration. Point-to-point methods

are a perfect prescription for locating false peaks in multimodal search spaces,

while working with a rich dataset simultaneously allows climbing many peaks in

parallel so that the probability of finding a false peak is reduced.

In the Genetic Algorithm each possible solution, denoted as chromosome, is

represented by a string of finite length. Each element of the chromosome is

called gene and it corresponds to a problem variable. The values that a gene

can assume are called alleles and belong to a finite alphabet of symbols. The
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initial population, whose size depends on the nature of the problem, is usually

generated randomly according to a uniform distribution over all admissible

solutions. All these solutions are evaluated through a fitness function f that

represents a measure of profit, utility or goodness that we want to maximize

(objective function of the problem). A fitness-based process is so applied to

select individuals to be used as parents of the next generation, generated through

mutations and recombinations. The new population is finally created selecting

some chromosome from the old generation and some of the new solutions. All

the process is repeated until a certain satisfaction condition is reached. Both the

generation and the replacement phases are memoryless: they are only influenced

by the current population, the previous history has no effect on it.

To better understand the algorithm we recall here the general pseudo-code:

Algorithm 6: Genetic Algorithm

Choose an initial population of individuals P (0)

Evaluate the fitness f of all the individuals in P (0)

Choose a maximum number of generations tmax

while t < tmax do:

t← t+ 1

Select parents for offspring production

Apply reproduction and mutation operators

Create a new population P (t)

Return the best individual of P (t)

The following are the key elements on which we have to take some decisions:

• the way the parents are selected to produce offspring (selection methods);

• the way selected parents are recombined and which kind of mutation is

applied on the individuals (reproduction);

• the probability of crossover and mutation which conditions exploration

and exploitation of research space;

• the population size and how to adjust it towards iterations.

The selection operator makes the difference with respect to traditional random

methods. It focuses the research on most promising areas of the search space:

individuals with higher fitness are more likely to be selected for the next genera-

tion. Also this operator takes on a main role in the trade-off between exploration

and exploitation: strong selection pressure may in fact lead to convergence to a
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local optimum.

Another important peculiarity of this class of algorithms, related to the fact

that we haven’t worked so far with strings as strings alone, is given by the

concept of schemata or similarity templates[10]. A schema is a similarity

template describing a subset of strings with similarities at certain string positions.

For example if we create strings over the ternary alphabet {0, 1, ∗}, a schema

matches a particular string if at every location in the schema either a 1 matches

a 1 in the string, or a 0 matches a 0, or a ∗ matches ∗ (i.e. the schema ∗000

matches {1000, 0000}). The information provided by similarities, as the one

that comes from fitness values, help direct our search. Short-defining-length

schemata, also called building blocks, are propagated generation by generation

by giving exponentially increasing samples to the observed best.

4.3.1 Initial Population

An appropriate choice of the initial population is one of the core problems, in

fact it plays a crucial role in the effectiveness and efficiency of the algorithm.

The main criterion to deal with is diversification. If the initial population is not

well diversified a premature convergence could occur.

The diversification criterion could be taken into account explicitly through

maximizing the minimum distance between any two solution in the population:

max
i=1,...,n

(
min

j=1,...,i−1
{dij}

)
where dij represents the distance in the decision space between two solutions xi

and xj and n is the size of the population. More in general the diversification

criterion could be classified into four categories: random generation, sequential

diversification, parallel diversification and heuristic initialization.

Random Generation. A very common strategy is to generate occurrences

randomly in the feasible range. In continuous optimization each variable xij is

defined to be in a given range [lj , uj ], with lj , uj ∈ R. Each solution xi of the

population is a k-dimensional real vector where k is the number of variables.

Each element of the vector xij is generated randomly as follows:

xij = lj + randj [0, 1] · (uj − lj) for i ∈ [1, n], j ∈ [1, k]

where randj is a uniformly distributed random variable in the range [0, 1].

In discrete optimization the same uniform random initialization may be applied
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to binary vectors, discrete vectors and permutations.

The random generation is usually performed according to pseudo-random or quasi-

random sequence of numbers. This happens because we could prove randomness

for a sequence of infinite size but it is impossible for a finite sequence. The most

popular random generation is the pseudo-random one which uses various classical

generators like congruential quadratic. In quasi -random sequence the goal of

the generator is related not only to the independence between the successive

numbers but also to their dispersion.

Sequential Diversification. In a sequential diversification the solutions are

generated in such a way that the diversity is optimized. The most common

sequential strategy used is the Simple Sequential Inhibition (SSI) process. In

this case, given a sub-population Q, initially composed by only one random

picked solution, any new selected solution must be at a minimum distance ∆

to all other solutions of the current sub-population Q. The process is repeated

iteratively until the specified number of solutions isn’t reached. This strategy

guarantees diversity due to the fact that the minimum distance between any

two solutions is at least ∆. Meanwhile the main cons is related to the high

computational cost.

Parallel Diversification. In this case solutions are generated in a parallel

independent way. A widely used method is based on the Latin hypercube

sampling. In this case given n the size of the population and k the number of

variables, the variable range of each variable xj is divided into n equal segments

of size
uj−lj
n , with lj , uj ∈ R respectively the lower and upper bounds of xj . A

random real number is then generated in each segment. An example of this

strategy is explained in [Figure 4.4] (taken from Xin Li works) which represents

both a one dimensional and a two dimensional Latin Hypercube sampling. As

seen in the pictures the sampling is random in each grid and we can extract one

sample in each row and column. The procedure can be generalized to higher

dimensions.

Heuristic Initialization. In this case any heuristic (e.g. local search) can be

used to initialize the population. A greedy heuristic can be used to determine

the initial solution. This strategy depends on the fitness landscape of the opti-

mization problem and for this reason it is so more effective and efficient than

random initialization. The main drawback of this method is that it lacks in

population diversity and it could generate premature convergence and stagnation
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(a) One dimension (b) Two dimensions

Figure 4.4: Explanation of the Latin hypercube strategy. In 4.4a is shown
the one-dimensional Latin hypercube sampling: the CDF is divided into N
regions and one sampling point is randomly picked up in each region. In 4.4b is
explained the two-dimensional LHS generated by the randomly combination of
two one-dimensional samples.

of the population.

In Table 4.1 are summarized the comparisons among the different initialization

strategies. The evaluation is better with more plus (+) signs.

Strategy Diversity Computational Cost Quality
Pseudo-random ++ +++ +
Quasi-random +++ +++ +

Sequential diversification ++++ ++ +
Parallel diversification ++++ +++ +

Heuristic + + +++

Table 4.1: Performance comparisons of different initialization strategies. [23]

Sequential and parallel diversification methods provide in general the best diver-

sity. The heuristic initialization provides in general better solutions in terms of

quality of initial solutions but with the expense of a higher computational cost

and a reduced diversity.

In our work we will generally use pseudo-random generators.

4.3.2 Selection Methods

The selection strategy is one of the main components of the Genetic Algorithms.

All the proposed solutions to this matter are based on the idea that ”the better

is an individual, the higher it is the chance of being parent”. We recall now

briefly some of the most used selection mechanisms.
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Roulette Wheel Selection. According to this strategy we should assign to

each individual a selection probability that is proportional to its relative fitness.

Given fi the fitness of the individual i in population P , the probability to be

selected is:

pi =
fi∑n
j=1 fj

.

We then consider a pie graph where the space reserved to each individual is

proportional to its fitness. The selection of µ individuals is performed by µ

independent spins of the roulette wheel: at each spin we select one individual.

The general principle is shown in [Figure 4.5].

In the roulette wheel selection better individuals have more space ans so more

chance to be chosen but at the same time outstanding individuals will create a

bias and could cause a premature convergence.

Stochastic Universal Sampling. This is a variant of the previous method.

In this case µ individuals are selected simultaneously by a single spin of the

roulette wheel. The general principle is shown in [Figure 4.5].

Figure 4.5: Roulette wheel strategies. The first picture describes the standard
Roulette Wheel Selection which select one single individual at each spin of the
roulette wheel. The second one instead represents the Stochastic Universal
Sampling with µ = 4, so 4 individuals are selected simultaneously. [23]

Tournament Selection. This method consists in randomly selecting k indi-

viduals, where k is called the size of the tournament group. A tournament is

applied to select among the k individuals the best one. In order to select µ

individuals this procedure must be iterated µ times.
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4.3.3 Reproduction

In the previous section we have described how the individuals could be selected

to be parents of the next generation. After this selection has been performed,

variation operators are applied to generate the offspring. Those operators are

subdivided into two groups: mutation (unary operator) and recombination

or crossover (binary operator).

Mutation

Mutation operators are unary operators that work on a single individual and

that could also affect only one gene at a time. The probability of mutation pm is

often set to 1/k where k is the number of decision variables, which corresponds

to only one mutated variable in average. When a mutation operator is designed

it must respect some characteristics:

• Ergodicity: it should allow to reach every solution of the search space;

• Validity: the solutions produced by the operator must be valid;

• Locality: the mutation should produce a minimal change.

When we work with finite alleles we could distinguish three main classes of

operators: in binary representation the flip operator is the most commonly

used; in discrete representation the mutation consists in changing the value

associated with an element with another value of the alphabet; in order-based

representations are usually applied permutations based on swapping, inversion

and insertion.

When instead we work with real-valued vectors the most used class of mutation

operators has the form:

x′ = x+M

where M is a random variable. The value M could have different forms. In case

of uniform random mutation the value is chosen uniformly random within

the interval [a, b], with a, b ∈ R. In case of normally distributed mutation

it is used a Gaussian distribution M = N (0, σ) where N (0, σ) is a vector of

independent random Gaussian numbers with mean 0 and standard deviation σ.

Other mutation operators could involve polynomial probability distributions or

other well-known distributions like the Cauchy or Laplace.
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Recombination or Crossover

The crossover is a binary operator whose main role is to inherit some character-

istics of the two parents to generate the offspring. Also in this case we can list

some characteristics that should be respected:

• Heritability: some genetic material from both the parents should be

inherited. If we work with a pure recombination operator strong heritability

is satisfied (i.e. two identical individuals generate identical offspring). In

our case instead we work with both mutation and crossover and so some

diversification is introduced in the parents.

• Validity: the solutions generated should be valid.

A crossover operator Ox is respectful if the common decisions in both parents

are preserved in the offspring. It is denoted as assorting if the distance between

the parents (p1, p2) and the offspring o is lower or equal to the distance between

the parents:

d(p1, o) ≤ d(p1, p2) ∧ d(p2, o) ≤ d(p1, p2) ∀o ∈ O(p1, p2, Ox)

where O(p1, p2, Ox) is the set of all possible offspring generated by the crossover

operator Ox.

When we define a crossover operator we have to choose a crossover rate pc ∈ [0, 1]

that represents the proportion of parents on which the operator will be applied.

We recall now some of the widely used crossover techniques.

n-Point crossover. The simpler crossover operator is the 1-Point crossover.

In this case a site t in the string is randomly chosen, then two offspring are

created by interchanging the two segments of the parents. For example if we

have two individuals ABC|DEFG and abc|defg the children will be ABC|defg
and abc|DEFG.

Generalizing in the n-Point crossover, n crossover sites are selected. Thus if

we apply for example a 2-point crossover to the strings A|BCD|E and a|bcd|e,
we will obtain A|bcd|E and a|BCD|e as offspring. A general example in binary

case is displayed in [Fig.4.6].

Working with crossover we could easily fall into disruption. If we consider a

1-point crossover and suppose that the elements A and E are coadapted, namely

their presence provide benefits to the individuals, then if we consider the string

ABCDE we highlight that in most of the offspring the coadaptation will be

lost because the cutting point will fall between the two elements. Another
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Figure 4.6: n-Point crossover. In the picture are shown respectively an
example of 1-Point crossover (on the top) and 2-Point crossover on a binary
string. The cross sites are chosen randomly. [23]

example could be given by AA|BBCC and BB|AACC which could produce the

individual AAAACC that contains only two groups out of three. The solution

generated doesn’t share the same good schemata of the parents and so it may

produce very low-quality individuals from high-quality solutions.

Uniform crossover. In the case of uniform crossover two individuals are

recombined without choosing a cut point. Each parent contributes equally to

generate offspring, each gene is selected randomly between the respective gene

of the two parents. A simple example is shown in [Fig. 4.7]

Figure 4.7: Uniform crossover. Example of simple uniform crossover with
binary strings. Each gene is selected randomly between the respective genes of
the two parents. [23]

Permutation crossover operators. The previous crossover will not always

generate feasible solutions. If we consider strings that could only be permutations

of the previous one, applying classical crossover operators we will easily generate

solutions that are not permutations and are so unacceptable. To avoid this

problem some permutation crossover operators have been introduced, based on

the definition of a certain mapping system between the two parents (e.g. Order

crossover, Partially mapped crossover). We won’t dwell on this class of operators

45



4 – Background on Metaheuristics

further since they are not useful for our work, but more details should be found

in [23].

4.3.4 Replacement strategies

Since we consider a constant size of the population, after the generation of the

offspring we have to choose which elements will belong to the new generation

and so become the initial population of the following step. We can use here some

of the selection strategies explained in section 4.3.2 to withdraw individuals. The

extreme replacement strategies are:

• Generational replacement. In this case the parents population is com-

pletely replaced by the offspring one.

• Steady-state replacement. In this case at each iteration only one

offspring is generated and added to the population in place of the worst

individual among the parents.

Between these two cases there are many intermediate solutions in which we

replace a given number λ of individuals of the parents population with 1 < λ < n,

where n is the population size. The individuals from parents and offspring

populations should be chosen according to elitist strategy, which means that

only best individuals are selected. This approach leads to a faster convergence.

Even if it could cause premature convergence, it may be necessary to avoid the

sampling error problem.
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Proposed methods

As anticipated in chapter 2, we focus our attention on the optimization problems

characterized by black-box and expensive to evaluate objective functions with

discrete variables. Starting from Bayesian Optimization literature, summarized

in chapter 3, we combine it with Metaheuristics strategies to design two possible

improving algorithms. In the first one, called LSBO, we join BO with Local

Search Metaheuristics to provide a better exploration of the search space. In

the second one, called GBO, we mix BO and Genetic Algorithm to take into

account both the space structure and the correlation among variables.

From a technical point of view both the algorithms are implemented in Python

and are based on two libraries:

• BoTorch, a library for Bayesian Optimization research built on top of

PyTorch. It provides a modular and easily extensible interface for com-

posing Bayesian Optimization primitives, including probabilistic models,

acquisition functions and optimizers.

• GpyTorch, a library for efficient and scalable GPs implemented in PyTorch

and integrated in BoTorch library. We use it to be able to define all the

GP parameters independently.

The employment of those libraries is fundamental in terms of scalability, mod-

ularity and speed, related to the fact that they utilize GPU acceleration and

state-of-the-art inference algorithms.
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5.1 General Assumptions

Before describing the algorithms structure we summarize the main assumptions

we take on the optimization problem

max
x∈X

f(x)

• The objective function f : X −→ R is a black-box function, expensive

to evaluate in terms of time and cost;

• We work with d variables and so x = (x1, . . . , xd) ∈ X is a d-dimensional

vector which takes values from the set of feasible solutions X ;

• Each variable xi is supposed to take values from a discrete finite alphabet

A of cardinality t. Therefore, the configuration space X = Ad consists of

td points.

We infer on the configuration space a simple grid structure, that is so reflected

in a d-dimensional hypercube. The graphical representation for one (line) and

two variables (square grid) with t = 4 is given in [Fig. 5.1].

(a) (b)

Figure 5.1: Graphical representation of the configuration space in the case of
one variable x (a) and two variables x1 and x2 (b). Each blue point indicates a
feasible configuration. The integers {0, . . . , 4} represent the admissible alphabet.

The search space structure will be defined in details later for each of the following

algorithms since it depends on the neighbourhood definition.

When we define the neighbourhood for a given point we have to define a proper

metric. In our algorithms we will consider the distance induced by the l1−norm,

i.e. the L1-distance, defined as follows.
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Definition 5.1.1 (L1-distance). Given two vectors x, y ∈ X , the L1-distance

5d1 : X × X −→ R+ is defined as:

d1(x, y) = ‖x− y‖1 =
∑
i

|xi − yi|

Considering a Cartesian system it is the sum of the lengths of the projections

of the segments between the two points onto the coordinate axes. This metric

is also known as Manhattan distance or Taxicab Geometry since it is the

distance you would need to walk in a city like Manhattan since must stay on the

streets and can’t cut through buildings.

In addition to take into account the correlations among variables we infer on

them a graph structure C = (V, E ,W ), where:

• V is the set of nodes. Each node corresponds to a variable xi of the problem,

and so |V| = d.

• E ⊆ V × V is the set of edges. The presence of a link between variables i

and j in the graph indicates that xi influences xj .

• W ∈ RV×V+ is the weight matrix. We know that Wij > 0 if and only if

(i, j) ∈ E and in particular in our case Wij indicates the correlation among

the variables.

We consider a directed and weighted graph, so the matrix W is not symmetric,

i.e. the correlations between the variables could be different in the two directions.

In the algorithm definition we suppose that our a priori knowledge includes only

the configuration space X and the matrix of weights W , no training data are

provided. Since f is a black-box function we have no information about its

properties but it is always possible to know its value at each point x ∈ X .

5.2 LSBO Algorithm

The first algorithm we introduce is the Local Search Bayesian Optimization

(LSBO) in which we maintain the general structure of the BO Algorithm but

we introduce a different space exploration in acquisition function optimization.

As known from the theory described in chapter 3 the BO Algorithm is charac-

terized by two main components:
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• the surrogate model, which we assume to be a Gaussian Process

f(x) ∼ GP(µ0(x), k(x, x′))

with constant mean µ0 and RBF kernel

k(x, x′) = exp

(
−‖x− x

′‖22
2l2

)
where ‖·‖22 is the Euclidean distance and l is the characteristic length scale.

• the acquisition function. We will evaluate both the Expected Improve-

ment(EI) defined as

EI(x) =

(µ(x)− f(x∗))Φ(Z) + σ(x)φ(Z) if σ(x) > 0

0 if σ(x) = 0

where Z = µ(x)−f(x∗)
σ(x) and φ(·) and Φ(·) denote respectively the PDF and

the CDF of the standard normal distribution,

and the Upper Confidence Bound(UCB) defined as

UCB(x;β) = µ(x) +
√
βσ(x).

In standard BO Algorithms with discrete variables the next point to evaluate

is chosen maximizing the acquisition function α(x) on its continuous domain

region Rd:
x̃n+1 = argmax

x̃∈Rd

α(x̃;Dn)

where Dn = {(xi, yi) : i = 0, . . . , n}, and then rounding it to the nearest feasible

value x ∈ X .

On the contrary in LSBO Algorithm we evaluate the chosen acquisition function

at a discrete finite set of possible configurations and then take the maximum

among them. This set of points is defined as the neighbourhood of the current

solution currentx. The choice of a proper neighbourhood is important because it

affects the exploration/exploitation of the search space and as a consequence the

general algorithm performance. The neighbourhood definition is implemented in

our algorithm by the function GraphOfTentatives(x,diameter) where x represents

the current solution and diameter indicates the maximum allowed L1-distance

between a neighbour and currentx: e.g. if diameter = 2 in the neighbourhood

we find all the configurations with distance at most 2 from the current solution,
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so supposing to work with 3 variables and that currentx = [0, 0, 0] then both

[1, 1, 0] and [2, 0, 0] are possible neighbours. Changing the parameter diameter

we obtain different search spaces.

Since we have defined the neighbourhood of interest, we have to evaluate the

acquisition function at all its points and choose the one which achieve the

maximum. This is carried out by next config function in our algorithm.

Algorithm 7: next config function for LSBO Algorithm

next config(currentx, diameter):

neigh← GraphOfTentatives(currentx, diameter)

for (x in elements in the neigh) do
Evaluate the acqusition function α at x

end

next x← argmax(α(x) evaluations)

Return next x

The described modification made on BO Algorithm represents the main improve-

ment provided by our LSBO Algorithm. To design it we take inspiration from

Local Search Metaheuristics where:

• the diameter of the neighbourhood must be chosen as a trade-off between

the quality of the solutions reached thanks to better exploration and the

consequent computational complexity.

• Best Improvement is adopted as selection strategy.

The main steps of the LSBO Algorithm are summarized in Algorithm 8.

Algorithm 8: LSBO Algorithm

xtrain ← ntrain randomly selected training points

ytrain ← Evaluate the function f at xtrain

Train the GP model on (xtrain, ytrain)

currentx ← current best configuration

for k < niterations do
Generate currentx neighbourhood neigh

xnext ← argmaxneigh(acq.function)

ynext ← Evaluate f at xnext

Fit and update model and data with (xnext, ynext)

currentx ← xnext
end

Return configuration x which maximizes the objective function f
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Since we suppose that no initial training dataset has been provided, the algorithm

is characterized by an initial training phase in which we randomly select ntrain

configurations xtrain, we evaluate the black-box function f at them to obtain

ytrain and finally we train the Gaussian Process on the couple (xtrain, ytrain).

Before starting algorithm iterations we set as starting point the current best

configuration, selected among the ones evaluated in training phase. Then, at

each iteration, we generate the neighbourhood of the current solution through

GraphOfTentatives function and we use next config function to select the next

to evaluate point. The model is updated with the couple (nextx, f(nextx)) and

nextx becomes the starting point for the following iteration.

The procedure is iterated for a prefixed number of times niterations.

To avoid waste of computational time, before evaluating the function f at the

new candidate solution, we check if it has already been evaluated in the past, in

that case we skip to the next iteration. Finally the best configuration is selected

as the one which maximizes the objective function.

5.3 GBO Algorithm

The second algorithm we introduce is the Genetic Bayesian Optimization

(GBO). We know that a proper space exploration is a fundamental component

in Optimization Algorithms. In this case to improve it we base on both the grid

structure of the configuration space and the graph structure of the variables to

take into account the correlation among them.

As we have done for the LSBO Algorithm we keep the general structure of the

Bayesian Optimization with Gaussian Process surrogate model and EI / UCB

acquisition function. Also in this case our contribution occurs in the choice of

the next to evaluate configuration, for which we introduce some notions about

Genetic Algorithms. As before we don’t want the acquisition function to be

evaluated and maximized on a continuous domain region, thus we have to define

a proper neighbourhood. In LSBO Algorithm, based on Local Search theory

and so on Single-Solution Based Metaheuristics, it was simply generated starting

from a single point currentx. Instead in GBO Algorithm, based on GA and so

on Population-Based Metaheuristics, we work, at each step, with a subset of

parents on which we apply some variation operators to generate offspring. All

these individuals build the next generation which represents in this case the set

of configurations at which we will evaluate the acquisition function to choose

then the next to evaluate point.
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We describe at first the method used to select the configurations that will

be parents of the next generation (selection method). To do this we have to

identify a fitness function to evaluate the quality of a given solution, in fact, as

known from theory, ”the better is an individual, the higher is the chance of being

parent”. Given that we consider a general problem, for the sake of simplicity,

we assume the fitness function to coincide with the objective function f .

As selection method we focus on a nearly elitist strategy. We select the parents

as follows:

• we take the best best k configurations from the already evaluated ones in

terms of fitness;

• one configuration randomly generated;

• the current solution currentx.

To avoid premature convergence into local optima, we always consider the current

solution and a randomly generated configuration in order to guarantee a wider

exploration of the space. In our simulations we focus on tuning best k parameter

considering a trade off between evaluation time and algorithm performance and

finally we set it to best k = 10.

The selected configurations are the parents of the next generation and pro-

duce the offspring (reproduction phase) thanks to the application of mutation

and recombination operators.

Mutation. Mutation operators are unary operators which work on one single

individual and that can affect only one gene. From theory we know that they

must respect the properties of ergodicity (every solution of the search space should

be reached), validity (the solutions produced must be valid) and locality (the

mutation should produce a minimal change). In our case the mutation applied

to a selected parent is the same that we describe in the generation of solution

neighbourhood for the LSBO Algorithm by the function GraphOfTentatives.

So given a parent all the children generated by the mutation operator are the

configurations which are distant only one from the currentx in the L1 metric.

Recombination or Crossover. Crossover operators work instead with two

parents to generate the offspring and have the peculiarity to preserve some of

their characteristics or schemata. When we define a crossover operator it has to

respect the properties of validity (the solutions must be valid) and heritability
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(some genetic material from both the parents should be inherited). We work in

particular with a n-Point crossover, in which n crossover sites are chosen (e.g.

if we consider A|BCD|E and a|bcd|e as parents, the offspring will be A|bcd|E,

a|BCD|e). The crossover sites are not chosen randomly but take account of

the graph structure associated to problem variables. The basic idea is to merge

together the nodes of the graph with high correlation so that they create a

schemata that must be inherited by the offspring generation not to lose the

quality improvements, provided by this one, cause to space exploration. The

idea is implemented in few steps:

• We generate a transformed weight matrix W ′ ∈ RV×V+ such that

W ′ij =

Wij if Wij ≥ C

0 if Wij < C
∀i, j ∈ {1, . . . , d}

where C ∈ R+ is the chosen threshold for correlation.

• We define the connected components of the new graph C′ = (V, E ,W ′),
that are the maximal subsets of nodes V1, . . . ,Vh of the node set V such

that for every pair of nodes (i, j) in the same connected component there

exists a path from i to j. Then we collapse all the nodes belonging to the

same connected component in a ’supernode’. Each of these supernodes

represents a building block that we want to preserve.

Therefore, for each pair of parents, the children are generated taking one supern-

ode at a time and switching the corresponding schemata (traditional 2-point

crossover strategy). A simple graphical example is represented in [Fig. 5.2].

The neighbourhood of our problem coincides with the new generation made

by all the children generated both from mutation and crossover operators. The

parents are completely replaced by the offspring and so we are in the case of a

generational replacement strategy.

The next to evaluate point xnext is chosen as the neighbour which maximizes

the acquisition function α(x).

Both the steps described, the neighbourhood generation and the next candidate

solution selection, are implemented in our algorithm in next config function.

Apart from this, the general algorithm for GBO coincides with the pseudo-code

described in Algorithm 8 for LSBO.

Going more into detail we have to highlight that we implement two versions of

the next config function. The first one, summarized in Algorithm 9, applies at

each algorithm iteration, all the steps previously described for the neighbourhood
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Figure 5.2: Graphical representation of 2-point crossover strategy applied on
the graph C′. In this examples the two children generated by the recombination
applied on supernode 2.

generation. It requires many acquisition function evaluations and so it is more

expensive with respect to the LSBO Algorithm.

Algorithm 9: next config function - All Genetic

next config(currentx, diameter, bestk):
parents← (bestk configurations, currentx, random configuration)
Mutation: childrenmut ← GraphOfTentatives(parents, diameter)
for (each pair (x1, x2) in parents do

Generate childrencross through crossover
end
neigh← (childrenmut, childrencross)
for (x in elements in the neigh) do

Evaluate the acqusition function α at x
end
next x← argmax(α(x) evaluations)
Return next x

The second one, summarized in Algorithm 10, alternates the LSBO and GBO

strategies of neighbourhood generation. Since the Genetic method implies a

wider space exploration and a consequentially higher computational cost, we

applies it only every 10 steps. All the other times we use the Local Search

method which simply analyses the neighbourhood of the current solution with

diameter = 1.
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Algorithm 10: next config function - Partially Genetic

next config(currentx, diameter, bestk, iteration):
Return next x if iteration is a multiple of 10 then

parents← (bestk configurations, currentx, random configuration)
Mutation: childrenmut ← GraphOfTentatives(parents, diameter)
for (each pair (x1, x2) in parents) do

Generate childrencross through crossover
end
neigh← (childrenmut, childrencross)

end
else

neigh← GraphOfTentatives(currentx, diameter)
end
for (x in elements in the neigh) do

Evaluate the acqusition function α at x
end
next x← argmax(α(x) evaluations)

5.4 Application: Binary Quadratic Programming

We first apply our methods on a Binary Quadratic Programming (BQP) prob-

lem. The aim of BQP problem is to maximize a quadratic function with l1

regularization:

f(x) = xTQx− λ‖x‖1

over X = {0, 1}d with d number of variables.

The matrix Q ∈ Rd×d is a measure of correlation among variables, so it must

be a PSD matrix. If we infer a graph structure on the problem variables we

deduce that such graph will be indirect if the matrix is symmetric PDS, direct

otherwise. The parameter λ represents a penalization term.

Given that the problem search space is quite small (2d points, with d number

of variables), we can easily solve the real problem to find the real expected

optimum. In order to make proper comparisons we implement:

• Standard Naive BO algorithm with EI acquisition function, chosen as

reference benchmark;

• LSBO Algorithm with diameter equal to 1 and UCB acquisition function;

• LSBO Algorithm with diameter equal to 2 and UCB acquisition function;
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• GBO Algorithm with All Genetic Steps and EI acquisition function;

• GBO Algorithm with Partially Genetic Steps and EI acquisition function.

The selection of algorithm parameters is not arbitrary, but it is the result of

wider tuning and analysis led during experimental phase. Given that BQP wants

to be just a theoretical example, we report here just the most significant results.

In the simulations we made we considered nvars = 12 binary variables, an initial

training set of 20 configurations, randomly chosen, and we fixed the maximum

number of algorithm iterations to niter = 50. The Q matrix of the problem is

generated as a random symmetric positive-definite matrix, built using scikit-learn

Python library. We recall that the Qij element is referred to the correlation

between variables i and j and it can assume values in the interval [−1, 1]. In

order to build the transformed weight matrix W ′ required by the GBO algorithm,

we choose as threshold C = 0 to eliminate the edges of the graph associated to

negatively correlated variables. Then the supernodes are designed extracting

the connected components of the new graph, thanks to scipy Python library.

The results displayed refer to 100 simulations of the same algorithm, in order

to make some proper statistical analysis. The real optimum is reached by the

selected algorithms with the following frequency:

Naive BO 81/100

LSBO diameter 1 99/100

LSBO diameter 2 99/100

GBO Partially Genetic 94/100

GBO All Genetic 100/100

The plot in [Fig. 5.3] displays the optimum reached by the algorithms when

the real optimum, indicated by the dashed blue line, is not found. Here we

highlight that when the LSBO misses the real optimum the error is higher than

in the other cases (46.8%), but the frequency is extremely low, equal to 1 out of

100. On the other hand the average error reached by the standard NaiveBO is

about 1.9%, while the one of GBO with Partially Genetic steps is about 0.55%.

Another important parameter is given by the number of iterations required

by the algorithm to reach the optimum. The objective function of the problem is

supposed to be an expensive to evaluate black-box function and so it is essential

to minimize the number of evaluations. The results are shown in [Fig. 5.4].

Looking to this performance parameter the best algorithms are the LSBO and

secondly the GBO with all genetic steps. On the contrary the GBO with Partially

Genetic steps reaches results comparable to the ones of standard NaiveBO.
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Finally we have to compare the algorithms in terms of computational time

required. The benchmark is given by the NaiveBO characterized by an average

computational time of 2.97s (the results refer to 50 iterations of the algorithm

trained on a training set of 20 data points). The LSBO algorithm, with diameter

equal either to 1 or 2, performs better than the NaiveBO, with an average time

of 2.75s. The GBO is characterized by a wider space exploration compared to

the other algorithms and it is reflected on the average computational time, equal

to 6.38s for the Partially Genetic and to 36.19s for the All Genetic.

Figure 5.3: Best optimal value reached by the algorithms when the real optimum
is not found. The dashed blue line indicated the real problem optimum.

Figure 5.4: Number of iterations, i.e. function evaluations, to reach the optimum.
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Chapter 6

Case Study:

Mobile Networks

Mobile networks provide nowadays much more sophisticated services and are

becoming more and more complex. Their environment changes constantly and

dynamically due to different reasons [7] like exponential growth of traffic over

the years, variable traffic load, dynamical radio propagation conditions, mal-

function/insertion/deletion of stations, errors made in planning phase, temporal

and spatial users distribution. Networks must be able to be adapted to all these

circumstances in an efficient way. The traditional approach is based on manual

intervention led by specialists on the network which is a highly complex and time

and cost consuming task. The aim of our analysis is to provide an automated

optimization solution that, relying on real-time measures and key performance

indicators, proposes the optimal network configuration.

6.1 General Mobile Network Structure

The mobile network is modelled dividing the territory of interest into elemental

areas called cells which are served by a particular base station [Fig.6.1]. For

simplicity reasons, each cell can be geometrically approximated to a hexagon, even

if it is not always like that due to inconsistent radio propagation characteristics

and uneven environmental landscape. In general not all the cells cover the same

area: smaller cells are necessary to cover areas with high density of users, while

in areas with lower density of users cells with larger radius could be used.

As shown in [Fig. 6.1] each base station is equipped with three directional
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antennas and so it is able to cover a sector made by three cells. This strategy,

called sectorization, allows to reduce the number of needed base stations in the

network resulting in a reduction of costs.

Figure 6.1: Mobile network structure.[7]

The design of each antenna of the base station is important because it is

responsible for transforming the energy from the circuit into radiation energy.

The tilt of the antenna influences the direction of the radiated electromagnetic

energy and therefore it can be used to optimize coverage and capacity of the

network depending on its needs in a particular moment. The antenna tilt,

represented in [Fig. 6.2 ] is defined as the angle between the direction of the

main beam of the antenna pattern and the horizon. Another important factor is

represented by the half-power beam width(HPBW). As highlighted in the figure

it is the angular separation in which the magnitude of the radiation pattern

decreases by 50% (or -3dB) from the peak of the main beam. In other words,

the beam width is the area where most of the power is radiated.

Figure 6.2: Graphical representation of a base station and one of its antenna.
The main lobe of the antenna radiation pattern defines the antenna tilt. [7]
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There are two possible types of tilts simultaneously present: the mechanical

tilt and the electrical tilt. The total tilt angle is defined as the combination

of the two:

Θtilt = Θmechanical + Θelectrical

For the mechanical tilt antenna elements are physically directed towards the

ground. Instead, for the electrical tilt the modification is obtained changing the

signal phase of each element of the antenna.

(a) Mechanical Tilt (b) Electrical Tilt

Figure 6.3: Mechanical and electrical tilt modification. In the mechanical tilt
the antenna elements are physically modified, while in electrical tilt we act only
on the signal phase of the different elements. [Image taken from telecomHall]

Figure 6.4: Radiation pattern for mechanical and electrical tilt. In particular, the
picture shows the pattern in the horizontal (or azimuthal) plane of an antenna
with an azimuth HPBW of 65◦ and an elevation HPBW of 7◦. [14]

We can apply two kind of actions on the antenna: it can be up-tilted, which
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means that the change in the angle is negative, or down-tilted towards the

ground, which correspond to a positive change in the angle. Adjusting the

mechanical tilt requires a visit to the site, which is inefficient both in terms of

cost and time. In addition, another drawback of the mechanical down-tilt is that

coverage isn’t reduced uniformly, but it is reduced more at bore sight and less

towards angles, as explained in the radiation pattern. For these reasons usually

the mechanical tilt is set during installation and setup phase. On the contrary

the electrical tilt could be adjusted periodically through remote operation and

therefore we focus the attention on it.

6.2 Case Study Problem Description

In the thesis case study we focus the attention on a Mobile Network system

located in an area of interest proposed by TIM group which involves a city of

medium dimensions and its surrounding suburbs. Here are located 63 cells but

only 12 of them are adjustable, due to some peculiarities of the case study. Each

cell is associated to an antenna which can take 5 different values related to the 5

admissible values of its electrical tilt. Thus our problem consists of 12 variables

and the domain is a discrete set of 512 points.

The goal of the optimization problem is to find the best configuration for the

adjustable cells in terms of tilt values. The quality of a configuration is computed

considering a set of parameters identified by a group of telecommunications

experts. These parameters values are provided by a simulator of the model,

supplied by the TIM group, that we will consider as an expensive black-box

function. In the following work we will refer to this simulator as Oracle.

All those parameters are then properly combined to define the target or reward

function of the problem.

A more detailed analysis should take into account also some supplementary

information related to the interference between cells which has not been

taken into account in the reward function definition. From the theory on antennas

we know that their working principle is based on electromagnetic radiations. If

there is an interaction between two cells their radio-electrical coverage could

be mutually influenced by a mutation of one of the two tilt configurations. An

abstract of the summary of electromagnetic adjacencies provided by the firm is

shown in [Fig. 6.5].

The goal of our work is to provide optimal coverage and capacity for the radio

network of interest. As described in Section 6.1, the configuration of antennas

may become obsolete over time due to different reasons, so it is necessary to
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Figure 6.5: Short abstract of the summary of electromagnetic adjacencies between
cells of the area of interest.

adjust it. In particular, for each antenna we have to choose among the admissible

values of the electrical tilt the one which provides the best improvement in

the reward function. To evaluate the quality of a solution we have to question

the Oracle about the configuration of interest. Since this is an expensive to

evaluate function we have to minimize the number of algorithm calls, ensuring a

satisfiable algorithm performance. Given these conditions, a proper choice would

be to solve the problem using a Bayesian Optimization strategy for discrete

variable problems. Furthermore we are in the right setting to apply our proposed

methods.

6.3 Results

We apply on the case study problem both a state-of-the-art method, used as

benchmark, and our proposed ones (LSBO and GBO).

As known it has not been provided a dataset on which training our model, so

we fix 100 iterations for training, we train the model using them and then start

optimization steps. The stopping criterion used in all the algorithms tested is

the achievement of the maximum number of steps n next, setted to 400.

We highlight that the black-box function is represented by the call of the Oracle.

In the simulations we work with an artificial Oracle simulated through Random

Forest Regressor by a given dataset. Despite that in real life application each

Oracle call requires about 1 minute to give the result for the evaluation of the

proposed configuration and so it represents our bottleneck.

Even if we work with a black-box function our simulations are created so that

the optimum is given a priori in order to be able to analyse the goodness of our

algorithm and make comparisons. To do this we consider in particular:

• the best reward (objective function value) obtained among the algorithm

iterations;
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• the configuration which provide the best reward and the number of tilts

which differ from the optimal configuration given;

• the effective number of Oracle calls which provides a measure of expensive-

ness of the algorithm;

• the number of iterations needed to reach the optimum, from which we

deduce if the algorithm got stuck on a local optimum.

In order to make some proper statistical analysis we will consider 200 iterations

of the same algorithm each time. It is used the same randomly generated dataset

of 200 iterations of 100 training configurations each for all the algorithms tested

to make comparisons possible.

6.3.1 Naive BO Algorithm

The state-of-the-art method we focus on is the Naive BO Algorithm, the simplest

approach used to adapt BO Algorithms to discrete variables. We recall that

it consists in rounding the real value obtained from the acquisition function

maximization to the closest admissible integer before evaluation. Despite the

simplicity of this algorithm its main drawback is linked to the fact that generally

it leads to sub-optimal solutions and to repetitions of already evaluated points.

In the definition of the Bayesian Optimization method for Naive BO Algorithm

we build:

• a Gaussian Process referred in the code as CustomGP. It is made by

an ExactGP from GPyTorch models with constant mean and squared

exponential/Matern kernel.

• the acquisition function imported by BoTorch library, notably we will

adopt the Expected Improvement (EI). To select the next point to eval-

uate we use the optimize acqf function with bounds [0, 4] for all the 12

variables. The new point is then rounded to the nearest integer before

model evaluation.

We simulate the Naive BO algorithm on the case study both with RBF (squared

exponential) kernel

k(x, x′) = exp

(
−‖x− x

′‖22
2l2

)
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where ‖·‖22 is the Euclidean distance and l is an hyperparameter known as

characteristic length scale, and Matern kernel with ν = 5
2

kν=5/2(x, x′) =

(
1 +
‖x− x′‖

√
5

l
+

(x− x′)2

3l2

)
e−
‖x−x′‖

√
5

l .

The results comparison is displayed in [Fig.6.6] which represents respectively the

density distribution of the best reward reached and the number of misclassified

tilts. The values displayed are obtained taking the values associated to best

result reached at each algorithm iteration.

(a) (b)

Figure 6.6: Comparison between the results obtained for the NaiveBo Algorithm
with RBF and Matern Kernel. Figure (a) and (b) are referred respectively to
best reward distribution and to the number of misclassified tilts.

From these plots we observe that RBF tends to perform a bit better in terms of

best reward reached but in the meanwhile it performs worst than Matern Kernel

in terms of number of misclassified tilts. This can be justified by the topological

structure of the search space.

We can summarized these data using quantiles as described in Table 6.1 and 6.2,

respectively for RBF and Matern kernel.

0.25 quantile 0.5 quantile 0.75 quantile
best reward 0.87591 0.87778 0.87945

# of misclassified tilts 4 5 6

Table 6.1: Summary of the quantiles associated to best reward distribution and
number of misclassified tilts in Naive BO Algorithm with RBF kernel.
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0.25 quantile 0.5 quantile 0.75 quantile
best reward 0.87589 0.87770 0.87951

# of misclassified tilts 3 5 6

Table 6.2: Summary of the quantiles associated to best reward distribution and
number of misclassified tilts in Naive BO Algorithm with Matern kernel.

Recalling that the best optimum reward value is assumed to be equal to 0.88132,

the average error rate reached is equal to avg(err) = 0.00391 (min = 0.00013,

max = 0.01207) for the RBF kernel and to avg(err) = 0.00387 (min = 0.00013,

max = 0.01041) for the Matern kernel.

In [Fig.6.7] are displayed the results related to the number of iterations needed

to reach the optimum and the number of effective Oracle calls for the Naive

BO with Matern kernel. These two measure should help us in the evaluation

of the algorithm. We deduce that in general NaiveBO doesn’t stuck in a local

optimum at early stages but despite that it doesn’t succeed in reaching the

global optimum.

(a) (b)

Figure 6.7: Results of the simulation for 200 iteration of the Naive Bo Algorithm
with Matern kernel. In (a) it is shown the number of iterations needed to reach
optimum, in (b) the number of effective Oracle calls.

6.3.2 Other Existing Algorithms

In chapter 3.2 many other methods have been enunciated. Some of them solve

the problem of working with discrete variable changing the surrogate model

of the method and working with Tree-based models. This is the case of the

TPE, which works with a tree-based structure, and of SMAC, based on Random
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Forests, i.e. a proper combination of trees. Despite that in our case study we

don’t apply any of them. The main reasons are related to their most relevant

drawbacks, described in [4], [5].

• Although they need less time to be evaluated, they require many iterations

to converge to an optimal solution. Given that the expensive black-box

function represent our bottleneck, this is a non negligible limit.

• In addition they are generally less efficient in search with respect to GP.

Their lack of accuracy is due to the fact that they don’t model interactions

between variables. In particular TPE ignores the recently proposed points

and relied on the stochasticity of underling functions. In our proposed

methods, LSBO and GBO, the correlation among variables cover a central

role and so the comparison with those methods would be inefficient.

6.3.3 LSBO Algorithm

We consider now the proposed LSBO Algorithm. The following simulations

take into account different parameters settings involving both the parameter

diameter, characteristic of the algorithm designed, and the components of the

BO structure (GP model and acquisition function).

Firstly we consider a neighbourhood with diameter equal to 1, i.e. neighbours

could differ at most for 1 tilt from the current solution, and we compare the

results obtained with the two acquisition function selected, EI and UCB.

(a) (b)

Figure 6.8: Results of the simulation for the LSBO Algorithm with diam = 1.
The acquisition function used is the Expected Improvement. In (a) it is shown
the best reward distribution, in (b) the number of misclassified tilts with respect
to the optimum configuration known a priori.
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In [Fig. 6.8] are represented respectively the best reward distribution and the

histogram of the number of misclassified tilts. The results can be summarized

evaluating the quantiles like displayed in Table 6.3.

0.25 quantile 0.5 quantile 0.75 quantile
best reward 0.87663 0.87852 0.87975

# of misclassified tilts 2 4 6

Table 6.3: Summary of the quantiles associated to best reward distribution
and number of miscalssified tilts in LSBO Algorithm with diam = 1 and EI
acquisition function.

Recalling that the maximum reward is equal to 0.88132, in this case we obtain

an average error equal to avg(err) = 0.00319 (min = 0.00015, max = 0.01242).

Compared to the results obtained for the Naive BO algorithm, summarized

in tables 6.1 and 6.2, we highlight that we reach an improvement in terms of

quantiles and average error rate, whereas the performance seems to be quite

worst on the queues (max error rate: Naive BO = 0.01207 (RBF) / 0.01041

(Matern) vs Single Step = 0.01242).

(a) (b)

Figure 6.9: Results of the simulation for the LSBO Algorithm with diam = 1.
The acquisition function used is the Expected Improvement. In (a) it is shown
the number of iterations needed to reach optimum, in (b) the number of effective
Oracle calls.

If we consider now the results shown in [Fig. 6.9], looking to the number of

effective Oracle calls displayed in sub-figure (b), we deduce that we have a wider

space exploration, but in the meanwhile sub-figure (a) highlights that there is a

non-negligible probability to reach the optimum1 in fewer iterations.

1We refer here to the optimum reached by the algorithm, not to the real global optimum.
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We try to modify the chosen acquisition function and compare the results

obtained for the Expected Improvement and the Upper Confidence Bound.

(a) (b)

Figure 6.10: Comparison between the results obtained for the LSBO Algorithm
with diam = 1 and EI(orange) / UCB(green) acquisition function. Figure (a)
and (b) are referred respectively to the best reward distribution and to the
number of misclassified tilts.

The UCB performs better both in terms of best reward reached and number of

misclassified tilts, as highlighted in [Fig. 6.10]. Even if the EI finds the exact

optimal configuration with a higher frequency than the UCB, this is not reflected

in terms of best reward distribution. This could be due to multimodality2 of the

black-box function.

Looking to [Fig. 6.11] we observe that UCB acquisition function (setted with

parameter β = 1) leads to a limited space exploration compared to EI, while the

number of iterations needed to reach optimum is condensed on higher values.

This means that during algorithm iterations the UCB tries to evaluate an already

evaluated point many times, but despite that the results reached are better as

seen in [Fig. 6.10].

Another parameter that we could try to work on is the diameter which influences

the exploration rate. From theory we know that use an higher diameter value

is better in terms of exploration because it avoids to stuck in local optima but

it also implies a higher evaluation time. At first we run the algorithm with EI

acquisition function. The quantile results are summarized in Table 6.4.

The quantile results outperform the previous ones reaching an average error

avg(err) = 0.00205 (min = 0.00014, max = 0.00843).

As before we try to change the acquisition function and compare the results

2A function is said multimodal if it has multiple local optima.
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(a) (b)

Figure 6.11: Comparison between the results obtained for the LSBO Algorithm
with diam = 1 and EI(orange) / UCB(green) acquisition function. Figure (a)
and (b) are referred respectively to the number of iterations needed to reach
optimum and to the effective number of Oracle calls.

0.25 quantile 0.5 quantile 0.75 quantile
best reward 0.87859 0.87955 0.88112

# of misclassified tilts 1 3 4

Table 6.4: Summary of the quantiles associated to best reward distribution
and number of misclassified tilts in LSBO Algorithm with diam = 2 and EI
acquisition function.

obtained in order to select the better parameters setting. In [Fig. 6.12] are

displayed the results for the LSBO Algorithm with diameter 2 and acquisition

function EI (orange) / UCB (green). In this case both in terms of distribution

of reward and number of misclassified tilts EI could be evaluated as better than

its opponent. Given the results obtained we choose as acquisition function the

UBC in case of diam = 1 and the EI in case of diam = 2. In the comparison we

focus especially on the distribution of best reward reached and on the number

of Oracle call, that we expect to be higher in case of diam = 2 due to the wider

space exploration guaranteed. The outcomes are shown in [Fig. 6.13]. The

results highlight that parameter diam = 2 outdoes the performances obtain by

the same algorithm with diam = 1. Even so, the main cons is related to the

computational complexity of the algorithms: in terms of time per step the LSBO

Algorithm with diameter diam = 2 is 2.83 times more expensive than the one

with diam = 1 on average, as we can see in [Fig. 6.14].
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(a) (b)

Figure 6.12: Comparison between the results obtained for the LSBO Algorithm
with diam = 2 and EI(orange) / UCB(green) acquisition function. Figure (a)
and (b) are referred respectively to the best reward distribution and to the
number of misclassified tilts.

(a) (b)

Figure 6.13: Comparison between the results obtained for the LSBO Algorithm
with diam = 1 and UCB acquisition function(orange) vs diam = 2 and EI
acquisition function(green). Figure (a) and (b) are referred respectively to the
best reward distribution and to the number of effective Oracle calls.

6.3.4 GBO Algorithm

We focus now on the second proposed algorithm, GBO Algorithm, and we make

simulations for both its variants, the All Genetic and the Partially Genetic.

We choose as acquisition function the Expected Improvement which seems to

achieve better results in case of wider space exploration.

Firstly we explain the results obtained through the All Genetic alternative. We
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Figure 6.14: Comparison between the average time spent for each step by the
LSBO Algorithm with diam = 1 (orange) and diam = 2 (green).

recall that is that case at each iteration the neighbourhood is generated applying

mutations and recombinations on the selected parents. The weighted matrix W ,

used by the recombination operator to identify the cut sites, is referred in this

case to the percentage of adjacency between cells and so to the electromagnetic

mutual influence. In other words subsets of cells that highly influence each other

are considered as building blocks in recombinations (i.e. supernodes of the graph

associated to variables). The reason to use this strategy is linked to the fact that

we would avoid to lose through wide exploration the progresses obtained in local

exploitation on properly chosen subsets of variables. The results in terms of best

reward distribution reached and number of misclassified tilts are displayed in

[Fig. 6.15]. In Table 6.5 we summarize the corresponding quantiles.

0.25 quantile 0.5 quantile 0.75 quantile
best reward 0.87881 0.88068 0.88117

# of misclassified tilts 1 2 4

Table 6.5: Summary of the quantiles associated to best reward distribution and
number of misclassified tilts in GBO Algorithm with all genetic steps.

Recalling that the maximum reward is equal to 0.88132, in this case we obtain

an average error equal to avg(err) = 0.00157 (min = 0.00015, max = 0.00789).

Looking to the results associated to the number of iterations needed to reach the

optimum and to the number of effective Oracle calls represented in [Fig. 6.16], we

highlight that we have a non-negligible probability of reaching the optimum with

fewer Oracle calls. Despite that the plot in 6.16a presents a pick corresponding
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(a) (b)

Figure 6.15: Results of the simulation for the GBO Algorithm with all genetic
steps. The acquisition function used is the Expected Improvement. In (a) it is
shown the best reward distribution, in (b) the number of misclassified tilts with
respect to the optimum configuration known a priori.

to the maximum number of available iterations. This indicates that with a fairly

large frequency the candidate solution proposed by the algorithm at each step

coincide with an already evaluated one, but this doesn’t represent a real limit to

space exploration and the optimum is reached making use of all the available

iterations.

(a) (b)

Figure 6.16: Results of the simulation for the GBO Algorithm with all genetic
steps. The acquisition function used is the Expected Improvement. In (a) it is
shown the number of iterations needed to reach optimum, in (b) the number of
effective Oracle calls.

The second alternative tested is the GBO Algorithm with Partially Genetic

strategy. In this case in the design of the neighbourhood we alternate the Local

73



6 – Case Study: Mobile Networks

Search and the Genetic metaheuristics, in particular we adopt the GA one out

of ten times as widely described in chapter 5. The results in terms of quantile

are summarized in Table 6.6.

0.25 quantile 0.5 quantile 0.75 quantile
best reward 0.87770 0.87937 0.88099

# of misclassified tilts 1 2 4.25

Table 6.6: Summary of the quantiles associated to best reward distribution and
number of misclassified tilts in GBO Algorithm with partially genetic steps.

Related to the known optimum, we compute that the average error rate is in this

case equal to avg(err) = 0.00229(min = 0.00015,max = 0.01129). Comparing

the results obtained for All Genetic and Partially Genetic alternatives, we observe

that the performance of the Partially Genetic one is worst both in terms of

distribution of best reward and of number of misclassified tilts [Fig. 6.17].

Figure 6.18 underlines no conspicuous difference in terms of number of iterations

needed to reach the optimum, but the computational time spent for each algo-

rithm iteration by All Genetic strategy is sensibly higher (3.80 times the one

requested by the Partially Genetic alternative).

(a) (b)

Figure 6.17: Comparison between the results obtained for the GBO Algorithm
with All Genetic steps(orange) vs Partially Genetic steps(green). Figure (a) and
(b) are referred respectively to the best reward distribution and to the number
of misclassified tilts.
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(a) (b)

Figure 6.18: Comparison between the results obtained for the GBO Algorithm
with All Genetic steps(orange) vs Partially Genetic steps(green). Figure (a)
represents the number of iterations needed to reach optimum, while Figure (b)
is associated to the computational time spent for each algorithm iteration.

6.3.5 Algorithms Comparisons

Given a problem of interest, choose the best algorithm is not so simple because

it depends on multiple factors whose weight is submitted to business decisions.

In the following section we report the main comparisons among the previously

implemented algorithms. Their parameters are setted choosing for each the ones

which guarantee the best performances. Thus we will analyse:

• Naive Bayesian Optimization with GP surrogate model, RBF squared

exponential kernel and EI acquisition function;

• LSBO Algorithm with diameter = 1 and UCB acquisition function;

• LSBO Algorithm with diameter = 2 and EI acquisition function;

• GBO Algorithm with All Genetic strategy;

• GBO Algorithm with Partially Genetic strategy.

Firstly we focus on the quality of the solutions obtained, expressed by the

distribution of best rewards reached by each algorithm [Fig. 6.19]. The GBO

Algorithm with All Genetic strategy is the one which guarantee the best results

in term of objective function. More in general all the implemented algorithms

provide an improvement in the results with respect to the considered benchmark.

In [Fig. 6.20] are represented the boxplots associated to the best reached rewards
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Figure 6.19: Comparison among the selected algorithms in terms of density
distribution of best reached rewards.

distributions. From this we highlight that the best performing algorithms are

the GBO with All Genetic strategy and the LSBO with diameter=2.

The simpler version of the LSBO (with diameter=1) has better performances

then the standard Naive BO but in the meanwhile it may reach also worst values

in the left queue.

Figure 6.20: Boxplots associated to the best rewards reached by the selected
algorithms.

In the analysis of solutions quality we focus only on the best reached rewards

(i.e. the objective function value), whereas we ignore the results in terms of

misclassified tilts given that, as previously observed, they are strongly influenced

by the structure of the fitness space.
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Furthermore, another parameter to take into account is the execution time,

which potentially represents a bottleneck of the implemented algorithm. In the

thesis case study is supposed that an Oracle call requires about 1 minute to be

processed, so the average time per iteration can be considered negligible. In

[Fig. 6.21] and in [Fig. 6.22] are represented respectively the distribution of

the average time per iteration and the associated boxplots. The GBO with All

Genetic steps, which is the one which guarantees the best performance, is the

one with highest execution time. The other implemented algorithms instead

outperform the standard Naive BO also in terms of time per iteration.

Figure 6.21: Comparisons among the selected algorithms in terms of execution
time (average time per iteration).

Figure 6.22: Boxplots associated to the average time needed per iteration for
each selected algorithm.
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Chapter 7

Conclusions

In this thesis we address the problem of optimization of expensive-to-evaluate

black-box functions defined on discrete domains. We discuss about the main

existing methods based on Bayesian Optimization and take the Naive BO as a

benchmark for further analyses. Our contribution is to propose two different

approaches to the problem, working on the way of search space exploration.

The literature research on the topic outlines how the main existing methods

develop solutions starting from the main components of the BO and adapt them

to a discrete domain. So, Garrido-Merchan and Hernandez-Lobato [9] propose to

act a transformation on the kernel function of the GP surrogate model, or either

Luong [15] works on the UCB acquisition function. We work in a different way,

preserving the general structure of the Bayesian Optimization and modifying

the manner in which new candidate solution is chosen. Our contribution here is

twofold. On one hand we infer a topological structure, identified by the grid,

on the configuration space. On the other hand we consider the variables as

nodes of a directed weighted graph, where the arcs weights are associated to the

correlations among them. This is distinctive compared to the previously recalled

methods that don’t point out the value of variable correlations.

The results highlight how our proposed methods represent, in the analysed case,

a tangible improvement on Naive BO, both in terms of quality of the solution

and average computational time per iteration. Looking just to the thesis case

study we should deduce that the best performing method is represented by the

GBO with All Genetic strategy. In fact, this obtains best results in terms of

frequency of the achievement of the global optimum, queue distribution and

reward average and first-quartile. The only downside is given by the execution

time, significantly higher than all the other methods, however here it might be
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considered negligible if related to the objective function evaluation time.

Generalizing, the choice of the most suitable method depends on the main

characteristics of the problem or else on the particular business policy. If we have

a limited amount of time available and the function evaluation doesn’t represent

a heavy bottleneck either in terms of time or costs, it might be convenient

to apply the LSBO with diameter setted to 2, which allows increasing the

number of algorithm iterations and so a better space exploration, ensuring

higher performances. On the other hand, if the limit is the number of function

evaluations and we are interested also in avoiding heavy queues, the GBO with

All Genetic approach represents the best choice. In other words a global optimal

method, that satisfies at the same time all the possible needs, cannot be identified,

but it must be selected case by case evaluating all pros and cons.

Future possible improvements include at first the adaptation and test of the

proposed methods on different case studies and simulations, and a detailed

comparison with other existing approaches not yet examined, to provide a

greater statistical relevance to our work. Furthermore it would be challenging to

design and infer a proper graph structure on the entire problem topology, both

on the configuration space and on the variables set.
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