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When I meet God, I am going to ask
him two questions: why relativity?
And why turbulence? I really believe
he will have an answer for the first
one.

W.K. Heisenberg
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Abstract

Starting from the past decades, many engineering domains require an accurate knowl-
edge of Fluid Dynamics problems. Possible examples are car and airfoil designing in the
automotive and aeronautics fields, blood circulation through the cardiovascular system
in bioengineering or the evaluation of wind turbines efficiency in the energetic field.

The first historical way to better understand a physical phenomena was to perform as
much as possible experiments and to take decisions based on their results. However,
sometimes the studied systems are characterized by big length or time scales and, as a
consequence, experiments can be very expensive or even not possible to make. In addition
to that measurement errors, if not correctly detected, can affect significantly the results.

In the sixties, in concomitance with the first calculators, a new field called Computa-
tional Fluid Dynamics (CFD) started to work side by side with experiments. The latter
are not supposed to be substituted by numerical simulations, that need to be tested with
experimental results, but their number can be reduced in order to decrease the costs.
Even if CFD has more than half a century of history, some of its topics are still arguments
of actual research. The Computational Wind Engineering (CWE) is the branch of CFD,
with Civil Engineering applications, that studies the wind effect on buildings.

An important test-case in the CWE community is the characterisation of the flow around
rectangular, and in particular square, cylinders. As a matter of fact an important bench-
mark is the ”Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder (BARC)”.
Despite being the easiest bluff body that can be thought, it is interesting due to the phe-
nomenological complexity of the turbulent flow around it. Moreover this problem has an
application into the study of wind effects on skyscrapers cross-section in Civil Engineering.

CWE computations are based on three aspects that are intrinsically linked to each
other: the turbulence modelling, the interpolations schemes used for the equations dis-
cretization and the grid generation. The latter has been often neglected in literature and
more focus has been addressed on the former two. For this reason, the aim of the thesis
is to understand how the quality of the near wall mesh can effect the simulated results
in CWE computations.



The thesis will be organized as follow:

Chapter 1

This first chapter focuses on the CWE benchmark of flows around rectangular cylin-
ders. For this reason, the first part is devoted to the flux phenomenology around
cylinders. The second part analyses some articles that are useful to understand the
aim of the thesis.

Chapter 2

This chapter will discuss the equations used in CWE and their discretization. More
in particular the Navier-Stokes equations are presented, followed by the most used
turbulence models. Finally the classic interpolation schemes are presented.

Chapter 3

In the first part the main features of the meshes are explained. Their quality and
the errors that they induce in the solution are presented. In the second part a brief
review on quality indices used to measure the grid quality is discussed.

Chapter /

In this chapter the setup of the four simulations is presented. Chapter 1 and 2
are important to understand the turbulence model and the convective schemes that
have been used.

The four near wall grids used in this thesis are illustrated and their differences
discussed with a particular focus on their quality.

Chapter 5

The numerical results are compared looking at different flow fields and quantities
(for example velocity and aerodynamic coefficients) in different regions like the wall
and the wake. The differences between simulations are highlighted and justified in
terms of grid features. When it has been possible literature reference values have
been reported.

Chapter 6

Finally a brief conclusion is presented where the objective and the results of this
thesis are synthesized.
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Chapter 1

Introduction and motivations on
bluff cylinders applications

As expressed in the introduction, this thesis will study the effects of the grid quality on
the accuracy of numerical simulations of a well known CWE test case. Before starting any
discussion about equations to solve or numerical aspects, it is fundamental to understand
the main features of the flow around rectangular cylinders, the scenario in which the
numerical problem is settled. Gradually in the following chapters it will become clear
how this knowledge plays an important role for the setting of the numerical problem.

1.1 Flux phenomenology and associated bulk param-
eters

A body is said to be bluff if its shape is such that the boundary layer detaches early
and the wake region is broad. At the contrary, a body with an attached boundary layer
along the whole surface and with a narrow wake is said to be a streamlined body. This
definition is not referred on the obstacle itself but on the flow topology around it in a
particular setting. As a consequence, the same body can be either bluff or streamline
depending on the problems.

Parameters like the turbulence intensity, the face roughness and the angle of attack play
a major or minor role in the flow features. Maybe the most important one is a physical
dimensionless parameter called Reynolds number. Defining L and U as characteristic
length and velocity, respectively, of the problem and being v the kinematic viscosity of
the fluid, then the Reynolds number reads

Re = — (1.1)

In can be thought as the ratio between the inertial and the viscous effects on the flow.

Its value varies of several orders of magnitude depending on the problem and the flow
topology changes drastically with it.

Let consider the case of the circular cylinder. If its height is sufficiently bigger than

the basis radius, the flow around it can be simplified to a 2D flow around a circle. Firstly,

if Re < 1 the circle is streamlined and the downwind flow is symmetrical to the upwind
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1. Introduction and motivations on bluff cylinders applications

one. By increasing Re, and so the inertial effects, the upstream-downstream symmetry
disappears and with Re ~ 10 two symmetric attached eddies appear downwind the
cylinder.

N
N~

(a) Re <<1 (b) Re =10

i

Figure 1.1: Flow behaviour around a circular cylinder with Re << 1 and Re = 10. Both
images come from [14].

The eddies dimension increases with the Reynolds number until, for Re > 40 the flow
becomes unsteady, detachment occurs and the object can be classified as bluff. Finally,
starting from Re = 100 vortex shedding occurs in the wake. A dimensionless coefficient
linked to the frequency of the eddies generation is the Strouhal number defined as

A

t
S U

(1.2)

where f, is the frequency of the vortex shedding.

For 400 < Re < 3-10° the regime changes and it is called sub-critical. It is characterized
by a laminar detachment that takes place earlier with higher Reynolds number and, as
a consequence, the wake region becomes larger. Starting from Re =~ 3 - 10° the flow
behaviour changes drastically, the turbulence starts playing a fundamental role and the
detachment passes from laminar to turbulent because a reattachment of the boundary
layer occurs. This regime is called Critical and it is closely linked to the transition from
laminar to turbulent regime. Finally, when the flow becomes completely turbulent, the
regime is called super-critical.

This regimes classification is not end to itself because, depending on the regime, the
behaviour aerodynamic coefficients, widely used in CWE, significantly vary. The two
most important coefficients are called drag coefficient and lift coefficient and read

Fp Fr

——— = —-— 1.3
Lo T T (13)

Cp =

where p is the density of the fluid, U is the velocity norm of the flow before the obstacle
and [ is a reference length, for example the depth of the cylinder. Fp and FJ, called
respectively drag and lift, are the forces acting in the alongwind direction and its normal

12



1. Introduction and motivations on bluff cylinders applications

direction.
An analogous coefficient can be defined for the pressure

P — P
3PU?

(1.4)

Cp:

where p is the pressure and p., is the reference pressure (the pressure is defined unless

an additive value). Due to the Bernoulli’s law, ¢, < 1 and it is exactly equal to one in

the stagnation point.

In the CWE applications the fluid is the air, with a low kinematic viscosity v = 1.45 107> m?s~
5< U <50mstand 1 < L < 100m. Consequently the Reynolds number varies from

10° to 10® and the flow is highly turbulent and unsteady with a regime that could be
sub-critical, critical or super-critical.

At the contrary of the circular cylinder where the location of the boundary layer de-
tachment depends on the Reynolds number, in the rectangular case the presence of the
upstream sharp corners leads an immediate detachment. A fundamental geometrical pa-
rameter for two-dimensional rectangular cylinders is the ratio of the alongwind dimension
(Breadth) to the crosswind dimension (Depth), B/D, which governs their aerodynamic
behaviour. For B/D < 2.5, and so also in the square scenario, only the attachment
occurs. At the contrary if 2.5 < B/D < 3.5 the reattachment is intermittent and if
B/D > 3.5 the reattachment is permanent. Finally, starting from B/D > 6 more reat-
tachments occur on the face of the cylinder. The Benchmark [I] has been chosen with
B/D =5 in order to study the case of single reattachment.

In all scenarios, in correspondence of the detached flow, in the region near to the along-
wind walls there is the presence of reversed flow.

In the middle of the upwind face there is the stagnation point. Its particularity is that
the flow in this point has null velocity.

At the characteristic CWE Reynold numbers, the wake of the cylinder in characterised
by the creation of alternating vortexes, called Von Karman’s with opposite rotational
sense at regular time intervals. The flow is therefore periodic.

Figures and shows the early detachment induced by the corners and the Von
Karman’s vortexes in the wake for Re = 2.2 - 10* in a DNS simulation [24].

1
)

Figure 1.2: Early boundary layer detachment induced by the sharp corner. The image is
obtained from [24].

Figure shows the results of three different articles that investigate the drag coeffi-
cient variation with respect the cylinder shape and the surface roughness.

13



1. Introduction and motivations on bluff cylinders applications

Figure 1.3: Von Karman vortex street. The image is obtained from [24].

It appears that for the circular cylinder, the drag coefficient does not significantly changes
in the sub-critical regime. At the contrary, entering in the critical one, its values decreases
drastically until super-critical regime starts. Then, increasing the Reynolds number, the
drag coefficient increases. This fact is due to the different localisation of the detachment
phenomenon. In addition the presence of a rough surface anticipates the coming of the
critical regime and this fact is usually exploited in the engineering applications where
small values of the drag coefficients are pursued. For this reason, for flows that are nat-
urally in sub-critical regimes with Re ~ 10°, it can be profitable to induce super-critical
regimes using rough surfaces instead of sleek ones.

Finally, it is evident that for rectangular cylinders, due to the presence of sharp corners
that constrains the detachment location, the mean value of the drag coefficient does not
depend on the Reynolds number.

—B/D=L, h/r = 0.5, surface roughness 0%

—B/D=L, h/r = 0.5, surface roughness 0.075%
16 B/D=1, h/r = 0.5, surface roughness 0.3% ||
—B/D=L, h/r = 0.021, surface roughness 0%

—ee ——B/D=5, h/r = 0, surface roughness 0%
ey N B
2 4

04 . R | . N . | g
Rl 10 0" 107 10

Re

Figure 1.4: ¢p values with respect to the Reynolds number with different B/D ratios,
corners h/r curvatures (where h/r = 0.5 corresponds to the circular cylinder) and surface
roughness. The curves have been extracted from [7, [§, 9.
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1. Introduction and motivations on bluff cylinders applications

Structured Structured orthogonal  Structured orthogonal Structured Structured
full orthogonal unstruct. corner quasi-radial corner O-type full O-type

Seas

Zhang and Xu (2020) Ricci et al (2017) Mannini et al (2011) Alvarez et al (2019) Guissart et al (2019)

Figure 1.5: Different meshing approaches around the leading upper corner. From left to
right, the grids are from [5], 6, 10} 1T, 12].

1.2 Overview on articles about grid effects

A fundamental aspect of CWE simulations, characterized by high Reynolds numbers,
is the mesh generation whose corresponds an induced errors. However this aspect is
sometimes not considered.

After a quick overview on the grids used near wall for B/D = 5 articles, some works on
the mesh effects are illustrated with relative advantages and drawbacks.

1.2.1 Review of the near wall grids for 5:1 rectangular cylinders

Since 2010, when the Benchmark of Rectangular cylinders with B/D = 5 [1] has been
initiated, many articles have been published on this topic. In [4] a review of the first four
years is made.
Figure [1.5] shows five different grid types used near the leading upper corner in different
studies while Figure [1.6| presents a review of all the approaches used in literature. It
appears clearly that there is not a meshing standard approach and, in addition, grids
that strongly affect the results, as it will be observed in the following chapters, have been
used.

From these figures, it is manifest that a study on the near wall mesh effects could be
important to set a suitable standardisation that would let to reduce mesh induced errors.

1.2.2 Correlation coefficients between error and grid quality

Although the topic of mesh induced errors is not deeply investigate in literature, it would
be impossible to present in few pages the whole state-of-art. For this reason it has been
decided to present few works coming from aerodynamic works but also from different
areas with the objective to present positive aspects that this thesis will follow but also
some drawbacks that justify the present work.
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structured orthogonal +
comner spectral elements
4%

= structured full

= structured full
orthogonal
31%

structured O-
Type
9%

= structured
orthogonal + ® structured orthogonal +
quasi-radial o unstruct corner
corner 26%
13%

Figure 1.6: Usage of the different near wall mesh approaches in BARC.

An article coming from the Fluid Dynamics of compressible flows area that is interesting
for its approach is [33] that studies mesh skewness, non-orthogonality and stretching
effects in a convection problem of a vortex. The idea of the article is to find quantitative
correlations between grid defects and numerical errors.

Firstly, the grid induced error can be split into errors that depend on the solution and
errors that depend only on the grid geometry. This fact is clear looking at the 1D
convection equation

Of , O 95 _

ot "Vocar (15)

where f is a scalar quantity, U is the convection speed on the x-direction and £ is a
generalized coordinate. While the temporal discretization error regards the first term of
, the grid error is linked to both g—é and %. The former depends on the solution f
but not the latter that is called grid transformation metric.

Then, the idea is to study the truncation error in the frequency domain using an oppor-
tune filtering operator. The main advantage of this approach is that spatial derivatives
are transformed into polynomial expressions.

Given a scalar quantity ¢ defined in point x;, the filtered scalar 1/; is defined as

R N R 1 &
i+ Z:Z_:M iz = 3e S ot (1.6)

Z=—m

where A is the spatial step for the generalized system. The spatial order of the filter
depends on the choice of the filtering stencils and on the coefficients.
Let

Ay = ; — by, (1.7)

then it is possible to define the distance between original grid points and their location af-
ter the application of the filter in a 3D case where the curvilinear coordinates are (£, 7, ().
A 2D case in shown in Figure
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Figure 1.7: Filtering effect on the mesh in a 2D case in [33].

The grid displacement is then
A¢ = /A + Ag? + A2 (1.8)

Finally a grid quality metric for a three-dimensional case is defined as

0 (59« (B (3

where AL = /27 + y¢ + 27 is a local reference length that is used to normalize the index.

After that a 2D vortex convection problem is studied solving mass, momentum and en-
ergy equations. The analytical solution of the density perqe is compared to the numerical

(1.9)

one obtained with different grids using the relative error
g — P Pezact (1.10)
Pezxact

The main idea of the article is to compute the statistical correlation between
(1.11)

@:/LQM@ am_a:/éwmw

in order to find out if a positive correlation is observed.
With this purpose, several grids, starting from the uniform one, are defined and the
correlation coefficients are computed. Some of the cases are presented.

e Uniform grid: An orthogonal and non-skew grid made of squares with the same

dimensions is defined as in Figure [L.8} It can been noticed that |E| = O(107°).
This mesh will be the reference for the others that will obtained from the uniform

by explicit maps.
17
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y [m]
=
L

9E-05
BE-05
TE-05
6E-05
5E-05
4E-05
3E-05

0
x [m]
(a)

|E]
7E-06
6E-06
SE-06

4E-06
3E-06
2E-06

X [m]
(b)

Figure 1.8: Uniform mesh on the left and associated error on the right.

e z-stretched grid: A stretched mesh along the x direction using the map

(1.12)

where x* is the new x coordinate of the grid, H represents the Heavyside function
and A, is the stretching factor. Two grids are defined with A, = 1.25 and A, = 2
and shown in Figure [1.9| with the respective quality indices. As expected, @ is
larger for the more stretched grid and it assumes higher values in correspondence
of the line = 0 where the aspect ratio of contiguous cells is bigger than one.

[ T T

-0.5

0
x [m]

0.5

O 1.0E-03 1.7E-02 33E-02 4.8E-02

6.4E-02 8.0E-02

-0.5

0
x [m]

0.5

Figure 1.9: x-stretching effect on the grig. A, = 1.25 on the left and A, = 2 on the right.

The relative error is computed and represented in Figure In both cases it is
larger than the uniform one, as it will be for all the next scenarios. In the simulation
with A, = 2 the error affects a larger area.
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|E|: 5.0E-07 14E-06 23E-06 3.2E-06 4.1E-06 5.0E-06
10F 10f
sk sk
— L \"
E of * E of T+
- - I
sk sk
10fF 10F
PSS TN T NI NN [N [ NNV (AN NI BN PSS TN N ST TN S N N S ST [ SN NN SRV A AN
100 5 0 5 0 15 20 100 3 0 5 0 15 20
x [m] x [m]

Figure 1.10: Error for z-stretching grids. A, = 1.25 on the left and A, = 2 on the right.

o Grid with a line direction change: This grid typology is obtained by defining the y
coordinates as

y*(&m) =y(&n) + H(x)Ayz(&,n) (1.13)

where the constant A, specifies the grid line gradient for z > 0.
Two grids obtained with A, = 0.25 and A, = 0.875 are shown with their respective
quality indexes. It can be noticed that these grids are not orthogonal for positive

values of z.
O 1.0E-03 1.7E-02 33E-02 4.8E-02 64E-02 8.0E-02
|1 |—1"
e
05 I g 03
///////
[ —1 ’__// L
[ —1 ///
E 0 :/"’ ::/” E 0
- /////// =
T
/// ///
0.5 /,/f: |+ 05
T
03 0 03 05 0 03
x [m] x [m]

Figure 1.11: Change of line direction effect on the grid. A, = 0.25 on the left and
A, = 0.875 on the right.

o Skewed grid: A uniformly skewed grid can be generated from the uniform one using

a*(&m) = =(§,n) + Asy(&;n) (1.14)

where A, is constant and it specifies the grid line gradient across the entire domain.
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A non-uniformly skewed grid can be defined, for example, with

a*(&,m) = x(§,m) + Atsm(w>

1.15
y (& mn) =y(&n) + Atsm(mT@n)> (1.15)

where , as usual, (z,y) are the old coordinates and (z*, y*) are the new ones and the
coefficient A; is linked to the skewness. Figure[1.12| represents two different meshes

obtained with ([1.15]).

Q: 1.0E-10 1.8E-10 2.6E-10 3.4E-10 4.2E-10 5.0E-10

RN N gla N NN
AN et e G e sunn) BETN e \
e NN g e %S 4 RN OXCSOAERN
T N O A AR TSR
N A N 727

NN

N
c T

P N \ COOPTERNNT
6 4 2 0 2 4 6 6 4 2 0 2 4 6

Figure 1.12: Non-uniform skewness effect on the grig. A; = 1 on the left and A, = 1.5 on
the right.

For each case, several computations have been performed by changing the coefficients
A, Ay, Ag, Ay Then the quality index and the relative error have been integrated on the
domain obtaining plot like in Figure [1.13| Finally the correlation coefficients between )
and |E| have been computed using the formula

< Q[E[ >
[< Q? >< E2 >]1/2

Cor = (1.16)

where < > denotes the variance operator.

The obtained values with different filtering schemes in are shown in table

All the meshes defined starting from the uniform case present defects that can be
stretching, non-orthogonality, skewness or some combination of them. It appears clearly
that, qualitatively, all the meshes induces errors bigger than the optimal cases. Looking
at table [I.1] it is possible to ascertain that the proposed quality index @ is well defined
because it is strongly correlated to the error.

Even if the physical problem differs significantly from the one that will be analyzed in

the thesis, the idea of the computation of correlation coefficients to express quantitatively
the relation between grid quality and error will be used. The correlation coefficients in
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30 2.6
* 25
25
a 2.4
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Figure 1.13: On the left, integrated quality index with different values of A, when line
directions are changed. On the right E; with respect to Q);.

Grid Features Explicit filter | Implicit filters
Grid spacing discontinuity 0.971 0.970
Grid direction discontinuity 0.955 0.954
Uniform skewness 0.427 0.128
Non-uniform skewness 0.921 0.921

Table 1.1: Correlation coefficients for each mesh obtained from the uniform one.

[33] are very high and sometimes close to one as a demonstration of the good definition
of Q.

However, it is important to underline that, contrarily to the test case of this thesis an
analytical solution is available and so the exact numerical error is computed. In addition
Finite Differences are used with high-order schemes such that the grid error contributes
mostly to the total error. This is not the case with FVM, that can handle also unstruc-
tured meshes at the difference of the FDM, where the spatial discretization is, at most,
second order accurate. Finally the meshes are explicitly obtainable from the uniform one
through an analytical expression. For unstructured grids this expression is impossible
to find. In addition the meshes of the article have, usually, constant values of either
skewness or non-orthogonality over all the transformed faces. Grids used in the thesis
will have different values for each face.

All this features helps the correlation analysis because they let to isolate either the grid
error from the others or the defects.

1.2.3 Grid refinement effects for a square cylinder

At the contrary of the previous study, [34] refers to the CWE benchmark of flow around
a square cylinder. In this study the mesh induced error linked to the mesh refinement
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Figure 1.14: Three different grids used in [32]. The corners small curvature does not
affect the flux topology.

is investigated. LES simulations for the square cylinder scenario have been performed in
order to study the effect of different meshes. In particular, a structured mesh refined near
the cylinder (CR), shown in Figure is defined. Only the mesh in the x — y plane is
shown because the mesh over third dimension is structured and cutting the domain with
a plane z = const the same mesh always appears. This discussion justifies the choice of
the thesis to perform 2D simulations in order to investigate the mesh quality effects.
Then, starting from CR, two more grids are obtained through unstructured refinements,
the first in the wake (WR), the second both near the cylinder and in the wake (CWR).
In both WR and CWR the total number of control volumes in the whole domain does
not change.

By defining these three meshes, the effect of refinements in region with big values of
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Figure 1.15: NBFC mesh in [40].

derivatives is studied. It is known that near wall and the wake are regions with high
vorticity and deformation and, as a consequence, in both regions the mesh should be
refined in order to bound the truncation error. As expected, the simulation with CWR
mesh gives better results in terms of aerodynamic coefficients c¢p and ¢y, in both mean
and fluctuating values, pressure and velocity in the wake. It is also noticed that results
with mesh WR are more accurate than the ones with CR.

This article investigates on the error associated to the mesh density, however it can be
observed in Figure looking at the mesh near the corners that grids not only change
in density but also in quality. As a consequence the differences between simulated results
can not be totally justified by the different grid density.

1.2.4 Non-orthogonality effects for a circular cylinder

The effects of mesh quality have been observed in [40]. In this article the effect of the
non-orthogonality is studied in the scenario of the circular cylinder with Reynolds num-
bers Re = 550 and Re = 3000.
A first non-orthogonal body fitted curvilinear coordinate system mesh (NBFC grid) is
defined, Figure [1.15

Then an algorithm obtains, through a numerical quadrature of the expression of the
unit vector tangent to the generalized coordinate &, new coordinates of the mesh nodes.
This new nodes have the characteristic to define orthogonal grids (OBFC). Four different
grids are defined, each of them with a different number of orthogonal lines, denoted by
&,, that are, respectively, &, = 5,15,25,35. This values are chosen taking into account

OBFC Grid~
(&g =35}

Figure 1.16: OBFC vs NBFC mesh in [40] with &, = 35.

that the total number of lines is 66 and so the percentage of orthogonal lines varies from
7.5% to 53%.
Figure|l.17] compares the numerical results obtained with NBFC and OBFC with &, = 35
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(a) OBFC with & = 35 and Re = 550. (b) NBFC and Re = 550.

Figure 1.17: OBFC and NBFC results compared to experiments.

to the experimental ones. It can be observed that both simulations detect correctly the
position of the main eddy core and also the separation point but, at the contrary, the
recirculating zone lengths differ with the OBFC closer to the experiments. This fact is
observed with both Reynolds numbers.

Finally the article reports the location in time of several points linked to the flow topol-
ogy with the different meshes and different Reynolds numbers (Re = 31,550, 1200). It
is observed that results obtained with the non-orthogonal mesh are always farther from
the experimental values than the OBFC ones. In addition, the bigger is the Reynolds
number and the bigger is the error with the NBFC grid.

In conclusion, the article not only shows that non-orthogonality affects negatively the
results, but also suggests that in CWE applications, where Reynolds number are bigger
than the ones used in the article, the non-orthogonality error should have more impact.
However, even if the simulations are based on a Finite Volume discretization, the defini-
tion of orthogonality used in this work is not the same as in [2] that will be used in this
thesis and that, as it will observed, is more coherent with this discretization technique.
Indeed in this paper the orthogonality refers to the angles between the lines that gener-
ates the mesh.

Moreover, the physical phenomena observed is not interesting from an engineering point
of view because the analysis investigates development in early stage of the wake behind
a cylinder that is impulsively started and not the stationary flow.

1.2.5 Growth factor consequences in flows around bluff bodies

Grid generation is a fundamental aspect in CFD computations as stressed in [22]. This
article investigates the optimal choice of the Growth Factor (GF) such that the numerical
simulation of flows around bluff bodies converges. As a matter of fact the GF, that
represents the ratio between the characteristic lengths of two adjacent cells, is one of
the most important error sources in the mesh generation process in addition to non-
orthogonality and skewness.

Firstly the flow around a square obstacle has been studied. The three used meshes
are completely orthogonal and not skewed with GF = 1.05,1.07,1.1. One of them is
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(a) Square cylinder. (b) Rectangular cylinder. (c) Streamlined cylinder.

Figure 1.18: Grids defined around three different bodies in [22].

represented in Figure [[.1I8] Some results are compared to the literature ones however the
main focus is not on the errors induced by high values of the growth factor but on the
occurred convergence of the simulation. For the same reason only a mesh for a rectangular
cylinder and one for a streamlined body are defined and shown also in Figure It
can be easily observed that the latter is characterized by high skewness values and so its
numerical effect is added to the GF one, at the contrary of the previous two cases where
this error source was correctly isolated.

1.2.6 Correction terms linked to non-orthogonality and skew-
ness in a diffusion problem

Until now, the presented articles have investigated about the error generated by the mesh
by changing it and defining either finer or qualitatively better meshes. Even if [21] does
not deal with a CWE application, it is interesting because it reduces the grid induced
error in a Finite Volume framework by working on the correction terms defined in [2] in
the discretized equation. A formal definition of the correction term will be given in the
third chapter, but it is important to highlights that if this term is not considered, the
numerical result can be quantitatively important.
Comparing the in-house code to ANSYS FLUENT, used in the thesis, and to OpenFOAM,
the latter being open source, it has been observed that ANSYS FLUENT properly in-
cludes non-orthogonality correction term. However, when the mesh starts becoming not
only non-orthogonal but also with high values of skewness, this commercial code starts
having troubles obtaining solutions affected by significant errors. More in particular the
2D diffusive problem

V- (Vg)=0 (1.17)

has been numerically solved with a mesh with high skewness. Figure |[1.19|shows the two
components of V¢ obtained by the codes. It is evident that the FLUENT solution is
characterized by unphysical oscillations that are induced by a wrong treatment of the
skewness correction term in the equations.

Before concluding this chapter, Table tries to synthesize the principal pros and cons
of each work in order to emphasize the perspective of this thesis.
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Figure 1.19: Components of V¢ obtained through in-house and commercial codes in [21].
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Pros

|

Cons

[33] Sec. [1.2.2] | e Distinction between different errors | @ FD approach
e Engineering application
[34] Sec. [1.2.3| e Engineering application e No distinction between
density and quality mesh errors
[40] Sec. [1.2.4] | e Studies non-orthogonality e Engineering application
e Different orthogonality definition
[22] Sec. [1.2.5| | e Separates growth factor error e Ignores non-orthogonality
e Engineering application and skewness
[21] Sec. [1.2.6| | o Detects FLUENT drawbacks e Engineering application
e Uses the same quality indicators

Table 1.2: Synthesizing table that schematically represents advantages and drawbacks of

the presented articles compared with the objective of this thesis.
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Chapter 2

Governing equations and numerical
approach

CWE is based on the numerical simulation of the Navier-Stokes equations. These come
from the balance laws making the hypothesis of Newtonian fluid. It is possible to define
three fundamental aspects in CWE that are presented separately but that are intrinsically
linked to each other:

e Turbulence model
e Equations discretization

e Grid generation

In this chapter firstly the Navier-Stokes equations will be obtained and then the first two
aspects will be discussed. The third and last one will be the topic of the next chapter
due to its relevance for the thesis.

2.1 Governing equations

In order to obtain the governing equations, firstly the balance laws are discussed. For the
purpose of the thesis only the mass and momentum balance laws are required in order
to obtain informations on pressure and velocity and so only these ones are discussed. It
is important to underline that other balance laws exist, for example the energy balance
is used to obtain informations on the temperature. These laws are very general and,
as a matter of fact, they are the starting point for any science based on the continuum
hypothesis like structural mechanics, multiphase problems and so on.

After that, it arises that the obtained system is not determined due to the fact that the
unknowns are more than the equations. To overcome this difficulty it is necessary to take
into account the nature of the flow and to assume a constitutive relation. In CWE it is
assumed that air behaves like a Newtonian fluid.

2.1.1 Balance laws

Fluid Dynamics is based on the Continuum assumption that lets to define locally mechan-
ical properties of the fluid. To the geometrical point with zero volume a fluid particle is
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2. Governing equations and numerical approach

associated described by its values of density and velocity by mean of a statistical average
of the molecules properties. This hypothesis is acceptable if there exists a length scale
Lo, the particle scale, in between L; and L3 such that

Ly < Ly < L3

where L; and L3 are the lengths of respectively microscopic and macroscopic inhomo-
geneities as shown in Figure [2.1} For example L; can be the molecular mean-free-path.
Under this assumption it is now possible to define the density p and the velocity u fields.

‘Temperature’

Ll LI L3
Length scale, L

Figure 2.1: Average temperature with respect to length scales. Any fluid property like
density or velocity can substitute the temperature. The figure is from [14].

By defining a generic control volume 'V, a finite region that contains infinitely many
fluid particles, it is possible to describe mathematically how a flow quantity can change
in it. A key role is played by the amount of flow property that enters or exits to the
volume through the boundary V. This quantity is called flux.

1. Mass conservation: it is a particular case of the mass balance under the assumption
that the total mass of the fluid can not change and so source terms do not exist.
In this scenario the total fluid mass can change in the control volume only because
of the mass flux. Usually the flux is positive if the mass goes out the volume and
negative if it goes in. Indeed the mass conservation reads

2/pcﬂ/—l—j{ p(u-n)dS =0. (2.1)
ot Jy v

Using the Gauss theorem, assuming fields sufficiently smooth, and because the
equation is valid for any control volume 'V, the local form is obtained

dp
otV () =0, (2.2)
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2. Governing equations and numerical approach

The above equation can be simplified if the fluid is assumed to be incompressible
and so the density p is constant. This hypothesis is acceptable in the CWE problems
where the air speed is lower than 0.3 Mach. Then, the local mass conservation reads

V-u=0. (2.3)

2. Momentum balance: this law says that the total momentum in the control volume
can change by the effect of forces acting on the mass element. The forces can be
either volumic, called also body forces, or superficial, called also stresses.

The integral form of the momentum balance is

2/pudV—l—Y{ pu(u - n) dS—]g (U-n)dS:/pfde, (2.4)
ot Jy av v v

where o is the second order Cauchy stress tensor. The volumic forces term fy,, that
includes for example the gravity effect, are neglected in aerodynamics.

Using the Gauss theorem like in the mass conservation law, the differential form is
obtained:

%+V-(pu®u)—V~a:0. (2.5)

2.1.2 Constitutive relation and Navier-Stokes equations

In the tridimensional space, the derived system is made of four equations, one from the
mass conservation and three from the momentum balance, but it contains nine unknowns:
u and six components of the symmetric tensor o (the density p is also an unknown if the
incompressibility assumption is not available). The system is therefore not closed and a
constitutive relation is needed to write the Cauchy tensor as a function of the pressure,
the velocity and their gradients.

For incompressible Newtonian fluids, the viscous part of the Cauchy tensor is assumed
to be linear to the deformation tensor D and so the constitutive relation reads

8uz~ 8uj >
+

al’j 81’1

where p is the pressure that influences only the diagonal terms of the stress tensor and p

is the dynamical viscosity or molecular viscosity.
Substituting the expression (2.6)) into (2.5) and using the (2.3]), the Navier-Stokes equa-
tions are obtained

0ij = —pOi; + 2uDi; = —pdi; + M( (2.6)

0
aitu—kpu-VquVp—,uAu:O. (2.7)
The last equation can be divided by the constant density. By defining the kinematic

VISCOSIity vV = %, the final closed system is

V-u=0,
ou

1
—+u-Vu+-Vp—rvAu=0.
ot P

(2.8)
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2.1.3 Initial and boundary conditions

In order to work with a well-posed differential problem, initial and boundary conditions
must be imposed.
For the boundary conditions on the obstacle’s wall a usual condition is that the fluid can
not pass through the obstacle. Assuming that the obstacle is fixed, this is mathematically
described by the condition

u-n=>0 (2.9)
where n is the normal to the surface.
If the considered fluid is viscid, like the air in CWE problems, the no slip condition

u=0 (2.10)

is imposed on the wall.

The computation domain must be a bounded region and, as a consequence, non-physical
boundaries are defined. Usually in the inlet the velocity field is imposed. In the outlet the
normal component of the velocity field is set equal to zero and the pressure is imposed in
order to define it uniquely. Indeed, from it can be observed that the pressure field is
defined unless an additive constant. Finally on the other boundaries periodic boundary
conditions are imposed.

In the initial conditions, the fields u and p must be described in all the computation
domain and they have to satisfy the differential system and the boundary conditions.
The choice influences the number of time steps required to achieve convergence.

2.2 Turbulence models

Before starting the discussion about turbulence models and their applications in CWE,
it is important to understand the main features of the turbulence.

Turbulence is a flow regime that occurs usually at high Reynolds numbers after a tran-
sition from the laminar behaviour in the system where the latter is unstable.

It shows mixing properties that tend to homogenize the flow properties like momentum
or temperature and for this reason it is often associated to the viscosity property.

In a turbulent regime the physical fields, that instantaneously are intrinsically tridimen-
sional, evolve erratically in both time and space and the flow shows high vorticity.

The turbulence is a multiscale phenomenon where temporal and spatial fluctuations vary
in wide time and length scales. The biggest length scale is usually denoted with A and the
smallest with A. At each length scale [ € [\, A] corresponds a Turbulent Kinetic Energy
(TKE) that increases with respect to the eddy dimension and a Reynolds number defined

as

lul
= — 2.11
Rel L ( )

where u; is the scale of the fluctuating velocity associated to [. Figure shows the
energetic distribution of the eddies.
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Figure 2.2: Energy spectrum of the turbulence in a loglog scale. k is the wavenumber.
The image is from [I§].

While the scales are easily distinguishable in the energy domain, characterized by a
continuous spectrum, in the spacial domain this is not the case because all scales are
merged.

Eddies with dimension A take their energy by the mean field. Then they splits into
several smaller eddies, each one with a fraction of the initial energy. These eddies lie
to the intermediate scales called inertial scales. This name is due to the fact that the
inertial effects are dominant. As a matter of fact in a CWE scenario Rep =~ lR—Of) > 1 and,
as a consequence, scales smaller than A can still have high inertial effects.

After that the vortexes in the inertial scales split in even smaller ones with length scales
of the order of A\. This scales are called Kolmogorov scales. Finally these eddies are
dissipated because the viscosity effects are important, indeed A is such that Rey, = O(1).
This is the motivation why a smaller scale than A can not be observed.

All this process is called turbulent energy cascade.

2.2.1 Direct Numerical Simulation

The Navier-Stokes equations are mathematically suitable to simulate turbulent flows.
The Direct Numerical Simulation (DNS) consists on the numerical discretization of the
Navier-Stokes equations without any other modelling.

Even if it is the most accurate approach, it is computationally very expensive because
of the necessity to simulate all the turbulence scales and, in particular, the Kolmogorov
scales.

A is too small to be experimentally measured, but an estimation can be obtained through a
dimensional analysis. Because the Kolmogorov scales are linked to the eddies dissipation,
A, a length, has to be proportional to both the kinetic viscosity v, dimensionally m?/s,
and the internal energy dissipation rate e, dimensionally m?/s3. With the same approach
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also the time scale t, can be established. The estimations are

3. 1

roo (D) =ret noc(4) (2.12)

In order to obtain an accurate simulation, the spacial and time discretization must be
proportional to these values.
In a CWE problem with Re = O(10°), the corresponding Kolmogorov scales have
A = O(107")m. Therefore the corrisponding tridimesional mesh (the turbulence is a
tridimesional phenomenon) requires O(10'®) points and the temporal discretization must
have O(10°) time steps to guarantee numerical stability.
By this analysis it is clear that DNS is computationally unsustainable for industrial appli-
cations and it is used only for academic purposes in order to study the physical behaviour
of turbulence.

2.2.2 Reynolds-Averaged Navier-Stokes

In the applications, in order to study the flow effects on structures like square cylinders
in CWE;, the knowledge of the mean fields are sufficient. The Reynolds-Averaged Navier-
Stokes (RANS) methods are based on the splitting of the generic quantity ¢, depending
on space and time, at point x; in

p(xit) = B(xi, t) + ¢/ (xi, 1) (2.13)

where @ is the mean component of ¢ and ¢’ is the fluctuating one.
In an unsteady problem the mean component is defined using an ensemble averaging
operator

N
_ .1
pxi,t) = lim N > eulxit) (2.14)
n=1

where N is the number of members of the set of unsteady flows characterised by the same
variables.

ui(X,1)

t

Figure 2.3: Time averaging for unsteady flows. Image from [18].
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An important property of the averaging operator is that ¢/ = 0, i.e. the fluctuating
component has zero mean.
By applying the mean operator to the Navier-Stokes equations in ({2.8]), the result is

e =0
o _ o 2.15
RS R SN WL B
ot aZL‘j I v 1% 8xz 8x]~ 8xj 8%
The last equation in can be rewritten as
ou; _Ou;  10p 0 ou;  Ou; 0 —
o = o o e t o) e ). o)

This equation, if the last term is not considered, is formally identical to the classic equa-
tion in the Navier-Stokes system (2.8). The last term contains the divergence of the
Reynolds stress tensor defined as R;; = W The components of the fluctuating velocity
are not statistically independent from each others and they can not be neglected.

The resulting RANS equations are not closed because in addition to the mean fields @
and p also the Reynolds tensor components are unknown. It has to be observed that this
tensor is symmetric.

With the aim to close the system, a first approach is to obtain exact equations for each

component of the Reynolds tensor. In order to derive the equation for R;;, it is sufficient
to take equations for u; and u; in , then multiply the first one by u; and the second
one by u;, sum the two equations and finally applying the average operator.
Even if these equations are exact, because they are obtained directly from the Navier-
Stokes system, they can not be directly used because they contains terms that need to
be modelled. In addition, this approach is not very used due to the computational cost
to solve this system. As a matter of fact, with this approach three or six new equations,
respectively in the bidimensional and tridimensional case, are coupled to the RANS equa-
tions.

A second way to find a closure to the system is to use the Boussinesq eddy-viscosity ap-
protimation based on the analogy between molecular viscosity and the turbulence mixing
and dissipation properties

W = ut(g;f; + gZJ) (2.17)
v, is called turbulent viscosity and it is unknown.

The methods based on this approximation are called linear isotropic models. The term
linear refers to the linear relation between the Reynolds tensor and the deformation ten-
sor. The isotropic one is due to the scalar nature of the eddy viscosity v;. Since R is a
tensor, it would be more appropriate to define the eddy viscosity as a tensor instead of a
scalar but it would complicate the treatment.

The turbulent viscosity can be written, through a dimensional analysis, using the turbu-
lent kinetic energy k = %m and the already defined turbulent energy dissipation rate ¢.
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The final relation is

ve=Cp— (2.18)

where C), is a dimensionless constant.

The £ — & RANS methods add to the RANS equations, with the Boussinesq hypothesis,
two differential equations for k£ and e.

The equation for the turbulent kinetic energy can be obtained analytically using the
RANS and Navier-Stokes equations and it reads

T S A “u ! - | —y—— 2.19
ot * 0z; it 0z; + 0z; P + 2u]u2ul * V@xj I/axk oxy, ( )
—— L N—
Py B; €

Equation (2.19) describes how k can evolve in time and space. Each term on the right
hand side has a physical interpretation:

— P is always greater than zero by physical motivations and for this reason it is called
Production term. It represents the rate at which kinetic energy is transferred from
the main flow to the turbulence.

It can be modelled using the Boussinesq hypothesis.

— Dy, is the Diffusion term. Diffusion is induced by a pressure gradient, by k itself
and by the viscosity. The first two terms need to be modelled. In particular they
are modelled using the gradient assumption for which £ moves from regions where
it has higher values to regions with a lower one. It is expressed as

_ I (2.20)

where o, 1s a coefficient.

— VSZ" gui is the definition of the turbulent energy dissipation rate €. This term can
k 0%k

not be modelled and it requires a partial differential equation.

Theoretically it could be possible to deduce an exact equation for £ as made for the
turbulent kinetic energy. This operation would be analytically complicated and seven
different terms should be modelled. For this reason it has been preferred to write an
equation formally equal to the k one, except for the factor £/k that is used to have terms
dimensionally correct.

The final equations for the k — ¢ model are

ok O(w;k) 0 v ok
E—'— or; Oz, {(ak +V) ('996]} +Be—e

de  O(uje) 0 vy Oe £ £
—t "= = — |+ -CaPy— —Cye.

ot Oz, Oz |\ oe v 0z + P
Usual values for the coefficients in (2.21)), obtained through either experiments or com-
putational optimization, are

(2.21)
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C,=009, Cq=144, C=192, o0,=10, o0.=13

This k — ¢ standard formulation (STD) has the important drawback to overestimate
the turbulent viscosity. As a matter of fact, a CWE simulation with the STD k£ — ¢ model
can predict a steady flow in problems that are not physically steady. For this reason a
modification of this model, called RNG k — ¢, has been proposed. In this approach some
constants are changed and additional terms are used in the equations for £ and ¢ in order
to reduce correctly v4.

Another way to deal with this inconvenience is to define another turbulent variable,
instead of £, and to write for it an equation. The chosen variable is w, defined such that

k
= —. 2.22
Vi o ( )
The RANS simulations discussed in the next chapters will always be based on RNG
k — ¢ methods and, consequently, the features of the £ — w models are not discussed in
this thesis. For details, [I§] is recommended.

2.2.3 Large Eddy Simulation

The Large Eddy Simulation, LES, is an intermediate approach situated in between the
DNS approach, where all the turbulence scales are simulated, and RANS approach, where
all the turbulence scales are modelled. Looking at the energetic spectrum in Figure [2.2]
it appears that eddies in the energetic interval carry almost all the turbulent energy, in
particular more than 95%, and it should be suitable to simulate their contribution instead
of modeling it. On the other hand, the main drawback of the DNS is the high number of
required grid cells due to the necessity to capture the eddies in the Kolmogorov scales.
In addition, the big scales are more affected by the boundary conditions and they do
not behave isotropically. For example a big eddy near the wall will be elongated on the
direction parallel to wall. At the contrary small eddies do not depend on the domain
geometry and so they are more universal and easier to model.

For these reasons, LES aims to simulate only the eddies in the energetic scale, that
strongly influence the values of the fluctuating forces and that are complicated to physi-
cally describe, and to model the small eddies in order to reduce the computational cost.

In the energetic domain, in order to make this scales separation, it is sufficient to
choose a threshold wavenumber x; in the inertial range such that if k < k; then the
scale is simulated and, at the opposite, if K > k; the scale is modelled. This operation is
straightforward if a low pass filter é’(/ﬁ)) in the wavenumber domain is defined. Then, if
p is a spatial quantity, the simulated result will be

P(z) = G(z) * p(x)

where G is the Fourier anti-transformation of the filter and * is the convolution operator.
As mentioned previously, while the turbulence scales are distinguishable in the energy
domain, this is not the case in the spatial domain where, in addition, a mesh grid is
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defined. If a vortex is smaller that the grid dimension, it can not be detected by the sim-
ulation. This motivation drives to the definition of a filter kernel G(z, k; A) that depends
on the grid dimension A. In order to be coherent to the physical aim to filter eddies with
wavenumbers greater than x;, A must be proportional to [.

A practical way to distinguish the simulated scales from the modelled ones is to adopt
a numerical filter. This means that the mesh plays the filtering role and the scales with

length [ are simulated if [ > A and they are modelled if [ < A.

The Navier-Stokes equations can be filtered obtaining

ou; 0 (

u +3_xj 1 0p 9, [V<6ﬂi+8ﬂj)]‘

;) = "m0z, "\oz, T on, (2.23)

The problem with equation (2.23)) is that w;u; # uw;u; and so the subgrid-scale Reynolds
number

Ry, = ugu; — U (2.24)

needs to be modeled.

A first model was proposed by Smagorinsky [19] in 1963 and it is based on a Boussinesq-
like approximation

O, 01, ) (2.25)

I = ys(&z:j Ox;

The subgrid viscosity is, after a dimensional analysis, v* = £/3(CsA)*3 where Cg is
a dimensionless constant. The huge problematic of the Smagorinsky model is the not
universality of C's that changes depending on the flux.

In general, the closure of the filtered equations is still nowadays an important research
field.

2.3 Equations discretization

In order to computationally solve (or, more accurately, approximate) the system (2.8])
a spatial and a temporal discretization must be defined. In this way the infinitely-
dimensional Navier-Stokes equations are approximated to a corresponding finite system .
The Finite Difference Method, FDM, has been the first spatial discretization method to
be used since the beginning of CFD. It is based on the derivatives approximations by
differences (hence its name), obtained from Taylor’s expansions, between the variable
values in mesh points.

Nowadays the most used methods are the Finite Element Methods, FEM, and the Finite
Volume Methods, FVM, due to their flexibility to handle unstructured meshes necessary
in complex geometries. The former is based on the variational formulation of the PDEs,
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the latter on the integral conservative laws. All the simulations in this thesis are based
on a FVM discretization and, for this reason, only this method is discussed.

2.3.1 Finite volume method and convective schemes

FVM starts from the balance law of the generic quantity ¢ that can be a scalar, a vector
or a tensor. For example, as already discussed for the governing equations, ¢ can be the
density or the momentum.

The spatial domain V is divided into subdomains, called cells or control volumes, V; with
1=1,..., N and the conservation law is then written for each of them:

2/ gpdV:—/ fc-ndS+/ fd-ndS+/ sdV. (2.26)
ot Jy, av; av; v,

expresses that the total amount of ¢ in the cell can change because there is a flux
of the quantity across the boundary and because source therms can create or destroy it.
After a temporal discretization, it gives a scheme to compute the mean value of ¢ in each
control volume.

For simplicity, it is supposed that there is not a source term, as already done in the mass
and momentum laws. The flux is divided into the convective flux, linked to the transport
effect made by the velocity field, and the diffusive flux, linked to the gradient of .

V; are chosen as polygons in 2D and polyhedra in 3D and, for this reason, the flux term
integral in can be expressed as the sum of integrals over the n faces of V;. Denoting
by f a generic flux that can be either convective or diffusive, then

/ f-ndS:Z/f-ndSzZS-f(gps)::ZS-fS (2.27)
ov; s5=17%9 5=1 S=1

where the surface integral has been approximated. S = |S|n and fg is the flux in the
face center.

The formula presents the main problematic of the FVM formulation. In order to
compute the flux terms, the knowledge of ¢ in the middle of the face S is required but
the FVM gives information only about the average of ¢ in the cells. As a consequence in
the past decades, many convective schemes have been proposed to reconstruct the value
on the faces starting from the cell averages.

The most important convective schemes are now discussed. For sake of simplicity they will
be presented in the monodimensional case. The complication induced by a bidimentional
problem will be discussed in the next chapter about grid induced errors.

Let consider the configuration reported in Figure . The different convective schemes
aim to build the value . using the cell averages of the near cells. For this reason, the
capital letter subscript denotes the average over the cell and not the value in the cell
center.

For simplicity, it is assumed that the velocity is constant equal to a and the convective
flux can be written as

f¢=ap.
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Figure 2.4: 1D domain where capital letters refer to the cells. e is the face between cell
P and cell E.

1. Central Differencing Scheme (CDS)
The value at the face is obtained through a linear interpolation between the two
averages over the cells that share the face:

e = Appp + ApYE (2.28)
where the coeflicients
Ap = Le TP Ap = BT T (2.29)
ITp —Xp Tp —Xp

weight with respect to the distance of the face to the cell centers. The condition
Ap + Ag = 1 is always satisfied.

While this scheme is stable for the diffusive flux, it is unstable and creates unphysical
oscillations when used for the convective flux. This behaviour can be physically
explained: while the diffusive flux is linked to the gradient and tends to average ¢
like a linear interpolation makes, the nature of the convective flux is connected to
the velocity field and, as a consequence, a scheme that does not take into accou