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When I meet God, I am going to ask
him two questions: why relativity?
And why turbulence? I really believe
he will have an answer for the first
one.
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Abstract

Starting from the past decades, many engineering domains require an accurate knowl-
edge of Fluid Dynamics problems. Possible examples are car and airfoil designing in the
automotive and aeronautics fields, blood circulation through the cardiovascular system
in bioengineering or the evaluation of wind turbines efficiency in the energetic field.
The first historical way to better understand a physical phenomena was to perform as
much as possible experiments and to take decisions based on their results. However,
sometimes the studied systems are characterized by big length or time scales and, as a
consequence, experiments can be very expensive or even not possible to make. In addition
to that measurement errors, if not correctly detected, can affect significantly the results.

In the sixties, in concomitance with the first calculators, a new field called Computa-
tional Fluid Dynamics (CFD) started to work side by side with experiments. The latter
are not supposed to be substituted by numerical simulations, that need to be tested with
experimental results, but their number can be reduced in order to decrease the costs.
Even if CFD has more than half a century of history, some of its topics are still arguments
of actual research. The Computational Wind Engineering (CWE) is the branch of CFD,
with Civil Engineering applications, that studies the wind effect on buildings.
An important test-case in the CWE community is the characterisation of the flow around
rectangular, and in particular square, cylinders. As a matter of fact an important bench-
mark is the ”Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder (BARC)”.
Despite being the easiest bluff body that can be thought, it is interesting due to the phe-
nomenological complexity of the turbulent flow around it. Moreover this problem has an
application into the study of wind effects on skyscrapers cross-section in Civil Engineering.

CWE computations are based on three aspects that are intrinsically linked to each
other: the turbulence modelling, the interpolations schemes used for the equations dis-
cretization and the grid generation. The latter has been often neglected in literature and
more focus has been addressed on the former two. For this reason, the aim of the thesis
is to understand how the quality of the near wall mesh can effect the simulated results
in CWE computations.
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The thesis will be organized as follow:

• Chapter 1
This first chapter focuses on the CWE benchmark of flows around rectangular cylin-
ders. For this reason, the first part is devoted to the flux phenomenology around
cylinders. The second part analyses some articles that are useful to understand the
aim of the thesis.

• Chapter 2
This chapter will discuss the equations used in CWE and their discretization. More
in particular the Navier-Stokes equations are presented, followed by the most used
turbulence models. Finally the classic interpolation schemes are presented.

• Chapter 3
In the first part the main features of the meshes are explained. Their quality and
the errors that they induce in the solution are presented. In the second part a brief
review on quality indices used to measure the grid quality is discussed.

• Chapter 4
In this chapter the setup of the four simulations is presented. Chapter 1 and 2
are important to understand the turbulence model and the convective schemes that
have been used.
The four near wall grids used in this thesis are illustrated and their differences
discussed with a particular focus on their quality.

• Chapter 5
The numerical results are compared looking at different flow fields and quantities
(for example velocity and aerodynamic coefficients) in different regions like the wall
and the wake. The differences between simulations are highlighted and justified in
terms of grid features. When it has been possible literature reference values have
been reported.

• Chapter 6
Finally a brief conclusion is presented where the objective and the results of this
thesis are synthesized.
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Chapter 1

Introduction and motivations on
bluff cylinders applications

As expressed in the introduction, this thesis will study the effects of the grid quality on
the accuracy of numerical simulations of a well known CWE test case. Before starting any
discussion about equations to solve or numerical aspects, it is fundamental to understand
the main features of the flow around rectangular cylinders, the scenario in which the
numerical problem is settled. Gradually in the following chapters it will become clear
how this knowledge plays an important role for the setting of the numerical problem.

1.1 Flux phenomenology and associated bulk param-

eters

A body is said to be bluff if its shape is such that the boundary layer detaches early
and the wake region is broad. At the contrary, a body with an attached boundary layer
along the whole surface and with a narrow wake is said to be a streamlined body. This
definition is not referred on the obstacle itself but on the flow topology around it in a
particular setting. As a consequence, the same body can be either bluff or streamline
depending on the problems.
Parameters like the turbulence intensity, the face roughness and the angle of attack play
a major or minor role in the flow features. Maybe the most important one is a physical
dimensionless parameter called Reynolds number. Defining L and U as characteristic
length and velocity, respectively, of the problem and being ν the kinematic viscosity of
the fluid, then the Reynolds number reads

Re =
U L

ν
. (1.1)

In can be thought as the ratio between the inertial and the viscous effects on the flow.
Its value varies of several orders of magnitude depending on the problem and the flow
topology changes drastically with it.

Let consider the case of the circular cylinder. If its height is sufficiently bigger than
the basis radius, the flow around it can be simplified to a 2D flow around a circle. Firstly,
if Re� 1 the circle is streamlined and the downwind flow is symmetrical to the upwind
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1. Introduction and motivations on bluff cylinders applications

one. By increasing Re, and so the inertial effects, the upstream-downstream symmetry
disappears and with Re ≈ 10 two symmetric attached eddies appear downwind the
cylinder.

(a) Re << 1 (b) Re = 10

Figure 1.1: Flow behaviour around a circular cylinder with Re << 1 and Re = 10. Both
images come from [14].

The eddies dimension increases with the Reynolds number until, for Re > 40 the flow
becomes unsteady, detachment occurs and the object can be classified as bluff. Finally,
starting from Re = 100 vortex shedding occurs in the wake. A dimensionless coefficient
linked to the frequency of the eddies generation is the Strouhal number defined as

St =
fsL

U
(1.2)

where fs is the frequency of the vortex shedding.
For 400 ≤ Re ≤ 3 · 105 the regime changes and it is called sub-critical. It is characterized
by a laminar detachment that takes place earlier with higher Reynolds number and, as
a consequence, the wake region becomes larger. Starting from Re ≈ 3 · 105 the flow
behaviour changes drastically, the turbulence starts playing a fundamental role and the
detachment passes from laminar to turbulent because a reattachment of the boundary
layer occurs. This regime is called Critical and it is closely linked to the transition from
laminar to turbulent regime. Finally, when the flow becomes completely turbulent, the
regime is called super-critical.
This regimes classification is not end to itself because, depending on the regime, the
behaviour aerodynamic coefficients, widely used in CWE, significantly vary. The two
most important coefficients are called drag coefficient and lift coefficient and read

cD =
FD

1
2
ρU2l

, cL =
FL

1
2
ρU2l

(1.3)

where ρ is the density of the fluid, U is the velocity norm of the flow before the obstacle
and l is a reference length, for example the depth of the cylinder. FD and FL, called
respectively drag and lift, are the forces acting in the alongwind direction and its normal
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1. Introduction and motivations on bluff cylinders applications

direction.
An analogous coefficient can be defined for the pressure

cp =
p− p∞

1
2
ρU2

(1.4)

where p is the pressure and p∞ is the reference pressure (the pressure is defined unless
an additive value). Due to the Bernoulli’s law, cp ≤ 1 and it is exactly equal to one in
the stagnation point.
In the CWE applications the fluid is the air, with a low kinematic viscosity ν = 1.45 10−5 m2s−1,
5 ≤ U ≤ 50 ms−1 and 1 ≤ L ≤ 100m. Consequently the Reynolds number varies from
105 to 108 and the flow is highly turbulent and unsteady with a regime that could be
sub-critical, critical or super-critical.

At the contrary of the circular cylinder where the location of the boundary layer de-
tachment depends on the Reynolds number, in the rectangular case the presence of the
upstream sharp corners leads an immediate detachment. A fundamental geometrical pa-
rameter for two-dimensional rectangular cylinders is the ratio of the alongwind dimension
(Breadth) to the crosswind dimension (Depth), B/D, which governs their aerodynamic
behaviour. For B/D < 2.5, and so also in the square scenario, only the attachment
occurs. At the contrary if 2.5 < B/D < 3.5 the reattachment is intermittent and if
B/D > 3.5 the reattachment is permanent. Finally, starting from B/D > 6 more reat-
tachments occur on the face of the cylinder. The Benchmark [1] has been chosen with
B/D = 5 in order to study the case of single reattachment.
In all scenarios, in correspondence of the detached flow, in the region near to the along-
wind walls there is the presence of reversed flow.
In the middle of the upwind face there is the stagnation point. Its particularity is that
the flow in this point has null velocity.
At the characteristic CWE Reynold numbers, the wake of the cylinder in characterised
by the creation of alternating vortexes, called Von Karman’s with opposite rotational
sense at regular time intervals. The flow is therefore periodic.
Figures 1.2 and 1.3 shows the early detachment induced by the corners and the Von
Karman’s vortexes in the wake for Re = 2.2 · 104 in a DNS simulation [24].

Figure 1.2: Early boundary layer detachment induced by the sharp corner. The image is
obtained from [24].

Figure 1.4 shows the results of three different articles that investigate the drag coeffi-
cient variation with respect the cylinder shape and the surface roughness.
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1. Introduction and motivations on bluff cylinders applications

Figure 1.3: Von Karman vortex street. The image is obtained from [24].

It appears that for the circular cylinder, the drag coefficient does not significantly changes
in the sub-critical regime. At the contrary, entering in the critical one, its values decreases
drastically until super-critical regime starts. Then, increasing the Reynolds number, the
drag coefficient increases. This fact is due to the different localisation of the detachment
phenomenon. In addition the presence of a rough surface anticipates the coming of the
critical regime and this fact is usually exploited in the engineering applications where
small values of the drag coefficients are pursued. For this reason, for flows that are nat-
urally in sub-critical regimes with Re ≈ 105, it can be profitable to induce super-critical
regimes using rough surfaces instead of sleek ones.
Finally, it is evident that for rectangular cylinders, due to the presence of sharp corners
that constrains the detachment location, the mean value of the drag coefficient does not
depend on the Reynolds number.

Figure 1.4: cD values with respect to the Reynolds number with different B/D ratios,
corners h/r curvatures (where h/r = 0.5 corresponds to the circular cylinder) and surface
roughness. The curves have been extracted from [7, 8, 9].
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1. Introduction and motivations on bluff cylinders applications

Figure 1.5: Different meshing approaches around the leading upper corner. From left to
right, the grids are from [5, 6, 10, 11, 12].

1.2 Overview on articles about grid effects

A fundamental aspect of CWE simulations, characterized by high Reynolds numbers,
is the mesh generation whose corresponds an induced errors. However this aspect is
sometimes not considered.
After a quick overview on the grids used near wall for B/D = 5 articles, some works on
the mesh effects are illustrated with relative advantages and drawbacks.

1.2.1 Review of the near wall grids for 5:1 rectangular cylinders

Since 2010, when the Benchmark of Rectangular cylinders with B/D = 5 [1] has been
initiated, many articles have been published on this topic. In [4] a review of the first four
years is made.
Figure 1.5 shows five different grid types used near the leading upper corner in different
studies while Figure 1.6 presents a review of all the approaches used in literature. It
appears clearly that there is not a meshing standard approach and, in addition, grids
that strongly affect the results, as it will be observed in the following chapters, have been
used.

From these figures, it is manifest that a study on the near wall mesh effects could be
important to set a suitable standardisation that would let to reduce mesh induced errors.

1.2.2 Correlation coefficients between error and grid quality

Although the topic of mesh induced errors is not deeply investigate in literature, it would
be impossible to present in few pages the whole state-of-art. For this reason it has been
decided to present few works coming from aerodynamic works but also from different
areas with the objective to present positive aspects that this thesis will follow but also
some drawbacks that justify the present work.
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1. Introduction and motivations on bluff cylinders applications

Figure 1.6: Usage of the different near wall mesh approaches in BARC.

An article coming from the Fluid Dynamics of compressible flows area that is interesting
for its approach is [33] that studies mesh skewness, non-orthogonality and stretching
effects in a convection problem of a vortex. The idea of the article is to find quantitative
correlations between grid defects and numerical errors.
Firstly, the grid induced error can be split into errors that depend on the solution and
errors that depend only on the grid geometry. This fact is clear looking at the 1D
convection equation

∂f

∂t
+ U

∂f

∂ξ

∂ξ

∂x
= 0 (1.5)

where f is a scalar quantity, U is the convection speed on the x-direction and ξ is a
generalized coordinate. While the temporal discretization error regards the first term of
(3.11), the grid error is linked to both ∂f

∂ξ
and ∂ξ

∂x
. The former depends on the solution f

but not the latter that is called grid transformation metric.
Then, the idea is to study the truncation error in the frequency domain using an oppor-
tune filtering operator. The main advantage of this approach is that spatial derivatives
are transformed into polynomial expressions.
Given a scalar quantity ψ defined in point xi, the filtered scalar ψ̂ is defined as

ψ̂i +
N∑

Z=−M

αZψ̂i+Z =
1

∆ξ

n∑
z=−m

αzψi+z (1.6)

where ∆ξ is the spatial step for the generalized system. The spatial order of the filter
depends on the choice of the filtering stencils and on the coefficients.
Let

∆̂ψi = ψi − ψ̂i, (1.7)

then it is possible to define the distance between original grid points and their location af-
ter the application of the filter in a 3D case where the curvilinear coordinates are (ξ, η, ζ).
A 2D case in shown in Figure 1.7.
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Figure 1.7: Filtering effect on the mesh in a 2D case in [33].

The grid displacement is then

∆̂ξ =

√
∆̂x2

i + ∆̂y2
i + ∆̂z2

i . (1.8)

Finally a grid quality metric for a three-dimensional case is defined as

Q =

√(∆̂ξ

∆ξ

)2

+
(∆̂η

∆η

)2

+
(∆̂ζ

∆ζ

)2

(1.9)

where ∆ξ =
√
x2
ξ + y2

ξ + z2
ξ is a local reference length that is used to normalize the index.

After that a 2D vortex convection problem is studied solving mass, momentum and en-
ergy equations. The analytical solution of the density ρexact is compared to the numerical
one obtained with different grids using the relative error

E =
ρ− ρexact
ρexact

. (1.10)

The main idea of the article is to compute the statistical correlation between

QI =

∫ ∫
S

Qdxdy and EI =

∫ ∫
S

|E| dxdy (1.11)

in order to find out if a positive correlation is observed.

With this purpose, several grids, starting from the uniform one, are defined and the
correlation coefficients are computed. Some of the cases are presented.

• Uniform grid: An orthogonal and non-skew grid made of squares with the same
dimensions is defined as in Figure 1.8. It can been noticed that |E| = O(10−6).
This mesh will be the reference for the others that will obtained from the uniform
by explicit maps.
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Figure 1.8: Uniform mesh on the left and associated error on the right.

• x-stretched grid: A stretched mesh along the x direction using the map

x∗(ξ, η) = x(ξ, η)AxH(x) (1.12)

where x∗ is the new x coordinate of the grid, H represents the Heavyside function
and Ax is the stretching factor. Two grids are defined with Ax = 1.25 and Ax = 2
and shown in Figure 1.9 with the respective quality indices. As expected, Q is
larger for the more stretched grid and it assumes higher values in correspondence
of the line x = 0 where the aspect ratio of contiguous cells is bigger than one.

Figure 1.9: x-stretching effect on the grig. Ax = 1.25 on the left and Ax = 2 on the right.

The relative error is computed and represented in Figure 1.10. In both cases it is
larger than the uniform one, as it will be for all the next scenarios. In the simulation
with Ax = 2 the error affects a larger area.
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Figure 1.10: Error for x-stretching grids. Ax = 1.25 on the left and Ax = 2 on the right.

• Grid with a line direction change: This grid typology is obtained by defining the y
coordinates as

y∗(ξ, η) = y(ξ, η) +H(x)Ayx(ξ, η) (1.13)

where the constant Ay specifies the grid line gradient for x > 0.
Two grids obtained with Ay = 0.25 and Ay = 0.875 are shown with their respective
quality indexes. It can be noticed that these grids are not orthogonal for positive
values of x.

Figure 1.11: Change of line direction effect on the grid. Ay = 0.25 on the left and
Ay = 0.875 on the right.

• Skewed grid: A uniformly skewed grid can be generated from the uniform one using

x∗(ξ, η) = x(ξ, η) + Asy(ξ, η) (1.14)

where As is constant and it specifies the grid line gradient across the entire domain.
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1. Introduction and motivations on bluff cylinders applications

A non-uniformly skewed grid can be defined, for example, with x∗(ξ, η) = x(ξ, η) + Atsin
(

2πy(ξ,η)
L

)
y∗(ξ, η) = y(ξ, η) + Atsin

(
2πx(ξ,η)

L

) (1.15)

where , as usual, (x, y) are the old coordinates and (x∗, y∗) are the new ones and the
coefficient At is linked to the skewness. Figure 1.12 represents two different meshes
obtained with (1.15).

Figure 1.12: Non-uniform skewness effect on the grig. At = 1 on the left and At = 1.5 on
the right.

For each case, several computations have been performed by changing the coefficients
Ax, Ay, As, At. Then the quality index and the relative error have been integrated on the
domain obtaining plot like in Figure 1.13. Finally the correlation coefficients between Q
and |E| have been computed using the formula

CQE =
< QIEI >

[< Q2
I >< E2

I >]1/2
(1.16)

where < > denotes the variance operator.

The obtained values with different filtering schemes in (1.6) are shown in table 1.1
All the meshes defined starting from the uniform case present defects that can be

stretching, non-orthogonality, skewness or some combination of them. It appears clearly
that, qualitatively, all the meshes induces errors bigger than the optimal cases. Looking
at table 1.1, it is possible to ascertain that the proposed quality index Q is well defined
because it is strongly correlated to the error.

Even if the physical problem differs significantly from the one that will be analyzed in
the thesis, the idea of the computation of correlation coefficients to express quantitatively
the relation between grid quality and error will be used. The correlation coefficients in
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Figure 1.13: On the left, integrated quality index with different values of Ay when line
directions are changed. On the right EI with respect to QI .

Grid Features Explicit filter Implicit filters

Grid spacing discontinuity 0.971 0.970

Grid direction discontinuity 0.955 0.954

Uniform skewness 0.427 0.128

Non-uniform skewness 0.921 0.921

Table 1.1: Correlation coefficients for each mesh obtained from the uniform one.

[33] are very high and sometimes close to one as a demonstration of the good definition
of Q.
However, it is important to underline that, contrarily to the test case of this thesis an
analytical solution is available and so the exact numerical error is computed. In addition
Finite Differences are used with high-order schemes such that the grid error contributes
mostly to the total error. This is not the case with FVM, that can handle also unstruc-
tured meshes at the difference of the FDM, where the spatial discretization is, at most,
second order accurate. Finally the meshes are explicitly obtainable from the uniform one
through an analytical expression. For unstructured grids this expression is impossible
to find. In addition the meshes of the article have, usually, constant values of either
skewness or non-orthogonality over all the transformed faces. Grids used in the thesis
will have different values for each face.
All this features helps the correlation analysis because they let to isolate either the grid
error from the others or the defects.

1.2.3 Grid refinement effects for a square cylinder

At the contrary of the previous study, [34] refers to the CWE benchmark of flow around
a square cylinder. In this study the mesh induced error linked to the mesh refinement
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1. Introduction and motivations on bluff cylinders applications

(a) CR grid

(b) WR grid on left and CWR grid on right.

Figure 1.14: Three different grids used in [32]. The corners small curvature does not
affect the flux topology.

is investigated. LES simulations for the square cylinder scenario have been performed in
order to study the effect of different meshes. In particular, a structured mesh refined near
the cylinder (CR), shown in Figure 1.14 is defined. Only the mesh in the x− y plane is
shown because the mesh over third dimension is structured and cutting the domain with
a plane z = const the same mesh always appears. This discussion justifies the choice of
the thesis to perform 2D simulations in order to investigate the mesh quality effects.
Then, starting from CR, two more grids are obtained through unstructured refinements,
the first in the wake (WR), the second both near the cylinder and in the wake (CWR).
In both WR and CWR the total number of control volumes in the whole domain does
not change.

By defining these three meshes, the effect of refinements in region with big values of
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Figure 1.15: NBFC mesh in [40].

derivatives is studied. It is known that near wall and the wake are regions with high
vorticity and deformation and, as a consequence, in both regions the mesh should be
refined in order to bound the truncation error. As expected, the simulation with CWR
mesh gives better results in terms of aerodynamic coefficients cD and cL, in both mean
and fluctuating values, pressure and velocity in the wake. It is also noticed that results
with mesh WR are more accurate than the ones with CR.
This article investigates on the error associated to the mesh density, however it can be
observed in Figure 1.14 looking at the mesh near the corners that grids not only change
in density but also in quality. As a consequence the differences between simulated results
can not be totally justified by the different grid density.

1.2.4 Non-orthogonality effects for a circular cylinder

The effects of mesh quality have been observed in [40]. In this article the effect of the
non-orthogonality is studied in the scenario of the circular cylinder with Reynolds num-
bers Re = 550 and Re = 3000.
A first non-orthogonal body fitted curvilinear coordinate system mesh (NBFC grid) is
defined, Figure 1.15.

Then an algorithm obtains, through a numerical quadrature of the expression of the
unit vector tangent to the generalized coordinate ξ, new coordinates of the mesh nodes.
This new nodes have the characteristic to define orthogonal grids (OBFC). Four different
grids are defined, each of them with a different number of orthogonal lines, denoted by
ξo, that are, respectively, ξo = 5, 15, 25, 35. This values are chosen taking into account

Figure 1.16: OBFC vs NBFC mesh in [40] with ξo = 35.

that the total number of lines is 66 and so the percentage of orthogonal lines varies from
7.5% to 53%.
Figure 1.17 compares the numerical results obtained with NBFC and OBFC with ξo = 35
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(a) OBFC with ξ0 = 35 and Re = 550. (b) NBFC and Re = 550.

Figure 1.17: OBFC and NBFC results compared to experiments.

to the experimental ones. It can be observed that both simulations detect correctly the
position of the main eddy core and also the separation point but, at the contrary, the
recirculating zone lengths differ with the OBFC closer to the experiments. This fact is
observed with both Reynolds numbers.
Finally the article reports the location in time of several points linked to the flow topol-

ogy with the different meshes and different Reynolds numbers (Re = 31, 550, 1200). It
is observed that results obtained with the non-orthogonal mesh are always farther from
the experimental values than the OBFC ones. In addition, the bigger is the Reynolds
number and the bigger is the error with the NBFC grid.
In conclusion, the article not only shows that non-orthogonality affects negatively the
results, but also suggests that in CWE applications, where Reynolds number are bigger
than the ones used in the article, the non-orthogonality error should have more impact.
However, even if the simulations are based on a Finite Volume discretization, the defini-
tion of orthogonality used in this work is not the same as in [2] that will be used in this
thesis and that, as it will observed, is more coherent with this discretization technique.
Indeed in this paper the orthogonality refers to the angles between the lines that gener-
ates the mesh.
Moreover, the physical phenomena observed is not interesting from an engineering point
of view because the analysis investigates development in early stage of the wake behind
a cylinder that is impulsively started and not the stationary flow.

1.2.5 Growth factor consequences in flows around bluff bodies

Grid generation is a fundamental aspect in CFD computations as stressed in [22]. This
article investigates the optimal choice of the Growth Factor (GF) such that the numerical
simulation of flows around bluff bodies converges. As a matter of fact the GF, that
represents the ratio between the characteristic lengths of two adjacent cells, is one of
the most important error sources in the mesh generation process in addition to non-
orthogonality and skewness.
Firstly the flow around a square obstacle has been studied. The three used meshes
are completely orthogonal and not skewed with GF = 1.05, 1.07, 1.1. One of them is
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(a) Square cylinder. (b) Rectangular cylinder. (c) Streamlined cylinder.

Figure 1.18: Grids defined around three different bodies in [22].

represented in Figure 1.18. Some results are compared to the literature ones however the
main focus is not on the errors induced by high values of the growth factor but on the
occurred convergence of the simulation. For the same reason only a mesh for a rectangular
cylinder and one for a streamlined body are defined and shown also in Figure 1.18. It
can be easily observed that the latter is characterized by high skewness values and so its
numerical effect is added to the GF one, at the contrary of the previous two cases where
this error source was correctly isolated.

1.2.6 Correction terms linked to non-orthogonality and skew-
ness in a diffusion problem

Until now, the presented articles have investigated about the error generated by the mesh
by changing it and defining either finer or qualitatively better meshes. Even if [21] does
not deal with a CWE application, it is interesting because it reduces the grid induced
error in a Finite Volume framework by working on the correction terms defined in [2] in
the discretized equation. A formal definition of the correction term will be given in the
third chapter, but it is important to highlights that if this term is not considered, the
numerical result can be quantitatively important.
Comparing the in-house code to ANSYS FLUENT, used in the thesis, and to OpenFOAM,
the latter being open source, it has been observed that ANSYS FLUENT properly in-
cludes non-orthogonality correction term. However, when the mesh starts becoming not
only non-orthogonal but also with high values of skewness, this commercial code starts
having troubles obtaining solutions affected by significant errors. More in particular the
2D diffusive problem

∇ · (∇φ) = 0 (1.17)

has been numerically solved with a mesh with high skewness. Figure 1.19 shows the two
components of ∇φ obtained by the codes. It is evident that the FLUENT solution is
characterized by unphysical oscillations that are induced by a wrong treatment of the
skewness correction term in the equations.

Before concluding this chapter, Table 1.2 tries to synthesize the principal pros and cons
of each work in order to emphasize the perspective of this thesis.
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Figure 1.19: Components of ∇φ obtained through in-house and commercial codes in [21].

Pros Cons

[33] Sec. 1.2.2 • Distinction between different errors • FD approach
• Engineering application

[34] Sec. 1.2.3 • Engineering application • No distinction between
density and quality mesh errors

[40] Sec. 1.2.4 • Studies non-orthogonality • Engineering application
• Different orthogonality definition

[22] Sec. 1.2.5 • Separates growth factor error • Ignores non-orthogonality
• Engineering application and skewness

[21] Sec. 1.2.6 • Detects FLUENT drawbacks • Engineering application
• Uses the same quality indicators

Table 1.2: Synthesizing table that schematically represents advantages and drawbacks of
the presented articles compared with the objective of this thesis.
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Chapter 2

Governing equations and numerical
approach

CWE is based on the numerical simulation of the Navier-Stokes equations. These come
from the balance laws making the hypothesis of Newtonian fluid. It is possible to define
three fundamental aspects in CWE that are presented separately but that are intrinsically
linked to each other:

• Turbulence model

• Equations discretization

• Grid generation

In this chapter firstly the Navier-Stokes equations will be obtained and then the first two
aspects will be discussed. The third and last one will be the topic of the next chapter
due to its relevance for the thesis.

2.1 Governing equations

In order to obtain the governing equations, firstly the balance laws are discussed. For the
purpose of the thesis only the mass and momentum balance laws are required in order
to obtain informations on pressure and velocity and so only these ones are discussed. It
is important to underline that other balance laws exist, for example the energy balance
is used to obtain informations on the temperature. These laws are very general and,
as a matter of fact, they are the starting point for any science based on the continuum
hypothesis like structural mechanics, multiphase problems and so on.
After that, it arises that the obtained system is not determined due to the fact that the
unknowns are more than the equations. To overcome this difficulty it is necessary to take
into account the nature of the flow and to assume a constitutive relation. In CWE it is
assumed that air behaves like a Newtonian fluid.

2.1.1 Balance laws

Fluid Dynamics is based on the Continuum assumption that lets to define locally mechan-
ical properties of the fluid. To the geometrical point with zero volume a fluid particle is
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2. Governing equations and numerical approach

associated described by its values of density and velocity by mean of a statistical average
of the molecules properties. This hypothesis is acceptable if there exists a length scale
L2, the particle scale, in between L1 and L3 such that

L1 � L2 � L3

where L1 and L3 are the lengths of respectively microscopic and macroscopic inhomo-
geneities as shown in Figure 2.1. For example L1 can be the molecular mean-free-path.
Under this assumption it is now possible to define the density ρ and the velocity u fields.

Figure 2.1: Average temperature with respect to length scales. Any fluid property like
density or velocity can substitute the temperature. The figure is from [14].

By defining a generic control volume V, a finite region that contains infinitely many
fluid particles, it is possible to describe mathematically how a flow quantity can change
in it. A key role is played by the amount of flow property that enters or exits to the
volume through the boundary ∂V. This quantity is called flux.

1. Mass conservation: it is a particular case of the mass balance under the assumption
that the total mass of the fluid can not change and so source terms do not exist.
In this scenario the total fluid mass can change in the control volume only because
of the mass flux. Usually the flux is positive if the mass goes out the volume and
negative if it goes in. Indeed the mass conservation reads

∂

∂t

∫
V

ρ dV +

∮
∂V

ρ(u · n) dS = 0. (2.1)

Using the Gauss theorem, assuming fields sufficiently smooth, and because the
equation is valid for any control volume V, the local form is obtained

∂ρ

∂t
+∇ · (ρu) = 0. (2.2)
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2. Governing equations and numerical approach

The above equation can be simplified if the fluid is assumed to be incompressible
and so the density ρ is constant. This hypothesis is acceptable in the CWE problems
where the air speed is lower than 0.3 Mach. Then, the local mass conservation reads

∇ · u = 0. (2.3)

2. Momentum balance: this law says that the total momentum in the control volume
can change by the effect of forces acting on the mass element. The forces can be
either volumic, called also body forces, or superficial, called also stresses.
The integral form of the momentum balance is

∂

∂t

∫
V

ρu dV +

∮
∂V

ρu(u · n) dS −
∮
∂V

(σ · n) dS =

∫
V

ρfb dV, (2.4)

where σ is the second order Cauchy stress tensor. The volumic forces term fb, that
includes for example the gravity effect, are neglected in aerodynamics.
Using the Gauss theorem like in the mass conservation law, the differential form is
obtained:

∂ρu

∂t
+∇ · (ρu⊗ u)−∇ · σ = 0. (2.5)

2.1.2 Constitutive relation and Navier-Stokes equations

In the tridimensional space, the derived system is made of four equations, one from the
mass conservation and three from the momentum balance, but it contains nine unknowns:
u and six components of the symmetric tensor σ (the density ρ is also an unknown if the
incompressibility assumption is not available). The system is therefore not closed and a
constitutive relation is needed to write the Cauchy tensor as a function of the pressure,
the velocity and their gradients.
For incompressible Newtonian fluids, the viscous part of the Cauchy tensor is assumed
to be linear to the deformation tensor D and so the constitutive relation reads

σij = −pδij + 2µDij = −pδij + µ
(∂ui
∂xj

+
∂uj
∂xi

)
(2.6)

where p is the pressure that influences only the diagonal terms of the stress tensor and µ
is the dynamical viscosity or molecular viscosity.
Substituting the expression (2.6) into (2.5) and using the (2.3), the Navier-Stokes equa-
tions are obtained

∂ρu

∂t
+ ρu · ∇u +∇p− µ∆u = 0. (2.7)

The last equation can be divided by the constant density. By defining the kinematic
viscosity ν = µ

ρ
, the final closed system is

∇ · u = 0,

∂u

∂t
+ u · ∇u +

1

ρ
∇p− ν∆u = 0.

(2.8)
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2.1.3 Initial and boundary conditions

In order to work with a well-posed differential problem, initial and boundary conditions
must be imposed.
For the boundary conditions on the obstacle’s wall a usual condition is that the fluid can
not pass through the obstacle. Assuming that the obstacle is fixed, this is mathematically
described by the condition

u · n = 0 (2.9)

where n is the normal to the surface.
If the considered fluid is viscid, like the air in CWE problems, the no slip condition

u = 0 (2.10)

is imposed on the wall.
The computation domain must be a bounded region and, as a consequence, non-physical
boundaries are defined. Usually in the inlet the velocity field is imposed. In the outlet the
normal component of the velocity field is set equal to zero and the pressure is imposed in
order to define it uniquely. Indeed, from (2.8) it can be observed that the pressure field is
defined unless an additive constant. Finally on the other boundaries periodic boundary
conditions are imposed.

In the initial conditions, the fields u and p must be described in all the computation
domain and they have to satisfy the differential system and the boundary conditions.
The choice influences the number of time steps required to achieve convergence.

2.2 Turbulence models

Before starting the discussion about turbulence models and their applications in CWE,
it is important to understand the main features of the turbulence.
Turbulence is a flow regime that occurs usually at high Reynolds numbers after a tran-
sition from the laminar behaviour in the system where the latter is unstable.
It shows mixing properties that tend to homogenize the flow properties like momentum
or temperature and for this reason it is often associated to the viscosity property.
In a turbulent regime the physical fields, that instantaneously are intrinsically tridimen-
sional, evolve erratically in both time and space and the flow shows high vorticity.
The turbulence is a multiscale phenomenon where temporal and spatial fluctuations vary
in wide time and length scales. The biggest length scale is usually denoted with Λ and the
smallest with λ. At each length scale l ∈ [λ,Λ] corresponds a Turbulent Kinetic Energy
(TKE) that increases with respect to the eddy dimension and a Reynolds number defined
as

Rel =
l ul
ν

(2.11)

where ul is the scale of the fluctuating velocity associated to l. Figure 2.2 shows the
energetic distribution of the eddies.
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Figure 2.2: Energy spectrum of the turbulence in a loglog scale. k is the wavenumber.
The image is from [18].

While the scales are easily distinguishable in the energy domain, characterized by a
continuous spectrum, in the spacial domain this is not the case because all scales are
merged.
Eddies with dimension Λ take their energy by the mean field. Then they splits into
several smaller eddies, each one with a fraction of the initial energy. These eddies lie
to the intermediate scales called inertial scales. This name is due to the fact that the
inertial effects are dominant. As a matter of fact in a CWE scenario ReΛ ≈ Re

100
� 1 and,

as a consequence, scales smaller than Λ can still have high inertial effects.
After that the vortexes in the inertial scales split in even smaller ones with length scales
of the order of λ. This scales are called Kolmogorov scales. Finally these eddies are
dissipated because the viscosity effects are important, indeed λ is such that Reλ = O(1).
This is the motivation why a smaller scale than λ can not be observed.
All this process is called turbulent energy cascade.

2.2.1 Direct Numerical Simulation

The Navier-Stokes equations are mathematically suitable to simulate turbulent flows.
The Direct Numerical Simulation (DNS) consists on the numerical discretization of the
Navier-Stokes equations without any other modelling.
Even if it is the most accurate approach, it is computationally very expensive because
of the necessity to simulate all the turbulence scales and, in particular, the Kolmogorov
scales.
λ is too small to be experimentally measured, but an estimation can be obtained through a
dimensional analysis. Because the Kolmogorov scales are linked to the eddies dissipation,
λ, a length, has to be proportional to both the kinetic viscosity ν, dimensionally m2/s,
and the internal energy dissipation rate ε, dimensionally m2/s3. With the same approach
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also the time scale tλ can be established. The estimations are

λ ∝
(ν3

ε

) 1
4

= Re−
5
4 , tλ ∝

(ν
ε

) 1
2
. (2.12)

In order to obtain an accurate simulation, the spacial and time discretization must be
proportional to these values.
In a CWE problem with Re = O(106), the corresponding Kolmogorov scales have
λ = O(10−7)m. Therefore the corrisponding tridimesional mesh (the turbulence is a
tridimesional phenomenon) requires O(1016) points and the temporal discretization must
have O(105) time steps to guarantee numerical stability.
By this analysis it is clear that DNS is computationally unsustainable for industrial appli-
cations and it is used only for academic purposes in order to study the physical behaviour
of turbulence.

2.2.2 Reynolds-Averaged Navier-Stokes

In the applications, in order to study the flow effects on structures like square cylinders
in CWE, the knowledge of the mean fields are sufficient. The Reynolds-Averaged Navier-
Stokes (RANS) methods are based on the splitting of the generic quantity ϕ, depending
on space and time, at point xi in

ϕ(xi, t) = ϕ(xi, t) + ϕ′(xi, t) (2.13)

where ϕ is the mean component of ϕ and ϕ′ is the fluctuating one.
In an unsteady problem the mean component is defined using an ensemble averaging
operator

ϕ(xi, t) = lim
N→∞

1

N

N∑
n=1

ϕn(xi, t) (2.14)

where N is the number of members of the set of unsteady flows characterised by the same
variables.

Figure 2.3: Time averaging for unsteady flows. Image from [18].
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An important property of the averaging operator is that ϕ′ = 0, i.e. the fluctuating
component has zero mean.
By applying the mean operator to the Navier-Stokes equations in (2.8), the result is

∂ui
∂xi

= 0

∂ui
∂t

+
∂

∂xj
(uiuj + u′iu

′
j) = −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
ν
(∂ui
∂xj

+
∂uj
∂xi

)]
.

(2.15)

The last equation in (2.15) can be rewritten as

∂ui
∂t

+ uj
∂ui
∂xi

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

[
ν
(∂ui
∂xj

+
∂uj
∂xi

)]
− ∂

∂xj

(
u′iu
′
j

)
. (2.16)

This equation, if the last term is not considered, is formally identical to the classic equa-
tion in the Navier-Stokes system (2.8). The last term contains the divergence of the
Reynolds stress tensor defined as Rij = u′iu

′
j. The components of the fluctuating velocity

are not statistically independent from each others and they can not be neglected.
The resulting RANS equations are not closed because in addition to the mean fields u
and p also the Reynolds tensor components are unknown. It has to be observed that this
tensor is symmetric.

With the aim to close the system, a first approach is to obtain exact equations for each
component of the Reynolds tensor. In order to derive the equation for Rij, it is sufficient
to take equations for ui and uj in (2.8), then multiply the first one by uj and the second
one by ui, sum the two equations and finally applying the average operator.
Even if these equations are exact, because they are obtained directly from the Navier-
Stokes system, they can not be directly used because they contains terms that need to
be modelled. In addition, this approach is not very used due to the computational cost
to solve this system. As a matter of fact, with this approach three or six new equations,
respectively in the bidimensional and tridimensional case, are coupled to the RANS equa-
tions.

A second way to find a closure to the system is to use the Boussinesq eddy-viscosity ap-
protimation based on the analogy between molecular viscosity and the turbulence mixing
and dissipation properties

u′iu
′
j = νt

(∂ui
∂xj

+
∂uj
∂xi

)
. (2.17)

νt is called turbulent viscosity and it is unknown.
The methods based on this approximation are called linear isotropic models. The term
linear refers to the linear relation between the Reynolds tensor and the deformation ten-
sor. The isotropic one is due to the scalar nature of the eddy viscosity νt. Since R is a
tensor, it would be more appropriate to define the eddy viscosity as a tensor instead of a
scalar but it would complicate the treatment.
The turbulent viscosity can be written, through a dimensional analysis, using the turbu-
lent kinetic energy k = 1

2
u′iu
′
i and the already defined turbulent energy dissipation rate ε.
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The final relation is

νt = Cµ
k2

ε
(2.18)

where Cµ is a dimensionless constant.
The k − ε RANS methods add to the RANS equations, with the Boussinesq hypothesis,
two differential equations for k and ε.
The equation for the turbulent kinetic energy can be obtained analytically using the
RANS and Navier-Stokes equations and it reads

∂k

∂t
+
∂(ujk)

∂xj
= −u′iu

′
j

∂ui
∂xj︸ ︷︷ ︸

Pk

+
∂

∂xj

(
p′u′j
ρ

+
1

2
u′ju

′
iu
′
i + ν

∂k

∂xj

)
︸ ︷︷ ︸

Dk

− ν ∂u
′
i

∂xk

∂u
′
i

∂xk︸ ︷︷ ︸
ε

. (2.19)

Equation (2.19) describes how k can evolve in time and space. Each term on the right
hand side has a physical interpretation:

− Pk is always greater than zero by physical motivations and for this reason it is called
Production term. It represents the rate at which kinetic energy is transferred from
the main flow to the turbulence.
It can be modelled using the Boussinesq hypothesis.

− Dk is the Diffusion term. Diffusion is induced by a pressure gradient, by k itself
and by the viscosity. The first two terms need to be modelled. In particular they
are modelled using the gradient assumption for which k moves from regions where
it has higher values to regions with a lower one. It is expressed as

p′u′j
ρ

+
1

2
u′ju

′
iu
′
i = − νt

σk

∂k

∂xj
(2.20)

where σk is a coefficient.

− ν
∂u
′
i

∂xk

∂u
′
i

∂xk
is the definition of the turbulent energy dissipation rate ε. This term can

not be modelled and it requires a partial differential equation.

Theoretically it could be possible to deduce an exact equation for ε as made for the
turbulent kinetic energy. This operation would be analytically complicated and seven
different terms should be modelled. For this reason it has been preferred to write an
equation formally equal to the k one, except for the factor ε/k that is used to have terms
dimensionally correct.
The final equations for the k − ε model are

∂k

∂t
+
∂(ujk)

∂xj
=

∂

∂xj

[(
νt
σk

+ ν

)
∂k

∂xj

]
+ Pk − ε,

∂ε

∂t
+
∂(ujε)

∂xj
=

∂

∂xj

[(
νt
σε

+ ν

)
∂ε

∂xj

]
+
ε

k
Cε1Pk −

ε

k
Cε2 ε.

(2.21)

Usual values for the coefficients in (2.21), obtained through either experiments or com-
putational optimization, are
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Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3.

This k − ε standard formulation (STD) has the important drawback to overestimate
the turbulent viscosity. As a matter of fact, a CWE simulation with the STD k−ε model
can predict a steady flow in problems that are not physically steady. For this reason a
modification of this model, called RNG k− ε, has been proposed. In this approach some
constants are changed and additional terms are used in the equations for k and ε in order
to reduce correctly νt.

Another way to deal with this inconvenience is to define another turbulent variable,
instead of ε, and to write for it an equation. The chosen variable is ω, defined such that

νt =
k

ω
. (2.22)

The RANS simulations discussed in the next chapters will always be based on RNG
k − ε methods and, consequently, the features of the k − ω models are not discussed in
this thesis. For details, [18] is recommended.

2.2.3 Large Eddy Simulation

The Large Eddy Simulation, LES, is an intermediate approach situated in between the
DNS approach, where all the turbulence scales are simulated, and RANS approach, where
all the turbulence scales are modelled. Looking at the energetic spectrum in Figure 2.2,
it appears that eddies in the energetic interval carry almost all the turbulent energy, in
particular more than 95%, and it should be suitable to simulate their contribution instead
of modeling it. On the other hand, the main drawback of the DNS is the high number of
required grid cells due to the necessity to capture the eddies in the Kolmogorov scales.
In addition, the big scales are more affected by the boundary conditions and they do
not behave isotropically. For example a big eddy near the wall will be elongated on the
direction parallel to wall. At the contrary small eddies do not depend on the domain
geometry and so they are more universal and easier to model.
For these reasons, LES aims to simulate only the eddies in the energetic scale, that
strongly influence the values of the fluctuating forces and that are complicated to physi-
cally describe, and to model the small eddies in order to reduce the computational cost.

In the energetic domain, in order to make this scales separation, it is sufficient to
choose a threshold wavenumber κl in the inertial range such that if κ < κl then the
scale is simulated and, at the opposite, if κ > κl the scale is modelled. This operation is
straightforward if a low pass filter Ĝ(κ) in the wavenumber domain is defined. Then, if
ϕ is a spatial quantity, the simulated result will be

ϕ(x) = G(x) ∗ ϕ(x)

where G is the Fourier anti-transformation of the filter and ∗ is the convolution operator.
As mentioned previously, while the turbulence scales are distinguishable in the energy
domain, this is not the case in the spatial domain where, in addition, a mesh grid is
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defined. If a vortex is smaller that the grid dimension, it can not be detected by the sim-
ulation. This motivation drives to the definition of a filter kernel G(x, κ; ∆) that depends
on the grid dimension ∆. In order to be coherent to the physical aim to filter eddies with
wavenumbers greater than κl, ∆ must be proportional to l.

A practical way to distinguish the simulated scales from the modelled ones is to adopt
a numerical filter. This means that the mesh plays the filtering role and the scales with
length l are simulated if l > ∆ and they are modelled if l < ∆.

The Navier-Stokes equations can be filtered obtaining

∂ui
∂t

+
∂

∂xj

(
uiuj

)
= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν
(∂ui
∂xj

+
∂uj
∂xi

)]
. (2.23)

The problem with equation (2.23) is that uiuj 6= uiuj and so the subgrid-scale Reynolds
number

Rs
ij = uiuj − uiuj (2.24)

needs to be modeled.

A first model was proposed by Smagorinsky [19] in 1963 and it is based on a Boussinesq-
like approximation

Rs
ij = νs

(∂ui
∂xj

+
∂uj
∂xi

)
(2.25)

The subgrid viscosity is, after a dimensional analysis, νs = ε1/3(CS∆)4/3 where CS is
a dimensionless constant. The huge problematic of the Smagorinsky model is the not
universality of CS that changes depending on the flux.
In general, the closure of the filtered equations is still nowadays an important research
field.

2.3 Equations discretization

In order to computationally solve (or, more accurately, approximate) the system (2.8)
a spatial and a temporal discretization must be defined. In this way the infinitely-
dimensional Navier-Stokes equations are approximated to a corresponding finite system .
The Finite Difference Method, FDM, has been the first spatial discretization method to
be used since the beginning of CFD. It is based on the derivatives approximations by
differences (hence its name), obtained from Taylor’s expansions, between the variable
values in mesh points.
Nowadays the most used methods are the Finite Element Methods, FEM, and the Finite
Volume Methods, FVM, due to their flexibility to handle unstructured meshes necessary
in complex geometries. The former is based on the variational formulation of the PDEs,
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2. Governing equations and numerical approach

the latter on the integral conservative laws. All the simulations in this thesis are based
on a FVM discretization and, for this reason, only this method is discussed.

2.3.1 Finite volume method and convective schemes

FVM starts from the balance law of the generic quantity ϕ that can be a scalar, a vector
or a tensor. For example, as already discussed for the governing equations, ϕ can be the
density or the momentum.
The spatial domain V is divided into subdomains, called cells or control volumes, Vi with
i = 1, . . . , N and the conservation law is then written for each of them:

∂

∂t

∫
Vi

ϕdV = −
∫
∂Vi

f c · n dS +

∫
∂Vi

fd · n dS +

∫
Vi

s dV. (2.26)

(2.26) expresses that the total amount of ϕ in the cell can change because there is a flux
of the quantity across the boundary and because source therms can create or destroy it.
After a temporal discretization, it gives a scheme to compute the mean value of ϕ in each
control volume.
For simplicity, it is supposed that there is not a source term, as already done in the mass
and momentum laws. The flux is divided into the convective flux, linked to the transport
effect made by the velocity field, and the diffusive flux, linked to the gradient of ϕ.
Vi are chosen as polygons in 2D and polyhedra in 3D and, for this reason, the flux term
integral in (2.26) can be expressed as the sum of integrals over the n faces of Vi. Denoting
by f a generic flux that can be either convective or diffusive, then∫

∂Vi

f · n dS =
n∑

S=1

∫
S

f · n dS ≈
n∑

S=1

S · f(ϕS) =:
n∑

S=1

S · fS (2.27)

where the surface integral has been approximated. S = |S|n and fS is the flux in the
face center.
The formula (2.27) presents the main problematic of the FVM formulation. In order to
compute the flux terms, the knowledge of ϕ in the middle of the face S is required but
the FVM gives information only about the average of ϕ in the cells. As a consequence in
the past decades, many convective schemes have been proposed to reconstruct the value
on the faces starting from the cell averages.
The most important convective schemes are now discussed. For sake of simplicity they will
be presented in the monodimensional case. The complication induced by a bidimentional
problem will be discussed in the next chapter about grid induced errors.

Let consider the configuration reported in Figure 2.4 . The different convective schemes
aim to build the value ϕe using the cell averages of the near cells. For this reason, the
capital letter subscript denotes the average over the cell and not the value in the cell
center.
For simplicity, it is assumed that the velocity is constant equal to a and the convective
flux can be written as

f c = aϕ.
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2. Governing equations and numerical approach

Figure 2.4: 1D domain where capital letters refer to the cells. e is the face between cell
P and cell E.

1. Central Differencing Scheme (CDS)
The value at the face is obtained through a linear interpolation between the two
averages over the cells that share the face:

ϕe = λPϕP + λEϕE (2.28)

where the coefficients

λP =
xe − xP
xE − xP

, λE =
xE − xe
xE − xP

(2.29)

weight with respect to the distance of the face to the cell centers. The condition
λP + λE = 1 is always satisfied.
While this scheme is stable for the diffusive flux, it is unstable and creates unphysical
oscillations when used for the convective flux. This behaviour can be physically
explained: while the diffusive flux is linked to the gradient and tends to average ϕ
like a linear interpolation makes, the nature of the convective flux is connected to
the velocity field and, as a consequence, a scheme that does not take into account
the velocity fails in its reconstruction.

2. Upwind Differencing Scheme (UDS)
The value at the face is set to be equal to the upwind cell value, i.e.

ϕe =

{
ϕP if a > 0,

ϕE if a < 0.
(2.30)

Using this definition the link between the convective flux and the velocity is kept.
As a matter of fact this scheme is stable even if it is only first order accurate.

3. Quadratic Upwind Interpolation for Convective Kinematics (QUICK)
This scheme, firstly proposed in [20] in 1979, takes into account the velocity but it
uses three interpolation points to increase the spatial accuracy.
The face value is

ϕe =


1

3
ϕE +

5

6
ϕP −

1

6
ϕW if a > 0,

1

3
ϕP +

5

6
ϕE −

1

6
ϕEE if a < 0.

(2.31)
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2. Governing equations and numerical approach

Several other convective schemes exist but they are all based on the idea of taking the
information upwind like in the UDS and QUICK cases. They differ on the number of
interpolation points and on the coefficients. It has to be observed that, in a multidimen-
sional scenario with the non-linear Navier-Stokes equations, it becomes more difficult to
define if a cell is upwind or downwind and for this reason schemes with a small number
of interpolation points, like the QUICK one, are used.

2.3.2 Time discretization

The time discretization methods are usually divided into explicit methods and implicit
methods.
Let consider the equation

∂ϕ

∂t
+ L(ϕ) = 0 (2.32)

where the operator L represent a linear operator that does not involve time derivations.
Let define a time discretization with time steps ti with i = 1, ..., n with constant step size
∆t.
The explicit and implicit first order methods compute ϕ for t = tn+1, denoted by ϕn+1,
using its value at the previous time step.

1. First order explicit
The equation (2.32) is discretized as

ϕn+1 − ϕn

∆t
+ L(ϕn) = 0.

Consequently, ϕn+1 can be immediately obtained:

ϕn+1 = ϕn −∆tL(ϕn) (2.33)

2. First order implicit
The equation (2.32) is discretized as

ϕn+1 − ϕn

∆t
+ L(ϕn+1) = 0.

At the contrary of the explicit case, in order to obtain ϕn+1, a linear system must
be solved:

ϕn+1 + ∆tL(ϕn+1) = ϕn. (2.34)

Apparently, the explicit method seems to be a better choice because it does not require
the resolution of a linear system that, at least, is strongly sparse due to the fact that a
cell exchange fluxes only with its neighbors.
Actually, the implicit case has the huge advantage to be unconditionally stable. This
means that this numerical scheme converges for any value of ∆t. Of course, the bigger
is the time step and the less accurate is the solution but convergence is guaranteed. At
the contrary, the explicit scheme is unconditionally unstable. This means that the time
step ∆t must be chosen small enough, depending on the spatial volume sizes, to obtain
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2. Governing equations and numerical approach

a convergence of the scheme. If the temporal step is bigger than the threshold value, the
scheme diverges. This drawback is particularly problematic in grid refinement studies
and in problems with different volume sizes where the time step must be selected to fit
with the smallest one.
For example, in case of the transport equation with L(ϕ) = aϕ, it is well known that
the Courant-Friedrichs-Lewy (CFL) conditions yields: the explicit scheme is stable if and
only if

a∆t

∆x
< 1. (2.35)

Before ending this chapter it is important to observe that the Navier-Stokes momentum
equations can not be classified in the (2.32) framework because of the presence of the non-
linear convective term u ·∇u. In order to overcome this problematic, in the codes, inside
the temporal loop there is an inner loop associated to the non-linearity that linearise the
problem at each step.
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Chapter 3

Computational grids

Any CWE simulation is based on three different aspects: turbulence models, interpolation
rules, more in particular convective schemes, and finally the mesh generation. The latter is
discussed separately in this chapter due to its central role in the thesis but it is important
to observe that the previous mentioned aspects are equally important. Each of them
generates errors that are added together. If one of these errors is orders of magnitude
bigger then the others, the numerical solution will not be accurate even if the other two
aspects have been dealt suitably. Lastly, this three components are not independent to
each other. At the contrary they are mutually linked. For example the LES turbulence
model is based on the grid elements size.
In this chapter firstly some terminology will be introduced and the general mesh categories
are presented. Then the errors induced by the mesh and the grid quality are discussed.
Finally, some usual mesh quality indicators are defined.

3.1 Mesh classification

The mesh is a partition of the computational domain into cells that are the basis of the
FVM discretizzation. The more are these cells and the more accurate is, in general, the
numerical solution and the more expensive is the simulation.

3.1.1 Structured and unstructured meshes

Depending on the way the cells are created and stored in memory three different classes
can be defined:

• Structured grids
They are characterized by cells that are disposed with a regular pattern that can be
observed looking at their connectivity. This peculiarity lets to store in memory the
informations such that it results easier the research of a particular cell. Another
important aspect of this meshes is that, if the cells are efficiently numbered, the
sparse linear system associated to the discretization is band with a small bandwidth.
For such systems, very efficient solvers have been developed.
Unfortunately, the generation of structured domains becomes hard, if not even
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3. Computational grids

impossible, in presence of complicated geometries or computational domains. In
addition, usually it can not be made by mesh generator algorithms, that are coded
to handle any type of geometries.

• Unstructured grids
The opposite scenario is represented by the unstructured grids. Their main ad-
vantages are that they can be generated by meshing algorithms and they can used
in industrial applications with complex geometries. On the other hand, the cells
connectivity is not linked to their memory storage and the search of a particular
cell can be difficult or even impossible. Moreover the associate linear system needs
a reordering to obtain a band system. This can be performed efficiently with, for
example, a reversed Cuthill-Mckee algorithm [27] based on graph theory but it is,
nevertheless, quite expensive.

• Hybrid grids
The computational domain can be split in several regions. If in some of them the
mesh is structured and in the others the mesh is unstructured, then the grid is
called hybrid.
This approach is the more flexible because it allows to create an unstructured mesh
in most of the domain except for limited areas that, however, are important for
the flux features (for example the boundary layer or the wake region) in which a
structured mesh can be defined.

It is important to observe that the structured/unstructured classification does not in-
volve neither the concept of mesh quality nor the cells shape but only of connectivity pat-
tern. An unstructured mesh can be qualitatively better (in the next section the meaning
of this expression will be clarified) than a structured one or vice versa. In addition struc-
tured and unstructured grids both can be made of, for example, triangles as in Figure 3.1.

(a) Triangular structured mesh (b) Triangular unstructured mesh

Figure 3.1: Structured and unstructured meshes with the same cells shape.

Other classifications exist. A mesh is said to be uniform if all the cells have the same
size. In the contrary case it is called non-uniform. The former are not used in the CWE
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problems and the reason will be cleared in the next section. This fact justify the wide use
of implicit schemes for the spatial discretization: in non-uniform meshes the time step
must be chosen looking at the smallest cell, increasing hugely the number of required
time steps.

Finally a grid can be body-fitted or boundary-fitted. In the first case the cells faces
orientation follows the direction of the obstacle walls. This mesh type is also denoted
by o-type. Examples can be the last two meshes around rectangular cylinders in 1.6 or
around the streamlined body in 1.18. In the boundary-fitted one the faces orientation
is given by the computation domain boundaries. Body-fitted meshes are often used in
aerodynamic of stream-line bodies because the wake region is narrow.

In general the choice of the mesh typology plays a key role in the computation. Firstly
it influences the number of control volumes. The more they are and the bigger is the
computational cost. Then, it influences the cells quality and so the accuracy, as it will
be observed in the following part of this chapter.

3.2 Mesh induced errors and mesh quality

Errors induced by the mesh can have different causes. It has been decided to divide them
in errors due to the cells size and errors due to the cells quality.

3.2.1 Errors linked to the truncation error

An important quantity that is widely used to study the accuracy of a discretization
method is the local truncation error. For simplicity only the case of convective schemes
is discussed. As mentioned in the previous chapter, the exact flux that satisfy the exact
differential equation is not known and so it has to be numerically reconstructed using
a convective scheme. Then the numerical solution of the FVM satisfy the discretized
scheme with the numerical flux and not the exact flux. The local truncation error is
the error committed by using the cell averages of the exact problem into the numerical
schemes with the numerical flux, divided by the cell size ∆x because it is the local error.
The local truncation error of a convective scheme can be expressed, in a 1D problem (in
2D and 3D scenarios the truncation error can be defined for each direction), as

τ(∆x) = α (∆x)p
∂p+1ϕ

∂xp+1
(3.1)

where α is a constant coefficient and ∆x is the cell size. p is called order of accuracy of
the scheme. If a convective scheme interpolates exactly a polynomial of degree d, then
the scheme has order p = d + 1. For this reason in the previous chapter the UDS, that
interpolates exactly a polynomial of degree zero, has been classified as a first order accu-
rate convective scheme.
Finally, the order of the derivative determines the typology of the error. It can be proven
through a Fourier analysis that derivatives of even order enhance diffusive errors. At the
opposite, derivatives of odd order cause dispersive errors.
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Looking at (3.1), it immediately appears that the grid resolution affects the accuracy
because the smaller is ∆x and the smaller is τ(∆x).
Moreover, the truncation error is proportional also to the spatial derivative of ϕ. As a
consequence, in a uniform mesh with spatial step ∆x regions characterized by bigger gra-
dients are more affected by errors. The solution to this problem, in order to have a local
truncation error uniform all over the grid, is to reduce the cells size ∆x in correspondence
of the zones where the gradient of ϕ is higher. For this reason non-uniform meshes are
used in CWE where, for example, the flow has high vorticity and so big velocity gradients.
It seems that the problem of having a uniform truncation error has been solved by defin-
ing smaller cells where ϕ changes quickly in space. The intrinsic problem of this solution
is that ϕ is the unknown of the problem and, in fact, the aim of the simulation is to
approximate it. How could be possible to refine the mesh a priori in some regions de-
pending on the gradient of ϕ if this one is known only a posteriori?
The answer to this problem is that the non-knowledge of ϕ can be partially overcome by
a physical familiarity with the problem that has to be simulated. The mesh is usually
refined where a priori it is known that the flux will be characterized by high changes as
in the boundary layer, near wall regions with high curvature (in case of bluff bodies near
the corners) and in the wake, all featured by high gradients of the velocity and pressure
fields.

3.2.2 Mesh quality and errors induced by low-quality grids

In addition to the mesh elements size, an important role is also played by the quality
of the cells. This is intrinsic of each cell and it depends on neither the cell size nor the
cell position in the domain. Poor-quality meshes can generate higher errors than ones
induced by coarser grids highly qualitative. For this reason techniques that improve the
quality of the grid can be fundamental to increase the accuracy of the solution without
increasing the computational cost.
Three different quality indicators are presented. For each of them the induced error is
investigated. The first one can be discussed for the 1D case and consequently the same
notation of the previous section, described in Figure 2.4, is used. At the contrary, for
the last two the notation will follow Figure 3.2 because they are intrinsically linked to
at least 2D problems where sometimes it is difficult, if even impossible, to determine the
North, South, East, West neighbours of a cell.

1. Aspect ratio
The aspect ratio, or equivalently growth factor, is the ratio of characteristic lengths
of adjacent cells. Ideally, neighbour cells should have the same size and the ratio
should be equal to one. This feature increases the order of accuracy of the interpo-
lation schemes. For example in the CDS scheme, used for the interpolation of the
gradient in the diffusive flux, the first derivative is discretized as

(∂ϕ
∂x

)
e

=
ϕE − ϕP
xE − xP

+
(xe − xP )2 − (xE − xe)2

2(xE − xP )

(∂2ϕ

∂x2

)
e

+ o((xE − xP )2). (3.2)

If the grid is uniform then the coefficient before the second derivative cancels out
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and the order is two, otherwise it is one.

2. Orthogonality
The orthogonality is associated to the angle θI−II between the line that connects
the cells centers of two adjacent control volumes and the normal vector to the face
shared among them. If the angles are equal to zero, the grid is called orthogonal,
otherwise it is called non-orthogonal.

By definition, given firstly in [2], this property refers to the face shared by two
control volumes and not to a single cell. For this reason the orthogonality is always
satisfied in 1D meshes where the faces reduce to nodes.
The effect of the non-orthogonality can be studied starting from the relation (2.27)
applied to the diffusive flux

∇ · (ν∇ϕ) ≈
n∑
f=1

ν F · (∇ϕ)f . (3.3)

Let define d as the vector that connects the cells centers I to II one. Two cases
are possible:

• orthogonality (FI−II ‖ d)
Then (∇ϕ)fI−II

can be reconstructed directly by using a CDS scheme as

FI−II · (∇ϕ)fI−II
≈ FI−II

ϕII − ϕI
d

. (3.4)

• non-orthogonality (FI−II ∦ d)
Then the vector FI−II can be split as FI−II = ∆ + k where

∆ =
d · FI−II

||d||
d. (3.5)

Using the definition of ∆ in (3.5), it follows that ∆ ‖ d and k ⊥ d. So

FI−II · (∇ϕ)fI−II
= ∆ · (∇ϕ)fI−II

+ k · (∇ϕ)fI−II
. (3.6)

The first term in the right hand side of (3.6) can be discretized as before with
a CDS interpolation scheme

∆ · (∇ϕ)fI−II
≈ ∆

ϕII − ϕI
d

(3.7)

and the second term can be approximated as a linear combination of the
gradients of ϕ in points I and II

k · (∇ϕ)fI−II
≈ k · (λ(∇ϕ)I + (1− λ)(∇ϕ)II). (3.8)
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λ depends on the orthogonal distance between I and the face FI−II . (∇ϕ)I,II can
be obtained using the Gauss theorem∫

Vi

∇ϕdV =

∮
∂Vi

ϕn dS ≈
n∑
f=1

Sfϕf (3.9)

with i = I, II and, consequently,

(∇ϕ)i ≈
1

|Vi|

n∑
f=1

Sfϕf (3.10)

where ϕf are reconstructed with a CDS.
If the correction term (3.8) is not taken into account, then the scheme accuracy
decreases from second to first order and the associated error can significantly affect
the solution.
In [2] a first approach have been proposed based on (3.10). ANSYS FLUENT com-
mercial code, used for the resolution of the flow around the square cylinder in next
chapters, uses an appropriate correction term as observed in [21].

3. Skewness
Skewness is defined as the distance between the face center fI−II and the intersec-
tion fSI−II between the face and the line that connects the two cells centers. As in
the non-orthogonal case, this characteristic has not meaning for a 1D grid.

The associated error is caused by the wrong location of the reconstructed value.
As a matter of fact, in order to obtain a second order CDS, the equation (2.27) is
based on the reconstruction of the flux in the face center. At the contrary, using a
centered interpolation scheme, the flux is reconstructed on the line between I and
II, more precisely in fSI−II .
Let study the effect on the convective flux defined as

∇ · (ρuϕ). (3.11)

In case of high quality mesh without skewness, the numerical convective flux is
defined as

F c =
n∑
f=1

ρS · (uϕ)f . (3.12)

ρ is considered constant because of the incompressibility assumption.
At the contrary, the numerical result obtained with a linear interpolation with a
skewed face is

F c
sk =

n∑
f=1

ρS · (uϕ)fS . (3.13)

The error associated to the wrong position for the interpolation of ϕ is then defined
as

Ec
sk =

n∑
f=1

ρS · (uδϕ)f , where δϕfI−II
= s · (∇ϕ)fI−II

(3.14)
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Figure 3.2: Example of orthogonal and not-skewed (a), non-orthogonal but not-skewed
(b) and skewed but orthogonal (c) faces.

with s = xfI−II
− xfSI−II

.

In has to be observed that the error definition in (3.14) is not the difference between
F c and F c

sk because, in this case, the error induced by a wrong interpolation of the
velocity field should taken into account. At the contrary, this error definition is
helpful to study the error generated only by ϕ.
If µsk is defined as

µsk = ρufI−II
· s (3.15)

that is dimensionally a viscosity, then it is immediate to observe, using the Gauss
theorem, that the skewness enhances a diffusive error

Ec
sk = ∇ · (µsk∇ϕ). (3.16)

As expected, the bigger is the skewness and the bigger is µsk and, as a consequence,
the associated error.
If, for example, a UDS scheme is used to reconstruct the velocity field, the skewness
error is relevant for highly skewed grids with ‖s‖ ≈ ‖d‖.

Figure 3.2 compares also the optimal case of a orthogonal and not skewed face to the
non-orthogonal and skewed ones.

It has been described how mesh features as non-orthogonality and skewness can affect
negatively on the accuracy of the simulation. It is important to observe that there is a
strong link between mesh characteristics and interpolation schemes. This relation drove
the research on the reduction of errors due to non-orthogonality and skewness in two
different directions:
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1. adding corrective terms in the interpolation schemes that take into account poor-
quality meshes and that cancels out with orthogonal and not-skewed faces. This
approach has been partially discussed;

2. generating qualitatively better meshing algorithms or algorithms that, given a spe-
cific mesh, change the location or the connectivity of determined cells in order to
improve the quality.

3.3 Other mesh quality indices

It is known that the mesh quality, and not only cells dimensions, affects the accuracy
of the solution. Three main characteristics have been detected: the grid stretching, the
non-orthogonality and the skewness.
A natural idea is to define some quantities, referred to the grid, that can indicate a priori
the quality of the mesh. The natural choice with a Finite Volume approach would be to
use directly the indicators associated to the faces defined in the previous section. How-
ever, often and mostly in commercial codes different indicators are used. These are not
unique and universal. Usually each of them refers to only one of the mesh defects and it
is defined for particular control volumes shapes.

3.3.1 Commercial codes indicators

Different usual indicators, defined in commercial codes, are presented. Some of them are
defined only for 2D meshes.

If r and R are the radii of the, respectively, inscribed and circumscribed circles of a
triangular volume, then

QAR =
1

2

R

r
≥ 1 (3.17)

is called aspect ratio. QAR = 1 only for equilateral triangles. Because a mesh made of
equilateral triangle is orthogonal, this indicator can be interpreted as a measure of the
orthogonality.
QAR has the drawback to be defined only for triangles. Another quantity, more general,
that an be useful to investigate the orthogonality is the edge ratio

QER =
max(s1, s2, ..., sn)

min(s1, s2, ..., sn)
≥ 1 (3.18)

where si with i = 1, . . . , n are the edges lengths. This quantity is exactly equal to
one for equilateral triangles and for squares. It has to be noticed that QER is not able
to optimally detect the orthogonality. As a matter of fact, a mesh made of identical
rectangles in orthogonal and not skew but QER > 1.
The equiangle skewness is defined as

QEAS = max
(θmax − θeq

180− θeq
,
θeq − θmin

θeq

)
(3.19)
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where θeq is the angle such that all the angles are equal (for example θeq = 60◦ for trian-
gles and θeq = 90◦ for quadrilaterals). It holds 0 ≤ QEAS ≤ 1 and it can be related to
the skewness.

(a) Aspect ratio (b) Equiangle skewness

Figure 3.3: Geometrical meaning of the aspect ratio and equiangle skewness.

The cell squishiness is calculated from the dot products of each vector pointing from
the centroid of a cell toward the center of each of its faces r, and the corresponding face
area vector Sf as

QCS = max
f

{
1− r · Sf
||r|| ||Sf ||

}
. (3.20)

Hence, the worst cells have this index close to one.
The last two indexes are defined in Fluent.

3.3.2 Indices based on Taylor expansions

The principal drawbacks of the above indicators are the non-universality and the restric-
tion to 2D case.
In [28] universal indicators are defined and successively in [29] those quantities are defined
also for 3D meshes.
Both articles are based on a cell-vertex FV discretization, i.e. the variables are defined
on the nodes of the mesh and not on the cells centers. For this reason the gradient of
the velocity, directly linked to the fluxes, is reconstructed on the nodes and not on the
faces. Even with this difference, the indicators are defined starting from considerations
that can be transposed in a cell FV approach.
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Figure 3.4: Cell-vertex FV approach in [28]. The dark surface is called medial dual area.

Let denote with ∇hu the approximation of ∇u obtained by using the quadrature rule
(2.27) where the flux is substituted by the velocity gradient. The Truncation Error (TE)
is defined as

E(x, y) = ∇hu−∇u. (3.21)

Then in the expression for TE, uh, the numerical velocity, is substituted with its Taylor
expansion.
After this operation, the truncation error along the direction i = x, y reads

Ei = eixu
i
x + eiyu

i
y + eixyu

i
xy + eixyu

i
xy + eixxu

i
xx + eiyyu

i
yy . . . (3.22)

where uij is the derivative along the j-th direction of the i-th component of the velocity
field. The coefficients of the expansion are called error coefficients (EC). Their expression
have been determined using the symbolic mathematics capability of Matlab.
After having proved that the EC associated to the first derivatives are equal to zero if
the numerical discretization is consistent, geometrical considerations are made to link the
remaining EC to the stretching, the non-orthogonality and the skewness, Figure 3.5.

(a) Stretching in an unstructured mesh (b) Skewness

Figure 3.5: Images used in [28] to highlights cell features to the truncation error.
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Since, effectively, the ECs increase if the mesh defects are more marked, the following
coefficients are defined

Qi =
eixx + eixy + eiyy

Li
(3.23)

where Li is a local characteristic length along direction i used to normalize the coefficient.
Finally the sum of the two coefficients is defined and the final indicator

Q = Qx +Qy (3.24)

is obtained.
A more accurate coefficient can be defined if also the ECs linked to the third derivatives
are used.
The extension to the 3D case presented in [29] is simply based on 3D Taylor expansions.

The indicators presented in this section aim to provide a priori check on the mesh
quality. The first indexes are not universal but they are defined on the most used cell
geometries. At the contrary, the last one can be defined or any 2D or 3D cell.
The main drawback of all these indicators is the lack of exact correlations with non-
orthogonality and skewness. As a matter of fact, each index is computed for each cell
but non-orthogonality and skewness are involved in the fluxes interpolation and they are
defined for each face.
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Chapter 4

B/D = 1 application: simulation
setup

In this chapter the settings of the numerical simulations considered in this thesis are
described. First of all, the numerical approach is presented. Then, starting from the
informations that can be extrapolated from FLUENT, the quality of the four different
grids that have been used are discussed. More in particular, the four meshes differ only
in the near wall region. In this way the effects of the grid in a small region, that however
is very important for the simulation, can be investigated looking at the simulated flux.
This discussion will be the topic of the next chapter.

4.1 Simulation settings

A RANS 2D approach has been chosen because it is able to correctly capture the detach-
ment phenomena without having the computational cost that would require a 3D LES
turbulence model. More in particular a RNG k − ε model is used.
The Reynolds number is set to be equal to Re = 2.2 · 104, a reference value in the CWE
literature.
The problem has been set to be dimensionless, i.e. the physical properties are equal to

ρ = 1, B = D = 1, U∞ = 1, µ =
1

Re
= 4.54 · 10−5 (4.1)

where the dynamic viscosity depends on the Reynolds number.
As already observed in the governing equations chapter, the simulations must be per-
formed in a bounded domain whose dimension can not be determined by physical con-
siderations because the problem in settled in an unbounded region. If the domain is
too small, the boundary conditions influence the results inducing errors. For this reason
several studies in wind engineering investigates on the distance that boundaries should
have from the obstacle as reported for example in [30]. Figure 4.1 synthesises the domain
size in the simulations of this thesis.
As it can be observed, the computational domain has been divided into several subdo-

mains. This choice let to define different meshing strategies in FLUENT for each region.
In this way the mesh can have a higher density where the flow is characterized by high
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Figure 4.1: Computational domain.

(a) Mesh all over the computational domain. (b) Mesh in the near wall region and the wake.

Figure 4.2: Mesh definition in the domain. The meshes used in this thesis differ only in
the near wall region.

gradients values such us near wall and in the wake. Figure 4.2 shows the mesh used in
a particular simulation of this thesis. In can be easily observed that the mesh is not
uniform but finer where it is required.

Possible choices of boundary conditions have been discussed in Chapter 1. Table 4.1
shows the boundary conditions used in the simulations.

In order to discretize and solve this problem, the following numerical methods and
solver options have been imposed:

• Solver: Pressure-Based.

• Pressure-Velocity coupling: PISO.

• Spatial discretization

– Gradient: Least Squares Cell Based.

– Pressure: Second Order.

– Momentum: QUICK.
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Boundary
Boundary
condition

Description

Cylinder’s walls No slip u = 0 on the wall.

Inlet Velocity inlet

ux = U = 1 at the inlet. Turbulent intensity
and length scale are, respectively, set to 2%

and 0.5

Lateral
Symmetry and

Periodic

Within periodic type, we impose a
translational motion.

Outlet Pressure outlet

Dirichlet conditions: prel = 0 and uy = 0. In
addition, turbulence intensity and length

scale are equal to those defined in the inlet
boundary condition.

Table 4.1: Boundary conditions

– Turbulent Kinetic Energy: QUICK.

– Turbulent Dissipation Rate: QUICK.

• Transient Formulation: Second Order Implicit (Euler method).

Finally, the residuals define the convergence ratio. Normally, to avoid errors induced
by the solver, these values, one for each variable of the problem, are small enough, in this
case 0.001.

4.2 Near wall meshes

This thesis will compare the results obtained from four different simulations that differ
only by the definition of the grid near wall. The same grids, shown in Figure 4.3, were
defined and used in the thesis [42].
Their main characteristics are now presented.

1. High quality grid (High-q)
This grid is structured, orthogonal and not-skewed. For this reason it is a high
quality mesh and it represents the best scenario.

2. Low quality grid (Low-q)
Also this mesh is structured but, as it will be deeper observed in the next section, it
is not orthogonal and it has skewed faces. For this reason it is a low quality mesh.
It can be also classified as a o-type-like mesh.

3. Hybrid grid
This mesh is characterized by the presence of both structured and unstructured
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(a) High-q grid (b) Low-q grid (c) Hybrid grid (d) DW Low-q grid

Figure 4.3: Different near wall grids used in this thesis.

regions, more precisely the latter in the corners. Where the mesh is structured, it
coincides with the High-q one.

4. Downwind Low quality grid (DW Low-q)
This mesh is equal to the High-q one in the upwind region and to the Low-q in the
downwind region.

It is interesting to investigate about the cells number of each grid near wall.
In the High-q case, this region is divided into eight squares whose edges are split into 24
segments of equal size. As a consequence this grid consists of 4608 cells.
The Low-q grid is divided in four trapezoidal regions with opposite edges split into re-
spectively 72 and 24 parts. It implies that this near wall region is divided into 6912 cells.
The structure of the DW Low-q grid is such that that it has a cells number that is the
average of the two previous cases, in particular 5760.
Finally the number of cells of the hybrid grid can not be computed a priori because a
meshing algorithm is used in the corners regions. It results that the near wall region is
formed by 3889 cells.
So it appears that these four grids have a different cells number and it could appear
reasonable that Low-q results would be more accurate, followed in order by DW Low-q,
High-q and Hybrid. However the results that will be presented in the following chapter
will show a completely different behaviour. The differences are consequently also linked
to the mesh quality and not only to the size of the mesh elements.

4.3 Meshes quality

FLUENT defines some quality indicators. These refer to the cells and they are partially
linked to mesh defects presented in the past chapters. In [42], these indexes have been
used to find a correlation with the error.
At the contrary, in this thesis, the non-orthogonality and the skewness are computed and
directly used. This choice is justified by the expression of the grid errors linked to the
interpolation schemes on faces. It seems more natural to study the faces features because
the error is induced by the face characteristics.

56



4. B/D = 1 application: simulation setup

The main problematic with this approach when the software FLUENT is used is that the
faces informations are not available and must be separately computed.

4.3.1 How the indicators have been obtained

Once the simulation is completed, it is possible to export the results into txt files. This
feature is convenient if it is advisable to post-process on a different software. In this
thesis all the processing has been performed with MATLAB.
Following the steps File -> Export -> Solution Data it is possible to select all the
necessary variables, including the spatial coordinates of cells and nodes. FVM is based
on the cell center localisation of the variable, so it is natural to export the variables in
these points. By the way, it is possible to obtain the values located at the nodes (it
can be useful for coupled fluid-structure problems where the structure solver is based on
Finite Element Method) where these values are obtained through a linear interpolation
from the cells values.

The main drawback with this set-up is that faces informations are not available. In
addition, the FLUENT mesh file msh is encrypted and, as a consequence, the mesh con-
nectivity can not be obtained. In general, a grid is not uniquely defined if only the cells
centers and the nodes coordinates are known. The mesh is determined once it is estab-
lished which nodes belongs to each cell.
On the other hand, in order to compute non-orthogonality and skewness, it is necessary
to know the nodes of each face.
The objective is to build all these face informations with the data available in FLUENT.

For the High-q, Low-q and DW Low-q grids this operation is almost straightforward
because of the structure of these meshes. As a consequence, the cells and the nodes were
stored in ASCII files following a deterministic pattern. This feature lets to define a priori
which nodes are the extremes of the face.

For the hybrid grid the situation is much more complicated because the square regions
near the cylinder’s corners are unstructured. As a consequence it is impossible to exploit
some storing pattern. In order to avoid the manual insertion of each face, operation that
would have required a huge amount of time (the cells are 968 and the nodes are 1036
in the considered region), an algorithm coded in MATLAB has been used. Even if this
algorithm does not work correctly with any grid, due to the fact that many grids could be
generated with the same cells centers and nodes, it has been observed that it generates
correctly the faces for the hybrid mesh. This is mostly due to the fact that the cells are
not very stretched and the angles are not far from the ideal value.
Finally it has to be observed that this grid contains mostly quadrangular cells but also
some triangular ones. Fortunately, FLUENT has a field that let to understand the num-
ber of edges of the cell.

The algorithm is structured as follows:

1. iterate over the cells;
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(a) Low-q (b) Hybrid

Figure 4.4: Meshes near the lower-downwind corner. Low-q grid shows a pattern at the
contrary of the unstructured region of the Hybrid mesh.

2. find the closest node and save it;

3. store the direction that links this node to the cell center;

4. find the second closest node. Store it only if the direction node-cell center is not
close to the one of first search. This operation is done by looking at the angle
between the two directions and by comparing it to a threshold value α. αt for
triangular cells is smaller than αq for quadrangular cells;

5. iterate in the same way until three or four nodes, depending on the number of
nodes for the cell, have been found. For each new node, the new direction must be
compared to all the previous ones.

So, the idea is to find for each cell its nodes. This is done by searching the closest
nodes taking into account the directions nodes-center in order to avoid, for example, that
the cell center is outside the nodes convex region. The threshold values have been tuned
and set to αt = 40◦ and αq = 45◦.
For each cell, it has been decided to look for the closest nodes and not the closest cells
because problems rise with cells on the boundary of the region. Indeed, a cell has a fixed
number of nodes (three or four depending of the cell but this number is known a priori)
while the adjacent cells number can vary. For example a quadrangular cell can have, in
the selected region, only three or even two neighbours if it is located on the boundary.
Once the nodes are associated to the cells, it is sufficient to find which cells share exactly
two nodes and to define the new face.

Finally, for both structured and unstructured grids, the skewness and the non-orthogonality
are computed.
For the skewness computation, a linear system is solved to find the intersection between
the face and the line connecting the two cells center. The distance s between the face
center and the intersection is then divided by the length of the face F divided by 2

sk =
s

F/2
(4.2)
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(a) Non-orthogonality (b) Skewness

Figure 4.5: Non-orthogonality and skewness of the faces in downwind region for Low-q
and DW Low-q grids.

in order to have a dimensionless quantity. The coefficient 2 has been chosen in order to
have a physical interpretation of sk. Indeed, the skewness is linked to the distance from
the middle point of the edge and so sk = 1, i.e. s = F/2, means that the intersection
point is over one of the edge vertices.
Also the non-orthogonality, linked to the angle θ between the face direction and the line
that connects the two cells centers, is normalized

orth =
θ

90◦
. (4.3)

In this way, its value is always such that orth ≤ 1.

4.3.2 Comparison between grids

Being non-orthogonality and skewness computed, some detailed analysis on the meshes
quality could be made. For sake of simplicity only the downwind region is considered.

• High-q grid
As expected, the High-q grid is orthogonal and not-skewed. In addition, all the
cells have same size and so there are not stretching effects.
The computed values are zero or, sometimes, very close to zero due to numerical
effects. As a matter of fact, the biggest value of the skewness is O(10−7).

• Low-q and DW Low-q
Figure 4.5 shows the values of non-orthogonality and skewness. The values have
been plotted using the scatter command in MATLAB. Each black dot is centred
on the mid point of the corresponding face. The radius is proportional to the value
of non-orthogonality and skewness. For a better visualization, the former have been
multiplied by a factor 10, the latter by 50.
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It can be observed that the orthogonality increases when faces approach to the
diagonal of equation y = 0.5 − x. While the cells center under the diagonal form
lines with almost constant y-value, the vertical faces become more inclined near the
diagonal. An analogous consideration can be made above the diagonal and this fact
justify the non-orthogonal behaviour. It has to be noticed that faces exactly on the
diagonal have values that are negligible, in particular orth = O(10−6).
The opposite behaviour characterizes the skewness that is small in the whole domain
except for the faces on the diagonal. The largest value outside the diagonal is
O(10−3) while on the diagonal the largest value is 0.4884 . Figure 4.6 represents
three consecutive cells in the diagonal region in order to highlights the reason of
the above behaviour of non-orthogonality and skewness. The shared faces are blue
while the lines connecting two cell centers are red. It can be observed that the
intersection is located in the face’s middle point (in black) for the under diagonal
cells but they are not orthogonal. The scenario is opposite for the face located
on the diagonal where the intersection is far from the middle point but there is
orthogonality.

Figure 4.6: Three consecutive cells in the diagonal region.

• Hybrid grid
Figure 4.7 shows the values of non-orthogonality and skewness. The multiplicative
factors used for the dots size are the same of the previous case.
In the structured uniform regions these values are zero like for High-q grid. At the
contrary, this is not the case in the unstructured region. Because of the unstruc-
tured nature of the grid, non-orthogonality and skewness does not show particular
patterns.

It appears immediately that the non-orthogonality affects principally the structured
non-cartesian grids while the hybrid one has more faces with significant skewness values.

Table 4.2 highlights the main differences that have been discussed. The field # faces>
0.1 counts how many faces have the considered quantity bigger than 0.1 .
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(a) Non-orthogonality (b) Skewness

Figure 4.7: Faces non-orthogonality and skewness in the hybrid grid.

max # faces > 0.1 mean median

Hybrid orth 0.2857 131 0.0223 0
Low-q orth 0.4955 2810 0.2778 0.2952

Hybrid sk 0.5532 139 0.0241 9.36e-7
Low-q sk 0.4884 24 0.0061 0.0047

Table 4.2: Non-orthogonality and skewness values in the downwind region for meshes
Low-q and Hybrid.

For the hybrid mesh, the prevalence of faces in the structured region implies that its
orthogonality median value is zero. At the contrary 2810 faces over 3360 (84%) of the
Low-q meshes have a value greater than 0.1 and consequently the median value is 0.2952.
Skewness differences are also remarked: the number of faces in the hybrid mesh with
values larger than 0.1 is higher than the Low-q one that coincides exactly with the faces
on the diagonal of equation y = 0.5− x. In addition, the mean value in the first case is
four times the second.
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Chapter 5

B/D = 1 application: simulation
results

In this chapter the results of the four different simulations are illustrated.
The flow around square cylinder with Re = 2.2 · 104 is periodic. For all the simulations,
the time span has been divided into 20 phases. As a consequence a field that refers to a
single phase is said to be instantaneous while one obtained through an averaging process
of the 20 instantaneous fields is said to be time-averaged or a mean field.
It has been decided to present the results starting principally from the behaviour of the
instantaneous fields in extended domains, continuing with time averaged flow fields in
order to understand the differences of the simulated flows. After this operation, some
standard bulk and time-averaged quantities like the aerodynamic coefficients are com-
pared to literature results in order to better test the results.

5.1 Flux phenomenology and vorticity field

All the simulations are characterized by a periodic flow. This fact implies that the lift
coefficient cL is periodic and not constant in time. An interesting quantity that is usually
used in literature to understand the flux topology in the vorticity magnitude

|ω| =
∣∣∣∂uy
∂x
− ∂ux

∂y

∣∣∣
because it highlights regions with rotational flow.
Figure 5.1 represents the vorticity magnitude when the cL coefficient has its higher value
and when it is equal to zero and it is decreasing.
It can be observed that the flow detaches at the two leading corners, regions with high
values on vorticity magnitude. Along the alongwind faces the flow is reversed. The sizes
of the reversed flow regions depend on the phase in the period. Finally in the wake there
are alternated vortexes.
It is already clear that the Low-q simulation behaves in a completely different way. Even
if the flow is periodic, the vorticity magnitude is drastically underestimated (the color
scale is equal for all the 8 flow field representations) because of the poor grid quality. At
the contrary, it looks like the other three cases are very similar.
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Figure 5.1: Vorticity magnitude in two different time periods.

The differences between the simulations can be observed also looking at the time-
averaged flow. To show it, in Figure 5.2 curves obtained fitting the vorticity magnitude
isocontours are represented. While three curves are very similar, the Low-q one has a
completely different shape that is more elongated coherently with the plots in Figure 5.1
for the instantaneous fields.

Figure 5.2: Time-averaged vorticity magnitude for simulation High-q with fitting curve
(a) and the fitting curves from the four time-averaged solutions in (b).

This observed discrepancies between the Low-q results and the others will always be
manifest in each analysis.

5.2 Velocity field along 1D domains

In the past chapter, it has been observed, through Figure 4.5, that the diagonals of
equation y = x − 0.5 and y = 0.5 − x are particularly important for the structured
non-orthogonal mesh because of the high values of the skewness. For this reason the
behaviour of the time-averaged field ux is investigated in these lines and in another one
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Figure 5.3: 1D domains in (a). ux, skewness and non orthogonality in (b).

in between where all the grids are orthogonal and not-skewed.
In order to compare the results and to represent their faces quality, the fields are interpo-
lated on the faces centers coordinates of the Low-q grid. All the informations are shown
in Figure 5.3.

In domain l1 not only the Low-q ux profile differs from the others that are mutually
overlapping but also the monotony changes. The lower quality of the unstructured up-
wind corner with respect to the structured case does not play a relevant role in this
domain. It can be also observed that, in average, the skewness near the diagonal of the
hybrid grid is lower that the Low-q one.
Domain l2 does not present faces defects but the Low-q profile still differs considerably
from the others. This is due to the fact that errors generated in the upwinding regions
(like in l1) are transported from the flow. Moreover the High-q and DW Low-q profile are
not distinguishable from each other even if, starting from l2, the latter is a bad quality
mesh. It can be explained by the fact that the simulated problem is convective-dominant
and so the error generated by the mesh does not travel in the downwind direction. An-
other important consideration is that from simulation Low-q the flow is not reversed
near wall at the contrary of the other simulations that, correctly, expect a recirculation
region. Finally the Low-q free flow velocity, the region where ∂ux/∂y ≈ 0, is lower than
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the others.
In l3 differences between High-q horizontal velocity profile and the others can be detected
in the shear layer, i.e. the region where the velocity in increasing, while the asymptotic
free outer flow velocity is the same for all the simulations. Also in this case the Low-q
simulation does not capture the presence of reversed flow.

As a conclusion, the Low-q simulation gives completely different horizontal velocity
profiles that are not in accordance with the phenomenology of the flow that contemplates,
for example, reversed flow near wall. The error, furthermore, is generated in regions with
a bad mesh quality and it propagates following the wind direction and so differences
emerge even in region with high mesh quality like in domain l2. Moreover, for the same
reason, the error committed in l3 by DW Low-q is much smaller than the Low-q one even
if the two meshes coincide in this 1D domain.

5.3 Determination of the separation point

An important physical phenomenon that occurs in high Reynolds number flows around
square cylinders is the detachment of the boundary layer and it is the reason why this
body is denoted by the adjective bluff.
In the previous section, while studying ux in 1D domains, it has been observed that the
Low-q simulation does not expect, wrongly, retrograde flow near wall. This fact would
suggest that in this scenario the flow does not detach or, at least, that the detachment
point is wrongly placed.
Firstly Figure 5.4 shows the isocontours ux = 0 near the cylinder region for each time-

averaged simulation. It suggests that, except for the Low-q grid, detachment occurs at
the leading corner where the three isocontours start (more precisely from the first cell
after the corner). In between the isocontours and the wall there is reversal flow while
outside ux is positive. These three isocontours start becoming distinguishable from each
other from x ≈ 0.7, coherently with the results observed in the past section. Big dif-
ferences are evident in the wake where the DW Low-q isocontour is located before the
High-q and the Hybrid ones. In terms of mean flow, this informations means that the two
symmetrical vortices (one for y > 0 and one for y < 0) behind the cylinder are smaller
when a DW Low-q is used. As a consequence, while this grid seems to not significantly
affect the results for 0 ≤ x ≤ 1, it affects the results in the wake. At the contrary the
hybrid mesh seems to be accurate both along the wall and in the wake.
The Low-q isocontour needs a separate discussion. It starts for x ≈ 0.7 suggesting that in
this simulation the boundary layer separation occurs in this point and not in the leading
corner. As a consequence there is not reversal flow until this point, as already detected
observing ux on domain l2 in the previous section. Finally this isocontour is particularly
elongated and it ends for x ≈ 2.75 instead of x ≈ 1.8 like in the reference High-q case.

Another quantity that can be used to investigate the detachment is the wall shear
stress τs that depends, for a Newtonian fluid, on the derivative of the tangential velocity
with respect to the normal to the wall direction. This quantity, defined on the curvilinear
coordinate, is positive when the tangential flow has the same direction of the curvilinear
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Figure 5.4: Isocontours ux = 0.

coordinate direction, it is negative when the flow is reversal and it is equal to zero for
inflection points.
Figure 5.5 shows the wall shear stress, after being adimentionalised, compared to the
results in [34]. It has to be observed that, surprisingly, the thesis results obtained through
a RANS computation are qualitatively but also quantitatively in agreement with the data
from [34] obtained, at the contrary, with a LES simulation. Only the Low-q curve is
completely different with the extremal values that are, in absolute value, hugely bigger
than the others. For Newtonian fluids the shear stress is associated to the viscosity and
so the diffusive effect of the Low-q grid plays an important role for this higher values.
However in almost all the region that corresponds to the alongwind face (0.5 ≤ s/D ≤ 1.5)
the stress in negative in all simulations, probably due to the recirculation region, except
for the Low-q one where the shear stress is negligible as the literature result highlights.
After that the DW Low-q grid influences the results in the second corner where the wall
shear stress behaviour is similar, even if damped, to the Low-q one in the leading corner.
At the contrary, Hybrid and High-q meshes gives overlapping results.
For all the thesis simulations, the peaks are predicted slightly, respectively, before and
after the reference results for the positive and negative cases in the near corners regions.
This fact is not surprising because they corresponds to the closest nodes in the grid to
the corner one and so it would be impossible to predict the peaks nearer to the corners.
As a matter of fact, in the Low-q case for s/D = 0.5, so in correspondence of the leading
square corner, this transition zone from positive to negative values is thinner because the
mesh has more nodes. Finally, it can be observed that all curves start to the zero value
because s/D = 0 corresponds to the stagnation point that is an inflection point.
The investigation of the wall shear stress has highlighted the diffusive behaviour of a bad
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Figure 5.5: Wall shear stress along the curvilinear coordinate for all the simulations
compared to [34]. s/D = 0 corresponds to the stagnation point, s/D = 0.5 to the leading
corner and s/D = 1.5 to the second corner.

quality mesh. This effect, that also appeared looking at the instantaneous vorticity fields
in Section 5.1, will appear also in the analysis of results in following sections.

5.4 Pressure distribution

The pressure coefficient cp is an important coefficient in CWE that is defined as in (1.4).
It is usually represented with respect to the curvilinear coordinate s/D where s = 0
corresponds to the stagnation point.
Figure 5.6 displays the mean and the Root Mean Square (RMS) of the pressure coeffi-
cients and it compares them to other numerical and experimental data. All the results
are such that c̄p = 1 and cprms = 0 for s/D = 0 as expected from the definition of the
pressure coefficient. This check is usually used to verify the correctness of the simulation.
The mean cp curves, except for the Low-q curve, are completely in accordance to the
literature results. Low-q overshoots the mean cp for x < 0.6 and then overestimates it.

For the RMS pressure coefficients, the reference values are not close to each other
because, in general, the fluctuating component of a coefficient is more difficult to measure
experimentally or it is more affected by errors in the simulations than its mean part.
However it is evident that High-q and Hybrid grids have very similar RMS results that
agree with the literature ones especially before the leading corner (x < 0.5) where also
the DW Low-q coincides. The latter seems to be overestimated starting from the leading
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(a) c̄p (b) cprms

Figure 5.6: Mean pressure coefficients (a) and Root Mean Square (RMS) pressure coeffi-
cient (b).

corner. Finally the Low-q curve is completely underestimated and unrealistic compared
to the literature results.

5.5 Wake flow

The wake region is usually important to observe because of the propagation of alternat-
ing vortexes with opposite rotational velocity. A wrong description of them can affect
drastically the results.
Figure 5.7 shows the mean horizontal velocity along the line of equation y = 0 in the wake
starting from the downwind face (x/D = 1). The velocity profiles are compared to the
ones from simulations with a LES turbulence model such as in [34] and from experimental
works such as [36, 35].
First of all, the results start from ux = 0 due to the wall boundary condition.

Then for x ≈ 1.5 the Low-q starts to differ from the other curves. The region with
negative velocity is much more extended in this case as it has been observed in Section
5.3 meaning that the reversed flow region is bigger.
Finally the velocities of the free stream far from the cylinder in the wake are very similar
for High-q, Hybrid and DW Low-q cases and they are in accordance to the LES 3D value.
On the other hand the Low-q value, around ux = 0.8, seems to be underestimated even
if it agrees with the experimental value Durao.

5.6 Aerodynamic coefficients

The aerodynamic coefficients defined in (1.3) are widely used in CWE to estimate the
forces acting on the cylinder. They are bulk parameters obtained through an integration
in space all over the cylinder boundary. Both cD and cL are periodic and, because of
the symmetry of the problem, physically it holds c̄L = 0. As a consequence, usually in
literature the mean drag coefficient c̄D, the maximum value of the fluctuating part of the
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Figure 5.7: ux in the wake region. The results are compared to Lyn [36], Durao [35],
Trias [24], Cao [34] and other literature values.

lift coefficient c̃L and the Strouhal number St are discussed. For this reason Figure 5.8
reports these three coefficients compared to experimental values in [23]. The red lines
corresponds to the median values of the experimental data while the boxes have as blue
extremal values the 25-th and 75-th percentiles. Finally the black signs outside the blocks
correspond to the 9-th and 91-st percentiles.

The aerodynamic coefficients are always drastically underestimated in the Low-q sim-
ulation. This fact can be explained by the diffusive error type that is generated by a low
quality mesh. Indeed the forces acting on the square are obtained through an integra-
tion of the stress Cauchy tensor that involves velocity gradients that are underestimates
because of the mesh diffusion. On the other hand, the values from High-q, Hybrid and
DW Low-q are comparable and almost in accordance with the literature results. Again,
the DW Low-q values are slightly different from the two others.
Contrary to the aerodynamic coefficients, the Strouhal number is bigger for the DW Low-
q simulation. It can be another confirmation of the tendency of the results to be ”more
steady”.

5.7 Comparison between turbulence viscosity and skew-

ness induced viscosity

The results presented until now in this chapter highlight the big differences between the
Low-q fields and the others and, sometimes, also between the DW Low-q results com-
pared to both Hybrid and High-q ones, even if these differences are smaller.
The four simulations are identical regarding the turbulence model and interpolation
schemes. In addition, the meshes have the same structure except for the near wall region.
As a consequence the differences have to be the by-product of the mesh-induced errors
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Figure 5.8: Bulk aerodynamic coefficients compared to experimental results shown in
grey that have been obtained from in [23].

linked to its bad quality as discussed in Section 3.2. In that section the diffusive nature
of the error associated to the skewness has been determined and the explicit formula
(3.16) associates the skewness to an equivalent kinematic viscosity νsk (obtained from
the molecular one in (3.15) dividing by the density ρ). This fact is coherent with the
previous analyses where some results could be directly explained through the diffusive
behaviour of the mesh.
It is also important to underline that in addition to the physical kinematic viscosity
there is also the turbulent viscosity νt defined in (2.18) from the k− ε turbulence model.
Consequently it is natural to define an effective Reynolds number as

Reeff =
U D

ν + νt + νnum
(5.1)

that determines the flow that appears looking at the simulation results.
While ν is a physical property of the fluid and νt is artificially defined to substitute
the diffusive effect of the non-simulated Kolmogorov scales, the numerical viscosity is
nothing more than the consequences of chosen interpolation schemes and of the mesh
quality, that are not neither linked to the physics nor to the mathematical modelisation
of the problem. In addition to that, the numerical viscosity can not be determined exactly
and it is impossible to distinguish its effects from the others due to ν and νt. However, it
is possible to express the contribution of the skewness-induced viscosity. For this reason
Figure 5.9 represents on the left the ratio νt/ν and on the right νsk/ν for all the grids.
They are plotted separately because both νt and νsk depends on space-depend variables
like u, k, ε and so it has been decided to compare them to the constant quantity ν. The
plot of νsk/ν for the High-q simulation is not reported because this ratio is identically
equal to zero because the grid is not skewed. The color range is set to be equal for all
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the seven subplots such that the results are easier to compare.

Figure 5.9: Ratio between turbulent viscosity and kinematic viscosity on the left. Ratio
between the viscosity induced by the skewness and the kinematic viscosity on the right.

Firstly the skewness-induced viscosity is locally generated only in limited regions cor-
responding to the locations of the skewed faces. At the contrary the turbulent viscosity
is a field defined everywhere in the domain.
Looking to the νt/ν plots, it appears that the ratio has high values with a maximum of
the order of 350 and so it is fundamental to determine the effective Reynolds number.
This ratio is lower for the Low-q simulation. It can be explained looking at the system
(2.21) for k and ε where both the production terms are underestimated because of the
numerical viscosity. Consequently, the mesh induces a diffusive viscosity that influences
also the values of the turbulence viscosity.
The ratio νsk/ν usually has lower values but, where the faces are highly skewed, it as-
sumes values around 200, with a maximum of 290 for the Hybrid computation, that are
comparable to the νt/ν ones. Moreover, the skewness viscosity is generated in regions
where νt/ν is small and so the skewness effect becomes dominant. In the Low-q case, the
two diagonal contributions are not equal because νsk depends not only on the skewness
but also on the velocity that differs in these two regions.

After this considerations it is possible to assert that a bad quality mesh with highly
skewed faces has a diffusive effect on the simulated flow that can be thought as an addi-
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tional viscosity term in the expression of the effective Reynolds number. This non-physical
diffusion affects significantly the aerodynamic coefficients, the vorticity magnitude, the
shear stress and the other fields.
Even if this additional diffusion changes significantly the simulated results, the flow from
the Low-q simulation is nevertheless characterized by the vortex shedding. This fact that
seems to be positive can become a huge drawback because it is more difficult to notice
big quantitative errors in a simulation that is qualitatively correct.

5.8 Correlation coefficients between mesh quality and

simulated error

Grids with a bad quality and in particular with high skewness generates errors that have
a diffusive nature. Following the idea presented in Section 1.2.2, the objective is seeking
a correlation between a grid quality indicator and the committed error.
In this scenario, at the opposite of [33], an analytical solution is not available and so the
error in computed using the High-q computation as reference. This choice is caused by
the fact that its results are closer to the literature ones and because it is not affected by
mesh errors induced by non-orthogonality and skewness in the near wall region.

From now on, a quantity that refers to the High-q simulation will be denoted by the
subscript Hq, one that refers to the Low-q with the subscript Lq, one to the Hybrid with
the subscript Hyb and finally one that is from the DW Low-q simulation will be denoted
with the subscript DWLq.

It is known that diffusion dumps the gradients of the fields. As a consequence, it has
been decided to choose as error quantity the field

erri :=
‖∇u‖Hq − ‖∇u‖i
‖∇u‖Hq

, with i = Lq,Hyb,DWLq. (5.2)

where ‖∇u‖ is the saturation product of the velocity gradient with itself defined as

‖∇u‖ =
(∂ui
∂xj

∂ui
∂xj

)1/2

.

Of course this relative error has not been defined for the High-q computation otherwise
it would be identically zero and it would not have any relevance in the analysis.
The main idea behind the definition (5.2) is that a mesh with high skewness underes-
timates ‖∇u‖i because of its viscous effect and so the numerical diffusivity should be
detectable obtaining positive values of erri.
After having defined an error metric, the next step is to determine a mesh quality index.
In Section 3.2 the errors of grid stretching, non-orthogonality and skewness have been
presented. The former does not affect the simulations near wall because the cells have the
same dimensions. At the contrary the meshes, with the exception of the High-q one, are,
at least in some regions, non-orthogonal and skewed. Consequently it seems appropriate
to define two different mesh quality indices associated to the two aspects.
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domain grid corth porth csk psk
l2 Low-q 0.1147 0.5936 -0.6431 7.0049e-4
l2 DW Low-q -0.0402 0.8519 0.3127 0.1368

l3 Low-q 0.3757 0.0704 0.5486 0.0055
l3 Hybrid -0.0639 0.7667 -0.0043 0.9840
l3 DW Low-q -0.0338 0.8753 0.1394 0.5158

Table 5.1: Correlation coefficients and associated probability of the test hypothesis in the
domain l2.

Being the High-q grid completely orthogonal and not skew, the mesh quality indices are
defined as

ski := ski−skHq = ski, orthi := orthi−orthHq = orthi with i = Lq,Hyb,DWLq
(5.3)

where the expression of sk and orth are (4.2) and (4.3) respectively.
Before starting the analysis, the expected behaviour is to find a positive correlation on
the grids between err and, at least, sk whose diffusive nature has analytically been shown
in (3.16). Indeed the bigger is the skewness and the more dumped should be the velocity
gradient and the bigger should be err.

To each coefficient a probability p that tests the hypothesis of correlation is associated.
In particular, if p > 0.05 the correlation hypothesis should be rejected.
The correlation coefficients csk and corth have been computed on the 1D domains l2 and
l3 shown in Figure 5.3 in Section 5.2 and they are reported in Table 5.1. In order to
compare the results in the same region, skHyb and orthHyb are obtained through a linear
interpolation in the coordinates of the Low-q faces center.
It has been investigated only for grids that differs from the High-q one in the selected
domain otherwise sk and orth would be identically equal to zero because the meshes are
equal.

First of all it can be observed that in most of the cases there is not correlation. This
consideration is highlighted by both the values of the coefficients close to zero and by the
high values of p. The non-orthogonality coefficients have been computed even if in these
domains the faces are almost orthogonal and, most importantly, orthogonality is almost
constant over the faces and so without the required variance to obtain a meaningful cor-
relation. This justify the results linked to the orthogonality coefficient. At the contrary
the skewness not only is relevant but it varies significantly as it can be also observed in
Figure 5.3.
Looking at csk for the Low-q grid two opposite results are obtained. In both cases the psk
is small enough to let suppose a correlation between the error and the skewness, however
this correlation in negative in l2 and positive in l3. Another important observation is that
the two values of csk for Low-q are comparable in terms of absolute value with the one
in l2 that is bigger than the l3 one. However, the maximum value of skLq in l2 is 0.006
while the lowest one in l3 is 0.16, 27 times higher.
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After this observations, it can be concluded that correlation coefficients are not ad-
equate to capture the diffusion effect of the mesh, effect that has been obtained from
analytical considerations and that has been detected all along the observation of the sim-
ulations results.
The real drawback of this mathematical tool is its local behaviour. Indeed, the correlation
is computed looking at the value of err and either sk or orth in the faces centers. In the
other hand the problem is driven by the convection effect and consequently the diffusion
effect should be analysed in a non-local way as made in the previous sections. This fact
is clear looking at Figure 5.3 where the ux profiles in l1 and l3 are shown. Even if l1
and l3 have exactly the same faces properties, because of their symmetry, the fields are
completely different. The difference is partially due to the physical flux phenomenology
that changes from the upwinding corner, where detachment occurs, to the downwinding
one and also partially to the convection of the error that propagates transported by the
wind. As a matter of fact, passing through the first diagonal, the flux is affected by the
diffusion effect of the skewness and, in a second moment, the same flow is influenced by
the second diagonal diffusive effect. Nevertheless the correlation coefficient acts like if
there was not flux history. In the same way particles in regions with a good quality mesh
could have been already affected by upwinding diffusion induced by skewed faces while,
computing the correlation coefficients, the skewness in considered equal to zero.
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Chapter 6

Conclusions

Computational Fluid Dynamics (CFD) is highly used in academic and industrial appli-
cations. In particular Computational Wind Engineering (CWE) investigates the wind
effects on civil structures like bridges and skyscrapers. For this reason the geometrically
easier benchmark of flow past rectangular cylinders is widely studied. In this scenario
the flow is highly turbulent and characterized by high Reynolds numbers with vortex
shedding in the wake.
CFD computations are based on three fundamental aspects: the turbulence model, the
interpolation schemes and the mesh generation. While the first, primarily, and the sec-
ond have been widely discussed in literature in the past decades, the last aspect has been
neglected.
The thesis firstly presents a literature review on meshes, then some errors induced by the
mesh linked principally to the non-orthogonality and the skewness have been discussed.
The near wall grid effect has been investigated in the well known CWE test case of flow
around a square cylinder. With this purpose, four different simulations that differs only
by the near wall grids have been performed.
Firstly the characteristics and the quality of the meshes are discussed and then the results
are compared.
It has been highlighted that the structured non-orthogonal and skewed simulation is
widely affected by diffusion-like grid errors even if it provides a qualitatively correct flow
pattern in the wake region. About this problematic Professor Ferziger said:

”the greatest disaster one can encounter in computation [...] are results that are simul-
taneously good enough to be believable but bad enough to cause troubles.”

No partial safety factor in structural engineering can secure the design face to an un-
derestimation of the fluctuating lift almost equal to a factor 10 like the one obtained with
the non-orthogonal and skewed near wall mesh.

On the other hand both the hybrid and the structured downwind non-orthogonal grids
give results quantitatively comparable to the reference case. However, the former seems
to be slightly better while the second generates errors in the wake.
Finally a correlation between the error and the mesh quality has been sought through the
usage of correlation coefficients. However it has been observed that this mathematical
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tool is not suitable for this problem due to the convective dominance of the problem.

In future, the same type of analysis should be proposed for the rectangular case
B/D = 5. This case is much more complicate because of the reattachment of the bound-
ary layer. A different turbulence model must be used and the grid can not be as simple
and with a low number of cells near wall as in the square case. In this consolidated
benchmark there is not a settled standard on the near wall grids. As a matter of fact in
literature different meshes have been used, sometimes non-orthogonal and skewed, that
can dangerously affect the results.
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