
POLITECNICO DI TORINO

Master of Science in
Mathematical Engineering

Discrete Bayesian Optimization
Algorithms and Applications

Supervisors Candidate

Prof. Giacomo Como Raffaele Damiano
Prof. Fabio Fagnani

Academic Year 2019-2020

Lakmé

Malika

 Dô éme pais blanc minjas

leSous édôme pais blancleSous minjas

Nous pelap enlent sem ble!

Ah! cendes endons sem ble!

a	tempo rall.

Léo Delibes, Duo des fleurs

Abstract

Dealing with expensive-to-evaluate objective functions is a hard problem in
optimization. Bayesian Optimization (BO) is a methodology allowing one
to efficiently approximate the objective function and perform the optimiza-
tion with as few evaluations as possible. This is achieved by introducing
a surrogate model, i.e., a statistical model for the objective function, and
an acquisition function that let us move through the feature space. The
most common surrogate models are Gaussian Processes. While BO algo-
rithms based on Gaussian Processes typically perform well over continuous
domains, these techniques prove not so efficient when dealing with discrete
or categorical variables and different approaches and settings are required.
In this thesis, the Separable Bayesian Optimization algorithm (SBO) is pro-
posed to overcome the limitations of classical BO. It moves from the idea of
considering the discrete variables as nodes of a graph, over which a statistical
model is built. This model introduces a certain structure in order to seek
approximations of the objective function. The main steps of BO are then
adapted exploiting the properties of Gaussian Processes.
The thesis starts with an overview of Bayesian Optimization and its main
components: surrogate model and acquisition function. In particular, the
emphasis is on Gaussian Processes as surrogate models. Afterwards, the
SBO algorithm is presented in all its theoretical steps and a description of
its implementation using Python 3 is also provided. The second part of
the thesis deals with some applications of SBO to discrete and black-box
optimization problems. A case study proposed by the TIM group is then
addressed. The problem is to design a self-optimizing mobile network that
is capable of setting the best configuration of tilts for its antennas in order
to get the best performance in terms of capacity and coverage (Capacity and
Coverage Optimization).

Contents

1 Introduction 9

2 Background on Bayesian Optimization 15
2.1 The core idea of Bayesian Optimization 15
2.2 Gaussian Processes . 17
2.3 Acquisition Functions . 19
2.4 Further developments and key issues 22

3 Bayesian Optimization over Discrete Domains 25
3.1 Discrete and black-box problem examples 25
3.2 Existing methods and related works 27

3.2.1 Discrete-BO . 27
3.2.2 Bayesian Optimization of Combinatorial Structures . . 28
3.2.3 COMBO . 30

4 Separable Bayesian Optimization 33
4.1 Statistical model . 34
4.2 Computation of the posterior distribution 35
4.3 Acquisition function . 38
4.4 Implementation . 39

4.4.1 Initialization and arrangement of Λij r.v. 39
4.4.2 BO loop and neighbourhoods 41

5 Numerical Results with binary problems 47
5.1 Binary Quadratic Programming problem 47

5.1.1 Results . 48
5.1.2 Comparison with BOCS 53

5.2 Sparsification of Ising model problem 55

5.2.1 Problem description . 55
5.2.2 Simulation and results 58

6 Self-Optimizing Mobile Networks Case Study 63
6.1 Problem specification . 64
6.2 Results . 65

7 Conclusion 71

Appendix 75
A Conditioning of a multivariate Gaussian distribution 75
B Implementation details: handling of indexes 78

9

Chapter 1

Introduction

The optimization of a black-box function is a challenging problem in
many modern applications. Consider the following

max
x∈X

F (x),

where F (·) is a costly function to evaluate. Problems of this type are really
common in machine learning techniques such as neural networks. ML algo-
rithms involve the tuning of learning parameters or model hyper-parameters,
which may be hard to set and many tries may be required (Snoek et al. [35],
Shahriari et al. [33], Bergstra et al. [8]). On the one side, it is possible to
reduce the number of parameters to the minimum in order to decrease the
number of tries. On the contrary, one can try to automatize the tuning. The
second choice can be seen as a black-box optimization problem in which the
objective function is the performance of the ML algorithm, obtained with a
set of parameters. Clearly, this objective function is expensive to evaluate
since each evaluation is done with a running of the ML algorithm itself.

In general, Artificial Intelligence is full of expensive-to-evaluate objective
functions. As an example, some object detection systems, like the C-RNN
framework [16], use expensive-to-evaluate detection score function. An ob-
ject detection system allows one to locate objects in images and is mainly
based upon neural networks. An object detection algorithm first tries to fill
an image with many bounding-boxes. Then, for each region a classification
algorithm produces a detection score, which explains how well the algorithm
detected an object in the specified region. This step is repeated with differ-
ent bounding-boxes arrangements. An object is detected when the detection
score is maximized. Notice that each evaluation of the objective function

10 Discrete Bayesian Optimization - Chapter 1

depends on the computational cost of the classification algorithm and more
importantly, finding a global maximum is expensive due to the huge number
of regions that the neural network generates.

Bayesian Optimization (BO) is a large class of methods that efficiently
optimize black-box functions. It is useful when a closed-form for the objec-
tive function is not available and obtaining observations of this function at
sampled values is expensive. BO methods are able to exploit the very little
information we give to the algorithms at the initialization and try to obtain
the optimal value asking for the smallest number of evaluations of the objec-
tive function. To achieve this goal, the cornerstone of Bayesian Optimization
is to gain knowledge step-by-step. The approach is similar to that of Bayes’
Theorem, after which BO is named: the posterior probability of a model M
given evidence E is proportional to the prior probability of M multiplied by
the likelihood of E given M :

p(M |E) ∝ p(E|M) · p(M).

In the Bayesian optimization, the prior represents our belief about the space
of possible objective functions. The likelihood expresses our belief over the
properties of the objective function, for example its smoothness, which lets us
modify the prior and make some possible objective functions more plausible
than others. Each time we gather new observations, the support of the dis-
tribution over the space of objective function becomes smaller, and centered
on the true objective function. Bayesian Optimization models are made up
of two building blocks: a surrogate model and an acquisition function. The
surrogate model is a statistical model which has the role of approximating the
black-box objective function. It provides the probability distribution over the
search space defining a prior distribution and the likelihood of the model.
The most used surrogate models are Gaussian Processes because of their
properties of conditioning and marginalization, useful in defining a posterior
distribution in closed form. Instead, the acquisition function is responsible
of finding the next observation to be evaluated. The new observation allows
one to update the information given by the surrogate model.

Brochu et al. [10] traces the roots of modern Bayesian Optimization ap-
proach in the works of Kushner (1964) [23], Mockus (1974) [28] and Krige
(1951) [22]. However, BO received more attention after the work of Jones
et al. (1998) [20] where the authors proposed the Efficient Global Opti-
mization algorithm (EGO) to optimize expensive black-box functions. Since

Introduction 11

then, several works have been produced and lots of BO models arose. For
example in the field of material science, Zhang et al. (2015) [41] and Frazier
et al. (2015) [13] applied Bayesian Optimization to the design of material
systems. In robotics, Lizotte et al. (2007) [25] addressed gait optimiza-
tion of quadrupedal and bipedal robots by using the BO approach. Instead,
Brochu et al. (2010) [10] applied Bayesian Optimization to Active user mod-
elling with preferences and hierarchical Reinforcement Learning. In Machine
Learning Snoek et al. (2012) [35] were the first to notice the usefulness of
Bayesian Optimization in the tuning of hyperparameters of ML algorithms,
especially deep neural networks. Many other works investigate BO in Ma-
chine Learning applications: as an example Bergstra et al. (2013) [8], Wang
et al. (2016) [39], Binois et al. (2018) [9] extended the approach to high-
dimensional problems, while Swersky et al. (2013) [36] and Toscano-Palmerin
et al. (2018) [38] developed multi-task Bayesian Optimization. The latter is
an extension of multi-tasking Gaussian Processes to the BO approach: this
model allows one to find optimal hyperparameter settings more efficiently
and is useful for sequential design of experiments with random environmen-
tal conditions. Lastly, other theoretical treatments of Bayesian Optimization
have been done by Huang et al. (2006) [18], Shahriari et al. (2016) [33], Fra-
zier (2018) [12] and Oh et al. (2019) [30].

As experimented in the above-mentioned works, Bayesian Optimization
works well when the features domain is a continuous subset of Rd (d ≤ 20).
However, for discrete or categorical domains, these techniques become un-
successful and, in general, discrete optimization requires different approaches
and settings. To deal with discrete or categorical variables in black-box op-
timization problems, several algorithms have been proposed in literature.
As an example, Hutter et al. (2011) [19] proposed the SMAC algorithm
(Sequential Model-based Algorithm Configuration) to solve algorithm con-
figuration problems. It uses random forests as surrogate models and random
walks to obtain local optimum. Notice that Bayesian Optimization is a par-
ticular class of sequential model-based algorithms. Garrido-Merchán et al.
(2020) [15] suggested a model that is based on rounding to the closest in-
teger value. They considered the objective to be constant in the interval of
rounding of a discrete value. For example, if the discrete variable x varies
in N, then on the interval (4.5, 5.5) ⊂ R the objective is assumed to have
the same value as in 5, since all the values of the interval are rounded to

12 Discrete Bayesian Optimization - Chapter 1

5. Suddenly, this leads to a step-wise acquisition function, which is difficult
to optimize. Other algorithms are provided by Bergstra et al. (2013) [7],
Baptista et al. (2018) [5] with the BOCS algorithm, Oh et al. (2019) [31]
with the COMBO algorithm and Luong et al. (2019) [26] (2019) with the
Discrete-BO approach. The last three algorithms will be widely discussed in
Chapter 3.

In this thesis we propose a tailor made algorithm that combines the
idea of the Bayesian optimization algorithms with a structural setting that
allows us to work over combinatorial domains. We will be referring to it as
the SBO algorithm, where SBO stands for Separable Bayesian Optimization.
The key point of the algorithm is assuming that the objective function has a
defined structure. In particular, considering the complete graph whose nodes
are the discrete variables involved, the objective function is assumed to be
additively separable: substantially, it can be written as the summation of
several random variables built onto the complete graph itself. These random
variables are assumed to follow a Gaussian distribution, hence the surrogate
model is still a Gaussian Process. However, Gaussian Processes do not work
properly over discrete domains. In the SBO algorithm we will adjust the
steps of Bayesian Optimization with Gaussian Processes, in order to tailor
them to the discrete world.

In Chapter 2 we will explain how Bayesian Optimization works over
continuous domains: we will discuss about Gaussian Processes as surrogate
models and Acquisition functions.

In Chapter 3 the problem setting is outlined. We will present some exam-
ples of discrete black-box problems and then we will discuss some algorithms
that have been proposed by researchers to overcome the limitation that BO
has over discrete domains.

Chapter 4 will be dedicated to the SBO algorithm, our solution to the
limitations of BO over discrete domains: there will be both a theoretical and
an implementation part. Appendix B will complete the technical discussion,
deepening into the implementation part with Python 3.

In Chapter 5 the SBO algorithm is tested over some benchmark problems
proposed in literature.

Lastly, in Chapter 6 we will apply the SBO algorithm to a real applicative
context, a mobile network problem, proposed by the TIM group.

13

Chapter 2

Background on Bayesian
Optimization

In this chapter we will give an overview of Bayesian Optimization (BO),
a powerful approach that allows one to optimize expensive-to-evaluate func-
tions. Consider the following optimization problem:

max
x∈X

F (x) (2.1)

in which the objective function F (·) has not a closed form expression or it is
expensive to obtain observations at sampled points. These kind of objective
functions are referred to as black-box functions. Several works demonstrated
that Bayesian Optimization is able to optimize such problems and to find the
optimum in few steps [10, 12, 28, 33, 35]. Bayesian optimization is made up
of two main parts: a statistical model for modelling the objective function
(a surrogate model) and an acquisition function to choose a point from the
domain where the algorithm will sample next. Here we will focus on BO
that uses Gaussian Processes as surrogate models.

The development of this chapter is based mainly on the works of Frazier
[12], Borchu et al. [10] and Agnihotri [1].

2.1 The core idea of Bayesian Optimization

Suppose we have a black-box function F (·) : X → R in problem (2.1) as
in the following figure.

14 Discrete Bayesian Optimization - Chapter 2

Black-box

x ∈ X y ∈ RF (·)

We will refer to x as input of the black-box function, and to the couple (x, y)

as observation. Bayesian Optimization aims at finding the maximum value
that F can reach over the X domain. Since F is unknown or expensive to
evaluate, BO needs to find the best approximation of F in the objective
function space. To do that, BO relates on a step-by-step learning procedure.
The initial information required by this procedure in each BO algorithm are:

• a train set of observations (xi, yi = F (xi)), for i = 1, . . . , n, which
allows one to select only those objective functions that interpolates all
the points of the train set;

• a prior distribution over the objective function space, which let us
determine which objective functions are more plausible;

• a likelihood function, which expresses our beliefs over the properties of
the objective function, for example its continuity and smoothness.

The last two items are specified by providing a surrogate model to the BO
algorithm. A surrogate model is a statistical model that handles the proba-
bility distribution over the objective function space. The step-by-step learn-
ing procedure consists in re-shaping the prior distribution each time a new
observation is added to the train set. The surrogate model also specifies
the way BO updates the prior: it provides both the prior and the posterior
distributions.

BO uses the re-shaping procedure in order to gather all possible informa-
tions from the minimum number of evaluations (i.e. observations). Moreover,
it is the BO algorithm itself that chooses which point should be sampled next.
This step is managed by the acquisition function and its maximization. The
acquisition function looks at the shape of the posterior distribution over the
objective function space and decides which is the most promising point. In
essence, the core question of Bayesian optimization is "by what we know so
far, where should we evaluate next?".

We can sum up BO algorithms into the following four steps:

Background on Bayesian Optimization 15

1. at first choose a surrogate model for modelling the true objective func-
tion and define its prior;

2. given the set of observations, use Bayes rule to obtain the posterior;

3. use an acquisition function α(x), which is a function of the posterior,
to decide the next sample point xn+1 = argmaxxα(x);

4. add the new sampled couple (xn+1, F (xn+1)) to the set of observations
and go to step 2 until convergence or budget elapses.

2.2 Gaussian Processes

When X is a continuous subset of Rd in (2.1), then the most used sur-
rogate models are Gaussian Processes (GP). Gaussian Processes simplify
the computation of the posterior from the prior in the second step of BO
algorithms. In fact, GP provides a closed form expression for the condi-
tional distribution over the objective function space, conditioned to a new
observation.

Firstly, let us introduce Gaussian Processes. A Gaussian process is a
stochastic process Z = {Zt : t ∈ T}, T ⊆ R, such that ∀k ∈ N and for
each t1, . . . , tk ∈ T we have that (Zt1 , . . . , Ztk) ∼ N (µ,Σ), where µ ∈ Rk is
the mean vector and Σ ∈ Rk×k is the covariance matrix. In other words,
a stochastic process Z is a Gaussian process if and only if each vector of
random variables taken from the stochastic process Z has a finite multivariate
Gaussian distribution. Therefore a GP is completely identified by the mean
vector µ and the covariance matrix Σ. The notation is the following:

Z ∼ GP(µ,Σ).

More in general, µ and Σ may not be constant. We can identify a Gaussian
process by specifying a mean function µ(t) = E[Zt], t ∈ T , and a covari-
ance function Σ(t, t′) = Cov(Zt, Zt′), t, t′ ∈ T . The covariance function is
also called kernel and denoted with k(·, ·). For further insights on Gaussian
Processes in Machine Learning see Rasmussen et al. [32].

In the Bayesian optimization context, the surrogate model attempts to
approximate the black-box function at each iteration of the BO loop. As

16 Discrete Bayesian Optimization - Chapter 2

we said before, it provides the probability distribution over the objective
functions space. This is equivalent to give a probability distribution to the
output F (x) for each input x ∈ X . The random variable associated to this
probability distribution will be referred to as f(x). Notice that the sample
space of f(x) is the output space R. Considering a Gaussian Process as sur-
rogate model means that the collection F = {f(x) : x ∈ X} is a Gaussian
process. Therefore, (f(x1), . . . , f(xk)) is a finite multivariate Gaussian distri-
bution, for every choice of x1, . . . , xk in X . Note that for a general Gaussian
process, usually, the index t varies in a time domain T , while here the index
set is the set of all possible inputs X .

The main problem is now to define a mean function and a covariance
function in order to identify the Gaussian process F . We do this by giving a
prior distribution to the process in terms of a mean function and a covariance
function. Therefore we write

(f(x1), . . . , f(xk)) ∼ N
((
µ0(xi)

)k
i=1

,
(
Σ0(xi, xj)

)k
i,j=1

)
,

where x1, . . . , xk ∈ X . The function µ0(·) : X → R is the mean function and
Σ0(·, ·) : X 2 → R is the covariance function for the prior distribution. We
used the following compact notation:

(
µ0(xi)

)k
i=1

=

µ0(x1)

...
µ0(xk)

 ,

(
Σ0(xi, xj)

)k
i,j=1

=

Σ0(x1, x1) · · · Σ0(x1, xk)

...
. . .

...
Σ0(xk, x1) · · · Σ0(xk, xk)

 .

Afterwards, when we obtain new observations we will modify those func-
tions and update the distribution of the GP. In fact, suppose we obtain n

observations (xi, yi = F (xi)) from the black-box function, which will be con-
sidered as train observations of the GP. We want to re-shape the distribution
of the Gaussian Process over the feature space. Namely, let x ∈ X be a new
input point of the feature space, we would like to infer over the value of the
outcome F (x), given the information we collected and built with the n ob-
servations. What we can do is considering the random variable f(x) instead

Background on Bayesian Optimization 17

of the true value F (x). From the GP assumption we know that
f(x1)

...
f(xn)

f(x)

 ∼ N

µ0(x1)

...
µ0(xn)

µ0(x)

 ,

Σ0(x1, x1) · · · Σ0(x1, xn) Σ0(x1, x)

...
. . .

...
...

Σ0(xn, x1) · · · Σ0(xn, xn) Σ0(xn, x)

Σ0(x, x1) · · · Σ0(x, xn) Σ0(x, x)

 ,

is still a multivariate Gaussian distribution. From the property of condition-
ing and marginalization of the multivariate Gaussian distribution it derives
that

f(x) | (yi)ni=1 ∼ N (µn(x), σ2
n(x)), (2.2)

where

µn(x) = µ0(x) +
(
Σ0(x, xj)

)n
j=1

((
Σ0(xi, xj)

)n
i,j=1

)−1(
yi − µ0(xi)

)n
i=1

,

σ2
n(x) = Σ0(x, x)−

(
Σ0(x, xj)

)n
j=1

((
Σ0(xi, xj)

)n
i,j=1

)−1(
Σ0(xi, x)

)n
i=1

.

(2.3)

A proof of the derivation of (2.2) and (2.3) is provided in Appendix A. This
conditional distribution is the posterior distribution and allows us to eval-
uate the value f(x) for every new observation in the features space. We
highlighted the fact that n observations were used to update the prior dis-
tribution by modifying the subscript of the mean and covariance functions.
Notice that equations (2.2) and (2.3) will be used every time a new observa-
tion (x, y) is obtained, by adding it to the train set of observations.

The possibility of obtaining a close form posterior distribution over the
objective function space, makes Gaussian Processes very popular as surro-
gate models in BO algorithms. Moreover, GPs define a space of smooth
functions which are notoriously easier to handle with in optimization prob-
lems.

2.3 Acquisition Functions

Given a surrogate model and a distribution over the objective function
space, Bayesian Optimization algorithms need an acquisition function to
suggest the most promising point to sample next. The crucial idea in the ac-
quisition function maximization step is the exploration-exploitation balance.
In fact, a BO algorithm needs to balance between moving to unexplored

18 Discrete Bayesian Optimization - Chapter 2

regions of the state space and focusing on regions where we obtained bet-
ter results. The acquisition function allows us to combine the two ways of
exploring the state space, expressing how desirable it is to evaluate a point,
based on our present model.

Expected Improvement

The most commonly used acquisition function is the expected improve-
ment (EI). The function to maximize is the following:

EIn(x) = En
[
(f(x)− f∗n)+

]
, (2.4)

where f∗n is the optimum obtained at the n-th iteration and En[·] = E[· |
x1, . . . , xn, y1, . . . , yn] is the expected value conditioned to the posterior dis-
tribution built over the x1, . . . , xn inputs and the y1, . . . , yn observations.
This posterior distribution is a Gaussian distribution with mean µn(x) and
variance σ2

n(x). The idea behind the definition is straightforward. Given the
temporary optimum value f∗n at the n-th iteration of the BO loop, we decide
where to sample next by considering the improvement f(x)−f∗n we can add to
the temporary optimum, and choosing the best improvement. This improve-
ment could be negative, therefore the definition involves the positive part of
the increment. Moreover, f(x) is a random variable, therefore the best we
can do is considering the expected improvement of the positive part of the
increment, and so we obtain the definition (2.4). Hence, the maximization
problem in point 3 of the Bayesian optimization loop is

xn+1 = argmaxxEIn(x).

Applying the definition of expected improvement, we can write the expected
improvement in closed form. In fact, the following result holds1.

Proposition 2.1. Let F = {f(x) : x ∈ X} be a Gaussian Process with
µn(·) and σ2

n(·) as mean and variance functions. Let f∗ be the optimum
obtained within n iterations of the BO loop that uses F as surrogate model.
Then, for all x ∈ X it holds that

EIn(x) = σn(x)ϕ

(
∆n(x)

σn(x)

)
+ ∆n(x)Φ

(
∆n(x)

σn(x)

)
, (2.5)

1The proof is taken from Al-Dujaili [2].

Background on Bayesian Optimization 19

where ∆n(x) = µn(x)− f∗n and ϕ(·) and Φ(·) are the density function and the
cumulative function of a standard normal distribution, respectively.

Proof. Let us write f(x) as f(x) = µn(x) + σn(x)z with z ∼ N (0, 1). Then,
from the definition of expected improvement we obtain:

EIn(x) =

∫
(f(x)− f∗n)+dϕ =

∫ ∞
−∞

max (f(x)− f∗n, 0)ϕ(ε)dε =

=

∫ ∞
−∞

max (µn(x) + σn(x)ε− f∗n, 0)ϕ(ε)dε =

=

∫ ∞
−µn(x)−f∗n

σn(x)

(µn(x) + σn(x)ε− f∗n)ϕ(ε)dε =

= (µn(x)− f∗n)

∫ ∞
−∆n(x)
σn(x)

ϕ(ε)dε+ σn(x)

∫ ∞
−∆n(x)
σn(x)

ε
1√
2π

e−
ε2

2 dε.

Then, computing the integrals we obtain:

EIn(x) = ∆n(x)

(
1− Φ

(
−∆n(x)

σn(x)

))
− σn(x)√

2π

[
e−

ε2

2

]∞
−∆n(x)
σn(x)

=

= ∆n(x)Φ

(
∆n(x)

σn(x)

)
+
σn(x)√

2π
e
− 1

2

(
∆n(x)
σn(x)

)2

=

= ∆n(x)Φ

(
∆n(x)

σn(x)

)
+ σn(x)ϕ

(
∆n(x)

σn(x)

)
,

which is the (2.5).

Note that in the closed form, the Expected improvement is expressed as a
summation of a term of exploration σnϕ(∆n/σn), and a term of exploita-
tion ∆nΦ(∆n/σn). In fact, there is a trade-off in searching over the whole
state space (exploration) and searching within a promising area nearby the
temporary optimum, "exploiting" the information we already have. We can
improve this trade-off by adding a parameter k that determine the amount
of exploration during the optimization. In particular, we define the modified
expected improvement (mEI) as in (2.5) but with

∆n(x) = µn(x)− f∗n − k. (2.6)

The k parameter has the effect of damping the contribution of the mean
effect. Therefore, for bigger values of k the second term of (2.5) will be
smaller, leading to more exploration. Instead, smaller value of k allows one
to exploit more the neighbourhood of the temporary optimum f∗.

20 Discrete Bayesian Optimization - Chapter 2

Upper Confidence Bound

The second proposed acquisition function is the upper confidence bound
(UCB). In trying to combine the exploration/exploitation trade-off, the def-
inition arises trivially:

UCBn(x) = µn(x) + βσn(x). (2.7)

In fact, exploitation and exploration result in the GP mean function µn(·) and
covariance function σn(·), respectively. The β hyperparameter weights the
importance of both terms, the surrogate mean and the surrogate uncertainty,
taking the role that the k parameter has for the expected improvement.

2.4 Further developments and key issues

We introduce Bayesian Optimization in its essential form. As a sequen-
tial model-base algorithm, it is adaptable to several variations. For example,
many other acquisition functions have been proposed: knowledge-gradient,
entropy search, predictive entropy search [12]. Alternatively, one can re-
place the acquisition function maximization step with other techniques, like
random search or Thompson sampling [1].

In literature, many authors tried to get the most from Bayesian Opti-
mization approach in various directions. As an example, some researchers
adapted the BO approach to the parallelization technique in order to ob-
tain multiple function evaluations in shorter time (Ginsbourger et al. [17]).
Another extension can be done involving some constraints in the general
problem (2.1), where also the constraints are expensive to evaluate (Gardner
et al. [14]). Swersky et al. [36], Toscano-Palmerin et al. [38] developed
multi-task Bayesian Optimization, also called optimization with random en-
vironmental conditions, which is applied to the following problems:

max
x∈X

∫
f(x,w)p(w)dw or max

x∈X

∑
w

f(x,w)p(w)dw,

where f is expensive to evaluate.
Typically Bayesian Optimization is most successful when the dimension

d of the domain is not greater than 20 [12]. Directions for research include
developing BO models for high-dimensional domains. Some examples of

Background on Bayesian Optimization 21

works that tried to extended the BO approach to high-dimensional problems
are Bergstra et al. [8], Binois et al. [9], Wang et al. [39]. Other research
directions include theoretical analysis over convergence for BO algorithms
and the development of BO with new statistical models, since Gaussian
Process are used in most work on Bayesian Optimization. New surrogate
models can be useful for certain classes of problems where the objective
could be better modelled through other approaches [12].

Last but not least, another development of BO involves discrete domains.
Most Bayesian Optimization methods assume the input variables to be con-
tinuous, rather than combinatorial. One of the reason is the use of Gaussian
Processes, which are built on continuous domains. Though there exists some
kernel proposed for combinatorial structures (See Oh et al. [31]) some of the
properties of GP are lost, like the smoothness of the objective function. In
the following chapter, some recent works on Bayesian Optimization models
over discrete domains are analysed.

22 Discrete Bayesian Optimization - Chapter 2

23

Chapter 3

Bayesian Optimization over
Discrete Domains

Suppose we have to solve the following black-box problem:

max
x∈X

F (x), (3.1)

where X is a discrete or categorical domain and the objective function is
expensive-to-evaluate. In the previous chapter we analysed the BO approach
as a method to optimize black-box objective functions. Bayesian Optimiza-
tion works well when the features domain is a continuous subset of Rd, with
d ≤ 20. However, for discrete or categorical domains, this technique becomes
unsuccessful and different approaches are required.

3.1 Discrete and black-box problem examples

Natural sciences, engineering, Machine Learning are some of the fields in
which researchers faces expensive-to-evaluate objective function over set of
combinatorial structures. An example comes from the field of pharmacology:
drug discovery (Negoescu et al. [29]). To discover a new medication, medical
researchers often start with single molecule that shows some desirable ther-
apeutic effect. Then they test many variations of that molecule to find one
that produces the best results. These variations are obtained by substituting
some atoms in the original molecule with different atoms. The number of
variations increases exponentially in the number of atoms of the molecule.

24 Discrete Bayesian Optimization - Chapter 3

Testing each variation is infeasible due to the time limitation (each variation
has to be synthesized and analysed) or budget constraints.

Another example involves Multidisciplinary models. The design of com-
plex systems like aircraft, spacecraft or wind turbines, involves the work
of many specialists in different disciplines. As design tasks becomes more
decentralized, disciplinary specialists are needed. Their job is to build a
communication network in order to make the transfer of informations easier
and optimized. Multidisciplinary analysis and optimization (MDAO) is a
field of engineering that uses optimization methods to couples the multiple
models involved in complex systems design. The coupling among disciplines
typically contributes significantly to the computational cost of analysing the
entire system. Therefore, the minimization problem consists in reduce the
number of couplings without losing information in the communication net-
work. Notice that some coupling may be embedded within optimization
loop, therefore informations may need to travel back and forth. It is a typ-
ical practice to derive these discipline couplings using expert opinion and
domain experience. However, lately several automated models have been
proposed to solve MDAO problems (Baptista et al. [4]).

The most challenging example of discrete black-box optimization prob-
lems is the tuning of model hyperparameters in Machine learning algorithms.
As an example, neural networks and deep learning methods notoriously re-
quire careful tuning of numerous hyperparameters. Some of them are related
to the network architecture, like the number of hidden layers and of epoch,
the batch size, the learning rate and the activation function. Other pa-
rameters are used for regularization, like the dropout parameter and the
momentum2. Some of these hyperparameters are integer, others are cat-
egorical and others may be continuous if no alphabet is specified for the
parameter. Currently the process of setting the hyperparameters requires
expertise and extensive trial and error. A grid search or random search over
the hyper-parameter space is computationally prohibitive and time consum-
ing [34]. More in general, the tuning of hyperparameters in neural networks
can be subject to time or memory constraints. On the first side, each func-
tion evaluation can require a variable amount of time. For example, training
a small neural network with 10 hidden units will take less time than a bigger

2Refer to Alto [3] and Lau [24] for details.

Bayesian Optimization over Discrete Domains 25

network with 1000 hidden units. On the other side, the cost of requiring
large-memory machines for learning may exceeds some budget constraint.
In summary, the tuning of hyperparameters in ML algorithms is the best ex-
ample of black-box function that is expensive to sample. Moreover, variables
are discrete or categorical and, when dealing with continuous hyperparame-
ters, typically a discrete set of variation is defined. For further details over
the tuning of hyperparameters for neural networks see Shahriari et al. [33],
Smith [34] and Snoek et al. [35].

3.2 Existing methods and related works

A simplistic approach is to use standard BO as-is to optimize over discrete
domains. In this case, variables are treated as continuos and only at the end
of each iteration the new suggested point is rounded to the closest discrete
one. This approach will be refered to as Naive-BO as in [26]. Suddenly,
this method may stumble in rounding the same continuous value into two
different discrete values. This results in the repetition of the same values,
without stopping when a global discrete optimum is reached.

Several researchers have tried to combine the effectiveness of Bayesian
optimization with discrete problems, and multiple algorithms have been pro-
posed. One of the most popular is the SMAC algorithm (Sequential Model-
based Algorithm Configuration) proposed by Hutter et al. [19]. The algo-
rithm uses random forests as surrogate models and random walks to obtain
local optimum. Garrido-Merchán et al. [15] suggested a model that is based
on rounding to the closest integer value. They considered the objective to
be constant in the interval of rounding of a discrete value. For example, if
the discrete variable x varies in N, then on the interval (4.5, 5.5) ⊂ R the
objective is assumed to have the same value as in 5, since all the values of
the interval are rounded to 5. Suddenly, this leads to a step-wise acquisition
function, which is difficult to optimize.

3.2.1 Discrete Bayesian Optimization

Luong et al. [26] tried to overcome the Naive BO and to solve the repe-
tition problem of Naive-BO with the Discrete-BO algorithm. They wanted
the algorithm to sample points that are different from the previous observa-

26 Discrete Bayesian Optimization - Chapter 3

tions. To avoid sampling pre-existing observations, they focus on adjusting
two hyperparameters. The first is the exploration-exploitation trade-off fac-
tor β of the Upper Confidence Bound Acquisition function. The second is
the length scale l of the following covariance function (kernel):

k(x, x′) = σ2exp
(
− 1

2l2
||x− x′||2

)
.

This kernel is called squared exponential kernel. It defines the Gaussian
process used as surrogate model for the BO algorithm. To select the optimal
values for β and l at each iteration of the BO loop, the algorithm solves a
minimization problem with three objective:

β∗, l∗ = argmin
∆β∈[0,βh],l∈(0,lh]

g(β + ∆β, l)

g(β + ∆β, l) = ∆β + ||xt+1 − x′t+1||2 + P (x′t+1).

(3.2)

The first part minimizes the variation ∆β of the variable beta. The second
part minimizes the distance between the suggested point xt+1 corresponding
to the original βt and the suggested point x′t+1 corresponding to the incre-
mented βt + ∆β, in order to suggest a point close to the current potential
area of exploration. The third objective is a penalty P (x′t+1) that occurs
only when also the suggested point x′t+1 has been already sampled.

In summary, Discrete-BO algorithm works as classic naive-BO. However,
each time the suggested point is an already sampled point, then the algorithm
solves problem (3.2) to chose another input point.

3.2.2 Bayesian Optimization of Combinatorial Structures

Baptista and Poloczek [5] proposed the Bayesian Optimization of Combi-
natorial Structures (BOCS) algorithm. For the sake of simplicity, the domain
is the set X = {0, 1}d, however BOCS generalizes to integer-valued and cate-
gorical variables and to models of higher order. They gave a structure to the
unknown function F , as a combination of the xi variables, in order to model
the interplay of the elements. In the set of all possible objective functions,
they restricted the search of the theoretical one to second order models of
the form:

fα(x) = α0 +
∑

0≤j≤d
αjxj +

∑
0≤i<j≤d

αijxixj . (3.3)

The uncertainty boils down to the parameters α = (αj , αij) ∈ Rp with p = 1+

d+
(
d
2

)
. They employed the heavy-tailed horseshoe prior as prior distribution

Bayesian Optimization over Discrete Domains 27

over α. Then, thanks to a re-parameterization of the horseshoe prior, they
computed the conditional posterior distribution given in (2) of [5]. For the
acquisition function maximization step, they used the following acquisition
function:

fα(x)− λP(x),

with P(x) = ||x||1 or P(x) = ||x||22 and λ is a penalty parameter. At each
iteration the optimization problem can be rewritten in the form of a binary
quadratic problem:

xt+1 = argmax
x∈X

x>Ax+ b>x. (3.4)

Problem (3.4) is computational hard due to the discrete domain X , therefore,
the authors provided some strategies to obtain an approximation. Firstly,
they relaxed the quadratic program into a vector program. Then, this vector
program is rewritten in a semidefinite program (SPD) which is then approxi-
mated in polynomial time. The solution is converted back into the X domain.
This version of the algorithm is therefore referred to as BOCS-SDP.

The authors proposed a variant of the above-descripted algorithms: the
BOCS-SA algorithm. This version replaces semidefinite programming with
stochastic local search, specifically with simulated annealing (SA). Instead
of solving (3.4), simulated annealing chooses the next point to be sampled
xt+1 by performing a random walk on the domain X . It starts from a ran-
dom point x(0) ∈ X . Then at each iteration k from 0 to K, SA randomly
chooses a point x̄ in the neighbourhood of x(k) which is the set of points
with Hamming distance at most one from x̄. The Hamming distance be-
tween x′, x′′ ∈ {0, 1}d is the number of positions i at which x′i 6= x′′i . If the
chosen point x̄ has an observed objective value that is better than the ob-
served in x(k) then x(k+1) = x̄. Otherwise x(k+1) is set to x̄ with probability
exp((fα(x̄) − fα(x(k)))/Tk+1), else x(k+1) = x(k). Tk+1 is a parameter that
decreases with k in order to encourage exploration at first and to zoom on
a good solution in the end. The last value x(K) is taken as next point to
be sampled xt+1. Essentially, simulated annealing completely substitute the
acquisition function maximization step.

In summary, in both BOCS-SDP and BOCS-SA, surrogate models are
specified by two elements: the model (3.3) for the objective function and
the horseshoe prior for the coefficients α. The acquisition function step is
instead different for the two algorithms. BOCS-SDP uses the idea that we

28 Discrete Bayesian Optimization - Chapter 3

want to obtain an objective function of the form (3.3), therefore fα(x) is
included in the definition of the acquisition function. Instead, BOCS-SA is
based on the graph structure induced by the discrete variables.

3.2.3 Combinatorial Bayesian Optimization

Oh et al. [31] proposed the COMBO algorithm in which they focused
the attention on combinatorial graphs. To define a combinatorial graph, let
G(Xi) be a sub-graph for the variable xi ∈ Xi defined as follows: if xi is
categorical then G(Xi) is a complete graph; if xi is an ordinal variable then
G(Xi) is a path graph. Then the combinatorial graph G is defined as the
Cartesian product of the sub-graphs built for each variable:

G = �d
i=1G(X1). (3.5)

Therefore, the vertex set contains all possible combinations of the discrete
variables and two vertices are adjacent if and only if they differ by the value
of only one variable. The Hamming distance defined in the previous para-
graph, is a natural choice of metric on categorical variables. In a combinato-
rial graph, the length of the shortest path between two vertices is equivalent
to the Hamming distance of the two configuratons. As surrogate model they
chose the automatic relevance determination (ARD) diffusion kernel for the
Gaussian Process3. The computation of the diffusion kernel on the graph re-
lies on the eigendecomposition of the graph Laplacian. The graph Laplacian
is given by the the difference of the degree matrix and the adjacency matrix
of the graph:

L(G) = DG −AG .

The computation is sped up thanks to the structure of G as graph Cartesian
product of the sub-graphs G(Xi). In fact, we can write the ASD kernel as
the Kronecker product of the individual kernels per sub-graph:

K =

d⊗
i=1

exp
(
− βiL(G(Xi))

)
.

They gave a Horseshoe prior to the parameters βi, in order to encourage
sparsity. In the acquisition function maximization step, the authors bal-
anced exploration with exploitation. On one side they took 20 000 random

3For further details see par. 2.3 in [31].

Bayesian Optimization over Discrete Domains 29

vertices of G to be explored. On the other, they choose 20 randomly cho-
sen vertices in the neighbourhood of the best input found. Among those
20 020 configurations, COMBO chooses 20 inputs with highest acquisition
function value. Then further optimization is done with breadth-first local
search (BFLS): at a given vertex of the 20 inputs, the acquisition value is
compared with that of the adjacent vertices. Then BFLS moves to the vertex
with highest acquisition value and repeat until no adjacent vertices brings
an improvement to the acquisition function value.

30 Discrete Bayesian Optimization - Chapter 3

31

Chapter 4

Separable Bayesian
Optimization

The SBO algorithm is our proposal to solve black-box, discrete opti-
mization problems. SBO stands for Separable Bayesian Optimization since
we resemble the Bayesian Optimization approach. "Separable" stands for
the class of functions we use to approximate the unknown objective func-
tion. In fact, SBO algorithm uses a surrogate model that considers the small
subset of additively separable functions as plausible objective functions. A
function f is said to be additively separable if there exist N functions fi such
that

f(·) =

N∑
i=1

fi(·).

Moreover, we will consider only objective functions in which each addend fi
is a function of only some of the d variables x1, . . . , xd, namely

f(x) =

N∑
i=1

fi(xAi), ∀x ∈ X ,

where Ai ⊂ {1, ..., d} is a set of indexes, with i from 1 to N . In such a way, we
focus on the single addends rather than the objective function in its entirety.

Our proposal moves from the idea of Baptista and Poloczek [5] of con-
sidering a structured objective function. In the first section, the separable
structure given to the objective function is built by using a graphical inter-
pretation. In the second section, the property of conditioning of Gaussian
Processes is adjusted for our discrete case. The third section deals with the

32 Discrete Bayesian Optimization - Chapter 4

acquisition function maximization step, while in the last section we devel-
oped some details over the implementation in Python 3.

4.1 Statistical model

To build the structured objective function, we begin by treating each
discrete variable involved in the optimization problem (3.1) as a node of a
complete graph4. Let us assume a common finite, discrete domain A for the
variables, namely the values a node can assume. Let a = |A| be the size of A.
We will refer to A also as the alphabet of the problem. The basic idea is to
equip each element of the graph (nodes and links) with a function, defined
on A for the nodes and on A2 for the links. In particular, considering a
graph with d nodes, we define the following functions:

• λi : A −→ R, for i = 1, . . . , d,

• λij : A×A −→ R, for i, j = 1, . . . , d with i < j.

Let Λ = (λi, λij) be a vector collecting all these functions. We then associate
a functional fΛ : X = Ad −→ R to the whole graph by taking the summation
of the above-defined functions:

fΛ(x) =
∑

1≤i≤d
λi(xi) +

∑
1≤i<j≤d

λij(xi, xj). (4.1)

Notice that (4.1) is a generalization of (3.3), conceiving more general func-
tions depending on one or two variables. For the sake of simplicity of nota-
tion, we assume λi = λ0i, for all i = 1, . . . , d, as if we add an extra stubborn
node i = 0 to the complete graph, whose value x0 is fixed. In this way, the
functional fΛ takes the easier form of

fΛ(x) =
∑

0≤i<j≤d
λij(xi, xj).

Therefore, we obtained an additively separable function as objective func-
tion.

4Let us recall that a complete graph Kd is a simple graph (undirected, unweighted and
with no self-loops) made up of d nodes each connected to every other node.

Separable Bayesian Optimization 33

In summary, the SBO algorithm assumes a generic separable function
as model for the objective function. To reduce the complexity we let the
addends of the objective function be at most in two variables, which leads
to a functional defined over pairwise connections of the graph. While Bap-
tista et al. [5] consider exclusively second order objective function, in the
SBO algorithm we give no restrictions on the form of the addends of the
objective function. The only hypotesis is that the objective function can be
decomposed in the contribution of both single variables and paired variables.

4.2 Computation of the posterior distribution

We use a Gaussian prior over the unknown factors of the objective func-
tion. In particular, each quantity Λij(s, t) with i, j ∈ 0, ..., d, i < j, and
s, t ∈ A, is modelled with a Gaussian random variable:

Λij(s, t) ∼ N (µijst, σ
2
ijst).

We then combine all this random variables in a random vector Λ, which
follows a multivariate Gaussian distribution. The dimension of Λ is

N = da+
d(d− 1)

2
a2. (4.2)

where we recall that a is the cardinality of the alphabet A.
Let FΛ(·) : X → R be the true black-box function. We recall that ∀x ∈ X ,

the true objective function value FΛ(x) is a realization of the random variable
fΛ(x). Moreover, we suppose that the measured output in x ∈ X can be
subjected to a noise εx, which is a random variable εx ∼ N (0, σ2

x) that we
consider independent from the random vector Λ. In essence we write

y = FΛ(x) = fΛ(x) + εx, ∀x ∈ X .

Let (x(n+1), y(n+1)) be a new observation that for the sake of simplicity
will be referred to as (x, y)5. To update the prior distribution of fΛ(z) for

5Note that here we changed the subscript index n with a superscript, since notations
will become pretty rough in the following. Let us recall that the superscript index (n)

refers to the size of the train set for the GP, that is the number of observations we got
from the black-box and we used to update the prior distribution.

34 Discrete Bayesian Optimization - Chapter 4

all the unvisited inputs z ∈ X we need to update the mean and covariance
functions for the Λij(s, t) random variables. In particular, we can make use
of equations (2.2) and (2.3) to condition these distributions over the new
observation. Specifically, let

µ
(n)
ij (s, t) = E[Λij(s, t)],

and

Ω
(n)
ij,hk((s, t), (u, v)) = Cov(Λij(s, t),Λhk(u, v)) =

= E[Λij(s, t) · Λhk(u, v)]− µ(n)
ij (s, t) · µ(n)

hk (u, v)

be the means and covariances of the Λij(s, t) random variables given n ob-
servations, i, j, h, k ∈ {0, . . . , d}, i < j, h < k, and s, t, u, v ∈ A. To compute
the updated means and covariances µ(n+1)

ij (s, t) and Ω
(n+1)
ij,hk ((s, t), (u, v)), let

us define the following quantities:

• the covariance between the model f (n)
Λ (x)+εx and the random variables

Λhk(u, v) as

ρ
(n)
hk (u, v) = Cov

((
f

(n)
Λ (x) + εx

)
,Λhk(u, v)

)
=

= E
[(
f

(n)
Λ (x) + εx

)
· Λhk(u, v)

]
−E

[
f

(n)
Λ (x) + εx

]
· µ(n)

hk (u, v) =

=
∑

0≤i<j≤d

(
E[Λij(xi, xj) · Λhk(u, v)]−E[Λij(xi, xj)] · µ

(n)
hk (u, v)

)
=

=
∑

0≤i<j≤d

(
E[Λij(xi, xj) · Λhk(u, v)]− µ(n)

ij (xi, xj) · µ
(n)
hk (u, v)

)
=

=
∑

0≤i<j≤d
Ω

(n)
ij,hk((xi, xj), (u, v));

• the mean value of the measured output

µ(n) = E
[
f

(n)
Λ (x) + εx

]
=

∑
0≤i<j≤d

E[Λij(xi, xj)] =

=
∑

0≤i<j≤d
µ

(n)
ij (xi, xj); (4.3)

Separable Bayesian Optimization 35

• the variance of the measured output(
ρ2
)(n)

= E

[(
f

(n)
Λ (x) + εx

)2
]
−E

[
f

(n)
Λ (x) + εx

]2
=

=
∑
i′<j′

∑
i′′<j′′

E
[
Λi′j′(xi′ , xj′)Λi′′j′′(xi′′ , xj′′)

]
+ σ2

x −
(
µ(n)

)2
=

=
∑
i′<j′

∑
i′′<j′′

Ω
(n)
i′j′,i′′j′′((xi′ , xj′), (xi′′ , xj′′))+

+
∑
i′<j′

∑
i′′<j′′

µ
(n)
i′j′(xi′ , xj′)µ

(n)
i′′j′′(xi′′ , xj′′) + σ2

x −
(
µ(n)

)2
=

=
∑
i′<j′

∑
i′′<j′′

Ω
(n)
i′j′,i′′j′′((xi′ , xj′), (xi′′ , xj′′)) + σ2

x =

=
∑
i<j

ρ
(n)
ij (xi, xj) + σ2

x. (4.4)

To make use of (2.3), we consider the following (N + 1)-variate Gaussian
distribution:(

FΛ(x(n+1))

Λ

)
∼ N

((
µ(n)

µ̄(n)

)
,

((
ρ2
)(n)

ρ(n)>

ρ(n) Ω(n)

))
, (4.5)

where µ̄(n) and ρ(n) are N dimensional vectors collecting respectively means
µ

(n)
hk (u, v) and covariances ρ(n)

hk (u, v) with h, k ∈ {0, . . . , d}, h < k and u, v ∈ A,
in the same order given to the Λ vector. In similar fashion we defined the
N ×N covariance matrix Ω(n) collecting the covariances Ω

(n)
ij,hk((s, t), (u, v)),

with i, j, h, k ∈ {0, . . . , d}, i < j, h < k, and s, t, u, v ∈ A, except when i = 0

or h = 0, because in that case s = x0 or u = x0 respectively. With this in
mind, since FΛ(x(n+1)) = y(n+1), we can easily compute the posterior with
equation (2.3) as follows:

µ̄(n+1) = µ̄(n) +
1

(ρ2)(n)
ρ(n)

(
y(n+1) − µ(n)

)
,

Ω(n+1) = Ω(n) − 1

(ρ2)(n)
ρ(n)ρ(n)>.

Component-wise it results in:

µ
(n+1)
hk (u, v) = µ

(n)
hk (u, v) +

ρ
(n)
hk (u, v)

(ρ2)(n)

(
y(n+1) − µ(n)

)
,

Ω
(n+1)
ij,hk ((s, t), (u, v)) = Ω

(n)
ij,hk((s, t), (u, v))−

ρ
(n)
ij (s, t)ρ

(n)
hk (u, v)

(ρ2)(n)
.

(4.6)

36 Discrete Bayesian Optimization - Chapter 4

Finally, with these two equations we can compute the posterior distribution
of Λ given a new observation (x, y) = (x(n+1), y(n+1)), in terms of its mean
vector and covariance matrix.

4.3 Acquisition function

The second main step of Bayesian optimization is solving an optimization
problem involving an acquisition function in order to find the next input to
sample. Since it is not an easy task to solve a maximization problem over a
discrete domain we choose to do a local search over a subset of the features
space. In fact, the number of configurations in the input space is ad, which
grows exponentially in the dimension of the domain, hence a global search
is infeasible. For this reason, at each iteration of the BO loop we need to
define a neighbourhood of the previous configuration. In particular, at each
iteration we solve the following problem:

x(n+1) = argmax
z∈X

x(n)

α(z) (4.7)

where α(·) is an acquisition function and Xx(n) ⊂ X = Ad is the neighbour-
hood of x(n).

There are several types of neighbourhood. For example we can use the
neighbourhood defined by Baptista et al. [5] in the BOCS-SA algorithm
discussed in Section 3.2. The algorithm defines the neighbourhood of a
configuration x(n) as the set of points with Hamming distance at most 1
from x(n). Also Oh et al. [31] used the Hamming distance in their COMBO
algorithm (also discussed in Section 3.2). On a combinatorial graph, two
points have an Hamming distance equal to 1 if the shortest path between the
two points consists in a single edge. Therefore the neighbourhood defined
by Baptista et al. coincides with the neighbourhood (as defined in graph
theory) on the combinatorial graph.

Other types of neighbourhood will be introduced in the Implementation
section below. In the applications we will use all the types of neighbourhood
and acquisition function (EI, mEI, UCB), as defined in Section 2.3, in order
to compare the results and choose the one that performs better for each
problem.

Separable Bayesian Optimization 37

4.4 Implementation

The programming language used to implement the SBO algorithm was
Python 3. We defined several classes and function that implements all the
steps of the algorithm. Algorithm 1 is a brief overview of the algorithm in
pseudo-code.

Algorithm 1 SBO algorithm
1: Input Dimension d of the feature space; set A of values a variable can

take, coded from 1 to a = |A|; training set of couples (x, y); number of
iterations n_iter.

2: Initialize r.v. Λij(s, t) with sample mean and covariance.
3: for (x, y) in training set do
4: Update Λij(s, t)

5: Add x to a vector X of inputs.
6: Add y to a vector Y of outputs.

7: for i from 1 to n_iter do
8: Define neighbourhood of last element of X.
9: Maximize AF over the neighbourhood and get x_new.
10: Sample the new cople (x_new, y_new).
11: Update Λij(s, t).
12: Add x_new to the vector X.
13: Add y_new to the vector Y.

14: Output Max and Argmax of the vector Y.

4.4.1 Initialization and arrangement of Λij r.v.

First of all we decided to use sample mean and sample covariances to
initialize the Λij(s, t) random variables. In particular, given a vector of
training outputs Y , we computed the sample mean µ̄ and sample variance
ρ̄2. Then, since the output is a sum of the Λij(s, t) for s and t fixed, we
divide these values for the number of distinct Λij , according to the following

38 Discrete Bayesian Optimization - Chapter 4

equations:

µ
(0)
ij (s, t) =

2

(d+ 1)d
µ̄,

Ω
(0)
ij,hk((s, t), (u, v)) =

 2
(d+1)d

ρ̄2 if (i, j) = (h, k) and (s, t) = (u, v),

0 otherwise,

since (
d+ 1

2

)
=

(d+ 1)d

2

is the number of distinct combination of indexes (i, j), namely the number
of edges of the graph (including the stubborn node).

More sophisticated choices can be made to initialize these parameters,
like for example not choosing to give the same mean and variance to each
variable, but differentiate them according to some criterion. Alternatively,
a tuning using some ML algorithm can be done or simply estimating the
parameters maximizing a likelihood function (MLE).

We now explain the implementation part. For the random variables used
in the algorithm we defined two Python classes: a class Lambdas correspond-
ing to the random vector Λ and a class lambdas_ijst for the single Λij(s, t)

random variable6. An element of the class Lambdas is equipped with a vector
of element of class lambdas_ijst, by definition of Λ, a mean vector MuVector
and a covariance matrix CovMatrix, which are µ̄ and Ω of equation (4.5) re-
spectively. Moreover we defined two functions:

• F_Lambda, that given an input x∗ returns the mean and variance of
fΛ(x∗), obtained with (4.3) and (4.4);

• posterior, which updates MuVector and CovMatrix given a new pair
of observation (x_new, y_new), according to equation (4.6); this func-
tion uses the F_Lambda function to obtain the new mean and variance
of the output given the new observations.

Instead, the class lambdas_ijst is equipped with a mean mu and a covariance
vector cov that collects the variance of the Λij(s, t) r.v. and its covariances
with all the others; therefore the covariance vector has size N (see (4.2)).

6For further details concerning the arrangement of the Λij(s, t) inside the vector Λ, see
Appendix B.

Separable Bayesian Optimization 39

We defined the update method which changes the value of mean and co-
variances given the new ones calculated in the Lambdas.posterior method.
The following chunk is the initialization part.

N = int(n_vals*n_vars*(1+n_vals*(n_vars-1)/2))
X = X_train
Y = Y_train
n_train = np.shape(Y)[0]
Lambdas_obj = Lambdas()
for t in range(n_train):

Lambdas_obj.posterior(X[t],Y[t])

4.4.2 BO loop and neighbourhoods

The core of the Bayesian optimization algorithm is handled by the main
part of the code. Specifically, the following code chunk is used:

for i in range(n_iter):
x_new = next_x(X[-1], y_best, n_vals, Lambdas_obj, neigh_type,

AF, AFparameter=0)
y_new = oracolo(x_new)
Lambdas_obj.posterior(x_new, y_new)
X = np.vstack((X, x_new))
Y = np.hstack((Y, y_new))

The element Lambdas_obj is an object of the class Lambdas. The function
next_x takes care of finding the next input to be sampled. In essence, it
generates the neighbourhood of the last input X[-1] according to the cri-
terion neigh_type and then it solves the maximization of the Acquisition
function problem. The Acquisition function is specified by a string AF and
its parameter is AFparameter: this parameter is null for the classic Expected
improvement, while takes the role of k for the modified Expected improve-
ment (see (2.6)) and of β for the Upper confidence bound (see (2.7)). These
Acquisition function use the mean and variance provided by the method
F_Lambda of the class Lambdas, and the implementation follows equations
(2.5) and (2.7). Afterwards, the new output corresponding to the suggested
input is sampled, then the distribution of the Λij(s, t) is updated thanks
to the method Lambdas.posterior and finally the new sampled couple of
input-output is stored.

40 Discrete Bayesian Optimization - Chapter 4

The last building block of the algorithm is the function involved in cre-
ating the neighbourhood of a given x, namely GraphOfTentatives. The
different neighbourhood types of an input x ∈ Rd are the followings (for each
type the corresponding figure is the neighbourhood Xx of x = (1, 1, 1, 1)> ∈
{1, 2, 3}4, therefore a = 3 and d = 4):

• neigh_type = 1: y ∈ Xx if and only if ∃ j ∈ {1, . . . , d} such that yj 6= xj

and yi = xi, ∀ i 6= j;

Figure 4.1: Neighbourhood type 1.

• neigh_type = 2: y ∈ Xx if and only if ∃ j1, j2 ∈ {1, . . . , d} such that
yi = xi, ∀ i 6= j1, j2 and

yj1 =

xj1 + 1 (mod a) or

xj1 − 1 (mod a)
and yj2 =

xj2 + 1 (mod a) or

xj2 − 1 (mod a);

Figure 4.2: Neighbourhood type 2: notice that 1− 1 = 3 (mod 3).

• neigh_type = 3: given the parameter m, we say y ∈ Xx if and only
if ∃ j1, . . . , jm ∈ {1, . . . , d} such that yjk 6= xjk , for k = 1, . . . ,m and
yi = xi, ∀ i 6= j1, . . . , jm; moreover we take only num_neigh of this
configurations, since the number of combinations grows exponentially;

Figure 4.3: Neighbourhood type 3 with m = 3 and num_neigh = 14.

Separable Bayesian Optimization 41

• neigh_type = 4: y ∈ Xx if and only if one of the following occurs:

1. ∃ j ∈ {1, . . . , d} such that yj = xj +1 (mod a) and yi = xi, ∀ i 6= j,

2. ∃ j1, j2 ∈ {1, . . . , d} such that yjk = xjk + 1 (mod a) for k = 1, 2

and yi = xi, ∀ i 6= j1, j2,

3. ∃ j1, j2, j3 ∈ {1, . . . , d} such that yjk = xjk + 1 (mod a) for k =

1, 2, 3 and yi = xi, ∀ i 6= j1, j2, j3,

4. ∃ j1, . . . , j4 ∈ {1, . . . , d} such that yjk = xjk + 1 (mod a) for k =

1, . . . , 4 and yi = xi, ∀ i 6= j1, . . . , j4;

Figure 4.4: Neighbourhood type 4.

• neigh_type = 5: at each iteration three indexes are randomly chosen,
namely j1, j2, j3, then y ∈ Xx if and only if yjk 6= xjk for k = 1, 2, 3 and
yi = xi, ∀ i 6= j1, j2, j3;

Figure 4.5: Neighbourhood type 5: suppose we extracted indexes 1, 3, and
4.

• neigh_type = 6: at each iteration one of the two following rules is
applied with probability of 50%:

1. the set of neighbours is like in neigh_type = 2 but with just one
index,

2. a random input z ∈ X is generated, then, given the M previously
obtained best inputs x1, . . . , xM , we build the neighbourhood of
x taking each of the M best input xk to get two neighbours y1k

42 Discrete Bayesian Optimization - Chapter 4

and y2k as follows:

y1k
j =

xkj for j = 1, . . . ,
⌊
d
2

⌋
zj for j =

⌊
d
2

⌋
+ 1, . . . , d

y2k
j =

zj for j = 1, . . . ,
⌊
d
2

⌋
xkj for j =

⌊
d
2

⌋
+ 1, . . . , d.

or

z

best inputs

Figure 4.6: Neighbourhood type 6 with M = 3.

The last type of neighbourhood is inspired by the Genetic Algorithm problem
solving method (see Thengade [37]). In fact, two main steps can be made:
mutations and crossovers. A mutation occurs when only a selected set of
alleles changes its value in the given chromosome; this happens in an easier
way in the first rule. On the other hand, the second rules refers to single-
point crossovers: in a single-point crossover, a point of splitting is chosen (the
middle point in our rule) and then two chromosomes swap their alleles after
that point, so that the two children take one section of the chromosome
from each parent. In our case the two parents are the random input z
and one of the best inputs. An important difference between our rule and
the Genetic algorithm is the probability of occurrence of events, because
in Genetic algorithms single mutations occurs with a small chance (1-2%);
moreover there is also a chance of failure for the crossovers, since only 60-70%
of times two children are generated.

We have defined the neighbourhood types keeping in mind that we get
different cardinality of the Xx set with each rule. In fact, here is the cardi-
nality of the neighbourhood in each case:

1. |Xx| = d(a− 1)

2. |Xx| =
(
d

2

)
· 4 = 2d(d− 1)

3. |Xx| = num_neigh

Separable Bayesian Optimization 43

4. |Xx| = d+

(
d

2

)
+

(
d

3

)
+

(
d

4

)
=

= d+
d(d− 1)

2
+
d(d− 1)(d− 2)

3 · 2
+
d(d− 1)(d− 2)(d− 3)

4 · 3 · 2
=

=
d4 − 2d3 + 11d2 + 14d

24

5. |Xx| = (a− 1)3

6. |Xx| =

2d p = 1/2

2M p = 1/2

Let us plot these cardinalities as functions of d and of a. According to the
dimensionality of the problem, both in the feature space and in the domain,
one can choose to set the remaining parameters accordingly. On one hand,
one can prefer to use a neighbour of smaller size to improve the maximization
problem of the Acquisition function; on the other hand, this would lead to
more iterations of the BO loop to reach the optimum, while bigger neighbours
can analyse more input simultaneously, slowing down the algorithm.

Note that for neigh_type= 6 we plot the average value d+M .

d0 5 10 15 20 25 30
0

100

200

300

400
NT 1
NT 2
NT 3
NT 4
NT 5
NT 6

Figure 4.7: Number of neighbours as a function of the dimension d of the
feature space, with a = 5, M = 20 and num_neigh= 100 fixed.

44 Discrete Bayesian Optimization - Chapter 4

a0 5 10 15 20 25 30
0

100

200

300

400
NT 1
NT 2
NT 3
NT 4
NT 5
NT 6

Figure 4.8: Number of neighbours as a function of a = |A|, with d = 10,
M = 20 and num_neigh= 100 fixed.

45

Chapter 5

Numerical Results with binary
problems

In this chapter we will test the SBO algorithm against two benchmarks
proposed in Baptista et al. [5] and Oh et al. [31]. The first application is the
Binary Quadratic Programming (BQP) problem. BQP has became a central
model in combinatorial optimization, due to its great variety of applications.
Problems on graphs, logistic problems, resources allocation or clustering and
ordering problems, can be considered as BQP models.

The second application deals with the sparsification of Ising models.
Sparsify a graph means approximate it with another one with fewer edges (or
nodes). Thus, the benchmark objective is to find the best sparsification of
the reticular graph that is used to assemble Ising models, which are models
built to describe the thermodynamic properties of magnetic systems.

5.1 Binary Quadratic Programming problem

Binary quadratic programming problem is an optimization problem de-
fined over the combinatorial domain {0, 1}d (or {−1, 1}d for certain applica-
tions) and it has the following objective function:

F (x) = x>Qx,

where Q ∈ Rd×d is a random symmetric positive semidefinite matrix. As
done by Baptista and Poloczek [5], we add a regularization term P(x) that

46 Discrete Bayesian Optimization - Chapter 5

may be either ||x||1 or ||x||2 to the objective function. Hence, the problem
can be formulated as follows:

max
x∈{0,1}d

x>Qx− η||x||1, (5.1)

where η is a regularization parameter. Notice that this objective function
is an additively separable function and can be rewritten as a summation of
pairwise connections:

F (x) =
∑

1≤i,j≤d
qijxixj −

∑
1≤i≤d

η|xi|, ∀x ∈ {0, 1}d.

Therefore, the separability assumption of the SBO algorithm is satisfied. In
particular, in this case, we have

λ0j(x0, xj) = qjjx
2
j − η|xj | and λij(xi, xj) = 2qijxixj ,

for all i, j ∈ {1, . . . , d} with i < j. The number N of distinct λij(s, t), that is
also the size of the vector Λ, is

N = 2d+ 4
d(d− 1)

2
.

On the other hand, the number of distinct functions λij , which is equal to
the number of terms of the separable function F , is d+

d(d−1)
2 .

We will study the performance of the algorithm with d = 12 and for
different values of η. Clearly in this case a = 2 since A = {0, 1}.

5.1.1 Results

To carry out a simulation we firstly need to set the value of the hyper-
parameters:

• the neighbourhood type NT and its parameters (m and num_neigh for
the NT 3, M for the NT 6),

• the number of executions of the SBO algorithm,

• the acquisition function and its parameter, if any,

• the number of training observations for the algorithm,

• the number of iterations each run of the algorithm has available.

Numerical Results with binary problems 47

Due to the great number of parameters, we decided to fix some of them
and for the others we defined a proper range of variation. In particular,
we set m = 4 and num_neigh=100 for NT 3 and M = 10 for NT 6. We
decided to run the algorithm 20 times for each combination of parameters,
and in each run we made available 100 iterations to try reaching the opti-
mum. Moreover, the number of training observations given to initialize the
algorithm is set to 20. On the other hand, we let the AF and the NT vary.
In particular, the acquisition function is chosen between Expected Improve-
ment, modified Expected Improvement and Upper confidence bound, while
the neighbourhood type varies from 1 to 6. Moreover, we let the parameter
of exploration-exploitation k of the modified Expected improvement vary in
the set {0.1, 1, 10}; the same set is used also for the hyperparameter β of the
Upper confidence bound acquisition function.

Let us recall that each neighbourhood type (NT) produces a set of neigh-
bours Xx with different cardinality. In particular, for d = 12 and a = 2 we
got:

NT: 1 2 3 4 5 6

|Xx| 12 264 100 793 1 24 or 20
|Xx|
|X | 0.29% 6.44% 2.44% 19.36% 0.02% 0.53%

Table 5.1: Cardinality of the neighbourhood and corresponding percentage
of domain, for each NT. The cardinality of X is ad = 4 096.

Clearly, the neighbourhood type 5 will not lead to successful performance,
since at each iteration of the BO loop we can move only to a specific config-
uration.

For the design specification of the problem, as we already said, we put d =

12, while the symmetric, positive semidefinite matrix Q is chosen randomly
with the function make_spd_matrix.

Table 5.2 contains a summary of the results obtained with the 20 exe-
cutions of the BO loop using the SBO algorithm, with the different sets of
parameters. Here we report the results for the problem using η = 10−4 as
regularization parameter. The best performance for each acquisition func-
tion is set in bold. We immediately notice that the neighbourhood type 6,
which we recall to be the one involving the Genetic algorithm, outperforms
the others when dealing with expected improvement. In fact, in each of the

48 Discrete Bayesian Optimization - Chapter 5

NT:
1 2 3

EI 51.13± 3.61 51.48± 1.43 52.18± 1.35

mEI
0.1 52.49± 1.08 51.61± 1.27 52.06± 1.35

1 51.81± 2.48 51.05± 3.50 51.74± 1.07

10 51.45± 2.69 52.17± 1.14 51.50± 1.22

UCB
0.1 28.89± 8.97 26.75± 9.22 26.77± 6.46

1 27.87± 6.00 28.86± 7.05 26.17± 5.12

10 29.23± 7.86 26.00± 6.26 26.54± 6.62

NT:
4 5 6

EI 52.83± 0.88 38.97± 6.16 53.20±0.00

mEI
0.1 52.73± 0.93 38.72± 6.65 53.20±0.00

1 52.72± 0.97 37.31± 5.51 53.20±0.00

10 52.73± 0.93 40.16± 7.00 53.20±0.00

UCB
0.1 29.31± 7.95 38.03±6.82 29.66± 7.98

1 29.26± 9.24 39.35±6.45 31.03± 8.22

10 31.27± 8.05 37.52±6.88 29.32± 8.79

Table 5.2: Results after 20 executions of the algorithm: for each combination
of parameters the mean value of the optimal outputs is reported, with one
standard deviation error estimate.

20 re-run of the algorithm we reach the optimal configuration and the op-
timum 51.42 (hence the standard deviation is null). The performance gets
worse with upper confidence bound, and the one obtaining the greatest val-
ues of the objective function is the neighbourhood type 5, that as we said
is useless since no optimization is involved because we are moving into the
features space according to a specific rule.

Table 5.3 contains the percentage of success of obtaining the theoretical
optimum with each setting of parameters. The algorithm performs poorly
with Upper confidence bound acquisition function.

Lastly, Figure 5.1 is a plot of the average error made with each combi-
nation of parameters, defined as follows:

err =
1

20

20∑
i=1

|F (x∗)− f∗i |, (5.2)

Numerical Results with binary problems 49

NT:
1 2 3 4 5 6

EI 55% 35% 60% 85% 0% 100%

mEI
0.1 70% 35% 55% 80% 0% 100%
1 60% 50% 35% 80% 0% 100%
10 55% 55% 30% 80% 5% 100%

UCB
0.1 5% 5% 0% 0% 0% 5%
1 0% 0% 0% 5% 5% 0%
10 0% 0% 0% 0% 0% 0%

Table 5.3: Percentages of obtaining the optimum.

EI mEI-0.1 mEI-1 mEI-10 UCB-0.1 UCB-1 UCB-10
0

5

10

15

20

25

Acquisition Function

A
ve
ra
ge

er
ro
r

NT 1
NT 2
NT 3
NT 4
NT 5
NT 6

Figure 5.1: Plot of the errors averaged over 20 repetitions of the BO loop,
for each acquisition function.

where x∗ is the optimal input, i.e. the argmax of (5.1), while f∗i is the opti-
mum obtained at the i-th run of the algorithm for a certain set of parameters.
We notice again that the performance of NT 5 is not affected by the chang-
ing in the acquisition function, while the others performs better with EI and
modified EI. Similar results were obtained with different matrices Q and with
η varying in the set {10−4, 10−2, 0}.

The great advantage of the SBO algorithm is its speed. In fact, measuring

50 Discrete Bayesian Optimization - Chapter 5

NT: 1 2 3 4 5 6

avg time
(in ms)

5.1 27.62 38.57 307.54 1.02 4.23

|Xx| 12 264 100 793 1 24 or 20
|Xx|
|X | 0.29% 6.44% 2.44% 19.36% 0.02% 0.53%

Table 5.4: Average times to compute the next_x step, compared to the
cardinality of the neighbourhood at each iteration.

NT: 1 2 3 4 5 6

avg total time
with EI (in s)

1.325 4.177 5.886 41.44 0.796 1.178

avg total time
with UCB (in s)

0.991 2.629 3.364 21.607 0.754 1.034

total number of
explored input

1 200 26 400 10 000 79 300 100 2 200

Table 5.5: Average total time of execution of the algorithm, for each acqui-
sition function (EI and mEI are gathered under EI since they have similar
performance).

the time the algorithm takes step-by-step, and recalling that in this scenario
N = 288, on average we get the following results:

• the update the prior distribution over Λ given a new observation takes
6.86 · 10−3 seconds (i.e. 6.86 milliseconds) on average;

• the different times to compute the next_x step, involving creating the
neighbourhood and maximizing the acquisition function over it, are
collected in Table 5.4, for each neighbourhood type;

• lastly, Table 5.5 contains the average total time of execution of the
SBO algorithm, compared to the total number of input of the domain
that have been analysed7.

7Notice that |X | = |{0, 1}d| = 4 096, therefore many inputs have been analysed more
than once.

Numerical Results with binary problems 51

102 103 104 105

100

101

Total number of inputs

A
ve
ra
ge

to
ta
lt

im
e

EI
UCB

Figure 5.2: Plot of the errors averaged over 20 repetitions of the BO loop,
for each acquisition function.

We notice that the algorithm is generally faster with UCB since it is easier
to calculate and less expensive. Plot 5.2 is a visualisation of the previous
table that let us compare the results in term of space and time. For a
more understandable visualization, we plot on a logarithmic scale. Though
the different scale, we notice a certain linear relation between number of
configurations and time of execution.

5.1.2 Comparison with BOCS

We compared the performance of the SBO algorithm with those of the
BOCS. Both BOCS-SA and BOCS-SDP are considered (see Section 3.2).
The comparison was performed considering the same matrix Q and param-
eter η but with different train observation sets. Moreover, we focused on
neighbourhood type 6 and acquisition function EI and mEI with parameter
0.1, 1 and 10. Figure 5.3 shows the average best output obtained at each
iteration. In particular, we executed 20 times each algorithm with a random
train set of 20 observations. We collected the best output at each of the 100
iterations of each algorithm. Lastly, we averaged over the 20 repetitions, sep-
arately for each iteration and algorithm. We notice that the performs of the
SBO algorithm are competitive with those of the BOCS algorithm. BOCS
on average is slightly faster in reaching the optimum value with respect to
the SBO algorithm.

Figure 5.4 shows the average best output with one standard deviation

52 Discrete Bayesian Optimization - Chapter 5

Figure 5.3: Average best output at each iteration, for each algorithm.

Figure 5.4: Average best output ± 1 standard deviation error estimate, for
BOCS-SA and SBO with mEI and parameter 0.1.

error estimate. For easy understanding we chose to plot only the performance
of BOCS-SA and of SBO with mEI and parameter 0.1. The performance of
BOCS-SDP are similar to that of BOCS-SA, and the performance of the
SBO algorithm are similar for each acquisition function choice. We notice
that the SBO algorithm has a higher variation at the beginning, while BOCS
converges faster. All the algorithms eventually reaches the optimum after
the 100 iterations.

Lastly, we notice again that the performance of the SBO is not affected

Numerical Results with binary problems 53

by the choice of the acquisition function parameter (regarding expected im-
provement), for a fixed neighbourhood type.

5.2 Sparsification of Ising model problem

The second benchmark proposed by Baptista and Poloczek [5] deals with
Ising models. The Ising model is a prototypical system that describes the
thermodynamic properties of magnetic systems from a microscopic point
of view. In particular, it is helpful in describing phase transitions from
ferromagnetism to paramagnetism. It is one of the most heavily studied
model in statistical mechanics and it is extremely important also because it
does not only apply to magnetic systems: many other systems, like fluids,
neural networks or binary alloys, can be shown to be equivalent to Ising
models.

For further information regarding Ising models, see Baxter [6] or McCoy
and Wu [27].

5.2.1 Problem description

A 2-dimensional Ising model consists of a 2-dimensional lattice with N

sites. We assume a square lattice, hence N is a perfect. Other types of 2-
dimensional lattices are triangular lattices, honeycomb lattices and Bethe
lattices. The square lattice can be represented with a grid graph G =

({1, . . . , N}, E) as in figure 5.5. For each site we define a discrete variable σk
that can only assume the value −1 or +1, for all k from 1 to N . Therefore
we have a total number of 2N configurations for the lattice. The σk variables
represent the spins of the atoms that form the metallic lattice. If all the
spins are align, hence σk = 1 or σk = −1 for all k = 1, . . . , N , then the mate-
rial exhibits a ferromagnetic property. We assume that for any two adjacent
sites i and j, (i, j) ∈ E , there is an interaction Jij among the spin variables
σi and σj , hence we build a symmetric interaction matrix J ∈ RN×N .

Defining S = {−1, 1}N , the energy of a spin configuration σ = (σ1, . . . σN) ∈
S is given by the following Hamiltonian:

H(σ) = −
∑

(i,j)∈E

Jijσiσj .

54 Discrete Bayesian Optimization - Chapter 5

σ1

σ6

σ11

σ16

σ21

σ2

σ7

σ12

σ17

σ22

σ3

σ8

σ13

σ18

σ23

σ4

σ9

σ14

σ19

σ24

σ5

σ10

σ15

σ20

σ25

Figure 5.5: Square lattice G when N = 25; the σk variables are specified on
each node.

In addition, a spin may interact with an external magnetic field hk. In that
case, the Hamiltonian H would contain the additional term

∑N
k=1 hkσk. Here

we focus on zero-field Ising models, hence hk = 0 for all k = 1, . . . , N .
The probability of the system of being in a configuration σ ∈ S is given

by the Boltzmann distribution:

p(σ) =
1

Zp
exp

(
− 1

kBT
H(σ)

)
=

1

Zp
exp

(
βσ>Jσ

)
, (5.3)

where kB is the Boltzmann’s constant, T is the temperature, β = (kBT)−1

is called coldness and Zp is the normalization constant also referred to as
partition function:

Zp =
∑
σ∈S

e−βH(σ). (5.4)

For simplicity let us fix β = 1. This probability distribution is useful because
if A is some observable property of the system, such as its total energy or
magnetization, and we can observe its value A(σ) in each state σ ∈ S, then
we can compute its observed average thermodynamic value as

〈A〉 =
∑
σ∈S

A(σ)p(σ).

The basic problem of statistical mechanics is to calculate the sum in
(5.4), since the number of states configuration arises exponentially and the
calculation is infeasible for any realistic interacting system of macroscopic

Numerical Results with binary problems 55

size. Therefore we may try to approximate the real system with an ideal-
ization or rather make some approximation in the definition. One way is to
approximate the density function (5.3) with a distribution

qx(σ) =
1

Zx
exp

(
σ>Jxσ

)
, ∀σ ∈ S (5.5)

built over a graph Gx with the same nodes as G but with fewer of edges.
The variables x ∈ {0, 1}|E| that indicate if an edge of G is present in Gx. The
matrix Jx in (5.5) is defined as follows:

Jxij =

x(i,j)Jij if (i, j) ∈ E

Jij otherwise,

for every x ∈ X = {0, 1}|E|. In essence, we want to do a sparsification of the
graph G, considering Gx a good approximation if the distribution qx is close
to the distribution p. We can measure the distance between two distributions
p and qx with the Kullback-Leibler (KL) divergence:

DKL(p||qx) =
∑
σ∈S

p(σ) log

(
p(σ)

qx(σ)

)
=

=
∑

(i,j)∈E

(Jij − Jxij)Ep[σiσj] + log

(
Zx

Zp

)
.

Finally, the optimization problem that we want to solve is

min
x∈X

DKL(p||qx) + λ||x||1, (5.6)

where the second term of the objective function is responsible of finding an
approximated graph with the minimum number of edges and λ is a penalty
parameter. Eventually, we change the sign of the objective function in order
to deal with a maximization problem.

We want to use the SBO algorithm to find the best sparsification of the
original model, although the hypothesis of additively separability is not held.
The SBO algorithm will find the best approximation of the objective function
onto the space of separable functions. Notice that here the objective function
is known, but Bayesian optimization is helpful since the KL divergence is an
expensive to evaluate function: it is not feasible to evaluate the objective
function over all the domain in order to find the optimum solution directly
due to the Zx normalization constant.

56 Discrete Bayesian Optimization - Chapter 5

1

4

7

2

5

8

3

6

9

x1

x3

x5

x2

x4

x6

x7

x10

x8

x11

x9

x12

Figure 5.6: Mapping of the configuration x ∈ {0, 1}12 onto the square lattice
of side 3.

5.2.2 Simulation and results

First of all notice that the number of edges in a lattice graph of side
s =
√
N is given by

|E| = 2 · s · (s− 1).

We decided to run two different set-ups: at first we used N = 9 and then we
simulated with N = 16. The reason is that finding the optimal theoretical
solution when N = 16 is infeasible since the computation time would last for
more that 100 days8, due to the great number of configurations: 2|E| = 224 =

16 777 216. Instead, when N = 9 we have that |E| = 2 · 3 · 2 = 12, therefore
212 = 4 096 and the computation time to find the theoretical solution is
about 20 seconds. We used the scenario with N = 9 to find the best set of
parameters and then we will use that set to compare the performance of the
SBO algorithm with those of the Baptista and Poloczek algorithm BOCS.

The edge parameters Jij are chosen randomly with uniform distribution
over the interval [0.05, 5]. Moreover their sign will be chosen randomly with
probability 50%. Given an interaction matrix J we can compute once for
all the elements that constitute the probability distribution p. In particular,
we will use a function ising_model_moments that will compute the parti-
tion function Zp and the moments E[σiσj], ∀i, j = 1, . . . , N , involved in the
computation of the objective function.

Considering a 3 × 3 zero-field Ising model, N = 9, we have that the
reticular grid has 12 edges, therefore d = 12 and x ∈ {0, 1}12. Notice that we

8When N = 16 one evaluation of the objective function in a configuration σ takes
approximately 0.6 seconds.

Numerical Results with binary problems 57

NT:
1 2 3

EI 1.016± 0.005 1.071± 0.050 1.051± 0.050

mEI
0.1 1.022± 0.015 1.080± 0.044 1.074± 0.049

1 1.021± 0.017 1.084± 0.049 1.045± 0.047

10 1.019± 0.004 1.051± 0.050 1.049± 0.048

UCB
0.1 1.943± 0.509 1.808± 0.602 1.899± 0.489

1 1.757± 0.477 1.746± 0.494 1.858± 0.535

10 1.671± 0.418 1.691± 0.544 1.905± 0.512

NT:
4 5 6

EI 1.016±0.004 1.200± 0.186 1.025± 0.031

mEI
0.1 1.017±0.004 1.256± 0.195 1.022± 0.016

1 1.016±0.005 1.192± 0.163 1.022± 0.030

10 1.015±0.005 1.314± 0.250 1.025± 0.027

UCB
0.1 1.964± 0.507 1.300±0.197 2.132± 0.428

1 1.787± 0.561 1.241±0.208 1.736± 0.503

10 1.834± 0.489 1.345±0.273 1.975± 0.569

Table 5.6: Results after 20 executions of the algorithm: for each combination
of parameters the mean value of the optimal outputs is reported, with one
standard deviation error estimate.

decided to map a configuration vector x onto the grid from left to right, from
top to bottom and labelling the horizontal edges at first, as shown in Figure
5.6. To run a simulation we decided to chose the parameter λ to be 10−1,
since a smaller value would obviously lead to choose qx = p, hence to the
configuration x = 1 ∈ {0, 1}12 that corresponds to approximate G with itself.
The size of the train observation set is set to 20; the number of executions
of the algorithm for each set of parameters is also 20 and the number of
iterations for each run is 100. Since the dimensionality of this setting is the
same as the Binary Quadratic Programming problem discussed in Section
5.1 (d = 12 and a = 2), the cardinalities of the neighbourhood Xx for each
NT are the same as those collected in Table 5.1.

Table 5.6 contains a summary of the results obtained with the 20 exe-
cutions of the BO loop using the SBO algorithm, with the different sets of
parameters; the best performance is set in bold. Notice that here we changed

58 Discrete Bayesian Optimization - Chapter 5

EI mEI-0.1 mEI-1 mEI-10 UCB-0.1 UCB-1 UCB-10
0

0.2

0.4

0.6

0.8

1

Acquisition Function

A
ve
ra
ge

er
ro
r

NT 1
NT 2
NT 3
NT 4
NT 5
NT 6

Figure 5.7: Plot of the errors averaged over 20 repetitions of the BO loop,
for each acquisition function.

the sign of the results since the original problem was a minimization prob-
lem. Instead, Figure 5.7 is a plot of the average error (5.2) made with each
set of parameter: the optimal minimum value is 1.011.

We immediately notice the same behaviour of the Binary Quadratic Pro-
gramming problem, namely better performance with EI and mEI regarding
UCB. Morevore, NT 5 is again inefficient since the cardinality of the neigh-
bourhood is always 1. The best performance is obtained with neighbourhood
type 4 and with Expected Improvement, though the other NTs (except for
the fifth) are close to the best performance in terms of the average error.

When dealing with a 4×4 Ising model built on a square lattice with N =

16 nodes and |E| = 24 edges, the computation of the theoretical optimum
is infeasible. We will then choose the sets of parameters that performed at
best with N = 9 and compare the results with the BOCS algorithm. In
particular, we will consider EI and mEI as Acquisition functions. The best
performing NT parameter was 4. However, when d = 24, the cardinality of
the neighbourhood Xx is equal to 12 950, and it is too expensive using NT 4
in this case. Therefore, we will run the SBO algorithm with the second most
performing NT parameter, hence the neighbourhood type 1. For NT 1, we

Numerical Results with binary problems 59

Figure 5.8: Average best output at each iteration, for each algorithm.

Figure 5.9: Average best output ± 1 standard deviation error estimate, for
BOCS-SDP and SBO with EI.

have that |Xx| = 24.
Figure 5.8 shows the average best output at each iteration of the analysed

algorithms. The average is computed on 7 executions of each algorithm. We
notice that again the performance of the SBO algorithm is competitive with
those of the BOCS algorithm, in both variations, BOCS-SDP and BOCS-
SA. Differently from the BQP problem, where on average BOCS converged
faster, here we don’t see a clear difference in the two algorithms.

Figure 5.9 shows the average best output with one standard deviation

60 Discrete Bayesian Optimization - Chapter 5

BOCS-SA 0.628± 0.097

BOCS-SDP 0.555± 0.015

SBO-EI 0.573± 0.076

SBO-mEI
k = 0.1 0.761± 0.355

k = 1 0.861± 0.335

k = 10 0.878± 0.340

Table 5.7: The mean value of the optimal outputs is reported for each algo-
rithm, with one standard deviation error estimate.

error estimation. We chose to plot only the performance of BOCS-SDP and
of SBO with classic Expected improvement, since they reached the smallest
values of output, on average. The two algorithms have similar behaviour in
terms of variance, however, BOCS is closer to the optimal solutions some
iterations before SBO.

Lastly, Table 5.7 shows the optimum found with each algorithm averaged
over 7 repetitions. Although the best performance is obtained with BOCS-
SDP, the SBO algorithm is able to reach similar results in fewer time.

61

Chapter 6

Self-Optimizing Mobile
Networks Case Study

This Chapter is dedicated to the employment of the SBO algorithm in a
case study proposed by the TIM S.p.A company. The problem is to realize
a dynamic solution to the self-optimization of next-generation mobile net-
works. In particular, given a network of antennas (also referred to as cells),
they focus on create an AI algorithm that automatically set the orientation
of each antenna, in order to obtain better performance in terms of capacity
and coverage (Capacity and Coverage Optimization). In fact, unlike other
networks made of omni-directional antennas, this kind of mobile networks
uses sector antennas which are directional antennas that radiates in specific
directions, typically circular sectors of 60, 90 or 120 degrees. The coverage
area can be adjusted by two types of tilting, mechanical or electronic. The
tilt angle is intended to be vertical with respect to the horizon (Figure 6.1).

In the case study the adjustment can be done only to the electronic tilts
of the antennas, and specifically, TIM defined a fixed set of tilts value for
each antenna. The problem arose since no automatic optimization have been
done till now: in fact, TIM designers of the networks plan the antennas set-
ting according to their experience, to the configurable parameters and to
regulatory constraints. They asked for a model that is capable of exploring
the inputs space and finding the optimal solutions, while interacting con-
tinuously with the reference environment. Therefore, the algorithm should
observe an outcome and find the subsequent optimal solution, changing the
tilt of each antenna accordingly. This is exactly the modus operandi of

62 Discrete Bayesian Optimization - Chapter 6

Figure 6.1: Qualitative representation of how a sector antenna works. The
gray angles are the tilt angles and the gray ellipses corresponds to the cov-
erage areas: a smaller angle lead to the coverage of further areas, while a
bigger angle has more wide coverage but for closer areas.

Bayesian optimization, and in particular, since the domain is discrete (the
set of potential tilts is discrete), we will apply the SBO algorithm.

6.1 Problem specification

The problem at hand deals with a mobile network of cells located in a
small size town and surrounding area. The network is made of 126 cells of
which only 12 are modifiable. Therefore, the SBO algorithm will handle with
12 variables x1, . . . , x12 (d = 12). The other cells are not modifiable and their
contribution will be gathered into the stubborn node x0. Moreover, for each
antenna xi, with i from 1 to 12, TIM defined an alphabet A of 5 distinct
tilts, which is the discrete domain of xi. These domains will all be codified
from 1 to 5. In the end, the feature space X has cardinality |X | = 512.

In order to use a generic Machine Learning algorithm, TIM firstly needed
to combine together several KPIs monitored by the company. Therefore,
TIMmobile planning experts defined an appropriate Target function Ftarget(·)
that allows us to aggregate the outputs given by the system in a unique re-
sponse value y = Ftarget(x), for all tilt configuration x in the feature space.
Notice that this function does not explain how the output varies with the
input; the black-box part of the problem is to obtain the outputs from the
system: the only purpose of the function Ftarget(·) is to combine these out-
puts together.

Since we don’t know directly how the output depends on the input, we

Self-Optimizing Mobile Networks Case Study 63

NT: 1 2 3 4 5 6

|Xx| 48 264 num_neigh 793 64 24 or 2M

Table 6.1: Cardinality of the neighbourhood for each NT. Note that the
cardinality of X is ad = 244 140 625.

apply the SBO algorithm to find a projection of the unknown black-box
function onto the space of additively separable function over pairwise con-
nections. Namely, we give the usual structure to the surrogate model built
over the complete graph:

fΛ(x) =
∑

0≤i<j≤12

λij(xi, xj), ∀x ∈ {0, . . . , 5}12.

The number N of distinct λij(s, t), which is also the size of the random vector
Λ, can be computed from (4.2), obtaining N = 1710.

6.2 Results

To run a simulation we let the acquisition function and the neighbour-
hood type vary, as done for the previous examples. We fixed the number of
executions of the algorithm to 15 for each combination of parameters, and
fixed the number of iterations for each loop to 600. In summary, we defined
the following domains:

AF ∈ {EI,mEI,UCB},

AF parameter ∈ {0, 0.1, 1, 10},

NT ∈ {1, 2, 3, 4, 5, 6}.

Each neighbourhood type produces a set of neighbours Xx with different
cardinality, see Table 6.1: in this case d = 12 and a = 5.

We set num_neigh= 100 and M = 20 and we choose to use 50 training
observations to initialize the algorithm.

Table 6.2 contains a summary of the results obtained with 15 executions
of the SBO algorithm. The values are multiplied for 102 for better confronta-
tion; the best performance for each acquisition function is set in bold. Figure
6.2 is a visualization of the previous tables. We notice that apart from NT
1, the performance of the other sets of parameters is quite similar and there

64 Discrete Bayesian Optimization - Chapter 6

NT:
1 2 3

EI 77.25± 9.17 87.51± 0.32 86.46± 1.56

mEI
0.1 81.50± 7.73 87.12± 0.62 86.98± 1.51

1 82.59± 7.89 85.80± 4.49 87.03± 1.06

10 82.25± 5.03 87.33± 0.48 86.85± 1.16

UCB
0.1 77.30± 9.46 86.72± 1.53 86.57± 1.47

1 82.29± 7.43 87.13± 0.50 86.34± 1.79

10 86.06± 4.27 86.72± 1.29 86.69± 1.49

NT:
4 5 6

EI 85.28± 4.64 87.57±0.32 86.91± 1.67

mEI
0.1 84.25± 6.06 87.50±0.28 87.33± 1.19

1 85.86± 4.48 87.58±0.16 86.46± 2.17

10 85.34± 4.57 87.59±0.16 86.54± 1.83

UCB
0.1 86.06± 1.90 87.43±0.23 86.32± 1.92

1 84.61± 5.58 87.67±0.23 86.59± 2.04

10 85.99± 2.07 87.49± 0.22 87.78±0.14

Table 6.2: For each combination of parameters the mean value of the optimal
outputs is reported, with one standard deviation error estimate.

is no affection by the choice of Acquisition function. Unlike the previous
applications, here the UCB acquisition function can still be taken into ac-
count. However, the best results are obtained with the fifth neighbourhood
type, also in terms of smallest variance. Focusing on NT 5, plot 6.3 contains
the density plot of the ouputs for each acquisition function. We also plot
the density of the outputs when dealing with NT 6 since it obtains the best
average reward when dealing with Upper confidence bound with β = 10. We
notice that with neighbourhood type 5 the shape of the densities are almost
similar, in some cases exhibiting a bi-modal distribution. Instead, NT 6
performs way worse with the others acquisition function, in terms of lower
averages and bigger variances.

As regards computation times, the algorithms takes on average 88.46·10−3

seconds to update the prior distribution over Λ. The average total times of
execution is summed up in Table 6.3 (again compared to the total number

Self-Optimizing Mobile Networks Case Study 65

EI mEI-0.1 mEI-1 mEI-10 UCB-0.1 UCB-1 UCB-10

78

80

82

84

86

Acquisition Function

A
ve
ra
ge

R
ew

ar
d

NT 1
NT 2
NT 3
NT 4
NT 5
NT 6

Figure 6.2: Plot of the average reward obtained in 15 repetitions of the BO
loop, for each acquisition function.

of analysed inputs9).
Notice that though one may think that a greater number of analysed

inputs would lead to better results since the domain is more explored (for
example with NT 4), actually some inputs are included in a neighbourhood
more than once because typically the search in the feature space get stuck
in a subset of X where xi is fixed for some i ∈ {1, . . . , d}. On the contrary,
Neighbourhood type 5 and 6 were conceived to shake and change all the tilts
of a configuration at least once in order to move occasionally further in the
search space.

Lastly, let us recall that we initialized prior mean and covariance matrix
with sample mean and variance computed from the observations train set.
In particular, the prior variance obtained from the train sets typically varies
in the interval [2 · 10−4, 5 · 10−4]. Table 6.4 sums up the average result when
changing the prior variance, considering NT 5 and only EI and mEI. In
particular we tried with values of different magnitude {10−8, 10−1, 10} and
we also reported the values obtained with the sample variance (10−4). We

9The total number of possible configurations is |X | = 512 = 244 140 625.

66 Discrete Bayesian Optimization - Chapter 6

Neighbourhood type 5

Neighbourhood type 6

Figure 6.3: Density plot built over the 15 outputs, for each acquisition func-
tion and with NT 5 and NT 6.

Self-Optimizing Mobile Networks Case Study 67

NT: 1 2 3 4 5 6

avg total time
with EI (in s)

71.49 161.78 426.81 432.55 84.11 66.55

avg total time
with UCB (in s)

63.46 122.25 335.40 259.27 72.97 63.67

total number of
explored inputs

28 800 158 400 60 000 475 800 278 400 19 200

percentage of
explored inputs

0.01% 0.06% 0.02% 0.19% 0.11% 0.007%

Table 6.3: Average total time of execution of the algorithm, for each acqui-
sition function (EI and mEI are gathered under EI since they have similar
performance).

Prior variance
10−8 10−4 10−1 10

EI 87.51 87.57 87.75 87.64

mEI
0.1 87.44 87.50 87.76 87.62
1 87.55 87.58 87.78 87.58
10 87.43 87.59 87.69 87.62

Table 6.4: Average optimal output for each combination of acquisition func-
tion and prior variance.

notice that these results vary almost with the same rate for each value,
although the variation is millesimal. This suggests to us that the algorithm
quite depends on the initialization of the prior distribution. As suggested in
Section 4.4.1, one may think of doing some tuning of these hyperparameters
or rather giving a better estimate to them, instead of simplify the discussion
as we did, considering sample mean and variance.

68 Discrete Bayesian Optimization - Chapter 6

69

Chapter 7

Conclusion

This work explored the difficulties of optimizing black-box or expensive-
to-evaluate objective functions. Bayesian Optimization is the state of the art
in optimizing this kind of problems. BO algorithms are able to exploit the
very little information the black-box function provides. This exploitation
leads to a successful searching in the feature space, asking for the smallest
number of evaluations of the objective function. Surrogate models and acqui-
sition functions are the responsible of the success of Bayesian Optimization.
The first ones are responsible of approximate the objective function, pro-
viding a distribution over the objective function space and other desirable
properties like smoothness. The second ones are in charge of choosing the
next point in the feature space to be sampled. In the literature, the power
of these two building blocks have been exploited in different directions, in
order to adapt the BO approach to several applications.

When dealing with discrete variables, classic Bayesian Optimization mod-
els need to be redesigned and modified in order to be successful also on
discrete domains. In particular, Gaussian Processes as surrogate models
are no longer performing, since they are not able to provide the property
of smoothness over a discrete space. Moreover, maximizing an acquisition
function over a discrete space is an infeasible task when the feature space
has high dimensions. Several works and algorithms have been proposed in
the literature to take the strengths of Bayesian Optimization algorithm and
project them onto the discrete world.

Our proposal, the Separable Bayesian Optimization algorithm, turned
out to be competitive with the others in terms of performance on classic
benchmark problems. The main idea of the algorithm is to give a structure to

70 Discrete Bayesian Optimization - Chapter 7

the unknown objective function. We assumed an additively separable model
for the objective function, whose addends are functions of single variables or
pairwise combinations of variables. Moreover, SBO was developed in order
to bring the properties of Gaussian Processes in the discrete world. We
decomposed Bayesian Optimization with Gaussian Processes in its steps,
and bearing in mind the structure we gave to the objective function, we
reassembled them for the discrete optimization.

We presented a simplistic version of the SBO algorithm. However, sev-
eral adjustments can be done to enhance the results. This can lead to better
performance also for more complex problems, like the TIM application. As
an example, the tuning of hyperparameters has been done in a simple way:
more refined approximation or tunings can be done. To name some, we
used sample means and covariances to initialize the random variables in-
volved in the SBO algorithm. Instead, these parameters can be estimated
in different ways, using the observations train set. For example we can use
a maximum likelihood estimation or we can consider them as random vari-
ables. In fact, we can provide a prior distribution over the hyperparameters
that would be updated with new observation, as done with the Horseshoe
prior in BOCS and COMBO. Another improvement can be done by consid-
ering different kernel functions or different acquisition functions. Here we
focused on Expected Improvement and Upper Confidence Bound, which are
defined for continuous domains. A maximization of these two functions over
a discrete domain is infeasible. We got around the problem by maximizing
the acquisition functions only on a small subset of the feature space. How-
ever, other techniques can be used in the acquisition function maximization
step. For example we can use a random walk as done with simulated an-
nealing in BOCS-SA, or we can optimize the search like in COMBO with
the breadth-first local search. Moreover, we focused on the six neighbour-
hood types defined in Section 4.4: obviously infinite many other types can
be implemented, according to the structure of the problem and to the faults
that need adjustments. For example, NT 5 and 6 were conceived to move
occasionally further since the search tended to stuck in small subsets of the
feature space.

Lastly, the simplicity of the SBO algorithm as describe in this thesis
positively affects the execution times of the algorithm itself. In fact, the SBO
as implemented in Chapter 4 is faster than the other algorithms we used on

Conclusion 71

same applications, though the optimum is reached with more iterations. In
summary, the Separable Bayesian Optimization algorithm is a valid means
to solve optimization problems with black-box functions. Some adjustments
can be done to enhance the performance, however we proved that also in
its simplistic version it has comparable performance with respect to other
algorithms proposed in literature.

72 Discrete Bayesian Optimization - Chapter 7

73

Appendix

A Conditioning of a multivariate Gaussian dis-
tribution

In the following, the property of conditioning of a generic multivariate
Gaussian distribution is enunciated and proved10.

Proposition A.1. Let n,m ∈ N. If X is an n-dimensional random vector
and Y an m-dimensional random vector that jointly have an (n+m)-variate
Gaussian distribution

(X,Y) ∼ N

((
µX

µY

)
,

(
ΣXX ΣXY

ΣY X ΣY Y

))
, (A.1)

then Y | X has the following m-variate Gaussian distribution:

Y | X ∼ N
(
µY + ΣY XΣ−1

XX(X − µX),ΣY Y − ΣY XΣ−1
XXΣXY

)
. (A.2)

Proof. The density function of an N -multivariate Gaussian random variable
Z ∼ N (µ,Σ) is

f(z) = (2π)−
N
2 |Σ|−

1
2 e−

1
2

(z−µ)>Σ−1(z−µ), ∀ z ∈ RN .

Moreover, given the joint Gaussian distribution (A.1), the marginal distri-
bution of the random vector X is still a multivariate Gaussian distribution
with mean vector µX and covariance matrix ΣXX . By using the definition
of conditional distribution, ∀x ∈ Rn and ∀y ∈ Rm realizations of X and Y

10The proof is taken from Dablander [11].

74 Discrete Bayesian Optimization - Appendix A

respectively, we have that

f(y | X = x) =
f(x,y)

f(x)
=

=

(2π)−
n+m

2 |Σ|−
1
2 exp

(
−1

2

(
x−µX
y−µY

)>
Σ−1

(
x−µX
y−µY

))
(2π)−

n
2 |ΣXX |−

1
2 exp

(
−1

2(x− µX)>Σ−1
XX(x− µX)

) =

= (2π)−
m
2 |Σ|−

1
2 |ΣXX |

1
2 ·

· exp
(
−1

2

[(
x−µX
y−µY

)>
Σ−1

(
x−µX
y−µY

)
− (x− µX)>Σ−1

XX(x− µX)

])
.

To make the notation easier let us define x̄ = x− µX and ȳ = y − µY . The
inverse of a 2× 2 block matrix is given by the following formula:(

A B

C D

)−1

=

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
(A.3)

where S = D − CA−1B is the Schur complement11 of the block A of the
matrix. In this case, the Schur complement of the block ΣXX of the variance
matrix Σ is ΣY Y − ΣY XΣ−1

XXΣXY , but to make the notation easier let us
define the following matrix:

Ω =

(
ΩXX ΩXY

ΩY X ΩY Y

)
= Σ−1

Doing the computation, we get:

f(y | X = x) = (2π)−
m
2 |Σ|−

1
2 |ΣXX |

1
2 ·

· exp
(
−1

2

[
x̄>ΩXX x̄ + ȳ>ΩY X x̄ + x̄>ΩXY ȳ + ȳ>ΩY Y ȳ − x̄>Σ−1

XX x̄
])

=

= (2π)−
m
2 |Σ|−

1
2 |ΣXX |

1
2 ·

· exp
(
−1

2

[
x̄>(ΩXX − Σ−1

XX)x̄ + 2ȳ>ΩY X x̄ + ȳ>ΩY Y ȳ
])

Let us add and subtract the following quantity at the exponent:

x̄>ΩXY Ω−1
Y Y ΩY Y Ω−1

Y Y ΩY X x̄.

11See Zhang [40], Chap. 1.1.

Conditioning of a multivariate Gaussian distribution 75

In such a way, we get a quadratic form at the exponent, as follows:

f(y | X = x) = (2π)−
m
2 |Σ|−

1
2 |ΣXX |

1
2 ·

· exp
(
−1

2
(ȳ + Ω−1

Y Y ΩY X x̄)>ΩY Y (ȳ + Ω−1
Y Y ΩY X x̄)

)
·

· exp
(
−1

2

[
x̄>(ΩXX − Σ−1

XX − ΩXY Ω−1
Y Y ΩY Y Ω−1

Y Y ΩY X)x̄
])

Notice that ΩXX − Σ−1
XX = ΩXY Ω−1

Y Y ΩY Y Ω−1
Y Y ΩY X . In fact, using (A.3) we

have

ΩXY Ω−1
Y Y ΩY Y Ω−1

Y Y ΩY X − ΩXX = ΩXY Ω−1
Y Y ΩY X − ΩXX =

=
(
Σ−1
XXΣXY S

−1SS−1ΣY XΣ−1
XX

)
−
(
Σ−1
XX + Σ−1

XXΣXY S
−1ΣY XΣ−1

XX

)
=

=
(
Σ−1
XXΣXY S

−1ΣY XΣ−1
XX

)
−
(
Σ−1
XXΣXY S

−1ΣY XΣ−1
XX

)
− Σ−1

XX =

= −Σ−1
XX ,

where S = ΣY Y − ΣY XΣ−1
XXΣXY . Moreover, note that the determinant of a

block matrix factors as follows:∣∣∣∣∣A B

C D

∣∣∣∣∣ = |D − CA−1B| · |A|,

therefore |Σ| = |S|·|ΣXX |. Eventually, we obtain an m-dimensional Gaussian
density function for the conditional distribution:

f(y | X = x) = (2π)−
m
2 |ΣY Y − ΣY XΣ−1

XXΣXY |−
1
2 ·

· exp
(
−1

2
(ȳ + Ω−1

Y Y ΩY X x̄)>ΩY Y (ȳ + Ω−1
Y Y ΩY X x̄)

)
=

= (2π)−
m
2 |ΣY Y − ΣY XΣ−1

XXΣXY |−
1
2 ·

· exp
(
−1

2
(ȳ + S(−S−1ΣY XΣ−1

XX)x̄)>S−1(ȳ + S(−S−1ΣY XΣ−1
XX)x̄)

)
=

= (2π)−
m
2 |ΣY Y − ΣY XΣ−1

XXΣXY |−
1
2 ·

· exp
(
−1

2
(ȳ − ΣY XΣ−1

XX x̄)>S−1(ȳ − ΣY XΣ−1
XX x̄)

)
,

hence, we have the thesis

Y | X = x ∼ N
(
µY + ΣY XΣ−1

XX(x− µX),ΣY Y − ΣY XΣ−1
XXΣXY

)
.

76 Discrete Bayesian Optimization - Appendix B

B Implementation details: handling of indexes

This appendix is dedicated to describe the functions whose task is to code
the indexes of the random variables Λij(s, t) into the vector Λ. Specifically,
they are the following: indx_Matrices, indx_x, indx_VariablesToVector,
and indx_VectorToVariables. Here is the code for the first function (n_vars
corresponds to d and n_vals is a):

def indx_Matrices(n_vars, n_vals):
n_lambda = int(n_vars*(n_vars+1)/2)
Var_indx = np.zeros([n_vars, n_vars])
Var_indx_list = np.arange(n_vars, n_lambda)
Var_indx[np.triu_indices(n_vars,1)]=Var_indx_list
np.fill_diagonal(Var_indx, np.arange(n_vars))

n_complete = int(n_vars*(n_vars-1))/2
Vect_indx = np.zeros([n_vars, n_vars])
Vect_indx_list = (n_vals**2)*np.arange(n_complete)

+n_vals*n_vars
Vect_indx[np.triu_indices(n_vars,1)]=Vect_indx_list
np.fill_diagonal(Vect_indx, n_vals*np.arange(n_vars))

X_indx_list = np.arange(n_vals**2)
X_indx = X_indx_list.reshape(n_vals, n_vals)
return Var_indx, X_indx, Vect_indx

The output of this function are the following three matrices (for the examples
we set d = 6 and a = 4):

• Var_indx is an upper triangular matrix that contains an integer for
each distinct Λij . In particular, the main diagonal contains the Λ0j ,
j = 1 . . . , d, while the others are organized in the upper part of the
matrix. Here is an example of the arrangement of the variables for
d = 6 and a = 4:

0 6 7 8 9 10

0 1 11 12 13 14

0 0 2 15 16 17

0 0 0 3 18 19

0 0 0 0 4 20

0 0 0 0 0 5

.

Implementation details: handling of indexes 77

In fact, the six Λ0j are placed on the diagonal, while the others 15

are arranged on the upper triangular matrix, row by row. To order
the Λij we can consider i and j as the row index and column index of
the matrix: in particular, apart from those on the diagonal, ordered
as Λ01, . . . ,Λ0d, the generic Λij is placed in the position (i, j) of the
matrix, considering i, j from 1 to d.

• Vect_indx is also an upper triangular matrix that contains the first
index of a subvector of Λ corresponding to a couple of nodes of the
graph (ether 0 and j or i and j). In particular, on the main diagonal
there are the indexes of Λ0j(0, 1), j = 1 . . . , d, and above the main
diagonal it contains the indexes of Λi,j(1, 1), i, j = 1, . . . , d, i < j;
the arrangement of the random variables is the same as the Var_indx

matrix, and in the above-mentioned example we have:

0 24 40 56 72 88

0 4 104 120 136 152

0 0 8 168 184 200

0 0 0 12 216 232

0 0 0 0 16 248

0 0 0 0 0 20

.

Notice that the distance from the values of the diagonal is exactly a,
while the elements in the upper side have a difference of a2, since it
is the number of combinations of values (s, t). For example, the value
136 in position (2, 5) means that the element Λ[136] of the Λ vector
corresponds to Λ2,5(1, 1). Instead, element Λ04(0, 1) can be found in
position 12 of the Λ vector.

• X_indx is an a×amatrix that contains an index for each combination of
value (s, t). It is useful since we can give an order to these combinations:
in fact, we can consider s and t as the row index and column index of
the matrix X_indx, indexed from 1 to a; in the example:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

 .

78 Discrete Bayesian Optimization - Appendix B

Notice that the (s, t) are ordered by incrementing the second value first,
and then the first: in essence we have the following arrangement of the
values for each Λij

(1, 1)

(1, 2)
...

(1, a)

(2, 1)
...

(a, a)

The following functions allows us to combine together the information we
gathered separately from the previous matrices. indx_VariablesToVector

maps the four indexes (i, j, s, t) into an integer.

def indx_VariablesToVector(var1, var2, x1, x2):
if var1>var2:

return print(’ERROR: var1>var2’)
ij = int(Vect_indx[int(var1), int(var2)])
if var1==var2:

if x1!=x2:
return print(’ERROR: if var1=var2 then x1=x2’)

else:
st = x1

else:
st = int(X_indx[int(x1), int(x2)])

return int(ij+st)

At first it takes the index of the Λij(1, 1) variable, namely ij, then it
looks for the combination (s, t) into the matrix X_indx, obtaining the value
st. The function returns the sum of the two indexes ij and st. No-
tice that for the Λ0j random variables, this function must be called as
indx_VariablesToVector(j,j,t,t), specifying twice the index j. In fact,
the element Λ0j(0, t) is in position (j, j) of the matrix Vect_indx. Moreover,
the value st corresponds trivially to the parameter t.

The function indx_VectorToVariables does the opposite job: given an
index k of the Λ vector it returns the combination of indexes (i, j, s, t).

Implementation details: handling of indexes 79

def indx_VectorToVariables(k, n_vars, n_vals):
if k<(n_vars*n_vals):

r = k % n_vals
q = k // n_vals
if q==0:

var1, var2 = 0, 0
x1, x2 = r, r

else:
var1, var2 = q, q
x1, x2 = r, r

else:
r = (k-n_vars*n_vals) % (n_vals**2)
if r==0:

var1, var2 = np.where(Vect_indx == k)
var1, var2 = var1[0], var2[0]
x1, x2 = 0, 0

else:
var1, var2 = np.where(Vect_indx == k-r)
var1, var2 = var1[0], var2[0]
x1, x2 = np.where(X_indx == r)
x1, x2 = x1[0], x2[0]

return var1, var2, x1, x2

The first if condition is dedicated to the Λ0j : since these variable are d · a
and are the first ones in the vector, the check is on k < d ·a. In this case, the
quotient of k/d gives the index j of the second variable12, while the reminder
of k/d gives the value t of the variable xj . In the general case, we take the
reminder r of (k−d ·a)/a2 to find the index of (s, t) in the X_indx matrix. If
the reminder is null then we can directly find the value k into the Vect_indx
matrix, since (s, t) = (0, 0) (that in Python means (1, 1)). This gives us the
indexes (i, j) and therefore k would correspond to the variable Λij(1, 1). If
the reminder is not null, then we can find the value k− r into the Vect_indx
matrix to get the (i, j) indexes.

The last function is indx_x: given an input x, it returns the list of indexes
of combinations (i, j, xi, xj) inside the vector Λ. For each combination (i, j)

12Note that the indexes of vectors and matrices in Python start from 0, and not from
1: with this in mind, the element Λ0j(0, 1) is in position (j − 1, j − 1) of the Vect_indx
matrix.

80 Discrete Bayesian Optimization - Appendix B

with i < j it calls the indx_VariablesToVector function to get the index k.

def indx_x(x):
n_var = np.max(x.shape)
indices = []
for k in range(n_var):

indices.append(indx_VariablesToVector(k, k, x[k], x[k]))

for var_i in range(n_var):
for var_j in range(n_var):

if var_i<var_j:
indices.append(indx_VariablesToVector(var_i,

var_j, x[var_i], x[var_j]))
return indices

Bibliography

[1] Agnihotri A., Batra N. (2020) - Exploring Bayesian Optimiza-
tion (https://distill.pub/2020/bayesian-optimization);

[2] Al-Dujaili A. (2018) - Expected Improvement for Bayesian
Optimization: A Derivation (http://ash-aldujaili.github.
io/blog/2018/02/01/ei/);

[3] Alto V. (2019) - Neural Networks: parameters, hy-
perparameters and optimization strategies (https:
//towardsdatascience.com/neural-networks-parameters-

hyperparameters-and-optimization-strategies-3f0842fac0a5);

[4] Baptista R., Marzouk Y., Willcox K., Peherstorfer B.

(2018) - Optimal Approximations of Coupling in Multidisci-
plinary Models, in AIAA Journal, vol 56, n 6, pp 2412-2428;

[5] Baptista R., Poloczek M. (2018) - Bayesian Optimization of
Combinatorial Structures, arXiv:1806.08838 [stat.ML];

[6] Baxter R.J. (1982) - Exactly solved models in statistical me-
chanics, Dover Publications;

[7] Bergstra J., Yamins D., Cox D.D. (2013) - Hyperopt: A
Python Library for Optimizing the Hyperparameters of Ma-
chine Learning Algorithms, in Proceedings of the 12th Python in
Science Conference, pp 13-19;

[8] Bergstra J., Yamins D., Cox D.D. (2013) - Making a Science
of Model Search: Hyperparameter Optimization in Hundreds
of Dimensions for Vision Architectures, in Proceedings of the
30th International Conference on International Conference on Machine
Learning - Volume 28, pp I–115–I–123;

https://distill.pub/2020/bayesian-optimization
http://ash-aldujaili.github.io/blog/2018/02/01/ei/
http://ash-aldujaili.github.io/blog/2018/02/01/ei/
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5

[9] Binois M., Ginsbourger D., Roustant O. (2018) -On the choice
of the low-dimensional domain for global optimization via ran-
dom embeddings, arXiv:1704.05318 [math.OC];

[10] Brochu E., Cora V.M., de Freitas N. (2010) - A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with Ap-
plication to Active User Modeling and Hierarchical Reinforce-
ment Learning, arXiv:1012.2599 [cs.LG];

[11] Dablander F. (2019) - Two properties of the Gaus-
sian distribution (https://fabiandablander.com/statistics/
Two-Properties.html);

[12] Frazier P.I. (2018) - A Tutorial on Bayesian Optimization,
arXiv:1807.02811 [stat.ML];

[13] Frazier P.I., Wang J. (2015) - Bayesian Optimization for Ma-
terials Design, in Springer Series in Materials Science, pp 45-75,
Springer International Publishing;

[14] Gardner J., Kusner M., Xu E., Weinberger K., Cunningham

J. (2014) - Bayesian Optimization with Inequality Constraints,
in 31st International Conference on Machine Learning, ICML 2014,
vol 3;

[15] Garrido-Merchán E.C., Hernández-Lobato D. (2018) - Deal-
ing with categorical and integer-valued variables in Bayesian
Optimization with Gaussian processes, in Neurocomputing, vol
380, pp 20-35, Elsevier BV;

[16] Girshick R., Donahue J., Darrell T., Malik J. (2014) - Rich
feature hierarchies for accurate object detection and semantic
segmentation, arXiv:1311.2524 [cs.CV];

[17] Ginsbourger D., Le Riche R., Carraro L. (2008) - A Multi-
points Criterion for Deterministic Parallel Global Optimiza-
tion based on Gaussian Processes, hal-00260579;

[18] Huang D., Allen T.T., Notz W.I., Zeng N. (2006) - Global
Optimization of Stochastic Black-Box Systems via Sequential

https://fabiandablander.com/statistics/Two-Properties.html
https://fabiandablander.com/statistics/Two-Properties.html

Kriging Meta-Models, in Journal of Global Optimization, vol 34, n
3, pp 441-466;

[19] Hutter F., Hoos H.H.„ Leyton-Brown K. (2011) - Sequential
Model-Based Optimization for General Algorithm Configura-
tion, in Learning and Intelligent Optimization, pp 507-532, Springer
Berlin Heidelberg;

[20] Jones D.R., Schonlau M., Welch W.J. (1998) - Efficient Global
Optimization of Expensive Black-Box Functions, in Journal of
Global Optimization, vol 13, n 4, pp 455-492;

[21] Kochenberger G., Hao J., Glover F. et al. (2014) - The un-
constrained binary quadratic programming problem: a sur-
vey, in Journal of Combinatorial Optimization, vol 28, pp 58-81,
Springer;

[22] Krige D.G. (1951) - A statistical approach to some basic mine
valuation problems on the Witwatersrand, in Journal of the
Southern African Institute of Mining and Metallurgy, vol 52, n 6, pp
119-139, Southern African Institute of Mining and Metallurgy;

[23] Kushner H.J. (1964) - A New Method of Locating the Maxi-
mum Point of an Arbitrary Multipeak Curve in the Presence
of Noise, in Journal of Basic Engineering, vol 86, n 1, pp 97-106;

[24] Lau S. (2017) - A Walkthrough of Convolutional
Neural Network - Hyperparameter Tuning (https:
//towardsdatascience.com/a-walkthrough-of-convolutional-

neural-network-7f474f91d7bd);

[25] Lizotte D., Wang T., Bowling M. Schuurmans D. (2007) - Au-
tomatic Gait Optimization with Gaussian Process Regression,
pp 944-949;

[26] Luong P., Gupta S., Nguyen D., Rana S., Venkatesh S. (2019)
- Bayesian Optimization with Discrete Variables, in: Liu J.,

Bailey J. (eds) - AI 2019: Advances in Artificial Intelligence, part of
AI 2019. Lecture Notes in Computer Science, vol 11919, Springer;

https://towardsdatascience.com/a-walkthrough-of-convolutional-neural-network-7f474f91d7bd
https://towardsdatascience.com/a-walkthrough-of-convolutional-neural-network-7f474f91d7bd
https://towardsdatascience.com/a-walkthrough-of-convolutional-neural-network-7f474f91d7bd

[27] McCoy B.M., Wu T.T. (2014) - The Two-Dimensional Ising
Model: second edition, Dover Publications;

[28] Mockus J. (1974) - On Bayesian Methods for Seeking the Ex-
tremum, in: Marchuk G.I. (ed) - Optimization Techniques, pp 400-
404, Springer;

[29] Negoescu D., Frazier P.I., Powell W.B. (2011) - The
Knowledge-Gradient Algorithm for Sequencing Experiments
in Drug Discovery, in INFORMS Journal on Computing, vol 23, n
3, pp 346-363;

[30] Oh C., Gavves E., Welling M. (2019) - BOCK: Bayesian Op-
timization with Cylindrical Kernels, arXiv:1806.01619 [stat.ML];

[31] Oh C., Tomczak J.M., Gavves E., Welling M. (2019) - Com-
binatorial Bayesian Optimization using the Graph Cartesian
Product, arXiv:1902.00448 [stat.ML];

[32] Rasmussen C.E., Williams C.K.I. (2006) - Gaussian Processes
for Machine Learning, in Adaptive Computation and Machine
Learning series, The MIT Press;

[33] Shahriari B., Swersky K., Wang Z., Adams R.P., de Freitas

N. (2016) - Taking the Human Out of the Loop: A Review of
Bayesian Optimization, in Proceedings of the IEEE, vol 104, n 1,
pp 148-175;

[34] Smith L.N. (2018) - A disciplined approach to neural network
hyper-parameters: Part 1 – learning rate, batch size, momen-
tum, and weight decay, arXiv:1803.09820 [cs.LG];

[35] Snoek J., Larochelle H., Adams R.P. (2012) - Practical
Bayesian Optimization of Machine Learning Algorithms,
arXiv:1206.2944 [stat.ML];

[36] Swersky K., Snoek J., Adams R.P. (2013) - Multi-Task
Bayesian Optimization, in Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, pp
2004-2012;

[37] Thengade A., Dondal R. (2012) - Genetic Algorithm – Sur-
vey Paper, in IJCA Proc National Conference on Recent Trends in
Computing, NCRTC, vol 5;

[38] Toscano-Palmerin S., Frazier P.I. (2018) - Bayesian Opti-
mization with Expensive Integrands, arXiv:1803.08661 [cs.LG];

[39] Wang Z., Hutter f., Zoghi M., Matheson D., de Freitas N.

(2016) - Bayesian Optimization in a Billion Dimensions via
Random Embeddings, arXiv:1301.1942 [stat.ML];

[40] Zhang F. (2005) -The Schur Complement and Its Applications,
Springer;

[41] Zhang Y., Apley D.W., Chen W. (2020) - Bayesian Optimiza-
tion for Materials Design with Mixed Quantitative and Qual-
itative Variables, in Scientific Reports, vol 10, n 1, pp 4924-4936;

[42] Zhang Y., Sohn K., Villegas R., Pan G., Lee H. (2015) - Im-
proving object detection with deep convolutional networks via
Bayesian optimization and structured prediction, in 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp
249-258.

Acknowledgements

Vorrei ringraziare i Professori Giacomo Como e Fabio Fagnani per aver reso
possibile la realizzazione di questo elaborato. Ringrazio il team di ricerca che
ha permesso la nascita dell’algoritmo SBO: in particolare Luca e Roberta e
il gruppo TIM, nelle veci di Roberta ed Ennio.
Non posso che ringraziare i miei familiari, mia madre e le mie sorelle, che mi
hanno sempre sostenuto, supportato con gesti, attenzioni, un paccodagiù in
più, abbracci e poche parole, perché la mia famiglia si sa, è di poche parole.
Un grazie ai miei compagni di viaggio, Sofia, Silvia, Andrea, Laura, Irene,
Francesca, Marilina, con cui ho condiviso molto più di un banco o un caffè
da 25 cent.
Grazie a Serena e Fulvia, amiche, compagne di tisane tuttigusti+1 e alleate
per cantate a squarciagola.
Grazie a Matteo, sempre presente, nonostante gli alti e bassi della vita.
Grazie ai miei coinquilini, fonte inesauribile di pasti scroccati e perle di
saggezza (dopo il sesto bicchiere).
Grazie a Marco, più che amico fratello acquisito e come per i familiari, non
c’è bisogno di parole per volerci bene.
Grazie ai miei amici di sempre, Ilaria, Stefano, Angela, Gaia, Betta, Olga,
Fabiana, Sara, Serena, punto fermo, lì ad aspettarmi per l’ennesima rimpa-
triata fatta di pizza e Just Dance.
Infine, grazie a tutti quelli che anche per un breve istante mi hanno voluto
bene, e volontariamente o involontariamente hanno arricchito la mia vita di
inaspettati momenti di felicità.

	Introduction
	Background on Bayesian Optimization
	The core idea of Bayesian Optimization
	Gaussian Processes
	Acquisition Functions
	Further developments and key issues

	Bayesian Optimization over Discrete Domains
	Discrete and black-box problem examples
	Existing methods and related works
	Discrete Bayesian Optimization
	Bayesian Optimization of Combinatorial Structures
	Combinatorial Bayesian Optimization

	Separable Bayesian Optimization
	Statistical model
	Computation of the posterior distribution
	Acquisition function
	Implementation
	Initialization and arrangement of ij r.v.
	BO loop and neighbourhoods

	Numerical Results with binary problems
	Binary Quadratic Programming problem
	Results
	Comparison with BOCS

	Sparsification of Ising model problem
	Problem description
	Simulation and results

	Self-Optimizing Mobile Networks Case Study
	Problem specification
	Results

	Conclusion
	Appendix
	Conditioning of a multivariate Gaussian distribution
	Implementation details: handling of indexes

