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Abstract

Risk factors, e.g., smoke and inactivity, affect the quality of life and life ex-
pectancy of people who are exposed to such risks. Prevention measures may
impact the exposure to risk factors and therefore on their negative effects.

In this thesis, we build a model to simulate the evolution of a population
subject to a risk factor and analyse the effects of public health policies on
related diseases. In particular, we focus on smoking and take into account
four diseases that are strongly correlated with such risk factor: acute my-
ocardial infarction, lung cancer, stroke and chronic obstruction pulmonary
disease.

To measure the impact of these four diseases, we use two indicators for
the disability burden induced by a disease: the number of years of life lost
due to premature death due to the disease and the number of years lived
with the disease.

We model the evolution of the population using Markov chains. In or-
der to simulate as realistic as possible a scenario, we construct the initial
population and the transition matrix of the single individual using data on
the actual Italian population obtained from ISTAT and GBD.

Finally, we observe the effect generated by the implementation of a pre-
vention policy that acts directly on the smoke prevalence in the initial pop-
ulation. To evaluate the effectiveness of this policy, we compare the statis-
tical indicators obtained by simulating the actual population with the ones
obtained by implementing the prevention policy. Then we note that the
effects of the policy become all the more significant as the years since its
implementation increase.
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Chapter 1

Introduction

Health is the second largest area of public expenditure for most countries
[25]. Public health policies can be the most cost-effective way to maintain
the health of the population in a sustainable manner, and creating healthy
populations benefits everyone [26]. Some studies have reported that a large
part of the costs can be reduced by acting before the onset of disease, rather
than by treating it [20]. The triggering cause of many diseases is attributable
to risk factors to which an individual may be subject, i.e. smoking, inactiv-
ity, poor diet, and therefore it is assumed that acting directly on these can
induce a reduction in accident cases for diseases related to risk factors. The
most widely used tool to reduce the exposure of the population to the risk
factor are prevention policies. However, the implementation of this type of
interventions involves a cost which, in order for there to be a tangible benefit
in their use, must be lower than the cost of the medical expenses needed to
treat people affected by the diseases. In this regard, the cost-benefit analysis
of prevention policies plays a fundamental role. In order to carry out these
analyses, it is necessary to identify the risk factors on which to intervene
and which diseases are those most affected by the risk factor. Then different
scenarios of interventions are simulated, observing the expected gain from
the reduction in the incidence of disease, and therefore a reduction in the
cost of disease treatment, and comparing it with the cost of implementing
the prevention campaign. In this way, the interventions that bring the most
beneficial benefits both on the health of the population and on public health
expenditure are identified [23].

One of the main risk factors affecting the health of the population is smok-
ing. Only in Italy it is estimated that the fraction of deaths attributable to
smoking is 15,1% [6]. The aim of this thesis is to quantify the effect of pre-
vention policies that decrease the prevalence of smokers in the population.
The indicators that are used to measure the effectiveness of the interven-
tions are YLDs, YLLs and DALYs. The YLDs keep track of time spent in
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disease states, the YLL are life years lost due to premature death due to the
diseases, and the DALYs are the sum of YLLs and YLDs.

Similar studies can be found in literature, with model that describe at dif-
ferent levels of details how different risk factors influence public health [1]
[17] [19]. The prevention policy on which this thesis is focused consists of an
increase in tobacco taxation which has a reducing effect on the prevalence
of smoking in the population. The effect is considered significant only in the
first year of the intervention, so in order to evaluate the results, the evolu-
tion of an initialized population under the effect of the prevention policy is
simulated.

In this study, the tool used to model the population are the Markov chains
[9] [12]. Every year, each individual ages according to a non-homogeneous
Markov chain with finite state space. In fact, the individuals can change
their smoke related habits, e.g., stop smoking or relapse, and can get a dis-
ease with a probability that depends on their exposure to smoke, otherwise
they can die from the contracted disease or other causes from any state.
The probability of transition are estimated by using different database like
Istat, GBD, and some data already known in literature. The calibration of
the model took a lot of time and it is one of our main contribution. In the
overall population simulation, i.e. in the population ageing process, an open
cohort is used to reconstruct a model that reflects a real population, so new
individuals are introduced each year of the simulation.

This thesis produces two contributions: one theoretical and the other prac-
tical. As far as the theoretical one is concerned, it will be demonstrated that
the expected number of people in any state converges to a long-term equi-
librium. While, from the practical point of view, we will observe the result
produced by simulations of both the initialised population with real charac-
teristics, defined as baseline, and the initialised population with conditions
of a prevention policy. The result of the baseline simulations will highlight
a problem linked to the growth over time of the number of diseased and
dead in the population, two characteristics which are highly correlated and
for which a justification will be given. While the comparison between the
populations initialised in baseline and policy scenario will increase in signif-
icance as the time elapsed since the implementation of the policy grows.

The thesis is structured as follows: in the second chapter the Markov chain
concept is introduced, focusing on the case of discrete time; the third chap-
ter contains the theoretical structure of population Markov model that de-
scribes the evolution of the population, reporting some observable results
in the model; the fourth chapter describes the case study, and the fifth
one contains simulations and results; finally, in chapter six, the results are

6



summarized and future research lines are described.
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Chapter 2

Markov Chains

This chapter is devoted to introducing Markov processes, focusing in par-
ticular on discrete time Markov chains. For a complete reference on Markov
chains and stochastic processes in general, we refer to [18].

2.1 Basic notions

Definition 2.1.1 (Stochastic process). A stochastic process
X = {X(t), t ∈ T} is a family of random variables on a sample space Ω
with values in a measurable space S called the process state space.

If T is a numerable set then X is a discrete time process, else if T ⊆ R then
it is a continuous time process.

Definition 2.1.2 (Chain). A chain is a discrete time stochastic process with
numerable state space S.

From now on, it will be considered T ∈ N, so only results concerning discrete
time processes will be reported.

Definition 2.1.3 (Markov property). A chain X = {X(t), t ∈ T} has the
Markov property if

P(X(t+ 1) = j|X(t) = it, X(t− 1) = it−1, ..., X(0) = i0)

= P(X(t+ 1) = j|X(t) = it) ∀it, j ∈ S, ∀t

Therefore the probability that the process at time t + 1 is in state j does
not depend on its past history, but only on the state crossed at time t.

Definition 2.1.4 (Markov chain). A chain with the Markov property is a
Markov chain.

Definition 2.1.5 (Time homogeneous). A Markov process is time homoge-
neous if P(X(t+ τ) = j|X(t) = i) does not depend upon t.
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For simplicity, from now on we assume that the Markov chains are homoge-
neous. Let N be the cardinality of the space state S. Let P ∈ RN×N denote
the transition probability matrix with elements

Pi,j = P(X(t+ 1) = j|X(t) = i)

that are the transition probabilities from state i to state j, with constraint
that P is stochastic, i.e.,

∑
j∈S Pi,j = 1 for every i.

Let π(t) denote the probability distribution on the state set at time t. The
probability distribution evolves according to

π(t+ 1) = P ′π(t),

where P ′ denotes the transpose of P . Notice that under the condition that
P is row-stochastic, such evolution preserves the normalization of π(t).
Therefore, the probability distribution of any trajectory of the Markov chain
X, is computed as

P(X(t) = it, X(t− 1) = it−1, ..., X(0) = i0) = πi0(0)
∏

1≤s≤t
Pis−1,is

where πi0(0) := P(X(0) = i0) is the initial probability distribution.

Remark 2.1.1. Notice that a chain is uniquely identified by an initial prob-
ability distribution π(0) and a transition matrix P , so that we can write X
as the pair

X = (π(0), P )

The next theorem describes how the transition matrix evolves for a time
step t longer than 1.

Theorem 2.1.1 (Chapman-Kolmogorov equation).
Let Pi,j(t) = P(X(t) = j|X(0) = i) be the probability that the chain X is in
state j at time t given that it started from state i. Then

Pi,j(t) =
∑
k∈S

Pi,k(t1)Pk,j(t2) ∀ t1, t2 : t1 + t2 = t

In the case of a time homogeneous Markov chain the matrix form can be
used: P t = P t1P t2

Remark 2.1.2. Notice that the marginal probability distribution
πj(t) = P(X(t) = j) can be computed by eliminating the conditional event
and knowing the initial probability distribution π(0):

πj(t) = P(X(t) = j) =
∑
i∈S

P(X(t) = j|X(0) = i)P(X(0) = i) =
∑
i∈S

Pi,j(t)πi(0)
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2.2 State classification

In this section a list of results useful to understand the property of a Markov
chain X with transition matrix P are reported.

Definition 2.2.1 (Reachability). State j is reachable from state i (i → j)
if ∃ t ∈ N : Pi,j(t) > 0

Definition 2.2.2 (Communicability). States i and j communicate (i↔ j)
if they are reachable by each other.

Definition 2.2.3 (Class). A class is a set of states that communicate with
each other.

Definition 2.2.4 (Closed class). A class is defined to be closed if the states
belonging to the class can only reach states in the class.

Definition 2.2.5 (Absorbing state). A state i is defined as absorbing if it
is the only member of a closed class, i.e {i}.

Definition 2.2.6 (Irreducibility). If all states in the chain communicate
with each other, i.e. there is only a single class, then the chain is irreducible.

Definition 2.2.7 (Return time). Let τi = inf{t ≥ 1 : X(t) = i} be the first
t ≥ 1 such that the process is in state i. Let fi,i denote the process starting
in i returns in i in finite time i.e., fi,i = P(τi <∞|X(0) = i).

Definition 2.2.8 (Recurrence and transience). .

• if fi,i = 1, then state i is recurrent;

• if fi,i < 1, then state i is transient.

Definition 2.2.9 (Positive and null recurrence). Let mi,i = E[τi|X(0) = i]
be the mean time to come back in state i. Then, a recurrent state i is
positive recurrent if mi,i <∞, otherwise it is null recurrent.

The following theorem states an equivalence between all the states belonging
to the same class.

Theorem 2.2.1. Let C be a class. Then, the states belonging to C are all
either positive recurrent, null recurrent or transient.

Remark 2.2.1. All the states of an irreducible Markov chain on a finite state
space are positive recurrent.

Definition 2.2.10 (Periodicity). The period of a state i is the maximum
common divisor of {t ≥ 1 : Pi,i(t) > 0}. If the period is 1, then state i is
aperiodic.
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Another relevant result that highlights the relationship between the state
and the class is shown below.

Theorem 2.2.2. All states in a class are either aperiodic, or periodic with
the same period d.

Remark 2.2.2. Notice that, because of Theorem 1.2.1 and 1.2.2, the notion
of positive recurrent, null recurrent, transient, periodic and aperiodic can
be extended to any irreducible chain, since every state of the chain has the
same characterization in terms of such notions.

Figure 2.2.1 shows two examples of Markov chains with finite state space to
illustrate better the notion of irreducible chain, and transient and recurrent
classes.

1 2 3 4 5 a b c d

Figure 2.2.1 In the left chain there are two classes: T = {1, 2, 3} and
C = {4, 5}. All states in each of the two classes communicate with each
other, but when the chain makes the transition P2,4(t), the chain can no
longer return to class T . Then T is a transient class while C is recurrent
and therefore the chain is not irreducible.
In the right chain there is only one recurring class, therefore the chain is
irreducible.

2.3 Invariant distribution

As shown before, the evolution in time of the probability distribution of a
Markov chain, is defined as

π(t+ 1) = P ′π(t)

The following is a definition of invariant distribution, i.e., a probability
distribution that does not evolve over time.

Definition 2.3.1 (Invariant distribution). If the initial state of a Markov
chain has probability distribution π(0) = π and at each time t the chain
has the same marginal probability distribution i.e. π(t) = π, then π is an
invariant probability distribution. Therefore:

π = P ′π
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Below are enunciated two theorems that report the conditions for the exis-
tence of an invariant distribution and the convergence to it. These results are
to be considered fundamental for the study of the Markov chain examined
in this thesis.

Theorem 2.3.1 (Existence of invariant distribution). Let X(t) be an irre-
ducible Markov chain with transition matrix P . Then, the chain is positive
recurrent if and only if P has an invariant distribution π.

Theorem 2.3.2 (Convergence to equilibrium). Let X(t) be an irreducible
and aperiodic Markov chain with unique invariant distribution π. Then, for
any initial distribution π(0), the distribution π(t) converges to π, i.e.,

lim
t→∞

π(t) = π
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Chapter 3

Population Markov models

In this chapter we study the process that simulates the evolution of a pop-
ulation subject to one or more risk factors.

3.1 Structure model

With in mind the goal of describing the evolution of a population, we need
first to model the evolution of an individual.

Each individual may be healthy or sick with some disease and have a dif-
ferent degree of exposure to risk factors. Therefore, the state space of the
individual S is characterised by transient states ST which are the combi-
nation of health status and exposure to risk factors, and absorbing states
of death D, i.e. S = ST ∪ D. The specific choice of states is arbitrary,
depending on the complexity of the model: one can decide to keep track of
the person’s health status and risk at the same time, or one can consider
the case in which diseases are chronic and the risk factor intervenes only in
the onset of the disease, and therefore in the states of disease the risk factor
is not kept track of, etc.

The individual is also characterized by age a(t) such that a(t) ≥ amin for
every t with amin the lowest age an individual can have. In accordance with
the cited literature [10], we assume that the age of every individual does
not evolve over a certain threshold amax, e.g. people that are more than 90
years old (let 90+ denote such ages) remain 90+ years old until they die.
Then the age a(t) is updated at every time step t according to the following
rule: a(t+ 1) = min{a(t) + 1, amax}.

Then, the process that describes the evolution of each individual in the
population is a non-homogeneous Markov chain X = {X(t), t ∈ Z+} that
depends on age a(t) of the individual in the finite and numerable state space
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S with transition matrix:

Pi,j(a(t)) = P(X(t+ 1) = j|X(t) = i)

In Figure 3.1.1 we observe an example where the disease state includes
chronic diseases, i.e. from which one cannot recover, risk factors are ne-
glected and the state of death can be reached by all states. The graph
and the structure of the P (a) transition matrix where a is the age of the
individual at time t are shown.

healthy diseased

Dead

P (a) =


healthy diseased Dead

healthy phh(a) phd(a) phD(a)
diseased 0 pdd(a) pdD(a)
Dead 0 0 1



Figure 3.1.1 Example of graph and transition matrix of the process X.
On the left we observe the graph of the admissible transitions for the indi-
vidual, on the right we report the relative transition matrix of the process
dependent on the age a of the individual

Now that we know the process of the individual X(t), let us move on to
analyse the process N = {N(t), t ∈ Z+} that describes the evolution over
time of the entire population, i.e. a set of individuals. Let A = {amin, amin+
1, ..., amax} be the values taken by the age a of an individual. We define
V the state space of the process N(t), where each element is a vector n ∈
Z|S

T |×|A|
+ in which each component indicates the number of individuals of

age a present in each state of the state space ST :

n =


namin

namin+1
...

namax

 where na ∈ ZS
T

+

We consider an open cohort of individuals, so at each time step t we observe
the input of new individuals each one of whom is an independent X(t)
Markov chain. Let Na,s(t) denotes the number of individuals of age a and
state s present in the population at time t. It starts at instant t = 0 with
a population N(0) with an initial distribution on V . Then, at each instant
t = {1, 2, ...}:
• each individual in the population evolves independently from state

(a, i) to state (min{a + 1, amax}, j) independently with probability
Pi,j(a) and leaves the population (dies) with probability not null;
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• a number of individuals Uamin,s(t) are added in state (amin, s): it is
assumed that {U(t), t = 1, 2, ...} is a succession of random vectors
independent from each other and fromN(0) and identically distributed
with a certain distribution (one might also consider something not
stationary, but Theorem 3.2.1 applies under these assumptions)

In Figure 3.1.2 we observe how the process of evolution of the single in-
dividual X(t) combines with the process of the numerosity N(t) with the
convention that when an individual enters in the set of absorbing states D
he is no longer considered in the process N(t).



namin

namin+1
...
na
na+1

...
namax





namin

namin+1
...
na
na+1

...
namax





namin

namin+1
...
na
na+1

...
namax





·
·
...
·
·
...
·


t t+ 1 t+ 2 . . .

Figure 3.1.2 Evolution of the numerosity in each component of the vector
n in every time t. Note that at each time step t there is an input in the
component n1, while the input received in the component na+1 corresponds
to the output from the component na to the previous time step t−1 reduced
by a possible quantity leakage from the system identified by the black arrows.

In contrast with the process X that has a directionality over time, i.e. it is
an ageing process, the process N can return to a configuration previously
visited several times, or it can move to endless new configurations where the
only component to change is namax , which is the only one that could be in
principle infinite. Therefore we can write the observations just made in the
form of the following constraints:

∑
s∈ST

(na+1)s(t+ 1) ≤
∑
s∈ST

(na)s(t) if a < amax − 1∑
s∈ST

(namax)s(t+ 1) ≤
∑
s∈ST

(na)s(t) +
∑
s∈ST

(namax)s(t) if a = amax − 1

Since the numerosity of the last component is not limited in growth because
it also depends on its own numerosity at the previous time, the state space
V is infinite. So the process N = {N(t), t ∈ T} is a homogeneous Markov
chain on an infinite numerable state space, in contrast with the process X
describing the individual evolution, which is non-homogeneous with finite
state space.
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3.2 Theoretical results

In the following theorem we demonstrate that the expectation value of the
process N just described converges to a stationary value for every initial
condition, with the assumption of constant input in the first component of
the state vector n.

Theorem 3.2.1. The expectation value of the Markov chain
N = {N(t), t ∈ T} converges for every initial condition N(0), i.e.,

lim
t→∞

E[N(t)] converges to a finite value for every initial condition N(0)

Proof. We observe that the number of individuals in the components of the
vector n at time t are independent of each other. So we can write the process
N(t) as:

N(t) = {N1(t), N2(t), ..., Namax(t)}

where each Na(t) identifies the process that regulates the na component
of each n vector in the states space V of the N(t) process, and since the
components are independent it holds:

P(N1(t) = n1, N2(t) = n2, ..., Namax(t) = namax) =

amax∏
a=1

P(Na(t) = na)

For construction of the process N(t), we have:

E[N1(t+ 1)] = E[N1(t)]

E[N2(t+ 1)] = Q2E[N1(t)]

...

E[Na(t+ 1)] = QaE[Na−1(t)]

...

E[Namax(t+ 1)] = Qamax−1E[Namax−1(t)] +QamaxE[Namax(t)]

where the Qa ∈ R|ST |×|ST | matrices are the transition matrices between the
transient states of the process of the individual X.
We notice that the process N1(t) is stationary and therefore we can consider
it as a constant value α independent of time t.
Then, to study the convergence of expected values, we eliminate time de-
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pendence, i.e. t→∞ in previous relationships, so we get:

E[N1] = α

E[N2] = Q2E[N1]

...

E[Na] = QaE[Na−1]

...

E[Namax ] = (I −Qamax)−1Qamax−1E[Namax−1]

We observe that each Qa matrix is substocastic in columns, because the in-
dividuals in the process X die and then leave the process N with probability
not null, so I −Qamax is invertible.
The expected value of the process N(t) is therefore only dependent on the
input in the component n1 of the state vector n and on the transitions of
the process of the single individual X:

lim
t→∞

E[N(t)] =



α
Q2α

...
Qa Qa−1 ... Q2α

...
(I −Qamax)−1Qamax−1 ... Q2α



17



Chapter 4

Case study: Description

The purpose of this study is to simulate the evolution of a population subject
to a risk factor, in order to compare the impact of policies aimed at reducing
people affected by the risk factor, measured using the following indicators:

• Y LD = Years Lost due to Disability

• Y LL = Years of Life Lost

• DALY = Y LD + Y LL Disability Adjusted Life Year

YLD Since each disease has a different impact on the person, each year
spent with the disease is multiplied by a disability weight dw that depends
on the age, gender and disease of the individual.

YLL This value is related to life expectancy: for each age assumed by an
individual the number of years left to live is estimated; then, if the person
dies at a certain age, he loses the number of years left to live.

DALY This indicator includes both results about the year lived with a
disease and the year of life lost respect the life expectancy. Therefore it is a
measure of overall disability burden generated by a disease from which the
person is affected.

In particular we consider the smoke risk factor and 4 related smoking dis-
eases:

• Acute Myocardial Infarction

• Lung Cancer

• Stroke

• Chronic Obstructive Pulmonary Disease

18



The model simulates the evolution of a population initialized by age, gender,
health and exposure to smoke. The state of every person evolves according
to a Markov chain with time step equal to 1 year, and the people are assumed
to evolve independently each other. In the next subsections the state space
for every person and the transitions between states are described.

4.1 Chain structure of an individual

The state space of the chain is the same for all individuals in the popula-
tion. Instead, concerning the transition probabilities, these depend on the
age and gender of the individual, with the assumption that each individual
is aged 25 years and over.

As far as the risk factor is concerned, let us suppose that each person can
be a non-smoker, smoker or former smoker, taking into account how many
years a person has been a former smoker up to a maximum of 15 years, and
merging former smokers from 16 years or more into a single category.

Assumptions

1. Since we are considering individuals aged 25 and over, the statistic of
people who start smoking at this age is non significant [14], then a non
smoker cannot become a smoker

2. The diseases considered are chronic, i.e. they have symptoms that do
not resolve over time, so a person can never recover from the disease

3. Smoking is considered a risk factor for the incidence of diseases, but
it does not alter their course. Then, the probability of death of an
individual in a sick state does not depend on his smoking habits

4. A person can get sick and die from the disease in the same year, this
is called direct death from the disease

5. We assume no comorbidity between the diseases, i.e., an individual may
have at most one of the four diseases considered and consequently die
from that disease or other causes. For example, we assume that a
person who has lung cancer cannot die because of stroke.

6. A person affected by a certain disease has an equal probability of dying
in every year, regardless of when he developed the disease

7. The probability of dying from other causes does not depend on the
disease and on the risk factor, but only on age and gender

Therefore, 27 states are needed to describe the life process of the individual:
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1. NS non-smoker

2. S smoker

3. FS1 former smoker from 1 year

4. FS2 former smoker from 2 years

... ...

17. FS15 former smoker from 15 years

18. FS15+ former smoker for more than 15 years

19. AMI acute myocardial infarction patient

20. LC lung cancer patient

21. ST stroke patient

22. COP chronic obstructive pulmonary disease sufferer

23. DAMI death of acute myocardial infarction

24. DLC death of lung cancer

25. DST death of stroke

26. DCOP death of chronic obstructive pulmonary disease

27. D death by other causes

In Figure 4.1.1 we highlight the macro components of the chain: to sum-
marise the transient states, we consider three states of exposure to the risk
factor and only a state of disease, since for assumption 3 it does not take into
account the risk factor, while we use a single absorbing state as an indicator
of overall death.

20



Non

Smoker

Smoker

Former

Smoker

Disease Death

Figure 4.1.1 Generalized graph of possible transitions. State ”Former
Smoker” groups together states 3-18, state ”Disease” contains states 19-
22 and state ”Death” includes states 23-27. Since ”Death” contains both
deaths from one of the four diseases and other causes, it is reachable from
every state.

Since each person can be initialized as non-smoker, smoker, former smoker
or affected by a disease, the possible transitions are described in Figures
4.1.2, 4.1.3 and 4.1.4:

AMI

LC

ST

COP

NS

D

DAMI

DLC

DST

DCOP

Figure 4.1.2 Transition graph for a non-smoker: every year a non-smoker
can become sick with a disease, die directly from a disease, die from other
causes or remain in the non-smoker state.
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AMI

LC

ST

COP

S FS1 ... FS15+

D

DAMI

DLC

DST

DCOP

Figure 4.1.3 Transition graph for a smoker or a former smoker: the tran-
sitions take place every year, so a former smoker from i years at each step
can start smoking again and thus become a smoker or continue not to smoke
and become a former smoker from i + 1 years. From any state of exposure
to the risk factor one may become sick with a disease, die directly from a
disease or die from other causes.

D

AMI

LC

ST

COP

DAMI

DLC

DST

DCOP

Figure 4.1.4 Transition graph for a diseased: when you are affected by a
disease you may die from the disease of which you are sick, die from other
causes or remain in the diseased state.

Transitions introduced in Figures 4.1.2, 4.1.3, 4.1.4 occur with certain prob-
abilities. We define the following probabilities by age a, gender g, expo-
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sure to the risk factor h = NS, S, FSi with i = 1, 2, ..., 15+ and disease
d = AMI, LC, ST, COP:

• α: spontaneous cessation probability i.e. the probability of a smoker
becoming a former smoker from a year;

• ϕ(a,g)
FSi

: probability of starting smoking again for a former smoker from
i years;

• β(a,g)h→d : probability of becoming diseased of d from a state of exposure
to the risk factor h;

• ω(a,g)
h→d : probability of dying directly from the disease d from a state of

exposure to the risk factor h, i.e. the probability of becoming diseased
of d and dying from it in the same year;

• δ(a,g)d : probability of dying from the disease d knowing that you are
diseased with it;

• γ(a,g): probability of dying from other causes. Notice that this transi-
tion can occur from any non-absorbing state of the chain;

These probabilities are used to build the transition matrix P of the Markov
chain relative to the life process of the individual. Assuming to know all
these parameters (in the next subsection we will describe how they are
derived) the probability of remaining in the same state, which for former
smokers from i years corresponds to moving to the state of former smoker
from i+ 1 years, is computed using row-stochasticity.

Remark 4.1.1. Notice that the transition probabilities depend on the age
a of the individual, so that there is a temporal dependence in P and the
resulting Markov chain of every person is non-homogeneous.

Figure 4.1.5 shows the structure of the transition matrix P (a,g) for an indi-
vidual with age a and of gender g.
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1 2 3 4 ... 17 18 19 20 21 22 23 24 25 26 27

1 cNS 0 0 0 ... 0 0 βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
2 0 cS α 0 ... 0 0 βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
3 0 ϕFS1 0 cFS1→FS2 ... 0 0 βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
... 0 ϕFSi 0 0 ... 0 0 βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
16 0 ϕFS14 0 0 ... cFS14→FS15 0 βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
17 0 ϕFS15 0 0 ... 0 cFS15→FS15+ βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
18 0 ϕFS15+ 0 0 ... 0 cFS15+ βAMI βLC βST βCOP ωAMI ωLC ωST ωCOP γ
19 0 0 0 0 ... 0 0 cAMI 0 0 0 δAMI 0 0 0 γ
20 0 0 0 0 ... 0 0 0 cLC 0 0 0 δLC 0 0 γ
21 0 0 0 0 ... 0 0 0 0 cST 0 0 0 δST 0 γ
22 0 0 0 0 ... 0 0 0 0 0 cCOP 0 0 0 δCOP γ
23 0 0 0 0 ... 0 0 0 0 0 0 1 0 0 0 0
24 0 0 0 0 ... 0 0 0 0 0 0 0 1 0 0 0
25 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 0 0
26 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 1 0
27 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 1



Figure 4.1.5 Markov chain transition matrix P (a,g) relating to age a and
gender g. States 1-18 are the exposure to the risk factor (NS, S, FSi), states
19-22 are the states of disease (AMI, LC, ST, COP), states 23-26 are the
states of death due to the disease (DAMI, DLC, DST, DCOP) and state 27 is
the state of death from other causes (D).

Looking at the Markov chain transition matrix P (a,g) in Figure 4.1.5, we
can identify the following classes:

• TNS = {1} non smoker transient class

• TS = {2, 3, ..., 18} subject to risk factor transient class

• TAMI = {19}, TLC = {20}, TST = {21}, TCOP = {22} affected by a
disease transient classes

• CDAMI = {23}, CDLC = {24}, CDST = {25}, CDCOP = {26}, CD = {27}
absorbing death states

Remark 4.1.2. Notice that the process that describes the life of an individual
it is a non irreducible Makov chain. Hence, it does not exist a unique
invariant distribution.

4.2 Numerical details of the model

As observed in the first section, a Markov chain is uniquely identified by the
transition probability P and the initial distribution. Thus, in this section
we will describe the initialization of the population and how the parameters
of the matrix P are derived. To this end, let:

• Incidence Inc
(a,g)
d = # of new cases of age a and gender g of a given

disease d during a year in the population.
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• Prevalence Prev
(a,g)
d = # of people of age a and gender g in the popu-

lation who are affected by disease d.

• Death Dth
(a,g)
d = # of deaths of age a and gender g occurring in a

population caused by the disease d in a year.

• Dth
(a,g)
tot = # total deaths of age a and gender g in the population in a

year.

• Relative risk RR
(a,g)
h→d indicates the risk of contracting a disease d for an

individual of age a and gender g exposed to the smoking risk factor, i.e.
h = S, FSi, compared to an individual not exposed, i.e. a non-smoker.
Then, the probability of contracting the disease d for an exposed is
the probability for a not exposed times the relative risk of contracting
the disease d.

• Population Θ(a,g) of age a and gender g.

• p(a,g)h = probability distribution related to age a and gender g of the
exposure to risk factor h, i.e., non smoker, smoker and former smoker.

The required data are extrapolated from three main sources:

GBD - Global Burden of Disease [10] Here we find the value of Inc
(a,g)
d ,

Prev
(a,g)
d , Dth

(a,g)
d and Dth

(a,g)
tot stratified by gender and five-year age groups

relating to the Italian population of year 2017. In this study, the punctual
YLD values, i.e. referring to the year observed, are also reported. Remem-
ber that it is a measure of the years of life lost due to living with a disease,
and therefore corresponds to the prevalence of the disease d times a spe-
cific weight of disability for each disease. Therefore, we can compute the
disability weight related to age for each disease as follow:

dwad =
Y LD

(a)
d∑

g Prev
(a,g)
d

ISTAT - National institute of statistics [11] From this source we
take the data on the Italian population stratified by five-year age groups
and gender, such as: population numbers Θ(a,g), life expectancy E(a,g) and

the distribution of the risk factor in non-smokers p
(a,g)
NS , smokers p

(a,g)
S and

former smokers p
(a,g)
FS .

CPS - Cancer Prevention Study [4] From this study we get the relative

risk of a disease d for a smoker RR
(a,g)
S→d stratified by age a and gender g.

Where data for an age are missing we compute an interpolation assuming,
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when there are not information on the previous age group, RR
(a−1,g)
S→d = 1

i.e. the relative risk in the age group preceding the first one taken into
consideration with missing data is equal to 1.

Former smokers case

Istat provides only the composition of the population in terms of smokers,
non smokers, and former smokers (see Figure 4.2.1).

Figure 4.2.1 Distribution of the risk factor for a 40 years-old male

To distribute the former smokers in their 16 classes let us make an assump-
tion: a person can quit smoking from the age of 18, so a 19-year-old person
can be a 1 year old former smoker. The probability that a person is a former
smoker from 2 years is the probability that he was a former smoker from 1
year the year before times the probability that he does not start smoking
between the first and the second year. Assuming that the smoke distribu-
tion in the population is stationary, then we can write the following relation,
where a is the age of the individual considered:

p
(a,g)
FS =

a−18∑
i=1

p
(a,g)
FSi

p
(a,g)
FS2

= (1− ϕ(a,g)
FS2

)p
(a,g)
FS1

p
(a,g)
FS3

= (1− ϕ(a,g)
FS3

)p
(a,g)
FS2

...

Solving the system we find the distribution of former smokers over all the
years for which the person is allowed to be a former smoker.

p
(a,g)
FS1

=
p
(a,g)
FS

1 +
∑a−18

i=2

∏i
j=2(1− ϕ

(a,g)
FSj

)

p
(a,g)
FSi

=
a−18∏
i=2

(1− ϕ(a,g)
FSi

)p
(a,g)
FS1
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Hence, we can isolate the former smokers for 1 to 15 years and sum the rest
to make up the class of former smoker for 15+ years.

In Figure 4.2.2 we observe the results of the distribution of the exposure
to risk factor with former smokers by class: the class of former smokers
from more than 15 years is bigger because it contains more classes of former
smokers, i.e., former smokers from 16 years, former smokers from 17 years,
etc...; while in the other classes of former smokers we should observe a slight
decreasing distribution, but for reasons of scale it is not highlighted.

Figure 4.2.2 Distribution of the risk factor with the former smokers de-
tailed by years since cessation for a 40 years-old male

Relative risks

First, from literature [21] we derive the relative risks for the smokers of
contracting a disease d due to direct exposure to the risk factor. Instead, for
former smokers, the relative risks decays based on how many years before
the person stopped smoking. This is described by the following relative risks
for former smokers [7]

RR
(a,g)
FSi→d = 1 + (RR

(a,g)
S→d − 1)e−γ

(d)(a)·i

where i = years from smoking cessation, and γd(a) is a function depending
from the age a and disease d such that:

γ(d)(a) = γ
(d)
0 e−ηda

∗(a)

• γ(d)0 coefficient of time dependency for disease d:
γAMI
0 = 0.242, γLC

0 = 0.156, γST
0 = 0.319, γCOP

0 = 0.223

• ηd coefficient of age dependency for disease d:
ηAMI = 0.058, ηLC = 0.021, ηST = 0.016, ηCOP = 0.031
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• a∗(a) = (a− 50)+

Figure 4.2.3 Relative risks RR
(a,m)
S→d of male smoker for each age a and

disease d

In Figure 4.2.3 the relative risks of contracting one of the four disease as a
function of age is shown. Notice that the relative risk of contracting lung
disease, i.e. lung cancer and chronic obstructive pulmonary disease, is much
higher than the risk of contracting cardiovascular disease, i.e. acute myocar-
dial infarction and stroke. Instead, from the coefficient of time dependency

for a disease d, i.e. γ
(d)
0 , which is higher in cardiovascular diseases, we ob-

serve that the function that shapes relative risk of a former smoker decreases
more rapidly for cardiovascular diseases than in the lung diseases. Thus, car-
diovascular and lung diseases have a different behaviour. The former ones
have a lower relative risks and such risks decreases slower when people stop
smoking.

4.2.1 Transition probabilities

Now let us compute the probabilities necessary to construct the transition
matrix P (a,g) dependent on age a and gender g of an individual.

α probability

It is the probability of spontaneous cessation, i.e. the probability that a
smoker becomes a former smoker from 1 year. It is estimated to be between
1% and 3%, so we assume it to be [24]

α = 0, 02

Note that it is the only parameter to be independent from age and gender.

ϕ
(a,g)
FSi

probabilities

The probability to start smoking again from a state of former smoker from
i year is mapped using a negative exponential curve depending on the years
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from which the individual quit smoking [7]

ϕ
(a,g)
FSi

= ABe−12i·B

with A = 1, 177 and B = 0, 15 for male, A = 1, 197 and B = 0, 113 for
female.

About the value of ϕ
(a,g)
FS15+

, we find the mean value between all the pos-

sible ϕ(a,g) over 15 years allowed to the age of the former smoker. This
value is the only one for which there is a dependence on the age a of the

individual. In Figure 4.2.4 there is an example of values assumed by ϕ
(a,g)
FSi

.

Figure 4.2.4 Value of ϕ
(40,m)
FSi

for a 40 years-old male

δ
(a,g)
d probabilities

These are the probabilities of dying for one of the four disease given that
the individual is sick of one of them. Because of assumption 3 and 6, the
probability of dying of disease d given that a person is sick depends on age
a and gender g only. Moreover, because of assumption 4 we also consider
the possibility of getting sick and dying for the disease in the same year.
Assuming that on average people get sick in the middle of the year, they
spend only 6 months in the sick state, which results in a halved probability
of dying. Putting all together

Dth
(a,g)
d = Inc

(a,g)
d

δ
(a,g)
d

2
+ Prev

(a,g)
d δ

(a,g)
d

Then, follows:

δ
(a,g)
d =

Dth
(a,g)
d

Prev
(a,g)
d +

Inc(a,g)d
2

where d = AMI, LC, ST, COP

Figure 4.2.5 shows the trend of δ
(a,g)
d as the age parameter a increases.
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Figure 4.2.5 Values of δ
(a,m)
d for each age a and disease d of a male

represented on logarithmic scale

β
(a,g)
h→d probabilities

These are the probabilities of moving from a state of exposure to risk factor
h to a state of disease d, which means that the person got the disease in the
year, but did not die in the same year for the disease. Let us also define:

β̂
(a,g)
h→d := probability of contracting the disease d

which includes both the probability of becoming diseased of d and the prob-
ability of becoming diseased and dying from the disease d in the same year
(assumption 4). Starting from this point on, the probability we will refer to

is β̂
(a,g)
h→d .

From assumption 3, we know that this probability is influenced by the risk

factor, so the relative risks RR
(a,g)
h→d will be used. In addition, for assump-

tion 5, an individual can be affected with a maximum of one disease and
therefore people who can get the disease d are only the healthy ones, i.e.,
not diseased with any of the four diseases. Hence, we define

p̂
(a,g)
h := fraction of healthy people exposed to the risk factor h

Therefore, to find the values of β̂
(a,g)
h→d we just need to solve the following

linear system using the definition of relative risks for each disease d:
Inc

(a,g)
d = Θ(a,g)

(
p̂
(a,g)
NS β̂

(a,g)
NS→d + p̂

(a,g)
S β̂

(a,g)
S→d +

∑
i
p̂
(a,g)
FSi

β̂
(a,g)
FSi→d

)
β̂
(a,g)
S→d = RR

(a,g)
S→d

(
β̂
(a,g)
NS→d

)
β̂
(a,g)
FSi→d = RR

(a,g)
FSi→d

(
β̂
(a,g)
NS→d

)
Finally, we compute β

(a,g)
h→d from β̂

(a,g)
h→d : about the people who get the disease

and die for the disease in the same year, we assume that, on average, every
person gets the disease in the 6th month of the year, so that the probability
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of dying for the disease has to be halved because the person has had the
disease only for 6 months. For this reason, we compute

β
(a,g)
h→d =

(
1−

δ
(a,g)
d

2

)
β̂
(a,g)
h→d where d = AMI, LC, ST, COP

Figure 4.2.6 shows the trend of β
(a,g)
h→d as the age parameter a increases.

Figure 4.2.6 Values of β
(a,m)
h→d for each age a and disease d of a male when

h = NS, S, FS5, FS10, FS15+

ω
(a,g)
h→d probabilities

These are the probabilities of getting the disease d and dying for the disease

in the same year. Similarly to β
(a,g)
h→d , we can compute ω

(a,g)
h→d from β̂

(a,g)
h→d : since

a person has only about half a year to die after getting sick, the probability
of contracting the disease and dying in the same year is computed as:

ω
(a,g)
h→d =

δ
(a,g)
d

2
β̂
(a,g)
h→d where d = AMI, LC, ST, COP

Figure 4.2.7 shows the trend of β
(a,g)
h→d as the age parameter a increases.
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Figure 4.2.7 Values of ω
(a,m)
h→d for each age a and disease d of a male when

h = NS, S, FS5, FS10, FS15+

γ(a,g) probabilities

It is the probability of dying from other causes, and according to assumption
7 it does not depend on health or risk factor exposure. The deaths for other
causes are the difference between the total deaths and the sum of the deaths
for the four diseases. Then, the following holds:

γ(a,g) =
Dth

(a,g)
tot −

∑
d Dth

(a,g)
d

Θ(a,g)

Figure 4.2.8 shows the trend of γ(a,g) as the age parameter a increases.

Figure 4.2.8 Values of γ(a,g) for each age a and gender g

4.3 Model simulation

For the moment we have focused on the structure of the chain and the
transition probabilities of a single individual, while the purpose of the model
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is to observe the evolution of an entire population, i.e. a set of independent
individuals. Therefore, starting from the previous results concerning the
single individual, in the next subsections we will see how to extend them to
build an initial population and develop its course over time.

4.3.1 Population initialization

We consider a population of 1.000.000 aged 25 years and over stratified by
age a and gender g. The gender distribution is computed as:∑

∀a Θ(a,g)∑
∀g
∑
∀a Θ(a,g)

and results 51% males and 49% females.

In a similar way we compute the age distribution:

Θ(a,g)∑
∀a Θ(a,g)

for every g = m, f

Now, we have to identify which are the ones subject to the risk factor and
which are the sick ones. First, let us divide healthy people of age a and
gender g from those with the disease d: Now, for every gender g and age a,
we divide the population in sick/ smokers/ former smokers and non smokers.
To this end, we define the probability to have the disease d as:

P(having the disease d) =
Prev

(a,g)
d

Θ(a,g)

Under the assumption of no comorbidity (assumption 5), the probability of
being healthy is

P(be healthy) = 1−
∑
d

Prev
(a,g)
d

Θ(a,g)

where d = AMI, LC, ST, COP.

A similar operation is performed to assign the status of the risk factor to

healthy people with probability p
(a,g)
NS , p

(a,g)
S , p

(a,g)
FSi

.

Concerning sick people, for each disease the same operation is performed,
but without the stratification of former smokers. Notice that we do not need
to assign the status of the risk factor to sick people, because we assumed
that the evolution of the disease is not affected by the smoke (assumption 3).

In Figure 4.3.1 we show what the initialized population looks like, dividing
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healthy people into the non-smoker, smoker and former smoker categories,
and sick people into the four diseases for every age a.

Figure 4.3.1 Initialized population by age and starting state

4.3.2 Population evolution

We are interested in observing the evolution of the entire population initial-
ized in the previous section, so the focus is on the process that keeps track
of the number of the population over time.

The number of individuals in the population evolves every year and is influ-
enced both by the evolution of the individual, i.e. when he dies the number
decreases, and by the way we decide to implement the simulation. Indeed,
we basically use two methods to evolve the population for an arbitrary pe-
riod of time T : closed cohort and open cohort.

In the first case we observe the ageing of the initialized population, and
since in this way it only depends on the time it takes for the individual to
die, we expect that after a certain number of years the population will be
extinguished. Instead, in the case of open cohort, every year until year T
we decide to introduce in the system a constant number of new 25-year-old
equal in number and in distribution of health and exposure to the risk factor
to those present in the initial population. By this way, in the next chapter,
we will observe that the average number of individuals in the population
will reach a balance, as proved in Theorem 3.2.1.
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Chapter 5

Case study: Results

The population initialised in the previous chapter with data from the Italian
population will be used as a baseline, i.e. the basis for comparing and
evaluating the effects of the policies. Therefore, first we will observe the
evolution of the baseline for an arbitrary number of years T , and then we
will study the effects of prevention policies.

5.1 Baseline

First of all, in Figure 5.1.1 we observe the baseline simulation: starting
from an initial population of 1 million individuals and with the introduction
of 13713 new 25-year-olds every year, the result is a decrease in numbers
in the first 50 years of the simulation and then stabilizing on a stationary
population of about 800000 individuals. This result is unexpected, in fact
we would expect stationary behaviour due to the fact that the addition of
25-year-old should compensate deaths, and will be better analysed later [5].

Figure 5.1.1 Evolution of the number of individuals in the population
simulated with open cohort.
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Observing in detail the evolution of the population from the point of view
of the prevalence of non-smokers, smokers, former smokers and the diseased
(Figure 5.1.2), we notice that these also decrease until they reach a sta-
tionarity after about 50 years. Non-smokers and former smokers have the
same macro evolution: before starting to decrease, they maintain the initial
number for about 10 years. In smokers we observe an exponential decay
from the first year of the simulation, while the disease is growing in the
first 20 years of the simulation, in correspondence with the years in which
smokers decrease exponentially, after which they also begin to decrease to a
stationary number.

Figure 5.1.2 Evolution of the population simulated with open cohort
stratified by the states of the individual chain, with the convention that
the diseased state contains the four diseases taken into account.

To explain the reason for the population decrease in the first 50 years of the
simulation, it is necessary to refer to the way we initialize the population
(Figure 4.3.1). The initial population is rather old, so it is more likely
to get diseases and die: this explains why the number of diseased people
increases in the first years of the simulation. We also note that smokers are
the category that has the highest risk of getting sick and they are the ones
that show the most evident decrease: this makes us guess that a good part
of smokers increases the number of diseased people in the population. On
the other hand, with regard to the decrease in the non-smokers’ and former
smokers’ curves, since in the same years also the curve of the diseased begins
to decrease, we deduce that a good part of them leave the system because
of the death due to the advanced age of the individuals. Finally, we observe
that the population begins to stabilise in correspondence with the years
in which we assume that the initial population is close to extinction, and
therefore we find a population composed only of the 25 year olds added
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every year which, as we can see in Figure 5.1.3, is very different from the
population initialised with the data of the Italian population: indeed, since
the process of simulating the population is limited by the entry of the 25
year old into the system, it is impossible to find a number of individuals in
each successive age, with the exception of the last one, which is an age class,
in greater numbers than those entered each year.

Figure 5.1.3 Population composition after 65 years of simulation with
open cohort.

5.1.1 Model validation

We validate the model that simulates the baseline in three ways:

• Mean life of population

• Mortality tables

• Comparison with GBD data

For the first one, we simulate with closed cohort the initialized population
in order to find its mean life and to compare it with the Italian population
over 25 years of age. In Figure 5.1.4 we report the mean life obtained from
the simulation until the extinction of the initial population versus the mean
life observed by [11] and we notice that the values are comparable.

Figure 5.1.4 Mean life of baseline population versus mean life of ISTAT
data.
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A second more refined comparison is with the closed cohort mortality tables
[11]. Since the latter start from a population of 100000 males and 100000
females of age 0, we use the numbers of survival at 25 years of age, i.e. 99193
males and 99462 females: so we initialize a population composed only of in-
dividuals of 25 years of these numbers and simulate it with closed cohort,
then we compare the deaths and survivals expected each year to verify that
the model correctly simulates the ageing of the population.

In Figure 5.1.5 we observe the result of this comparison: as far as the survival
curve is concerned, we note that there is a good correspondence between the
simulated population trend and the known one, instead, there is a strong
oscillation in the deaths occurred every year especially in correspondence
with the maximum reached by the curve of known values, however there is
a compatibility in the overall trend.

Figure 5.1.5 Simulation of a 25 years old population with closed cohort
versus data of ISTAT mortality tables.

Finally, we compare the results of incidences, deaths and prevalences on the
total population for the four diseases after the first year of simulation with
the data provided by GBD [10].
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Figure 5.1.6 Comparison tables of values obtained in the first year of
observation, with an open cohort simulation to GBD data.

In Figure 5.1.6 we can observe that in terms of incidences and deaths there
is a good correspondence in the first year with the expected results from
GBD, also because the transition probabilities that control these values, i.e.

β
(a,g)
h→d and δ

(a,g)
d (see Subsection 4.2.1), have been constructed using exactly

this data. While in prevalences we notice a significant overestimation in the
first year, that will be discussed later on.

With these validations we therefore have the confirmation that our model
simulates quite correctly the evolution of the Italian population. In fact, by
simulating the population initialised with Italian data, we find that individ-
uals live on average what the average life expectancy in Italy is observed;
the ageing of a population of 25-year-olds in Italy is consistent with the
ISTAT mortality tables; and finally, the incidence of diseases and deaths
attributable to diseases are consistent with those observed by the GBD.

5.1.2 Measures of interest

In order to easily compare simulations obtained from differently initialized
populations, we use indicators that summarize information on incidence,
prevalence and death from diseases. The measures of interest that we look
at are:

YLD measure This value depends on the disability weight of the dis-

ease dw
(a)
d and by the time t, t ≤ T in which the simulation is, with the

convention that t = 0 at the initialization of population. When a person
gets sick, each year spent with the disease d is multiplied by the disability

weight dw
(a)
d , including the year of incidence of the disease. In this way we

obtain an instantaneous disability measure and a cumulative one Y LDd(t)
that adds up the YLDs from year 0 of the simulation to time t.
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YLL measure This value depends on the age of death A and gender g of
each person and by the time t, t ≤ T in which the simulation is. When an
individual dies, this loses a certain numbers of years of life for premature
death equal to the life expectancy for an individual of that age E(A,g) and
we keep track of the disease d that caused the death. Also in this case we
keep track of the instantaneous Y LLd(t) and of the cumulative ones.

DALY measure The DALY indicator for disease d is defined as the sum
between Y LLd and Y LDd:

DALYd(t) = Y LDd(t) + Y LLd(t)

In Figure 5.1.7 we observe how the number of DALYs lost over time up to
a maximum of 150 years related to the four diseases changes in the popula-
tion. In their decomposition in YLD and YLL we find some characteristics
concerning the single individual: in fact, for the most deadly diseases, i.e.

with higher δ
(a,g)
d probability (see Subsection 4.2.1), the number of YLD is

almost irrelevant, explained by the fact that the person spends little time in
a state of disability because he dies more easily. On the other hand, in dis-
eases with low mortality, e.g., chronic obstructive pulmonary disease, they
are composed almost equally of YLDs and YLLs.

Figure 5.1.7 Cumulative Y LDd(t)+Y LLd(t) for each disease d according
to the time of interest t in a simulation with open cohort

5.1.3 Open issues in the model

From the analysis of the historical series, the expected result is that the val-
ues of incidence, prevalence and death for each disease are almost constant
over time. Looking at Figure 5.1.8 we realize that in the short term this
does not happen. In general we notice that each disease has the same trend
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in YLLs, YLDs and DALYs, with some oscillations due to the stochastic
nature of our model.

As far as cardiovascular diseases are concerned, we observe an increasing
trend in the first 40 years of incidence, which therefore causes an increase in
prevalence and death, followed by a decrease in the following years until it
stabilises at a balance equal to that observed in the first year of simulation,
which also coincides with the expected balance observed in the GBD study.
Even the prevalences and deaths, after the short period, stabilize on an equi-
librium, but significantly higher than expected in the case of prevalences,
while more acceptable in the case of deaths.

With regard to lung diseases, on the other hand, we observe that the inci-
dences decrease for the first 60 years of the simulation, thus stabilizing at a
lower equilibrium than expected. In lung cancer, the new stationary balance
does not deviate much from that expected for both incidences and preva-
lences and deaths. Chronic obstructive pulmonary disease, on the other
hand, has an anomalous behaviour: although the incidences decrease from
the first year of the simulation, the prevalences and deaths increase in the
first 40 years before also decreasing to an equilibrium, lower than expected
for the prevalences, slightly higher for the deaths.

Figure 5.1.8 Comparison curves of incidence, prevalence and number of
deaths for each of the four diseases with the data expected from the GBD
study. The values are computed as rate on 100000 individuals and are
observed in each year of simulation.

These trends are a consequence of the model’s assumptions and we will
discuss them in more detail later. In a similar way to the number of the
population in Figure 5.1.1, also in these values a stationarity is reached af-
ter a period for which it is assumed that the initial population has become
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extinct. However, we do not focus on analysing stationary behaviour in
the long term because we do not have enough information to be able to
characterise it a priori. Therefore, on the basis of historical series related
to the last 30 years we analyse the simulation performance in the short term.

Looking at the trend in Figure 5.1.8 over time of the prevalences and deaths,
we notice that these tend to increase, instead of remaining stationary as ob-
served in the analysis of the historical series, and we can guess that this
behaviour is based on the same problem. Since incidences do not differ
much from the expected stationary value, it seems that sick people stay too
long in the diseased state and therefore take more time to die: this explains
the increasing prevalences and, since sick people live longer anyway, the ac-
cumulation of deaths on later moments of time.

A possible explanation for this problem is given by the way we compute
the γ(a,g) probabilities: in fact it is unlikely that the probability of dying
from other causes depends neither on the health status of the individual
nor on his exposure to the risk factor because among other causes there are
also other related smoking diseases and in addition a sick person is weaker
and therefore closer to death. Finding data that allow to estimate more
correctly this probability should be able to increase the mortality of sick
people and reduce the mortality of healthy people. Another assumption
that could explain this behaviour is that there is no comorbidity (assump-
tion 5). This approach is a bit limiting because it does not take into account
the possibility that when a person dies, the prevalence value of more than
one disease can decrease. Regarding lung cancer, the evolution of prevalence
and death is consistent with incident cases, so the problem lies in the lat-
ter: at first glance it would seem that the probability of getting sick is too
low, but instead the problem could be more subtle. The individuals with a
higher probability of getting the disease are the older people and those with
a higher exposure to smoking, but these individuals are also the most at risk
of getting any other disease. Therefore it is possible that individuals with
the characteristics to get lung cancer may have contracted another disease
in previous years, and given the absence of comorbidities in the model, they
can no longer get lung cancer.

5.2 Prevention policies

A prevention policy is a health campaing aiming at reducing the exposure
of the population to a certain risk factors.

The goal of our work is to quantify the effect of prevention policies on
smoke. There are many types of prevention policies, which have different
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timescales and targets: some show results in the short term, i.e. in 5 years
after implementation, others in the long term, i.e. in 40 years after imple-
mentation; some are aimed at having a greater impact on young people [2]
[13], others on the population as a whole [15]. Below are some examples of
interventions related to the smoking risk factor [16]:

• Price policies increase in the price of cigarettes as a result of the in-
crease in tobacco taxation.

• Smoke free air laws are laws that regulate activities in the public sector
by banning smoking in worksites and designated public areas such as
restaurants, bars, shopping areas and transit.

• Mass-reach health communication interventions reach a large group of
audience through television and radio broadcasts, print, digital media,
and out-of-home placements.

• Health warnings are messages on cigarette packages that are designed
to warn consumers about the risks of smoking

• Cessation treatment policies aim to increase the use of evidence-based
behavioural treatments and pharmacotherapies for smoking cessation

Among the listed policies, the one that produces the most evident effects
both in the short and long term with no difference on the target popula-
tion is the price policy [3]. The study [8] shows that the increase in the
price of cigarettes must be subject to certain conditions in order to achieve
satisfactory results: price per pack of cigarettes is expected to increase on
average by the amount of the specific tax and less with an ad valorem tax,
which tend to increase price dispersion and may be reduced by laws that set
a minimum price. The effects observed in the short term are reflected in a
reduction in the prevalence of smokers of at least 6,75%, while in the long
term the expected prevalence is reduced by at least 13,5%.

The prevention policies aim to influence the exposure of the population
to the risk factor, so as to reduce the incidence, deaths and prevalence of
those diseases related to smoke. To evaluate the effects of these policies, the
values assumed by YLDs, YLLs and DALYs are analysed, as these indica-
tors summarize all the information related to the effects of diseases on the
population.

5.2.1 Implementation

We try to evaluate the effects of the price policy, which produces a double
effect: a decrease in the prevalence in the initial population and a decrease
in the number of young people starting [22]. We know [26] that a 20%
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increase in the price of cigarettes produces a 6,8% reduction in the number
of smokers, so we simulate such policy as follows:

• Let us assume that in the initial population 6,8% stop smoking and
become former smokers from 1 year, so at the time of initialization
we reduce the prevalence of smokers and increase the former smoker

from 1 year. Let p̃
(a,g)
h be the probability distribution of the exposure

to risk factor under the effect of the prevention policy related to age
a and gender g with h = non smoker, smoker, former smoker from i
years, then:

p̃
(a,g)
NS = p

(a,g)
NS

p̃
(a,g)
S = p

(a,g)
S (1− 0, 068)

p̃
(a,g)
FS1

= p
(a,g)
FS1

+ 0, 068p
(a,g)
S

p̃
(a,g)
FSi

= p
(a,g)
FSi

for every i = 2, ..., 15+

• In case of open cohort simulation, we assume that, as a result of the
policy, the 25years old individuals are introduced with a reduced smok-
ers prevalence, and such people are considered non smokers. The un-
derlying assumption is that some of the young individuals do not start

smoking because of the price increase. As defined above, let p̃
(25,g)
h

be the probability distribution of the 25 years old people exposed to
risk factor under the effect of the prevention policy related to gender
g with h = non smoker, smoker, former smoker from i years, then:

p̃
(25,g)
NS = p

(25,g)
NS (1 + 0, 068)

p̃
(25,g)
S = p

(25,g)
S − 0, 068pNS

p̃
(25,g)
FSi

= p
(25,g)
FSi

for every i = 1, ..., 15+

5.2.2 Results with prevention policies

In order to evaluate the effects produced by a prevention policy, it is nec-
essary to compare it with a scenario in which no policy is active, i.e. the
baseline scenario. We use as a baseline scenario the model that simulates
the evolution of the initialised population with data from the Italian pop-
ulation, the results of which we have validated in Section 5.1.1, while the
policy scenario corresponds to the simulation of the initialised population
under the effect of the price policy.

Before observing the effects of the policy in terms of DALYs earned, we
observe in Figure 5.2.1 the effects of the intervention on incidences, preva-
lences and deaths for the four diseases: to make the baseline and policy
values comparable, we report the rates on 100000 individuals.
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Figure 5.2.1 Comparison of incidences, prevalences and deaths of the four
diseases between the baseline and the policy scenario computed with a rate
of 100000 individuals.

The policy acts by reducing the number of individuals exposed to smok-
ing and consequently increasing the number of 1-year-old former smokers in
the initial population and non-smokers in the 25-year-olds added each year.
Therefore, the main component affected by the intervention is the incidence
of the disease: the probability of becoming sick is computed by taking into
account the degree of exposure to the risk factor, i.e. smokers have a high
risk of becoming sick which decreases with different gradients depending
on the disease for former smokers. In cardiovascular diseases the relative
risk of getting sick from smoking is not very high, in fact we note that the
incidences of baseline and policy are almost identical. In lung disease, on
the other hand, we see a decrease in the number of incidents in the policy
scenario, which is a direct consequence of the fact that the relative risk of
those exposed to smoking is significant.

The best way to estimate the effects of the prevention policy is to observe
the value assumed by the DALYs, YLDs, YLLs measures, which summa-
rize the effects just observed individually in the incidences, prevalences and
deaths. The comparison is made by observing the difference between the
indicators in the baseline and the ones with the policy, e.g., for the DALYs,

DALY (baseline)−DALY (policy)

This is implies that the policy has a positive effect if such difference is pos-

itive. Therefore DALY
(baseline−policy)
d (t) are the DALYs earned or lost as a

result of the policy after a period of time t for the disease d.

In Figure 5.2.2 we observe the number of DALYs earned each year after
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applying the prevention campaign. We note that both in the short and long
term the effect of the policy on lung diseases, which, as we have seen previ-
ously, are those most susceptible to the smoking risk factor, leads to a high
gain of DALYs. On the other hand, in cardiovascular diseases the effects in
the short term fluctuate, both due to the low influence of the risk factor and
the stochasticity of the simulations, while they also remain positive in the
long term.

Figure 5.2.2 Cumulative DALYs earned, i.e. DALY
(baseline−policy)
d (t), for

each disease d.

Then, in Figure 5.2.3, we see how many of these DALYs are earned for
having accumulated fewer years lived with disabilities or for having lost
fewer years due to premature death due to the disease. Since YLLs are the
ones that contribute most to the composition of the DALYs of each disease,
we find the same behaviour observed in Figure 5.2.2. On the other hand, as
far as YLDs are concerned, we observe a significant growth only for chronic
obstructive pulmonary disease: this result, however, is distorted because as
we have seen in Figure 5.1.7, YLDs have little impact on the construction of
the DALYs of individual diseases, except for chronic obstructive pulmonary
disease.
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Figure 5.2.3 In the left there are cumulative YLDs earned, i.e.

Y LD
(baseline−policy)
d (t), while in the right there are cumulative YLLs earned,

i.e. Y LL
(baseline−policy)
d (t), for each disease d.

Since the DALYs earned depend on the risk factor, let us look in detail at
how many DALYs earned are attributable to smoking in each disease. In
Figure 5.2.4 we recognize the effects of the implemented campaign: in fact,
even if with different significance, we note that the DALYs earned are those
attributable to smoking, i.e. there is a decrease in the number of smokers
in the population, which reduces the number of sick smokers and the num-
ber of dead smokers, to the detriment of a loss of DALYs attributable to
non-smokers and former smokers. Conversely, the DALYs from non-smokers
grow with the policy, because the effects of the campaign is to increase the
non smokers that enter in the cohort every year. Notice that this effect
grows as time grows larger, because at every year many new 25 years old
enter in the cohort, and they will never become subject to the risk factor for
assumption 1 of the model. Instead, the loss of former smokers’ DALYs is
observed more clearly in the short term, but also remains visible in the long
term: former smokers increase in number only in the initial population and
therefore this effect is observed until the initial population is extinct, after
which a slight loss of DALYs continues to be observed due to the fact that
by construction the population is less exposed to the risk factor in the long
term and therefore individuals cannot become former smokers.

Although the DALYs earned seem to be the same for the four diseases,
we find the same trend described in Figure 5.2.2: in fact cardiovascular
diseases have a lower net gain than lung diseases because there are more
DALYs lost attributable to non-smokers and former smokers.
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Figure 5.2.4 Cumulative DALY
(baseline−policy)
d (t) breakdown depending

on exposure to the risk factor, i.e. Non Smoker NS, Smoker S, Former
Smoker FS, detailed for each disease d.
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Chapter 6

Conclusions

In this thesis we have built a model to simulate a population exposed to
risk factors over time with the goal of evaluating the effects of a prevention
policy. The risk factor on which we have focused is smoking, and we have
assessed the effects of the campaign by observing any changes in incidences,
prevalences and deaths related to 4 related smoking diseases: acute my-
ocardial infarction, lung cancer, stroke and chronic obstructive pulmonary
disease.

The model simulates the evolution of a population, where each individual is
modelled as a Markov chain. The transition probability has been built ad
hoc for each age and gender from real data provided by ISTAT and GBD
studies.

As far as the results are concerned, we have obtained two types of results.
From a theoretical point of view, we have demonstrated the convergence
of the average number of individual in the population over time under the
assumption of stationary input, identifying the process as an homogeneous
Markov chain over an infinite state space. While from a practical point
of view, we have correctly simulated the Italian population subject to the
smoking risk factor by validating it with average life expectancy, mortality
tables and incidences, prevalences and deaths in the first year of simulation
of the four diseases examined.

Finally, we implemented a prevention policy aimed at decreasing the preva-
lence of smokers in the initial population and we observed the effects in
terms of improving the quality of life with the indicators of YLDs, YLLs,
DALYs.
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6.1 Open issues and future works

In the simulation of the Italian population from the point of view of the four
diseases examined, we found a progressive growth of the prevalences in the
short term and a different stabilization to the expected equilibrium. This
non-stationary nature in the short term, in contrast with the one expected
from the analysis of historical series, derives from some assumptions made
in determining the transition matrix of the chain of each individual in the
population.

Observing Figure 5.1.8 in which the incidences fluctuate in the short term,
but not significantly, and then stabilize in an equilibrium not too distant
from the expected one, we can deduce that most probably the problem re-
sides in the underestimation of deaths due to other causes (assumption 7)
or in the lack of comorbidity among the diseases (assumption 5). Therefore,
in the future, we will try to solve this problem by first acting on the proba-
bility of dying for other causes, trying to introduce in their computation the
data on the degree of exposure to the risk factor or the disease condition.
Another possible solution could be to consider the possibility of fulminant
death for some diseases: in our model the probability of getting sick and

dying in the same year ω
(a,g)
h→d is not as significant as it should be in the case

of diseases that are often fulminant such as acute myocardial infarction and
stroke. In this way there would be more deaths and less accumulation of
prevalence over time for these diseases for which fuminant death is allowed.

As regards the result generated by the comparison between the initialised
population with real data and that of a prevention policy scenario, we can
highlight a problem in the lack of evident results in the short term. This is
due to the fact that the relative risks of former smokers decline very slowly
compared to those of smokers, and therefore when we implement the preven-
tion policy that decreases the number of smokers in the initial population
to the benefit of former smokers, in order for the incidences to decrease it
is necessary that the new former smokers from 1 year introduced increase
the number of years from which they are former smokers, so as to lower the
relative risk of getting sick. This type of problem is purely numerical in
nature: the future aim will be to find relative risks for former smokers in
the literature or to better model their decay.
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Appendix A

Data tables

A.1 GBD data

Incidence Inc
(a,g)
d

Figure A.1.1 Incidences data of 2017 in Italy, stratified by 5-group-years and
gender for each disease

Prevalence Prev
(a,g)
d

Figure A.1.2 Prevalences data of 2017 in Italy, stratified by 5-group-years and
gender for each disease
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Death Dth
(a,g)
d

Figure A.1.3 Deaths data of 2017 in Italy, stratified by 5-group-years and
gender for each disease

Total death Dth
(a,g)
tot

Figure A.1.4 Total deaths of 2017 in Italy, stratified by 5-group-years and
gender

YLD value Y LD(a)d

Figure A.1.5 YLD value data of 2017 in Italy, stratified by 5-group-years for
each disease
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A.2 ISTAT data

Population Θ(a,g)

Figure A.2.1 Population of 2017 in Italy, stratified by 5-group-years and gender

Expected year to live E(a,g)

Figure A.2.2 Expected year to live of 2017 in Italy, stratified by 5-group-years
and gender

Distribution of the exposure to smoking risk factor p
(a,g)
h

Figure A.2.3 Probability distribution of the exposure to smoking risk factor of
2017 Italy, stratified by 5-group-years and gender
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A.3 CPS data

Relative risk of smokers RR
(a,g)
S→d

Figure A.3.1 Relative risk for smoker of contracting a disease, stratified by 5-
group-years and gender for each disease. Red values are obtained by interpolation.
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