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Abstract

Finding interesting patterns in a cancer registry data can provide oncologists and medical experts
with a new perspective to improve healthcare for cancer patients. In this paper, we apply a
supervised local pattern mining called Exceptional Model Mining. Its aim is to find subgroups in
the data that somehow behave differently from the norm. This behaviour is captured by a model
and the interestingness of a subgroup is assessed according to a quality measure. In particular, we
develop a logistic regression model and propose a few different quality measures based on statistical
tests and probability distributions. Additionally, we provide a statistical test, the permutation
test, to assess the interestingness of a subgroup from a statistical point of view.
The results of the experiments show that the proposed model can retrieve some subgroups that
may be of interest for doctors. Moreover, the results of the permutation test show that the most
interesting subgroups are also statistically significant.
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Chapter 1

Introduction

In 2018, according to the World Health Organization (WHO), 9.6 million people worldwide are
estimated to have died from cancer [1], which made it the second leading cause of deaths globally,
just after cardiovascular diseases. In the Netherlands, in the same year, nearly 120000 new cases
of cancer arose in the population, with breast cancer being the most frequent type (16209 women
were affected) and lung cancer being the deadliest type (11000 deaths) [2].
Therefore, it is particularly important to conduct research to better understand this class of dis-
eases and a new perspective could be given by adopting a data-driven approach in a medical
domain.

In this regard, work is carried out by IKNL (Integral Kankercentrum Nederland): it is an inde-
pendent knowledge institute that collaborates with healthcare professionals for the improvement
of oncological and palliative care.
IKNL is responsible for retrieving and maintaining the Netherlands Cancer Registry (NCR), a
population-wide registry containing diagnosis and treatment data of nearly all cancer cases in the
Netherlands since 1989. Many researchers perform epidemiological research using the NCR data,
driven by a hypothesis or research question. However, there may be patterns and information
hidden in the data: a data-driven approach could be useful to generate hypotheses to feed to
actual medical experts to improve healthcare for cancer patients.

In this report, we focus on the application of a specific data mining technique, called Exceptional
Model Mining (EMM), to the cancer registry data. The goal of this method is to identify sub-
groups of the dataset where multiple target attributes interact in an unusual way. This interaction
is captured by a model and the more this model behaves differently from the norm (the whole
dataset or the complement of the subgroup) the more interesting the subgroup is.

1.1 Lung Cancer Dataset from IKNL

In this report, we want to apply EMM to a real clinical dataset provided by IKNL. There are
two main goals that we wish to achieve: finding surprising patterns that could be useful for the
scientific community and quantifying the concept of interestingness of the retrieved subgroups
through the use of statistics.
In this thesis, the focus is on lung cancer: it is one of the deadliest types of tumor with one of the
highest death rates. Thus, it could be interesting to find surprising insights regarding people that
suffered from it. Nevertheless, the method that we provide in this project is not strictly connected
to lung cancer and can be generalized to any type of cancer.
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CHAPTER 1. INTRODUCTION

The dataset contains information regarding patients who have been diagnosed with lung cancer
in the Netherlands between the years 2005 and 2018. The provided attributes are both numeric
and nominal, with the majority of them being binary.
Some attributes contain information about the patient, such as age (leeft), gender (gesl), socio-
economic status (ses), whether they are dead or alive (vit stat, is dead). Others relate to the
cancer itself: the stage of the tumor (stadium, ct, cn, cm, ...), the behaviour (gedrag) or the type
of cancer (morf, topog, ...). There are also geographical attributes to identify where the patient
is living (COROP, PROVINCIE, PC2 ) and another important category is represented by those
attributes that indicate if the patient received any treatment (treatment) and, if so, which specific
treatments they were subjected to (indchorg, indimmuno, indchemo, ...). The dataset is described
more in detail in Chapter 5.

1.2 Research questions

The procedure that has been followed in this project is: select specific target attributes, fit a
proper model on them and apply EMM to find the most interesting subgroups in the dataset.
Then, validate the significance of the result through statistical analysis. Everything regarding
Exceptional Model Mining is described in detail in Section 2.3.

To the best of our knowledge there has been only one study in which EMM was applied to clinical
data. In [3], the author applied this data analysis technique to a dataset that consisted of patients
who had been diagnosed with breast cancer. The model used in the EMM framework was rather
simple: it made use of absolute frequencies and aimed at finding subgroups for which the distri-
bution of a single target attribute (or multiple targets) was remarkably different when compared
to the distribution of the same in the whole dataset. In the end, the author found results that
were supported by the general knowledge of the scientific community, but were not very surprising
from a clinical point of view.

In this report, we have built and analyzed a different model (logistic regression) that makes use
of statistical theory and we want to observe if that can lead to the retrieval of surprising insights.
In other words, the goal of this project is to answer the following research questions:

How to use Exceptional Model Mining combined with statistical theory to extract
noteworthy patterns from cancer registry data?

How to quantify the interestingness of a subgroup in the Exceptional Model Mining
framework in an objective way using statistics?

1.3 Summary

This thesis is structured as follows. Chapter 2 describes some data mining techniques with a
particular focus on Exceptional Model Mining. It provides an overview of some possible models
to apply to the data and the reason why logistic regression is adopted. Chapter 3 exhibites some
key concepts, such as what is logistic regression and how to quantify the similarity between two
probability distributions. These concepts are then exploited in Chapter 4 to define a proper
logistic regression model in the EMM framework. In Chapter 5, the dataset is described as well
as the preprocessing phase. Chapter 6 focuses on the preparation phase before conducting the
experiments, described in detail in Chapter 7. Chapter 8 explains how to assess the interestingness
of a subgroup using the permutation test and Chapter 9 outlines some general considerations on
the project as well as some directions that could be considered for a future work.
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Chapter 2

Literature overview: Exceptional
Model Mining

This study focuses on the application of Exceptional Model Mining. Its purpose is to find subsets
of the dataset that somehow behave differently and thus could be interesting.
Before analyzing the details of this technique, it is important to understand where EMM is located
within the data mining framework. Therefore, this chapter provides a brief overview of some
other existing approaches in the data mining framework and explains why EMM has been chosen.
Secondly, it describes some possible models that could be adopted for EMM in our specific case
and illustrates why logistic regression has been selected.

2.1 Data mining

The process of “identifying valid, novel, potentially useful, and ultimately understandable patterns
in data” is defined as Knowledge Discovery (KD) [4]. Data Mining is the most important step
of this process and it consists in the application of data analysis techniques and algorithms to
retrieve interesting patterns from the data. Over the years, many techniques have been developed;
nevertheless, two main classes of approaches (that may sometimes overlap) can be identified:

• Predictive approaches carry out the induction over the current and past data so that
predictions can be made. The goal is predicting a target value using supervised learning
functions. This category encompasses methods such as classification, regression and time-
series analysis.

• Descriptive approaches aim at detecting relations and patterns in the current data. It fo-
cuses on the conversion of the data into meaningful information for reporting and monitoring.
Clustering and association rules belong, for example, to this category.

The distinction between these two classes is not always clear and there are methods that often
cross this feeble boundary. One example is with respect to the category of supervised descriptive
rule discovery, strictly associated to Exceptional Model Mining.
The methods belonging to this category aim at discovering interesting patterns, in the form of
rules, by taking into account labeled data. In other words, they make use of supervised learning
to solve descriptive tasks: that is why the features of both approaches are somehow encompassed.
Three main methods have been identified by Novak Kralj et al.[5] in this category: Contrast Set
Mining (CSM), Emerging Pattern Mining (EPM) and Subgroup Discovery (SD).

3



CHAPTER 2. LITERATURE OVERVIEW: EXCEPTIONAL MODEL MINING

2.2 Supervised Descriptive Rule Discovery

Contrast Set Mining

CSM [6] has the goal of detecting contrast sets, i.e. conjunctions of attributes and values, that
differ meaningfully in their distributions across groups.
More formally, given a set of attributes A1, ..., Ak and for each Ai a set of values V1i, ..., Vmi,
a contrast set is a conjunction of attributes and values defined on groups G1, ..., Gn, where no
attribute is repeated more than once.
Let’s consider an example in a medical domain in which we have a dataset of patients diagnosed
with cancer in the Netherlands in 2018. In this case, a contrast set could be:

smoker = True ∧ gender = male

where smoker and gender are the attributes and True and male their values.

Concerning a group G, the support of a contrast set is defined as the percentage of examples in the
group for which the contrast set is true. With respect to our example, a group could be identified
as the region of residence of a Dutch person. Then, the support of the contrast set defined above
would be, out of all people having cancer in that region, the percentage of patients that smoke
and are male.

The goal of CSM is to find contrast sets for which:

∃ i,j: P(contrast set = true | Gi) 6= P(contrast set = true | Gj) (2.1)

max
i,j
| support(contrast set, Gi ) - support(contrast set, Gj ) | ≥ δ (2.2)

where δ is a threshold defined as the minimal support difference.
Equation (2.1) is a statistical significance requirement and ensures that, with respect to the con-
trast set, there is a true difference between the two groups. A statistical test is performed with
the null hypothesis that contrast sets have exactly equal probabilities across groups.
Inequality (2.2) takes into account the size factor because the effect must be large enough to be
relevant.
If both requirements are satisfied, we have found a so called deviation.
To make things clear, in our example, the above mentioned contrast set is considered significant
if the distribution of male smoker patients over all patients that have cancer is very different in a
particular region with respect to other regions.

Emerging Pattern Mining

EPM, described in [7], is a data mining technique whose goal is to find emerging patterns (EP).
These are defined as subgroups whose supports increase significantly from one dataset to another.
This approach can be applied when we want to find relevant contrasts between data classes or
when we deal with timestamped databases.
More precisely, let D1 and D2 be a pair of datasets and let suppDi(X) denote the support of the
itemset X over the dataset Di (i=1,2). We define:

GrowthRate(X) =


0 if suppD1

(X) = 0 and suppD2
(X) = 0

∞ if suppD1
(X) = 0 and suppD2

(X) 6= 0
suppD2

(X)

suppD1
(X) otherwise

The aim of EPM is then, given a certain threshold ρ, to find all itemsets X for which:
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CHAPTER 2. LITERATURE OVERVIEW: EXCEPTIONAL MODEL MINING

GrowthRate(X) ≥ ρ

An application in the medical domain could be to split the dataset into two sub-datasets, one
containing the patients who survived cancer and the other with the patients that died from it.
In this scenario, suppose that we find the EP: (S1, T1, T2), with growth rate of 4 from the not-cured
to the cured group. This suggests that, among all cancer patients who presented the symptom
S1 and received both treatments (T1, T2), the number of cured patients is 4 times the number
of patients who were not cured. Hence, it might be recommendable to apply the treatment
combination whenever that particular symptom occurs.

Subgroup Discovery

Subgroup discovery is a supervised pattern mining technique whose aim is to extract interesting
rules with respect to a target variable [8].
More specifically, given a population of individuals and a property of those individuals we are
interested in, we want to find subgroups that have the most unusual statistical distribution over
the target attribute. In other words, we aim at finding rules of the form:

R : SubgrDescr → TargetV al

where TargetV al is a specific value of the target attribute and SubgrDescr is a conjunction of
features (attribute-value pairs) that induce the subgroup.
As an example, suppose that we are analysing the data of students applying for university X.
Using SD, we could find:

gender = female ∧ income = high −→ admitted = Y es

That means that the subgroup represented by girls living in a family with a high income has an
unusual distribution with respect to the target attribute admitted. In particular, the distribution
has a higher rate of admissions when compared to the distribution of the target in the overall
population. That implies that people belonging to this subgroup are more likely to get accepted
by university X.

All of these methods, belonging to the category of Supervised Descriptive Rule Discovery, share
a common task: to detect significant deviations within the data. These deviations are not simply
outliers, i.e. data points that differ significantly from the rest of the data. They are characterized
by sophisticated structures (e.g. contrast sets, emerging patterns, subgroups), more easily inter-
pretable and actionable than single data points.
In the following section we introduce Exceptional Model Mining. This data mining technique
shares common features with the methods just described and, in particular, can be seen as a
generalization of Subgroup Discovery. SD aims at finding those subgroups for which the target
attribute distribution is significantly different from the norm. In EMM, multiple target attributes
can be considered and many models can be applied to examine more complicated relationships.

2.3 Exceptional Model Mining

EMM is a supervised local pattern mining framework with the aim of identifying interesting
subgroups in a dataset, i.e. subsets of the dataset that somehow behave differently from the norm.
First introduced in [9], it has been further discussed and developed in [10], [11]. In order to
understand what a subgroup is and when it is deemed interesting, some notations and definitions
are needed. In the following subsections, we explain how we can define a subgroup and assess its
interestingness and which is the algorithm that can be exploited to find unusual subgroups.
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CHAPTER 2. LITERATURE OVERVIEW: EXCEPTIONAL MODEL MINING

2.3.1 Descriptions and subgroups

We assume that our dataset Ω is a collection of records ri (i = 1, ..., N), in which:

ri = (ai1, ..., a
i
k, t

i
1, ..., t

i
m) k,m ∈ N+

ai1, ..., a
i
k are defined as the descriptive attributes, ti1, ..., t

i
m as the target attributes.

A description is a function that maps the descriptive attributes of each record into a 0 or a 1. We
say that the description D covers a record ri if and only if D(ai1, ..., a

i
k) = 1.

An example of a description, with respect to our study, would be:

diffgr = 9 and leeft > 81 and leeft ≤103

where diffgr is the differentiation grade class of the tumor and leeft is the age of the patient.

A subgroup is consequently defined as the collection of records that a description D covers. We
denote that with GD ⊆ Ω.

2.3.2 Model class and quality measure

The core of EMM is the choice of a model class over the target attributes and the choice of a
quality measure, a function that assigns a numerical value to a subgroup induced by a description,
i.e. ϕ : GD −→ R.
This measure indicates how exceptional the model fitted on the targets in the subgroup GD is,
compared to either the model fitted on the targets in the whole dataset Ω , or the model fitted on
the targets in the complement GcD.
As underlined in [10], different choices can lead to very different results. That is why we must be
careful what we compare the subgroup to. However, it often occurs that the chosen model over
the target attributes gives you a more precise indication on what the term of comparison will be.

Regarding the quality measure, it generally tends to favor the discovery of smaller subgroups, even
though larger subgroups are usually more interesting to analyse. This happens because it is easier
to have an unusual behaviour when we consider a small number of observations. Hence, when
using a quality measure, the subgroup size should always be taken into account.
One way to deal with that, as suggested in [9], is to multiply the quality measure with the entropy
function:

ϕef (D) = − n
N
log
( n
N

)
− nc

N
log
(nc
N

)
(2.3)

where N,n, nc represent the number of records of respectively the whole dataset Ω, the subgroup
GD, the complement GcD. Since the entropy function is maximized for n = 0.5 ∗ N , more equal
splits, hence larger subgroups, will be favored.
Another way to tackle this problem is to use a quality measure based on a statistical test. The
advantage is that we can have a clearer indication of what is significantly interesting because of
the underlying statistical theory.

2.3.3 Refining the descriptions

After defining a model over the target attributes and a quality measure, we still need to generate
candidate subgroups with the aim of finding the most interesting ones. Hence, it is important to
define a way to generate the subgroups, given the descriptive attributes.
Let’s call D the description and ai the attribute of interest. The refinement of a description and
hence the generation of a subgroup depends on the type of the descriptive attribute ai:

6
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• Binary: this is the simplest case and there are just two possibilities (encoded as 0 and 1).
Therefore, we can refine our description as follows:

D ∩ (ai = 0) D ∩ (ai = 1)

• Nominal: let’s suppose that ai has g values v1, ..., vg. Then, we can refine the description by
distinguishing, for each value, when the attribute assumes that value and when the attribute
assumes one of the other g-1 values. More formally:

D ∩ (ai = vk) D ∩ (ai 6= vk) for k = 1, ..., g

• Numeric: in this case we discretize the numerical attribute by creating equal-sized bins.
Then, for each split point, we refine by considering when the attribute is less and when it is
greater (or equal) than the split point.

In other words, we first order the values that ai can assume:

v(1), ..., v(n)

We define the b split points as:

sj = v(bj nb c) for j = 1, ..., b

In the end, we add the following refinements:

D ∩ (ai < sj) D ∩ (ai ≥ sj) for j = 1, ..., b

2.3.4 Beam search algorithm

Considering the many possible combinations to generate different subgroups, the search space
becomes exponentially large with respect to the number of attributes. Since it is generally too
expensive to explore it by brute force (analyzing all possible subgroups), many researchers rely on
heuristic search.

In the EMM framework, even though there exist some alternatives ([12], [13]), the beam search
algorithm [Algorithm 1, [11]] is generally performed. In simple words, the algorithm traverses the
subgroup description search space by starting with simple descriptions and refining these along
the way, going from generic to specific.
In the first step, all subgroups, whose description is given by just one attribute, are generated. Each
subgroup is assessed according to the quality measure ϕ and the ω most exceptional subgroups
are kept (ω is the beam width, a parameter defined before running the algorithm). The method
is then iterated and, at each step, the descriptions are refined and the related subgroups assessed
again.
Since, at each level, instead of considering just one best partial solution, the best ω partial solutions
are kept, the beam search algorithm can be regarded as an extension of a greedy algorithm.

2.3.5 EMM motivation

There are two main reasons why EMM is applied in this project with respect to the cancer registry
data.
First, it can be regarded as an actionable and explicable method. As a matter of fact, its aim
is not simply to detect outliers, single observations that in most cases are difficult to interpret

7
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and could be even caused by some randomness in the data. EMM focuses on subgroups, coherent
structures induced by conditions on the descriptive attributes, that deviate from the norm. The
output consists of descriptions of the most interesting subgroups, expressed with a language very
similar to the human one and hence easy to understand. The doctors (i.e. the domain experts
in this scenario) can then check if the retrieved subgroups derive from common knowledge or are
actually interesting and bring a new perspective which is worth investigating.

Another advantage is that EMM does not limit itself by considering one single target attribute
(as in SD) but takes into account multiple targets, on which many different models can be built.
In other words, EMM is a very flexible method that offers several possibilities: from simply
finding unusual distributions of the targets to capturing unusual relationships modeled with logistic
regression or Bayesian networks for example. This enables us to identify subgroups that behave
differently in terms of a kind of modeling that the domain experts use on a daily basis, which
brings the data mining technique closer to the domain-specific world.

2.4 Overview of some EMM instances

The core of Exceptional Model Mining is the EMM instance: the combination of a model class
chosen over the target attributes and a quality measure. There are many models that have been
applied in the past years, depending on what is deemed interesting in specific scenarios.

In the Correlation model, the focus is on the relationship between two numeric targets. The
goal is to find subgroups for which the relationship between the targets is significantly different
from the one present in the rest of the dataset. According to the properties and features of the
data, several quality measures can be defined.
The Pearson correlation coefficient quantifies the linear relationship between the two targets. The
drawback is that Pearson coefficient has some underlined assumptions such as normality and
it is also heavily affected by outliers. Hence, other quality measures, such as Spearman’s rank
correlation coefficient or Kendall’s Tau, can be used to quantify the relationship between the two
targets. In this case, the focus is not anymore on the linearity of the relation but on the more
general monotonicity and the model is denominated as Rank Correlation model.
In [14], this model, with all three quality measures, was applied to six different datasets to find
the subgroups in which there were unusual relationships for example between price and size of a
house ([14], Section 5.1) or between age of a woman and number of children ([14], Section 5.4).

When dealing with nominal attributes, we can leverage on the Association model. The goal is
to find subgroups in which the association between two nominal targets is remarkably different
from the association present in the rest of the dataset.
This model was used by Duivesteijn et. al. in [15], a study in which the Exceptional Model
Mining framework was applied as an alternative of the classic A/B testing. In this study, instead
of just retaining the best variant (A or B) of a product, based on the preference of the population,
the association model was applied to find subgroups whose preference was significantly different
when compared to the rest of the population. This approach is useful when the company has
the possibility to produce both variants, therefore, it can offer the most appealing alternative to
specific subgroups of the population.

In [16], Duivesteijn et al. applied the Linear Regression model. The idea is to fit two linear
regression models (one on the subgroup and one on the whole dataset) and find those subgroups
for which the coefficients of the two models are remarkably different. That implies that the
relationships between the variables are different and it might turn out to be very interesting to
understand where the major discrepancies take place.

8
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In the article, the model was applied to several datasets (e.g. Giffen Behavior Data, Wine data,
Housing Data). This means that it is a flexible method that can be applied in numerous scenarios,
as long as linear regression is a suitable model, e.g. there is a linear relationship between the
independent and dependent variables, there is no or little multicollinearity in the data, homosche-
dasticity is satisfied, etc.

In [3], Exceptional Incidence Distribution Mining model was introduced. It makes use of
absolute frequencies and aims at finding those subgroups for which the distribution of a target
(or a combination of multiple targets) is unusual when compared to the distribution in the whole
dataset. This model was used with respect to cancer registry data and the focus was on patients
who were diagnosed with breast cancer. It did not lead to any scientific breakthrough, but that
does not mean that it is an invalid model. It might still lead to interesting insights, when applied
to other datasets and its strength is that it is very straightforward to interpret.

2.5 Classification with Logistic Regression: motivation

In this report we are dealing with a dataset taken from the National Cancer Registry (the dataset
will be described in detail in Chapter 5). The question is: how to decide which EMM instance
(model class and quality measure) would be appropriate for this dataset?

First of all, it is important to underline that there is no single answer. Given the high flexibility
of EMM, there are many models that could be applied to our data, depending also on what we
are interested in.
A possible model could be the Exceptional Distribution Incidence Mining model, applied in [3].
The problem is that, as underlined in the previous section, it did not lead to very surprising
insights. Therefore, we could study if a different EMM instance might be more suitable in this
scenario.

An answer can be found in the Classification model with Logistic Regression [Section 5.4
[11]]. The idea is at first to identify, among the target attributes, which will be the response and
which the predictors. Then, fit the logistic regression on the subgroup and on the whole dataset
(or on the complement of the subgroup) and compare the two models.
We notice that the goal is very similar to the one described previously for the Linear Regression
Model. The main difference is that the probability of some obtained event is represented as a
linear function of a combination of predictor variables and there is no more the assumption of a
linear relationship between dependent and independent variables.

There are three main motivations that justify this choice.
First, it takes into account multiple attributes at the same time, thus providing several insights
when analysing a subgroup.
Secondly, the provided dataset on which our study is conducted is full of binary nominal attributes,
such as the vital status of the patients (dead or alive) and if they received a particular treatment
(yes or no). Among different classification methods Logistic regression is particularly suitable
when dealing with this kind of data.
Lastly, even though described in [9], [10], [11], to the best of our knowledge, there is no article
in which this particular model was adopted. Therefore, this report aims at understanding if this
can be a proper and efficient way to retrieve interesting subgroups within a medical domain in the
EMM framework.
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Chapter 3

Literature overview: statistics

In Chapter 2, we mentioned that the core of Exceptional Model Mining is the choice of a model and
a quality measure. This chapter provides the statistical tools to understand how the Classification
with Logistic Regression model can be implemented in the EMM framework.
The first section is devoted to the model, i.e. logistic regression. It provides a description of the
main concepts such as the logistic function, the probability of presence of the outcome, the odds
ratio. Then, it explains how the coefficients that quantify the relationships among the variables
are estimated and how they can be interpreted. In the final part of the section, the focus is instead
on the statistical tests that could be applied to assess the significance of the coefficients and on a
couple of measures that could help us understand if the fitted model is appropriate.
The second section focuses on how to quantify the difference between two probability distributions.
This is functional for the definition, in Section 4.2, of two quality measures that can be used to
assess the interestingness of a subgroup.

3.1 Logistic Regression

3.1.1 Main concepts

Logistic regression (LR) is a statistical method which is well suited to model the relationship
between a categorical response variable and one or more categorical or continuous predictor vari-
ables. The main concepts reported in this section have been taken from [17].
There are three types of LR, depending on the nature of the categorical response variable: bino-
mial, nominal, ordinal.
We focus on the binomial logistic regression. In this case, the response (or dependent) variable is
dichotomous, i.e. it only contains data coded as 1 or 0; from now on, we denote this as y. All the
other features are called predictors or independent variables and can be of any type. We indicate
those using the vector X = (x1, x2, ..., xp).
The predictions of logistic regression are in the form of probabilities of an event occurring, i.e. the
probability of y = 1, given certain values of input variables X = (x1, x2, ..., xp). Therefore, one of
the objectives of the logistic regression is to model the conditional probability that the outcome
is present:

π(X) = PX

(
y = 1

)
For ease of notation, we will simply indicate it with π. This probability can only take values
in [0,1]. Therefore, instead of fitting a straight line or a hyperplane (as it happens with linear
regression), the logistic regression model uses the logistic (or sigmoid) function (Figure 3.1) to
map the output of a linear equation to [0,1].

10
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Logistic function: logit(z) =
1

1 + e−z

domain = [−∞,∞] codomain = [0, 1]

Figure 3.1: Plot of the logistic function.

Hence, for multiple logistic regression, the model is the following:

π = PX

(
y = 1

)
=

1

1 + e−(β0+β1x1+β2x2+...+βpxp)
=

1

1 + e−X
′Tβ

(3.1)

X
′

= (1,XT ) β = (β0, β1, ..., βp)

Logistic regression generates the coefficients (and its standard errors and significance levels) of
a formula to predict a logit transformation of the probability of presence of the characteristic of
interest:

logit(π) = ln
( π

1− π

)
= ln

PX
(
y = 1

)
PX

(
y = 0

)
 = β0 + β1x1 + β2x2 + ...+ βpxp = X

′Tβ

The probability of the event to happen (π) over the probability that the event does not take place
(1− π) is defined as the odds:

odds =
π

1− π
=

1

1+e−X
′T β

e−X
′T β

1+e−X
′T β

= eX
′Tβ (3.2)

and so logit(π) is simply the log of the odds.
The odds can be thought as another way to express a probability. To clarify, let’s make an example.
Suppose that a patient has 80% probabilities of surviving after being diagnosed with colon cancer.
Then, the odds are 0.80 / (1 - 0.80) = 4, or 4:1. In other words, for the patient, the probability
of surviving is four times higher than the probability of dying.

11
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3.1.2 How to estimate the coefficients

In order to estimate the vector of coefficients β, the most popular method used in logistic regression
is the maximum likelihood estimation.
Let’s suppose that we have n observations y1, ..., yn. So the logistic regression model for each i-th
observation is:

logit(πi) = β0 + β1xi1 + β2xi2 + ...+ βpxip = X
′T
i β (3.3)

with X
′

i = (1, xi1, ..., xip)

Equation (3.3) can be expressed equivalently as:

πi =
1

1 + e−X
′T
i β

=
eX

′T
i β

1 + eX
′T
i β

(3.4)

To define the likelihood function, we have to consider the fact that y1, ..., yn are n independent
Bernoulli trials with probability of success equal to π1, ..., πn (yi ∼ Be(πi)). Hence, the density
function of each single yi is:

f(yi;πi) = πyii (1− πi)1−yi i = 1, ..., n

The joint distribution of y = (y1, ..., yn) is then:

f(y;π) =

n∏
i=1

πyii (1− πi)1−y1

Therefore, the likelihood function for these n observations is defined as:

L(β;X,y) =

n∏
i=1

πyii (1− πi)1−y1 =

n∏
i=1

( eX
′T
i β

1 + eX
′T
i β

)yi(
1− eX

′T
i β

1 + eX
′T
i β

)1−yi
This function expresses the probability of the observed data (X,y) as a function of the unknown
parameters (β). The goal is to maximize it so that the resulting estimators are those which agree
most closely with the observed data.
In order to estimate the coefficients β, instead of maximizing the likelihood function itself, it is
easier mathematically to maximize the log-likelihood:

l(β) = log(L(β;X,y)) =

n∑
i=1

[
yilog

( eX
′T
i β

1 + eX
′T
i β

)
+ (1− yi)log

(
1− eX

′T
i β

1 + eX
′T
i β

)]
Therefore, we want to solve the following maximization problem:

max
β

l(β)

This can be accomplished by solving the system composed of the p+1 equations, obtained by
differentiating the log likelihood function with respect to the p+1 coefficients.

∂l(β)
∂β0

= 0

...

∂l(β)
∂βp

= 0

12
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Apart from some particular cases, the system cannot be solved analytically, hence some numerical
algorithms are implemented to get to the solution.

The variances and covariances of the coefficients are then obtained by a process that involves the
second partial derivatives of the log likelihood function. First, we compute the following matrix:

I(β) =


−∂

2l(β)
∂β2

0
− ∂2l(β)
∂β0∂β1

. . .

...
. . .

− ∂2l(β)
∂βp∂β0

−∂
2l(β)
∂β2
p


I(β) is called the observed Fisher information matrix. The matrix of variances and covariances of
the coefficients is then obtained by taking the inverse of the information matrix:

V arCov(β) = I−1(β)

The estimators of the variances are obtained by evaluating the diagonal elements of the matrix at
the estimate of the coefficients β̂. We can denote those as V̂ ar(β̂j). The most important quantity
that we are going to use to build statistical tests and confidence intervals is the standard deviation
of the estimated coefficient, defined as:

ŝe(β̂j) =
[
V̂ ar(β̂j)

] 1
2

3.1.3 Interpretation

In the linear regression, the interpretation of the coefficients is straightforward, whereas in the
logistic regression it is slightly more complicated.
If x1 is a numeric variable, how do we interpret β1?
When x1 = k, by Equation (3.3) we have:

logit(π) = β0 + β1k + β2x2 + ...+ βpxp

When x1 = k + 1:
logit(π) = β0 + β1k + β2x2 + ...+ βpxp + β1

So for a unit increase in x1, with all other predictors held constant, β1 represents the increase in
the log of the odds. The coefficients can also be interpreted in terms of the change in the odds
that the response will be positive. For example, by using Equation (3.2), we have that:

odds(x1 = k + 1)

odds(x1 = k)
=
eβ0+β1(k+1)+β2x2+...+βpxp

eβ0+β1k+β2x2+...+βpxp
= eβ1

Therefore, e(β1) represents the odds ratios of a unit increase of x1, while holding all other predictors
at the same values.
Let’s consider now the case in which we have a nominal attribute, nationality, with three levels:
Dutch, Italian and French and the response variable is y = cancer (y = 1 → yes, y = 0 → no).
In general, for nominal attributes, we always need to create a number of predictors equal to the
number of levels - 1. In this case:

x1 =

{
1 if nationality is Italian

0 otherwise
x2 =

{
1 if nationality is French

0 otherwise

13
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The model, when considering only this nominal attribute, is:

logit(y) = β0 + β1x1 + β2x2

When considering a Dutch person, the model simply becomes:

logit(y) = β0 + β1 · 0 + β2 · 0 = β0

That means that “nationality=Dutch” is the reference group (with x1 = 0, x2 = 0) and the
intercept β0 is the log odds in favour of a Dutch person to suffer from cancer. Subsequently, by
Equation (3.1), 1

1+e−β0
is the probability that a Dutch person suffers from cancer.

If we have an Italian patient, the model is:

logit(y) = β0 + β1 · 1 + β2 · 0 = β0 + β1

The coefficient β1 is then the change in the log-odds of an Italian getting cancer relative to a
Dutch person. eβ1 represents instead the odds of having cancer if the patient is Italian over the
odds of having cancer if the patient is Dutch (the reference level).
Similarly, when considering a French person, we have that:

logit(y) = β0 + β1 · 0 + β2 · 1 = β0 + β2

The coefficient β2 is then the change in the log-odds of a French getting cancer relative to a Dutch
person.

3.1.4 Hypothesis testing for logistic regression

Hypothesis testing can be defined as the formal procedures used by statisticians to accept or reject
statistical hypothesis. A statistical hypothesis is an assumption about a population parameter that
may be true or not. Hypothesis testing is used to assess the plausibility of a hypothesis by using
sample data. When performing a statistical test, there are two different types of hypothesis: the
null (indicated with H0) and the alternative hypothesis (indicated with Ha). The outcome of the
test can be either to reject the null hypothesis or to fail to reject it.
In this section we describe two popular statistical tests when using logistic regression: the Wald
test and the Likelihood ratio test. They can be used to assess the significance of one or multiple
logistic regression coefficients.
The concepts reported in this section have been taken from [18].

Wald test (single logistic regression coefficient)

If the aim of our analysis is to understand whether a single logistic regression coefficient β̂ is
statistically significant or not, the Wald test is one of the most popular statistical tests that can
be performed. The test is the following:

H0 : β̂ = 0

Ha : β̂ 6= 0

Then, we can use the Wald statistic, defined as:

W =
β̂

ŝe(β̂)

i.e. the estimate of the coefficient divided by its standard error.

Under the null hypothesis, W
H0∼ N(0, 1), i.e. the statistic asymptotically follows a standard
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normal distribution.1

Therefore, if W is large enough we can reject the null hypothesis and claim that the coefficient is
statistically significant.
An equivalent way to perform the Wald test is to consider:

W 2 =
β̂2

ŝe(β̂)2

Under the null hypothesis, W 2 H0∼ χ2
1, i.e. it asymptotically follows a chi-squared distribution with

one degree of freedom.
From the Wald statistic W, it is possible to define confidence intervals.
We start from:

P
(
Z1−α2 ≤W ≤ Zα

2

)
= 1− α

where Z1−α2 and Zα
2

are respectively the 1− α
2 and the α

2 100%-quantiles of the standard normal
distribution.
We have that:

P
(
Z1−α2 ≤

β̂

ŝe(β̂)
≤ Zα

2

)
= 1− α

P
(
Z1−α2 ŝe(β̂) ≤ β̂ ≤ Zα

2
ŝe(β̂)

)
= 1− α

We can then build our (1− α)× 100% confidence interval for β̂:[
β̂ − Z1−α2 ŝe(β̂) , β̂ + Z1−α2 ŝe(β̂)

]

α represents the probability of rejecting the null hypothesis (in this case that the coefficient β̂ is
not significant) when the null hypothesis is true (type I error) and is called the significance level
of the test.

1− α is called the confidence level and represents the probability that the constructed confidence
interval will cover the true unknown parameter β. As underlined in [19], we must be careful with
the interpretation of this quantity. 1 − α is not the probability for the unknown parameter to
be within that interval but it is the probability of selecting a sample such that the constructed
interval (that depends on the sample) contains the unknown parameter. A usual value to set α is
0.05 . This means that we have 5% chance to commit a type I error and the confidence level of
our test is 95%.

The p-value is the smallest significance level at which the null hypothesis is rejected. In other
words, it is a measure of the evidence against the null hypothesis H0: the smaller the p-value, the
stronger the evidence against H0. It is defined as the probability (under H0) of observing a value
of the test statistic the same as or more extreme than what was actually observed. Therefore, the
smaller the p-value is the more extreme the observed value will be under the null hypothesis and
the stronger evidence we have in favor of the alternative hypothesis.

1In this chapter, the symbol
H0∼ implies that, under the null hypothesis, the statistic on the left asymptotically

follows the distribution on the right.
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Likelihood ratio test

The Likelihood ratio test (LRT) can be used to assess the significance of both a single and a group
of coefficients. The hypothesis is the following:

H0 : β̂g = 0 ∀g ∈ G

Ha : β̂g 6= 0 for at least one g ∈ G

where G is the set of indices of the coefficients we are interested to test. The test is rejected if
there is at least one coefficient that is significantly different from 0.
The LRT statistic can be defined as the ratio between the log-likelihood of the reduced model (the

one without the coefficients β̂g) to the current model (the one with the coefficients β̂g), multiplied
to -2:

LR = −2log
(L without coefficients

L with coefficients

)
= −2log(L at H0) + 2log(L at Ha)

where L is the Likelihood function.
For a large n (a large number of observations), we have that

LR
H0∼ χ2

p−r

i.e. LR asymptotically follows a chi-squared distribution with p-r degrees of freedom. p is the
number of coefficients in the current model, and r is the number of coeffcients in the reduced
model.
The Likelihood ratio test can be applied to the logistic regression model to test the significance of
a single coefficient. Suppose that we have the following logistic regression model:

logit(πi) = β0 + β1xi1 + β2xi2

We want to test:

H0 : β̂2 = 0

Ha : β̂2 6= 0

The model, under the null hypothesis H0 is:

logit(πi) = β0 + β1xi1 with likelihood function: L0

The model, under the alternative hypothesis Ha is:

logit(πi) = β0 + β1xi1 + β2xi2 with likelihood function: La

Then the LRT statistic is simply:

LR = −2log
(
L0

)
+ 2log

(
La

)
and:

LR
H0∼ χ2

1
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Now, suppose that we want to test if a group of coefficients is significant:

H0 : β̂1 = β̂2 = 0

Ha : otherwise

The model, under the null hypothesis H0 is:

logit(πi) = β0 with likelihood function: L0

The model, under the alternative hypothesis Ha is:

logit(πi) = β0 + β1xi1 + β2xi2 with likelihood function: La

Then the LRT statistic is simply:

LR = −2log
(
L0

)
+ 2log

(
La

)
and:

LR
H0∼ χ2

2

3.1.5 Pseudo R-squared and AUC

In logistic regression, there are many measures that can be used to assess if the model is appropriate
or not. One of the most commonly reported as an output of many programming languages, e.g.
Python or R, is the pseudo R-squared. The term “pseudo” is used to distinguish that from the R-
squared, a statistic present in linear regression that expresses the proportion of variance explained
by the model and that can be used to quantify the goodness-of-fit of the model.
Throughout the years, many different pseudo R-squareds have been proposed to quantify how
well the logistic regression model fits the data. Though they have some common underlying
properties, e.g. they all range from 0 to 1 and the closer to 1 the better the model, there are
also some important differences. Unlike the R-squared in linear regression, each of the pseudo
R-squareds is defined in a different way and, even on the same model, different pseudo R-squareds
can yield very different results.
One of the most popular, usually provided by many packages in Python or R, is the McFadden’s
pseudo R-squared [20]. It is defined as:

R2 = 1−
log
(
L̂(Mc)

)
log
(
L̂(Mnull)

)
where Mc represents the current logistic regression model with the predictors included, Mnull is
the model with only the intercept and L̂ is the likelihood computed using the estimates of the
coefficients plugged into the model.
The likelihood function, in case of logistic regression, is computed from the joint of Bernoulli dis-
tributions, hence it ranges from 0 to 1. Therefore, the log of the likelihood is less than or equal to
zero and the closer to zero the more likely the model captures the information given by the data.
A small ratio of log likelihoods indicates that the full model is a far better fit than the intercept
model. Hence, McFadden’s pseudo R-squared can be interpreted as the level of improvement over
the intercept model offered by the current model.
The closer R2 is to 1 the better but is there a clear threshold to state that the model is a poor
fit? There is no simple answer to that but in [20] McFadden himself claims that “values from .2
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to .4 for R2 represent an excellent fit”.

The Area Under the ROC Curve (AUC) can be regarded as another useful measure to assess the
performance of our model [17]. ROC curve is a tool to assess the model’s ability to discriminate
between those subjects who experience the outcome of interest versus those who do not. ROC
curve does that by plotting sensitivity, the probability of predicting that a real positive case (1)
is a positive, against 1-specificity, the probability of predicting that a real negative case (0) is a
positive. In other words, it shows the tradeoff between the true positive rate and the false positive
rate of a classifier for an entire range of possible cutpoints.
AUC ranges from 0 to 1 and the closer to 1 the better the performance of our model. An indicative
value is 0.5, stating that the fitted model predicts no better than by chance, hence if AUC is less
than 0.5 there is something wrong with our model and it would be even more accurate to flip a
coin to predict the outcome of an observation.

It is important to underline that there are many other measures that can quantify how well a
logistic regression model does at fitting the data or is performing in terms of predictions, but
the aim of this research is not to search for the best measure to assess the quality of a model.
Nevertheless McFadden’s R-squared and AUC are used in our experiments to get a general idea
on whether the model is a very poor fit or not because we want to avoid the scenario in which we
draw conclusions from a model that does not really reflect the reality of the data.

3.2 Comparing two probability distributions

In this section we tackle the problem of quantifying how similar or different two probability dis-
tributions are. This will be useful in the EMM framework in terms of comparing two different
groups: the measures outlined in this part will in facts be used to define the quality measures to
assess how interesting a subgroup is (Section 4.2).
In statistics, several measures exist to quantify how similar (or different) two probability distribu-
tions are [21]. Many of them rely on the concept of entropy.
In thermodynamics, entropy is intended as the degree of disorder of a physical system. In statist-
ics, it can be used as a measure of goodness of fit to quantify discrepancy between two probability
distributions or two statistical hypotheses. In information theory, entropy can measure the degree
of uncertainty before a statistical experiment takes place. A decrease in uncertainty can be trans-
lated into a gain of information [22]. Hence entropy can be interpreted as the gain or the lack of
information when using a probability distribution instead of another one.
In the literature, many measures have been proposed: Rényi’s divergence, Kullback-Leibler diver-
gence, Jeffreys’ divergence, Hellinger distance, Bhattacharyya divergence, Jensen-Shannon diver-
gence, etc .
In [23], a study has been conducted to analyze if there were significant differences when using
these measures as goodness-of-fit measures and no remarkable difference was discovered. To the
aim of our study, we decided to focus on KL-divergence and Hellinger distance. Both of them
are quite popular in statistics and information theory and differ between each other in terms of
properties and interpretation.

3.2.1 Kullback-Leibler divergence

Kullback-Leibler divergence [24], or more simply KL-divergence, also known as cross entropy, is
a non-symmetric measure of the difference between two probability distributions P and Q over
the same random variable X. When P and Q are discrete probability distributions, which is the
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relevant case in this project (see Section 4.2), the formula is:

DKL(P ||Q) =
∑
x∈X

P (x) · log
(
P (x)

Q(x)

)
(3.5)

The quantity DKL(P ||Q) can be interpreted as the amount of information gained when replacing
a priori distribution P with a posteriori distribution Q. Alternatively, it can also be seen as the
loss of information resulting from the adoption of an empirical distribution Q when the underlying
theoretical distribution is P (P is called the reference distribution).
KL-divergence is always non-negative and it is equal to 0 if and only if P = Q. However, it is
not a metric because it does not satisfy the property of symmetry and the triangle inequality.
Furthermore, there are specific cases that must be handled with care: when there exists an x̂ ∈ X
for which P (x̂) = 0 or Q(x̂) = 0. In such cases the logarithm in (3.5) is not well defined and some
conventions have been established. If P (x̂) = 0 then that specific term of the sum is set to 0.
If instead Q(x̂) = 0 then that specific term is set to ∞. That means that the KL-divergence is
unbounded.

3.2.2 Hellinger distance

An alternative to KL-divergence can be found in Hellinger distance [25]. It is a measure to quantify
the similarity between two probability distributions and can be seen as the probabilistic analog of
the Euclidean distance.
When dealing with discrete distributions, which is what we focus on in this project (see Section
4.2), Hellinger distance is defined as:

H(P,Q) =
1√
2
·
√∑
x∈X

(√
P (x)−

√
Q(x)

)2
(3.6)

The main difference with respect to KL-divergence is that Hellinger distance is a proper distance.
Let P , Q and T be three probability distributions; Hellinger distance satisfies:

1. H(P,Q) ≥ 0 and H(P,Q) = 0 ⇐⇒ P = Q (non-negativity)

2. H(P,Q) = H(Q,P ) (symmetry)

3. H(P,Q) +H(Q,T ) ≤ H(P, T ) (triangle inequality)

The symmetry property implies that, unlike KL-divergence, there is no reference probability dis-
tribution so that P and Q are treated as “peer distributions”.
Another remarkable difference is that Hellinger distance is always well defined. Moreover, it is
bounded:

0 ≤ H(P,Q) ≤ 1

In the following chapter we apply these concepts to define both the logistic regression model in the
Exceptional Model Mining Framework and the quality measures used to assess the interestingness
of a subgroup.
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Chapter 4

Methodology: implemented
quality measures

In Chapter 3, we have seen the main concepts of logistic regression and how to quantify the differ-
ence between two probability distributions. In this chapter, we exploit these notions and describe
two different approaches to define proper quality measures to assess the interestingness of the
subgroups.
In the EMM framework, when using the model of classification with logistic regression, the goal
is to find those subgroups for which the relationship between the predictors and the response is
significantly different when compared to the relationship present in the dataset or in the comple-
ment.
From now on, we suppose that we have identified our p predictors and response among the attrib-
utes of the dataset under analysis. Given n observations y1, ..., yn, the model defined for multiple
predictors is:

logit
(
P (yi = 1)

)
= β0 + β1x1i + ...+ βpxpi i = 1, ..., n

where the coefficients β1,... , βp quantify the relationship between the predictors x1i,... , xpi and
the log odds of the response yi.

4.1 Statistical testing approach

In this approach, the idea is to compare the logistic regression model fitted on the subgroup
with the logistic regression model fitted on the complement. Let D be a binomial variable, the
description, that informs us if a record belongs to the subgroup or not, i.e.:

Di =

{
1 if the record i is in the subgroup

0 otherwise
(4.1)

Here Di is a short notation for D(ai1, ..., a
i
k) and ai1, ..., a

i
k represent the descriptive attributes that

are used to define the subgroup.
We then fit the following model on the dataset:

logit
(
P (yi = 1)

)
= β0 + β1x1i + ...+ βpxpi+

+ βp+1Di + βp+2(Di · x1i) + ...+ β2p+1(Di · xpi)
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It is worth noting that we did not simply add the variable Di, but also all the interaction terms
between Di and the other predictors. This is done in order to allow the intercept and the coeffi-
cients associated to all predictors to be different in the subgroup and in the complement. More
explicitly, we have:

logit
(
P (yi = 1)

)
=

{
(β0 + βp+1) + (β1 + βp+2)x1i + ...+ (βp + β2p+1)xpi (subgroup)

β0 + β1x1i + ...+ βpxpi (complement)

What we are interested in is if the coefficients of the two models are significantly different, i.e.
if the regression coefficients βp+1, ..., β2p+1 are significant or not. Therefore, we can perform p
statistical tests: {

H0 : βj = 0

Ha : βj 6= 0
j = p+ 1, ..., 2p+ 1

As described in Chapter 3, there are a couple of statistical tests that can be used to assess the
significance of the regression coefficients. Since in this case we are interested in the significance of
a single regression coefficient, we can use the Wald statistic:

W =
βj

se(βj)

H0∼ N(0, 1)

Under the null hypothesis, the coefficient divided by its standard error asymptotically follows a
standard normal distribution. Alternatively, we can use W 2 which (under the null hypothesis)
asymptotically follows a chi-square distribution with 1 degree of freedom.
Each test j provides a p-value (notation: p-valj). The lower the p-value the more significant
the coefficient βj will be. Our goal is to identify those subgroups for which at least one of these
coefficients is really significant. Subsequently, we can define the following quality measure:

ϕlog(S) = 1− min
j=p+1,...,2p+1

p-valj (4.2)

In other words, when we apply this method in the EMM framework, we are interested in finding
those subgroups for which at least one of the regression coefficients is significantly different when
comparing the subgroup and the complement. The more significant this coefficient is, the lower
the p-value and the higher the quality measure in Equation (4.2) will be.

This approach generalizes the one adopted in [11] in the case of logistic regression. In the article,
Duivesteijn et al. considered the simpler case of a single predictor:

logit
(
P (yi = 1)

)
=

{
(β0 + β2) + (β1 + β3)x1i (subgroup)

β0 + β1x1i (complement)

and proposed as a quality measure 1 minus the p-value associated to the regression coefficient β3.
With this novel approach we generalize to the case of multiple predictors and that allows to define
more complicated logistic regression models.

21



CHAPTER 4. METHODOLOGY: IMPLEMENTED QUALITY MEASURES

4.2 A probabilistic approach

The quality measure defined in (4.2) focuses on finding a significant difference of a single logistic
regression coefficient between the model fitted on the subgroup and the one fitted on the comple-
ment. That implies that it is enough for a subgroup to have a very significant difference for one
coefficient to be characterized by a high quality measure no matter what all the other regression
coefficients are.
The question is: can we define a quality measure that quantifies a more global effect, i.e. takes
into account all the coefficients?
Let’s fit the same logistic regression model on the subgroup and on the complement:

logit
(
P (yj = 1)

)
= βS0 + βS1 x1j + ...+ βSp xpj (subgroup)

logit
(
P (yk = 1)

)
= βC0 + βC1 x1k + ...+ βCp xpk (complement)

with j ∈ S and k ∈ Sc.1

If we want to quantify how different the coefficients of the two models are, a trivial idea would be
to adopt some standard metrics such as the 1-norm or the Euclidean distance:

ϕlog1 =

p∑
j=1

|βDj − βSj | ϕlog2 =

√√√√ p∑
j=1

(βDj − βSj )2

Coefficients related to different predictors could be affected by a different scale and a difference
variance and we are not taking that into account when we simply sum over all the differences, so
this is not a good approach.
The idea is then to define a quality measure which is not specifically based on the coefficients, but
on the response yi. We start by fitting the same logistic regression model on the whole dataset
and on the subgroup separately. In general, we will get two vectors of coefficients that are different
from each other: we can indicate them as βD (dataset) and βS (subgroup). From these vectors,
using Equation (3.4), we can then compute the predicted probabilities:

πDi =
eX

′T
i βD

1 + eX
′T
i βD

πSj =
eX

′T
j βS

1 + eX
′T
j βS

(4.3)

Here we use i and j to indicate the observations belonging respectively to the dataset and the
subgroup.
One of the assumptions of logistic regression is that the response has a Bernoulli distribution with
probability equal to the probability of the presence of the outcome π:

yDi ∼ Ber(πDi ) ySj ∼ Ber(πSj ) (4.4)

It is clear that the more different the probabilities are, the more dissimilar the responses will be,
but how can we compare those?
First of all, it makes sense to compare two responses, one from the dataset and one from the
subgroup, relative to the same observation, i.e. where i = j. Indeed, we can see from Equation
(4.4) that the difference in the responses is reflected by the difference between the probabilities of
success πDi , π

S
j . Subsequently, by Equation (4.3), since X

′T
i = X

′T
j if i = j, the only difference is

1This is a simplified notation to indicate that the j-th observation belongs to the subgroup and the k-th obser-
vation belongs to the complement.
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determined by the vector of coefficients βD, βS .
Therefore, we are going to consider only the observations belonging to the subgroup and for each
observation compare the two responses yDj and ySj .
Let φ be a measure that is able to capture the difference between two Bernoulli distributions. We
compute

φ
(
Ber(πSj ), Ber(πDj )

)
for every observation belonging both to the subgroup and the whole dataset and then take the
arithmetic mean

quality-measure =
1

|S|
∑
j∈S

φ
(
Ber(πSj ), Ber(πDj )

)
(4.5)

where |S| is the size of the subgroup. Hence, Equation (4.5) gives an idea on how, on average, the
responses are different between the dataset and the subgroup.

We must now explicitly define the function φ in Equation (4.5), knowing that the responses follow
a Bernoulli distribution. We have described in section 3.2 two measures that could be suitable
for quantifying the difference of two probability distributions: Kullback-Leibler divergence and
Hellinger distance. We have seen that, even tough the goal is the same, they differ in terms of
properties, e.g. the former is not a distance, whereas the latter is.
Regarding KL-divergence, in the particular case in which we want to compare two Bernoulli
distributions, the formula descibed in Equation (3.5) becomes:

DKL

(
Ber(πSj ), Ber(πDj )

)
= πSj · log

(
πSj
πDj

)
+ (1− πSj ) · log

(
1− πSj
1− πDj

)
(4.6)

Since the first element in Equation (4.6) is Ber(πSj ), we are implicitly considering the distribution

of the response ySj ∼ Ber(πSj ) as the reference distribution. If we swapped the order, since KL-
divergence is not symmetric, we would get a different value, in general. The quality measure is
then:

ϕ̂DKL =
1

|S|
∑
j∈S

DKL

(
Ber(π̂Sj ), Ber(π̂Dj )

)
(4.7)

where π̂Dj and π̂Sj are the estimates of the probabilities πDj , πSj of the j-th observation.

If instead we consider Hellinger distance, in the case of two Bernoulli distributions, Equation (3.6)
can be expressed as:

H
(
Ber(πSj ), Ber(πDj )

)
=

1√
2
·
√(√

πSj −
√
πDj

)2
+
(√

1− πSj −
√

1− πDj
)2

=

=

√
1−

√
πSj π

D
j −

√
1− πSj

√
1− πDj

In the end, the quality measure that will be used in the EMM framework is:

ϕ̂H =

∑
j∈S

H
(
Ber(π̂Sj ), Ber(π̂Dj )

)
|S|

(4.8)

where π̂Dj and π̂Sj are the estimates of the probabilities πDj , πSj of the j-th observation.
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Chapter 5

Dataset description and
preprocessing phase

This chapter describes more in detail the dataset under analysis. First, it provides a general
background for lung cancer: what it is, the symptoms, the risk factors and how it can be treated.
Then, it shows an overview of the dataset itself with the description of the main attributes that
have been provided. In the end, it describes how the preprocessing of the data was carried out in
order to have cleaned data on which to apply the logistic regression model in the EMM framework.
As we mentioned in the introduction, the dataset was provided by IKNL and contains information
regarding patients who were diagnosed with lung cancer in the period 2005-2018.

5.1 Lung Cancer

Lung cancer (also known as lung carcinoma) is the leading cause of cancer deaths worldwide, the
most common type of cancer for men and the third most common for women [1]. It is character-
ized by an out-of-control growth of cells in the lungs tissues. The lungs are two organs located in
the chest whose main task is devoted to respiration. When we breath in with our mouth and/or
nose, air travels through the trachea and reaches the lungs via two main branches called bronchi.
Within each lung, the bronchi then divides into smaller branches denominated bronchioles which
end up in the alveoli. These are tiny air sacs, responsible for the exchange of oxygen and carbon
dioxide with the blood: it is at this level that the actual respiration takes place. The right lung
is composed of 3 sections, called lobes. The left lung is slightly smaller, with 2 lobes, due to the
presence of the heart in that part of the body.
There are two main types of lung cancer that can be identified: non-small-cell lung cancer (NSCLC)
and small-cell lung cancer (SCLC). This distinction is important because the behaviour of the tu-
mor is rather different and this is reflected by the treatments that can be provided and the survival
rates.
NSCLC is the most common type, ranging from 80 to 85 % of total cases. In this category we
can identify three main subtypes according to the kind of cells from which the cancer originates:
adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. The treatments that can be
applied in this case depend on how much the cancer has spread and also on other factors, for
example the patient’s health condition. Some possibilities are surgery (to remove the cancer if it
still limited), radiofrequency ablation, immunotherapy, radiotherapy, chemotherapy.
SCLS is less frequent (10-15 %) and in general is considered more dangerous because the tumor
tends to grow faster than the NSCLC type: in most cases, when diagnosed, the cancer has already
spread. Therefore, the possible treatments are more limited and in many cases doctors make use
of chemo or radiotherapy to limit the tumor rather than cure it.
The most common symptoms of lung cancer are: shortness of breath, chest pain, cough, hoarse-
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ness, feeling tired or weak, etc.
The most important risk factor is undoubtedly smoking, but other factors can also play an im-
portant part, such as air pollution, exposure to substances like radon and asbestos and personal
or family history of lung cancer.

5.2 Dataset description

The dataset contains information regarding patients that were diagnosed with lung cancer in the
period 2005-2018. In total we have 170329 rows and each of them does not refer to a single patient
but to a primary tumor. Therefore, there can be multiple rows referring to the same patient with
several primary tumors. The reader can find the meaning of every attribute of the dataset in
Appendix A, as well as some tables relative to specific attributes. In this section, we focus on
some of them.
What we notice is that we can split the attributes into certain categories according to the area of
interest. For example, we have information closely related to the patient: the gender (gesl), the
age (leeft), the vital status (vitstat) and the socio-economic status (ses). The latter is not the
direct income of the individual but is derived from the the wealth of the area of residence (Table
A3).
The dataset also contains temporal attributes such as the incidence year (incjr), i.e. the year in
which the patient was diagnosed with cancer, the follow up in days (vitfup), which represents how
many days the patient has survived since the diagnosis, the date of vital status (vitdat). With
respect to the latter, there are checks once a year and, if the person is still alive, the day of the last
check becomes the date of vital status; otherwise the date of death becomes the date of vital status.
Similarly, there are several geographical attributes: the region of residence of the patient (COROP),
the province (PROVINCIE), both according to the Nomenclature of Territorial Units for Stat-
istics (NUTS [26]), and even the last two digits of the post code of residence (PC2).
There are many attributes strictly related to the cancer itself. The topography (topog) is com-
posed of one letter followed by 3 digits, with the first three characters representing the type of
tumor (in this case lung cancer is identified with the code C34) and the last digit indicating the
specific location (Table A1).
The morphology (morf) focuses on the histology of the tumor. There are several morphology
codes present in the dataset and each of them records the type of cell that has become neoplastic
(abnormal growth) and its biologic activity; in other words, it records the kind of tumor that has
developed and how it behaves.
The differentiation grade of the cells (diffgr) is a reflection of how abnormal the cells look under
the microscope. In cancer, cells become deregulated and proliferate abnormally (dysplasia). As
dysplasia develops, the cancer cells lose features of their tissue of origin and become less and less
differentiated. This translates into a higher grade of differentiation (Table A2).
One of the most interesting features, when examining a tumor, is certainly its stage (stage main),
an indication of the degree of spread of the cancer. Understanding the degree of spread of a cancer
brings advantages to oncologists and physicians because it gives them vital information to choose
the best treatment options. For example, the treatment for an early-stage cancer may be surgery
or radiation, while a more advanced-stage cancer may need to be treated with chemotherapy.
There are essentially three different ways a tumor can spread:

• Direct: the tumor grows and invade an adjacent structure (local invasion). In the case of
lung cancer, the tumor can spread from the lung directly into the chest wall, airways, etc.

• Lymphatic: cancer cells enter the lymphatic vessels and lymphnodes. In the case of lung
cancer, the tumor could spread to the hilar, the mediastinal and the supercurricular lymph-
nodes.

• Hematogeneous: cancer cells go into the blood circulation and reach distant location with
respect to the origin of the tumor. In the case of lung cancer, the tumor could spread to
organs such as the brain, the liver, the bones, the adrenal glands.
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Stage is commonly defined using the TNM classification system. T stands for tumor and focuses
on the extent of the local and primary tumor growth (size). N stands for nodal status and repres-
ents the degree of lymphnodes involvement. M stands for metastasis and indicates whether there
was a spread of cancer cells from the place where they first formed to another part of the body. T,
N, M are therefore a reflection of the three possible ways a tumor can spread: direct, lymphatic
or hematogeneous.
Furthermore, there are two main types of staging. Clinical staging is an estimate of the extent of
the cancer based on results of imaging tests (x-rays, CT scans, etc.), physical exams and tumor
biopsies. Pathological staging is instead conducted when part of the tumor has been surgically
removed (generally, nearby lymphnodes are also sampled in such a setting). The pathological
stage can then be different from the clinical one and gives the doctors more precise information
about the cancer.
In the dataset, we have both attributes related to the clinical stage (ct, cn, cm) and the patholo-
gical one (pt, pn, pm). Since it is not always possible to perform the latter type of staging when
examining a cancer, there are many more missing values for pt, pn, pm (approximately 143000
for each of them) compared to ct, cn, cm (approximately 8000 for each of them).
There is also a specific attribute indicating the presence or not of metastasis (metastasized) and
two attributes indicating the number of examined lymphnodes (lyond) and the number of positive
lymphnodes (lypos).
In the end, another important category of attributes is composed of the ones related to treatments.
The attribute treatment indicates whether or not a patient received any treatment. Then there
are many Boolean attributes that refer to the specific treatment, e.g. local surgery (indchlok),
immunotherapy (indimmuno), etc . radio chemo is specific for people that received both radio
and chemotherapy and takes 4 values, indicating if the two therapies were concurrent, sequential,
distinct or it was not possible to determine that. We also have information regarding the first
type of hospital the patient came in contact with (first hospital type), the first treatment they
received (first hospital treatment) and the first hospital ward (first specialism).

5.3 Preprocessing

In every data mining task, having consistent, clean data is of the utmost importance. Data af-
fected by inconsistencies (e.g. outliers, wrong entries) will influence the result of any technique
that will be applied on the dataset. It does not exist any perfect method that is suitable for every
occasion, indeed the preprocessing depends on the particular dataset itself.
In this section, we explain step by step what has been done in regards of the dataset that IKNL
provided.

5.3.1 Dropped attributes

First of all we focus on which attributes are kept for analysis and which ones instead are discarded
because not informative (barely no variance, not useful for our analysis). The following is a list of
attributes that were dropped from our dataset:

• episode: DIA (diagnosis) is the only value, i.e. the tumor was detected after a diagnosis of
the patient.

• topo: C34 is the only value (the code is indicative for lung cancer);

• gedrag: 3 is the only value (it stands for malignant tumor);

26



CHAPTER 5. DATASET DESCRIPTION AND PREPROCESSING PHASE

• Age 31-12 yoi, Age 1-1 yoi: age of the patient computed respectively on December 31st
and January 1st to conduct statistical studies with respect to the year. For our research it
is not important because a very similar piece of information is included in leeft ;

• vitfup: it is given by follow up years*365.25 so it is redundant. vitfup is the followup in
days of the patient given by date of vital status - incidence date; follow up years will be
useful for some experiments regarding survival analysis (Section 7.1).

• vitdat: date of vital status. It is not interesting for our analysis.

5.3.2 Mappings

There are some attributes for which recoding is required before continuing with the analysis.
In the case of stage main, in the NCR, there are different ways for classifying the stage of the
cancer and, in general, TNM is the preferred classification system. However, if there is not
sufficient information, the EoD (Extent of Disease) classification is instead adopted. The EoD
system is characterized by 6 different values, from 1 to 6, which indicate the degree of spread of
the tumor. Our goal is to have for stage main a unique system of classification. Therefore we are
going to convert the EoD stage to a TNM stage, according to Table 5.1.

EoD stage Corresponding TNM stage
1 1
2 1
3 2
4 3
5 3
6 4

Table 5.1: Recoding to convert a stage classified via the EoD system to a stage classified using
TNM.

There are also some categorical attributes that have many different levels. This can cause mainly
two problems depending on how the attribute is used. If the attribute is set to be a descriptor,
the risk is that, when we impose a condition on that attribute to generate a subgroup (attrib-
ute=value), the subgroup will be too small to be informative. If instead the attribute is used as a
predictor in the logistic regression model, the risk is that the model is unstable and convergence
may not be reached. This is discussed more in detail in Chapter 6.
Regarding first hospital treatment, i.e. the hospital of first treatment, the main 3 levels are AL-
GZK(general hospital), STZ(top clinical), UNIVC(university hospital). There are also some special
values such as 968 (general practitioner), 998 (abroad), 999 (unknown) and these will be coded as
”OTHER”. Then we have many other levels coded in the range 900-1000 that simply refer to a
specific radiotherapy institution/department: we are going to code those simply as ”RADIO”.
Regarding first specialism, the first hospital ward that was visited by the patient after the dia-
gnosis of cancer (e.g. pneumology, cardiology, ...), there are many different levels and some of
them with very few observations (in some cases even just one). Therefore, we are going to keep
the top 3 most frequent levels (“0400 - Longziekten”, “0200 - interne”, “2100 - Neurologie”) and
map all the others as “other”.

5.3.3 Correlation analysis

Another important issue to be tackled down is correlation. Indeed, highly correlated attributes
hold similar information, hence can be redundant for the analysis. Furthermore, as it will be
described in Chapter 6, when applying logistic regression, we want the predictors to be as less
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Figure 5.1: Pearson correlation among numeric attributes

correlated as possible between each other, otherwise we might have some problems. We can split
the attributes into two categories: numeric and categorical.
Regarding the numeric attributes, we can make use of the classic Pearson correlation coefficient.
It is a statistic that measures linear correlation between two variables x and y. Its values can
range from -1 to +1, with 0 suggesting no correlation at all and -1, +1 indicating respectively
completely negative and positive correlation between the attributes. Formally, it is defined as

rxy =

n∑
i=1

(xi − x̄) · (yi − ȳ)√
n∑
i=1

(xi − x̄)2 ·
n∑
i=1

(yi − ȳ)2

where xi, yi are the i-th observations and x̄, ȳ are the sample means.
As we can see from figure 5.1, there is a rather low correlation between the attributes, hence they
will not be removed.
Regarding the categorical attributes, we cannot apply Pearson but we have to look for another
quantity to measure correlation. Cramér’s V [27] can be suitable for our goal: it is one of the most
popular measures of association between two nominal variables that can also have more than two
levels. It is computed after defining the contingency tables with the two nominal variables. It is
defined as:

V =

√
χ2/n

min(k − 1, r − 1)
=

√
φ2

min(k − 1, r − 1)
(5.1)

where n is the total number of observations, k is the number of columns and r is the number
of rows. χ2 represents Pearson’s chi-squared statistic and tells us whether there is a significant
relationship between the two variables or not. Given this definition, we could wonder why there
is the need to use Cramér’s V when we could simply consider χ2. The problem is that χ2 by itself
does not inform us on how important the relationship between two variables is, it just indicates
whether it is significant or not. Cramér’s V is then an adjustment of χ2 and takes values between
0 and 1. The former is indicative of no relationship at all whereas the latter suggests a strong
association between the two nominal variables. φ is called the mean square contingency coefficient
and is equivalent to Cramér’s V when we are dealing with a 2×2 contingency table, i.e. when we
have two binary variables.
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Cramér’s V defined by Equation (5.1) is actually a biased estimator and Bartlett[28] proved that,
under independence, the expected value of φ2 is:

E
(
φ2
)

=
1

n− 1
(k − 1)(r − 1)

In this regard, Bergma[29] proposes to use instead:

φ̃2 = φ2 − 1

n− 1
(k − 1)(r − 1) k̃ = k − 1

n− 1
(k − 1)2 r̃ = r − 1

n− 1
(r − 1)2

and, since now φ̃2 could be negative and that would not make sense, the suggestion is to correct
with:

φ̃2+ = max(0, φ̃2)

The adjusted Cramér’s V statistic is:

Ṽ =

√
φ̃2+

min(k̃ − 1, r̃ − 1)
(5.2)

The correlation matrix, for the categorical attributes, calculated using Equation (5.2) is shown in
Figure 5.2.

So far, we have described the first steps to analyze and prepare the dataset for the experiments
that will be conducted in the EMM framework. The following chapter shows which are the
parameters of our experiments, what are the issues that we could encounter when applying the
logistic regression model and how to overcome those.
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Figure 5.2: Cramer’s V correlation among categorical attributes
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Chapter 6

Experimental Setup

In the previous chapter we analyzed the dataset in detail, providing a general overview of the
attributes that we have, with a focus on which ones to consider later in our analysis and how they
are correlated to each other.
This chapter is about the preparation phase before conducting the experiments. In the first section,
we describe meticulously the parameters which can be used to define the different experiments. The
second section addresses some limitations, caused by the fact that we are using logistic regression,
and some ideas on how to overcome these constraints, based also on the preprocessing steps of
Chapter 5. Lastly, the third section introduces the concept of marginal effect, an important
measure which can be used to interpret the differences between two logistic regression models.

6.1 Beam search parameters

As described in Section 2.3.4, in order to explore many different subgroups and find interesting
ones in the EMM framework, the most common choice is to rely on a heuristic: the beam search
algorithm. Heuristic is preferred over a brute force approach because in general there would be
too many subgroups to analyse.
This section describes the parameters involved in the beam search algorithm: they determine
which subgroups can be generated, which logistic regression model we are interested in and how
the search is conducted. The algorithm that has been used is the one described in pseudo-code
in [11] (Algorithm 1). The code for this project is based on the one implemented for Exceptional
Incidence Distribution Mining [3]. Several changes have been made in order to accommodate for
new aspects, such as the logistic regression model, the new quality measures, the specific dataset
and the output (summaries, plots, ...). Nevertheless, the general structure is fundamentally the
same (definition of a subgroup, search, evaluation, ...).
At the beginning of the algorithm, in the first level of the beam, we generate all the possible
subgroups by imposing a single condition on one of the descriptive attributes and then we assess
them according to the chosen quality measure. At a first glance, it looks like an exhaustive
search, because all the possibilities are explored. However, only the ω (with ω width of the beam)
subgroups with the highest scores of the quality measure are kept. The real difference occurs in
the second level of the beam: at this point only those ω subgroups are further processed. Again we
consider all the possible ways to refine those specific subgroups and then we keep the ω subgroups
with the highest quality measure. These steps are repeated until we reach the maximal depth of
the beam. The output of the algorithm is represented by the best ω subgroups for each single
level of the beam, ordered by the score of the quality measure.
The parameters of the beam search algorithm are:

• descriptors: attributes that will be used to generate the subgroups. As we described
earlier in Section 2.3.3, every time we want to create a subgroup, we impose one or multiple
conditions on the descriptive attributes (e.g. metastasized=True, diffgr=4).
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• width: number of subgroups that are kept at each level of the beam search. We indicate
that with ω.

• depth: number of levels to explore. If depth=1, we are only exploring the subgroups defined
by a single condition on the descriptors. If depth=2, we are also exploring the subgroups
defined by two conditions and so on.

• score metric: here we indicate the quality measure that we are going to use. With respect
to our project, we have three options. The first is defined in Section 4.1, in which we take
into account the p-values and compare the subgroup to the complement. The second and
third options are respectively Kullback-Leibler divergence, defined by Equation (4.7), and
Hellinger distance, defined by Equation (4.8). We are also going to multiply these two
measures to the entropy function defined by Equation (2.3) to take the subgroup size into
account. It is worth noting that in these 2 cases, we are comparing the subgroup to the
whole dataset.

• target attribute: list of attributes that are used in the logistic regression model. The first
element of the list indicates the response, whereas all the others are the predictors.

Among all these parameters, the most important to define is probably target attribute because
it outlines the objective of the experiment itself. We should recall that our goal is to retrieve those
subgroups for which the relationships between the predictors and the response are remarkably
different from the same relationships present in the dataset or in the complement (according to
the chosen quality measure).
The amount of experiments that we could conduct using this particular model is really enormous.
Indeed, the dataset is full of binary attributes and each one of them could theoretically be chosen
as the response. Furthermore, after the choice of the response, we have plenty of possibilities to
define the predictors because any type of attribute (numeric, categorical, boolean) is accepted.
There are some limitations though, due to the fact that we cannot randomly select the targets
and hope that the logistic regression model makes sense. There are some prior analysis that are
necessary to define a suitable model. In the following section, we explain what are some limitations
of this model and how we could overcome them.

6.2 Limitations and possible solutions

In the EMM framework, we are using the (binary) logistic regression model to analyze the relation-
ship between some independent variables (covariates or predictors) and a dichotomous dependent
variable (response). Unlike ordinary linear regression, logistic regression does not assume that
the relationship between the independent variables and the dependent variable is linear. However
there are still some limitations that must be tackled down.

First of all the problem of multicollinearity, i.e. a statistical phenomenon in which two or more
predictors are highly correlated with each other [30]. More formally, when referring to a set of
variables, we say that the set is collinear if there exists one or more linear relationships among
the variables. The presence of multicollinearity among the predictors causes the variances of the
parameter estimates to be inflated: this leads to large standard errors and the confidence intervals
of the coefficients tend to become very wide. Therefore, it can become more difficult to reject the
null hypothesis that the coefficients are not significant and that can lead to incorrect conclusions
about the relationships between the predictors and the response. It is very important to avoid
that because our focus when using Exceptional Model Mining is on the relationships, hence the
coefficients, and we do not want to draw the wrong conclusions. Furthermore, if there is a strong
collinearity, a small perturbation of the data can cause a large and unpredictable perturbation on
the estimates of the coefficients, making them not very stable and subsequently unreliable.
In order to tackle this problem, the first thing we need to do is to avoid including redundant
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variables in the predictors. That is why, during the preprocessing step, we got rid of all the
non-informative and superfluous attributes. However, in most cases, it is more common to have
attributes that are not redundant but are still highly correlated to each other. That is the reason
why it is very helpful to take a look at the correlation matrices computed in Chapter 5 and avoid
to select as predictors those attributes that show a high correlation.

Another limitation relates to convergence of the logistic regression model. In some cases, the
algorithm used to compute the regression coefficients does not converge and there can be several
reasons. We must keep in mind that the method that we use to find the coefficients is the
maximization of the likelihood function (or equivalently of the log-likelihood function). Since we
are trying to maximize a function, we could encounter the problem of local maxima; in this scenario
the algorithm used to find the solution could keep on iterating around the same local maximum,
never reaching the global one, i.e. the desired solution. Fortunately this does not happen with
the log-likelihood function because it is globally concave, hence there is at most one maximum.
Unfortunately, it is possible that the function has an infinite maximum, thus convergence is never
reached, as pointed out in [31]. This can occur in the case of complete separation. It happens
when there exists a linear function of the predictors that yield prefect predictions of the response.
Formally:

∃β ∈ Rp :

{
yi = 0 if X

′T
i β < 0

yi = 1 if X
′T
i β > 0

∀i = 1, ..., N (6.1)

where β is the vector of coefficients and Xi, yi are respectively the vector of predictors and the
response associated to the i-th observation.
A very similar problem, the quasi-complete separation, occurs when:

∃β ∈ Rp :

{
yi = 0 if X

′T
i β ≤ 0

yi = 1 if X
′T
i β ≥ 0

∀i = 1, ..., N (6.2)

with the only difference that the equalities are also allowed.
For both types of separations, a maximum likelihood estimate does not exist, hence the algorithm
stops after a maximum amount of iterations has been reached. Often, separation occurs when
the dataset is too small to observe events with low probabilities. Another common cause is when
there is a category or range of a predictor with only one value of the response.
While collinearity can be kept more easily under control, by avoiding to include highly correlated
variables in the predictors, separation is more of an issue in the EMM framework. In the beam
search algorithm, for every experiment, we define a model with a response and some predictors.
A logistic regression is fitted on the whole dataset to get an idea of the relationships between
the variables. The same logistic regression model, i.e. with the same predictors and response,
is fitted on every subgroup explored by the beam search. The issue is that a subgroup could
be pretty small, especially when exploring deeper levels of the beam. That can greatly increase
the chances of having a categorical predictor with very few observations for a specific level (or a
numeric one with a limited range). Hence, we are more likely to encounter a separation problem
and subsequently not being able to compute the coefficients.
A possible solution to overcome this limitation would be to run an analysis on every single subgroup
and select the best possible model, if there is any. That would imply to select those predictors
that can best explain the response variable, that are not too correlated to each other and that do
not lead to a complete separation issue. However, there are two main reasons why that would not
be ideal. The first one is merely a computational time issue: for every single subgroup we would
have to run a separate analysis and this could take a long time. The second one is the core of
Exceptional Model Mining itself because it would not make sense to compare the subgroup to the
dataset (or the complement) using two very different models, i.e. models in which the predictors
are not the same.
Another possible solution is to use the same response and predictors for all the subgroups so that
a comparison is possible. Additionally, we should avoid including categorical variables with too
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many levels as predictors. In any case, for each experiment, we are going to keep track of the
number of times that convergence is reached for the subgroups to see if the attributes that we
included as predictors are appropriate or not.

6.3 Interpretation of the results: marginal effects

The aim of Exceptional Model Mining is to find subgroups that behave differently with respect to
the norm (i.e. the whole dataset or the complement). After running the beam search algorithm,
we end up finding the most interesting subgroups according to the quality measures that we
previously decided to adopt. The question is then how to interpret the results that we get. How
can we compare the logistic regression model fitted on the subgroup to the logistic regression
model fitted on the dataset (or the complement)?
To illustrate better the problem, let’s consider two groups on which we fit logistic regression using
the same response and predictors:

GroupA : logit
(
P (y = 1)

)
= βA0 + βA1 x1 + ...+ βAp xp

GroupB : logit
(
P (y = 1)

)
= βB0 + βB1 x1 + ...+ βBp xp

Group A could represent the subgroup and group B the whole dataset or the complement, for
example. The coefficients are indicative of the relationships between the predictors and the re-
sponse; this relationship is expressed in terms of the logit of the probability that the response is
equal to 1.
The idea of making comparisons by using the coefficients, at a first glance, looks very appealing.
We could for example compare βA1 and βB1 and based on their values, conclude that the relation-
ship between x1 and y is the same or is different across the two groups. Though this approach
is straightforward and rather easy to implement, it has a non-negligible drawback. As Allison
points out in [32]: “there is a potential pitfall in cross-group comparisons of logit or probit coef-
ficients that has largely gone unnoticed. Unlike linear regression coefficients, coefficients in these
binary regression models are confounded with residual variation (unobserved heterogeneity)”. Un-
observed heterogeneity is the variation in the dependent variable that is caused by variables that
are not observed (e.g. omitted variables or variables that have not been taken into account). This
heterogeneity affects the scale of the coefficients making it unreliable to make comparisons across
groups unless the residual variation is the same for all the groups.
Mood [33] showed that the issue of unobserved heterogeneity not only represents a problem in the
comparison of coefficients across samples, but it is also problematic when comparing the odds or
the odds ratio across different groups.
That is why Mustillo and Long have proposed a different method to make such comparisons [34].
Instead of focusing on the coefficients, they show how to compare groups based on predicted prob-
abilities and marginal effects. Though it may not be as immediate as comparing the coefficients
right away, probabilities and marginal effects are not affected by residual variation. But what is
a marginal effect and how can it be computed with respect to logistic regression?
The marginal effect of a predictor xj is equal to the change in the probability of the outcome when
a change of xj occurs, while keeping all the other predictors at a fixed value. The marginal effect is
defined as marginal change if the change of xj is infinitesimal . It is instead denominated discrete
or finite change if the change of xj is discrete . Mathematically, if we have y as the response and
X = (x1, ..., xp) as the vector of predictors, the discrete change for the variable xj (1 ≤ j ≤ p) is
defined as:
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DCj = P
(
y = 1|x1 = x∗1, ... , xj = end, ... , xp = x∗p

)
−

P
(
y = 1|x1 = x∗1, ... , xj = start, ... , xp = x∗p

)
i.e. the difference of the probabilities of y = 1 when xj changes from the value start to the value
end, holding all other predictors at specific values1.
There are different types of marginal effects based on which values we set the other predictors at.
A very common approach is to adopt the average discrete change (ADC). It is the arithmetic mean
of the discrete change of xj computed for each observation within the group, using the observed
values of the predictors. Therefore, for every observation we compute the following discrete change:

DCij = P
(
y = 1|x1 = x1i, ... , xj = end, ... , xp = xpi

)
−

P
(
y = 1|x1 = x1i, ... , xj = start, ... , xp = xpi

) (6.3)

where x1i, ... , xpi are the values of the predictors for the ith observation.
The values of end and start in Equation (6.3) depend on the type of variable that we are consid-
ering. If xj is numeric, then start = xij , i.e. the actual value of xj for the ith observation, and
end = xij + δ where δ is a constant (a typical value is 1). If xj is binary with two levels coded as
0 and 1, start = 0 and end = 1. If xj is categorical with more than 2 levels, it is slightly more
complicated. Suppose that xj has levels l1, l2, ..., lm, with l1 being the reference level in the logistic
regression. Then, for every level l̄ ∈ {l2, ..., lm}, we compute a different ADC with start = l1 and
end = l̄.
After computing the discrete change for every observation, we can compute the average discrete
change via the formula:

ADCj =
1

|G|
∑
i∈G

DCij

where |G| is the size of the group.

Another popular marginal effect is the so called discrete change at the mean (DCM). It is defined
as the differences of the probabilities of success of the response when xj goes from start to end,
keeping the other predictors at their mean values (x̄1, ... , x̄p).

DCMj = P
(
y = 1|x1 = x̄1, ... , xj = end, ... , xp = x̄p

)
−

P
(
y = 1|x1 = x̄1, ... , xj = start, ... , xp = x̄p

)
If xj is numeric, start is equal to the mean value of xj and end = start + σ(xj), where σ(xj) is
the standard deviation of the predictor xj . If xj is categorical, start and end are defined in the
same way as with ADC.
When interpreting the results from our experiments, we are going to focus on ADC rather than
DCM. The reason is that ADC uses the true values of the observations within the groups thus
reflecting the true population of that group, whereas DCM uses the mean values that could be
indicative of an individual that is not even present in the group.

1x∗
1, ..., x

∗
p represent the values at which we set the predictors.
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Chapter 7

Experimental Results

After the preprocessing phase, some considerations over the limitations of the logistic regression
model and the description of marginal effects to interpret the model, we are ready to conduct
some experiments with the aim of finding interesting subgroups. It is important to remind that
by interesting we mean those subgroups that show relationships between the response and the
predictors that somehow deviate from the norm (the full dataset or the complement). For every
experiment we describe which parameters have been set for the beam search algorithm. Regarding
the output, we provide a summary of the logistic regression model, a plot of the average discrete
changes and, when suitable, a plot of the coefficients of the single predictors. Furthermore, we
outline extra information, such as the pseudo R squared and the AUC to get a better understanding
of the reliability of the model. We also consider the number of times in which convergence was
not reached, trying to fit the logistic regression model on the subgroups.
In the first section, the experiments focus on survivability and all of the three quality measures
previously defined are applied: Hellinger distance, KL-divergence and the one defined with the
p-values. In the second section, we describe an experiment that has treatment as the key factor
to analyze.

7.1 Logistic regression analysis on survivability

In a clinical setting, survivability is often regarded as one of the most relevant factors to analyze.
As we mentioned before, lung cancer is among the deadliest types of cancer and one of the main
causes is that the cancer is usually diagnosed when it is already spreading, making it more difficult
for doctors to contain it and remove it.
First of all, we need to choose which attribute will represent the response in our logistic re-
gression model. To this end, we create a new binary attribute in the dataset, named sur-
vival more 1year , which is equal to 1 if the patient survived for more than 365 days after the
first diagnosis, 0 otherwise. In order to generate that, we make use of the attribute follow up years,
i.e. how long the patient survived after the first diagnosis in terms of years, so that:

survival more 1year =

{
0 if follow up years < 1

1 if follow up years ≥ 1

For the future experiments on survivability, we are going to consider non-small-cell lung cancer
(NSCLC), since it is the most common type of lung cancer and has more observations than SCLC
(146000 vs 24000).
Let’s start by having a look at the distribution of survival more 1year, showed in Figure 7.1. We
notice that the response variable is rather balanced with respect to the two classes with a slightly
larger number of people that did not survive for more than one year.
In the dataset, we also have information about the current vital status of the patient. If we have
a look at the contingency table with the attributes is dead and survival more 1year, displayed

36



CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.1: Distribution of survival more 1year
over the patients that were diagnosed with
NSCLC.

Figure 7.2: Contingency table is dead and sur-
vival more 1year.

Figure 7.3: Logistic regression model for survival analysis on the whole dataset.

in Figure 7.2, we observe that there are 95 patients that are still alive (is dead=False) but were
classified as if they did not survive for more than one year (survival more 1year=0). If we analyse
these patients more in detail, we notice that they all have a follow-up date that has not been
updated. In other words, we do not have information regarding the cancer anymore (for example
because they left the Netherlands). Since there are only 95 records of this kind, we can simply
remove them from the dataset.
After having selected the response, the most important choice to make is which attributes will
be the predictors in our analysis. The idea is to receive indications from a domain expert on
which could be the most interesting attributes to analyze, select those as predictors and check
retrospectively if the model is a suitable one or not with the aid of some statistical measures
(p-values, pseudo R-squared, AUC). Therefore, after having received some suggestions from a
lung cancer expert, I decided to select the following predictors: leeft, gesl, treatment, stage main.
Before proceeding, we want to be sure that these attributes are not highly correlated to each other
because that could lead to the issue of multicollinearity. If we have a look at Figure 5.2, we notice
that there is no high correlation among these attributes.
Now we are ready to fit the logistic regression model on the whole dataset with, as response,
y = survival more 1year and, as vector of predictors, X = [leeft, gesl, treatment, stage main].
If we have a look at Figure 7.3, we notice that all the coefficients are statistically significant (they
all have p-values smaller than 0.05), the AUC is rather high (0.844) and the pseudo R-squared is
in the range 0.2-0.4 which is considered good by McFadden [20].
The average probability is obtained by computing the arithmetic mean of the predicted probab-
ilities of all the observations in the dataset. It is equal to 0.457, meaning that, according to the
model, a randomly selected person in the dataset has 45.7% probability of surviving more than
one year. This is also reflected by the histogram in Figure 7.1, in which the amount of people that
did not survive for more than one year is slightly higher than the rest of the population.
Now we can shift our attention to the coefficients estimates to get a clearer view on the relation-
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ships between the predictors and the response. Regarding gesl, gender, the reference level is gesl=1,
i.e. gender=Male. The coefficient associated to gender=Female is equal to 0.2669, meaning that
being a woman has a positive effect on the logit of the probability of survival more year=1. We
can also interpret it with respect of the odds. The fitted model suggests that, holding all the other
predictors at a fixed value, the odds of surviving more than one year for females (gesl=2 ) over
the odds of surviving more than one year for males (gesl=1 ) is exp(0.2669) = 1.306. In terms of
percent change, we can say that the odds for females are 30.6% higher than the odds for males.
A similar interpretation can be given to treatment. In this case, receiving a treatment has
a positive effect on survival, with an increase of more than 6 times in the odds of surviving
(exp(2.0353)=7.655) for a patient that received a treatment versus a patient that did not receive
any.
So far we have considered two dichotomous variables; stage main, instead, is a categorical variable
with multiple levels. The reference level is stage main=1 and, as expected, the higher the stage
the more negative the effect of the coefficient on the logit of the probability of surviving more than
one year. According to the model, an unknown stage (stage main=X ) has a negative effect on
survivability worse than being diagnosed with a stage 2 cancer (-1.2721 vs -0.7242) and slightly
better than a stage 3 cancer (-1.2721 vs -1.5892).
In the end, let’s consider age (leeft), the only numeric attribute in the model. Holding all the
other predictors at a fixed value, we have a 1.7% decrease in the odds of surviving more than one
year for a one-unit increase in age, since exp(-0.017) = 0.983. For a numeric attribute we can also
compute the effect of a wider increase of the variable, by simply multiplying the increase to the
coefficient and then use that as the power of e. For example, for a ten years increase in age, we
have a 15.6% decrease in the odds of surviving more than one year, since exp(-0.017×10) = 0.844.
The results that we get from this model are not very surprising. It is common knowledge that if
you are older, you have not received a treatment or have a higher stage (meaning that the cancer
has already started spreading) it is more likely that you will survive for a shorter period of time.
What we seek to find, when using the Exceptional Model Mining framework, are subgroups in
which the relationships between the response and the predictors are remarkably different compared
to the ones observed here.
Now we are ready to conduct some experiment in order to find interesting subgroups.

7.1.1 Experiment 1: quality measure via Hellinger distance

We briefly list the parameters of the beam search algorithm that have been set to conduct the
first experiment on survivability:

• Width: 5

• Depth: 3

• Descriptive attributes: [topog, later, diffgr, basisd, PROVINCIE,
COROP, PC2, Histological group, metastasized, first hospital type,
first hospital treatment, first specialism, radio chemo, reason diagnostics1, incjr, ses]

• Target attributes:
y = survival more 1year X = [leeft, gesl, treatment, stage main]

• Quality measure: Hellinger distance

After running the beam search algorithm, we find the five most interesting subgroups, shown in
Figure 7.4, ordered by the score of the quality measure. We observe that, within all the descriptions
that define the five subgroups, there is always at least one attribute set to be equal to “Nan”,
i.e. a missing value. Furthermore we notice that subgroups 1, 3, 4 are very similar to each other
(they all share the double condition first hospital treatment=RADIO, reason diagnostics1=

Nan). To avoid this redundancy and to find subgroups which are not defined by conditions on
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Figure 7.4: Top 5 most interesting subgroups retrieved by the beam search.

Figure 7.5: Top 5 most interesting subgroups retrieved by the beam search without missing values
(Nans) in the description.

Figure 7.6: Convergence rate with categor-
ical stage main.

Figure 7.7: Convergence rate with numeric
stage main.

missing values, we are going to run the same experiment but without considering those subgroups
in which at least one descriptor is set to be equal to “Nan”.
After running the beam search algorithm again, the five most interesting subgroups are shown in
Figure 7.5. The first thing that we notice is that, even though the depth parameter has been set
to 3, we do not find subgroups defined by three conditions among the five most interesting ones.
This implies that the subgroups defined by three attributes are either not very interesting or very
difficult to find because the logistic regression model could not converge, given the smaller size.
To investigate that, we can have a look at the convergence rate shown in Figure 7.6. In the first
level of the beam, convergence is reached for 90% of the generated subgroups. On the other hand,
when considering the second and the third level, in less than half of the generated subgroups the
logistic regression model reaches convergence.
As pointed out in Section 6.2, we can run into the problem of complete separation, hence failed
convergence, when using logistic regression. One of the most common causes is the presence of
a categorical variable with levels characterized by a limited number of observations. In this case
the predictor stage main is likely to be the one that causes most of the problems because it has
multiple levels, hence fewer observations for each single level. To check the truth of this claim, we
can run the beam search again, but in this case we convert stage main into a numeric attribute
(we remove the observations with stage main=X). Figure 7.7 shows the convergence rate in this
scenario. As we can observe, at a deeper level, the convergence rates are remarkably higher than
before (75% vs 40%). However, considering stage as numeric is not correct because the difference
between a stage 2 cancer and a stage 1 cancer is not the same as the difference between a stage
3 cancer and a stage 2 cancer. Therefore, we focus on the results found using stage main as a
categorical attribute.
Let’s have a look at the first subgroup to get some insights and see if it is characterized by
interesting features. The subgroup is defined by ‘first hospital treatment = RADIO’, i.e. the
hospital of first treatment is a radiotherapy institution.
Figure 7.8 outlines the summary of the logistic regression model fitted on the subgroup. The AUC
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Figure 7.8: Logistic regression model for the subgroup first hospital treatment = RADIO

Figure 7.9: Comparison of the dataset and the subgroup coefficients.

(0.825) and the McFadden’s R-squared (0.266) are rather high and the average probability of an
individual to survive more than one year is very similar to the average probability in the whole
dataset (0.444 in the subgroup against 0.457 in the dataset).
Figure 7.9 shows instead a plot of the coefficients. In the plot, for each single predictor, four
horizontal lines have been provided: the red one represents the value of the subgroup coefficient,
the blue one is instead the value of the dataset coefficient and the green ones are the values of
the extremes of the 95% level confidence interval for the subgroup coefficient. A we mentioned
in Section 6.3, comparing coefficients across different samples could be misleading because the
coefficients might be affected by a different scale. That is why we are going to rely more on the
comparison of the average discrete changes, shown in Figure 7.10. For stage 2, we have an average
discrete change of -0.1156 for the dataset: this means that in the dataset, on average, a person that
goes from stage 1 (the reference level) to stage 2 lowers their probability of surviving more than
one year by 11.56% (holding the other predictors at the same value), whereas for the subgroup the
decrease of the probability is equal to 15.21 % (ADC = -0.1521). The decrease in both samples
is, as expected, larger with a higher stage: on average, a person in the dataset with stage 4 cancer
is 47.42% less likely to survive than a patient with exactly the same features but a stage 1 tumor.
For the subgroup the decrease is even more emphasized (55.85%).
In general, for stage main=2, stage main=3, stage main=4 the subgroup ADCs are lower than
the corresponding dataset ADCs. The situation is exactly the opposite when we are instead
considering stage main=X (-0.2030 in the dataset, -0.1727 in the subgroup). This is also reflected
by the histogram in Figure 7.11 that shows the distribution of the response, for each single stage,
for both the dataset and the subgroup. The distribution of survival more 1year for the first stage
is very similar for both the dataset and the subgroup (85%-15% vs 86%-14%). The proportion of
people that survived for more than one year then decreases more rapidly in the subgroup than in
the dataset, whereas the distribution is completely swapped when the stage is unknown. These
results might suggest that, when the stage of the tumor is known, the stage has a more negative
impact on the probability of surviving more than one year for the subgroup, whereas, if it is
unknown, the stage has a more negative influence on the probability of surviving more than one
year for the dataset. This could be an interesting fact to show to doctors and cancer experts.
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Figure 7.10: Average discrete change for the dataset and the subgroup.

Figure 7.11: Histograms: stage distribution against survival for the dataset and subgroup
first hospital treatment = RADIO.

In the case of age (leeft) the ADC in the dataset is -0.0027, indicating that, for a unit increase of
age, a patient is on average less likely to survive more than 365 days by 0.27%. In the subgroup,
instead, the decrease is more remarkable (0.4%). In other words, we observe a negative impact on
survival when there is an increase of age in both situations, but in the subgroup the negative effect
seems to be even more accentuated. In Figure 7.12, we can have a look at the distribution of the
response with respect to age. It is a specific plot, called violin plot, and it shows the distribution
of age, separated according to the response, for both the dataset and the subgroup. The three
dashed lines, from bottom to top, represent respectively the first quartile, the median and the
third quartile of the distribution of age. In the violin plot relative to the dataset, there is no
surprise: we observe that the patients that survived for more than one year are characterized by
a lower distribution of age. Regarding the subgroup, both the coefficient and the ADC relative to
age are even more negative than the ones of the dataset. Hence, we would expect to have a more
emphasized difference in the distribution of age between the people who survived for more than
one year and the ones that did not. Surprisingly, this is not the case: the distributions for the
two outcomes are almost identical, even with a slightly older population for people with a positive
outcome (survival more 1year=1 ).
This illustrates the power of logistic regression. A simple plot like a histogram, a boxplot or a violin
plot can be misleading because it does not take other factors into account. With logistic regression
the interpretation is instead the following: in the subgroup, if we consider two patients with the
same stage of cancer, the same gender and that both received a treatment (or did not), the older
patient is predicted to have a lower chance of surviving more than one year. Therefore, simple
plots add extra information but can also be misleading. This highlights a limitation of a model
like Exceptional Incidence Distribution Mining, defined in [3], which was based on histograms.
In the end, let’s have a look at the treatment coefficient. Compared to the others, it is the only
coefficient with a p-value slightly higher then 0.05. If we set the critical value α = 0.05, the
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Figure 7.12: Violin plots: age distribution against survival for the dataset and subgroup
first hospital treatment = RADIO.

Figure 7.13: Logistic regression summary for subgroup first hospital treatment = RADIO, ex-
cluding treatment as a predictor.

null hypothesis of the Wald test is not rejected and the coefficient can be regarded as not really
significant. This is reflected by the fact that in the subgroup only 23 patients did not receive a
treatment against 13004 that did receive a treatment so that there are very few observations for
the reference level treatment=False. This makes sense if we reflect about the definition of this
subgroup, i.e. the hospital of first treatment was a radiotherapy institute. The reasons for these
23 patients belonging to the subgroup is that the NCR (National Cancer Registry) guidelines
state that a patient can be assigned a first hospital treatment even if they have not received any
treatment, though it is rather rare.
Since treatment is not significant according to the Wald test, we can drop it and fit the logistic
regression model again. By looking at Figure 7.13, we notice the coefficients related to the predict-
ors are basically unaffected by this change. The only difference is in the intercept that shifts from
2.43 to 3.41. Therefore, the considerations on age and stage remain true even when not taking
treatment into account.
Let’s proceed now with the analysis of the second best subgroup found in this experiment:
first specialism=0400 - Longziekten, Histological group =Adenocarcinomas. The first
attribute refers to the first specialist visit of the patient after the diagnosis, in this case pneu-
mology. Adenocarcinomas is instead the most frequent subcategory of NSCLC: its origin is in
the cells that would normally secrete substances such as mucus. If we look at the fitted logistic
regression model in Figure 7.14, we notice that all the coefficients have a p-value lower than 0.05,
the AUC is rather high (0.843), as well as the pseudo R-squared (0.303). One difference, with
respect to the previous subgroup, is the average probability of a positive response, higher than
the one in the dataset (0.534 in the subgroup vs 0.457 in the dataset). If we have a look at Figure
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Figure 7.14: Logistic regression summary for subgroup first specialism=0400 - Longziekten,

Histological group=Adenocarcinomas.

Figure 7.15: Distribution of
survival more 1year over the sub-
group first specialism=0400

- Longziekten, Histological

group=Adenocarcinomas.
Figure 7.16: Average discrete change for the dataset
and the subgroup.

7.15 we notice that the proportion of patients that survived for more than one year is higher than
the ones who did not. A possible explanation could be that pneumology is the most accurate
specialism for dealing with lung cancer and people that visited other specialists (e.g. cardiology)
maybe had other diseases beside lung cancer.
If we look at the average discrete changes in Figure 7.16, we discover that there are other interest-
ing elements regarding this subgroup. The predictors gesl and treatment are characterized by a
more positive ADC in the subgroup than in the dataset, whereas the ADC relative to leeft is less
negative for the subgroup. By seeing these results, a medical expert could investigate why there
is a different distribution in terms of survival in this subgroup and why treatment and gender
influence even more positively the probability of surviving for more than one year, whereas age
seems to have a more dampened negative influence.

7.1.2 Experiment 2: quality measure via KL-divergence

The second experiment makes use of exactly the same parameters set for the first experiment
(the missing values are again not considered part of the description of the subgroup). The only
difference is with respect to the quality measure: in this case we are employing KL-divergence
multiplied to the entropy function. In Figure 7.17, we can see which are the five most interesting
subgroups retrieved by the algorithm. If we compare these findings with the ones discovered using
Hellinger distance, we definitely notice some similarities. The most interesting subgroup is still
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Figure 7.17: Top 5 interesting subgroups retrieved using KL-divergence.

Figure 7.18: Convergence rate, second experiment.

Figure 7.19: Logistic regression model for the subgroup diffgr=2, Histological

group=Adenocarcinomas, basisd=7.

first hospital treatment=RADIO and there is also another identical subgroup: topog=C340.
Regarding the others, we observe something peculiar: in this experiment we were able to retrieve
subgroups defined by three conditions on the descriptors.
The convergence rates shown in Figure 7.18 are also very similar to the ones of the first experi-
ment. They show that the logistic regression reaches less often convergence when exploring smaller
subgroups, defined by more conditions on the descriptors.
Since the analysis of the first subgroup would be exactly the same, let’s consider the second most
interesting one. In this case we are including the patients whose tumor is of the type Adenocar-
cinoma, where the cells have a moderately low differentiation grade (diffgr=2) and where there
has been a histological confirmation of the primary tumor (basisd=7).
The fitted logistic regression model showed in Figure 7.19 has acceptable values for AUC (0.832)
and pseudo R-squared (0.271) and all the predictors included are significant according to the Wald
test. An element that really stands out is the average probability of a positive response in the
subgroup: 0.845. This is even more clear if we have a look at the histogram in Figure 7.20. The
proportion of people that survived for more than one year in this subgroup is really high.
We can then analyze more in depth the relationship between the predictors and the response
by having a look at the coefficients. Figure 7.21 shows the comparison of the dataset with the
subgroup coefficients. Let’s remember that the dataset has exactly the same coefficients that were
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Figure 7.20: Distribution of survival more 1year over the subgroup diffgr=2, Histological

group=Adenocarcinomas, basisd=7.

Figure 7.21: Comparison of the dataset and the subgroup coefficients.

Figure 7.22: Average discrete change for the dataset and the subgroup.

showed in the first experiment.
In this case, treatment looks to be the interesting predictor with a higher value in the subgroup
(2.6248), rather than in the dataset (2.0353). That could mean that when treatment=True there
is even a higher positive effect on survival, but this could also be due to a different scale of the
coefficients in the subgroup and the dataset, therefore it is better to have a look at the average
discrete changes.
Figure 7.22 shows the average discrete changes of each predictor for both the dataset and the
subgroup. Regarding treatment, in the subgroup we have that on average a person that re-
ceives at least a treatment increases their probability of surviving more than one year by 24.17%
(ADC=0.2417). This increase is even more accentuated in the dataset (32.48% with ADC=0.3248)
and does not reflect what we noticed before by having a look at the coefficients, i.e. that the treat-
ment seemed to have a more positive effect in the subgroup. This fact shows the limitation of
the comparison of the coefficient estimates (there could be a different residual variance in the two
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Figure 7.23: Top 5 interesting subgroups retrieved us-
ing the quality measure defined in Equation (4.2).

Figure 7.24: Convergence rate,
third experiment.

samples and this could affect the scale of the coefficients themselves).
The same phenomenon can be observed if we analyze the predictor stage main. In Figure 7.21
we notice that the coefficients relative to the levels of the tumor stage are more or less the same
for the dataset and the subgroup. On the other hand, Figure 7.22 shows that the ADCs are very
different: the ADCs of the dataset are almost double the ADCs of the subgroup for stage 2, 3, 4,
whereas the ADC for stage=X is slightly less negative for the dataset with respect to the subgroup
(-0.2030 against -0.2460).
To summarize, this subgroup can be deemed interesting because of the different effects, between
the subgroup and the dataset, that age and stage have on the probability of surviving more than
one year.

7.1.3 Experiment 3: quality measure via statistical tests

In the third experiment we are still using the same target attributes, depth and width but the
quality measure is defined via the p-values by the formula (4.2). Another remarkable difference
is that, with this quality measure, we compare the subgroup to the complement instead of the
whole dataset. Figure 7.23 shows the five most interesting subgroups retrieved by the algorithm.
The subgroups are different from the ones found with the other quality measures but with almost
the same descriptive attributes. We have again first hospital treatment, basisd, diffgr,
Histological group) as the main attributes used to define the most interesting subgroups. Ad-
ditionally, all five subgroups reach the maximum possible score on the quality measure: 1. In other
words, there is at least one predictor whose coefficient is significantly different in the subgroup
and in the complement, according to the Wald test.
Figure 7.24 shows the convergence rates. In this case they are quite high also at a deeper level
of the beam. This can be explained by the fact that we always fit the model on the whole data-
set instead of on the single subgroup as in the two previous experiments. Since we have more
observations, the risk of complete separation is reduced, hence convergence is reached more often.
Let’s analyze the most interesting subgroup according to the algorithm: basisd = 7.0, i.e. there
has been a histological confirmation of the primary tumor. Figure 7.25 shows the logistic regression
fitted on the subgroup and the complement. The attribute is in subgroup is the variable defined
in (4.1): it is a binary attribute that indicates whether we are in the subgroup (is in subgroup=1)
or not (is in subgroup=0).
The coefficients defined by the interaction term with is in subgroup, in Figure 7.25, are the most
interesting ones because they inform us, for every predictor, if there is a statistically significant
difference between the coefficient of the complement and the one of the subgroup. For example,
C(treatment)[T.True]= 1.8886 indicates that in the complement there is an increase of 1.8886
for the logit of the probability of survival more 1year=1 when a patient receives a treatment.
The coefficient is in subgroup:C(treatment)[T.True] is equal to 0.3409 and has a p-value < 0.05,
indicating a significant difference in terms of treatment for the two samples. The coefficient relative
to treatment in the subgroup is given by the sum of these 2 coefficients, i.e. 1.8886+0.3409=2.2295.
This difference is also reflected by the average discrete changes, shown in Figure 7.26. The ADC for
treatment relative to the complement is 0.2978, whereas the corresponding ADC in the subgroup is
0.3578. Both these findings seem to suggest that if a patient receives a treatment in the subgroup,
their chance of surviving for more than one year is increased more than in the rest of the dataset.
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Figure 7.25: Logistic regression summary for subgroup basisd=7.0.

Figure 7.26: Average discrete change for the dataset and the subgroup.

This might turn out to be an interesting insight for the doctors.
Another interesting predictor is age. The coefficient is in subgroup:leeft is significant and, since
it is negative (-0.0076), it shows that in the subgroup the effect of an increase of age has a more
negative effect on the logit of the probability of surviving for more than one year. This is also
suggested by the ADCs: the ADC in the subgroup is -0.0033, meaning that for a unitary increase of
age, a person on average decreases their possibility of survival by 0.33%. In the rest of the dataset
the decrease of the probability is smaller (0.2%), since the ADC relative to age is equal to -0.020.
These findings suggest that an increase of age has a more negative impact on a 1-year survival in
the subgroup than in the rest of the dataset. For the doctors it could be worth investigating on
why there is a different effect of age on survival in the subgroup with respect to the rest of the
dataset.
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Figure 7.27: Logistic regression model for treatment analysis on the whole dataset.

Figure 7.28: Convergence rates for treat-
ment analysis.

Figure 7.29: Top 5 most interesting sub-
groups retrieved by the beam search for
treatment analysis.

7.2 Logistic regression analysis on treatment

In this section, we propose another experiment using the attribute treatment as a response. It is
equal to 1 if a patient received at least a treatment after being diagnosed with cancer, 0 otherwise.
Following the recommendations of a lung cancer expert, the selected predictors are: gesl (gender),
stage main (tumor stage), ses (socio-economic status), leeft (age).
Figure 7.27 shows the summary of the logistic regression model fitted on the whole dataset. The
coefficients suggest that being a woman, being older or having a higher stage of tumor have a
negative impact on the logit of the probability of receiving a treatment. Additionally, the coefficient
relative to an unknown stage of cancer is even more negative than the coefficient relative to a stage
4 tumor (-2.5443 vs -1.9307), meaning that an unknown tumor stage leads to an even lower chance
of receiving a treatment, according to the model. It is worth noting that socio-economic status is
instead characterized by a positive coefficient (0.0292). This means that if a patient has a higher
socio-economic status they have a higher probability of receiving a treatment.
Now we want to find subgroups that behave somehow differently from the norm. In this case
we run the beam search algorithm with width=5, depth=3, descriptive attributes=[PROVINCIE,
COROP, PC2, first specialism, first hospital type, reason diagnostics1, incjr ] and using as quality
measure the one defined with Hellinger distance. The response and the predictors are the same
that were defined for the whole dataset.
As we can see from Figure 7.28, the convergence rate is much higher at the first level of the beam
and is not reached at the second and third level for almost half of the generated subgroups.
Figure 7.29 shows instead the top five interesting subgroups retrieved by the algorithm. Looking at
these results, we notice that all of the subgroups are defined by a single condition on the descriptive
attributes. We are going to focus our attention on the second most interesting subgroup, i.e.
PROVINCIE=Zuid-Holland. This is because having a difference in a particular geographical area
can be clinically relevant.
In Figure 7.30, we can observe the logistic regression model fitted on the subgroup. All the
coefficients are significant according to the Wald test, the average probability for a patient receiving
a treatment (0.704) is comparable to the one relative to the whole dataset (0.730) and the AUC
(0.766) and the pseudo R-squared (0.160) have reasonable values. To see if there are differences
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Figure 7.30: Logistic regression model for the subgroup PROVINCIE=Zuid-Holland.

Figure 7.31: Average discrete changes for the dataset and the subgroup.

between the model fitted on the subgroup and the one fitted on the dataset, we can have a look at
Figure 7.31 that shows the average discrete changes. The most relevant difference is with respect
to the attribute ses. For the dataset model, an increase of one unit of ses increases on average by
0.47% the probability of receiving a treatment (ADC=0.0047). For the subgroup model instead,
a unit increase of ses on average leads to an increase of 0.71% of the probability that a patient
receives at least a treatment (ADC=0.0071). This fact may be deemed interesting by doctors.

7.3 Considerations on the results of the experiments

In light of the results of these experiments, we can notice what are the advantages and the disad-
vantages of adopting a logistic regression model in the EMM framework. As we mentioned before,
logistic regression can be used to find the relationships between a binary variable and one or more
independent variables of any type and this allows to take more factors into account in the same
experiment. Simple plots, such as violinplot or histograms, though easy to interpret, could be
misleading since they show the relationship between the response and a specific predictor without
considering other factors, whereas logistic regression reflects more the complexity of real data.
One could argue that a drawback of using such model is the time needed to analyse the results.
Indeed there are several different elements to check for every subgroup to make sure that the
model is a good fit: the p-values for the single coefficients, the AUC and the pseudo R-squared.
However, the analysis allows to find multiple insights regarding different variables because for
every subgroup we have the average distribution of the response, the plot of the coefficients, the
plot of the average discrete changes and all these elements contribute to the interpretation of the
relationships present in the model.
Regarding survivability, we have found that for some subgroups there was a different relationship
between one or more predictors and the response. For example, a more negative effect of the
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increase of age on the probability of survival in the subgroup where patients had their first treat-
ment in a radiotherapy institute.
Regarding the quality measures, the one implemented with Hellinger distance and the other with
KL-divergence yielded similar results in terms of most interesting subgroups and convergence rates.
The main difference was instead with respect to the third quality measure based on the p-values.
In this case, convergence was reached more often and the subgroups retrieved were different com-
pared to the previous two experiments. Additionally, this quality measure is focused on a single
coefficient rather then all the predictors but this can be seen as a different way to find interesting
results rather than a limitation.
It is worth noting that, even though we made use of three different quality measures, the descriptors
that defined the most interesting subgroups were approximately the same. Not a single subgroup
among the most interesting ones was defined by a condition on the geographical attributes (PRO-
VINCIE, COROP, PC2 ). This fact might suggest that, with respect to survival, there are no
significant differences in different areas of the Netherlands, suggesting that the healthcare system
is working homogeneously across the country.
Regarding the experiment in the treatment analysis, the retrieved subgroup might be deemed
interesting by doctors because the model shows that a higher socio-economic status of a patient
has a more positive impact on the probability of receiving a treatment in the province of South
Holland, with respect to the whole Netherlands.
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Permutation test

So far we have discussed how to find interesting subgroups in the EMM framework with the aid
of logistic regression. In order to explore the numerous possibilities and generate the subgroups,
we have implemented the beam search algorithm. However there is a potential pitfall of this al-
gorithm: it will always find something which is deemed ‘interesting’ because it will always return,
as output, the ω most interesting subgroups ( ω = width of the beam). Therefore, when looking
for exceptional subsets, some of them could be deemed interesting even though they are not (false
discoveries) and are caused by random artifacts in the data. In our case, we want to understand
if the score of the subgroup on the quality measure is statistically different from 0, hence the
subgroup is actually interesting. In other words, every time we find a subgroup with a certain
score ϕ̄ we implicitly perform a statistical test with the null hypothesis H0 : ϕ̄ = 0: the further
the score is from 0 the more interesting the subgroup is according to the algorithm. However, with
the beam search algorithm, we explore a lot of different subgroups and there is the potential risk
of rejecting the null hypothesis and considering the subgroup interesting even if it is not. This is
the effect of a well known problem called the Multiple Comparison Problem [35], which states
that, when considering a large number of candidates for a statistical hypothesis, for some of them
we will inevitably reject the null hypothesis even when it is true (type I error).
More formally our problem is: given a dataset Ω, a quality measure ϕ and a possibly interesting
subgroup S found through EMM, determine the statistical significance of the subgroup S.
In [36], Gionis et al. propose a technique, called swap randomization, which can be used to as-
sess the results of a data mining technique. In [10], Duivesteijn describes how to apply the swap
randomization technique more specifically for the Exceptional Model Mining framework. This
technique is part of a broader class of methods called the permutation methods. The rationale
behind these methods is that, if we change the labels of the observations (in our case the target
attributes) and we consider every possible permutation of the labels, we get the exact distribu-
tion under the null hypothesis of the test statistic. Hence we can assess whether the subgroup of
interest is statistically interesting or not.
Let’s see how this can be applied to our study. Let’s suppose that, after running the beam search
algorithm, we find that S̄ is the most interesting subgroup, i.e. it is characterized by the highest
score on the quality measure ϕ. The subgroup S̄ is defined by one or more conditions on the
descriptors and these generate a partition in the dataset, i.e. the records that belong to the sub-
group and the ones that do not. In order to generate a random permutation, we swap the target
attributes across the partition, maintaining both the distribution within the single target column
and the dependencies between different targets intact. Let’s call this random permutation P̄ . We
have that the target attributes of some observations that belonged to the subgroup are now part of
the complement and the opposite is also true. Then, we can assess how interesting the randomly
generated subgroup is according to the quality measure ϕ. We can repeat this process for all
the possible permutations. At the end we get the exact distribution of the scores of the quality
measure under the null hypothesis. If the score of the original subgroup S̄ is extreme enough in
this distribution, i.e. the p-value is small enough, we can reject the null hypothesis and regard it
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Figure 8.1: Distribution of the scores
of the permutations and the subgroup
first hospital treatment=RADIO (quality
measure defined with Hellinger distance).

Figure 8.2: Distribution of the scores of the
permutations and the subgroup diffgr=2,

Histological group=Adenocarcinomas,

basisd=7 (quality measure defined with
KL-divergence).

as interesting also from a statistical point of view.
The great advantage of permutation tests is that they do not make any assumption on the dis-
tribution of the data (other than the observations being exchangeable under the null hypothesis)
and the p-value is the result of simulations rather than formulas of parametric distributions. The
disadvantage is mainly computational because there may be too many possible orderings of the
data to conveniently allow complete enumeration. Indeed, if N is the number of rows in the data-
set and n is the number of observations in the subgroup, the number of possible permutations is
equal to

(
N
n

)
= N !

n!·(N−n)! . Therefore, the number of possible random permutations can become

very large as the size of the dataset increases. A solution to that is to generate the distribution
of false discoveries by Monte Carlo sampling, which takes a relatively small random sample of the
possible replicates.
The next section exhibits the results of the permutation test applied on some of the subgroups
retrieved in the experiments conducted in Chapter 7.

8.1 Experiments

In this section we apply the permutation test to some of the retrieved subgroups in Chapter 7 to
see if they are statistically significant.
We start from the subgroup first hospital treatment=RADIO. In this case we generate 10000
random permutations and assess them using as quality measure the same adopted in the ex-
periment, i.e. the Hellinger distance adjusted with the entropy function. Figure 8.1 shows the
distribution of the scores of the random permutations (in green) and the score of the actual sub-
group (in red). We can see that the value is very extreme with respect to the others. In this case
the simulated p-value would be smaller than 1

10000 = 0.0001, thus indicating that the retrieved
subgroup is statistically significant.
Let’s consider the subgroup retrieved in the second experiment, using KL-divergence as a quality
measure: diffgr=2, Histological group=Adenocarcinomas, basisd=7. Figure 8.2 shows the
distribution of the scores of the random permutations of the subgroup, assessed with KL-divergence
adjusted with the entropy function, and the score of the actual subgroup. We notice that again
the value is very extreme with respect to the others with a p-value smaller than 1

10000 = 0.0001,
thus indicating that the retrieved subgroup is statistically significant.
A similar situation occurs with the subgroup basisd=7.0 in the third experiment as well. Figure
8.3 shows the scores of the permuted subgroups and the one relative to the subgroup. In this case,
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Figure 8.3: Distribution of the scores of the
permutations and the subgroup basisd=7.0

(quality measure defined with statistical ap-
proach using p-values).

Figure 8.4: Distribution of the scores of the
permutations and the subgroup basisd=7.0

after applying the transformation log10(1 −
score).

Figure 8.5: Distribution of the scores of the permutations and the subgroup
PROVINCIE=Zuid-Holland (quality measure defined with Hellinger distance).

we must keep in mind that the highest possible score for the adopted quality measure is 1. To have
a clearer view of the subgroup score, Figure 8.4 shows the same scores presented in Figure 8.3 after
applying the following transformation: log10(1 − score). It is even more clear from this picture
how extreme the quality measure of the subgroup is compared to the rest of the distribution.
Regarding the experiment relative to treatment, Figure 8.5 shows shows the distribution of the
scores of the random permutations and the score of the actual subgroup assessed using Hellinger
distance. Again 10000 permutations were generated and the quality measure of the subgroup is
statistically significant.
We notice that the score of all the subgroups are very extreme compared to the scores of the
permutations. A reason could be that the total number of permutations is much larger than the
sample that we considered through Monte Carlo simulation. For the four subgroups that we have
assessed, there are respectively

(
146202
13027

)
,
(
146202
5197

)
,
(
146202
74266

)
and

(
146202
30385

)
possible permutations and

these numbers are much larger than 10000. The reason why we did not compute all the possible
permutations is due to computational time and that is why we relied on Monte Carlo simulation.
Despite that, the score of the actual subgroup undoubtedly stands out with respect to the others
and that can have another explanation. As Leeuwen et al. point out in [37], one should “expect
the unexpected”. The authors shows that, when using pattern mining techniques with the aim
of finding interesting subgroups (e.g. Subgroup Discovery and Exceptional Model Mining), it is
very likely to find subgroups with a high quality measure and so the test for statistical significance
could be too lenient.
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Conclusions and future research

The goal of this project was primarily to extract interesting patterns from the cancer registry
data handled by IKNL, in order to provide doctors and cancer experts with a new perspective
on the Netherlands Cancer Registry. In particular, the focus was on a specific data mining tech-
nique called Exceptional Model Mining which aims at finding coherent subsets of the dataset,
i.e. subgroups, that behave somehow differently from the norm. This behaviour is captured by
a model and the interestingness of the subgroup is assessed according to a quality measure. The
great advantage of using EMM is its flexibility given by the possibility of choosing many different
models that can offer different insights on the data.
The second goal of this project was to understand whether the retrieved subgroups were interest-
ing not only from a data mining perspective but also from a statistical point of view.
In other words, in this thesis we set out to answer two specific research questions, as outlined in
Section 1.2. Here, we answer them in turn.

How to use Exceptional Model Mining combined with statistical theory to extract
noteworthy patterns from cancer registry data?

To answer the first research question, we first located EMM in the data mining framework. EMM is
closely related to a category of data-driven approaches called supervised descriptive rule discovery
[5] which aim at finding surprising patterns that deviate from the norm. The main methods
belonging to this category are Contrast Set Mining [6], Emerging Pattern Mining [7] and Subgroup
Discovery [8] and EMM [9] can be regarded as a generalization of SD.
In Chapter 2, we provided an overview of some models that could be adopted in the EMM frame-
work and found out that, with respect to cancer registry data, only a model based on absolute
frequencies, named Exceptional Distribution Incidence Mining [3], was applied.
The novelty of this Master’s thesis project is the implementation of the logistic regression model
in the EMM framework: it has been briefly presented in [9], [10], [11] but, to the best of our
knowledge, never implemented in a clinical context. Logistic regression can be used to explain the
relationships between a binary dependent variable and multiple independent variables of any type.
This model exploits the full potential of Exceptional Model Mining because it considers multiple
targets at the same time.
The novelty of this thesis can also be found in the implementation of a few quality measures that
could be used to assess whether a subgroup is interesting or not, exploiting both statistical tests
(Section 4.1) and probability distributions (Section 4.2).
After a preprocessing phase on the dataset (Chapter 5) and an analysis on the beam search al-
gorithm parameters (Chapter 6), we conducted some experiments. Regarding the experiments,
it is important to underline that we made use of the average discrete changes to interpret the
difference between the logistic regression model fitted on the subgroup and the model fitted on the
whole dataset (or on the complement in case we used the quality measure based on the p-values).
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We could have also interpreted the results by observing the differences of the coefficients in the
two models. However, as Allison points out in [32], the coefficients could be affected by a different
scale in two different groups due to unobserved residual variance and that is why average discrete
changes have been preferred.
The results in Chapter 7 showed that the logistic regression model is able to find subgroups that
behave in a different way in terms of one or multiple predictors with respect to the norm. For
example, the subgroup represented by patients that went to a radiotherapy institution as the
first hospital of treatment (cf Section 7.1.1). In this case we found out that an older age has on
average a more negative impact on the probability of surviving for more than one year compared
to the impact it has on a random patient in the whole dataset (Figure 7.10). By just observing
the violinplot relative to age and survival more 1year (Figure 7.12), we would have not been able
to extract this piece of information. This showed that the logistic regression model can give a
more precise idea about the relationships present in the data by considering multiple factors at
the same time. Plots such as violinplots or histograms provide extra information but might also
be misleading because they do not take many variables into account. Another noteworthy result
was found in the experiment relative to treatment (Section 7.2). In this case, we discovered that
there is a more positive effect of a higher socio-economic status of a patient on the probability of
receiving a treatment in the province of South-Holland compared to the rest of the dataset. These
results might be deemed interesting by doctors and oncologists.

How to quantify the interestingness of a subgroup in the Exceptional Model Mining
framework in an objective way using statistics?

To answer the second research question, we decided to implement the permutation test. It is
a non-parametric technique that allows to understand if the generated subgroup is statistically
interesting or it is instead caused by random artifacts present in the data. The idea is to generate
all the possible permutations of a subgroup by swapping the target attributes and then assess
them according to the same quality measure used to evaluate the original subgroup. The results
presented in Chapter 8 showed that the subgroups analyzed in the experimental phase were also
interesting from a statistical point of view. In many cases the quality measure associated to
the subgroup was characterized by a remarkably higher score compared to the score of the other
permutations. A possible explanation is given in [37], in which the authors claim that, when using
pattern mining techniques with the aim of finding interesting subgroups, the probability of finding
a completely random subgroup with a large score tends to be very small.
It is important to underline that the permutation test is not restricted to the logistic regression
model but could be applied to other models present in the Exceptional Model Mining framework.

9.1 Limitations and future work

The experiments conducted in Chapter 7 showed that there are also some limitations that comes
with the adoption of the logistic regression model in the EMM framework: for example, the
problem of complete separation of the data [31] that makes convergence impossible for certain
subgroups. Indeed, the convergence rates outlined in Figures 7.6, 7.18, 7.28 were very high with
respect to the first level of the beam (around 90%) and remarkably lower in the second and third
level (around 40-50%). In other words, convergence was more difficult to reach in case of more
specific and subsequently smaller subgroups. Furthermore, not every model is a good fit for lo-
gistic regression: there must be a careful study in the selection of the response and the predictors
with a good trade-off between clinical and statistical importance of the selected target attributes.
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Regarding the interpretation of the results, a new direction that could be explored is to implement
a statistical test which indicates when the average discrete changes from the two samples (sub-
group and dataset or subgroup and complement), relative to the same predictor, are significantly
different from each other. Mize et al. discuss this topic [38] and propose a solution with the imple-
mentation of the method SUEST from the programming language Stata. The idea is to estimate
the variances of the two average discrete changes that we want to compare and the covariance
between them and then perform a Wald statistical test to verify if the difference is significant or
not. A possible future work would be to adapt this approach to the EMM framework. Having
a statistical basis that indicates if the difference of the ADCs is significant may help with the
interpretation of the results.

Regarding the permutation test, the main limitation is that it is computationally expensive to
generate all the permutations and assess them according to the chosen model and quality measure.
That is why in Chapter 8 a Monte Carlo simulation has been implemented. The results that we
found from applying the permutation test on the subgroups retrieved from the experiments confirm
that the subgroups are interesting from a statistical point of view. However, the very extreme
scores of the subgroups with respect to the randomly generated permutations seem to suggest that
one should “expect the unexpected” when using pattern mining techniques, as underlined in [37].
A possible future direction could be to define alternative statistical tests that are stricter than the
permutation test in assessing the statistical significance of the retrieved subgroups.
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Appendix A

Dataset attributes

Table A1: Lung cancer topography values (topog)

Code Meaning
C340 Main bronchus
C341 Upper lobe, lung
C342 Middle lobe, lung (right lung only)
C343 Lower lobe, lung
C348 Overlapping lesion of lung
C349 Lung, NOS

Table A2: Differentiation grade classes (diffgr)

Code Meaning
1 Well differentiated
2 Moderately differentiated
3 Poorly differentiated
4 Undifferent, anaplastic

9
Grade or differentiation unknown,
not applicable or not determined

Table A3: Social-economic statues values (ses)

Range of values Meaning
1-2-3 Poor
4-5-6-7 Middle class
8-9-10 Rich
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Table A4: Basis of diagnosis classes (basisd)

Code Meaning
1 Clinical examination only (case history and physical examination).

2
Clinical diagnostic examinations, exploratory surgery or autopsy (without
microscopic confirmation).

4 Specific biochemical and / or immunological laboratory tests.

5
Hematological or cytological confirmation of the primary tumor or
metastases, or there is microscopic confirmation but it is unclear
whether this is cytology or histology.

6
Histological confirmation only of metastasis, including confirmation
in case of autopsy.

7
Histological confirmation of the primary tumor, or unclear or histological
confirmation of the primary tumor or a metastasis.
And/or autopsy (with histological confirmation).

8 Histological confirmation due to obduction.

Table A5: Tumorsoort classes (tumorsoort), with corresponding morphologies (morf)

Tumorsoort Code Meaning Morphologies

302310 Non-small-cell lung carcinoma

8010-8020, 8022-8035,
8046-8230, 8243-8246,
8250-8576, 8972,
8980-8982, 9110

302320 Small-cell lung carcinoma 8002, 8021, 8041-8045
302330 Carcinoid of the lung 8240-8242, 8248-8249

302340 Other / unspecified lung cancer
8000-8001, 8003-8005,
9990, 8720-8790

302350 Pleuropulmonal blastoma 8973

Table A6: Lateralization classes (later)

Code Meaning
1 Left
2 Right
3 Medial
4 Double sided
X Unknown
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Table A7: Dataset attributes

Attribute Meaning Attribute Meaning
incjr Incidence year stage main Stage of the cancer

estat
Registration status
of the episode

Histological group Type of tumor cells

gesl Gender treatment
Whether the patient
received at least a treatment

leeft Age at incidence treatment outside nl
Whether the patient
received at least a treatment
outside the Netherlands

topog Topography who1 Performance status

later Lateralisation first hospital type
First hospital the patient
came in contact with

morf Morphology first hospital treatment Hospital of first treatment
diffgr Differentiation grade first specialism First hospital ward

tumorsoort Tumor type reason diagnostics1 Diagnosis reasons
basisd Basis of diagnoses ses Social economic status

ct Clinical tumor stage radio chemo
Radiotherapy and
chemotherapy concurrent,
sequential or separate

cn
Clinical lymphnodes
stage

indchemo Chemotherapy

cm
clinical metastasis
stage

indrt Radiotherapy

pt
patological tumor
stage

indhorm Hormonal therapy

pn
patological lymphnodes
stage

indtarget Targeted therapy

pm
patological metastasis
stage

indchorg Organic Chirurgy

lyond
Number of examined
lymphnodes

indchlok Local Surgery

lypos
Number of positive
lymphnodes

indchov Other Surgery

zid count
Number of records
related to one patient

indchimlok
Local chemo
or immunotherapy

inc month Incidence month indimmuno Immunotherapy

inc weekday
Incidence day of the
week

indchmeta
Surgery aimed at
metastasis

follow up years
how many years that
the patient survived
after the first daignoses

indrtmeta
Radiotherapy aimed
at metastasis

is dead
Whether the patient
is still alive or not

indoverig Other treatments

PROVINCIE Province indonbek Unknown treatment
COROP Region metastasized Metastasis

PC2
Last two digits of
the postal code
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