

Politecnico di Torino Technische Universität München

Master Thesis in Automotive Engineering

Course of Vehicle System Development

Creation of a database concept for expandable

parametric vehicle architectures

Ranocchia Gabriele, M.Sc.

A.Y. 2019/2020

Thesis Coordinator: Prof. A. Tonoli

Thesis Supervisors: Prof. M. Lienkamp

Ph.D. candidate L. Nicoletti

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Geheimhaltungsverpflichtung

Herr/Frau: Ranocchia, Gabriele

Gegenstand der Geheimhaltungsverpflichtung sind alle mündlichen, schriftlichen und digitalen
Informationen und Materialien, die der Unterzeichner vom Lehrstuhl oder von Dritten im Rahmen
seiner Tätigkeit am Lehrstuhl erhält. Dazu zählen vor allem Daten, Simulationswerkzeuge und
Programmcode sowie Informationen zu Projekten, Prototypen und Produkten.

Der Unterzeichner verpflichtet sich, alle derartigen Informationen und Unterlagen, die ihm
während seiner Tätigkeit am Lehrstuhl für Fahrzeugtechnik zugänglich werden, strikt vertraulich
zu behandeln.

Er verpflichtet sich insbesondere:

• derartige Informationen betriebsintern zum Zwecke der Diskussion nur dann zu
verwenden, wenn ein ihm erteilter Auftrag dies erfordert,

• keine derartigen Informationen ohne die vorherige schriftliche Zustimmung des
Betreuers an Dritte weiterzuleiten,

• ohne Zustimmung eines Mitarbeiters keine Fotografien, Zeichnungen oder sonstige
Darstellungen von Prototypen oder technischen Unterlagen hierzu anzufertigen,

• auf Anforderung des Lehrstuhls für Fahrzeugtechnik oder unaufgefordert spätestens bei
seinem Ausscheiden aus dem Lehrstuhl für Fahrzeugtechnik alle Dokumente und
Datenträger, die derartige Informationen enthalten, an den Lehrstuhl für
Fahrzeugtechnik zurückzugeben.

Besondere Sorgfalt gilt im Umgang mit digitalen Daten:

• Für den Dateiaustausch dürfen keine Dienste verwendet werden, bei denen die Daten
über einen Server im Ausland geleitet oder gespeichert werden (Es dürfen nur Dienste
des LRZ genutzt werden (Lehrstuhllaufwerke, Sync&Share, GigaMove).

• Vertrauliche Informationen dürfen nur in verschlüsselter Form per E-Mail versendet
werden.

• Nachrichten des geschäftlichen E-Mail Kontos, die vertrauliche Informationen enthalten,
dürfen nicht an einen externen E-Mail Anbieter weitergeleitet werden.

• Die Kommunikation sollte nach Möglichkeit über die (my)TUM-Mailadresse erfolgen.

Die Verpflichtung zur Geheimhaltung endet nicht mit dem Ausscheiden aus dem Lehrstuhl für
Fahrzeugtechnik, sondern bleibt 5 Jahre nach dem Zeitpunkt des Ausscheidens in vollem Um-
fang bestehen. Die eingereichte schriftliche Ausarbeitung darf der Unterzeichner nach
Bekanntgabe der Note frei veröffentlichen.

Der Unterzeichner willigt ein, dass die Inhalte seiner Studienarbeit in darauf aufbauenden
Studienarbeiten und Dissertationen mit der nötigen Kennzeichnung verwendet werden dürfen.

Datum: 02.12.2020

Unterschrift: ____________________________________

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Erklärung

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Garching, den 02.12.2020

Gabriele Ranocchia, M. Sc.

Lehrstuhl für Fahrzeugtechnik
Fakultät für Maschinenwesen
Technische Universität München

Declaration of Consent, Open Source

Hereby I, Ranocchia, Gabriele, born on 24.10.1996, make the software I developed during my
Master ThesisMaster Thesis available to the Institute of Automotive Technology under the terms
of the license below.

Garching, 02.12.2020

Gabriele Ranocchia, M. Sc.

Copyright 20202020 Ranocchia, Gabriele

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to
do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Abstract

The general contest of the doctorate project, in which the thesis is developed, aims to
create a complete parametric vehicle architecture model in the early development phase
of a new electric car.

The computation software used for this scope needs inputs such as requirements given
by manufacturer, performance targets, and type of vehicle. Furthermore, it also needs
several other factors and statistical models that cannot be defined by users but are nec-
essary to obtain the vehicle architecture. These necessary external parameters, that are
not defined by user input, are obtained in a pre-processing phase that is the core of the
developed work.

The pre-processing phase that has been developed in this work, has the objective to
automatize the process, reducing manual errors and maintaining an actualized structure.
The creation of a database is mandatory. An interface can then interact with data con-
tained in the database and completely retrieve all needed values for the parametric
vehicle architecture model. Those values are defined as models and variables in the
context of the work.

The aim of the project is the creation and organization of the whole database, the use of
management keys to properly connect data with solutions to reduce the propagation of
errors. Moreover, the creation of a MATLAB interface for the complete automatization of
the computation of models has been carried out with the use of statistical tools. The
whole implementation is devoted also to user-friendliness, with the aim to minimize man-
ual actions. In this way, the pre-processing can be performed also by not skilled users.

The work gives a complete analysis of the database creation and implementation and
the working principle of the code interface. Models and variables are used to create the
whole vehicle structure. The final part gives an overview of the application of the pre-
processing phase and its importance in the whole computation of the vehicle model.

I

Contents

List of Acronyms .. III

List of Symbols.. V

1 Introduction ... 1

1.1 Tool presentation ... 2

1.2 Database integration .. 3

1.3 Thesis structure ... 3

2 State of the art .. 5

2.1 Parametric vehicle modelling ... 5

2.2 Fixed parameters ... 8

2.3 Normal distribution analysis ... 9

2.4 Linear regression analysis .. 13

2.4.1 Statistical evaluation coefficients .. 16

2.4.2 Further statistical tests .. 17

2.5 Database theory ... 20

2.5.1 Identify the entity sets and relations ... 20

2.5.2 Identify relationship types ... 21

2.5.3 Define the value of the sets and attributes ... 21

2.5.4 Organize the data and choose the primary keys 22

3 SQL and Database implementation .. 25

3.1 Database structure ... 25

3.2 Data and models .. 27

3.2.1 General data tables... 28

3.2.2 Data tables .. 33

3.2.3 Additional tables .. 35

3.2.4 Calculation tables ... 36

3.3 SQL language ... 41

3.4 Creation and management of the database .. 44

Contents

II

3.5 Brief explanation of views ... 49

3.6 Criticalities .. 50

4 MATLAB pre-processing phase .. 53

4.1 MATLAB codes for table integration .. 53

4.1.1 Get IDs for model series connection .. 53

4.1.2 Set NULL values ... 56

4.2 MATLAB codes for complete pre-processing .. 57

4.2.1 Create the Database connection .. 58

4.2.2 Generate the MATLAB file to store results ... 59

4.2.3 Assign fixed parameters ... 59

4.2.4 Assign constant values computed from normal distribution 61

4.2.5 Assign catalogues ... 63

4.2.6 Assign regression models ... 64

4.2.7 Structure changes complete check .. 68

5 Spring design for dimensional chain of the rear axle 71

5.1 Dimensional chain of the rear axle ... 71

5.2 Spring dimensioning procedure ... 73

5.2.1 Spring catalogue ... 74

5.2.2 Geometrical check .. 77

5.2.3 Frequency check... 79

5.2.4 Travel check .. 81

5.2.5 Resistance check .. 83

5.2.6 Buckling check .. 85

5.3 Evaluation of results .. 88

6 Conclusions and considerations .. 91

7 List of Figures ... 93

8 List of Tables .. 95

9 Appendix ... 97

9.1 Appendix A ... 97

9.2 Appendix B ... 101

9.3 Appendix C ... 103

10 References .. 105

III

List of Acronyms

ADAC Allgemeiner Deutscher Automobil-Club
adj Adjusted
AWD All Wheel Drive
BEV Battery Electric Vehicle
BOF Ball of Foot
ERM Entity Relationship Model
fix Fixed Parameters
FWD Front Wheel Drive
HEV Hybrid Electric Vehicle
ISO International Organization for Standardization
KS Test Kolmogorov–Smirnov Test
LDS Longitudinal Dynamic Simulation
MAE Mean Absolute Error
max Maximum
min Minimum
MSE Means Square Error
NaN Not A Number
nMAE Normalized Mean Absolute Error
norm Normal Distribution
OOST Out of Sample Test
RDBMS Relational Database Management System
regr Regression
RMSE Root Mean Square Error
RWD Rear Wheel Drive
SAE Society of Automotive Engineers
SgRP Seating Reference Point
SQL Structured Query Language
VIF Variance Inflation Factor

IV

V

List of Symbols

ˉ Referred to dataset
ˆ Estimated
µ Mean
b Length of the suspension lower axis
bi Coefficients of linear regression model
c Elastic rate
Cv Coefficient of variation
D Mean diameter of the spring
d Wire diameter of the spring
Dext External diameter of the spring
Dint Internal diameter of the spring
dsa Piston diameter of the shock absorber
dtire Diameter of the tire
f Frequency of oscillation
F Force
G Shear modulus
g Gravitational acceleration
htest Conventional height of loaded spring
i Transmission ratio
k Correction factor
L Length of the coil
m Mass
mrear Load on the rear wheels
n Number of elements
n Number of windings
R2 Coefficient of determination
Rm Maximum resistance
s Displacement
Sa Deformation margin between coils

List of Symbols

VI

w Winding ratio
Xij Independent regression variable
ycoil_out Position in Y of the outer side of the spring
yfixed_arm Position in Y of the fixing point of suspension to body with respect to

the centre of the vehicle
Yi Dependent regression variable
yinside_surface_sa Position in Y of the critical point for contact with the shock absorber
ysa Position in Y of the lower hinge of the shock absorber with respect

to the centre of the vehicle
zwh Position in Z of the upper point of the wheelhouse with respect to the

centre of the wheel in empty weight conditions
α Significance level
δ Deformation
ε Residual
θsa Inclination angle of the shock absorber with respect to the Z-axis
λ Slenderness factor
ν Constraint factor
ξ Retained spring deflection
σ Standard deviation
τ Shear stress
τlim Limit of shear stress

1

1 Introduction

The process of designing a new vehicle concept is a complex set of procedures and it is
influenced by a wide range of factors. Those constraints are the results of the legislative
restrictions, the reference market, the car manufacturer, and its brand image. Moreover,
the work concerns development of electric vehicle and the electromobility branch does
not have a consolidated technical history that can be relied upon for new models [1][2].

At the beginning of the vehicle design, a set of starting parameters needs to be empiri-
cally estimated on the base of a given set of inputs. As mentioned in [1] concerning
internal combustion engine vehicles (ICEVs), previous model series or models from
competitors are a good base to start the development of new models. On the other hand,
battery electric vehicles (BEVs) do not have a consolidated model history and the num-
ber of competitor’s electric vehicle on the market is still low. Moreover, most of the
parameters cannot be derived from ICEVs, since BEV powertrains and their require-
ments are completely different [1][3]. Due to this lack of parameters, the derivation of
new BEVs needs to rely on empirical models.

To do so, for modelling each vehicle component, a set of data regarding already existing
vehicles is needed to create the model. Based on the set of data, empirical models can
be obtained and employed to derive a vehicle architecture. Nevertheless, over time the
originally collected data loses validity due to the presence of new vehicles on the market.
This means, that also the models derived from this data, lose their validity. To avoid this
issue, it is important to periodically update data and recompute the empirical models [2].
For this purpose, a database structure was implemented in the scope of this thesis. The
hereby derived structure can be applied to store and calculate the data necessary for a
vehicle architecture model. In this way, by progressively updating the data within the
database, an actualised structure is always maintained and it is used as the starting
point for the models calculation [2].

The aim of this work, which is presented in the following elaboration, is the creation and
management of the aforementioned data structure and the development of a MATLAB
interface that allows the pre-processing phase (introduced in section 1.1) to be carried
out autonomously on the data contained in the database.

1 - Introduction

2

1.1 Tool presentation
The aim of the project, in which this work is developed is the creation of a tool for deriving
BEV architecture in the early development design. The tool is implemented in MATLAB
and operates with a limited amount of inputs. These are general vehicle characteristics,
dimensions, and performances requirements.

The main problem related to the process is that to compute the whole vehicle model,
many different factors are needed, and they are not all given by user input. The scope
of the current work is to try to solve this problem creating an automatic procedure that is
able to retrieve all the needed information without requiring any user intervention. More-
over, the project aims at the creation of a way to maintain the computed values always
actualized, with an eye on user friendliness and modularity.

The flow diagram in Figure 1.1 reports the main steps of the complete process.

The procedure starts with the need of a database. The need of the database is better
analysed in chapter 2. The database is then used to make computations in a pre-pro-
cessing phase that is the core of the developed work. All computed values are then
stored in a dedicated variable that is then used as an additional input for the main tool
to compute the complete vehicle model.

The current work is dedicated to the first three steps of the flow. The main problem is
not related to the calculation of all the needed parameters. The issue is to create a way
to have an automatic computation process that needs no user intervention. Moreover,
there is the need to have always updated values to not loose significance in the results
of the whole procedure. As will be presented in the text, these tasks can be achieved
with the use of a structured database.

Figure 1.1: Flow of the general process

Database

re

u
e
n
c

 istogram ith outliers

 istogram ithout utliers

 istribution ith outliers

 istribution ithout outliers

 ean value

 e ian

 ean value st . ev.

 ean value st . ev.

 imit utlier

Pre-
processing Store values Processing

of the vehicle

1 - Introduction

3

1.2 Database integration
The database is the core element for the automatic update of empirical models. Its im-
plementation must be structured to fulfil the following tasks:

• Have always up to date data sets to obtain the empirical models: the data-
base can be easily updated by any user adding new rows to the existing
tables or importing new tables.

• Avoid collisions, interferences, and repetitions between tables: at this pur-
pose, an organized structure is needed.

• Let the MATLAB interface autonomously read data: some specific tables
are dedicated to the MATLAB interface, they do not contain any numerical
vehicle data but they are crucial to give information on how to retrieve
needed parameters in the database.

• Avoid data dispersion [2]: By collecting all data sets for the models in a da-
tabase, they can be all easily accessible at any moment.

The solutions that have been adopted to fulfil these requirements will be treated in the
following chapters.

1.3 Thesis structure
The thesis is composed by six chapters (Figure 1.2).

In chapter 1, an introduction to the main tool objectives and features and a first insight
to database management is performed.

In chapter 2, statistical tools for data management are analysed. Moreover, database
theory and functioning are shown, including the main critical aspects of the work. Finally,
an explanation of the working principle of dimensional chains is shown.

Chapter 3 describes the implementation of the database, an in-depth analysis of its
structure, the explanation and representation of the models and an explanation of the
main criticalities and solutions.

Chapter 4 describes the implementation of the MATLAB interface for the pre-processing
phase, with a complete explanation of the interaction with the database, the technical
solutions and optimizations that have been adopted and the representation and analysis
of the results of the code.

Chapter 5 shows an analysis on how the dimensional chains of the tool work and how
obtained models are used. Particularly, the work exploits the primary design procedure
for the rear spring element in the rear axle dimensional chain. In the whole discussion of
the subjects, the main attention will be focused on the models and their contents, their

1 - Introduction

4

importance to the main tool and analysis of results, anyway without omitting the im-
portance of the practical work for the proper data management and further
improvements that can be implemented in the future.

Finally, Chapter 6 offers an overview of the work and its results and a brief outlook on
the possible future improvements.

Figure 1.2: Thesis structure

1. Introduction
• Brief explanation of the thesis work

2. State of the art
• Analysis of the teory behind the database management and the computed models

3. SQL and Database implementation
• Presentation of the structure of the actualization database and data models

4. MATLAB pre-processing phase
• Explanation of the implemented MATLAB interface for the models computation

5. Spring design for dimensional chain of the rear axle
• Working principle of the dimensional chains and functionality on the tool with focus

on the procedure for the rear spring.

6. Conclusions and considerations
Brief review of the work with some considerations

5

2 State of the art

In the pre-processing phase, it is necessary to obtain from the database all the data
required by the tool to perform the further calculations. These data range over different
categories and types that are presented in detail in the following sections. Depending on
the type of data or model, different approaches are used to obtain the results. Specifically,
they can be divided into three categories: fixed parameters (section 2.2), parameters
obtained with a normal distribution analysis (section 2.3) and models obtained through
a linear regression (section 2.4).

This chapter presents the theory behind the three type of categories and an explanation
of the MATLAB code functions to calculate normal distribution analysis and linear re-
gression models with particular attention to their statistical properties, useful to give a
quantitative evaluation of the results.

Moreover, the sequent part of the chapter (section 2.4) is dedicated to the exposition of
the database theory, fundamental part for the proper data management.

Finally, in section 2.5, an explanation of the concept behind dimensional chains is made,
considering the importance they have for the tool and the implementation of the com-
puted models.

2.1 Parametric vehicle modelling
To define the complete architecture of a BEV vehicle, there are four different features:
the dimensional concept, the powertrain topology, the component models and the di-
mensional chains. [1][2].

The dimensional concept is the description of internal and external dimensions, including,
for the interior, the definition of seat rows and passengers. The powertrain topology de-
scribes the general position and characteristics of the powertrain components, such as
the electric motor type, the gearbox type, and the battery position. Component empirical
models are essential to estimate the weight and volume of the vehicle components. Fi-
nally, the dimensional chains describe the geometrical interdependencies between
different components in X-, Y- and Z-direction [1][2].

By modelling the four architectural features, the tool can output a vehicle architecture
(Figure 2.1).

2 - State of the art

6

Figure 2.1: Typical graphical output of the vehicle architecture tool

The approach uses data and models for the proper computation. These are required
since not all necessary values for the vehicle architecture parameters are available as
input parameters.

To make a practical example, the turning circle is neither an input, nor a requirement of
the car manufacturer. Anyway, it is required to estimate the maximum steering angle [4,
pp. 241-242], that is in turn crucial to derive the required space for the wheel and to
define the front wheel-arch in Y-direction.

For this reason, there is a set of independent inputs, which cannot be asked to the users
of the tool, that are required for modelling the vehicle architecture. The aim of the current
work is to obtain all those values and statistical models through a structured computation
process during the pre-processing phase.

The dimensional chain procedure is one of the possible ways to determine the dimen-
sions of a whole component or system. It consists in the subdivision of subcomponents
and their addition results in the complete dimension [5].

They are the base in the early development phase to test the feasibility of the vehicle
architecture. They are the tools that allow for parametrical vehicle modelling. [6]

According to [2], dimensional chains have two different tasks: position the components
and evaluate the available space. To properly evaluate the available room, different con-
straints are considered, for example the vehicle general dimensions. Knowing the space,
main components can be placed. After that, comparing the available space with the re-
quired installation space for the different components, allows the feasibility of the vehicle
architecture to be checked.

Referring to Figure 2.2, it is the graphical representation of a dimensional chain. Specif-
ically it refers to the dimensional chain to estimate the vehicle height [2][7].

2 - State of the art

7

The procedure starts from the ground clearance of the vehicle (H156) [8]. Knowing the
battery height (BH), the height of the passenger compartment is obtained. Then, if H30
is known, the SgRP can be obtained. To the computation purposes, a 95%ile manikin
has been used, with dimensions defined in [7][9].

The manikin is placed in the H30 at the lowest rearmost position, that is determined from
the SgRP with the seat travel path. From that point, using dimension H62-1 and the torso
angle A40-1 [7], it is possible to compute the height of the passenger compartment.

From that condition, adding the value of the roof thickness (RT), one can obtain the total
vehicle height that is the purpose of the dimensional chain.

The dimensional process is reported in equation 2.1.

𝐻100 = 𝐻156 + 𝐵𝐻 + 𝐻30𝑚𝑖𝑛 + 𝐻62 ∙ 𝑐𝑜𝑠(𝐴40) + 𝑅𝑇 (2.1)

The general process is not monodirectional. If the vehicle height is known (H100), the
process can be inverted to calculate other missing dimensions, for example to retrieve
the passenger compartment available space.

This is only one example to show the main characteristics of dimensional chains. The
main tool uses 15 different dimensional process that are able to fully describe the vehicle
architecture, positioning all relevant components and modules and deriving available
components space [2][10].

The different terms used by the tool to compute dimensional chains are known or re-
trieved in some way. Taking again the example of equation 2.1, in the early development
phase, one of the known factors is the height of the vehicle. The general vehicle dimen-
sions are known and used as input. Instead, some other values are unknown and not
imposed as input, as for example the roof thickness.

It is in this contest that the integration with database is crucial. The storage of vehicle
models, also contains information about the roof thickness of many vehicles. In this way,
the real value is not known, but it can be retrieved computing an average distribution on
known values (or in some cases a regression model).

Component models are based on empirical models that can be constant values derived
from normal distribution and regression models. In the scope of the work referring to
normal distribution or regression we refer to empirical models.

The pre-processing tool developed in the thesis can autonomously compute all the pa-
rameters which cannot be asked as an input. Moreover, it is important that all empirical
models and parameters are always actualized. To this purpose, it is necessary to store
data in a database [2]. The pre-processing tool interacts with the database, using a
MATLAB-SQL interface, to autonomously retrieve empirical models and stores it in a
structure variable that is given as input for the main tool. This gives the possibility to
automatize the procedure and maintain an updated structure.

The pre-processing phase has the task to obtain all the empirical models and values that
are used in the main tool for the dimensional chains.

2 - State of the art

8

Moreover, adding and updating data in the database, keeps all values and models au-
tomatically updated and significant for the proper computation of the parametric vehicle
model.

Empirical models are presented in the following sections (fixed parameters 2.2, normal
distributions 2.3, and regression models 2.4)

2.2 Fixed parameters
Concerning the designation of fixed parameters, the analysis is not complex because,
as the name suggests, they are already established single values that as such, do not
require calculations or models but are obtained and used as they are. They derive from
constant values imposed by legislation, which therefore cannot be modified or do not
require interpretation, or from internal procedures conventions.

Table 2.1 shows some fixed values. The ones denoted with LDS refer to the Longitudinal
Dynamic Simulation, that is used for the computation of the powertrain components.
Other terms are manikin dimensions that are part of the dimensional concept for the
design of the passenger compartment.

The values of Table 2.1 are taken as they are in the table and they derive from regula-
tions or they are imposed as conventions for the calculations. The A40 and the manikin
foot length are related to the dimensional concept of manikin. They are the torso angle
of the manikin and the length of the foot (FL) [11][12], respectively. Figure 2.2 shows an
example of the dimensions [2][6].

Table 2.1: Examples of fixed parameters

Parameter Value Unit of measurement

A40 25 °

Manikin foot length 306 mm

LDS η differential 1 -

LDS η power electronics 0.95 -

Weight max 3500 Kg

2 - State of the art

9

Figure 2.2: Example of manikin dimensions [2][6]

The two factors of the LDS are related to the dynamic simulation. The η differential is
the efficiency of the differential [13] while η power electronics is the efficiency of the
electronics from battery to motor [14]. The last term is the maximum legal mass for a
vehicle [15].

Fixed parameters can be implemented by collecting them in tables of the database (and
not in the tool code). Doing so, if a fixed parameter value needs to be updated, it can be
easily changed in the table and the user does not need to search it through the code.
After the explanation of the fixed parameters, the next section deals with the presenta-
tion of the statistical tool for the normal distribution.

2.3 Normal distribution analysis
Normal analysis are important in statistics to represent random variables whose distri-
butions are not known [16]. It is usually suitable to get a constant value when no
particular influence on other dimensions is present [5]. The information of the dataset
can be represented graphically using a histogram (Figure 2.3).

2 - State of the art

10

Figure 2.3 shows the distribution of the A44 dimension of the first row. It is the angle of
the manikin between the lower and upper leg, as reported in Figure 2.4 [6]. The definition
of the name A44-1 states that the dimension is referred to the first row. For the second
row, the same dimension is indicated with A44-2.

Figure 2.4: Leg dimensions [6]

On the x-axis the range of data is divided in different categories with equal width, each
category is represented by a bin. The y-axis depicts the associated probabilities to pick
a data in the considered category.

Figure 2.3: Histogram example of A44 dimension of the first row

2 - State of the art

11

This type of visualization allows to graphically show a continuous set of data. In the range
between the minimum and the maximum value of the sample there are infinite possible
results. Dividing them into categories, they are discretized, and the infinite possible set
is represented by a finite number of classes.

The following parameters give a quantitative numerical description of the data:

• Mean µ: it is the most common measure of central tendency [17][18], calcu-
lated by the sum of all values of the data set divided by number of elements
of the set of data.

• Median: it is also a measure of central tendency but defined differently. Val-
ues are sorted by their size and then divided into two equally sized groups.
The value that is dividing the groups of data is the median.

• Stan ar eviation σ: it measures the ispersion of a set of ata. set of

data with wide distribution has a higher value of the standard deviation. An-
other important characteristic are the probability intervals around the mean
value defined by the standard deviation. In the function it is of particular
interest the % interval characterize b . σ [19, pp. 43-45]. Values
outside this interval are called outliers [17].

• Coefficient of variation: A standardized measure of variation of the distribu-
tion of the probability density function. It can be interpreted as a unit
independent deviation and is calculated by the standard deviation divided
by the mean. The coefficient of variation has no unit and represents a per-
centage value. A low coefficient of variation indicates a low data dispersion
[20]. The equation 2.2 shows the formulation of the coefficient.

𝑐𝑣 =
𝜎

𝜇
 [%] (2.2)

As mentioned above, the representation in categories is discretized, but it is useful to
analyse the phenomena also through continuous distributions.

The normal distribution, or Gauss distribution, is a continuous distribution representing
the probability density function associated with a specific data range. With this type of
distribution, it is not possible to calculate the exact probability value associated with a
given datum, but it is possible to derive the probability of a datum falling in a certain
interval, integrating the function in that interval.

Moreover, the central limit theorem states that a process, which is the sum of many
independent processes, tends to the normal distribution. The higher the number of pro-
cesses and the closer the mean is to the average of the normal distribution [17][21].

Due to this extremely important statistical statement, it is often possible to use the normal
distribution for a theoretical approximation of a random physical phenomenon.

The probability density function of the normal distribution in general form is presented in
equation 2.3.

2 - State of the art

12

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2 (2.3)

The probability density function is characterized by the specific x taken from the set of
data, the mean value µ, an the stan ar eviation σ. For the normal distribution, the
mean and the median value coincide because the normal distribution is axis-symmetric
with the mirror axis on the mean [22].

By performing a normal distribution analysis, two further statistical values can be ob-
tained. The first one is the mean absolute error (MAE) as shown in equation 2.4.

𝑀𝐴𝐸 =
∑ |𝑦𝑘 − 𝜇|𝑛

𝑘=1

𝑛
 (2.4)

Where 𝑛 is the number of data in the data set, 𝑦𝑘 is the k-th resulting value from the
normal distribution and 𝜇 is the mean of the distribution.

The second one is the normalized value of the mean absolute error (nMAE) obtained
dividing the previous value by the mean of the data set �̅�. By definition, this factor is
dimensionless (equation 2.4).

𝑛𝑀𝐴𝐸 =
𝑀𝐴𝐸

�̅�
 (2.5)

The pre-processing tool performing the analysis of the set of data, carries out also sta-
tistical tests, with the goal of verifying the assumptions on the behaviour of the data set.

The hypothesis test has two evaluations: the null hypothesis and the alternative hypoth-
esis which are one the opposite of the other [23].

A null hypothesis gives information about the possible correlation between two given
sets of data. This hypothesis is rejected if the probability value, indicated by p-value,
sta s belo an establishe critical level, calle significance level α. The t pical values of

α are % or % [5].

If the null hypothesis is refused, it means that there is no statistical relation between the
two considered data sets.

Another test that is performed is the Kolmogorov–Smirnov test, or KS test. It performs a
comparison between two probability distributions or a probability distribution and a sam-
ple distribution (usually of greater interest). In many cases the KS test can be used to
verify if a normal distribution fits a given set of data; in this case, the difference between
the normal distribution and the sample distribution is computed for each value and the
maximum of this differences is compared with the maximum allowed value according to
a certain significance level α. If the maximum exceeds the limit value, the results is the
rejection of the similarity between the data set and the normal distribution. This means
that the analysed data is not normally distributed.

The MATLAB function computes an approximate normal distribution of a given set of
values and, if needed, generates a plot. On the same plot of the normal distribution, also

2 - State of the art

13

a histogram of the given data values is generated. Taking again the example for the A44
of the first row, the example of the complete plot is reported in Figure 2.5.

Figure 2.5: Histogram plot with normal distribution of A44 dimension of the first row

The data analysis with the normal distribution can be done including or excluding outliers.

The generation of the normal distribution is implemented in a MATLAB code that can
generate all the discussed results and plots [18].

Moreover, it is also possible to generate an Excel file that contains the results of the
normal distribution analysis and the plot. It is based on a fixed template that is directly
filled from the MATLAB code. The main aspects of the file are reported in the Appendix
A.

So, this function can make and store all the necessary evaluations of a given sample of
data and it is widely used to retrieve some results during the pre-processing phase.

2.4 Linear regression analysis
Another way to obtain information from a data set is the computation of a linear regres-
sion model. Typically, this type of evaluation is applied to obtain a model capable of
describing the correlation between different variables.

The objective of the regression analysis is to estimate the relation between a set of one
or more independent variables 𝑥𝑖𝑗 and a dependent variable 𝑦𝑖 and to statistically eval-
uate how robust this relation is [5]. To estimate the regression model, a set of already
observed 𝑥𝑖𝑗 and 𝑦𝑖 is needed. The terms indicate that 𝑥𝑖𝑗 is the i-th observation of the

2 - State of the art

14

j-th independent variable. This means that j represents the number of independent vari-
ables. 𝑦𝑖 is the i-th response [24]. The i-th term states the specific value of the data set.

In the scope of this thesis only linear regression models are implemented in the tool.
Linear regression means that the relation between the independent variables and the
dependent one is a linear combination of the 𝑥𝑖𝑗 set. Nevertheless, since the database
is built as a modular tool, it is possible to extend it to model also other regression models.
For example, instead of using a linear equation, one can increase the order of the esti-
mation. In this way the general regression becomes a polynomial.

Regarding the linear regression, it is possible to distinguish between two types: simple
linear regression and multiple linear regression.

In the former, the model is a linear relationship between a dependent variable and an
independent variable. The relation describing this type of model is given by equation 2.6.

�̂�𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 (2.6)

In the equation, the dependent variable is indicated with �̂�𝑖, since it represents an esti-
mation of the real value 𝑦𝑖 . The term 𝑏0 represents the intersection term while the
parameters 𝑏𝑗 (𝑗 ≠ 0) are called regression coefficients [17]. The data set from the da-
tabase contains 𝑥𝑖𝑗 and 𝑦𝑖. They are used to get the model linear equation. After the
computation, 𝑏0 and 𝑏𝑗 are available and can be used to estimate new values of the de-
pendent variable. The data set and the obtained model can be plotted on a cart, that in
this case is a simple straight line that tries to fit the data. The example of the plot is
reported in Figure 2.6.

Figure 2.6: Calculated vs Real values

The example shows the whole model plot for the mass of the brake disc using the rela-
tion with the diameter of the brake disc. The real values on the axis cannot be shown
due to the secrecy of data of the catalogue [25].

2 - State of the art

15

There is a more generalized type of linear regression with respect to the one of equation
2.6. It is the multiple linear regression. It involves a higher number of independent factors
𝑥𝑖𝑗.

The relation describing this type of model is given by equation 2.7.

�̂�𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + ⋯ + 𝑏𝑛𝑥𝑖𝑛 (2.7)

To obtain the model formula an established approach is the method of least squares. It
works minimizing the distance between the estimated value �̂�𝑖 and the observation value
𝑦𝑖.

The distance is called residual 𝜀𝑖 and it is one of the most important statistical factors
[26]. It is calculated as in equation 2.8.

𝜀𝑖 = 𝑦𝑖 − �̂�𝑖 (2.8)

By definition, the residual can be positive or negative. Being the regression line the av-
erage of the data set, the sum of all residuals is always 0 [26], no matter whether they
are large or small.

Therefore, since the sum of the residuals cannot be used to derive the model, the re-
gression is calculated by minimizing the quadratic value of the residuals as reported in
equation 2.9.

𝑚𝑖𝑛 ∑ 𝜀𝑖
2 = 𝑚𝑖𝑛 ∑(𝑦𝑖 − �̂�𝑖)

2 (2.9)

Once the theoretical models have been introduced, it is important to explain how the
MATLAB code for the regression function works and how it is used during the pre-pro-
cessing phase.

As already mentioned, the model has to be obtained from an already present set of
observation data containing both the values of 𝑥𝑖𝑗 and the values of the dependent var-
iable 𝑦𝑖 , practically taken from the database (in-depth analysis will be done in the
following chapters).

In some cases, some of the data worsen the regression model. Without these values,
the linear regression would be better, so these data has to be flagged as outliers and
removed from the computation before the model is obtained. There is not an established
method to evaluate outliers, but one of the most use is the calculation of Cook’s is
tances [27].

The Cook’s istance is evaluate comparing each mo el ithout the i-th value to the
model computed with the whole data set and scaling them according to the mean square
error (MSE, equation 2.14) and the number of data. The formulation is reported in equa-
tion 2.10 [28].

𝐶𝑜𝑜𝑘′𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 → 𝐷𝑖 =
∑ (�̂�𝑠 − �̂�𝑠(𝑗))

2𝑛
𝑗=1

𝑀𝑆𝐸 ∙ 𝑛
 (2.10)

2 - State of the art

16

Where 𝑛 is the total number of observations, �̂�𝑠(𝑗) is the value of the predicted depend-
ent variable with the model derived without observation j-th, �̂�𝑠 is the value of the
predicted dependent variable with the model derived on the whole set of data and MSE
is the mean square error.

The result Di is a vector with 𝑛 elements containing the Cook’s istance for each of the
observed variables. If the value of Cook’s istance is small, the impact on the regression
model of the observation is small as well. On the other hand, a big value of Di means a
high impact of the observation. So, a critical value can be set to filter out the critical
observations. A t pical suggeste value is aroun to times the mean of the Cook’s

distances [18]. Subsequently, the model is recomputed after filtering out the outliers.

Once the model has been computed, it is fundamental to calculate some statistical pa-
rameters that can give information about how well the model behaves related to the data
sample.

2.4.1 Statistical evaluation coefficients
Using previous formulas, filtering outliers, and applying the least square method the re-
gression model is obtained. It is important to be able to evaluate it. There are some
statistical coefficients that are useful to quantify the quality of the computed model.

The most important factors are the following [29][30]:

• The Coefficient of determination 𝑅2 represents the percentage of accuracy
with which the independent variables predict the dependent variable [30].
The explicit formula is given in equation 2.11.

𝑅2 =
𝜎�̂�

2

𝜎𝑦
2

=
∑ (�̂�𝑖 − �̅�)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (2.11)

Where 𝜎�̂� is the predicted variance, 𝜎𝑦 is the total variance, �̂� is the predicted value
with the model, 𝑦𝑖 is the observed value and �̅� is the mean value of the observations.

The perfect prediction gives 𝑅2 = 100% (predicted and observed data are equal).

• By increasing the number of independent variables to describe the estima-
tion, 𝑅2 increases. Nevertheless, this does not give a real improvement of
the model. To take the number of independent variables into account, the
adjusted coefficient of determination is used [31]. It is formulated according
to equation 2.12.

𝑎𝑑𝑗. 𝑅2 = �̂�2 = 1 − (1 − 𝑅2)
𝑛 − 1

𝑛 − 𝑝 − 1
 (2.12)

Where 𝑛 is the total number of observations (the data set dimension) and 𝑝 is the
number of independent variables.

2 - State of the art

17

• The mean absolute error (MAE) is the average absolute distance between
the predicted value �̂�𝑖 from the regression analysis and the observed value
𝑦𝑖, divided by the number of observations. For a perfect model, the MAE is
zero. It is different with respect to the MAE computed for normal distribution.
In this case, there is not the mean of the data set but the value of the j-th
estimation. Moreover, the mean of the distributions is substituted by the real
value of the data set. The equation 2.13 reports it.

𝑀𝐴𝐸 =
∑ |𝑦𝑗 − �̂�𝑗|𝑛

𝑗=1

𝑛
 (2.13)

• A normalized (dimensionless) version of the mean absolute error on the
mean of the data set is used to deal with dimensionless quantity. It is ex-
pressed in equation 2.14.

𝑛𝑀𝐴𝐸 =
𝑀𝐴𝐸

�̅�
 (2.14)

• The mean square error (MSE) is calculated like the MAE but uses the
squared errors, as reported in equation 2.15.

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 (2.15)

• The root mean square error (RMSE), is obtained by taking the square root
of the MSE, as in equation 2.16. Due to the square terms, this error is sen-
sitive to outliers.

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (2.16)

2.4.2 Further statistical tests
In some cases, two or more terms in the independent variable set depend on each other.
This event is called multicollinearity and reduces the model accuracy. The variance in-
flation factor (VIF) is used to verify the presence of multicollinearities [32]. After
eliminating the outliers, in the case of multiple regression models, a test for multicolline-
arity is required.

The computation is carried on by calculating a new regression model using all the inde-
pendent variables except for one. This step is performed for every independent variable
𝑥𝑖𝑗. To be clear, supposing a model with 𝑥𝑖1, 𝑥𝑖2 and 𝑥𝑖3, three different regressions are
computed. One with 𝑥𝑖2 and 𝑥𝑖3, one with 𝑥𝑖1 and 𝑥𝑖3, and one with 𝑥𝑖1 and 𝑥𝑖2. For each
regression, 𝑅𝑗

2 is computed. The VIF can be obtained using equation 2.17.

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2 (2.17)

2 - State of the art

18

ranging between 1 (no collinearity) to ∞ (perfect collinearity). The test should give values
of VIF below 10 to consider the regression model as acceptable [33].

The residuals 𝜀𝑖 of the regression model should be distributed according to a normal
distribution [17][34].

The code can also plot the distribution of the residuals for a better investigation. An ex-
ample is reported in Figure 2.7, for the same regression used in Figure 2.6.

Figure 2.7: Distribution of residuals represented as bar plot

This is an important condition to execute the F-Test and the t-Test. They are tests used
when comparing statistical models that have been fitted to a data set. They are useful to
identify the model that best fits the population from which the data were taken [35]. The
t-Test is used to test the hypothesis whether the given mean is significantly different from
the sample mean or not, while F-test is used to compare the variances of two samples.

These two types of tests are hypothesis tests to evaluate the influence of the terms of
the model equation on the dependent variable that are computed by obtaining the p-
value an comparing it to the significance level α. The p-value is the probability to obtain
results of the test that exceed the limits of the observed sample [36]. A very small p-
value means that an outcome would be very unlikely.

The F-Test is used to evaluate if the chosen set of independent variables is relevant (xi)
in describing the dependent variable (y) behaviour. If the resulting p-value is below the
significance level α, usuall % [37][17], the test is passed.

If the F-Test fails, it practically means that there is no term in the set of independent
variables that can predict the estimation. If it happens, new different independent varia-
bles have to be chosen to obtain the regression model.

The t-Test is used to assess the impact that each single term of the regression equation
has on the dependent variable. Also, in this case, the test is passed if the p-value keeps
belo the significance level α of %, an it means that the considered term is relevant

2 - State of the art

19

for the model. If the test fails, the term is not significant for the regression and it can be
removed from the computations.

Each time one or more terms, starting from the one with highest p-value, are removed
from the model, the regression has to be recomputed and tests are performed again
repeating this process until all terms falls below the significance level. At this point the
final version of the regression model is obtained.

To clarify, the Figure 2.8 shows a schematized version of the described process.

Once this stage has been reached, it is important to perform a check on the model to
verify that the relationship found between independent variables and the dependent var-
iable is not due to a random coincidence caused by the data set. To do so the Out of
Sample Test (OOST) is performed.

In this test the original data set on which the model has been computed, that has to be
a minimum of 15 values, is iteratively divided in two parts containing approximatively the
15% and the 85% of the data respectively.

The smaller sample is called validation sample, the bigger one is the examination sam-
ple. The examination sample is used to compute and obtain the regression model while
the validation sample is used to check the validity of the equation. For every iteration of
the process the deviation between the model and the validation is computed using the
normalized mean absolute error (nMAEi) and the result of the OOST is given by the
average of all the calculated nMAEi.

The MATLAB function used during the project performs all the needed computations
and tests presented above, giving the user the possibility to get the models and also all
the relevant statistical parameters useful for a correct analysis of the results.

As for the previous function of the normal distribution, if needed, the code can produce
as results some plots of the relevant characteristics of the model and compile an Excel
file to store all the results. The example of the file report is in the Appendix A.

The method explained in this chapter is bundled in a single MATLAB function. This func-
tion is able to obtain the proper regression model for a certain set of independent and
dependent variables and is widely used in the tool.

Figure 2.8: Flow of the process for linear regression models

Compute
regression

model

Verify
distribution
of residuals

Perform
hypothesis tests
(F- and t-Tests)

Compute new
regression

model

2 - State of the art

20

2.5 Database theory
To implement the architecture features, different data sets need to be stored. The data
sets are used to get fixed values and compute regression and distributions models. The
data sets must be adequately structured to implement the computation feature in an
automatic way.

To properly create a database structure, the used approach is the one reported in [38],
following the creation of an Entity Relationship Model (ERM), a graphical approach to
database design [39].

According to [2][38], the process of the ERM creation is divided in four steps:

1. Identify the entity sets and relations

2. Identify relationship types

3. Define the value of the sets and attributes

4. Organize the data and choose the primary keys

The following sections describe the single steps in detail.

2.5.1 Identify the entity sets and relations
First of all, it is important to define an entity that, according to [2][40, p. 213], is an inde-
pendent unit that can be identified in a unique way within the framework of a model. To
be clearer, it is the specific name of a categorical set as for example the name of a
manufacturer or a vehicle model.

All the information that describes a certain entity is saved in a specific entity set. The
entity set can be for example a table. Each row of the table describes different entities
 ith the relate information. So, for example, the table calle “manufacturer” is an entit

set that contain information about car makers. Each row of the table corresponds to a
different manufacturer, with its specific name and, if needed, some additional information
as the address of the headquarter and the country.

Each element of the entity set, is a different entity. So, each row is uniquely identified by
an i entifier that is calle “primar ke ”. The primar ke can be a numerical or string

field. The only requirement is that it is strictly associated to one single row. The primary
key can be used to indicate the specific entity and, through that identifier, associate all
other information of the entity.

To store all data in the database in a structured way, it is important to identify which are
the relevant entities (indicated as rectangles in Figure 2.9 [2]). In the created database,
entities are manufacturers, model series, models, dimensional concept, and all single
components that need to be modelled by the tool. For each type of entity, a different set
(table) must be stored. Moreover, not all entities have the same priority. Model series
and model are the central tables. All other entities, in some way, are connected to the
main entities, since each data set is associated to a specific model series or model [2].

2 - State of the art

21

2.5.2 Identify relationship types
As mentioned in the previous section, entity sets have relations between them. In the
representation of Figure 2.9, relationships are indicated with rhombuses. They describe
how many elements of a certain set are related to how many elements of another set.
The use of relations is important to correlate data and avoid writing the same value in
different entity sets.

There are three different types of relation:

1. 1:n → This type of relationship indicates that to one entity of an entity set,
more different values of another table can be associated. For example, this
is the category for the relation between the manufacturer and the model se-
ries. The same car maker produces more vehicle series that are associated
to it. Another case is the relation between model series and model: different
models belong to the same model series. For example, both models “
 .8 TBi V” an “ . JT V” are part of the mo el series “159 (939)
Limousine (03/08 - 11/11)”.

2. 1:1 → This type of relationship links one element of an entity set to another
single element of a different table. An example is the link between the model
series and the dimensional concept. The different model variations of a se-
ries (i.e. change of motor capacity) have no influence on the external
dimensions or on the disposition of passenger and seats. So, for each model
series, a single dimensional concept is associated.

3. n:m → The last type of relation is a generic case in which a certain number
of elements a table is associated to more fields of another entity set. It is the
relation between model and battery. Taking the specific example of [2], Tesla
Model S 60 and Tesla Model S 60D are two different models with the same
battery, but they have a different number of motors [41], so a different topol-
ogy of the powertrain.

A proper relationship management structures the database, gives no repetitions be-
tween entity sets and avoids data dispersion.

2.5.3 Define the value of the sets and attributes
Up to now, the ERM gave a definition of entities and corresponding sets. Inside each
entity set (table), there are different fields with the information about the entity. The dif-
ferent fields stored in the table are called entity attributes. They are the single data of the
table organized in columns. In Figure 2.9 they are represented with ellipses.

According to [2], data are divided in two main categories: attributes for the general vehi-
cle and attributes for the components.

The general vehicle data are the ones saved in the manufacturer, model series, model,
and dimensional concept tables. They contain general information at vehicle level, such
as external dimensions and frame form for the model series, or weight and topology of

2 - State of the art

22

the powertrain for the models. The values of the dimensional concept, as for example
the H30, height of the hip point, at SgRP (seating reference point) [8][7], are stored in
the entity set for the dimensional concept.

Instead, components attributes are saved inside specific entity sets. So, for each ele-
ment necessary for the computations of the models, there is a different table. For
example, the entity set for the battery or for the headlights. As reported in section 2.5.2,
each of this entity set is related to the main tables of the model series or model.

2.5.4 Organize the data and choose the primary keys
As already introduced in section 2.5.1, data stored in an entity set must be uniquely
identified by a primary key. The single attributes used as primary keys are represented
in Figure 2.9 as ellipses (because they are part of the data) with underlined text.

Taking the main reference table, model series, data is stored in a way that each model
series has a specific name from [41], that is unique. No other line contains the same
model series name. For this reason, the name of the model series can be a suitable
primary key. The dimensional concept set can also use the model series name as pri-
mary key (since it has a 1:1 connection as reported in 2.5.2). Moreover, for the entity set
of the models, if each row has a different model name, it can be used as primary key.
Practically this is not suitable because the number of attributes is extremely large, and
error can easily occur. To avoid problems, autoincrement is used for the primary keys.
Whenever a new row is added in the set, the ID is automatically incremented. In this
way, also for big tables, it is sure that no repetition occurs between rows.

For each entity set, the proper key must be selected evaluating every case. Specifically,
it is important to check if attributes are model-series-dependent, model-dependent or
none of them. In the first two cases, the entity set must be related to the main table using
the reference primary key. The idea is to assign a key that takes the value of the primary
key of the parent table. This type of key is the foreign key.

In case, no relation with another table is suitable, a dedicated primary key is set with
autoincrement, as in the case of tables model series and model.

The general structure of the database according to the principle of ERM is reported in
Figure 2.9 [2].

2 - State of the art

23

Figure 2.9: Structure of the database according to the ERM [2]

The presented structure and principles give the possibility to save all data for the empir-
ical models for the pre-processing phase in a single database. Furthermore, the
centralization of all data sets in a single database gives faster model update and reduc-
tion of dispersion. Moreover, all entity sets are related to the main tables of the model
series and models. In this way, it is possible to merge columns of different entity sets to
generate new tables. For example, one can create a new table containing information
about the dimensional concept and data of a component, as the battery. This procedure
is particularly useful for linear regression models since they often relate general vehicle
data and specific component data.

With the presented structure, there is a clear division between the architecture features
and the empirical models [2]. Thanks to that, the architecture entities can be updated
adding new data to the database when new vehicles enter the market. The updating
process is simple, it consists in adding rows and writing values as for normal calculation
sheets (such as Excel). This makes the update process accessible also for people with
no programming or database skills.

Easy update of the database avoids the problem of model aging, that with time makes
calculated models no more suitable to real vehicles.

24

25

3 SQL and Database implementation

The database is crucial for the management of the models and for the proper actualisa-
tion during the pre-processing phase.

This chapter is dedicated to the deep analysis of the database structure (section 3.1),
the explanation of the implemented models and tables (section 3.2), a brief overview of
the main SQL language useful commands and solutions (section 3.3) and the explana-
tion of the main practical activities on the software (section 3.4). Section 3.5 gives a brief
explanation of the view feature. A final part (section 3.6) is dedicated to the discussion
of some criticalities.

3.1 Database structure
The database has been built according to the structure theory presented in chapter 2.5.
It contains several tables, that in turn store different data and have different tasks. Some
of the most relevant aspects are the relations between tables.

In the current section all the relations and constitution of the structure is assessed. The
specific content of the tables is explained in section 3.2.

The table in the database can be categorized based on their functionality:

• General data tables: Contain general information about vehicles’ character

istics.

• Data tables: Contain data to generate the models.

• Calculation tables: Contain information for the MATLAB interface on how to
interact with the database.

• Additional tables: Contain additional information.

If for some computations the wheelbase measures of the vehicles are needed to derive
an empirical model, the tool knows where exactly take data. Moreover, if many compu-
tations require the wheelbase, having it in one table only, the reference to the wheelbase
column is always the same, which avoids ata ispersion. inall , if a vehicle’s heel
base has to be added or changed, it can be edited in one place only, automatically
updating all the computed empirical models.

The task is performed creating relations between tables so that data can be connected
and retrieved from different locations. To build a connection between tables, as shown
in section 2.5.2, a unique row identifier, the so calle “primar ke ”, is necessar for one

of the entities involved in the relation.

3 - SQL and Database implementation

26

The table that must be connected to the main one, usually the model series table, is a
subordinated table. To understand the information stored in there, it is important to men-
tion what a model series is.

A model series is a set of vehicles produced by the carmaker which share some char-
acteristics and can be further divided in different models. A model, instead, is a precise
variant of a vehicle in a model series. For example, it contains a variation of engine
dimension or transmission topology.

A key is needed as well, but not as a unique identifier for the rows (more rows can have
the same key), that refers to the primary key of the main table. This type of key is the
already known “foreign ke ”. Creating the relation bet een tables, the onl reference is
made through the just mentioned keys without repetition of any other column. Taking
again the example presented above for the wheelbase, there is a table that needs that
value but does not contain it. It has a foreign key that refers to a primary key of another
table (in this case the one containing the wheelbase values). Through that key, it can
look for the wheelbase in the main table, associating it with the row containing the same
key value. This can be done in the same way for all the tables that need wheelbase. It
is important to notice that tables can only have one primary key, used as field identifier,
while foreign keys can be more than one, referring to different primary keys of other
tables. Software commands and procedures to set keys and get relations and connec-
tion between tables are explained in sections 3.3 and 3.4.

First, it is important to set a table, or some of them, that are the core of the database.
These tables are important because they are used to set the main primary keys and
contain the basic information to be associated with the computation tables.

Since in this specific case the tool is used for empirical models related to previous vehi-
cles, the main tables for the database must be the ones containing all previous vehicle’s
data. The core of this database is the model series table.

To give an overview of the structure, a graphical representation of the database is shown
in Figure 3.1. It is different from the one of Figure 2.9 because it is devoted to classifying
the various categories of tables.

Figure 3.1: Structure of database tables

3 - SQL and Database implementation

27

3.2 Data and models
As abovementioned, the current section is dedicated to the complete presentation and
explanation of the database tables and their content.

A general set of guidelines has been followed to create the tables in the clearest possible
way:

• The name of the tables is set ith no uppercase (i.e. “model_series”).

• The name of the columns is set ith no uppercase (i.e. “manufacturer”).

• The onl exception for the previous rule is the or “I ”, that is use to

i entif a ke (i.e. “I mo el series”).

• If the column is a primar ke , the or “I ” is place before the column

name (i.e. “I mo el series”).

• If the column is a foreign ke , the or “I ” is place after the column name

(i.e. “manufacturer I ”).

• If the table or column name has more than one word, they are separated by
un erscore (“ ”), no spaces bet een them ue to problems with SQL lan-
guage (i.e. “number_seats”).

• If the data has a unit of measurement, it is added at the end of the name
(i.e. “ heelbase in mm”).

• If the table stores general vehicle information, the name is simply the con-
tent of the table (i.e. “ imensional concept”).

• If the table is a data table, the or “ ata” is place before the table name

(i.e. “ ata gearbox”).

• If the table is a calculation table, the or “calc” is place before the table
name (i.e. “calc masses”).

The used software for the database management, SQLite Studio (version 3.2.1), that
will be presented more in detail in section 3.4, does not give the possibility to organize
the tables in folders. To this purpose, it has been decided to add a word in front of the
name of the tables that underlines their category. In this way, all the tables belonging to
a certain type, appear all together due to the alphabetical order that is automatically used
by the software.

3 - SQL and Database implementation

28

3.2.1 General data tables

Model series table
The core table containing data on vehicle characteristic is the model series table. The
model series table contains all variables that are model series-related, so that remain
constant independently on the variant of model.

For example, general dimensions as width or length, are proper for a model series. Then
there are different vehicles belonging to the same model series, with a variation of the
engine type or topology. Every variant is a different model with its weight due to different
engines, but all have same length that is related to the model series.

To build the model series table, an in general all tables containing the main vehicles’

data, the reference has been the catalogue of ADAC [41], the Allgemeiner Deutscher
Automobil-Club, the biggest automobile club of Europe. More precisely, all data of mod-
els and model series are taken with no distinction from ADAC, and they have been then
divided in the ones that are model-dependent and the ones that are model series-de-
pendent.

This table is the central entity of the database. To be consistent with the task of the
project, so that to get models for the parameters that are actualized and significant for
current vehicles, a filtering action has been performed, considering only vehicles pro-
duced after 2010. In this way, the models are computed on relatively new vehicles.

The model series table has the columns structure reported in Table 3.1.

Table 3.1: Structure of model series table

Column name Example Description

ID_model_series 41 Integer number that is the unique identifier for each row (primary key of the ta-
ble). The column “mo el series”, containing the complete name, can be also
used as primary key, but using a numerical identifier is more intuitive and robust.

manufacturer_ID 3 Integer number that is used as a foreign key with reference to another table, the
“manufacturer” table, containing the list of all the manufacturers

model_series Giulietta
(940)
(05/10-
04/16)

The name of the model series as reported on the ADAC catalogue. The name is
a string, and it includes both the whole name of the series and the start and end
dates (only the start date if the model series is still in progress).

model_se-
ries_start

01-May-
2010

The date of the beginning of the model series. It is in the format of dd-Mmm-
yyyy where the month is indicated by the thirst three letters of the word.

model_se-
ries_end

01-Apr-
2016

The date of the end of the model series. It is in the format of dd-Mmm-yyyy
where the month is indicated by the thirst three letters of the word. It is not al-
ways present in case the model series is still in progress.

length_in_mm 4643 The length of the vehicle expressed in mm.

width_in_mm 1860 The width of the vehicle expressed in mm.

3 - SQL and Database implementation

29

height_in_mm 1436 The height of the vehicle from the ground expressed in mm.

ground_clear-
ance_in_mm

- The free distance from ground (ground clearance) of the vehicle expressed in
mm.

wheel-
base_in_mm

2820 The wheelbase of the vehicle expressed in mm.

turning_cir-
cle_in_m

10.8 The value of the minimum turning circle of the vehicle expressed in m.

frame_form_ID 12 Integer number that is used as a foreign key with reference to another table, the
“frame form” table, containing the list of all the possible frame forms of the vehi

cles.

segment_ID 4 Integer number that is used as a foreign key with reference to another table, the
“segment” table, containing the list of all the possible segments to categorize a

vehicle.

number_seats 5 Integer number representing the seats.

spring_front Helical Type of primary spring mounted on the front suspension (helical or air spring).

spring_rear Helical Type of primary spring mounted on the rear suspension (helical or air spring).

brake_front Disc Type of braking system mounted on the front wheels (disc or drum brakes).

brake_rear Disc Type of braking system mounted on the rear wheels (disc or drum brakes).

source_ID 16 Integer number that is used as a foreign key with reference to another table, the
“source” table, that is an a itional information table, containing the list of the

sources from which data have been retrieved

Whenever there is the or “I ” in the column name, that column is a ke . It is clear

from the table that there is one only primary key, selected as the unique number for the
model series, but in the same table there can be more than one foreign key that refer to
the primary key of other tables. Some relevant categorical variables have been selected
to be foreign keys. The idea to use numerical values instead of the strings is a more
robust solution to avoid mistakes (as explained in section 2.5.4): the user must select
the number associated to the word, avoiding typing the word in the wrong way. Moreover,
dealing with numbers is easier and more intuitive when working with SQL queries.

The related tables of categorical variables, in this case frame form, segment and manu-
facturer, are composed by two columns. The first one containing the primary key and
the second one containing the corresponding categorical value. More columns can be
added (i.e. for the table of manufacturers additional information about the producer can
be introduced as for example the location of the headquarter).

An example of categorical table is reported in Table 3.2, with reference to the table of
segments.

3 - SQL and Database implementation

30

Model table
Another table containing information about vehicle’s general characteristics is the model
table. The table contains different models, that are specific variations of a model series.
All models of a certain model series have some common features, that are peculiar of
the model series itself, as for example the external dimensions. The model table contains
all the relevant data that are proper of a certain model.

The data have been collected from the ADAC catalogue [41].

The model table has the columns structure reported in Table 3.3.

Table 3.3: Structure of model table

Column name Example Description

model_series_ID 41 Integer number that is used as a foreign key with reference to the
“mo el series” table presente in the previous section. This is the

key that let the model to be linked to a precise model series (being
the model a specific variation of a model series).

model Giulietta 1.4
TB 16V

The specific name of the model. This table has no primary key be-
cause the connection with data is always created through the
model series, but this column could be also used as primary key

model_type Turismo It is still part of the model definition, defining a specific type or vari-
ation of the model (i.e. it often contains the specific setup of the
vehicle, for example “business”, or the t pe of traction istribution

or propulsion).

model_start 01-May-2010 The date of the beginning of production of the model. It is in the
format of dd-Mmm-yyyy where the month is indicated by the thirst
three letters of the word. This information is required since not al-
ways the model life corresponds to the model series start.

model_end 01-May-2011 The date of the end of production of the model. It is in the format
of dd-Mmm-yyyy where the month is indicated by the thirst three
letters of the word.

Table 3.2: Segment table

ID_segment segment

1 mini_cars

2 small_cars

3 micro_cars

4 medium_cars

5 large_cars

6 executive_cars

7 small_medium_cars

3 - SQL and Database implementation

31

price 21700 The starting price of the specific mo el. It is expresse in euro (€).

motor_type_ID 5 Integer number that is used as a foreign key with reference to an-
other table, the “motor t pe” table, containing the list of all the

possible propulsion systems that can be employed.

volume_trunk_in_l 350 The volume of the luggage compartment measured in normal use
conditions (the minimum available volume). It is expressed in li-
tres.

volume_trunk_at_win-
dow_folded_seat_in_l

- The volume of the luggage compartment measured with folded
seat up to the belt line. It is expressed in litres. This value is often
not available in the catalogue because only the maximum value to
the roof is usually measured.

vol-
ume_trunk_at_roof_folde
d_seat_in_l

1045 The maximum volume of the luggage compartment measured with
folded seat up to the roof (using all the available space). It is ex-
pressed in litres.

weight_eu_in_kg 1355 The weight of the vehicle measured with neither passengers nor
baggage. It is measured in kg.

max_weight_in_kg 1785 The maximum weight that can be reached by the vehicle. It is
measured in kg.

payload_in_kg 430 The variation of weight between the maximum and minimum con-
dition. It is therefore measured in kg.

number_seats_max 5 The integer number representing the maximum number of seats
that can be mounted. It is slightly different from the one in the
model series table because for some models there can be some
configurations with additional seats.

tire_type 205/55R16 The standard tire that can be mounted on the model. It is ex-
pressed with a string with the standard form of the tire codes.

source_ID 16 Integer number that is used as a foreign key with reference to an-
other table, the “source” table, that is an a itional information

table, containing the list of the sources from which data have been
retrieved.

In this table also, a categorical variable is present. It is the case of the motor type that is
typical of the model characteristic. Again, a numerical value has been chosen with ref-
erence to an external table containing the list of motor types. It is reported in the Table
3.4.

3 - SQL and Database implementation

32

Dimensional concept table
The content of the dimensional concept table is not taken from the ADAC catalogue. It
makes reference to the A2Mac1 benchmarking catalogue [25]. It contains benchmarking
data across different models on every part and component of the vehicles. Moreover,
the catalogue gives the possibility to get 3D models of parts and modules and pictures
of real components. The access to the portal is granted to authorized users only.

This table contains a reduced selection of vehicles with respect to the ones presented
in section 3.2.1. For each vehicle, the complete set of dimensions of the exterior and of
the internal passenger compartment is reported.

The data contained in this table are standard dimensions according to SAE norms [8].
They are useful for the computation of regression models, especially dealing with body
dimension and the passenger compartment.

The complete list of columns is not reported being extremely large. Anyway, It The set
contains also relevant angles both for the internal configuration and the external. Typical
example is the definition of the passenger compartment and manikin dimensions as re-
ported in Figure 3.2 [6].

Table 3.4: Motor type table

ID_motor_type Motor_type

1 Diesel

2 Full electric

3 Gas

4 Hybrid

5 Gasoline

6 Plug-In-Hybrid

3 - SQL and Database implementation

33

Figure 3.2: Example of internal manikin dimensions [6]

In many cases, some of the variables are also used to compute regression models.

3.2.2 Data tables
The previously presented tables were the general data tables with information about the
vehicle that can be used both for empirical model computation and simply to store past
series information.

There is another category of tables that have been implemented in the database that
are the tables specifically containing data for the computation of models. These are the
data tables.

Those tables are specificall efine for ifferent vehicle’s components an use b the

tool to get necessary models according to regression computations or normal distribution
(discussed in Chapter 2).

This tables, with the carry-on of the project, will increase because new models will be
added to the tool.

Data table can be used to get constant values (from a normal distribution analysis)or
regression models

For the data tables used to compute normal distribution models, the example is the table
for the mass of the driver airbag. The specific name, according to the nomenclature
conventions, is “ ata airbag river”. The name, after the esignation “ ata ” contains

the specific element of the vehicle.The structure is reported in Table 3.5.

3 - SQL and Database implementation

34

In the following tables, the reported data are not the real values. They are simply a rep-
resentation of suitable numbers. Real specific values are internal and cannot be shared
in the current work.

Table 3.5: Example data_airbag_driver table

model_series_ID segment market driver_airbag_weight_in_kg

123 D Europe 1.250

The general structure contains the reference to the main table. It is the foreign key with
reference to the model series. It is always the first column of the entity set. In this way
airbag information are strictly related to a specific vehicle with its characteristics. There
can be some additional information (segment and market in this case), but what is im-
portant is the value of the mass of the component. All the list of masses is the data set
for the computation of the normal distribution.

Different case for tables used to compute the regression models. The example of Table
3.6 reports the data table for the empirical mass model computation of the tires.

Table 3.6: Example data_tires table

model_series_ID tire_diameter_in_mm tire_width_in_mm tyre_sidewall_in_mm tyre_weight_in_kg

123 740 255 100 15.5

As in the previous case, the first column refers to the model series. It contains the refer-
ence to the ID to correlate the tire information to a specific model series.

There must be a column containing the dependent variable for the regression. Since the
table is useful to compute the weight of the tire, the estimation column is the one con-
taining the mass. There are then additional columns that can be used as independent
variables. In some cases the same table contains more columns that are used for the
computation of different regression models.

Moreover, there is the possibility to have are tables with only one column, that are any-
way used to get regression models. This is the case in which the independent variables
are taken from another table, using the connections through keys. It is the example of
the regression for the computation of the mass of front driver door panel. The Table 3.7
reports it.

Table 3.7: Example data_door_panel_driver table

model_series_ID segment market door_complete_weight_in_kg

123 D Europe 32.250

There is only one value, the dependent variable, because the independent ones are the
height and the wheelbase of the vehicle. In this situation, the model_series_ID value is
used to read the corresponding needed dimensions in the table of the model series.

3 - SQL and Database implementation

35

Catalogues
In some cases, the tool needs component catalogues to do its computations. In those
conditions, the whole catalogue table is needed, without calculating distributions or re-
gression models.

Some catalogues are implemented in the current version: for tires and for different types
of bearings. It depends on the catalogue, but generally the table contains all information
about technical properties and codes.

Inside the database catalogues are save , in icating them ith the or “ctlg” before

the component name (i.e. “ctlg ball bearings”).

They are useful because, for example, the main tool computes the loads on the bearings
of a certain component and then selects the proper bearing that can sustain that load.

They are not included in the list of data tables because the code makes no calculations
on them.

3.2.3 Additional tables
The source table belongs to the category of additional tables. It has no values for vehicle
measurements, and it is not used for the pre-processing phase, but it is crucial for the
completeness of the database.

It contains the list of the references from which data stored in the database have been
obtained. In ever table, one or more columns referring to the “I source” primar ke

are present so that data origin can be retrieved.

The structure with an example is reported in the Table 3.8.

3 - SQL and Database implementation

36

3.2.4 Calculation tables
Last category of tables is the so-called set of calculation tables.

This tables build the MATLAB interface. They do not contain information about vehicles,
but rather information on how to derive the empirical models from the data

Using those tables, the MATLAB code can generate the proper queries and derive the
constant values and regression models

As already mentioned, four different types of data or models can be obtained: fixed pa-
rameters, catalogues, normal distributions, and linear regression. For each one of these
categories, a different query structure (and therefore a different calculation table) is nec-
essary. To distinguish between the categories, a special word is added at the end of the
name:

• “ fix” for the calculation table of fixe parameters.

• “ catalogue” for the calculation table of catalogues.

• “ norm” for the calculation table to get normal istributions.

• “ regression” for the calculation of the linear regression mo els.

Table 3.8: Structure of source table

Column name Example Description

ID_source 16 The numerical ID representing the primary key of the table. It is
used to create the reference in the data sets. It is automatically
generated by the table adding new elements.

author ADAC The name of the people or agency that wrote the document.

fullname_title Allgemeiner Deutscher
Automobil-Club Cata-
logue

The complete title of the work. It can be the name of the web
page or the title of an article, book, norm…

document_type Internet page The type of document of reference.

place_of_publi-
cation

- The place in which the document has its publication. It can be
missing, especially for internet pages or normative.

year - The year in which the document has been published. It can be
missing, especially for internet pages.

link https://www.adac.de/ru
nd-ums-fahrzeug/auto-
katalog/marken-
modelle/

The link to the page or document. It can also be missing in case
there is not a direct online link, especially in case of books.

3 - SQL and Database implementation

37

Calculate fixed parameters and catalogues
Different approach has been used for regression models. The regression studies rela-
tions between different measures. For this reason it is difficult to categorize them
according to components or modules. Anyway, the MATLAB interface has been de-
signed considering the possibility to change this approach also dividing regressions for
modules or components (the detail of MATLAB side will be investigated in chapter 4).
Specifically, it means that in the current version there is only one calculation table con-
taining all the regressions. If needed, more calculation regression tables can be
introduced with no variation in the MATLAB code (for example dividing them according
to regression for masses, imensions…).

The table for the fixed parameters, has a simple structure. In the first column, as also for
all other categories, there is the name of the variable in the MATLAB code. The code
can read it and to create a workspace variable with the prescribed name. A second
column contains the value to be assigned to the variable.. There are other columns in
which additional information for the user is contained to clarify the meaning of the varia-
ble. Specifically, there is the unit of measurement of the measure, a brief description of
the parameter and two final columns with a reference to the source table (shown in sec-
tion 3.2.6).

An example of the structure of the fixed parameters table is reported in Table 3.9.

Table 3.9: Structure of calculation table for fixed parameters

Column
name

Example Description

parameter-
name

Parame-
ters.masses.weight_max_permitt
ed

The name of the structure path in which to save the parameter.

value 3500 The value of the parameter.

unit kg The unit of measure of the dimension. It is given for the user
clarity.

description Maximum weight permitted for a
vehicle

Brief description of the parameter

source_ID 25 [15] Integer number that is used as a foreign key with reference to
another table, the “source” table, that is an a itional infor

mation table, containing the list of the sources from which data
have been retrieved.

The MATLAB interface follows simple instructions (they will be presented in chapter
4.2.3) and can read the value of the table and assign it to the corresponding variable. In
this way the fixed parameter is saved in the Parameters structure and used as input for
the tool.

An update of fixed values can be easily made in the database (for example due to
change of regulation) overwriting the previous value or renaming the MATLAB name
variable.

3 - SQL and Database implementation

38

Similar discussion regards the catalogues. In the database, the catalogues are saved in
tables and they must be saved in the way they appear. The first column contains the
name of the variable in which to save the catalogue. Since the whole table must be
stored, only table name is needed, and it is given in the second column. A final column
is present: it contains a brief description of the catalogue for a better comprehension for
user.

The structure of the calculation table for catalogues is reported in Table 3.10.

Table 3.10: Structure of calculation table for catalogues

Column name Example Description

parametername Parameters.catalogue.tires The name of the structure path in which to save the catalogue.

tablename ctlg_tires The name of the catalogue to be saved.

description Catalogue of the tires A brief description of the catalogue.

Calculate normal distributions
For normal distributions, the pre-processing tool needs to get a precise data set on which
to compute the distribution model, and not a single value as it is the case for the fix
parameters. The structure for the normal distribution table is reported in the Table 3.11.

Table 3.11: Structure of calculation table for normal distributions

Column name Example Description

parametername Parameters.dimen-
sions.CY.axis_length_rear.torsion_beam

The name of the structure path in which to save
the constant values obtained with the normal dis-
tribution.

variablename axle_length_in_mm The name of the column containing the data set.

tablename rear_axle The name of the table that contains the previous
column.

table_cate-
gory_1

rear_axle The name of the table containing the column for
categorization.

column_cate-
gory_1

axle_type The name of the column used for the categoriza-
tion.

filter_type_ID_1 Consider only The type of filter that code must apply.

category_1 torsion_beam The value(s) used for the filtering.

The first column contains the name of the parameters variable to be used in the MATLAB
code. In this variable, the mean value of the normal distribution must be saved. In some
exceptional cases, for a more complete analysis, more fields are added to better evalu-
ate the statistical properties (it will be discussed in chapter 4.2.4). The second and third
columns contain information on where to take data from the database, so specifically the
name of the column and table in which necessary data are contained. Theoretically, this

3 - SQL and Database implementation

39

is sufficient to get a column of values to be used as input for the statistical tool of the
normal distribution. But, in many conditions, not all data from a column need to be taken.
For this reason, a set of additional fields is used to impose certain conditions on how to
retrieve data. For example, one can be interested in computing the mean value of the
wheelbase of all the SUVs of the database In this case, the query needs to get wheel-
base value only for the frame form “SUV”. Basically, this part is used to create a query
condition to get only a certain selection of data from the specified column. Query condi-
tional parts are explained in the next section (3.3).

The conditional columns are 4 for each filter. The first two specify the table and the col-
umn in which the variable to be used for the filter is stored. The third one contains a
string explaining which type of filter is applied. On the base of that, the MATLAB code
can perform different tasks and select the needed data. The type of filters implemented
up to now are:

• “ ilter out”: use to get all ata of a certain column, exclu ing one or some

categories (i.e. considering all values but not for “Vans” an “ otorhomes”).

• “Consi er onl ”: it is the opposite of the one above. It is use to get onl

data which fulfil one or some specified categories (i.e. considering only val-
ues of “Se ans”).

• “ igher”: use for non-categorical values. As the name suggests, it retrieves
only data on which the specified column has a value greater than the se-
lected one.

• “ o er”: use for non-categorical values. As the name suggests, it retrieves
only data on which the specified column has a value smaller than the se-
lected one.

The last column for the filters contains the real value on which to apply the condition.
Every group of categorization table contains a suffix number to identify the filter.

Calculate regressions
The last table for calculations is the one for regressions. As already mentioned, there is
a single table containing all regressions. Due to dependency on many variables, belong-
ing to different categories, a categorization is more difficult, avoiding the possibility to
create many regression tables. Anyway, if needed, one can divide them. The tool inter-
face works independently on the number of tables.

The structure example of the regression calculation table is reported in Table 3.12.

3 - SQL and Database implementation

40

Table 3.12: Structure of calculation table for regression models

Column name Example Description

parametername Parameters.regr.turn-
ing_circle

The name of the structure path in which to save the regression
model.

independ-
ent_var

wheelbase_in_mm;
width_in_mm

The name of the column containing the data sets of the inde-
pendent variables. If more than one, they are separate b “;”.

dependent_var turning_circle_in_m The name of the column containing the data set of the depend-
ent variable.

tablename model_series The name of the table containing the previous columns. If more
than one, the are separate b “;”.

description Turning circle as function of
wheelbase and width

A brief description of the model.

table_cate-
gory_1

frame_form The name of the table containing the column for categorization.

column_cate-
gory_1

frame_form The name of the column used for the categorization.

filter_type_ID_1 Filter out The type of filter that code must apply.

category_1 Bus; Motorhome The value(s) used for the filtering.

The first column, as in previous cases, contains the name of the MATLAB variable in
which to save the regression model. The structure path is like the previous ones, it only
contains the or “regr” that specifies the mo el belongs to regression tab. In this way
in the output variable structure all regressions are collected inside this folder.

Computing linear regressions, one or more independent variables, and a dependent one,
are needed. Immediate solution is the creation of a column for each independent varia-
ble and for the dependent one, but regressions can have different number of
independent variables. For example if three columns are needed for a regression, the
empirical model with only one will have two empty columns. Moreover, if a new regres-
sion computation needs four independent variables, a new column needs to be added.
This solution is neither versatile nor user-friendly. Some knowledge of the database and
SQL is needed and adding new columns is time consuming.

To avoid this problem, the table has only two columns for the model variables: one for
independent variables and one for the response. In this way the number of independen-
cies is not relevant. The user simply needs to write them in the second column,
separating the name ith “;”. The T B co e can rea the fiel an automaticall

retrieve the different independent variables through the separator.

The next column contains the name of the tables in which to retrieve data. Since more
columns must be taken, more tables can be needed. The solution is like the one used
for independent variable. If there are more tables, they are all written in this field with a
“;” separator. The T B tool can buil a particular piece of uer to link all tables

together (it will be presented in chapter 4).

3 - SQL and Database implementation

41

In the following field, there is a space to add a brief description of the regression model.
It is necessary just to clarify it to the user.

After this part, more columns are present, they are needed to add the possibility to apply
filters. They contain table and column on which look for the filter, the type of filter is
implemente an the value (or values if more than one, separate b “;”) to be use as

category. This block of four columns can be repeated to add more filters. No further
detail is explored because the structure of categorization is the same as the one pre-
sented for normal distributions.

3.3 SQL language
To make operations in the database environment, SQL language is needed. The SQL,
or completely Structured Query Language [42], is a standard language to program and
manage data contained in a RDBMS (relational database management system). This
type of language is useful to store, access, and modify data in a way that is organized
and efficient [43]. The database was created using the platform SQLiteStudio in the ver-
sion 3.2.1 [44]. The software offers an interface to control all operations without the need
to use the query language. Nevertheless, in many cases, the code editor is needed to
implement complex procedures. For example, to properly select a set of values to be
updated according to a filtering condition, the use of the query editor is faster than the
use of the manual interface. To learn the SQL language, the complete course of
w3school [45] has been followed.

The most relevant query structures used to implement the MATLAB interface are now
analysed. Before starting with the discussion, it is important to underline that commands
in this text (and in books and online courses) are always written in capital letters to be
clearer. Anyway, SQL language is not case sensitive, meaning that no difference is
made if letters are capital or not in any position of the query.

• SELECT column(s) FROM table

The SELECT command is used to get a certain set of data from a table. As
the structure suggests, the command let the user select one or more col-
umns of a certain table. If more than one column is needed, as for the case
of the regression variables, their name must be separate b “,” (not “;” that

is used as statement ending). In the table field only one value is accepted.
If data comes from many different tables, the command JOIN must be used.

 n example can be “SE ECT i th in mm, height in mm R

mo el series”.

If the complete table needs to be taken, it is not necessary to write the list
of all columns, but a simple “*” in the columns space (i.e. “SELECT * FROM
model_series”).

• SELECT MAX/MIN(column) FROM table

3 - SQL and Database implementation

42

A particular case of SELECT sentence, is made when the maximum or min-
imum of a dataset is needed. The current command retrieves a single value
that is the maximum or minimum of the selecte column. The or “ X”

(“ IN”) is use before the column name ritten bet een parenthesis an it

simply gets the maximum (minimum) value of that data set.

• INNER JOIN table2 ON table1.key1=table2.key2

The JOIN comman is uite articulate , but it is crucial for the tables’ con

nection. There are four types of join command: INNER, LEFT, RIGHT and
FULL JOIN. In the current implementation, only INNER JOIN is used. They
can be thought in a graphical way with Eulero-Venn’s figures as reporte in
the Figure 3.3 [46].

Figure 3.3: Type of joins [46]

Since in the models, intersections are needed, the relevant command is the
INNER JOIN. Retrieving data of the same vehicle from different entities,
only the one that are present in both tables must be considered. The word
“INNER” can be omitte , simpl riting J IN refers to this t pe of connec

tion.

As visible in the structure, a key matching is needed to get the connection
between data. It is in this case that primary and foreign keys become crucial
because they are the link between tables on which to get the intersection.

Making a practical example, supposing to take the width of the vehicles
(present in model series table) to get the model for the headlights mass
(present in data headlights table) the query results in:

“SE ECT i th in mm, hea lights eight in kg R mo el series IN-
NER JOIN data_headlights_halogen ON
model_series.ID_model_series=data_headlights_halogen.model_se-
ries I ”.

In this way the connection is created. The sentence let the code get the data
of vehicle width for the vehicles that are also used for the calculation of
headlights. This command is the key to avoid repeating columns in different
tables improving robustness and reducing error propagation.

• WHERE condition

3 - SQL and Database implementation

43

The WHERE clause is used to set conditions. In some cases, not all data of
a certain column need to be taken, so a filtering action is necessary. The
condition after the where is used to apply this control.

The condition can be related to values, so using comparison operators (“=”,
“!=”, “<” an “>”) or strings, using the “ IKE” or “N T IKE” comman s. or

example, one can get the value of the vehicle width for models with a wheel-
base higher than 2800 mm using the following query:

“SE ECT i th in mm R mo el series W ERE wheel-
base in mm> 8 ”.

Or it is possible to select the width of vehicles that are sedans using:

“SE ECT i th in mm R mo el series W ERE frame form IKE

‘se an’”.

In many versions of SQL database interface, the comman “=” also orks

for strings in the place of “ IKE”.

In case more than one filter needs to be applied, more conditions are added
after the WHERE statement using common logic operators (“ N ” or “ R”).
If width of vehicle of sedans with wheelbase higher than 2800 mm is needed
the query becomes:

“SE ECT i th in mm R mo el series W ERE heel

base in mm> 8 N frame form IKE ‘se an’”.

Finally, the categorization made with this part must be written after the JOIN
section if there are more tables, because data needs to be linked through
the key first.

• UPDATE table SET column=new value WHERE column=old value

This part is differently used with respect to the previous commands. The
former structures are used to get data from the database. The actual com-
mand instead, is used to modify some fields of a table.

If single values must be changed, a manual action on the involved table is
easier and faster, while if many fields with a common condition needs to be
updated, it can be automatically done.

The query lets the user set a certain column to a defined new value where
this column satisfies a precise condition. An example easily explains the
importance of this command. For a better working of the MATLAB interface
in model computation, NaN (not a number) values needs to be substituted
with NULL values. It can be easily done with the following query statement:

“UP TE ata brakes SET brake_pad_weight_in_kg = NULL where
brake_pad_weight_in_kg = ‘NaN’”.

3 - SQL and Database implementation

44

The only problem related to that command is that only one column at a time
can be modified. For big tables, it is still time consuming to apply the previ-
ous phrase for each column (some tables can have hundreds of columns).
To this purpose, a further automatization is made with a dedicated MATLAB
code that can cyclically apply the command to a predefined table.

3.4 Creation and management of the database
This section is dedicated to show the use of the SQLiteStudio interface. Specifically, the
main scope of the interfaceis creating tables, managing table structure, and updating
single fields. All other operations regarding computations and models are automatically
performed through queries and the MATLAB tool.

The interface is structured in a simple way (Figure 3.4). On the left side of the screen,
once a database has been opened or created, there is the complete list of the stored
tables (blue rectangle, Figure 3.4).

The central panel represents the current opened entity (red rectangle, Figure 3.4), it can
be the data of a tables or a table structure with the list of its columns or the panel to write
an run ueries. bottom panel calle “status” (green rectangle, Figure 3.4) gives in-
stant feedbacks for every operation the user performs.

Finally, on the lowest part there is the list of opened tabs (black rectangle,), containing
every table or SQL query editor has been opened.

The complete interface is reported in Figure 3.4.

Figure 3.4: SQLiteStudio general interface

3 - SQL and Database implementation

45

One of the most important operations in the database management, is the creation of a
new table. For this scope, two options can be employed: manual creation of a new table
or import of an existing table from another platform.

The manual creation of a new table to be filled can be done through specific commands
on the SQL query editor for more expert users, or it can be easily made using the soft-
ware interface. From the branch section showing the list of tables, user can create a new
object. An empty structure is shown in the central panel.

Subsequently, the user can assign a name to the table and add columns one by one,
defining their names and properties (the way to assign properties to columns is shown
in the next part).

The structure contains the list of all the columns and an easy looking overview of all the
column properties (Figure 3.5).

Figure 3.5: Structure tab

Once the structure is ready, one can select the data tab and start adding data row by
row, in a similar way as in calculation sheets.

Data section has a grid interface with rows and columns. In each cell, values are present.
The view of the data tab is reported in the Figure 3.6.

Figure 3.6: Data tab

Nevertheless, it is unusual that user is requested to do so in the current work. Tables
can have lots of columns, thousands of data and they are usually already generated by
other colleagues which works on single models.

3 - SQL and Database implementation

46

To this purpose, the import command is more useful. Tables are usually obtained from
Excel files or after some MATLAB elaborations. In any case, to import them in the data-
base, the must be save in “csv” files. Once the user has the table in the proper format,
it enters the “Tools” fol er, an makes the import procedure. He enters the table name
he wants to generate and then select the file from the directory.

The only case in the current work in which the table needs to be manually created and
filled is for calculation tables. User must set all the instructions for the MATLAB interface
on how to get data and where to save them. Anyway, the structure is always the same
(ifferent onl from the calculation categor “fix”, “norm” or “regression”) so the operator

can copy structure from an existing table of the same type and manually add data inside.

The imported table appears in the left branch. At this point, the table contains only the
data and the column names. No properties or variable types are assigned. In the specific,
user must define keys, constraints and the type of values contained in each column.

First, the referencing to the model series table is the core operation. From the structure
tab, the user creates a new column that will contain the IDs that refer to the model series
primary key. The column is calle “mo el series I ” or a ifferent name if it links to

another primary key. Double clicking on the just created column, a dialogue window
opens, showing column properties.

An example of that window is reported in Figure 3.7.

Figure 3.7: Column properties window

From this window, the user can further select all the properties of the column, assigning
the column name and the type of data it contains (most common are Integer, Double
and String).

3 - SQL and Database implementation

47

Subsequently, the column becomes a key, by entering the corresponding section. When
setting a primar ke , one highlights the first fiel an enters the “Configure” panel. In

the current project, primary keys are always integer numbers with autoincrement for
every row is added. The configuration settings are reported in Figure 3.8.

Figure 3.8: Primary key configuration

In rare cases, users need to set a primary key, while for almost every table, one or more
foreign keys must be set. As already mentioned, every data table for model computa-
tions contains the reference to the ID of the model series table. After creating the
“mo el series I ” column, operator enters the column properties and sets the column
to be a foreign key. The configuration panel of the foreign key is reported in Figure 3.9.

Figure 3.9: Foreign key configuration

3 - SQL and Database implementation

48

The foreign key must be linked with the primary key of another table. In the panel, the
user selects the table for the linkage and the column in which the primary key is con-
tained. One further operation is needed. In the Reactions section, it is important to select
the Cascade action on update. This passage is crucial because makes the foreign key
automatically change if a primary key value is modified. For example, suppose to have
a certain row of the foreign key that is linked with ID=198 on its primary key. Due to some
modifications in the primary key, the previous row with ID=198 now has identifier ID=200.
In the foreign table that referred to that row, now the value ID=200 is reported.

After these operations, the structure has been set, with all column properties and keys.
The ne create foreign ke column (usuall “mo el series I ”) is empt . Each value

referring to the primary key needs to be added.

In some cases, user manually enters the ID values looking for them in the mother table.
For big entities, this is time consuming and inefficient. The person that prepares the
model table to be integrated within the database, if possible, introduces the model series
name. In this way, a dedicated MATLAB code can be run, and it is able to automatically
assign the correct ID values. Only some single values that are not found need to be
added manually. Operations are so faster and more efficient.

A final step is related to empty or NaN values in the columns. As already shown in sec-
tion 3.3, there are some criticalities in the MATLAB interface when reading empty or NaN
cells. For this reason, user has to replace all cells with these values with NULL cells.

This operation is manually almost impossible. No time can be wasted updating thou-
sands of cells. The operation can be done column by column with dedicated SQL query
command. This way is still time consuming, especially for large tables) and requires
some SQL language knowledge. The fastest way is the use of a dedicated MATLAB
code that needs the table name only. The script automatically acts on each column and
substitute all required cells.

In all the operations, no SQL programming should be used. Anyway, it is possible to
operate with SQL editor for more expert users. The editor shows an empty panel in which
programmer can write SQL code. He can run queries and get the results in the lower
panel. Finally, in the bottom part, in the status panel, he can get immediate feedback on
the operations.

An example of the editor is reported in Figure 3.10, in which the command gets ID, man-
ufacturer and model series of vehicles with wheelbase higher than 2800 mm.

3 - SQL and Database implementation

49

Figure 3.10: SQL query editor

Nevertheless, the complete integration of new tables in the database is possible with the
software interface and some dedicated MATLAB codes only and requires almost no
knowledge of SQL language for the operator. This is the core of the integration with
MATLAB and use of a user-friendly interface as the one offered by SQLiteStudio.

3.5 Brief explanation of views
The SQLlite interface is also useful to create views. A view is a particular representation
of data that is not strictl relate to table’s structures. In the left si e of the screen, belo
the list of the database tables, there is the list of views.

Using views, the user can visualize a table in a different way, usually with a more user-
friendly representation. An example is useful to clarify this concept.

The mo el series table, contains the primar ke “I mo el series” an the foreign ke s

for the manufacturer (“manufacturer I ”), for the frame form (“frame form I ”) an for

the segment (“segment I ”). The primar ke is the i entifier for each ro , nee e to

the other tables, but it is not a useful vehicle data. Moreover, the foreign keys contain
information about the manufacturer in a numerical way, more robust and useful when
doing automatic operations, but not user-friendly. A user who rea s “manufac

turer I ”= 8 does not know what manufacturer corresponds to the number 28. To
answer this question he must look into the “manufacturer” table, which is time consuming.

3 - SQL and Database implementation

50

In this case, a view can be useful since it offers a user-friendlier representation of the
table. The view for the table model series contains the name of the manufacturer instead
of the ID number and the same for other foreign keys.. User can enter the data tab of
the view, that has the same structure has the data tab for the real table, and work on
data from there.

The structure tab is replaced by a query tab, which contains the list of the visualized
columns from different tables and a lower panel contains the query command to obtain
the view (Figure 3.11).

Figure 3.11: Query tab of views

The only problem related to views is that they can be created only with query commands .
Therefore , some SQL knowledge is required to add new views, especially when the
representation needs to get columns from different tables, in which a JOIN command is
necessary.

3.6 Criticalities
The software offers the possibility to do many operations without having any knowledge
of SQL language. Some knowledge is required, if the database has to be extended or
new views have to be created.

Another problem is, that the very basic interface of SQLite can easily reach its limits.
The left panel with the list of the tables is useful to move inside the different entities of

3 - SQL and Database implementation

51

the database, but for big structures, as the one developed in this work, the list can be-
come quite long. At this stage, the tables are 78, and the number has still to increase in
the future. Anyway, the software does not offer the possibility to group tables in folders.

 or example, it coul be useful to collect all ata tables together in a e icate “ ata”

folder or the same for catalogues or calculation table, which would make the list would
more accessible.

Furthermore, when the user modifies a table structure or data, the changes are irreversi-
ble, since there is no way to retrieve previously deleted structures or values. The user
must think before applying changes and accidental or superficial modifications can have
bad effects.

 urther problems are relate to the import of NaN or empt cells from “csv” files. s

already mentioned, when reading data with the MATLAB interface problems arise. This
is because those cells are automatically set as strings. Even if the user sets a column to
be integer or double, The NaN or empty cell is read as a string. This is the reason why
it needs to be substituted with NULL value.

Finally, the last problem of the program is related to data tab. When manually adding
values in a table, user can write inside cells, but no formulas or relations to other cells
can be inserted (as in common calculation sheets as Excel), making manual data addi-
tion inefficient.

52

53

4 MATLAB pre-processing phase

The database is the core for the collection and management of all data. Nevertheless,
the project needs to use those data to get all the input parameters it needs for the gen-
eration of the vehicle parametric model.

To this purpose, as already mentioned, several MATLAB functions have been imple-
mented. In this chapter, the MATLAB interface which was created to interact with the
database are analysed.

The first part (section 4.1) analyses the scripts dedicated to table integration in the da-
tabase, to be used when the user introduces a new data table inside the list.
Subsequently, in section 4.2 the main code is explained, together with its functioning
and interaction with the database and all solutions adopted to obtain the Parameters
structure.

4.1 MATLAB codes for table integration
When a new table is added to the database structure, user performs some common
operations. ata tables for mo el’s computation nee t o relevant steps: create the

connection to the model series table through the foreign key containing IDs and set all
NaN or empty imported cells to NULL value. MATLAB codes for the automatization of
those procedures are presented in section 4.1.1 and 4.1.2 respectively.

4.1.1 Get IDs for model series connection
When integrating a new data table in the database, one of the first things to operate is
the creation of the connection ith the vehicle’s mo el series on the mother table. The
column calle “mo el series I ” is the foreign ke to create the linkage.

To reduce required time to create the connection, the implementation of a dedicated
automatic code was necessary. The script (calle “get I .m”) does not completely re-
place some manual operations, but it significantly reduces the time needed to complete
the procedure.

The only requirement to apply this code is that the person that prepares the model table
to be integrated writes the exact name of the model series for each row as reported on
the ADAC catalogue [41]. If this condition is fulfilled, the script can be executed. The

4 - MATLAB pre-processing phase

54

operator must write in the input section the name of table to which IDs need to be as-
signed.

For a faster comprehension, a flow chart representing the code steps is reported in .

Figure 4.1: Flow chart of the MATLAB function to get model series IDs

The first operation that needs to be done, as almost for every code, is the connection
with the database. Since codes are used to make operations on the tables, MATLAB
needs to know which the database is. First, to make all operations on a database, the
Database Explorer App of MATLAB must be installed. This packet lets the program con-
nect to database, investigate data inside and take them to workspace [47].The standard
section of commands used to create the complete connection is presented in paragraph
4.2.

Connect to Database and get the
Table and Model series list with

primary ID(j).

Is there a
match?

Input
Table name

Look for ADAC model series (i) in
the complete model series list (j)

Start

End

No

Yes

Initialize
foreign_ID(i)=0

Foreign ID(i) =
Primary ID(j)

Look for ADAC model series (i)
containing ‘‘(ab’’ in the complete

model series list (j) removing it

Is there a
match?

Yes

Foreign ID(i) =
Primary ID(j)

Update model series name(j)

Look for ADAC model series (i)
containing end date that do not have
it in the complete model series list (j)

Is there a
match?

Foreign ID(i) =
Primary ID(j)

Update model series name(j) and
end date (j)

Yes

No

No

4 - MATLAB pre-processing phase

55

To get IDs, the code reads the complete list of model series and corresponding identifi-
cations. Through the connection, the script runs a query in the database and assigns the
output of the command to a workspace variable.

In the same way, through the input name given by the user, code executes a query to
obtain the table to which assign IDs.

In the workspace, script initializes a vector variable with the same dimension of the in-
volved table to give IDs. The default value is set to 0.

At this point, for each row, code reads the ADAC model series name, and it looks for it
in the complete model series list. If it finds it, the corresponding ID is assigned to the
output variable at the current row.

The name from ADAC has a standard structure: there is the name of the model series
follo e b a parenthesis containing its initial an final ates in the format “(mm/ –
mm/)”. In some cases, the mo el series have not final ate et. or these values, the
name is follo e b a parenthesis ith the initial ate onl in the follo ing format: “(ab

mm/)”. There is the German or “ab”, meaning “from”, as reporte in the C site.

This last convention was introduced in the current year. Before that, model series with
no end date, did not have any parenthesis. Since the filling of the complete model series
table started before introduction of this rule, many model series have no date part. This
can give problems in finding the IDs.

For example, in the ne intro uce table, there is the C name of “Stelvio (949) (ab
04/17)” but in the mo el series table there is “Stelvio (949)” because intro uce before
the ate a ition. T B co e takes care of that: if it fin s “(ab” it looks for the name

without accounting for the date part and if it finds it, it assigns the corresponding ID.
Moreover, to progressively align the complete table to the new convention, it updates
the name in the database automatically adding the parenthesis with the date.

Another problem is given by the progressive end of model series. There are certain ve-
hicles that had no end date when introduced in the list, but the model series is now
en e . To clarif , suppose to look for “Tiguan (II) (04/16 - 06/20)”. The mo el series

ended in June 2020, but it was introduced in the list before that time. In the table it can
figure as “Tiguan (II)” or “Tiguan (II) (ab 04/16)”. The T B consi ers this possibilit .

It checks if the end date is after the creation of the list (in the current ork if “/ ” or “/ ”).
After removing the date, if it finds the name in the list, the script assigns the ID. Moreover,
the name is automaticall up ate a ing the en ate an filling the fiel “mo el se

ries en ” with the correct value.

As visible, many possible mismatching problems are automatically found and corrected,
also giving an automatic procedure to maintain the model series list up to date.

At this point, the column containing IDs is full. It can be copied and assigned to the
database table. Since the column was initialized to 0, the rows containing a 0 value are
the one where there is no matching. There are two possible situations in which this can
happen:

4 - MATLAB pre-processing phase

56

1. The model series name is written in a different way or it contains an error.

2. The model series does not exist yet in the list.

In any case, for these single rows, user must manually write the ID and, if the case is
the number 2, it needs to add the new model series to the list.

Anyway, this happens in minor cases and only some single values are not found.

The general procedure offered by the code is faster than manual implementation, more
reliable and gives a good progressive automatic actualization of the model series list.

4.1.2 Set NULL values
When MATLAB interface gets columns for the computation of models, some errors can
occur if the cell contains a NaN (not a number) or an empty value. The common error is
that when those values are part of an integer or double type data set, they must be read
as numbers, so a 0-default quantity is automatically assigned to the variable in the work-
space. The problem arises because these zeros become part of the dataset and
influence the result of the distribution or regression giving wrong responses.

This problem can be avoided setting NULL values. In this way the code removes the
NULL rows from the dataset, without misleading the calculation.

The operator can manually perform those substitutions from the data tab or with the
query editor in SQLiteStudio (as presented in section 3.3) acting on single columns. The
issue is that this operation is time consuming, especially for large tables with many col-
umns, and it requires some SQL language knowledge.

The MATLAB code to set NULL values, calle “set null.m”, solves these problems and
requires no SQL knowledge. The user gives the name of the table to which assign NULL
values in the input section of the code. Then, the script operates the connection with the
database. The detail of this step is presented in section 4.2.

The code retrieves the complete table to update from the input name given by the user,
running a query and saving the computed output in a workspace variable of table type.

From the properties of this variable, the program can obtain the list of column names.
For each column, an UPDATE-SET-WHERE query command is performed, and all NaN
or empty cells are substituted by NULL values.

There is no output from the run since the Database Explorer App directly performs the
operations on the database tables. If user updates the data view in SQLiteStudio, can
directly see the applied changes.

As in previous case, a graphical flow of the code is reported in Figure 4.2.

4 - MATLAB pre-processing phase

57

Figure 4.2: Flow chart of the MATLAB function to set NULL values

The presented codes are not used to get the real models yet, but they are crucial to the
proper preparation of the data sets. User must use them to implement the tables in the
correct way. No connection to mo el series’ values can be create if there are no I s in

the foreign key and results are not coherent if data are not retrieved in the correct way.

4.2 MATLAB codes for complete pre-processing
When the database is actualized and all current tables are correctly integrated, it can be
used to retrieve all needed empirical models.

To do so, a main for the pre-processing phase was created. The objective of this script
is to read data in the proper way and save all models, fixed values, distributions, regres-
sions, an catalogues in a structure variable calle “Parameters”. structure variable

is type of element that groups data inside sort of fol ers that are calle “fiel s” [48]. Each
field can store any type of data , and can further contain other fields.

With this approach, all values and models are organized and saved in a single entity.
The complete variable containing all actualized calculations can be used as input varia-
ble to make all needed steps to obtain the vehicle architecture.

The aim of the developed code is the complete creation of the abovementioned Param-
eters variable. The chapter exploits the detailed process of calculation of the variable
and all the additional solutions adopted to reduce the occurrence of errors.

Any time a new parametric model is needed, the Parameters variable is necessary be-
fore running the tool. So, user runs the following pre-processing script to obtain the most

Connect to Database and get the Table

Is there a
Column(i+1)?

Input
Table name

UPDATE Table
SET Column(i)=NULL

WHERE (Column(i)=‘NaN’ R Column(i)=‘ ’)

Start

End

No

Yes

4 - MATLAB pre-processing phase

58

recent and actualized version of the Parameters structure from the database. In this way,
empirical models always refer to the latest version of the data sets contained in the da-
tabase. Sections from 4.2.1 to 4.2.7 contain the specific steps of the process to
completely retrieve all empirical models and check solutions.

4.2.1 Create the Database connection
The code interacts with data contained in the database. The connection is possible with
the MATLAB Database Explorer App [47]. Through this add-on, a connection can be
created with a database and script can perform calculations and run queries. Neverthe-
less, the code needs to know which is the database, where it is and all standard inputs
for the connection. The operation can be manually performed through the app, but it is
time wasting and it requires specific knowledge from the operator.

To avoid those problems, the following standard section substitutes the manual opera-
tions. Every time a script needs to connect to a database, this set of commands is
required at the beginning of the flow.

In the section there is a first part related to the setting of some database preferences. It
contains information on the standard values of empty cells of the tables.

After that, there are crucial information. Specifically, the path and the name of the data-
base are set. There can be different solutions in retrieving the path. The simplest one is
to write the complete local path of the database location. This solution is not possible in
the current work. The folder in which codes and database are saved is shared among
different operators, so that different users can run the pre-processing code to obtain the
Parameters variable from different devices. For any PC, the path is different up to the
shared folder.

To overcome this problem, the script retrieves the location of the running MATLAB file
and gets the path of the shared folder. Then the constant part is added, and it is always
the same.

Then, there are some further inputs that must not be changed. They contain some tech-
nical settings for the connection.

At this point the linkage is ready and the result is stored in a particular connection varia-
ble. The code uses this variable to interact and make operation on the database.

To end this section, a table variable is stored in the workspace. It contains the basic
information of the database structure. Particularly relevant, it contains the list of all the
table names that are used to automatize the whole process.

A flow chart of the section is reported in Figure 4.3.

4 - MATLAB pre-processing phase

59

 Figure 4.3: Flow chart of the section to create the Database connection

4.2.2 Generate the MATLAB file to store results
The code saves the results of every pre-processing phase. There is a dedicated folder
that contains all “Parameters.mat” variables that are progressivel generate . This step
is useful to have an historic recording of the generated models. In this way, every previ-
ous version of the input file for the tool can be retrieved. This can be done to go back to
a previous version of the code if some errors occurred or to make comparisons with
older models.

Moreover, this step is crucial for the tool presented in section 4.2.7, dedicated to the
complete comparison of the new generated variable with the previous one.

The variables have a numerical order that the code can automatically assign. If, for ex-
ample, the last saved output is “Parameters .mat”, T B creates the file
“Parameters 7.mat”.

Up to now, code does all preliminary steps for the proper running. Everything is now
ready for the real computation of values and models.

4.2.3 Assign fixed parameters
At the end of the database connection step (section 4.2.1), the complete structure of the
database was saved. As already mentioned, this variable contains information about the
whole structure of the database, and it is particularly important because it contains the
complete list of table names.

This list is relevant to have a complete automatization of the pre-processing phase. In
this way, it has no importance if new tables are added because the new names are
autonomously got in the following run. The only requirement is that every table that is

Set preferences

Start

End

Retrieve path

Technical inputs for the connection

Assign variable for the connection

Get database structure

4 - MATLAB pre-processing phase

60

a e to the atabase fulfils the nomenclature re uirements: use prefix “ ata ” for ta

bles containing data for the mo els an “calc ” for calculation tables. oreover, the

suffix “ fix”, “ catalogue”, “ norm” or “ regression” must be present for this second cat-
egory.

It is important to underline that the table must not contain the abovementioned prefixes
or suffixes inside their specific names. This can give problems in running the different
sections.

The code cyclically reads every table name and runs this section whenever it finds the
“ fix” strings.

When it finds a calculation table for fixed values, the code generates a query instruction
and runs it in the database through the connection.. The procedure works as follows:

1. Create the query string.

SQL_query= ['SELECT * FROM ',char(Database_structure{i,'Table'})];

The command selects the complete table for the fixed parameters.

2. Execute the query in the database through the connection. The execution is
saved in a variable called curs that is an object containing information about
the running command. The arguments required for this step are the variable
of the connection and the query. For this scope the function “fetch” is use .

curs = fetch(exec(Database, SQL_TableOutput));

3. Assign the output of the calculation on the database to a workspace variable
of MATLAB.

t_fixed_parameters = curs.Data;

4. Close the cursor object. It is required to improve running time. If not closed,
this causes a stacking of curs objects thus requireing more memory.

close(curs)

At this point, the workspace contains the table of fixed parameters to be assigned. The
table contains the MATLAB variable name to which assign the result and a second col-
umn with the value. The code further enters inside a dedicated function called
“retrieve fixe parameters.m”.

Being single values, no queries or further calculations need to be performed. The
 T B comman “eval” is use . This instruction contains a string as argument. The
function is used to run the argument string inside the command window of MATLAB. In
this way the variable name and value are not explicitly written, and the procedure is
automatic.

To clarify, Table 4.1 shows an example. The code must assign the value of the maxi-
mum permitted weight for passenger cars, imposed by law at 3500 kg [15].

The created table in the workspace (retrieved from the database fixed calculation table)
contains the name of the variable to be assigned and the value.

4 - MATLAB pre-processing phase

61

To manually assign the result the eval function must run the following command:

 Parameters.masses.weight_max_permitted=3500;

Which can be achieved with the following code:

 eval([Table.parametername{i},'=',num2str(Table.value(i)),';']);

Whatever the variable name and the value are, they are never written in the code and
the same single line of code can be cyclically applied for every value. The string that is
generated is the same as the manual one and the code saves the proper value in the
defined structure path.

The flow scheme of the section is reported in Figure 4.4.

Figure 4.4: Flow chart of the section to assign fixed parameters

4.2.4 Assign constant values computed from normal distribution
The following part is related to the computation of normal distribution models. The code
enters this section henever it fin s the or “ norm” in the table name taken from the

complete list of tables of the database.

When it finds a calculation table for normal distribution values, the code generates a
query instruction, and it runs it through the connection to retrieve the required data for
the derivation of the constant value.

After this step, the code has all the needed instructions to compute the normal distribu-
tions an it enters a e icate function calle “retireve_norm_dist_parameters.m”.

Read tables denoted with «_fix»

Start

End

Get the name of the variable

Get the value

Assign the value to the variable
with command «eval»

Table 4.1: Argument table (Fixed table)

parametername value

Parameters.masses.weight_max_permitted 3500

4 - MATLAB pre-processing phase

62

Differently from fixed values, the calculation table does not contain single values to be
directly assigned, but a set of columns used to build an articulated query to get the proper
results.

As already presented in chapter 3.2.4, the table contains the MATLAB variable name in
which to store results, table and column names from which to take the data set and a list
of fields to apply some filtering. So, before computing any model, the script must gener-
ate a query query to retrieve the data for the costant value calcuation.

To this purpose, the co e enters a e icate function calle “load_data_from_data-
base.m”. It completel automatizes the generation of the uer an it gets the ata set

on which normal distribution analysis will be performed.

First, it takes the column and table names from which to take data and it starts building
the query with the standard SELECT-FROM command. If the complete column needs
to be taken, no further operations are needed. But, in many cases, the code must con-
sider some filtering action. To do so, the function must add a WHERE section in the
query.

The filters are contained in the second part of the calculation table and they can be more
than one with a standard structure composed by the column and table for the category,
the type of filter and the value that is used.

The function automatizes the categorization counting how many the filters are and add-
ing a condition for each of them. The only requirement for the proper working is that
operator follows the guideline instructions presented in 3.2.4.

The code gets the values of the four filtering columns and for each category enters a
further function to complete the query generation. The function is called
“calc SQ string.m”. The output of this function is the complete uer to get ata.

The procedure is completely automatic depending on the type of filter. The specific ex-
planation of the dedicated function is reported in Appendix C.

At this stage, the complete query is in the workspace and can be used to get data from
the database. An example of the query with applied filters is:

“SELECT axle_length_in_mm FROM data_rear_axle WHERE axle_length_in_mm != ""
AND rear_axle.axle_type LIKE ''trapezoidal_link" ”

It takes the values of axle lengths of rear axle considering only trapezoidal link suspen-
sions.

With the usual procedure, through the connection, the code executes the query on the
database and saves the obtained data in the workspace. In case the script gets no data
from the execution, it informs the user with a warning that an error occurred. Otherwise,
data has been successfully retrieved and the function ends.

The data set becomes the input for the statistical tool presented in chapter 2.3. The
function performs the normal distribution analysis and stores the results in the selected

4 - MATLAB pre-processing phase

63

path using “eval” comman s. The Parameters variable nee s the mean of the istribu

tion without outliers that is automatically assigned.

The process for the normal distributions model is schematized in Figure 4.5.

Figure 4.5: Flow chart of the section to assign constant values from normal distribution

4.2.5 Assign catalogues
The catalogues are reported in the database as they need to be saved. The code makes
no modifications or calculations in this section.

When it fin s a calculation table ith suffix “ catalogue”, it runs the current section. It

uses the usual command with the database connection to get the calculation table con-
taining the list of catalogues.

As already mentioned, the code needs the name of the variable in which to store results
and the catalogue name in the database. No other factors are needed because the
whole table must be taken as it is in the database. For each catalogue, a SELECT *
FROM command is used. It gets all column of a defined table.

Using an “eval” comman , the co e stores the complete catalogue in the correct variable

name and it repeats it for each catalogue.

The simple process is reported in Figure 4.6.

Read tables denoted with «_norm»

Start

End

Enter function to load data set

Calculate SQL query to get data

Run the query through the
connection to get the data set

Is there a data
set?

Compute the normal distribution

Assign the mean to the Parameters
structure

Show the error

No

Yes

4 - MATLAB pre-processing phase

64

Figure 4.6: Flow chart of the section to assign catalogues

4.2.6 Assign regression models
At this stage, the code enters the last computation section. This part is dedicated to the
storage of regression models exploiting the interaction between different dimensions. It
is the most complex part for computation and automatization.

The section regards all calculation tables with the suffix “ regression” in the name. In the

current version, there is only one regression table containing all the models to be com-
puted, but the use of the suffix automatizes the process. If more calculation tables
containing regression will be added, the script executes this part for each of them.

As in all previous blocks, the first operation is the running of the query through the data-
base connection to obtain the calculation table in the MATLAB workspace.

When the calculation table is ready, the code enters a dedicated function for the com-
putation that is calle “retireve_regression_parameters.m”.

To compute regression models, the statistical tool needs independent variables and the
dependent variable. The independent variables can be more than one, and, in that case,
the are all liste in the same cell ivi e b “;”. The use of this s mbol is necessary for
the automatization of the process. In this way, only one cell contains all independent
factors, no matter how many they are. The code autonomously divides them using the
“;” separator.

The same solution is used for the table names. Since the model needs different columns
that can come from different tables, they are listed with separator and automatically di-
vided. The list of table names is necessary to perform the JOIN command in the query.

Moreover, as for normal distributions, the tool gives the possibility to apply filters. The
categorization is performed in the same way, adding WHERE conditions in the query
command. See section 4.2.4 for the explanation of categories.

Read tables denoted with
«_catalogue»

Start

End

Get the name of the variable

Get the table to save

Assign the whole table to the
variable with command «eval»

4 - MATLAB pre-processing phase

65

Being the generation of the query different from the one of normal distribution, there is a
 e icate function calle “function_regression_quer .m”. It creates the complete uer

to get the data set for the statistical tool.

First, it uses the list of independent variables and the dependent one to fill a SELECT-
FROM command. The response must be written as last column because the statistical
regression function automatically reads the last column as the dependent variable.

The list of needed columns can be in different tables of the database. So, if there are
more table names in the calculation cell, the function adds JOIN commands to the query.
A different join is necessary for each different table.

When doing this step, the code automatically creates the connection with keys using the
model series IDs.

The following block then adds the conditions for the filters. The procedure is like the one
for normal istributions ith the “s itch” comman to istinguish ifferent categor t pes.

There is an additional part at the beginning that checks if the table for the categorization
is already part of the joined tables. If not, it adds another JOIN command to the query.

At this point, the query is complete, and it can be used by the program. An example of
the query is reported. The query gets the data for the regression model of the turning
circle of the vehicle, using wheelbase and width of the vehicle as independent variables.
The command example filters out the values for vans and motorhomes.

“SELECT wheelbase_in_mm, width_in_mm, turning_circle_in_m FROM model_series
INNER JOIN frame_form ON frame_form_ID=ID_frame_form INNER JOIN segment ON
segment_ID=ID_segment WHERE (frame_form NOT LIKE ''Bus'' AND frame_form NOT
LIKE ''Wohnmobil'')”

The code runs the query through the database connection and gets the data set for the
computation. The obtained table is the input for the statistical tool presented in 2.4.

The result of the computation is saved in a struct variable. It contains all information
related to the computed model: the table, the statistical properties, significance test re-
sults, and an object that is calle “Regression” b efault that is of “ inear mo el” t pe.

This last element contains useful information as the coefficients of the linear equation,
the linear formula, the residuals, and many other elements.

Clearly, not all the values of this structure are useful for the current work. For this reason,
the script takes only the main relevant statistical results and the coefficients of the linear
equation. They give a clear overview of the model and the possibility to make an evalu-
ation. If the Excel report is needed, the name of the variable is generated with
“function complete name.m” an results of significance tests are also taken.

The result of normal distribution was a single value, that is the mean of the data set. For
this reason, the Parameters fields for normal analysis contain one single value. For re-
gression models instead, the main result is a linear equation that is used to estimate the
value of the dependent variable. The main tool needs to retrieve this equation in some

4 - MATLAB pre-processing phase

66

way, assign the independent variables to the model, and get the estimation knowing the
coefficients of the formula.

To automatize the process the code uses MATLAB function handles. It is a particular
MATLAB variable which can store a function. Function handles can be input arguments
to other functions that evaluate mathematical expressions [49].

In this way, when calling the regression model from the Parameters variable, there is no
need to explicitly write the equation because it is contained as function handle in the
Parameter field. The code gives the input independent variables and the handle that
contains the linear equation, automatically computes the result. With this solution, even
if the number of independent variables changes or the user updates the data sets in the
database, there is not the explicit formula and no changes must be done in the MATLAB
code. It is another great solution towards user-friendliness and modularity of the tool.

An example can clarify the solution the model for the turning is used. The model esti-
mates the turning cycle as function of wheelbase and width of the vehicle.

The computation of the model gives the coefficients of the linear regression equation.
The result of the formula is given in the equation 4.1.

𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑐𝑖𝑟𝑐𝑙𝑒 = −0.35983 + 0.0018479 ∙ 𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒 + 0.0036078 ∙ 𝑤𝑖𝑑𝑡ℎ (4.1)

The formula is not written in the code in explicit form because new data can change the
coefficients and the equation should be manually updated form the user.

The pre-processing code takes the coefficients and builds the equation, then it creates
the function handle to store the linear equation in the Parameters variable. The com-
man for the function han le is assigne ith the “@” s mbol, saving the list of input

arguments of the formula and then the linear equation. Then the script assigns the func-
tion object to the correct path of the Parameters variable in the fiel that is calle “.e ”.

The command to get the function handle is “function=@(var_1, var_2, ..., var_n)equa-

tion;” where the argument in the parenthesis is the list of the variables and the equations
contains the formula to be assigned. For the current example, the command is:

“function=@(wheelbase, width)-0.03598+0.0018479*wheelbase+0.0036078*width;”

The co e then assigns the object “function” to the proper variable path that in this exam

ple is “Parameters.regr.turning circle.e ”. It simpl takes the name of the variable from

the calculation table of the atabase an it a s the “.e ” fiel .

The main tool can use the object to compute an estimation of the turning circle of the
vehicle, using as input arguments the wheelbase and the width. The script needs to call
the field with the function and, using input arguments, it computes the result.

Supposing that heelbase “ b= 7 ” mm an i th “ = 7 ” mm.

“tc=Parameters.regr.turning_circle.eq(wb, w)” gives the estimation of the turning circle
with the just calculated linear regression model an it assigns it to the variable “tc”
(“tc= .7 8” m).

4 - MATLAB pre-processing phase

67

The linear equation never appears in the main code. If, for some reasons, user adds or
removes an independent variable no changes are needed. If data are updated and the
model coefficients change, the pre-processing automatically assigns the new equation
to the function handle from the coefficients and the main code directly uses the new
version.

The path of the function handle is the only element that must be kept constant or that
must be updated in the code if it changes in the database.

This solution is a good improvement of the code in terms of complete automatization
and user-friendliness of the interface.

The process for the computation of regression models is represented in Figure 4.7.

Figure 4.7: Flow chart of the section to assign empirical regression models

At this stage, all necessary values and empirical models are in the Parameters variable.
The real pre-processing computation ends, and the object can be used as input for the
main tool. Nevertheless, some additional steps have been developed, to improve the
robustness of the whole process and reduce the occurrence of errors caused by un-
wanted modifications.

Yes

Read tables denoted with
«_regression»

Start

End

Enter function to get the complete
query

Perform JOIN commands if there are
more tables

Run the query through the connection
to get the data set

Is there a data
set?

Compute the regression model

Save the regression and use function
handle to store the linear equation

Show the error

No

4 - MATLAB pre-processing phase

68

4.2.7 Structure changes complete check
At the beginning of the pre-processing code, the script unpacks the previously generated
Parameters variable, and it lists all the fields with their values in a table.

It makes the same procedure with the just generated structure, obtaining another table
 ith the hole list of fiel s. To o so, there is a e icate function that is calle “loop

structure.m”.

It takes a structure type variable as input and it gives back a list of all the fields, and
corresponding values, in a table with two columns.

For each layer, it reads all the fields and controls if they are still structured variables or
single cells. Whenever it finds a structure, it enters in a deeper layer and performs the
same control. It does the same up to when it reaches the end of the branch and it gets
a single field. At this point, it saves the entire field path and its value in the first and
second column of the output variable.

The current version of the function arrives to a seventh layer of the structure. It is suffi-
cient for Parameters. If it finds further layers, the code informs the user that a deeper
computation is needed.

At this point, the two tabular variables can be used for the comparison.

There is a e icate function (“compare_structure.m”) that performs the complete anal

ysis. It is useful to check for different type of changes that occurred in the pre-processing
phase.

First, the script compares the number of fields of the previous and new Parameters var-
iable. The size of the tables gives the number of fields. The code writes a message for
the user, informing him if there is the same number of fields or if one of the two has more
fields.

The second section controls if there are fields in the old structure that cannot be find in
the new one. It takes each name of the old structure and it looks for it in the list of new
fields. This control is useful to check if some variables have been removed or renamed.

After that, the script checks if there are fields in the new structure that were not in the old
one. It takes each name of the new structure and it looks for it in the list of old fields. This
feature is needed to know if some variables have been added or renamed.

Then, user needs to know which the changed fields are. To this purpose, the code shows
in the command window the list of field names in two columns. One for the fields in the
previous structure that are not in the new one, and one for the names that are in the new
one but not in the old version. In case one of the two conditions is not verified (for exam-
ple there are only fields that have been removed or added), it shows one column only.

In this way, the operator can see changes and check if they are wanted or not. If, by
mistake, he removed a field from the database, it disappears from the variable and it can
be aware of the error.

4 - MATLAB pre-processing phase

69

The last check is related to the values. The control is performed on all the fields that are
equal in the previous and new structure.

For each of them, it takes the value in the second column and it compares them. The
comparison is not performed for function handles or table fields because not suitable for
“ise ual” comman . If the co e fin s that a fiel value change , it informs the user telling

which is the field and shows the previous and new values. In this way the user can check
if there are unwanted changes in the data of the database. The values change due to
variations in the data sets.

The comparison process is schematized in Figure 4.8.

Figure 4.8: Flow chart of the section to compare structures

The block ends saving the Parameters variable in the archive folder.

This function is fundamental for the complete control of changes. Saving all the gener-
ated Parameters variable gives the possibility to retrieve older versions of the pre-
processing and overcome the occurrence of unwanted mistakes.

Compare the number of fields

Infrom user that there is the
same number of fields

Start

End

No Yes Inform user of the change

Yes

Did the
number
change?

Compare the name of fields

Show the name of the fields
that do not match

Compare the values of
unchanged fields

Did the
value

change?

No

Yes
Inform user of the change

70

71

5 Spring design for dimensional chain
of the rear axle

The last chapter of the work presents an application on the tool models. Specifically, the
dimensional chain for the evaluation of the available space in the rear axle (section 5.1).
The following part (section 5.2) is devoted to the computation of the primary elastic mem-
ber [4]. It is useful for the presented dimensional chain. In the application, some of the
data contained in the database are used to make the design procedure. The final section
5.3, is dedicated to the results of the developed design process.

5.1 Dimensional chain of the rear axle
As already presented in chapter 1, dimensional chains are the core of the main tool of
the project. The rear axle dimensional chain is composed by different steps. In this spe-
cific application, the developer is interested in the Y-direction of the space.

First, the reference frame is defined. The X-axis is directed towards the back of the ve-
hicle. The Z-axis exits from the ground. The Y-axis is consequently defined with the
centre on the symmetry plane of the vehicle and the positive side on the rear axis to-
wards the left side. The reference frame of the rear axle is reported in Figure 5.1 [50].

Figure 5.1: Rear axle reference frame [50]

It is important to underline that the main elements influencing the current dimensional
chain are the wheel, the damper, and the spring.

5 - Spring design for dimensional chain of the rear axle

72

For this reason, according to [50], the main steps to evaluate the available space are the
followings:

1. Calculation of tire positions.

2. Calculation of the wheel arch.

3. Determination of damper dimensions and damper position.

4. Determination of the spring dimensions and spring position.

The tire dimensions and positions are required to the design the wheel arch both in XZ
plane and YZ plane.

Other vehicle components must avoid any type of collision with the wheel arch. After the
definition of the wheelhouse, the damper is positioned. It is placed on the lower axis of
the suspension system and it can have an angle orientation. The angle is designed ex-
actly to avoid contact with the wheel arch.

Subsequently, the spring must be positioned. It can have different layouts with respect
to the damper. It can be positioned in X direction with respect to the damper, in Y direc-
tion or coaxial (Figure 5.2 [50]). For the dimensional chain of the rear axle in Y direction,
the most critical is the layout of spring in Y that is the one considered in the design phase
of section 5.2.

Figure 5.2: Possible Spring-damper layouts [50]

It is visible that the configurations of spring in X in front and behind the damper optimize
the available space in Y direction but not in X direction. The spring in Y configuration
optimizes the X, but it is the most restrictive in Y direction. Finally, the coaxial reduces
the needed space, but it requires more complex solutions for design and assembly.

Determining the spring dimension and its position in Y direction, from the complete width
of the vehicle it is possible to know the available space between the axles of the two
vehicle sides. The complete process is detailed and already defined up to the step 3
(page 72) [50].

5 - Spring design for dimensional chain of the rear axle

73

The missing step is the definition of the spring dimension. There is the need of a proce-
dure that uses the available data, that is quite limited in this early development phase,
and tries to get an estimation of the spring dimensions (section 5.2).

5.2 Spring dimensioning procedure
The procedure to derive the dimensions of the rear axle spring bases on the following
assumptions:

1. Consider only helical coil steel springs (no air springs).

2. The spring is supposed perfectly cylindrical, meaning that the external diam-
eter is constant for its entire length.

3. The behaviour of the spring is linear in all the deformation range.

This assumption are due to the few input parameters available at the early design phase..
At this stage, the tool computes a preliminary model, and the measures are useful just
to get an estimation of the space occupied by single components and modules. The
abovementioned conditions are acceptable at this level of the design process.

On the base of the hypothesis, an estimation procedure has been designed. The main
idea of the process is to create a catalogue of possible springs. Subsequently, some
controls are performed on each coil and only springs that satisfy all the conditions can
be considered as acceptable for the specific vehicle.

The procedure begins with the definition of the necessary inputs that are available from
the user inputs or from already executed computations. The Table 5.1 shows the list of
available factors.

5 - Spring design for dimensional chain of the rear axle

74

The limited list of available data, does not give the possibility to design the spring but is
enough to estimate its dimensions.

The process uses a reverse approach. Instead of designing a coil suitable for the vehicle,
the program builds a catalogue of springs and then, suitable ones are selected through
a filtering action.

5.2.1 Spring catalogue
To prepare a catalogue, the main spring properties must be defined.

A perfectly cylindrical coil spring can be defined by some dimensions that are schema-
tized in Figure 5.3 [51, p. 499] and explained in Table 5.2.

Table 5.1: Available inputs

Input Unit of measure Description

Axle type - Type of rear suspension mounted on the vehicle

Layout - Positioning layout if spring and damper of the suspension

mrear kg Part of the weight load that acts on the rear wheels

ysa mm Position in Y of the lower hinge of the shock absorber with respect to
the centre of the vehicle

maxle kg Mass of the rear axle

θsa ° Inclination angle of the shock absorber with respect to the Z-axis

dsa mm Piston diameter of the shock absorber

b mm Length of the suspension lower axis

yfixed_arm mm Position in Y of the fixing point of suspension to body with respect to
the centre of the vehicle

zwh mm Position in Z of the upper point of the wheelhouse with respect to the
centre of the wheel in kerb weight conditions

dtire mm Diameter of the biggest tire that can be fitted on the vehicle

5 - Spring design for dimensional chain of the rear axle

75

Figure 5.3: Helical coil compression spring [51, p. 499]

The winding ratio is defined by equation 5.1 [51, p. 500].

𝑤 =
𝐷

𝑑
 (5.1)

By using some of the parameters listed above, the catalogue is derived. The catalogue
assumes a tabular structure with different properties of the springs. Each row of the table
represents a different coil (Table 5.3).

Table 5.2: Spring properties

Dimension Unit of measure Description

D mm Mean diameter

Dext mm External diameter

Dint mm Internal diameter

d mm Wire diameter

w - Winding ratio

n - Number of windings

i - Transmission ratio

L mm Length of the coil

5 - Spring design for dimensional chain of the rear axle

76

The database is useful in this first part of the process. The catalogue is not directly avail-
able so the script must build it. The data table dedicated to the rear suspension, contains
information about different rear axle elements. Rear springs are also part of the list. The
idea to create the catalogue is to take the maximum and minimum of the variable ranges
from real vehicles and vary with constant step inside the interval.

For this reason, the maximum and minimum value for the wire diameter and the winding
ratio are taken from the database. Generally, using available data, the wire diameter is
an integer number. So, the variation in the interval is set to 1 mm. Winding ratios vary
with a 0.1 step.

So, by inverting the equation 5.1 for each couple of winding ratio and wire diameter , a
value of mean diameter 𝐷 can be computed.

Subsequently, the database is used to obtain the range of possible values of transmis-
sion ratios. This value gives information about the positioning of the spring. It is the
transmission factor that correlates the movement of the wheel with the movement of the
spring attachment.

To better understand the concept, the length of the arms is reported Figure 5.4 [50].

Figure 5.4: Scheme for the calculation of transmission ratio [50]

The measure of b is known, and it is the length of the lower axis of the suspension. The
transmission ratio of the spring is given by the formula 5.2.

Table 5.3: Spring catalogue layout

 D [mm] d [mm] w [-] i [-] n [-]

Coil 1 190.4 17 11.2 0.53 3

… … … … … …

Coil n 85.2 12 7.1 0.65 7

5 - Spring design for dimensional chain of the rear axle

77

𝑖 =
𝑎

𝑏
 (5.2)

As previously done, the range is used to get the values of i, with a variation step of 0.01.

5.2.2 Geometrical check
This section considers only the critical case where the springs is mounted in Y direction
with respect to the shock absorber (configuration Spring in Y, Figure 5.2).

To position the spring, the inner point of the damper piston must be computed to avoid
interference. This can be done because in the dimensional chain, the spring is evaluated
after the definition of the shock absorber.

To evaluate the point, the height of the spring (that is not known) is taken with a conven-
tional value of 100 mm (htest). The value derives from an estimation of more empirical
measurements of coils in loaded conditions. Since the shock absorber can have an in-
clination, the most internal point is the one at the top height of the spring.

The Y coordinate of the inner point (critical point) of the damper is given by the formula
5.3.

𝑦𝑖𝑛𝑠𝑖𝑑𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑠𝑎 = 𝑦𝑠𝑎 − ℎ𝑡𝑒𝑠𝑡 ∙ tan(𝜃𝑠𝑎) −
1

2
𝑑𝑠𝑎 ∙ cos(𝜃𝑠𝑎) (5.3)

An easy visualization of the point is given in Figure 5.5 [50].

Figure 5.5: Shock absorber position and critical point (green dot) [50]

To avoid interference between the spring and the critical point of the shock absorber
(green dot in Figure 5.5) there must be a safety distance between the two elements.

5 - Spring design for dimensional chain of the rear axle

78

At the same time, the spring cannot be too far from the damper. The inner it is, the higher
the loads on the spring are. Moreover, a more internal position, reduces the available
space in Y direction for the battery pack and the luggage compartment.

The distance target between spring and damping element is set to 40 mm with an ac-
ceptable variation of 5%. The value is an estimation derived from an empirical data
analysis. At this point, to check the distance, the external point of the spring must be
calculated.

The information of the location of the spring axis is given by the transmission ratio. The
inverse of the equation 5.2 is useful to get the value of a. It is the Y dimension of the
position of the centre axis of the spring with respect to the lower bolt joint of the suspen-
sion.

The position of the spring axis is fixed for a determined transmission ratio. The outer
coordinate, instead, depends on the mean and wire diameters. To compare the location
of the coil with the position of the damper, it is computed with respect to the centre of the
vehicle.

The equation is given by 5.4.

𝑦𝑐𝑜𝑖𝑙_𝑜𝑢𝑡 = 𝑎 +
𝐷 + 𝑑

2
+ 𝑦𝑓𝑖𝑥𝑒𝑑_𝑎𝑟𝑚 (5.4)

The scheme for the positioning of the coil is represented in Figure 5.6 [50].

Figure 5.6: Spring positioning [50]

The computation is performed for each coil of the list, for every transmission ratio that
gives the value of a.

At this stage, Y coordinate of the external point of the spring and internal point of the
damper piston are known. The code computes the distance.

5 - Spring design for dimensional chain of the rear axle

79

Only springs that give a difference in positioning in the range of 5% of 40 mm can be
mounted. Coils with distance higher than 42 mm are too far from the damper. They must
sustain higher loads and they reduce available space in Y direction. Coils with distance
lower than 38 mm can give problems of interference with the other element.

The springs that are acceptable are maintained inside the coil catalogue.

At this point, only springs that can be mounted are in the catalogue. Then, the code adds
a new parameter, the number of windings n. The script expands the list and associates
each coil to every possible number of windings. The range of variation is taken from the
database and rounded to slightly increase the interval. The n ranges from 3 to 7 with a
step of 0.5 (only multiples of half turn are possible).

5.2.3 Frequency check
The second check is related to the oscillation properties. Specifically, it regards the fre-
quency of the rear axle.

To compute the frequency, different factors are needed. Although the process regards
an estimation with some simplification due to the reduced number of elements, different
components are considered anyway. To know the natural frequency, a mass and a stiff-
ness are necessary.

The value of the frequency is given by equation 5.5 [52, p. 325][50].

 𝑓 = √
𝑐∙1000∙2

𝑚
∙ 9.55 [

1

𝑚𝑖𝑛
] (5.5)

That is the natural frequency formula for oscillating mass. The factor of 1000 is used to
convert the value of c from [N/mm] to [N/m], the value of 2 doubles the rate because the
computations refer to the whole axis and the value 9.55 is necessary for the conversion
in oscillations per minute. It is expressed with this unit for an easier visualization for the
user.

Although the expression is simple, c and m consider different factors.

The rate c refers to the stiffness of the complete oscillating axis. It considers the pres-
ence of the main spring, the secondary elastic elements, and the tire. Moreover, the
formulation also considers a different position of the elements that is expressed through
the transmission ratio i. The formula gives a parallel connection between secondary
elastic elements and primary spring and a series connection to the tire. It can be obtained
with equivalent spring evaluation. The expression is reported in 5.6.

𝑐 =
1

(
1

𝑐sec _𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑐𝑠𝑝𝑟𝑖𝑛𝑔 ∙ 𝑖2 +
1

𝑐𝑡𝑖𝑟𝑒
)
 (5.6)

5 - Spring design for dimensional chain of the rear axle

80

Since the exact values of secondary elastic members and tire stiffnesses are not avail-
able, code assigns a representative value. The values are taken and kept constant for
every coil with reference to internal design procedures. Table 5.4 reports these values.

Table 5.4: Conventional elastic rates

Stiffness Value Unit of measure

Csec_spring 12 N/mm

Ctire 300 N/mm

The transmission ratio is known, so the only missing element of equation 5.6 is the stiff-
ness of the helical spring.

The rate of a helical coil compression spring can be computed from its properties. The
formulation considers dimensional factors, the mean diameter, the wire diameter, and
the number of coils, but also material factors, expressed through the shear modulus.

The equation 5.7 gives the explicit expression [51, p. 503][53, p. 16].

𝑐𝑠𝑝𝑟𝑖𝑛𝑔 =
𝐺 ∙ 𝑑4

8 ∙ 𝐷3 ∙ 𝑛
 (5.7)

The spring rate expresses the ratio between the spring force and the deflection [54, pp.
321-322].

In this way, for each coil of the matrix, the spring rate can be computed. The value of
shear modulus G is constant considering only steel spring with a value of G=80000 MPa
[55].

So, all elements of expression 5.6 are now known and the code can obtain the value of
c.

To compute also the second variable of equation 5.5, different mass contributions are
considered. The mass to be considered is the one of design condition. In this configura-
tion, two occupants are considered. The weight of the occupants is evenly distributed
between front and rear axle. Each of them has a mass of 68 kg [52, p. 343]. A 50 kg
luggage is also accounted with a 110% distribution on the rear axle due to the leverage
considered [52, p. 343][54, p. 36].

The mass is given by equation 5.8.

𝑚 = (𝑚𝑟𝑒𝑎𝑟 − 𝑚𝑎𝑥𝑙𝑒) + 0.5 ∙ (2 ∙ 𝑚𝑝𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟) + 1.1 ∙ 𝑚𝑙𝑢𝑔𝑔𝑎𝑔𝑒 (5.8)

At this stage, the frequency can be computed for each coil of the matrix. The value of m
is constant for every spring, while the value of c changes due to the variation of cspring.
Each element of the list has a different frequency that can be acceptable or not.

The acceptability range is expressed by equation 5.9.

60
1

𝑚𝑖𝑛
≤ 𝑓 ≤ 90

1

𝑚𝑖𝑛
 (5.9)

5 - Spring design for dimensional chain of the rear axle

81

Only coils that satisfy the condition of 5.9 are maintained inside the matrix. Moreover,
two new columns are added to show the value of the spring rate and the derived fre-
quency. The new structure is reported in Table 5.5.

Table 5.5: Updated spring catalogue layout

 D [mm] d [mm] w [-] i [-] n [-] cspring [N/mm] f [1/min]

Coil 1 180.2 17 10.6 0.54 3 47.578 63.625

… … … … … … … …

Coil n 85.2 12 7.1 0.65 7 47.897 75.848

The number of coils in the table reduces, so that inside the matrix only coils that suc-
ceeded the frequency test and the previous geometrical check remain. After that user
gets a final message with information on the number of springs that passed the check.

5.2.4 Travel check
Finally, the code enters a third section for the control of the proper travel. Since the body
is an hyperstatic structure, the suspension is a deformable system that allows to guar-
antee the proper touching with ground with all four contact points [4, p. 133].

To assure the correct working of the module, in every working condition, the suspension
spring must push towards the ground. This means that even in the lowest position of the
wheel, the spring must still be in compression to ensure a residual pushing towards the
ground.

The test presented in this section controls if the spring in the most extended position is
still in a compressed condition.

The deformation of the helical coil spring is composed by different contributions. At this
stage, not all information is available, so an estimation of the deflection is necessary.
The different deformation steps are reported in Figure 5.7 [51, p. 510].

Figure 5.7: Spring deflections [51, p. 510]

5 - Spring design for dimensional chain of the rear axle

82

The out displacement is set to a default value of 120 mm. The value is taken from em-
pirical evaluations of existing data in the database. User can decide to slightly modify
this value. The spring in design condition, is in an intermediate deflection between the
minimum and maximum force. The target of 120 mm refers to the sum of the deflection
due to the rebound with the addition of the preload deformation (δout + δpreload). The ref-
erence position is the unloaded spring length L0. Due to the hypothesis of complete
linearity, the relation of force and deformation is always constant and it is given by the
spring rate.

The first operation the code performs is the computation of the acting force in steady
conditions. The force on the spring can be obtained from the weight force on the wheel
through the transmission ratio. The load considers the weight of the vehicle on the rear
part reduced by the weight of the whole axle and of the wheel assembly.

The equation for the acting force is given by 5.10.

𝐹𝑤𝑒𝑖𝑔ℎ𝑡 =
(𝑚𝑟𝑒𝑎𝑟 − 𝑚𝑎𝑥𝑙𝑒 − 𝑚𝑡𝑖𝑟𝑒) ∙ 𝑔

2
 (5.10)

The whole mass acts on both wheels, so the force on one single side is obtained dividing
by 2. This is the force that acts on the wheel position. The necessary dimension is the
one in spring position that can be obtained through the transmission ratio according to
equation 5.11.

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 =
𝐹𝑤𝑒𝑖𝑔ℎ𝑡

𝑖
 (5.11)

The force on the wheel is fixed for a defined vehicle while the force on the spring changes
for each coil of the matrix due to the different values of i.

With the force and the spring properties, the deformation in loaded condition can be
computed with 5.12 [51, p. 503] [53, p. 16].

𝛿𝑜𝑢𝑡 + 𝛿𝑝𝑟𝑒𝑙𝑜𝑎𝑑 =
8 ∙ 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 ∙ 𝐷3 ∙ 𝑛

𝐺 ∙ 𝑑4
 (5.12)

The obtained deflection refers to the unloaded condition of the spring, so to the differ-
ence with the maximum length L0. This value can be compared with the imposed target
of 120 mm. A tolerance range of 1% around the design value is acceptable.

The script performs the control and maintains in the matrix only the coils that satisfy the
condition. The tolerance range can be modified according to the necessity of the de-
signer.

As previously mentioned, this section controls if the spring in rebound condition is still in
compression, so that the travel is not too small. At the same time, the travel of the spring
cannot be too high. This can lead to an excessive compression of the coils.

The script, then, shows a message to the user to inform about the number of coils that
succeeded the travel test and are kept in the matrix.

5 - Spring design for dimensional chain of the rear axle

83

5.2.5 Resistance check
At this stage, the code did not make any control about the structural properties of the
spring. There are checks about the fitting on the axle, about the comfort properties as-
sociated to the oscillations of the mass and check for the proper suspension functionality
in rebound condition. Now, the opposite movement must be controlled. In bounce the
wheel moves toward the wheelhouse and gives a further compression to the coil.

In the maximum travel-in condition, the force on the coil is the highest. The spring must
be able to work without damage in this limit case.

First, the highest position of the tire is needed. At this point of the process, wheelhouse
and tire have already been defined. The position of the wheel arch is given by the travel-
in of the wheel as reported in Figure 5.8 [50].

Figure 5.8: Wheel travel-in definition [50]

The top point of the wheel arch is defined from the centre of the wheel in steady condition
with Zwheelhouse. The envelope is set supposed to be at distance 10 mm with respect to
the highest positioning of the biggest wheel that can be fitted on the axis. The value of
10 mm is a fixed parameter of the database.

Knowing the radius of the biggest tire and the wheel arch dimensions, the movement of
the centre of the wheel is given by equation 5.13.

𝑠𝑖𝑛_𝑡𝑖𝑟𝑒 = 𝑧𝑤ℎ𝑒𝑒𝑙ℎ𝑜𝑢𝑠𝑒 − 10 −
𝐷𝑡𝑖𝑟𝑒

2
 (5.13)

The movement of the wheel causes a compression of the spring, that can be calculated
given by the transmission ratio as reported in equation 5.14.

𝛿𝑖𝑛 = 𝑠𝑖𝑛_𝑡𝑖𝑟𝑒 ∙ 𝑖 (5.14)

5 - Spring design for dimensional chain of the rear axle

84

The value of δin deformation refers to the steady position of the wheel, so it gives the
amount of additional compression given to the spring. From that value, according to the
hypothesis of complete linearity in the whole range (page 73), the code can compute the
supplementary force that adds to the basic condition (equation 5.15).

𝐹𝑖𝑛 = 𝛿𝑖𝑛 ∙ 𝑐𝑠𝑝𝑟𝑖𝑛𝑔 (5.15)

Adding this contribution to the previously computed force of the coil (equation 5.11), it
gives the maximum value of the force the spring must sustain. The formula is reported
in 5.16.

𝐹𝑚𝑎𝑥 = 𝐹𝑖𝑛 + 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 (5.16)

The complete length of the wire of helical spring is subjected to torsion [51, p. 499]. The
shear stress along the coil can be obtained from the spring properties according to equa-
tion 5.17 [51, p. 499].

𝜏 =
8 ∙ 𝐹𝑚𝑎𝑥 ∙ 𝐷

𝜋 ∙ 𝑑3
 (5.17)

The torque is distributed along a curved torsion bar. This causes a non-uniform gradient
that is higher on the inside surface of the coil. The lower is the winding ratio, the higher
is the severity of this effect [51, pp. 499-500]. Moreover, there is also a worsening factor
due to the dynamic conditions in which the spring must work [53, p. 17].

For these reasons, a correction factor must be added, considering the winding ratio w.
The correction factor k is given by the equation 5.18 [53, p. 14].

𝑘 =
𝑤 + 0.5

𝑤 − 0.75
 (5.18)

The equation for the computation of the shear stress becomes the one in 5.19 [53, p.
16].

𝜏 = 𝑘
8 ∙ 𝐹𝑚𝑎𝑥 ∙ 𝐷

𝜋 ∙ 𝑑3
 (5.19)

At this point, for each coil of the matrix, a different value of shear stress is associated.
This value must not exceed the maximum allowable stress in the coil.

To perform the check, the code must compute the limit value. Being a control on the
resistance, it is strictly related to the material of the spring. The limit value of the shear
stress can be obtained by the relation with the maximum resistance of the material re-
ported in 5.20 [51, p. 506] for steel compression coils with preload.

𝜏𝑙𝑖𝑚 = 0.56 ∙ 𝑅𝑚 (5.20)

The value of Rm can be considered fix. For a more accurate analysis, different maximum
resistances apply for different ranges of wire diameter. For each value, a different re-
sistance limit can be taken looking at the reference table in [56, pp. 9-13]. The table is
implemented in the code.

5 - Spring design for dimensional chain of the rear axle

85

Anyway, for each coil of the matrix, the value of τlim is computed. In this way, it can be
compared to the previously calculated value with equation 5.19.

Only coils that give a shear stress lower than the limit value are suitable. The others
would not sustain the load caused by the maximum bound of the wheel. The condition
that coils must satisfy is the 5.21.

𝜏 ≤ 𝜏𝑙𝑖𝑚 (5.21)

The code gives information to the user about the number of coils of the matrix that suc-
ceeded the resistance test.

5.2.6 Buckling check
A helical spring loaded in compression can act as columns and the phenomenon of
buckling can occur. It occurs especially for slender bodies, in which there is a predomi-
nant dimension along which the compression is applied. In some conditions, if the
compression load exceeds a critical value, the result is an eccentric bending that is not
restored by internal elastic moments of the material and the body collapses [57, p. 228].
This is buckling.

Since, as reported, this event causes collapsing of the element, it must be avoided.

To evaluate buckling condition, two different factors are necessary, as reported in Figure
5.9 [53, p. 21].

Figure 5.9: Buckling curve [53, p. 21]

The points that falls in the region “a” can lea to buckling. The “b” zone, instea , is a
safe region. The two factors are the ones that characterize the X- and Y-axis.

On the X-axis, there is a term that is calle “slen erness” factor (λ). It is expressed ac-
cording to 5.22 [53, p. 19].

5 - Spring design for dimensional chain of the rear axle

86

𝜆 = 𝜈
𝐿0

𝐷
 (5.22)

It expresses a ratio between the main length of the body and its transversal dimension
that in this specific case are the free length of the spring and the mean diameter. An
additional correction factor ν considers the constraint conditions at the extremities of the
coil. According to normative [53, p. 20], the different values are reported in Figure 5.10.

Figure 5.10: Constraint factors [53, p. 20]

In this project, the value is ν=0.5.

On the Y-axis, the other facto considers the loading conditions. The dimension is called
“retaine spring eflection” (ξ) and it is expressed with equation 5.23 [53, p. 19].

𝜉 =
𝛿

𝐿0
 (5.23)

As visible, it is the ratio between the applied deformation and the whole length of the
element. In the specific spring case, they are the maximum deformation (when the spring
is fully compressed) and the unloaded length.

For each spring, the two presented dimensions must be evaluated.

The dimension of the free length of the coil appears in both formulas 5.22 and 5.23. To
evaluate the length of the unloaded spring, the procedure begins with the block length.
It is the limit condition in which all coils are in contact and the length is the minimum.

It is computed in different ways, according to the manufacturing procedure, as reported
in [53, pp. 17-18].

For cold formed coils:

𝐿𝑏 = 𝑛𝑡 ∙ 𝑑 (5.24)

𝑛𝑡 = 𝑛 + 2 (5.25)

For hot formed coils:

𝐿𝑏 = (𝑛𝑡 − 0.3) ∙ 𝑑 (5.26)

5 - Spring design for dimensional chain of the rear axle

87

𝑛𝑡 = 𝑛 + 1.5 (5.27)

This is the minimum dimension the spring can have. This limit condition is never reached.
There is always a certain safety margin to ensure that different coils never touch in op-
erating condition. So, in the maximum deflected position, there is still a tolerance. The
minimum distance is also computed according to the manufacturing procedure and it is
reported in 5.28 and 5.29 [53, p. 17].

For cold formed coils:

𝑆𝑎 = (0.0015 ∙
𝐷2

𝑑
+ 0.1 ∙ 𝑑) ∙ 𝑛 (5.28)

For hot formed coils:

𝑆𝑎 = 0.02 ∙ (𝐷 + 𝑑) ∙ 𝑛 (5.29)

The spring in the maximum compressed condition is obtained with the wheel in the top
height.

With respect to the design position, the travel-in of the spring is already available from
equation 5.13. From this condition, also the deformation with respect to the unloaded
length has already been computed. It is given by 5.7, recalling that it expresses the con-
tribution of the out travel of the wheel and the preload.

With this procedure, going from the block length, all deformations are added to reach
the unloaded length. The value can now be computed using 5.30 [50, p. 61].

𝐿0 = 𝐿𝑏 + 𝑆𝑎 + 𝛿𝑖𝑛 + 𝛿𝑜𝑢𝑡 + 𝛿𝑝𝑟𝑒𝑙𝑜𝑎𝑑 (5.30)

For each coil, the retained spring deflection (equation 5.23) can be computed. Only con-
tributions of the in-bound and out-bound travel are considered being the operative range
of the spring (it does not reach the block length), as reported in 5.31.

𝜉 =
𝛿𝑖𝑛 + 𝛿𝑜𝑢𝑡

𝐿0
 (5.31)

Moreover, L0 is available so the slenderness factor can be also computed with 5.22.

At this point, the limit curve of Figure 5.9 is used to evaluate in which area the coil falls.

Only coils that give a couple of value below the curve can be maintained in the matrix.
In opposite case, there is the risk of buckling so they cannot be used.

It is visible that two elements give contribution to buckling. One is the deformation of the
spring: even very slender bodies can fall in safe region if the amount of deformation is
small. The other is the distribution of the dimensions: if the body is little slender, also
high amount of compressive deformation does not cause any problem.

5 - Spring design for dimensional chain of the rear axle

88

At this stage, all checks are done, and the matrix contains only springs that succeeded
all the different tests.

Depending on the different inputs, a different number of coils can be found by the dis-
cussed procedure. Anyway, starting from the list of thousands of springs, only few units
remain. If the coil is only one, no further selection process is necessary. Instead, if there
are more coils, one of them must be selected.

It is out of this work, but an idea is to use an optimization process to properly select the
coil. For example, user, according to project tasks, can drive the procedure to reduce as
much as possible the occupied space in Y direction to increase the available space for
the battery pack or to select the lowest coil in Z direction, to reduce the attachment points.

The described procedure has many approximations and relies on simplified hypothesis,
but, for the early development phase, is useful to get a first estimation of the rear axle
spring, letting the tool the possibility to compute the dimensional chain for the parametric
model.

5.3 Evaluation of results
The process gives a certain set of coils that has dimensions in the selected range of
properties. It is sure that the low number of coils that are available succeeded all the
tests and, according to the hypothesis, are suitable for the vehicle.

To evaluate results, different vehicles that are available in the database are taken. The
set of models has the layout characteristics imposed for the geometrical check. The
graphical evaluation represents the different properties of the spring, plotting the points
of the real spring and the one obtained with the estimation process.

Being interested in the measures of the element, only dimensions are taken. Specifically,
the wire diameter, the mean diameter, the number of windings, and the unloaded length.
In this way, a graphical representation gives an idea if the real value falls near or inside
the variation range of the obtained feature.

The plot is reported in Figure 5.11, taking as example the Toyota Corolla 2.0 Hybrid
Collection (2019).

5 - Spring design for dimensional chain of the rear axle

89

Figure 5.11: Dimensions evaluation

For each variable, the orange dot represents the value of the real spring of the vehicle
taken from the database. The set of blue dots shows the different values of the variation
of the coils in the matrix. The specific values on the Y-axis cannot be reported. They are
part of a private set of data of A2Mac1 [25].

It is visible that, for matrices with more springs, the real value falls inside the variation
range in most of the cases. When it is not, the real value is anyway near the selected
range.

This procedure shows that the process is not perfect. It never gets the dimensions of the
real spring. Nevertheless, the real values usually fall inside the variation range.

Moreover, it is important to notice that, even in the case in which selected coils do not
contain the real dimension, the variation is in the order of units of millimetres for the wire
diameter and some centimetres for the mean diameter.

The deviation causes an error of estimation of dimensions in the order of some tenths
of millimetres. It is not a tolerable error for the design of the spring for the production, but
for the early phase in which operations are done, it is a good estimation. The dimensional
chain for the rear axle regards the whole width of the vehicle. The width of the car de-
pends on the characteristics of the model, but it is in the order of 1700 mm.

This means that, taking the example of Figure 5.11, the maximum deviation is 70 mm
for the diameter dimension. It causes an estimation error on the vehicle width that is
quite small. The width of the vehicle of the example is of 1790 mm.

This is the maximum error caused by the procedure on the dimensional chain. The op-
timization process to select the coil can get the central values of the range, reducing the
magnitude of the error.

5 - Spring design for dimensional chain of the rear axle

90

In general, looking at the results, it is visible that the process generally selects springs
with higher diameters, both for the wire and for the mean, and a lower free length. The
computed coils are stiffer and bigger than the real one.

This is due to different approximations. The hypothesis of linear behaviour and perfectly
cylindrical shape are far from the reality. As visible in Figure 5.12 [58], the coils have
different diameters along the length and the distribution of windings is not regular.

Figure 5.12: Example of spring [58]

Moreover, computations are made also using some values that are set constant, but
they are not always the same, as for example the elastic rate of the tire or the stiffness
of the secondary bushing. Also, the position of the coils can vary. In the process, the
spring is in Y direction, in the real case it can be slightly deviated and at a different
distance than the imposed target.

The procedure, anyway, gives a method to select suitable coils that make sense and
controls for different requirements. User can vary some parameters and try to find better
results, if necessary. It can play on the variations range or the step inside the range. Try
to change fix values of stiffness or resistances, vary the target values or tolerance ranges
for the different checks.

In conclusion, as already mentioned, the procedure is satisfactory to get an estimation
of the element dimensions, also considering the early phase of the development.

91

6 Conclusions and considerations

The main objective of the work was to create a tool that would allow the pre-processing
phase to be carried out automatically.

The process started with the creation of the main tool to achieve the objective, i.e. the
creation of the database. It was carried out keeping in mind the real objective that it had,
which was to allow the automation of the process.

To do this, it was fundamental to establish rules for the structure and nomenclature of
all the entities contained in it. It is very important that these structure rules are respected
by everyone who acts on the database, so as not to compromise the success of the
calculation process.

The result is a complex apparent structure, which is, however, very effective because of
its modularity.

This feature has made it possible to create the MATLAB interface according to the ob-
jective of the work. The tool can interact with the database and to perform all the
necessary operations to obtain the empirical models used by the main tool to calculate
the parametric model of the vehicle. This interaction takes place in a completely auton-
omous way. The instructions are themselves written in the database and are read
automatically.

This is a very important step, as no intervention is necessary. The pre-process phase
can therefore be performed by any user, regardless of their level of knowledge of
MATLAB or SQL. It does not have to perform any intervention, as long as all the rules
of modularity and structure have been respected.

Moreover, by performing pre-process calculations every time the parametric model has
to be obtained, empirical models based on the last saved version of the database can
be obtained. It is only necessary to update the data progressively to ensure that the
calculated empirical models are always current. Therefore, the only necessary operation
is to update the data, which does not require any kind of programming language
knowledge. Through the software interface, the fields are updated as in a normal spread-
sheet. The only precaution is to always respect the established conventions.

The work has required different solutions to minimize any kind of intervention. The Pro-
ject also offers interesting solutions to control the possible appearance of errors or
unwanted variations in the database. In this way, it becomes more difficult to propagate
empirical models that are incorrect over time. The user can at any time retrieve a previ-
ous version of the pre-process phase.

6 - Conclusions and considerations

92

As far as the structure is concerned, the modularity is adequate for the purpose of the
process. A possible solution for the future could be to divide regression models into sev-
eral tables, with a categorization according to the type of data contained. In any case,
no intervention is necessary on the MATLAB code, as it is designed in a modular way,
regardless of the number of tables into which the database is divided.

Finally, the work done has made it possible to come into contact with data and design
procedures of the different modules of the vehicle. The creation of the database has
therefore rained the author in the knowledge of the numerical values associated with the
different modules. Moreover, it has allowed to acquire and enhance knowledge of differ-
ent programming languages for the management of the whole work, crucial for the
engineering design.

93

7 List of Figures

Figure 1.1: Flow of the general process ... 2

Figure 1.2: Thesis structure ... 4

Figure 2.1: Typical graphical output of the vehicle architecture tool 6

Figure 2.2: Example of manikin dimensions [2][6] ... 9

Figure 2.3: Histogram example of A44 dimension of the first row 10

Figure 2.4: Leg dimensions [6] ... 10

Figure 2.5: Histogram plot with normal distribution of A44 dimension of the first row
 .. 13

Figure 2.6: Calculated vs Real values ... 14

Figure 2.7: Distribution of residuals represented as bar plot 18

Figure 2.8: Flow of the process for linear regression models 19

Figure 2.9: Structure of the database according to the ERM [2] 23

Figure 3.1: Structure of database tables .. 26

Figure 3.2: Example of internal manikin dimensions [6] .. 33

Figure 3.3: Type of joins [46] .. 42

Figure 3.4: SQLiteStudio general interface .. 44

Figure 3.5: Structure tab .. 45

Figure 3.6: Data tab.. 45

Figure 3.7: Column properties window .. 46

Figure 3.8: Primary key configuration .. 47

Figure 3.9: Foreign key configuration .. 47

Figure 3.10: SQL query editor .. 49

Figure 3.11: Query tab of views ... 50

Figure 4.1: Flow chart of the MATLAB function to get model series IDs 54

Figure 4.2: Flow chart of the MATLAB function to set NULL values 57

Figure 4.3: Flow chart of the section to create the Database connection.............. 59

file:///C:/Users/gabry/Desktop/Master_thesis/MASTER%20THESIS%20(12).docx%23_Toc57043896

7 - List of Figures

94

Figure 4.4: Flow chart of the section to assign fixed parameters 61

Figure 4.5: Flow chart of the section to assign constant values from normal
distribution ... 63

Figure 4.6: Flow chart of the section to assign catalogues 64

Figure 4.7: Flow chart of the section to assign empirical regression models 67

Figure 4.8: Flow chart of the section to compare structures 69

Figure 5.1: Rear axle reference frame [50] .. 71

Figure 5.2: Possible Spring-damper layouts [50] ... 72

Figure 5.3: Helical coil compression spring [51, p. 499] .. 75

Figure 5.4: Scheme for the calculation of transmission ratio [50] 76

Figure 5.5: Shock absorber position and critical point (green dot) [50] 77

Figure 5.6: Spring positioning [50] ... 78

Figure 5.7: Spring deflections [51, p. 510] ... 81

Figure 5.8: Wheel travel-in definition [50] .. 83

Figure 5.9: Buckling curve [53, p. 21] .. 85

Figure 5.10: Constraint factors [53, p. 20] .. 86

Figure 5.11: Dimensions evaluation ... 89

Figure 5.12: Example of spring [58] ... 90

Figure 9.1: Example of Excel report for normal distribution 97

Figure 9.2: Example of Excel report for regression model 98

Figure 9.3: Example of Excel report plots for regression model 99

Figure 9.4: Report of the pre-processing structure .. 101

95

8 List of Tables

Table 2.1: Examples of fixed parameters .. 8

Table 3.1: Structure of model series table ... 28

Table 3.2: Segment table ... 30

Table 3.3: Structure of model table .. 30

Table 3.4: Motor type table .. 32

Table 3.5: Example data_airbag_driver table .. 34

Table 3.6: Example data_tires table .. 34

Table 3.7: Example data_door_panel_driver table .. 34

Table 3.8: Structure of source table ... 36

Table 3.9: Structure of calculation table for fixed parameters 37

Table 3.10: Structure of calculation table for catalogues 38

Table 3.11: Structure of calculation table for normal distributions 38

Table 3.12: Structure of calculation table for regression models 40

Table 4.1: Argument table (Fixed table) ... 61

Table 5.1: Available inputs ... 74

Table 5.2: Spring properties ... 75

Table 5.3: Spring catalogue layout .. 76

Table 5.4: Conventional elastic rates ... 80

Table 5.5: Updated spring catalogue layout .. 81

96

97

9 Appendix

9.1 Appendix A

Normal distribution report

Figure 9.1: Example of Excel report for normal distribution

9 - Appendix

98

Regression report

Figure 9.2: Example of Excel report for regression model

9 - Appendix

99

Figure 9.3: Example of Excel report plots for regression model

9 - Appendix

100

9 - Appendix

101

9.2 Appendix B

Excel report of the pre-processing phase

Figure 9.4: Report of the pre-processing structure

The values are hidden for secrecy reasons.

9 - Appendix

102

9 - Appendix

103

9.3 Appendix C

Explanation of the function to apply filters
Through a “s itch” comman , it contains ifferent blocks for ever filter type. In this way,
it performs different operation according to the selected category.

The orking principle is similar for each block. or “ ilter out” an “Consi er onl ” sec

tions, the code checks if the values for the category are more than one. There is the
possibility to consider only or exclude more than one value. The convention is that, when
more than one element is use for filtering, the must be separate b “;”. This s mbol

is useful for the automatization of this step. The code splits the string contained in the
cell henever it fin s the “;” an it kno s if there are more values. Then for each categor ,

it adds a condition to the WHERE statement of the query.

 or “ igher” an “ o er” filters instea , onl one value can be present, an it is a nu-
merical value. The uer con ition simpl contains the control to take ata that are “>”

or “<” than the selecte one.

 inall , for “ ax” an “ in” filters, as alrea iscusse , the o not give a real ata set

but a single value only, the maximum or minimum of the column. The script does not
add a WHERE condition, but it adds the needed command before the column name.

If the filter type does not fall in one of the presented blocks, the code gives a feedback
telling the user that the type of filter is not implemented yet and no data can be loaded.
In this way, the operator can immediately check if this is due to an error in writing the
name or if there is the need to add a new type of filter. This second case is the only one
in which a correction on the MATLAB code is needed and it requires some knowledge.

104

105

10 References

[1] . Nicoletti, S. a er, . Brönner, . Schockenhoff, an . ienkamp, “ esign Pa

rameters for the Earl evelopment Phase of Batter Electric Vehicles,” WEVJ,
vol. 11, no. 3, p. 47, 2020, doi: 10.3390/wevj11030047.

[2] L. Nicoletti, W. Schmid, and M. Lienkamp, Eds., Databased Architecture Modeling
for Battery Electric Vehicles, 2020.

[3] A. Kampker, D. Vallée, and A. Schnettler, Elektromobilität. Berlin/Heidelberg, Ger-
many: Springer, 2018.

[4] G. Genta and L. Morello, The automotive chassis. Dordrecht: Springer, 2009.

[5] M. Felgenhauer, C. Angerer, R. Marksteiner, F. Schneider, and M. Lienkamp,
Eds., Geometric substitute models for efficient scaling of dimensions during vehi-
cle architecture design, 2018.

[6] . Nicoletti, S. irti, . Schockenhoff, . König, an . ienkamp, “ erivation of

Geometrical Interdependencies between the Passenger Compartment and the
Traction Batter Using imensional Chains,” WEVJ, vol. 11, no. 2, p. 39, 2020,
doi: 10.3390/wevj11020039.

[7] H-Point Machine (HPM-II) Specifications and Procedure for H-Point Determina-
tion: SAE J4002, 2010.

[8] Motor vehicle dimensions: J1100, 2009.

[9] Devices for Use in Defining and Measuring Vehicle Seating Accommodation: SAE
J826, 2015.

[10] . Krohn, “ esigning Geometric Substitute o els for utomate Concept evel

opment,” aster Thesis, utomotive Technolog , Technical Universit of unich,

Munich, 2017.

[11] ECE R 125, 2010. [Online]. Available: https://eur-lex.europa.eu/legal-content/DE/
TXT/?uri=CELEX%3A42010X0731%2803%29

[12] S. irti, “Erstellung eines parametrischen o ells zur erleitung von aßkonzep

ten für Elektrofahrzeuge [Creation of a parametric model to derive dimensional
concepts for electric vehicles],” utomotive technolog , Technical Universit of

Munich, Munich, 2019.

[13] . oppert, “ nal tische un experimentelle Untersuchungen zum Wirkungsgra

verhalten von Achsgetrieben [Analytical and experimental investigations on the

10 - References

106

efficienc behaviour of axle rives],” issertation, Technical Universit of Ilmenau,

Ilmenau, 2015.

[14] H. Tschöke, Die Elektrifizierung des Antriebsstrangs [The electrification of the
powertrain]: Basiswissen. Wiesbaden: Springer Vieweg, 2015.

[15] Directive 2006/126/EC, 2006. [Online]. Available: https://eur-lex.europa.eu/legal-
content/en/TXT/?uri=CELEX%3A32006L0126

[16] G. Casella and R. L. Berger, Statistical inference, 2nd ed. Pacific Grove, CA:
Brooks/Cole, 2002.

[17] G. Barbato, G. Genta, and A. Germak, Misurare per decidere: Misure e statistica
di base, 3rd ed. Bologna: Società Editrice Esculapio, 2014.

[18] K. Lagemann, Function_Normal_Distribution.

[19] J. H. Zar, Biostatistical analysis, 4th ed. Upper Saddler River, N.J.: Prentice Hall;
London : Prentice Hall International (UK), 1999.

[20] B. Everitt, The Cambridge dictionary of statistics. Cambridge: Cambridge Univer-
sity Press, 1998.

[21] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engi-
neers. Hoboken NJ: John Wiley and Sons Inc, 2014.

[22] J. K. Patel and C. B. Read, Handbook of the normal distribution, 2nd ed. New
York: M. Dekker, 1996.

[23] J. A. Rice, Mathematical statistics and data analysis. [New Delhi]: Cengage Learn-
ing/Brooks/Cole, 2007, reimp. 2014.

[24] A. C. Rencher and W. F. Christensen, Methods of multivariate analysis. Hoboken
New Jersey: Wiley, 2012.

[25] A2Mac1, A2Mac1 catalogue. [Online]. Available: https://portal.a2mac1.com/

[26] G. B. Wetherill, Intermediate statistical methods. London: Chapman and Hall,
1981.

[27] W. Mendenhall, T. Sincich, and W. S. c. i. b. s. Mendenhall, A second course in
statistics: Regression analysis / William Mendenhall, Terry Sincich, 5th ed. Upper
Saddle River, N.J.: Prentice Hall; London : Prentice-Hall International, 1996.

[28] MathWorks, Cook's Distance. [Online]. Available: https://www.mathworks.com/
help/stats/cooks-distance.html

[29] K. Lagemann, Function_Regression_Analysis.

[30] N. R. Draper and H. Smith, Applied regression analysis, 3rd ed. New York, Chich-
ester: Wiley, 1998.

[31] A. J. H. Hallet and J. Marquez, Henri Theil's Contributions to Economics and
Econometrics: Econometric Theory and Methodology: Springer Netherlands,
1992.

10 - References

107

[32] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning: With applications in R. New York: Springer, 2013.

[33] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied linear regression models, 4th
ed. Boston, New York: McGraw-Hill/Irwin, 2004.

[34] Statistics Solutions, Testing Assumptions of Linear Regression. [Online]. Availa-
ble: https://www.statisticssolutions.com/testing-assumptions-of-linear-regression-
in-spss/#:~:text=In%20order%20to%20make%20valid,varia-
ble%20and%20the%20predicted%20value.

[35] R. G. Lomax, Statistical concepts: A second course, 3rd ed. Mahwah N.J.: Law-
rence Erlbaum Associates, 2007.

[36] R. . Wasserstein an N. . azar, “The S Statement on p -Values: Context,
Process, an Purpose,” The American Statistician, vol. 70, no. 2, pp. 129–133,
2016, doi: 10.1080/00031305.2016.1154108.

[37] . Col uhoun, “The repro ucibilit of research an the misinterpretation of p-val-
ues,” Royal Society open science, vol. 4, no. 12, p. 171085, 2017, doi:
10.1098/rsos.171085.

[38] P. P.-S. Chen, “The entity-relationship mo el to ar a unifie vie of ata,” ACM
Transaction Database System, vol. 1, pp. 9–36, 1976.

[39] Wikipedia, Entity–relationship model. [Online]. Available: https://en.wikipe-
dia.org/wiki/Entity–relationship_model#:~:text=An%20entity–
relationship%20model%20(or,instances%20of%20those%20entity%20types).

[40] M. Unterstein and G. Matthiessen, Relationale Datenbanken und SQL in Theorie
und Praxis. Berlin/Heidelberg, Germany: Springer, 2012.

[41] ADAC, ADAC catalogue. [Online]. Available: https://www.adac.de/rund-ums-fahr-
zeug/autokatalog/

[42] Wikipedia, SQL. [Online]. Available: https://en.wikipedia.org/wiki/SQL#cite_note-
oed-US-6

[43] Microsoft, Structured Query Language (SQL). [Online]. Available: https://docs.mi-
crosoft.com/en-us/sql/odbc/reference/structured-query-language-sql?
redirectedfrom=MSDN&view=sql-server-ver15

[44] SQLiteStudio, SQLiteStudio Download. [Online]. Available: https://www.sqlite.org/
download.html

[45] w3schools, SQL Tutorial. [Online]. Available: https://www.w3schools.com/sql/de-
fault.asp

[46] w3schools, Different Types of SQL JOINs. [Online]. Available: https://
www.w3schools.com/sql/sql_join.asp

[47] MathWorks, Database Explorer. [Online]. Available: https://www.mathworks.com/
help/database/ug/databaseexplorer-app.html

10 - References

108

[48] MathWorks, struct. [Online]. Available: https://www.mathworks.com/help/matlab/
ref/struct.html

[49] MathWorks, Function Handles. [Online]. Available: https://www.mathworks.com/
help/matlab/function-handles.html

[50] . Spreng, “ aßkettenanal se am inter agen zur Erstellung von Ersatzmo el

len [Dimensional chain analysis on the rear end of the vehicle to create
replacement mo els],” Bachelor thesis, utomotive technolog , Technical Univer-
sity of Munich, Munich, 2020.

[51] R. C. Juvinall and K. M. Marshek, Fundamentals of machine component design,
5th ed. Hoboken NJ: John Wiley & Sons, 2012.

[52] J. Reimpell and J. W. Betzler, Grundlagen: Fahrwerk und Gesamtfahrzeug,
Radaufhängungen und Antriebsarten, Achskinematik und Elastokinematik,
Lenkanlage, Federung, Reifen, Konstruktions- und Berechnungshinweise, 4th ed.
Würzburg: Vogel Buchverlag, 2000.

[53] Zylindrische Schraubenfedern aus runden Drähten und Stäben – Berechnung und
Konstruktion – Druckfedern [Cylindrical helical springs made from round wire and
bar – Calculation and design – Compression springs]: DIN EN 13906-1, 2013.

[54] H. Wittel, D. Jannasch, J. Voßiek, and C. Spura, Roloff/Matek Maschinenele-
mente: Normung, Berechnung, Gestaltung, 24th ed. Wiesbaden: Springer Gabler.
in Springer Fachmedien Wiesbaden GmbH, 2019.

[55] R. R. Archer and T. J. Lardner, An introduction to the mechanics of solids, 2nd ed.
New York, London: McGraw-Hill, 1978.

[56] Stahldraht für Federn – Patentiert gezogener unlegierter Federstahldraht [Steel
wire for mechanical springs – Patented cold drawn unalloyed spring steel wire]:
DIN EN 10270-1, 2017.

[57] R. C. Juvinall and K. M. Marshek, Juvinall's fundamentals of machine component
design: SI version / Robert C. Juvinall, Kurt M. Marshek. Hoboken, New Jersey:
John Wiley & Sons, 2017.

[58] Car-Bock Automotive parts, Coil spring rear axle. [Online]. Available: https://
www.car-bock.de/Coil-spring-rear-VW-Passat-3B-HD

