
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Semantic Annotation of
Clinical Notes

Supervisor
Prof. Maurizio Morisio

Candidate
Jeanpierre Francois
Student ID: 243920

Internship Tutor
Dott. Ing. Phd. Giuseppe Rizzo

Academic Year 2019 - 2020

This work is subject to the Creative Commons Licence as Described
on Politecnico di Torino website

Summary

This work describes how we addressed the real-world challenge of
extracting information from the summaries of unstructured and non-
standardized Italian electronic medical records related to breast can-
cer cases. These summaries, also known as GIC-Post records, are
compiled by several different specialists who compose an interdisci-
plinary group of cure (GIC) and are provided by an healthcare facil-
ity specialized in breast cancer. The main task is a natural language
processing exercise that consists in recognising and tagging sequences
that carry crucial information regarding the patient’s tumor status
which is a Named Entity Recognition (NER) activity. The ultimate
goal is to provide to professionals a tool that is able to automatically
annotate these clinical records. The realization of this assignment was
carried out as a joint partnership between multiple entities belonging
to different backgrounds, our contribution lies in the realization of the
software infrastructure which consists of a web-based annotation tool
and a neural network model for NER.

A class taxonomy document was provided by domain experts that
identified as our objective 18 original label classes, these classes do not
overlap at all with those normally studied in the literature therefore in
order to train a machine learning model we collected a gold standard
dataset through manual annotation by domain expert. Starting from
the doccano open-source project, we developed an intuitive web ap-
plication focused on sequential labeling where the manual annotation
took place. The quantity of training data examples obtained was very
limited whereby, to improve our scores, we added deductive knowl-
edge encoded as rules in the entity recognizing process. The model

3

we adopted using the spaCy open-source library is a good compromise
between performance and costs, its implementation is based on fast a
Convolutional Neural Network (CNN).

The solution pipeline schema is illustrated in the following figure:

Figure 1. Methodology solution schema

In our solution we also expanded Italian word vectors with domain
specific clinical vocabulary to pre-train the CNN which is used to add
in-context information to the embeddings. This hybrid solution com-
posed of a deductive rule-based knowledge paired with a CNN-based
inductive model obtained an overall F-Score of 0.56 which, taking into
account the shortage of training data, the lack of tools and resources
available for non-English languages and completely unconventional
class labels, is an interesting result.

Furthermore, using huggingface-transformers repository we exper-
imented the implementation of a way more large and complex BERT-
based model for token classification that is currently achieving state-
of-the-art results. Once fine-tuned with our domain specific training
dataset, this model alone achieved an overall F-Score of 0.61 but re-
quired much more computational resources than the hybrid solution.

4

Abstract

This master thesis work outlines the approach chosen to manage the
extraction of information from unstructured and non-standardized
Italian electronic health records of breast cancer summaries. This
real-world challenge is a Named Entity Recognition activity that faces
completely original classes that do not overlap at all with those nor-
mally studied in the literature. Taking into account feasibility and
speed, we propose a solution that applies natural language processing
techniques to fine-tune a statistical model trained onto a narrow set
of annotated data. In order to obtain a gold standard we collaborated
with domain experts to manually annotate the data collection. A class
taxonomy document was provided by domain experts and, to reduce
the necessary human effort and speed up the process, we developed a
user friendly web-based annotation tool. Furthermore to compare the
obtained results, we implemented BERT-based models on the same
task.

Contents

List of Tables 4

List of Figures 5

1 Introduction 7
1.1 Digital Data . 7
1.2 Natural Language Processing 8
1.3 Named Entity Recognition 10

2 Deep Neural Networks for NLP 11
2.1 Word Embedding . 12
2.2 Recurrent Neural Networks 16
2.3 Transformers . 17
2.4 Convolutional Neural Networks 20

3 Problem Definition 21
3.1 Electronic Health Record 21
3.2 Interdisciplinary Group of Cure 22
3.3 Our Goal . 23

4 Approach 25
4.1 Main Idea . 25
4.2 Methodology . 26

4.2.1 Taxonomy of Classes 26
4.2.2 Web-based Annotation Tool 28
4.2.3 Supervised Hybrid Model 29

2

4.2.4 Supervised BERT Model 39

5 Experimental Setup 45
5.1 Dataset . 45
5.2 Hardware . 49
5.3 Software . 50

5.3.1 Development tools 50
5.3.2 Libraries and Frameworks 51

6 Results 57
6.1 Metrics . 57

6.1.1 K-Fold Cross Validation 59
6.2 Hybrid Model Results 60
6.3 BERT Model Results 65

7 Conclusions and Future Works 71
7.1 Future Works . 73

3

List of Tables

5.1 Dataset Statistics . 46
5.2 Web Server Specs . 49
5.3 Google Colaboratory Specs Feb 2020 50
6.1 Inductive, Deductive and Hybrid Models Overall Results 62
6.2 Hybrid Model Results by Label 63
6.3 BERT Model Configuration 66
6.4 BERT Model Overall Results 67
6.5 BERT Model Results by Label 67

4

List of Figures

1 Methodology solution schema 4
1.1 Named Entity Recognition [3] 10
2.1 word2vec Models [5] 13
2.2 E.g. Queens = Kings - Man 14
2.3 Multi-Class Classification with a neural network and

SoftMax Function [11] 16
2.4 Graphical illustration of the model proposed by Bah-

danau et al. trying to generate the tth target word yt
given a source sentence (x1, x2, ..., xT) [12] 17

2.5 The Transformer - model architecture [13] 19
2.6 An example of CNN for Sentence Classification[14] . . 20
4.1 Web-based annotation tool sample 29
4.2 Methodology solution schema 30
4.3 Transition sequence with a stack-based model example

[18] . 31
4.4 Sub-features hash embedding 33
4.5 Batch and Layer Normalization [23] 35
4.6 WordPiece tokenization example [27] 40
4.7 BERT input format [26] 41
4.8 BERT for NER [26] . 42
5.1 Average samples per document 47
5.2 Samples per label . 48
6.1 Confusion Matrix . 57
6.2 10-Fold Cross Validation [33] 59
6.3 Hybrid Model Results by Label 64
6.4 BERT Model Results by Label 68

5

6

Chapter 1

Introduction

This master thesis work aims to explain the challenge that we faced
and the solution we proposed to solve it. The content of this chapter
is a preface to the work and provides an introduction about the field
and its macrocosm of applications.

1.1 Digital Data
As years go by, the progress of technology has revolutionized human
lifestyles deeply, we are more and more interconnected and the data
that we generate is able to travel around the world at light speed.
Nowadays we collect a lot of data from a cornucopia of sources and,
thanks to the transition from paper to digital, even what was firstly
available only on sheet today is now recorded on computers. Collect-
ing and store data in a digital form is of course useful for its reliability,
persistence, volume, transience and easier access but is not always easy
to analyze, extract useful information and understand a big quantity
of data. Collected digital data may be human or machine generated
and are divided in two macro types:

• Structured: comprised of clearly defined data types

• Unstructured: everything else

7

1 – Introduction

When data is well structured its data types patterns make it simple
to systematically search and extract information with performing and
solid databases and, when it scales a lot in quantity and complexity,
with big data techniques. On the contrary when data is unstructured,
indexing and analyses of information result in being a hard problem.
Some example of unstructured data are:

• Text files

• Media

• Social Media Data

• IoT Sensors Data

In order to analyse unstructured digital data, tools for specific use
cases, based often on machine learning techniques, are being studied
every day. In particular for text files, the field of linguistics, com-
puter science, information engineering and artificial intelligence that
sets itself the goal of making computers process and analyze natural
language data or rather unstructured human generated text is called
Natural Language Processing.

1.2 Natural Language Processing
The roots of Natural Language Processing (NLP) [1], also known as
computational linguistics, trace way back in time down to 1950s, when
Alan Turing proposed the Turing Test as a criterion of intelligence.
In the early days, NLP systems were based mostly on rule based
approaches that focused on hard-coded manually written set of rules.
In the late 1980s and mid 1990s happened the so called statistical
revolution that consisted in applying machine-learning paradigms to
automatically learn rules through analysis of large corpora of typical
real-case examples that were previously deducted from manual data
analysis. Systems based on machine-learning algorithms for automatic
learning procedures exploit statistical inference to create models able

8

1.2 – Natural Language Processing

to generalize, robust to unfamiliar input but requiring a substantial
quantity of input data as examples to learn. However, more man-
hours are needed to generate more examples, which generally does
not increase the complexity of the annotation process. On the other
hand, handwritten rules may require fewer examples to deduce, but
they are way less flexible and complexity can only increase.

More recently in 2010s, thanks also to the advancement of tech-
nology, new models and techniques based on representational learn-
ing and deep neural networks emerged as game changing factors in
achieving farther state-of-the-art results. Some of the applications of
Natural Language Processing are the following:

• Speech

– Speech Recognition
– Text-to-speech

• Syntax

– Lemmatization
– Stemming
– Parsing
– Part-of-speech Tagging

• Discourse

– Text Summarization

• Semantics

– Lexical Semantics
– Machine Translation
– Natural Language Generation
– Question Answering
– Sentiment Analysis
– Named Entity Recognition

9

1 – Introduction

1.3 Named Entity Recognition
Named Entity Recognition (NER) [2], also known as entity extraction,
identification or chunking, is an information extraction technique that
aims to solve the problem of locating and classifying named entity
residing in unstructured text data according to a pre-define set of
class labels or categories. The goal of this technique is to recognize
various named entities residing in a text where a named entity is a
Real-world object with a name that refers to a pre-defined category
such as a person, a country or a company.

Figure 1.1. Named Entity Recognition [3]

For decades NER has been developed and studied in its aspects
with knowledge-based systems, unsupervised systems to feature en-
gineered supervised or semi-supervised learning algorithms. However
it is in the latest years that the achievements obtained over NER,
as many other NLP sub-tasks, increased greatly thanks to the imple-
mentation of deep learning techniques and models. One of the main
tasks of this work is a NER activity.

10

Chapter 2

Deep Neural Networks
for NLP

In the following chapter will be given an overview of some of the most
recent advancements and techniques used in Named Entity Recogni-
tion.

A neural network is composed of three kind of layers:

• Input Layer

• Hidden Layer

• Output Layer

The elementary units that make up a layer are the interconnected
nodes, also known as artificial neurons. Each node compute a weighted
sum on the input received from other neurons then, after apply-
ing a non-linear transformation or rather activation function, fires
its output. When the output is finally generated through forward-
propagation, corrections to the weights are usually done with a tech-
nique called back-propagation. How the neurons are connected, the
number of layers and what kind of activation functions is used are the
main characteristics of a neural network. Generally networks with a
multiple number of hidden layers are called deep neural networks.

11

2 – Deep Neural Networks for NLP

2.1 Word Embedding
Computers do not understand words therefore a conversion from the
original text is required to achieve a numerical representation. One
of the basic idea to obtain a representation is the One-Hot encoding
that is a simple method to vectorize categorical variables like words,
it generates binary vectors from a text where every element is a zero
except the one that represents the word. This simple technique do
not acquire any information about semantic or position.

Word embedding is one of the most used techniques that let a com-
puter learn the representation of not only the syntactic but also the
semantic meaning of a word and its relationship with other words, ev-
ery representation is then associated to a fixed size vector. While in
One-Hot encoding each word is independent, the idea of word embed-
ding is to generate distributed representations of the words taking into
account their dependency between one another therefore words with
the same meaning will have a similar representation. The algorithms
for word embedding that will be discussed are word2vec, GloVe and
FastText.

word2vec

word2vec is set of statistical methods developed by Tomas Mikolov
in 2013 [4] that uses shallow neural networks with a softmax layer
that selects the most probable word amongst the various possibilities.
These models learn information in an unsupervised way about the
word in its local context of its neighbouring past and future words
within a selected window of predefined size. word2vec uses two differ-
ent training methods involving a neural network:

• Skip Gram

• Common Bag Of Words (CBOW)

The biggest difference between the two is the way they generate word
vectors. The CBOW model is a method that learns embeddings by
predicting a word as target and taking its context as input while Skip

12

2.1 – Word Embedding

Gram predicts the surrounding words given the current word w(t) as
input.

Figure 2.1. word2vec Models [5]

One of the interesting aspects of word2vec multi-dimensional em-
beddings is that words acquire vector properties that allow geometric
operations on word vectors.

13

2 – Deep Neural Networks for NLP

Figure 2.2. E.g. Queens = Kings - Man

GloVe

Global Vectors for Word Representation (GloVe) [6] is an unsu-
pervised learning algorithm that uses aggregated global word-word
co-occurrence statistics from a corpus. While word2vec relies on a
window to use local information, GloVe aims to capture global and lo-
cal statistics across the text corpus to generate word vectors. The key
idea is that a semantic meaning can be derived from the co-occurrence
matrix between words.

FastText

Published in 2016 [7][8], is a revisited extension of the word2vec
model that breaks word into sub-words or rather n-grams instead of
passing the individual word to the input layer. A vector of words
is then built with these sub-words. This approach generates a bet-
ter representation of rare words and for out of vocabulary words by
building a vector representation from its n-grams even if they do not
appear in the train corpus. The trade-off of this model is in tech-
nical requirements, its memory consumption grows with the number
of n-grams and it usually takes way longer to train in comparison to
word2vec and GloVe.

14

2.1 – Word Embedding

Beyond Word Vectors

The generated word vectors obtained with the algorithms listed
above provide for each word in their vocabulary a vector that repre-
sents the meaning of the word. These algorithms share the important
assumption that the meaning of a word is relatively stable between
sentences, or rather that their meaning does not change based on the
context. [9] This assumption is in fact a limitation due to the poly-
semic nature of words. For example the word bank in the sentences
the bank is a well known credit institution and The bank of the river
is expanding this season has completely different meanings but it will
be represented with the same vector. Consequently a word in general
should have different vector representations for each of its meanings,
to achieve this with these embeddings a solution is to characterize the
obtained embedding with information of the surrounding word embed-
dings while analyzing a text corpus without changing it completely as
showed at Chapter 4.

Softmax

The SoftMax Function [10], also known as softargmax or normal-
ized exponential function, is used to normalize and convert an input
vector of real numbers into a probability distribution proportional to
the exponentials of the input. As in word2vec, this function is heav-
ily used for classification purposes in neural networks to map their
output to distributions over predicted class labels.

σ : Rκ −→ Rκ

σ(z)i = exp ziqκ
j=1 exp zj

for i = 1, ..., κ z = (z1, ..., zκ) ∈ Rκ

15

2 – Deep Neural Networks for NLP

Figure 2.3. Multi-Class Classification with a neural network
and SoftMax Function [11]

2.2 Recurrent Neural Networks
During the analysis of an unstructured text is usually useful to carry
information related to the order of words or sentences, to what has
already been read. Recurrent Neural Networks (RNN) maintain a
memory about the previous elements while processing new ones by
sharing information of consecutive inputs belonging to the same sen-
tence. To learn the meaning of a word it may be necessary to look
at words ahead in the sentence thus to catch not only forward depen-
dencies but also backward ones it can be used two RNN, one for each
direction, forming the so called bidirectional RNN.

In RNNs single neurons share information back to themselves to
maintain a memory but it dilutes as iterations go by forgetting the
distant past. However in some cases it is useful to remember infor-
mation in the far past whereby to solve this issue a complex design
of RNNs were invented that uses several neurons connected in a man-
ner focused in retaining, forgetting or disclosing peculiar information.
These complex networks, frequently used in blocks, are called Long
Short-Term Memory (LSTM).

16

2.3 – Transformers

Another important simpler but with similar performance imple-
mentation of LSTM is called Gated Recurrent Unit (GRU).

2.3 Transformers
One of the milestones of Machine Translation in recent years is un-
doubtedly Attention which influenced also several other NLP sub-
tasks such as NER. As humans focus on certain portions while watch-
ing an image or some sentences while reading a text, attention let
networks focus on important information residing in the input. In-
troduced for sequence-to-sequence learning by Bahdanau in 2015 [12],
attention in the proposed solution allows a decoder to exploit informa-
tion about the source sequence RNN’s hidden states, that are handed
over to the decoder as a weighted average as additional input.

Figure 2.4. Graphical illustration of the model proposed by Bah-
danau et al. trying to generate the tth target word yt given a source
sentence (x1, x2, ..., xT) [12]

17

2 – Deep Neural Networks for NLP

Amongst the implementations that go back to this technique there
are convolutional, intra-temporal, gated and self-attention. In self-
attention the focus is placed upon the neighbouring words in a sen-
tence in order to obtain a contextually sensitive word representation.
A model based solely on attention mechanism is the Transformer [13],
its architecture is composed of multiple self-attention layers stacked
together to catch global input-output dependencies and it is free of
RNNs and convolutions. This model is composed of multiple encoders
and decoders stacked on top of each other, where each of them contains
a self-attention mechanism, and cross-attention between encoders and
decoders. To compute attention, which can be described as a map-
ping between a query and a set of key-value pairs to an output, three
vectors are created from encoder’s input vectors:

• Query Vector

• Key Vector

• Value Vector

For each word the attention is calculated by taking the dot product of
its query vector with the key vectors of all the words in the input and
then scaling the result dividing by the square root of the key vector
dimension (dk) whereupon applying a softmax function. The sum of
the softmax results multiplied by the value vector is the self-attention
vector of the word. The attention computed on a set of queries Q with
the corresponding key-value matrices K and V results in a matrix of
outputs given by the following formula:

Attention(Q,K, V) = softmax(QK
T

√
dk

)V

In the Transformer’s architecture, attention is not computed in a sin-
gle attention function but it is calculated multiple times at different
positions, in parallel and independently. Their different representa-
tion sub-spaces are then merged together by the multi-head attention
module through concatenation and linear transformation.

18

2.3 – Transformers

To exploit positional information without recurrence and convolu-
tions, the transformer model adds positional encodings to the input
embeddings of an equal dimension dmodel. Position-dependent sinu-
soidal functions are used in the original paper:

PE(pos,2i) = sin (pos

1000002i/dmodel
)

PE(pos,2i+1) = cos (pos

1000002i/dmodel
)

Where pos is the position and i the dimension.

Figure 2.5. The Transformer - model architecture [13]

19

2 – Deep Neural Networks for NLP

2.4 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a kind of artificial neural
feed-forward network inspired by animal visual cortex. Using convo-
lutions as primary operation which is a basic graphic operation, they
are way faster than other networks such as RNNs or Transformers
specially if implemented on GPUs. In NLP, CNNs are often used
for classification where its input of this networks are usually word
embedding vectors while its output is given to a softmax layer.

Figure 2.6. An example of CNN for Sentence Classification[14]

CNNs can also be used to enrich a word embedding with informa-
tion about its actual context as showed further at Chapter 4.

20

Chapter 3

Problem Definition

The purpose of this master thesis project is to provide an accurate
report of the solution designed to create a series of tools aimed to
automate the extraction of information from clinical documents and
facilitate its reading.

This work has used Italian interdisciplinary Electronic Health Records
of breast cancer cases, but its methodology can be applied to any sim-
ilar scenario. This chapter will provide a better understanding about
how interdisciplinary medical reports used in this work are produced
within the oncological network of the Italian regions of Piedmont and
Aosta valley and our goal regarding their use.

3.1 Electronic Health Record
The patient care process starts from collecting updated knowledge
about his health state when he is taken in charge. Patient informa-
tion such as his clinical history, what test he underwent and so on in
many countries are stored in a digital record. An electronic health
record traces patients clinical history but often contains also all of
the administrative information pertinent to the cure process done un-
der a certain entity such as an hospital or a house of cure. In Italy
this kind of records are also known as Fascicolo Sanitario Elettron-
ico (FSE). This collection of information usually contains, amongst

21

3 – Problem Definition

other things, patient registry, status of the cure, complications that
occurred, previous clinical history, laboratory analysis outcomes and
medical visit reports.

The data set under consideration is made of a specific kind of
EHR produced by several different specialists who compose a so-called
Group of Cure.

3.2 Interdisciplinary Group of Cure
In October 2006, the European Parliament adopted a resolution to
urge Member States to ensure the presence of multidisciplinary breast
cancer centers in all areas of the country.

In Italy these facilities, grouped into sub nets by region, are called
Breast Units. Each one treats more than 150 cases every year and
must have at least a core team of six dedicated professionals:

• Radiologist

• Surgeon

• Pathologist

• Oncologist

• Radiotherapist

• Data manager
This group of experts is named interdisciplinary group of cure (GIC).

When a patient is diagnosed with a breast tumor her clinical notes
and analyses are gathered together and then a GIC meeting is sched-
uled to decide how to proceed. During these meetings an overview of
the patient clinical status is compiled into a GIC report that in cases
where surgery was needed may be PRE-surgery or POST-surgery, the
latter are called GIC-Post reports. An important aspect about these
reports is that they are written in Italian as unstructured text.

Our data is made of GIC-Post surgery reports provided by a breast
unit, each one of them contains patient’s clinical history referred to
the breast tumor and very valuable summary data.

22

3.3 – Our Goal

3.3 Our Goal
GIC reports, as many electronic health records, are written in an
unstructured and non-standardized format on electronic healthcare
systems. Prior to this work, a method to inspect relevant information
from those documents was not available. In order to exploit those
useful data not yet used as much as they could due to the manual
labor required, we have oriented ourselves towards the automation of
the analysis of these texts.

Our objective consisted in creating an automatic pipeline for anal-
ysis, recognition and extraction of valuable information stored inside
GIC-Post reports utilizing Natural Language Processing (NLP) tech-
niques. NLP techniques are able to determine the meaning of the
information that lies in unstructured data and in doing so can highly
reduce human effort. The indicators and key information that we
are looking for inside these electronic health records are single words
or sentences that represent entities with a clinical useful meaning for
professionals. Our goal is to identify each one of those entities and
couple them to a specific predefined label class. This activity is also
known as Named Entity Recognition.

23

24

Chapter 4

Approach

This chapter describes the methodological idea behind the proposed
solution pipeline, starting with the recovery of the gold standard data
set needed to train models capable of extracting valuable information
from clinical records.

4.1 Main Idea

Our plan is to design a tool that lets doctors and professionals access
crucial knowledge stored in medical reports by creating a user friendly
platform coupled with a natural language processing model able to
recognise key information in unstructured text data.

In an attempt to implement this idea while maintaining a good
compromise between performance and usability, we decided to im-
plement a hybrid solution using a lightweight computational model,
which adapts to our web-based environment, formed by a neural net-
work integrated with a rule-based approach. To generate examples
for training these models, we created a custom web-based annotation
platform where a domain expert (e.g. a surgeon) manually annotated
reports.

25

4 – Approach

4.2 Methodology
One of the biggest challenge of Natural Language Processing applied
to real world production domains is the lack of labeled data sets.

Generally we would try to exploit transfer learning for NLP through
implementation of models trained on very large data sets and fine
tuned onto smaller collection of data related to a specific case of study
but our problem in particular aims to answer a named entity recog-
nition task on a very peculiar and technical field with unique classes
and vocabulary. In fact, the classes we want to predict do not over-
lap at all with those normally studied in the literature, therefore we
are unable to use any of the publicly available data sets commonly
employed for this activity. To remedy the absence of a data set that
matches our specific needs, we had to create one from scratch.

Our solution implements a multi-step process that we can group
into two main phases. The initial phase includes a customization and
distribution of a web-based annotation tool suited around the needs
of our selected experts, followed by the definition of a class taxonomy
document. After this configuration, the manual annotation phase
begins, after which the manually obtained gold standard is used to
train a neural network in a supervised way in an effort to obtain a
model able to automatically annotate entities residing in GIC-Post
documents.

4.2.1 Taxonomy of Classes
Labeled data of very high quality with annotations as close as possible
to the ground truth is usually referred in literature as gold standard.

In order to conduct a supervised training and evaluation of models,
gold standard corpora for reference are vital. To obtain a gold stan-
dard, a manual annotation step often is needed. Manual annotation
is the act of adding further knowledge to the data (meta-data) that
will allow information extraction. This activity is usually undertaken
by humans and despite being more labour intensive than automatic
annotation it is considered to be more precise.

26

4.2 – Methodology

In domains like healthcare, a domain expert is usually required
to recognise and determine which entities effectively contains useful
meaning. A class taxonomy document was provided by domain ex-
perts in which a list of characteristics and key indicators to be searched
in the reports is defined. This document achieved a complete charac-
terization of the named entity recognition problem and the collection
of 18 labels to work with:

• Stadio: identifies the stage of the breast cancer following AJCC
2017 standard classification (eighth edition) [15]

• Neoadiuvante: neoadjuvant which is a synonym for chemother-
apy

• Visita oncogeriatrica: oncogeriatric visit

• RM Mam: patient’s breast magnetic resonance imaging

• Biopsia: patient’s biopsy

• T: tumour stage classification following AJCC 2017 standard [15]

• N: regional lymph nodes classification

• M: metastasis detected at distance

• Micrometastasi: micrometastases

• Macrometastasi: macrometastases

• ER: estrogen levels

• PGR: progesterone levels

• Ki67: antigen KI-67

• HER 2: receptor tyrosine-protein kinase erbB-2

• Invasione vascolare: indicator of tumor aggression levels

• Margine: growth margin

27

4 – Approach

• Grado: nuclear grade

• BRCA: BRCA test results, if the patient underwent it

Whereupon we instructed domain expert manual annotators about
how the annotation activity should be done over our web annotation
tool.

4.2.2 Web-based Annotation Tool
Gold standard data may be hard to obtain due to it being human
effort expensive. To reduce the necessary struggle for our domain
experts, we prepared an highly user friendly customized web-based
annotation tool.

Amongst many available tools specialized in named entity recogni-
tion activity, by taking into account the following parameters:

• Complexity

• Customization

• Usability

• Costs

We selected as initial basis doccano [16] that is a modern looking open-
source annotation tool project designed for humans meaning that it
has a low entry barrier for new annotators. We developed a web
application version focused on the named entity recognition activity
optimized for efficient, intuitive and quick annotation. Written mostly
in Python, Vue and NodeJs it has been deployed as a docker container
running on a remote server. This deployment approach lets healthcare
facilities to painless host this annotation tool solution on-site using the
docker environment.

28

4.2 – Methodology

Figure 4.1. Web-based annotation tool sample

4.2.3 Supervised Hybrid Model
Once we obtained the gold standard data set we were able to start the
model training phase. In order to generalize based on the context and
beyond specific examples, statistical approaches are the main choices
but they become usually weaker in application specific environment
with few training data. In these peculiar cases, rule-based knowl-
edge is particularly useful when it can exploit statistical predictions
as entity labels, syntactic dependencies, or part-of-speech tags. We
combine deductive knowledge, rule-based, with an inductive model.

29

4 – Approach

Figure 4.2. Methodology solution schema

The core of our inductive model is a convolutional neural networks
with residual connections whose outputs combined with other status
information are forwarded to a linear neural network for label classi-
fication. To develop the solution that we propose, which is a hybrid
approach implementing a rule-based knowledge and a machine learn-
ing model, we relied on the spaCy [17] open-source Python library.
Deepening the topic, the inductive model utilizes a transition-based
approach for named entity recognition that, instead of focusing on
each word as object of interest, exploits a finite state machine method-
ology. The basic idea is to maintain a state while reading a sequence
and make predictions on the actions to be performed. Starting with
an empty stack with every word into the buffer and without entities
assigned, a list of actions or transitions that change the state is de-
fined and the goal is to predict the sequence of those actions. In our
case of study an action corresponds in assigning a word to an entity.

30

4.2 – Methodology

Figure 4.3. Transition sequence with a stack-based model example [18]

The statistical model trained to foresee these transitions could be
broken down in four macro phases:

• Embed

• Encode

• Attend

• Predict

Embed
The embed phase consist in text tokenization or rather breaking up

text into words and subsequently obtain their vector representation.
From the Wikipedia’s definition of tokenization [19]:

In computer science, lexical analysis, lexing or tokenization
is the process of converting a sequence of characters (such
as in a computer program or web page) into a sequence of
tokens (strings with an assigned and thus identified mean-
ing).

Moreover

Tokenization is the process of demarcating and possibly clas-
sifying sections of a string of input characters.

31

4 – Approach

Ordinarily in an embedding table, each word is mapped to a dis-
tinct identification number in a vocabulary where each one of the
entries store a vector. These look-up tables to store word vectors
become quite large in size as the entries in the vocabulary grow in
number.

In order to reduce the size of the embedding table, a probabilis-
tic data structure is used based on the hash embeddings [20] idea:
alternately to store for each token an embedding vector, their repre-
senting vector is built by hashing multiple times from a shared pool of
embedding vectors.1 In details, to generate a unique vector represen-
tation of a word and avoid collisions the model extrapolates its lexical
sub-features and hashes them four times with different random seeds.
The lexical sub-features used are prefix, suffix, norm and shape where
norm represents the lowercase version of the word while shape derives
from its capital and lowercase letters. The vector representation for
each feature is the sum of four different entries in the table meaning
that collisions on every sub-features is very unlikely therefore almost
all of the words in the vocabulary are going to end with distinct repre-
sentation with a trade-off of a slower learning process. The obtained
separate embeddings for each word sub-features are concatenated to-
gether and fed to a simple neural network composed of 1 hidden layer
that is a Maxout unit with a layer normalization, this unit’s output
layer of a predefined width releases a vector that corresponds to the
final embedding.

1To hash means using a hash function that is a mathematical algorithm that
unidirectionally maps data of variable size to an output of fixed size, it usually is
written to accept a seed within its input that is a number used to initialize the
algorithm to a certain state. An hash table is a data structure mapping keys to
values that is accessed by key using a hash function to compute its index.

32

4.2 – Methodology

Figure 4.4. Sub-features hash embedding

In the Maxout layer each neuron is broken down in sub-neurons
also called pieces, each of which has their own weights and biases.
The input to a neuron is forwarded to its sub-pieces that outputs
the computations without applying the activation function. The final
output of the neuron is the max of the output of all its sub-pieces.
Formally for the neuron j of layer i having n pieces:

aij = max sijk ∀k ∈ [1, n]

Where
sijk = ai−1 · wijk + bijk

wijk = vector for sub-neuron k of neuron j that contains a weight for
every neuron in the previous layer i − 1 bijk = bias for sub-neuron k
of neuron j+

Normalization techniques, like batch normalization, are methods used
to boost speed, stability and performance of a neural network. Batch
normalization, published in 2015 [21], is used to normalize the input

33

4 – Approach

from the previous layer by scaling and adjusting its activation func-
tion output. Batch normalization computes the mean and variance of
each mini-batch and normalizes each feature according to the mini-
batch statistics therefore their mean and variance will differ for each
mini-batch.

Layer normalization [22] is a method designed to overcome the
drawbacks of batch normalization where the statistics are computed
across the batch and are the same for each example in the batch.
Based on the notion that one layer affects the summed inputs directed
to the subsequent layer with highly correlated changes, it tries to
reduce this covariate shift effect by computing the statistics of mean
and variance across each feature, over all the hidden units in the same
layer, independently of other examples. Considering the lth hidden
layer and let ali be the vector representation of the summed inputs to
the ith hidden unit in that layer.

µl = 1/H
HØ
i=1

ali σl =

öõõô1/H
HØ
i=1

(ali − µl)2

Where H is the number of hidden units in a layer. µ refers to the
mean while σ to the variance.

34

4.2 – Methodology

Figure 4.5. Batch and Layer Normalization [23]

Encode

Right after the embedding phase we have at our disposal a se-
quence of word vectors representing each word individually out-of-
context, the encode step goal is to enrich each representation with
additional in-context information taking into account neighboring vec-
tors of neighboring words. In order to do so, a trigram convolutional
neural network of 4 hidden layers with residual connections is applied
for the intention of recalculating the vectors based on the context.
The main idea behind this implementation is actually the Collobert
and Weston [24] window approach concept that is extracting on both
sides of the word a window of words. In details, working within a
window it does a convolution with neighboring words that will be fed
forward to a Maxout layer. By adding more layers it makes the result-
ing vector sensitive to subsequent neighboring words on both sides.
The residual connections make the output of each convolution layer
a mix of its output and input in order to let the network learn a bias

35

4 – Approach

while maintaining a word representation similar to the starting one.
Tokenization, embedding and encoding can be wrapped up together

and named token-to-vector model or Tok2vec.

Attend

The previously obtained in-context word representations are used
to generate context-sensitive tensors of embeddings where every row
is related to a vector of a word in the text corpus.2 Those tensors
are part of the mechanism generating the weights of the state for the
machine within the attend phase. While reading linearly the docu-
ment, the state is computed taking into account immediate neighbor-
ing words and previous predicted entities, even those very distant in
the text corpus.

Predict

Finally, to predict actions it initially computes the tensors and ini-
tialize the weights by multiplying tensors by the first hidden layer.
Subsequently, word by word the action to be taken is decided by a
multi-layer perceptron to get action probabilities and then choosing
given the state the highest probable valid action. In our named entity
recognition case the actions, or transitions, to predict refer to BILOU
entity tags to be associated to tokens, namely:

• B - beginning of a multi-token entity

• I - token inside of a multi-token entity

• L - last token of a multi-token entity

• O - token outside of named entities

2A Tensor is a kind of data structure used in linear algebra, a multi-dimensional
array derived from a generalization of vectors and matrices. Most of the computing
operations that works on scalars, matrices and vectors can be applied on tensors.

36

4.2 – Methodology

• U - token is a unit-length chunk of an entity

The loss function used for training is the multi-label logarithmic loss,
also known as log loss. Loss functions, also known as error or cost
functions, measure how well a model is performing a task during the
optimization process by mapping a set of parameter values onto a
scalar value. In context as machine learning the log loss function,
by computing error rates between 0 and 1, becomes the same as the
cross-entropy. Its mathematical formula for C label classes (C>2) is
the following:

L = −
CØ
i=1

yo,i log(po,i)

Where yo,i is a binary indicator (0 or 1) from the ground truth of
whether class label i is the correct classification for observation o.
While po,i is the predicted score for each class that observation o be-
longs to class i.

Another important loss function is the Least square errors (L2) that
is used to minimize the error, which is the sum of the all the squared
differences between the true value and the predicted value.

L =
nØ
i=0

(yi − h(xi))2

Rule-based and Statistical

The rules that we compiled were built after the manual annota-
tion phase when we had a complete overview of the annotations and
their grammatical structure. With a consolidated class taxonomy doc-
ument, we had the possibility to write down regular expression rules
capable of recognising the least variant entities. In order to join knowl-
edge obtained through context specific deductive analysis with the
statistical model we placed our rules in the pipeline right before the

37

4 – Approach

inductive model. In doing so, named entities selected through rule-
based decisions take precedence over those decided by the inductive
model.

Language Model pre-training

Having to work with a domain specific very technical language,
many clinical words do not have a vector representation in commonly
used word vector models, especially for Italian. To solve this issue
in order to improve our scores in recognising these special notations,
we extended word vectors models with our custom word vocabulary
and then trained the token-to-vector module, containing the convolu-
tional neural network, on unlabeled text data. The goal is to fine-tune
the network in creating correct in-context word vector representations
of our technical vocabulary for GIC report documents. To achieve
this task, a BERT-like idea also known as Language Modelling with
Approximate Outputs [25] is implemented that consists in predicting
token’s word vector instead of token’s identifier. Unlike the common
language model, for each word with this technique the model learns
to predict a single point in the vector-space to achieve a better token
representation that is one vector instead of predicting a probability
distribution over the words in the vocabulary. The training is carried
out by chaining an output layer on top of the token-to-vector input
model and training it as a masked language model with a L2 loss func-
tion in order to predict arrays where each row represents a token. The
output layer consists in a Maxout unit chained to a fully connected
layer ultimately layer normalized.

In Masked language modeling the output is reassembled from partial
input, one or more of words in a sentence are masked and then the
model has as objective to predict masked words using their context
or rather their neighbouring words.

38

4.2 – Methodology

4.2.4 Supervised BERT Model
As a baseline, we wanted to generate results with BERT [26] based
models that are one of the currently state of the art solutions.

Bidirectional Encoder Representations from Transformers (BERT)
models, by jointly conditioning on both left and right context in all
layers, are designed to pre-train deep bidirectional representations
from unlabeled text. Many standard language models previous to
BERT were unidirectional architectures where every token can only
attend to the subsequent one in a single direction (left-to-right or
right-to-left) which is sub-optimal especially for token-level tasks such
as named entity recognition. In order to relax the unidirectional con-
straint, BERT utilizes a masked language model pre-training objec-
tive where, by randomly masking some of the tokens in the input, the
objective is to predict, based solely on its context, the original vo-
cabulary id of the masked word. To learn relation between sentences
during pre-train, it also uses Next Sentence Prediction (NSP) where
given as input two segments of words the objective is to predict if the
latter one is the next sentence of the former. The pre-train of these
models is run on huge unlabeled data corpus from multiple entities
like Wikipedia and BookCorpus, then the expensive training phase
that needs very powerful resources and many days takes place.

The obtained pre-trained BERT model can be fine-tuned at a sig-
nificantly lower computational cost by adding one additional output
layer on a specific task like the one analyzed in this work. To pre-
process the input to BERT is used WordPiece tokenization [27], each
token of every sentence is always a special classification token ([CLS]).
Sentence pairs are often packed together and to distinguish between
them a special token is used to as a separator ([SEP]). The multilin-
gual model, used also for Italian, comes with a vocabulary of 110k
tokens but when it faces an original token, like the ones in specific
clinical data, the WordPiece tokenization can enact one of two strate-
gies:

• One-to-one tokenization: the token is in the vocabulary

• One-to-many tokenization: the token is not in the vocabulary

39

4 – Approach

therefore WordPiece will split it into a sequence of vocabulary
items of two tokens using greedy longest-match approach, the
first one will end with "##" while the latter one will begin with
"##".

Consequently the vocabulary may be divided in single or beginning
tokens (no leading "##") and ending tokens (with a leading "##").

Figure 4.6. WordPiece tokenization example [27]

WordPiece embeddings are one of three input part to the BERT
model that summed together with the other two forms the final em-
bedding. The other two embeddings are Segment or Sentence embed-
dings, which is not significant for named entity recognition and the
same segment (e.g. Sentence "A") can be used for every token, and
Position embeddings related to the position of the token inside the
sequence.

40

4.2 – Methodology

Figure 4.7. BERT input format [26]

During BERT fine-tuning, the pre-trained transformer serves as an
encoder and is added on top of it a randomly initialized classifier. For
named entity recognition, the classifier is a projection from the token
hidden state size to the size of the tag set that then passes through a
SoftMax to turn scores into likelihoods. All token positions share the
very same classifier.

41

4 – Approach

Figure 4.8. BERT for NER [26]

For one-to-many tokenization where an out-of-vocabulary token is
split into multiple WordPieces, each WordPiece is tagged by the clas-
sifier but only predictions related to single and beginning tokens are
included in the loss and in the output at run-time. Therefore begin-
ning tokens represent the entire original token, so the hidden states
relating to single and beginning tokens are the only ones relevant in
the last layer.

The input for training the BERT classifier follows the BIO entity
tagging format:

• B - beginning of a multi-token entity

42

4.2 – Methodology

• I - token inside of a multi-token entity

• O - token outside of named entities

43

44

Chapter 5

Experimental Setup

This chapter describes experimental setup details of tools, hardware
and software, and the data collection that we used to bring this project
to life.

5.1 Dataset
One of the most troubling issue of applying Natural Language Pro-
cessing techniques is the lack of labeled data. In order to accomplish
the goal, this work needed a substantial amount of labeled data to
obtain a relevant generalized solution to the problem. Being a highly
domain specific task with completely original labels, that do not over-
lap at all with those normally studied in literature, we could not use
any of the available public data set. To remedy to this absence of data
we created a data collection on our own and we hope that with the
obtained automatic annotation tool it can grow a lot more for further
experiments and fine-tuning.

The data set available is formed of a collection of GIC post surgery
summary reports. Inside each report, many words are related to a
domain specific healthcare vocabulary. Through a joint collaboration
with an healthcare facility we retrieved 50 GIC post summaries of
breast cancer surgeries, each one is a very long text that contains a
variable number of words and lines with an average of 1427.32 words

45

5 – Experimental Setup

per documents. The total data corpus counts 71366 words.
Once uploaded onto our web-based annotation tool application,

a manual annotator created a gold standard using the 18 labels de-
scribed previously in the class taxonomy document in order to high-
light and add meta information to the corpus. The resulting gold
standard is composed of 730 manually obtained annotations.

GIC-Post surgery summaries analyzed 50

Total data corpus word count 71366 words

Average word count per document 1427 words

Samples of manually annotated entities 730

Average annotation length 2.42 words

Table 5.1. Dataset Statistics

46

5.1 – Dataset

Figure 5.1. Average samples per document

47

5 – Experimental Setup

Figure 5.2. Samples per label

48

5.2 – Hardware

5.2 Hardware
Computational resources and hosting services for the web-based an-
notation tool are provided by Links Foundation. We used a machine
whose hardware details are described in the table 5.2 below.

Architecture x86_64
Service Network Ethernet Controller 10 Gb/s
CPU Model Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
CPU(s) 8
Thread(s) per core 1
Core(s) per socket 4
Socket(s) 2
NUMA node(s) 1
Total RAM Memory 4GB DDR4 @ 2400 MHz
Hypervisor vendor VMware
Virtualization type Full
OS Ubuntu 16.04.6 LTS
Version 16.04.6 LTS (Xenial Xerus)

Table 5.2. Web Server Specs

For solution development, language model training and pre-training
we took advantage of Google Colaboratory coding environment. Co-
laboratory, or Colab for short, is a free to use Google product that
allows to write and execute code on a hosted Jupyter notebook in
Python. More technically is an environment that provides free access
to cloud TPUs and GPUs computational resources. More information
about the service may be found at https://research.google.com/
colaboratory/faq.html. Well suited especially to machine learning,
education and data analysis, these free resources are of course not un-
limited regarding hardware and time (up to a maximum continuous
utilization of 12 hours per session) of utilization.

49

https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html

5 – Experimental Setup

CPU Model Intel(R) Xeon(R) CPU @ 2.00GHz

GPU Nvidia K80

GPU Max Available Memory 13.3 GB

RAM Memory Available 25 GB (Max)

Table 5.3. Google Colaboratory Specs Feb 2020

5.3 Software

5.3.1 Development tools

The programming language used is Python version 3.6 [28], which is
often chosen as an interpreted, object-oriented, interactive language
for research. Incorporating very high level dynamic data types, classes
and dynamic typing, it combines its multiple features with clear syn-
tax and a lot of versatility.

To facilitate and better organize development we adopted an open-
source web application named Jupyter Notebook [29] that offers the
possibility to run different programming languages. One of its main
features is its architecture that let us handle a complete installation
of a kernel, libraries and tools.

As editor of source code we used Visual Studio Code, in addition
to Google Colaboratory, a multi-platform development tool built by
Microsoft that includes amongst its many features support for de-
bugging, integrated Git management, IntelliSense and code refactor-
ing. It is based on Electron, an open-source framework that combines
Chromium rendering, an open-source web browser, and Node.js run-
time.

50

5.3 – Software

5.3.2 Libraries and Frameworks

Web-based Annotation Tool

In order to create and manage the web-based annotation tool ap-
plication we employed mainly Vue.js, Node.js and Docker by taking
as a starting point doccano [16] open source project.

Vue.js, also known simply as Vue, is a JavaScript open-source
framework for front-end web applications. It is based on Model-view-
viewModel configuration and presents an architecture adoptable in
a incremental way that focuses on declarative rendering and compo-
nents composition. We used Vue as core front-end component.

Node.js, or simply Node, is a Input/Output event-oriented JavaScript
open-source runtime for JavaScript code execution. In addition to
being multi-platform, its event-oriented architecture focuses on asyn-
chronous I/O with the aim of optimising web applications throughput
and scalability. We used Node as main application management tool.

Docker is an open-source project designed to automate application
deployment using software containers by offering OS-level virtualiza-
tion. It is an instrument able to create a stand-alone working package
of an application and its dependencies in a virtual container that can
be executed in any machine running the Docker engine. We used
Docker to envelop our web application in a deployable package ready
to run on healthcare facility servers.

spaCy

To develop a light computational model solution we used spaCy
[17] version 2.2 as a core element. Mostly written by Matthew Hon-
nibal and Ines Montani, spaCy is an open-source library for advanced
industrial-strength natural language processing whose main objective
is to build solutions for production usage. Written in Python and

51

5 – Experimental Setup

Cython 1 and managed by Explosion software company 2, it supports
deep learning workflows with a good balance between performance and
speed. It uses a custom machine learning open-source library named
Thinc 3 to develop statistical model core components like Maxout
units, affine layers, residual networks etc. This library, amongst its
many functionalities, offers production-ready customizable implemen-
tations for:

• Part-of-speech (POS) Tagging

• Labelled Dependency Parsing

• Syntax-driven Sentence Segmentation

• Named Entity Recognition

• Non-destructive Tokenization

• Sentence or Text Classification

• Word similarity measuring (through word vectors or tensors)

• Lemmatization

• Sentence Boundary Detection

• Entity Linking

• Rule-based Matching

• Serialization

• Built in visualizers for syntax and NER

1Cython: https://en.wikipedia.org/wiki/Cython
2Explosion: https://explosion.ai/
3Thinc: A machine learning library optimized for CPU usage and deep learning

with text input https://github.com/explosion/thinc

52

5.3 – Software

The library, dissimilar to a platform, does not aim to provide a soft-
ware as a service neither an out-of-the-box tool in fact being open
source it pushes strongly for customization to build NLP applications
with its pipelines. spaCy amongst its downloadable packages pro-
vides pre-trained statistical language models for multiple supported
languages:

• English

• German

• French

• Spanish

• Portuguese

• Italian

• Dutch

• Greek

• Norwegian Bokmål

• Lithuanian

• Russian

Unfortunately, beside English and few others, most of pre-trained
models like the Italian one are available solely in the so called “small”
version meaning that they do not carry with them word vectors but
with only with pre-trained tensors to compute word similarity and
contextual embeddings. This important aspect brought us to im-
port Italian word vectors from other sources developed with word2vec,
GloVe and fastText algorithms on the Italian Wikipidia, expand their
vocabulary with the domain specific words residing in GIC post sum-
maries and finally merge them with a language model using the gensim
library.

53

5 – Experimental Setup

Gensim

Gensim [30] that equals "Generate Similar" is an open-source li-
brary written in Python and Cython. Its aim is to provide to natural
langage processing and information retrieval community tools for un-
supervised topic modeling, similarity retrieval and document indexing
for large text corpora. This library is designed around scalability and
for this purpose it uses only memory-independent algorithms (able
to process input larger than available RAM memory by streaming
and out-of-core techniques) in order to handle large text collections.
Amongst many others, Gensim includes parallelized implementations
of word2vec, fastText and GloVe algorithms. We used this library to
manipulate and expand Italian word vectors with healthcare domain
specific vocabulary.

PyTorch

PyTorch [31] is one of the most used frameworks for machine learn-
ing applications such as computer vision and natural language pro-
cessing. PyTorch is an open source library based on Torch library 4,
developed primarily by Facebook’s AI Research lab (FAIR). Beside
being Python-first, it provides two high-level features:

• Tensor computation with strong GPU acceleration

• Deep neural networks built on a tape-based autograd system

Scientific computations such as slicing, math operations, reduction,
linear algebra are accelerated through optimized tensor routines that
can either run on CPUs or GPUs. PyTorch’s tape-based autograd
techniques let the user change network configurations without lag or
overhead granting great speed and flexibility by using dynamic com-
putational graph paradigm to represent and build neural networks.

4Torch machine learning library: https://github.com/torch/torch7

54

5.3 – Software

Every forward call generates a computational graph on the fly that
can be easily edited and managed if a configuration change is needed.
This library is the core engine of many deep learning software like
HuggingFace’s Transformers.

Huggingface’s Transformers

In order to manage the solution involving a transformer model
from the BERT family we leaned on PyTorch framework and the well
known huggingface-trasformers library [32], also known as pytorch-
transformers, which offers an easy access to state-of-the-art NLP mod-
els. Progress in today’s NLP research has seen many transfer learning
techniques with large-scale language models based on Transformer
architecture. These models often share the same pattern of training
on general purpose tasks and fine-tuning on domain specific problems.
Generate these general-purpose models is costly but, for many, to even
implement pre-trained ones is often difficult and time-consuming due
to multiplicity of frameworks and code bases. Luckily many libraries
like huggingface-transformers aim to solve this issue. This library in-
cludes many general-purpose architectures (Complete documentation
available at https://huggingface.co/transformers/) with deep
interoperability between TensorFlow 2.0 5 and PyTorch frameworks:

• BERT (from Google)

• GPT (from OpenAI)

• GPT-2 (from OpenAI)

• Transformer-XL (from Google/CMU)

• XLNet (from Google/CMU)

• XLM (from Facebook)

5TensorFlow framework: https://www.tensorflow.org/

55

https://huggingface.co/transformers/

5 – Experimental Setup

• RoBERTa (from Facebook)

• DistilBERT (from HuggingFace)

• CTRL (from Salesforce)

• CamemBERT (from Inria/Facebook/Sorbonne)

• ALBERT (from Google Research/Chicago TTI)

• T5 (from Google AI)

• XLM-RoBERTa (from Facebook AI)

• MMBT (from Facebook)

• FlauBERT (from CNRS)

• And other community models shared by the community.

Many models initially written in Tensorflow and other frameworks are
available under the same library.

To speed up the implementation process of the code even more
we exploited a new available library named SimpleTransformers 6

whose goal is to act as an interface to pytorch-transformers by pro-
viding a quick setup and management of the most used huggingface-
transformers features.

6SimpleTransformers: https://github.com/ThilinaRajapakse/simpletransformers

56

Chapter 6

Results

In this chapter we explain the metrics used to evaluate the models
followed by the obtained results for the task.

6.1 Metrics
A core task in building machine learning models is evaluation. While
building predictive models we use feedback from metrics to make im-
provements. The problem that we face is a multi-label classification
problem therefore for each label we compute a confusion matrix of the
obtained predictions.

Figure 6.1. Confusion Matrix

To obtain useful metrics out of the confusion matrix we compute
averages. There are two main types of averages:

57

6 – Results

• Macro Averages

• Micro Averages

Macro-averages method computes the overall average of each class
label measured metric while Micro-averages sums up the individual
True Positives, False Positives, False Negatives and only then com-
putes the metrics. The kinds of measurements that we use follow the
Micro-Averages method. From each label class confusion matrix we
compute metrics per label and, through micro-average method, the
overall results for all classes. We implement three kind of metrics
that are:

• Precision

• Recall

• F-Score

Precision is a measure of exactness or quality, is used to determine how
many actual positives a model correctly predicted out of the predicted
positives.

Precision = True Positives
True Positives + False Positives

Recall is a measure of completeness or quality, is used to determine
how complete the results are.

Recall = True Positives
True Positives + False Negatives

F-score, or F1 Score, is the harmonic mean of precision and recall that
combines them together.

F1 = 2Precision×Recall
Precision+Recall

58

6.1 – Metrics

6.1.1 K-Fold Cross Validation
While building supervised statistical models, we use cross validation in
order to avoid overfitting by learning model’s parameters and comput-
ing results on the very same data used for training. Cross validation
is a statistical method used to test models on unseen data (test set)
by holding out a part of the available dataset during training. It is a
procedure often used on limited data sample, it has a single parameter
called k that indicates the quantity of subgroups or folds into which
the sample of input data is to be divided. Then for each of the k folds
the model is trained using k − 1 of the folds as training data and the
remaining one for validation. Finally the resulting performance is the
average of the values computed for each iteration in the loop.

Performance = 1
k

kØ
i=1

Performancei

Figure 6.2. 10-Fold Cross Validation [33]

59

6 – Results

6.2 Hybrid Model Results
The light computational model based on the fast convolutional neural
network coupled with domain rule-based deductive knowledge gave
us interesting results given the limited training data. One of the best
aspect of this approach is that it provides a good balance between
speed and performance, in fact the training time is limited and the
performances are comparable to the heavy computational results. To
compute the results that we present, we selected the best parame-
ters we found using a k-fold cross validation strategy. In details we
selected:

• K of k-fold cross validation: 10

• Epochs: 25

• Optimizer: Adam Optimization Algorithm [34]

• Learning Rate (Alpha): 0.001

• Beta 1: 0.9

• Beta 2: 0.999

• Epsilon: 1e-08

• Ridge regression (L2) Regularization Penalty: 1e-06

• Max Norm Constraint: 1.0

• Width of Embeddings layers: 128

• Rows in Embedding Tables: 7500

In order to pre-train the token-to-vector layer and doing so create
weights usable for model training, we tried various Italian word vec-
tors (computed via word2vec and GloVe algorithms) but the one that
gave us the best results was computed with fastText algorithm. After
enlarging Italian word vectors with domain specific clinical words, we

60

6.2 – Hybrid Model Results

trained the Convolutional Neural Network (CNN) part by chaining
an output layer on top of the token-to-vector input model and train-
ing it as a masked language model with a L2 loss function in order
to predict vectors which match the pre-trained ones. The pre-train
phase on unlabelled text was carried out with following parameters:

• Epochs: 1000

• Width of CNN layers: 96

• Depth of CNN layers: 4

• Maxout unit pieces: 3

• Window size of CNN layers: 1

• Embedding rows: 2000

• Dropout rate: 0.2

• Random seed: 0

Once obtained weights to initialize the CNN through this pre-training
procedure, we trained the model classifier for named entity recogni-
tion using labeled training data. For evaluation we used a ten fold
cross validation approach splitting data in training and test set by
document.

Chronologically, the first model we used was based on a pure in-
ductive approach that implements the previously described CNN and
a multi-layer perceptron for classification as key components. How-
ever, due to the narrow amount of data examples available, the results
were limited. To overcome this issue we used a deductive approach by
writing a set of handwritten rules based on specific knowledge related
to the domain. The fusion of the inductive statistical model with
rule-based deductive knowledge led to the birth of a hybrid model.

The results obtained for this multi-token classification problem are
shown in the tables below:

61

6 – Results

Inductive Deductive Hybrid

Precision 0.468254 0.39613 0.443389

Recall 0.242466 0.635711 0.767123

F-Score 0.319495 0.480862 0.561967

Table 6.1. Inductive, Deductive and Hybrid Models Overall Results

62

6.2 – Hybrid Model Results

Precision Recall F-Score
Biopsia 0.204678 0.406977 0.272374
BRCA 0 0 0
ER 0.691176 0.824561 0.752
Grado 0.376344 0.897436 0.530303
HER 2 0.385366 0.877778 0.535593
Invasione vascolare 0.714286 0.897436 0.795455
Ki67 0.571429 0.615385 0.592593
M 0.25 1 0.4
Macrometastasi 0.196429 1 0.328358
Margine 0.8 0.780488 0.790123
Micrometastasi 0.5 1 0.666667
N 0.553191 0.8125 0.658228
Neoadiuvante 0.138889 0.714286 0.232558
PGR 0.698413 0.785714 0.739496
RM Mam 0.465517 0.771429 0.580645
Stadio 0.686275 0.921053 0.786517
T 0.442478 0.769231 0.561798
Visita oncogeriatrica 0.4 0.571429 0.470588

Table 6.2. Hybrid Model Results by Label

63

6 – Results

Figure 6.3. Hybrid Model Results by Label

64

6.3 – BERT Model Results

As we can see from the results tables, this model based on a fast
and light convolutional neural network obtained some interesting out-
comes. Despite the limited data set in our possession, the model has
achieved some average acceptable scores on the recall measure which
has a critical importance in the healthcare domain where each false
negative could lead to costly errors. Contrariwise the precision mea-
sure obtained low scores which may due to the unbalanced input data
over the chosen class labels and almost certainly to its limited number
of available examples.

6.3 BERT Model Results
The heavier computational model from the BERT family gave us bet-
ter results on our limited training data. Due to their high computa-
tional requirements, the training was performed on GPUs provided by
the Google Colaboratory environment. Even with our limited dataset,
the training times and costs were high which allow us to easily deduct
that these models are not suitable for an evolutionary solution where
the model is trained multiple times with new data generated by the
web-based annotation tool. Nevertheless in order to obtain a baseline,
we tried to adopt multiple pre-trained models from the BERT family,
from official multi-lingual releases and Italian research community. As
often unfortunately happens, while many official models often offer a
wide range of releases for the English language few are delivered with
support of Italian or multi-lingual. The models that we explored for
this named entity recognition activity are the following:

• BERT base multilingual cased

• BERT base multilingual uncased

• DistilBERT base multilingual cased

• UmBERTo

• GilBERTo

65

6 – Results

Despite UmBERTo and GilBERTo being pre-trained models provided
by the Italian research community focusing on the Italian language,
the one who gave us the best result was the BERT base multilingual
cased model. This model supports 104 languages, amongst which
Italian, and it is composed of:

• 12 transformer layers

• hidden size of 768

• 12 self-attention heads

• 110 millions of parameters

The Best configuration that we found during our experiments is the
following:

Epochs 3
Weight decay 0
Maximum sequence length 192
Train batch size 8
Evaluation batch size 8
Learning rate 4e-5
Adam Epsilon 1e-8
Maximum gradient norm 1.0
Do lower case Disabled
Half precision floating point Enabled
Half precision fp optimization level O1

Table 6.3. BERT Model Configuration

The results obtained for this multi-token classification problem are
shown in the tables below:

66

6.3 – BERT Model Results

Precision 0.649017

Recall 0.587671

F-Score 0.616822

Table 6.4. BERT Model Overall Results

Precision Recall F-Score
Biopsia 0.522936 0.662791 0.584615
BRCA 0 0 0
ER 0.884615 0.807018 0.844037
Grado 0.611111 0.564103 0.586667
HER 2 0.816327 0.444444 0.57554
Invasione vascolare 0 0 0
Ki67 0.764706 0.75 0.757282
M 0 0 0
Macrometastasi 0.727273 0.727273 0.727273
Margine 0.35 0.170732 0.229508
Micrometastasi 0 0 0
N 0.620253 0.765625 0.685315
Neoadiuvante 0 0 0
PGR 0.849057 0.803571 0.825688
RM Mam 0.6 0.685714 0.64
Stadio 0.823529 0.736842 0.777778
T 0.482759 0.646154 0.552632
Visita oncogeriatrica 0 0 0

Table 6.5. BERT Model Results by Label

67

6 – Results

Figure 6.4. BERT Model Results by Label

68

6.3 – BERT Model Results

As we can see from the result boards by implementing the BERT
model, precision and recall are way closer to each other however it
fails to recognise class labels without an enough number of examples.
As expected, the resulting scores obtained with the BERT model are
higher than the ones obtained with the convolutional neural network.
One thing that is very interesting is that the difference between the
heavy computational expensive BERT model and the hybrid model
is slighter than expected which is very remarkable. This is probably
due the fact that, to overcome the lack of available examples, we
enriched the CNN-based statistical model with deductive rule-based
knowledge.

69

70

Chapter 7

Conclusions and Future
Works

This master thesis work acted as an initial thrust to my studies in the
astonishing and intriguing world of natural language understanding.
Taking this work as an example it is evident that we have scratched
only the surface of what we can do with the big amount of digital
data nowadays available but not yet used. Natural Language Pro-
cessing has very distant roots in human history but in recent years it
discovered a new wave of innovation. Since deep learning have been
firstly applied to unstructured text problems, new techniques and dis-
coveries are revolutionizing this field of research. Year by year, paper
by paper new models raise the bar of natural language understanding
higher and higher. There is still a significant gap between what is now
available from the latest research and what is actually implemented
in real-world challenges.

In this master thesis work we presented our solution for the se-
mantic annotation of clinical notes and obtained valuable results. We
introduced the world of natural language processing and its sub-task
of information extraction called Named Entity Recognition. After
that we illustrated the different approaches and several techniques
applied to solve this kind of tasks in the recent years.

71

7 – Conclusions and Future Works

By using this knowledge as a firm baseline, we initiated our jour-
ney between the various possible approaches available in literature for
named entity recognition in order to select and forge a model suited
around a specific problem regarding the healthcare world. Through
collaboration with the healthcare environment and domain experts
we obtained a manually annotated data set of clinical notes regard-
ing post surgical breast cancer cases. The manual annotation phase
alongside the redacting of a class taxonomy document may appear an
easy and consolidated process but in the aftermath we can easily as-
sert that it has been one of the most expensive and time consuming,
this is due to the difficulties in combining different visions between
many actors carrying distinct backgrounds not related to the world of
information technology to reach the very same and unique goal, like
domain experts which belong to the surgical world or data managers
specialized in administrative tasks. As a consequence, consolidating a
class taxonomy document and guide domain experts toward a correct
way of annotating took us many iteration and effort but it is an initial
cost hardly avoidable that we can represent as a cold start problem.
This non-trivial manual annotation phase experience enriched every
one of us and will surely come in handy in future works.

The collected data set is comprised of a collection of reports from
the interdisciplinary group that is assembled together in order to ef-
fectively cure the patient. Having to face a wide range of original label
classes that do not overlap at all with those normally studied in the
literature, we proposed an hybrid solution that aims to a good bal-
ance between performance and costs by merging together a deductive
rule-based approach with a convolutional neural network based ma-
chine learning model computationally light enough to fit our technical
constraints.

However, In order to obtain a baseline for results comparison with
deployable state-of-the-art models, we explored the path leading to a
transformer-based solution involving the models from the BERT fam-
ily exploiting transfer learning applied to named entity recognition.
As expected the results obtained from the hybrid convolutional neu-
ral network approach are inferior to the ones from the BERT model

72

7.1 – Future Works

but the interesting point is that the difference is thin nevertheless the
latter one is characterized by way higher training costs and scalability
problems.

This experiment showed that named entity recognition applied
onto domain specific text data with original classes is a hard problem
for which machine learning models requires an adequate quantity of
labeled training data set which is unfortunately often not available nor
always possible to obtain. To overcome these lacks while maintaining
a computationally feasible model capable of running in general pur-
pose machines a hybrid approach that includes deductive rule-based
knowledge is needed.

7.1 Future Works
For what concern the Named Entity Recognition, the goal is to find
new ways to train bi-directional transformers models and embeddings
able to completely represent the meaning of the word given its context
without making computational costs too heavy for real case applica-
tions. Furthermore obtain more resources and tools ready to use in
real world scenarios for other languages beside English, such as Ital-
ian. Recent researches in this field are finding new paths to train
heavy computational models like BERT in a more efficient a precise
way like RoBERTa [35] or Cloze-driven [36] approaches.

The solution presented in this work has surely wide margins of im-
provements, one of the main concerns regarding this task is indeed the
size of the data set used to train the models which, due to strict dead-
lines of the project, is undoubtedly small and insufficient for many
label classes. In the near future the aim is to include multiple breast
units in the project in order to obtain a way bigger data set and a
larger workforce of multiple manual domain expert annotators. The
goal is certainly to have a solid and large base of annotated data us-
able as gold standard with which train a generalized machine learning
model, with a good trade-off between performance and costs, deploy-
able directly in healthcare facilities and capable of automatizing the

73

7 – Conclusions and Future Works

semantic annotation of clinical notes.

74

Bibliography

[1] Wikipedia. Natural Language Processing — Wikipedia, The Free
Encyclopedia. [Online; accessed 08-Mar-2020]. 2020. url: https:
//en.wikipedia.org/wiki/Natural_language_processing.

[2] Wikipedia. Named Entity Recognition — Wikipedia, The Free
Encyclopedia. [Online; accessed 08-Mar-2020]. 2020. url: https:
//en.wikipedia.org/wiki/Named-entity_recognition.

[3] WordLift vocabulary, named entity recognition. Accessed on 08/03/2020.
url: https://wordlift.io/blog/en/entity/named-entity-
recognition/.

[4] Tomas Mikolov et al. Distributed Representations of Words and
Phrases and their Compositionality. 2013. arXiv: 1310 . 4546
[cs.CL].

[5] Tomas Mikolov et al. Efficient Estimation of Word Representa-
tions in Vector Space. 2013. arXiv: 1301.3781 [cs.CL].

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. «GloVe: Global Vectors for Word Representation». In:
Empirical Methods in Natural Language Processing (EMNLP).
2014, pp. 1532–1543. url: http://www.aclweb.org/anthology/
D14-1162.

[7] Piotr Bojanowski et al. Enriching Word Vectors with Subword
Information. 2016. arXiv: 1607.04606 [cs.CL].

[8] Armand Joulin et al. Bag of Tricks for Efficient Text Classifica-
tion. 2016. arXiv: 1607.01759 [cs.CL].

75

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Named-entity_recognition
https://wordlift.io/blog/en/entity/named-entity-recognition/
https://wordlift.io/blog/en/entity/named-entity-recognition/
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1607.01759

BIBLIOGRAPHY

[9] Basant Agarwal et al. Deep Learning-Based Approaches for Sen-
timent Analysis. Springer, 2020.

[10] Wikipedia. Softmax function — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 14-Mar-2020]. 2020. url: https://en.
wikipedia.org/wiki/Softmax_function.

[11] RInterested. Softmax function. [Online; accessed 14-Mar-2020].
2020. url: http://rinterested.github.io/statistics/
softmax.html.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neu-
ral Machine Translation by Jointly Learning to Align and Trans-
late. 2014. arXiv: 1409.0473 [cs.CL].

[13] Ashish Vaswani et al. Attention Is All You Need. 2017. arXiv:
1706.03762 [cs.CL].

[14] Yoon Kim. «Convolutional Neural Networks for Sentence Clas-
sification». In: Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1746–1751. doi: 10 . 3115 / v1 / D14 - 1181. url: https :
//www.aclweb.org/anthology/D14-1181.

[15] American Joint Commission on Cancer; 2017. Springer Inter-
national Publishing, 2017.

[16] Hiroki Nakayama et al. doccano: Text Annotation Tool for Hu-
man. Software available from https://github.com/doccano/doccano.
2018. url: https://github.com/doccano/doccano.

[17] Matthew Honnibal and Ines Montani. «spaCy 2: Natural lan-
guage understanding with Bloom embeddings, convolutional neu-
ral networks and incremental parsing». https://spacy.io/. 2017.

[18] Siti Mariyah et al. «Reveal the customer behavior from business
sms text using named entity recognition». In: (July 2019). doi:
10.24507/icicel.13.08.653.

[19] Wikipedia. Lexical analysis — Wikipedia, The Free Encyclope-
dia. [Online; accessed 19-Feb-2020]. 2020. url: https://en.
wikipedia.org/wiki/Lexical_analysis.

76

https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Softmax_function
http://rinterested.github.io/statistics/softmax.html
http://rinterested.github.io/statistics/softmax.html
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://doi.org/10.3115/v1/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181
https://github.com/doccano/doccano
https://doi.org/10.24507/icicel.13.08.653
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Lexical_analysis

BIBLIOGRAPHY

[20] Dan Svenstrup, Jonas Meinertz Hansen, and Ole Winther. Hash
Embeddings for Efficient Word Representations. 2017. arXiv:
1709.03933 [cs.CL].

[21] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate
Shift. 2015. arXiv: 1502.03167 [cs.LG].

[22] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
Normalization. 2016. arXiv: 1607.06450 [stat.ML].

[23] Layer Normalization. 2018. url: https://mlexplained.com/
2018/01/13/weight-normalization-and-layer-normalization-
explained-normalization-in-deep-learning-part-2/.

[24] Ronan Collobert et al. Natural Language Processing (almost)
from Scratch. 2011. arXiv: 1103.0398 [cs.LG].

[25] Sachin Kumar and Yulia Tsvetkov. Von Mises-Fisher Loss for
Training Sequence to Sequence Models with Continuous Outputs.
2018. arXiv: 1812.04616 [cs.CL].

[26] Jacob Devlin et al. «BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding». In: arXiv preprint
arXiv:1810.04805 (2018).

[27] Yonghui Wu et al. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine Transla-
tion. 2016. arXiv: 1609.08144 [cs.CL].

[28] Python Core Team (2015). Python: A dynamic, open source pro-
gramming language. Python Software Foundation. 2015. url:
https://www.python.org/..

[29] Thomas Kluyver et al. «Jupyter Notebooks – a publishing for-
mat for reproducible computational workflows». In: Positioning
and Power in Academic Publishing: Players, Agents and Agen-
das. Ed. by F. Loizides and B. Schmidt. IOS Press. 2016, pp. 87
–90.

77

https://arxiv.org/abs/1709.03933
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/
https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/
https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/
https://arxiv.org/abs/1103.0398
https://arxiv.org/abs/1812.04616
https://arxiv.org/abs/1609.08144
https://www.python.org/.

BIBLIOGRAPHY

[30] Radim Řehůřek and Petr Sojka. «Software Framework for Topic
Modelling with Large Corpora». English. In: Proceedings of the
LREC 2010 Workshop on New Challenges for NLP Frameworks.
http : / / is . muni . cz / publication / 884893 / en. Valletta,
Malta: ELRA, May 2010, pp. 45–50.

[31] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance
Deep Learning Library». In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach et al. https : / /
pytorch.org/. Curran Associates, Inc., 2019, pp. 8024–8035.
url: http://papers.neurips.cc/paper/9015- pytorch-
an-imperative-style-high-performance-deep-learning-
library.pdf.

[32] Thomas Wolf et al. «HuggingFace’s Transformers: State-of-the-
art Natural Language Processing». In: ArXiv abs/1910.03771
(2019).

[33] Juan Buhagiar et al. «Automatic Segmentation of Indoor and
Outdoor Scenes from Visual Lifelogging». PhD thesis. June 2017.

[34] Diederik P. Kingma and Jimmy Ba.Adam: A Method for Stochas-
tic Optimization. 2014. arXiv: 1412.6980 [cs.LG].

[35] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. 2019. arXiv: 1907.11692 [cs.CL].

[36] Alexei Baevski et al. Cloze-driven Pretraining of Self-attention
Networks. 2019. arXiv: 1903.07785 [cs.CL].

78

http://is.muni.cz/publication/884893/en
https://pytorch.org/
https://pytorch.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1903.07785

	List of Tables
	List of Figures
	Introduction
	Digital Data
	Natural Language Processing
	Named Entity Recognition

	Deep Neural Networks for NLP
	Word Embedding
	Recurrent Neural Networks
	Transformers
	Convolutional Neural Networks

	Problem Definition
	Electronic Health Record
	Interdisciplinary Group of Cure
	Our Goal

	Approach
	Main Idea
	Methodology
	Taxonomy of Classes
	Web-based Annotation Tool
	Supervised Hybrid Model
	Supervised BERT Model

	Experimental Setup
	Dataset
	Hardware
	Software
	Development tools
	Libraries and Frameworks

	Results
	Metrics
	K-Fold Cross Validation

	Hybrid Model Results
	BERT Model Results

	Conclusions and Future Works
	Future Works

