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Abstract

In the �eld of buildings energy management, the concept of energy �exibility

has become increasingly popular. It could be de�ned as the ability to adapt energy

management to several dynamic factors, such as changing external conditions or

internal comfort conditions.

The control systems have increased their importance as they have to be able to

predict the continuous adjustments of dynamic factors, allowing the adaptability

in the building energy management. However, this task cannot be performed by

traditional control systems such as ON/OFF or PID, as they do not have any

prediction capabilities.

Thus, there is a necessity to explore control strategies based on arti�cial intel-

ligence, such as model-based predictive or model-free adaptive ones.

The �rst type has shown excellent results when applied in a real context, such

as Model Predictive Control (MPC). However, it is di�cult to apply this control

strategy because it requires the de�nition of a model for its optimization, which is

di�cult to obtain. For this reason, interest in adaptive model-free control strategies

has recently grown, especially among those based on machine learning, such as Deep

Reinforcement Learning (DRL).

DRL has become increasingly popular because it can control systems in which

the dynamic process is very complex, as is mainly the case with HVAC systems, be-

cause represents a learning technique that does not require an optimisation model,

but a simple trial-and-error interaction with the environment to be controlled, fol-

lowing an action-reward process.

The current state of the art has very few, if any, real applications, but a lot

of studies on the subject that are thought to become applicable in the shortest

possible time.

In this thesis work, it is implemented a DRL control method for a radiant

heating system, installed on a real building for o�ce use.

In the initial phase, it was necessary to calibrate the energy model, based on

the real and available temperature pro�les, made available by the real Energy

Management System. Through a trial-and-error approach, a calibrated model was

obtained, as the metrics provided by ASHRAE were respected.

The calibrated energy model was used for the implementation of a DRL control

agent, using a Soft Actor-critic (SAC) algorithm, in order to evaluate possible en-

ergy savings but above all the presence of the desired occupants comfort conditions

during occupancy, compared to the baseline already present, based on the climate

curve.

In the initial training phase, a sensitivity analysis was carried out on the hyper-

parameters in order to choose the best con�guration. The best agent's con�guration
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allows to obtain energy savings of 5 % and at the same time to improve the internal

comfort of the occupants, evaluated through the reduction of a sum of temperature

violations compared to a �xed comfort range.

The agent was then used for a static deployment phase on the current radiant

system.

Evaluating �ve di�erent deployment scenarios, the excellent �exibility of DRL

control logic concerning changes in the initial boundary conditions was proved. As

a result, the comfort degree for each scenario has improved signi�cantly, and in

some cases even managed to make temperature violations very few, opposite to

the huge baseline values. At the same time, the energy savings obtained varied

between 7 % and 9 %.
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Chapter 1

Introduction

Buildings are the place where people spend most of their time and consequently

consume large amounts of energy: this depends on many factors, such as structural

conditions, indoor requirements or outdoor conditions.

The energy is consumed mainly to meet the occupants comfort requirements

and is therefore linked to the HVAC systems present within the edi�ce.

The new construction of residential and commercial facilities has meant that the

energy consumption of buildings is 40% of the total worldwide with CO2 emissions

up to 36% [Yang et al., 2015].

Nowadays there is a greater awareness of the need to reduce these values, es-

pecially within the European Union where, through the use of di�erent programs

(such as the "20-20-20"), it has tried to progress towards a horizon of greater en-

ergy e�ciency in all areas, especially in the building sector. In this context, interest

in energy systems that use renewable sources of energy has increased. However,

this does not mean that only renewable energies should be given importance, as

it becomes essential to control the same installations already present in existing

buildings.

HVAC systems are the most energy consumption responsible, especially in the

non-residential sector and, in the past years, signi�cant improvements have been

recorded concerning their energy e�ciency.

Besides, the energy systems serving the building became increasingly complex,

also facing not only simple HVAC systems, but also systems consisting of RES

technologies and storage systems. Then, the control systems implemented had to

face continuous changes linked, for example, to grid requirements, occupant prefer-

ences and external forcing variables. Therefore, more attention should be paid to

adaptive control systems, as classical controllers would be inadequate compared to

the dynamism to which new energy systems are subject, working within established

limits.

Nowadays, researchers are focused on new control strategies for HVAC systems
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Introduction

Figure 1.1. General scheme of a single-level control [Finck et al., 2017]

[Zhang et al., 2019], in order to control them while maintaining the conditions of

internal comfort for the occupants and, at the same time, reducing the energy

consumption linked with their operation.

One of the main stumbling blocks in the control of HVAC systems is their

non-linearity since they depend on several stochastic factors, such as occupant be-

haviour, their interaction with the building system and external weather conditions.

In this context, the concept of building �exibility has become necessary: it

represents a fundamental characteristic of the building that de�nes the margin

within which it operates by its functional requirements [Claub et al., 2017]. Flex-

ibility can also be seen as the ability to manage the building according to grid

requirements, climatic conditions and user needs [Finck et al., 2017].

Traditional control systems are the simple On/O� or the more "complex"

Proportional-Integrative-Derivative Control (PID). These two belong to

the sphere of classic rule-based controls, i.e. dependent on certain limits (such as

set-point temperature ranges) within which the quantities to be controlled must

remain.

The On/O� control is e�ortless to implement, while the PID requires adjust-

ment of the control variables for subsequent disturbances. Although the latter has

a better performance than the former, it is still inadequate because the perfor-

mance of the PID goes down a lot when the operating conditions are di�erent

from the tuning conditions in which the constants that regulate the control are

calibrated [Afram & Janabi-Shari�, 2014]. Moreover, this process requires much

computational time.
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Introduction

Figure 1.2. Overview of control methods for HVAC systems
[Afram & Janabi-Shari�, 2014]

Rule-based control strategies are not able to predict the dynamic variations

to which HVAC systems are subjected. Then, in recent years, the application

of model-based control strategies was explored in real contexts, such as Model
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Predicted Control (MPC).

Their application is interesting because they can predict the future states of

a system and identify the optimal control variables in order to minimize a cost

function over a prediction time horizon [Yun et al., 2012].

The simulation models used in the case of MPC can be divided into:

� white box model, based on physical principles and �rst-principle modelling;

� black-box model, requires large datasets to train the model because entirely

disregards empirical models and physics.

� grey-box model, a mix between the previsious models. In this case a set

of continuous di�erential equations in time are derived and parameters are

estimated through identi�cation techniques.

The �rst and the third have an accuracy strongly dependent on the uncer-

tainties of the simulation parameters. At the same time, the reliability of the

black-box models depends on the quantity, quality and relevance of the available

data [Uhn Ahn & Soo Park, 2019].

A signi�cant problem in MPC is related to the performance dependency on the

simulation model quality, and the availability of data since the availability of a

basic model dictates its existence. Moreover, it is challenging to generalize its use

on di�erent types of plants and buildings, leading to de�ne an accurate model for

each of them.

Therefore, research has led to the emergence of much more complicated but at

the same time more e�cient methods, but above all not dependent on a model:

these are model-free control, such as Reinforcement Learning (RL).

Reinforcement Learning is a learning technique belonging to the Machine

Learning sphere, together with supervised and unsupervised control. In recent

years there has been a growing focus on this control methodology because it does

not require prior knowledge of the process or environment to be controlled.

An agent-based Reinforcement Learning algorithms learns an optimal control

policy by direct interaction with the environment, obtaining a reward based on

the control action performed from a speci�c state.

Deep reinforcement learning (DRL) is a branch of RL that deals with

continuous states and actions by using deep neural networks to approximate the

policy function [Zou et al., 2020]. It is used above all in the case in which the

number of states and actions available is vast and therefore, the choice of the Table

Q-Learning algorithm is not optimal.

In the next section, previous works based on the use of the RL and its variants

are discussed.
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Introduction

1.1 Previous Work of RL application in Building

control system

Reinforcement Learning had increased interest in it in recent years, even if its ap-

plications remain limited, considering a control algorithm that has very di�erent

characteristics compared to traditional control systems and more frequent in state

of the art. This aspect is even more ampli�ed in the case of Deep Reinforcement

Learning, a more futuristic but also a more e�cient branch of these control algo-

rithms.

The �rst RL application dated back to 1998, in which [Naidu & Rieger, 2011]

used it for an HVAC system serving the DOE (Department of Energy) in Idaho

State University, to control the water leaving boiler temperature of and the tem-

perature in the two thermal zones served by the system. In order to understand

the possible applications of RL to the world of HVAC control systems, detailed

bibliographic research has been carried out, after which it was decided to create

the table to make a general summary.

Among the previous work reported in the table, some deserve attention for the

work to be done. For example [Zhang et al., 2019] applied an RL control type

Asynchronous Advantage Actor-Critic (A3C) in a water-based Radiant Heating

System, in which the hot water pipes are integrated into window mullions. The

goal is to reduce the energy consumption of the system while respecting the internal

comfort of the occupants. The control system, in this case, operated on the Mullion

system supply water temperature set-point.

The same objective was achieved by [Zou et al., 2020] by applying a Deep Q-

Network with Long-Short-Term-Memory (LSTM) on three AHUs system and con-

trolling fan speed, heating valve status and damper position. Another work that fo-

cused on the same objectives is proposed by [Yoon & Moon, 2019]. A performance-

based thermal comfort control using Double Deep Q-Network allowed to reduce by

32.2% and 12.4% the energy consumption associated with the VRF and humidi�er

system, keeping the PMV value within the comfort range. In this case, the hu-

midi�er status (On/O�), the temperature set-point and the VRF air�ow rate were

checked.

In [Park & Nagy, 2020] it is presented a Reinforcement Learning (RL) based

Occupant-Centric Controller (OCC) for thermostats, called HVACLearn. The

agent learns the unique occupant behaviour and indoor environments and moni-

toring indoor air temperature, occupancy, and thermal vote. It calculates adaptive

thermostat set-points balancing between occupancy comfort and energy e�ciency.

Authors simulated HVACLearn control in a single occupant o�ce with occupant

behaviour models. Compared to a reference controller, HVACLearn reduced the

15



Introduction

number of button presses (too hot) signi�cantly, while consuming the same or less

cooling energy.

[Yu et al., 2020] presents a Multi-Agent DRL (MADRL) called Multi-actor at-

tention critic (MAAC), in order to minimize HVAC energy cost in a multi-zone

commercial building under dynamic prices, with the consideration of random zone

occupancy, thermal comfort and indoor air quality comfort in the absence of build-

ing thermal dynamics models. To be speci�c, air supply rate in each zone and the

damper position in the air handling unit are jointly determined to minimize the

long-term HVAC energy cost while maintaining comfortable temperature and CO2

concentration ranges. For encouraging exploration, Soft actor-critic (SAC) method

is used. The simulation results showed the e�ectiveness, robustness, and scalability

of the proposed algorithm.

[Nagarathinam et al., 2020] consider the optimal control problem of minimizing

the building HVAC energy subject to meeting the comfort constraints by dynam-

ically setting both the building and chiller set-points. In this frame, it is pre-

sented MARCO (Multi-Agent Reinforcement learning COntrol) for HVAC system.

MARCO is based on Double Deep Q-Network algorithm and uses separate DRL

agents that control both the AHUs and chillers to jointly optimize HVAC opera-

tions. Authors train and deploy the agent in real con�gurations and it is showed

that that MARCO learned the optimal policy in a two-agent setting with single-

AHU and single-chiller. MARCO not only improved comfort but also reduced the

energy by 17% over a baseline that used seasonal variations in set-points.

In [Ding et al., 2020] a double deep Q-Learning named OCTOPUS, employing

a novel deep reinforcement learning (DRL) framework that uses a data-driven ap-

proach to �nd the optimal control sequences of all building's subsystems, is used to

minimize the energy used in heating/cooling coils, the electricity used in the water

pumps and �ow fans in the HVAC system, electricity used by the lights, and the

electricity used by the motors to adjust the blinds and windows. In addition to

the minimization of energy, it is requested maintaining the human comfort metrics

within a particular range. Through extensive simulations it is demonstrated that

OCTOPUS can achieve 14.26% and 8.1% energy savings compared with the state-

of-the art rule-based method, while maintaining human comfort within a desired

range.

[Qiu et al., 2020] applied the Tabular Q-Learning to improve the global COP

of the cooling water systems of the HVAC system serving a subway station in

Guangzhou. This work compared the results obtained with those of three other

control systems (baseline controller, local feedback controller and model-based con-

troller). In this case, it was seen as Model-free control could conserve 11% of the

system energy, which is more than 7% in local feedback controller but less than
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14% of model-based.

An exciting application is the one proposed by [Brandi et al., 2020], in which

an algorithm based on Deep Q-Network has been used to control the supply water

temperature of the boiler serving the radiant heating system installed in an o�ce

building. In this context, a static and dynamic deployment of the DRL controller

is performed, and a heating energy saving ranging between 5 and 12% is obtained

with enhanced indoor temperature control with both deployment.

This application is bene�cial because it highlights the importance of an initial

application of this control system to a simulated environment: the direct real-

implementation would cause the control performance to be de�cient since a DRL

agent takes a long time to converge towards an acceptable control policy. Therefore,

in most cases, an initial simulation phase is performed in which various tools are

combined, such as EnergyPlus with deep learning libraries such as Tensor�ow.

The bibliographic research has therefore shown that Reinforcement Learning,

and speci�cally its deep version (DRL), represents an exciting possibility on which

to base the future control systems of HVAC systems, being more e�cient than

current systems. The work already produced also contains a series of possible future

improvements, representing a cue to improve even more reliability and performance.

1.2 Possible Contributions from this work

In this master thesis, it was decided to apply a control algorithm based on DRL

to a building for o�ce use, located in Turin in via Bazzi 4. This building is served

by an HVAC system that is reduced to a heating system, consisting of one four

gas-�red boiler and radiator terminals. The ventilation technique present is only

natural.

The plant is currently controlled by a control system implemented by Enerbrain

Srl, a company from which it was also possible to obtain some data on internal

temperature and consumption: these were of fundamental importance in the cali-

bration process adopted.

The model of the building to be studied was �rst built on EnergyPlus v9.2.0,

and then calibrated through the available data available (as discussed in the next

chapters) based on a trial-and-error approach.

Only after calibrating the model, it is implemented the new control system,

joining the use of EnergyPlus and Python. This two software only linked together

employing a Building Control Virtual Test Bed (BCVTB) and the ExternalInterface

function of EnergyPlus.

The choice of this building is also linked to a reproducibility factor. In fact,
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Figure 1.3. Thesis work�ow: from energy model calibration to DRL
control Logic implementation

in the context of Italian construction, the system solution with boilers and radia-

tors is widespread, so this work could become a reference point for improving the

energy e�ciency of the buildings served by these systems, respecting the internal

conditions of the comfort of the occupants. Since this is a radiator system, more

speci�c importance will be given to internal temperature conditions.

This thesis work refers to the same building and plant of [Brandi et al., 2020],

unlike which, however, Deep Q-Network will not be used, but a newly launched

algorithm called Soft Actor-Critic (SAC).

The objective will be to maintain satisfactory temperature conditions inside the

building during the occupation phase, looking for possible energy savings resulting

from the use of a DRL control logic, through the choice of supply water temperature

to heating terminal units system.

Initially, during a training phase, di�erent con�gurations were tested for our

agent and then choose the best one.

The training agent it is used secondarily in a deployment phase in which its

adaptability to changing boundary conditions will be tested. Firstly, only the

change in outdoor weather conditions is considered, considering a simulation period

of two months. Subsequently, changes in indoor comfort conditions, occupancy

schedules and structural conditions were considered.

The main innovative contributions that this work providing are many, both for

calibration of the basic model both for DRL control logic.

� After analyzing the di�erent procedures present in the literature on Model

Calibration, the trial-and-error procedure used to vary the most in�uential
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parameters on the temperature pro�le is described.

� This work would represent an opportunity to evaluate the agent's behaviour

when it has to use an algorithm with the possibility of choosing an action

within a continuous space, so important when it is controlled an energy sys-

tem.

� The control agent will be set to guarantee an indoor temperature within a

certain temperature band (between 20°C and 22°, which for us will be de�ned

as comfort conditions, through the choice of the supply water temperature. It

will be evaluated with respect to the current baseline, which provides a logic

based on the climate curve. At the same time, the possibility of obtaining

energy savings will be assessed.

� As in the case of Model Calibration, a phase of sensitivity analysis of the

hyper-parameters that in�uence the controller performance will be addressed.

� The deployment phase could be useful in evaluating the adaptability of the

agent concerning the change of certain conditions in the energy model (sched-

ules, building physics) and the performance that it could assure.

The rest of this work is organized as follows. In chapter 2, it will be discussed

theoretical aspects of the topics and tools covered, namely Model Calibration and

Reinforcement Learning.

In chapter 3 it will be described the building, the system and the actual control

logic, and then move on to the description of the calibration procedure. After this,

the characteristics of the DRL control agent that will be implemented are indicated,

and it is described a lot about training phase and the deployment one.

Finally, chapter 4 discusses the results obtained and will conclude by talking

about possible future contributions to this work in the conclusions of chapter 5.
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Chapter 2

Calibration Process and

Reinforcement Learning

Methodology

In this chapter, the theoretical aspects underlying the calibration of the energy

model and the RL control system to be implemented in this case study are dis-

cussed.

2.1 Fundamentals of Calibration Process

The energy calibration of buildings is a necessary step because buildings do not

return the same performance between real and simulated condition. In the �eld of

buildings the concept of simulated calibration (CS) is used, corresponding to the

process of calibration and tuning of the input parameters to the simulation model:

so, its results are as close as possible to those found with the measurements. The

IPMVP protocol o�cially recognizes this methodology, but reference can be found

in the FEMP too. When talking about CS it is crucial to make many clari�cations

regarding disturbance e�ects on it:

� CS is strictly dependent on the available monitored data and their frequency

of recording (sub-hours, hours, daily, monthly);

� CS changes if you study a single portion of the building or the whole building

itself.

The theory fundamentals were taken mainly from [Fabrizio et al., 2015].
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2.1.1 Typical characteristics of the calibration process

The calibration process belongs to the category of undeterminate problems: it leads

to a non-unique solution! Usually trial and error is used as a calibration method.

In essence, this process requires a series of hypotheses based on user experience,

especially to avoid high computational times or even worse not to return correct

solution. It follows that the impact of the hypotheses made is so relevant on the

result. Data collection is essential to start the calibration process, as it is the �rst

level to start from and therefore, the minimum requirement. In essence, data are

often obtained directly from meters if possible or through bills, the important thing

is that it is an annual series based, at least, on one year. Then, to improve the

calibration, it is necessary to increase the number of information perceived: �rstly,

thorough inspection to verify the data collected and to obtain new data, after

it is recommended performing detailed audit and short or long time monitoring.

[Coakley et al., 2014] showed what could be the leading CS in�uencing parameters:

� Standardization in CS is a purely subjective process, based on user ex-

perience: it is of paramount importance to minimize errors and calibration

costs.

� Calibration costs are proportional to the di�culty encountered in the pro-

cess and the level of detail to be achieved.

� Complexity and accuracy of the model is in�uenced by the number of

parameters in input and the type of simulation, growing from "steady" to

transient models.

� It is crucial to choose the most in�uential parameters for CS because there

are several of them: it is necessary to de�ne the level of accuracy for each of

them.

� Finding the causes of the discrepancy between the real and simulated

model is of paramount importance, especially to eliminate them and evaluate

the improvements deduced from the model.

� It is preferable to use automated rather than manual methods.

2.1.2 Criteria for assessing the goodness of the calibrated

model

Statistical indices are used to assess the accuracy of the calibration: they are es-

sential in de�ning how well the simulated model represents the real one. For these,

lower and upper limits are set by ASHRAE, IPMPV and FEMP standards, within
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which a model is acceptably calibrated. It is necessary to know the simulated data

set of our model and the real one measured to calculate those statistical param-

eters. The data present are multiple; therefore, it is necessary to select the most

important parameters to �nd a correlation between the simulated and measured

energy consumption. MBE (Mean Bias Error) and Cv(RMSE) (Coe�cient of

Variation of the Root Mean Square Error) are commonly used to measure respec-

tively how much the simulated data are similar to those monitored and to de�ne

the goodness of the model, as well as the variability between the two data sets.

MBE and Cv(RMSE) are estimated with the following equations:

MBE(%) = 100%
Σperiod(S −M)interval

ΣperiodMinterval

(2.1)

RMSEperiod =

√
Σ(S −M)2

interval

Ninterval

(2.2)

Aperiod =
ΣperiodMinterval

Ninterval

(2.3)

Cv(RMSEperiod) = 100
RMSEperiod
Aperiod

(2.4)

These equations also include RMSEperiod and Aperiod. The former avoids o�set-

ting positive and negative terms and is, therefore, a measure of the actual deviation

between the two data sets. Cv(RMSE) derives from the combination of these two

terms, of which Aperiod is a "normalizer" concerning the number of observations in

the various time intervals. It is the indicator of the overall uncertainty that results

in the forecast of real consumption. It is always a positive value, which the lower

it is, the better it is an indicator of good calibration. Depending on calibration

time and protocol considered, is is obtained a speci�c evaluation for considering

well the model. In the case of falling within them, there is su�cient evidence that

the simulated model represents the real case. These limits, indicated in Table 2.1,

are, however, the �rst guide in the calibration of the model since does not take into

account the uncertainties linked to the various parameters impacting.

Table 2.1. Threshold limits of statistical criteria for calibration

Statistical Indices
Monthly Calibration Hourly Calibration

St.14 IPMVP FEMP St.14 IPMVP FEMP

MBE[%] ±5 ±20 ±5 ±10 ±5 ±10
Cv(RMSE)[%] 15 - 15 30 20 30
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2.1.3 Calibration methodologies for energy simulation of build-

ings

There are four principal methodologies for calibrating buildings:

� Manual calibration based on an iterative approach;

� Graphical calibration method;

� Calibration based on individual tests and procedural analysis;

� Automated techniques based on analytical/mathematical approaches.

It is possible to use these in synergy, for example, the second and fourth to improve

model calibration.

Manual calibration is a subjective approach and does not use a systematic

procedure but refers to the experience of users and their judgement. It includes

a "trial and error" approach, based on the iterative process of tuning the model

input parameters, altered according to one's knowledge of the building.

Usually, it is coupled the graphic calibration technique with the manual one: it

consists of time-based graphs of the measured data, simulated data and the com-

parison between them. There are two possibilities, either comparative 3D graphs

(they allow to identify small di�erences between the two data sets) or calibration

and characteristic signature. In the case of calibration, it is possible making a

normalized plot of the di�erences between expected and simulated consumptions

according to Tout. An horizontal line represents a perfectly calibrated model.

Residual = S −M (2.5)

CalibrationSignature =
−Residual
Mmaximum

100% (2.6)

In the case of the characteristic signature, it is possible to compare data from

two di�erent simulations to take it as a baseline for the measured values. It is

calculated on a daily average and has di�erent trends depending on climate and

system considered.

CharacteristicSignature =
Changeinenergyconsumption

Mmaximum

100% (2.7)

ERRORTOT = (RMSE2
CLG +RMSE2

HTG) + (MBE2
CLG +MBE2

HTG) (2.8)
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Figure 2.1. Example of heating calibration signature[Fabrizio et al., 2015]

After drawing the two signatures, the di�erence between them allows you to

�nd possible errors in inputs to simulation model to improve the calibration. It is

necessary to reach an acceptable ERRORTOT value, which represents the devia-

tion between the two signatures when one or more input parameters change. The

process of calibration ending when the minimum ERRORTOT value is reached.

(HTG and CLG refer to heating and cooling time intervals).

Calibration with analytical procedures is based on short/long-term analysis, test-

ing and monitoring, but this is not always possible due to the occupancy presence.

Automated techniques include all approaches that cannot be considered user

experience-driven as they are based on mathematical or analytical procedures.

These techniques includeBayesian Calibration,Meta-Modeling andOptimization-

Based Method. The last one computes objective functions based on the di�erence

between measured and simulated data. They are considered the most important

as they take into account sensitivity and uncertainty analysis, which is generally

not incorporated into the model calibration study.

Bayesian Analysis represents a statistical/probabilistic method useful to

�nd, from the data observed in the �eld, a distribution for an unknown param-

eter. It also directly incorporates the uncertainties within the calibration process

and formulates a set of values for the unknown parameter to match the measured

data. Three di�erent sources of uncertainty are studied and reported in the follow-

ing formulation:

y(x) = η(x, θ) + δ(x) + ε(x) (2.9)

It is possible to calculate observed value y(x) through the sum of the simulation

result η with known parameter x, unknown parameter θ, observation error δ and

discrepancy ε.
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A Meta-Model is a mathematical function whose coe�cients are determined

by limited combinations of input and output parameters. It groups several cate-

gories, including polynomial regression (PR) and neural networks (NN). A meta-

model is a model of a model, or better, a surrogate model used to reduce the

complexity of the source model. The bene�t in its use is the reduced computa-

tional time.

2.1.4 Model uncertainties

Calibration does not take into account uncertainties, but they are an essential tool

to improve quality. In this analysis, you will �nd strands:

� Uncertainty analysis (UA) which helps to quantify the variability of the

output;

� Sensitivity analysis (SA) that allows the understanding of how the uncer-

tainty of the outputs can be divided proportionally between the di�erent

sources of uncertainty in input to the model.

Uncertainties come from di�erent sources, so [Heo, 2011] in one of his studies iden-

ti�ed many categories, shown in Table 2.2.

Table 2.2. Source of uncertainty in building energy models

Category Factors

Scenario Uncertainty
Outdoor weather conditions
Building usage/occupancy schedule

Building Physical/operational uncertainty

Building envelope properties
Internal Gains
HVAC Systems
Operation and control settings

Model Inadequacy
Modeling assumptions
Simpli�cation in the model algo-
rithm
Ignored phenomena in the algo-
rithm

Observation error Metered data accuracy

There are di�erent methods to apply UA and SA analysis. First of all, it is

necessary to distinguish two main approaches, i.e. external and internal methods.

The so-called "internal" methods include mathematical approaches with equations.

The other methods, on the other hand, take into account tools to help assess the

variation of outputs. Within this category, there are local and global methods.
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Local methods include OAT (One At a Time) methods, i.e. those where, chang-

ing only one parameter at a time and the others are kept constant, evaluate the

variation of the model results. They �nd some methods within them, including:

� Sensitivity Index ;

� Di�erential Sensitivity Analysis (DSA);

� Morris Method (or Elementary E�ects).

Sensitivity Index take the name from the index estimated to judge the sensitiv-

ity of each parameter. It corresponds to the percentage di�erence between the

extreme measured values of the parameter considered (maximum and minimum):

the parameters is in�uential when changes considerably.

SI = 100%
Emax − Emin

Emax
(2.10)

The DSA method modi�es the parameters one by one over time, and estimates

a coe�cient of in�uence (IC) to evaluate the variation of the inputs on the

model output:

SI =
∆OP
OPbc
∆IP
IPbc

(2.11)

where OP is the output value, input IP and bc indicates the value referred to

the baseline model.

Often the DSA model can be used in conjunction with the Morris Method, the

most common screening technique because it is the most e�ective because of its

global approach, although it is a local method. The model sensitivity is evaluated

by measuring the average value and the standard deviation of the EE indicator for

the parameter considered: through it classi�es various inputs according to their

in�uence on the output.

EEi =
Y (x1, xi−1, xi + ∆i+1, ..., xk)− Y (x1, ..., xk)

∆i

(2.12)

where Y is output value of evaluated system, before and after the variation of

the parameter considered, and the delta is the variation of the parameter. For

each parameter di�erent "trajectories" must be simulated; therefore the average

value and the standard deviation for each of them must be calculated, following

the following formulations

µi =

∑r
j=1EEi(X

j)

r
(2.13)
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σi =

√∑r
j=1[EEi(Xj)− µi]2

r
(2.14)

The results obtained should be plotted on the graph proposed by Morris, to

compare the average value of each parameter with the standard sweat deviation:

in this way you can identify where the points fall on the Morris plane to understand

their in�uence on calibration. For example, parameters with high µ and σ values are

the most critical for calibration, those with high σ but small µ in�uence calibration.

Global methods are based on the variation of several parameters at the same

time, considering the in�uence of input uncertainty on the whole system. Among

these, it is possible to �nd several, such as Regression Analysis, the Variance-Based

Method and the Monte Carlo Method.

It is helpful using the Regression analysis to consider di�erent scenarios and

their impact on the energy consumption of the building, valuable for the reduction

of computational time.

Variance-based method helps to decompose the uncertainty of the outputs

between the various inputs. This technique uses two di�erent sensitivity measure-

ments:

� First-order index, which represents the outcome of the input parameter on

the variation of the output;

� Total order index, which measures the e�ect of the parameter only and the

sensitivity of its interaction with the others.

This methodology makes use of non-linear and non-monotonous models in-

cluding:

� Variance Analysis (ANOVA), useful to divide the output variance be-

tween the various input parameters, and

� Fourier Amplitude Sensitivity Test (FAST) used to calculate only the

�rst-order sensitivity index to estimate both �rst and total sensitivity index.

In essence, it calculates the individual contribution of each input factor to

the output variance.

The Monte Carlo Method is the most common and used, and it makes

use of a repeated number of simulations with a random distribution of the input

parameters to the model: the contribution of each of them is evaluated through

probability distributions. This method allows for estimating the overall uncertainty

of the model based on the uncertainties of the input parameters.

28



Calibration Process and Reinforcement Learning Methodology

2.2 Reinforcement Learning

Reinforcement Learning is a branch of machine learning, together with supervised

and unsupervised learning. Compared to the other two, it returns not only the out-

puts (depending on the input entered) but also a score for this output [Yaser, 2012].

Figure 2.2. Machine learning branches [Silver, 2015]

It is a learning technique that aims at realizing agents able to choose actions

to be carried out in order to achieve certain objectives, through interaction with

the environment in which they operate. For this reason, it does not need a priori

a model and is de�ned model-free.

It deals with problems of sequential decisions, in which the action to be taken

depends on the current state of the system and determines the future one.

[Dalamagkidis et al., 2007] declare that RL is applied to problems that can be

divided into two categories:

� Episodic problems, that have one or more terminal states. One episode is

repeated much time during the agent's training phase in order to investigate

all possible combination of states and rewards. When an agent reaches a

29



Calibration Process and Reinforcement Learning Methodology

speci�c state, the episode ends, and the environment is reset to the initial

state. Then, a new episode starts.

� Continual problems do not end, and they continue inde�nitely.

RL refers to the model established by theMarkov Decision Process (MDP),

according to which both the reward and the probability of transition between the

previous and the next state depends only on the current state and the action

chosen. MDP predicts the next state and the expected reward using only the

current information available and not all the information accumulated in the past.

MDP formalizes the interaction between agent and environment mathemati-

cally, indicating the fundamental elements that this RL depend on ([Wang et al., 2017]):

� State-space (s ε S), i.e. all possible states of the environment considered. It

is fundamental to choose well the states because if some of them are omitted

relevant for the control of the environment, the agent cannot reach an optimal

policy. Otherwise, if an unnecessary state is chosen, the RL agent su�ers from

the curse of dimensionality [Wang & Hong, 2020].

� Action space (a ε A), the set of possible actions that can be selected by

the agent at each timestep.

� Reward (r), a scalar value that is emitted from the environment after seeing

the action sent by the control agent.

� Policy (π), that formally linked states and the probability of each action

of being selected. The agent's objective is precisely to acquire an optimal

policy.

� Transition probability distribution, which speci�es the probability that

the environment can emit a speci�c reward and go to the next s' state, fol-

lowing the action due to the s' state.

For each time step, the agent will perform a particular action and receive from

the environment, both information regarding his status and the reward. At the

same time, the environment to be monitored will receive the action and will then

issue both the scalar reward and the remarks to the agent in an instant following

the action received.

Sometimes, the concept of tuple can be recurrent. It is a vector that contains

within it four elements: state, action and reward at the current timestep and state

at the next timestep.

Also, two value functions are de�ned, state-value and action-value, which

are of fundamental importance in determining the optimal policy.
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Figure 2.3. Typical control loop based on RL.

The state-value function represents the expected reward given by the agent

when starting from a state s, following a speci�c control policy pigreco. The fol-

lowing equation expresses it:

vπ(s) = E[rt+1 + γvπ(s′)|St = s, St+1 = s′] (2.15)

The action-value function represents the expected reward given by the agent

when he acts on the environment, starting from a state s, following a speci�c control

policy π. The following equation expresses it:

qπ(s, a) = E[rt+1 + γqπ(s′, a′)|St = s, At = a] (2.16)

These two functions are updated online during the training phase of the agent,

so they depend heavily on the experience gained.

The RL agent is trained through a trial-and-error approach: this means that

it tries di�erent trajectories (i.e. policies) and, after evaluating their performance,

tries to improve them. In this case, it is spoken about on-policy learning, i.e.

the policy output of the controller is being carried out by the environment. There

is also the counterpart, o�-policy learning, where the agent learns from other

policies already created for other interests.

Some value-based algorithms use this methodology, especially for its greater

�exibility than on-policy learning. However, o�-policy learning has a signi�cant

disadvantage compared to its counterpart, which is a lower propensity to explore

action space.
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To overcome this problem, a large amount of measured data should be available,

but using only measured data may be inadequate [Wang & Hong, 2020]. So, as in

this case, simulated virtual environments can be created and used to train the RL

agent. To do this, it is advisable interface energy simulation and control platforms,

such as EnergyPlus and Python.

2.2.1 Q-Learning

Within the RL, the most widely applied model-free approach is Q-Learning. It

belongs to the Temporal Di�erence (TD) methods, and it is used in case

of incomplete information models. The TD learning methods are the most used

because it has been proven that they converge towards an optimal policy faster than

the other two RL methods, namely Monte-Carlo (MC) and Dynamic Programming

(DP) [Dalamagkidis et al., 2007].

Q-Learning uses lookup tables called Q-Table, with expected returns called

Q-values and obtained following a speci�c action from a speci�c state are stored

[Uhn Ahn & Soo Park, 2019]

The Q-values are updated during the learning because of the agent's experience

accumulated: this process is reported in mathematical form thanks to Bellman's

equation .

Q(s, a) = Q(s, a) + α[rt + γmaxa′Q(s′, a′)−Q(s, a)] (2.17)

With α [0,1] is the learning rate e γ [0,1] is the discount factor for future

rewards.

If γ = 0, the agent will give greater importance to currently reward, neglecting

future reward. The opposite case happened for γ = 1. α determines with which ex-

tension new knowledge overrides old knowledge. α = 1 means that new knowledge

completely overrides the old one.

A distinctive feature of reinforcement learning is action-selection. It repre-

sents the trade-o� between exploration and exploitation.

Exploration is de�ned as that phase in which the agent �nds himself exploring

within a new and massive set of actions (not yet selected), neglecting his real goal

of maximizing the reward.

By exploitation, it is intended that phase in which the agent chooses within

the previously selected actions, the one that allows him to get as close as possible

to his objective.

A right control agent must try to optimize the compromise between these two

stages. This process must be represented in mathematical form. In this case, there

are two supporting approaches:
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� ε-greedy approach.

� Soft-max approach (alias Boltzmann action-selection approach).

The ε-greedy approach selects a known and considered 'excellent' action in

the exploitation phase with a probability of 1− ε. In contrast, it selects a random

action in the exploration phase with a probability of ε. ε represents the coe�cient

of the rate of exploration [Zou et al., 2020]. This method is the most widely used

as it is much simpler and a�ects control performance less [Wang & Hong, 2020]. It

is clear that a speci�c mathematical law can be set for ε so that, as time goes by

and the learning agent proceeds, ε can decrease in order to favour the exploitation

phase.

The Soft-max approach selects the action based on the action's performance

and exploits more when the majority of action space has been explored already.

This strategy could be easily implemented by reducing ε or τ [Wang & Hong, 2020].

The agent selects a particular action with a probability ε and with probability

referred to his Q-values [Brandi et al., 2020]:

Pr(s|a) =
e
Q(s,a)
τ

Σe
Q(s,a)
τ

(2.18)

2.2.2 Deep Q-Learning

In some situations, Q-Learning, as described above, may be inadequate if the space

of actions or states is ample, as the memory storage and computation time required

to update the Q-table [Sutton & Barto, 1998].

In this case, as an alternative to the tabular form of Q-Learning, it may be

useful to use a Deep Neural Networks (DNNs) as function approximator.

The main element of a neural system is the neuron, composed of a cellular body

and an axon that sends the output response to the next layer. There is a dendritic

tree structure that connects it to other neighbouring neurons.

The topology of a DNN is based on multiple layers of neurons. Typically, a

neuron is a non-linear transformation of a linear sum of its inputs. DNNs are

composed of input and output layers, but between them are hidden layers

that take input from the previous layer.

By inserting DNNs into the Q-Learning results Deep Q-Learning (also called

as Deep Q-Network). The Q-values will be indicated with the following formula,

taken from [Nair et al., 2015]:

Q(s, a) = Q(s, a; θ) (2.19)
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Figure 2.4. Example of Neural Network with three hidden layer [Datacamp, 2020]

The equation represents the Q-network, in which is present the term θ which

parameterizes the Q-value function: it indicates the weights of the network. The

number of neurons in the input layer is equal to the number of variables that make

up the state space, while the number of neurons in the output layer corresponds

to the size of the action space.

The process that takes place in the DQN can be schematically illustrated ef-

fortlessly:

Figure 2.5. Reinforcement Learning Deep Q-Network [Uhn Ahn & Soo Park, 2019]

The network is used to represent the value functions and to �nd the optimal

policy, i.e. the relationship, for each action, between states and Q-value. It is good

to remember that this last parameter is not known a priori and is obtained during

the training process as already explained in the previous paragraph on Q-Learning,

and updated according to Bellman's equation.
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The DQN could, however, be improved by introducing another NN indicated

as the target network, which is an exact copy of the �rst one, called online

network. The main characteristic of this technique is the presence of two DQNs

to counteract the overestimation of the Q-values that may lead to a non-optimal

outcome when using a single DQN.

This additional DQN is an exact copy of the other one. However, it is only

synchronized for every τ steps (an arbitrary number), and it is used to calculate

the target Q-values for expectation [Hasselt et al., 2016].

Instead, the online network is the one used to interact with the environment

and updated with Bellman's equation.

Moreover, [Brandi et al., 2020] proposed the introduction of a replay mem-

ory, useful to store inside it the tuples referred to the previous experiences of the

agent: this allows, if necessary, to reuse them and go beyond the problem of related

observations. At the same time, the optimization process is carried out.

2.2.3 Soft Actor-Critic

Model-free Deep Reinforcement Learning algorithms face problems related to high

sample complexity, because simple tasks could require a huge number of data col-

lection steps: this leads to poor sample e�ciency due to on-policy learning. It

is necessary to try to switch to o�-policy algorithm. Moreover, they su�er from

dependence on the chosen values of hyperparameters, like discount factor, learning

rates, exploration constants and other. These two obstacles make it challenging to

apply these control algorithms to real-cases.

To try to overcome these obstacles, the Soft Actor-Critic (SAC), an o�-

policy algorithm based on the maximum entropy RL framework, was recently in-

troduced by [Haarnoja et al., 2018]. While most existing model-free works make

use of discrete action space, SAC uses a continuous one.

This algorithm aims to maximize a target function composed not only of the

term expected reward but also of an entropy term. This last term, is what

expresses the attitude of our agent in the choice of random actions. It also has dual

importance, as it ensures that the agent is explicitly pushed towards the

exploration of new policies and at the same time avoids that it transposes

lousy policy.

This algorithm uses a particular Actor-Critic architecture that emoloyees

two di�erent deep neural networks for approximating, respectively, action-value

function and state-value function.

Finally, it allows the use of continuous action-space, which is essential when

controlling the parameters of energy systems.
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The current state of the art sees applications like those in the �eld of robotics,

and recently it is increased its application in energy building context.

Figure 2.6. Typical control loop based on RL [Pinto et al., 2020]

The SAC presented around the last months of 2018 su�ered from dependence on

hyperparameter temperature, therefore in the latest version proposed in [Haarnoja et al., 2018],

it is devised an automatic gradient-based temperature tuning method that adjusts

the expected entropy over the visited states to match a target value.

Soft actor-critic is based on the maximum entropy reinforcement learning frame-

work, in which the objective is maximize both expected reward both entropy. It

could be seen as an extension of standard RL objective.

The maximum entropy objective requires an optimal policy like this:

π∗ = argmaxπ
∑
t

γ([E(st,at)[r(st, at) + αH(π(·|st))]]) (2.20)

with α temperature parameter, that indicates the importance of the entropy

term compared to reward one, also indicates the stochasticity of the optimal pol-

icy. Generally α is zero when considering conventional reinforcement learning al-

gorithms.

It is convenient introducing a discount factor γ to ensure that the sum of ex-

pected reward and entropies is �nite. The SAC is derived from a variant of the

maximum entropy framework, called Soft Policy Iteration, which is not presented

here.

In the �rst version of SAC, the temperature parameter was �xed and then

considered as an hyperparameter, so its choice had an important in�uence on the

agent's behaviour. To avoid this problem, in the next SAC update was introduced

the possibility of making alpha as an update-able parameter. In particular, it is

updated by taking the gradient of the Objective function below:

Jα = E[−α lnπt(at|st;α)− αH̄] (2.21)
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where H̄ represents the desired minimum entropy, set to a zero vector.

This SAC latest version improves both performances both the stability of the

algorithm, and it is decided to use this one for the thesis work.

Soft actor-critic maximizes this objective by parameterizing a Gaussian policy

and a Q-function with a neural network, and optimizing them using approximate

dynamic programming [Haarnoja et al., 2018].

In conclusion, this algorithm is particularly useful under a changing environ-

ment or when agent's knowledge of the environment changes [Pinto et al., 2020].

37



Chapter 3

Case Study

The previous chapter describes the tools that were used in this case study, starting

with the model calibration and then applying the DRL-based control algorithm.

In this work is taken into account an o�ce real-building served by a radiant

heating system. Initially, the building case study will be described, then the descrip-

tion of the simulated environment used and the calibration and control procedures

applied will be discussed.

Finally, it will be described the setting up of the two phases of training and

deployment, for which the results will be reported in the next chapter.

3.1 Building and HVAC System description

The building under observation is located in Turin, Italy, and consists of �ve heated

�oors and a basement, with a net heated surface of about 9300m2, shown in Figure

3.1. The �ve heated �oors are divided into two heating zones for convenience:

� the ground �oor is dedicated to the "Vigili" area and the caretaker's room;

� the remaining four �oors are for o�ces (about 7000m2).

The occupancy schedules are de�ned knowing the actual o�ces opening and

closing times. Every day, except Sundays and holidays, the o�ce is occupied from

7 AM to 7 PM.

The two thermal zones are served by a single hot water circuit, consisting of

two loops connected by a heat exchanger. There is a four gas-�red boiler in the

�rst loops, serving a collector from which di�erent pumps extracting water to serve

the radiator type terminals.

In real cases, there are two possibilities to regulate the supply water tempera-

ture:

� three-way valves use, with constant speed pumps;
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Figure 3.1. Building Case Study located in Via Bazzi 4, Turin

� two-way valves use, with variable speed pumps.

In this application, the �rst solution is employed.

The installed system is much more complicated than the implemented one in

EnergyPlus. In the implementation, it was decided to build two di�erent circuits

serving each thermal zone, consisting of a single gas-�red boiler that will supply

hot water to the radiators employing a constant speed pump.

The Supply Water Temperature is managed through the External Interface in

EnergyPlus, receiving input directly from Python.

Since there were radiator terminals, this study was focused only on the thermal

zone internal temperature for two reasons:

� because this type of system allows only its control, being able to operate only

on the sensitive thermal load. A di�erent type of system should be used to

in�uence the other internal properties of the building;

� because the other comfort variables are not monitored.

This case study presents a control problem that mainly focuses on the heating

phase in the o�ce area. It will study the behaviour of the control agent from 1

AM until the occupants' presence, obtained from the actual occupation schedules.

The main objective of the implemented control policy will be to obtain the

desired temperature conditions during occupancy and also to energy saving in the
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Figure 3.2. Scheme of case study heating system

heating phase, through the regulation of the supply water temperature to heating

terminal units of the o�ce zone.

In order to tighten the controller, it is chosen a temperature range within which

it has an acceptable behaviour, outside which it receives a comfort penalty, which

will be added to the energy-term reward linked to the consumption.

If the average temperature falls within the range of lower and upper limits,

the indoor temperature comfort requirements shall be respected. In this work,

the range of acceptability is de�ned between [−1, 1]°C from the desired internal

temperature value of 21°C. Also, the focus will be on the boiler energy supplied to

heat the water-carrier �uid to be sent to the terminals.

3.1.1 Baseline Control Logic

The plant control system currently implemented refers to the algorithm proposing

a logic based on the combination of rule-based and climatic-based for the control

of the supply water temperature.

It is a control type based on the climate curve, i.e. strictly dependent on

the outside temperature. The supply water temperature varies linearly within a

range from 40°C if outside there are more than 12°C and 70°C when the outside

temperature drops below −5°C.
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These values were chosen because they correspond to those implemented in the

real building Energy Management System (EMS) for the supply water temperature

control logic.

The time in which the boiler system is switched on is based on the internal

temperature value when the occupants arrive. This control strategy is in operation

up to one hour before the occupants leave the building.

The agent controls the switching on of the boiler when the following situations

appear:

� if the temperature di�erence between the lower limit of the proposed range

and measured one at the occupants' arrival is greater than 3°C, the switch on

occurs between four and three hours preceding the arrival of the occupants;

� if the temperature di�erence between the lower limit of the proposed range

and measured one at the occupants' arrival is greater than 2°C, the switch

on occurs between three and two hours before the arrival of the occupants.

� if the temperature di�erence between the lower limit of the proposed range

and measured one at the occupants' arrival is greater than 0, the switch on

occurs up to two hours earlier to the arrival of the occupants.

Figure 3.3. Baseline Control Logic after �rst switch ON.
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On the other hand, shutdown occurs at any time when the internal thermal

zone temperature is higher than the upper threshold limit temperature, equal to

21.8°C. If the occupants are present and the temperature drops below the low

threshold limit temperature, equal to 20°C, the system is switched on again.

The baseline switch ON/OFF range [−1, 0.8] is di�erent on the upper limit

concerning the SAC control logic. This voluntary choice was made in order to

exploit the thermal inertia of the building better.

Nevertheless, for comparison with SAC control, our agent will be penalised

accordingly to the requirements of subsection 3.4.3.

The boiler will remain switched o� even on Sundays, when there are no occu-

pants.

3.2 Simulation Environment

In the �rst part of this work, the calibration of the energy model created in the

early phase is executed and, for the simulation, EnergyPlus v9.2.0 is required, with

subsequent simulations according to the trial-and-error method.

Subsequently, for the control phase, an external interface had to be used

to implement the algorithm within the EnergyPlus simulation. The interaction

between the agent and the simulated building takes place through a simulation

environment also composed of EnergyPlus and Python, the latter based on OpenAI

Gym. Moreover, it is necessary to use Python libraries such as Tensor�ow, which

allows the desired interaction.

The Building Control Virtual Test Bed (BCVTB) and the ExternalInterface-

Ptolemy server command from EnergyPlus were used to connect the two software.

Reinforcement Learning control requires four essential functions in Python:

� init(), a function that initializes the simulation;

� step(), a function to which a speci�c action is passed, which is then imple-

mented in the simulated building and returns four objects: next state, reward,

done (True/False) and info;

� reset(), a function that is called at the beginning of each episode, to repeat

the simulation several times;

� render(), a function that renders one frame of the environment.

In reset() it is expressed something about the concept of episode: it represents

a certain period on which the simulation in EnergyPlus takes place. An episode

can correspond to one simulation and can be repeated several times during the

training phase to get good results from the exploration phase.
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The information exchange between the two software is as shown in the Figure

3.4.

Figure 3.4. Simulation environment for DRL-SAC control

The process takes place in this way:

� the OpenAI gym interface object is initiated by calling the init() function,

then a server socket for the communication between EnergyPlus and Python

is created;

� the reset() function is called up by the control agent immediately after-

wards: an instance of EnergyPlus is immediately created using the IDF �le

format and the CFG extension �le that allows data exchange;

� the OpenAI Gym object creates a TCP connection with EnergyPlus, in which

ExternalInterface incorporates features that are inputs from Python. The

ExternalInterface using a BCVTB for performing as a client.

� the TCP connection is used to read and return the simulation output from

EnergyPlus to OpenAI Gym. Then observations are processed by DRL agent

for extracting state and reward;

� the DRL agent calls the step(a) function at each control steps and sends

the action a to Energyplus and read the results after this control action.

Then the observations are returned in order to obtain new state and reward;
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� it is necessary to check if the simulation is at the end of the episode: if it

happens, the process moves on to the next check, otherwise, it is repeated the

above process starting from the observations obtained again by EnergyPlus;

� if the processed episode is the last one, then the process ends here. Otherwise,

it starts again from the point where the reset() function is called.

It is also important to remember that time-steps can di�er between control and

simulation, as sometimes the required action can be performed over a longer time

horizon than the simulation (usually simulation time-step is longer than control).

In this work, the control step will be greater than the simulation step: the

simulation step is 5 minutes, while the control step is 15.

3.3 Via Bazzi Model Calibration

In this section, the calibration process applied to our case study is discussed. The

building is located in Via Bazzi 4, Turin.

After the model creation, it was requested to re�ne the calibration to obtain an

almost similar behaviour between the simulated building and the real one in the

case of internal temperature and consumption pro�les.

As far as natural gas consumption is concerned, consumption data from 15

October to 6 January are available, while for the internal temperature data recorded

by Energy Management System are used for both zones.

It was chosen to operate as proposed by [Davin et al., 2015] with a trial-and-

error approach.

In this thesis work, starting from the model provided, a series of parameters were

adjusted, based on Energetic Diagnosis document provided by Iren to Enerbrain

Srl [Iren, 2016]. In this way, it will obtain what has been called "iteration 1".

Using [Davin et al., 2015] as a reference, some parameters in�uencing the be-

haviour of the building have been modi�ed between an upper and a lower limit,

to obtain the best result. It is essential, as indicated in Table 2.1, that the values

of MBE and Cv(RMSE) respect the limits provided by the ASHRAE standard,

taken as reference.

EnergyPlus v9.2 with simulation timestep 15 min was used for energy modelling,

while PyCharm was used to read the database produced by the simulation.

In order to obtain a reliable result, it was necessary to create the weather �le

for the heating season in question, 2018-2019. EnergyPlus makes the weather �les

available in a section of its website for several locations around the world, including

Torino Caselle: the problem is that this weather �le represents the weather condi-

tions, not of the period of our interest, so it was necessary to construct the weather
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�le. The weather data needed for 2018 & 2019 were requested to ARPA Piemonte

and then processed, in order to create a csv �le, compatibly with the requirements

of the EP Launch Weather tool, then converted with the same in epw format.

3.3.1 Detail of results after the �rst iteration

After having modi�ed some building parameters and the lights/occupancy schedule

(thanks to Enerbrain WebApp and website of the city of Turin), without proceeding

through a trial-and-error approach, the iteration 1 results were shown into following

�gures.

Figure 3.5. "Vigili" zone indoor Temperature trend after �rst iteration

It is possible to see that the model discreetly simulates the real behaviour of the

building in the period between November and mid-February, as the recorded tem-

perature pro�le is very similar to the simulated one. The di�erences are considered

in the �rst part of the heating season and in the period after 15 February: this

could be due to the external temperature and direct solar radiation pro�les that

reach values higher than the seasonal standards, as can be seen in the following

�gure.

In order to improve the calibration process, it was chosen analyzing in detail

the loads for ventilation, in�ltration, loads through the opaque and transparent

casing. The improvements will be evaluated based on calibration metrics (MBE

and Cv(RMSE)), evaluated on an hourly basis. At the end of the �rst iteration,

the results obtained for internal temperature and consumption are reported in
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Figure 3.6. O�ce zone indoor Temperature trend after �rst iteration

Figure 3.7. Direct Solar Radiation rate: Comparison between new
weather and typological one

Table 3.1:

The temperature metric values are within limits set by the ASHRAE standard

on an hourly basis. At the same time, for consumption they are very high: precisely

for this reason, it was decided to evaluate at the end of the trial-and-error process

those on a daily and monthly basis.

The following �gure shows the Energy Signature for the period in which the

measured consumption were available (1 November - 6 January), excluding holidays
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Table 3.1. Calibration metrics results after �rst iteration

Variable MBE[%] CvRMSE[%]

Temperature ("Vigili") 0.15 7.09

Temperature (O�ce) 3.63 8.57

Consumption -85.40 175.61

and holidays. The consumption is reported in kWh but was measured in Sm3, so

it was necessary to multiply by the LHV of natural gas, assumed to be:

LHVGN = 9.4
kWh

Sm3
(3.1)

Figure 3.8. Energy Signature for consumption from 1 November to 6 January

The consumption value at the outside design temperature for Turin (Text =

−8°C) and the zero-gas consumption outside temperature were obtained from re-

gression equation.

Egas = −18.06 ∗ Tout + 316.54 (3.2)

Egas,Text=−8°C = 461kWh (3.3)

Text,Egas=0 = 17.53°C (3.4)
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The conclusion is, however, a particular a�nity among outside temperature and

natural gas consumption trends.

Figure 3.9. Comparison between gas consumption & outdoor temperature

As far as the temperature trend inside our building is concerned, it appears

from Figure 3.9 that when the consumption drops, the average temperature also

decreases. This could be due to the presence of Sundays or holidays (where the

building is not occupied in the o�ce area, and therefore the boiler does not have

to supply hot water to the radiators) or to the lower demand for thermal power

linked perhaps to an increase in internal gain.

Now, the building loads are analyzed, including the power supplied by the

HVAC system (with boiler and radiators), the ventilation/in�ltration loads and

the opaque and windows heat gains.

HVAC Power Supply

The power supplied by the HVAC system to reach the temperature set-point ini-

tially set at 21 °C, should increase in the intermediate phase of the heating season,

with lower values during the mid-season.

The following Figure 3.10 shows how assumptions are respected. It can be

noted that the power required is higher on the fourth level because it is the one

with the highest WTW (Windows to Wall Ratio) throughout the building and the

most dispersant (the peak value was around 40kW ).
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For brevity, it is shown the overall trend in the building and the fourth �oor

one only, because behaviour was almost equal everywhere.

Figure 3.10. HVAC power supply: All �oor requests and detail on fourth �oor

Windows Heat Gain

In all building �oors, both windows both opaque heat gain recognize an increase in

heat gain during the mid-season, with a gradual decrease during the colder months,

mainly from November to January.

In addition to showing the trend over the entire heating season, for opaque and

windows heat gains it was also chosen to show a weekly detail, choosing two weeks

within the heating season considered as typical. The choice fell on the following

two weeks:

� From 10th to 17 December;

� From 18th to 25 March.

Windows heat gain is related to the amount of solar radiation coming from

outside, putting itself in our building as a dominant load from the power input

values inside the building.

Since the fourth �oor is the most glazed, the values are expected to be quite

high for windows heat gains: the Figure 3.11 shows just this evidence, making a

comparison daily between the third and fourth �oor.

The trend was the same for all �oors, with peak values reached around the end

of the heating season that are almost three times higher for the fourth �oor than

the third.
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Figure 3.11. Windows Heat Gain: Comparison between third �oor and fourth one

It may also be exciting note that when comparing the trends of windows heat

gain and direct solar radiation, they appear identical (Figure 3.12).

Figure 3.12. Windows Heat Gain: Comparison between Direct solar Radia-
tion and fourth �oor heat gain

Trends are also shown weekly in Figure 3.13 for these internal contributions,

evaluating the di�erences.

In this case, it was possible seeing how the windows heat gains reach peaks

around 60kW on the fourth �oor and lower values for the other levels, con�rming

what already highlighted before.
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Figure 3.13. Windows Heat Gain: Typical weeks analysis

During the week of March considered, windows heat gains reached values of over

80kW, reasonably explaining the deviation between the measured and simulated

temperature: this highlights the need to insert shields in the simulation.

Opaque Heat Gain

The opaque heat gains are related to the amount of solar radiation that comes from

outside, released by the opaque envelope inside the building.

This aspect is related to the building thermal inertia, because during the day the

envelope is hit by solar radiation that, contained inside the same, is then released

at night: compared to the case of the windows, therefore, the internal contribution

is released at a di�erent time. After all, the heat gain passes directly through the

windows and is released during the daytime.

The trend did not appear identical for all �oors as in the case of windows (see

Figure 3.14), just as there were no particular similarities between the trend of

opaque heat gain and that of direct solar radiation.

The highest values were recorded for the second and fourth �oor, as shown by

the detail over the entire heating season.

The detail of the typical weeks chosen is also shown in Figure 3.15.

The heat gains associated with the opaque envelope reached peaks around 10

kW on the �rst �oor. The trend, in this case, seems to be very similar for all, but

not for the fourth �oor.

During the week of March considered instead the heat gains linked to the opaque

envelope could reach values of over 22kW, notably on the second �oor.
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Figure 3.14. Opaque Heat Gain: Comparison between four level (from �rst to fourth)

Figure 3.15. Opaque Heat Gain: Typical weeks analysis

Ventilation & In�ltration Loads

To conclude the overview of loads, ventilation and in�ltration ones were considered.

Remember that in this case study, since HVAC is reduced to a system with

radiators, the ventilation will be natural. Considerations about load trends were

based on a daily average.

In this case, the above conditions were, respectively:

� For Ventilation: V̇NAT = 0.3m
3

s
& Tmin,open = 22°C;

� For In�ltration: V̇inf = 0.05ACH for all building, including basement and

roof.
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Figure 3.16 shows the sensible heat gain for ventilation on the ground �oor,

which has a trend identical to the similar case of in�ltrations (where the values

obtained are of the order of 10−3).

Except for two days of the heating season, their value is always zero. It is also

essential to specify that in the remaining part of the building, there is no sensible

heat gain for ventilation and in�ltration.

Figure 3.16. Ventilation Sensible Heat Gain for ground �oor

The latent heat gain, on the other hand, shows di�erent trends between the two

cases, ventilation and in�ltration. However, within each category, they are quite

similar between all �oors, except for in�ltration, which shows di�erences for the

ground �oor and the other �oors of the building (see Figure 3.17).

As far as latent in�ltration heat gain is concerned, the highest values were

recorded on the �rst and fourth �oor in the �nal phase of the heating season.

In the case of latent ventilation heat gain, the highest values were recorded in

the �rst three �oors and during the last week of October 2018.

It is also singular to remark that the above load was eliminated in the period

between November and mid-February, the central part of the heating season (Figure

3.18).

As far as in�ltration heat loss is concerned, there is a similar trend between the

sensible and latent cases and also almost equal between the various �oors of the

building. As expected, heat losses increase during the coldest season and decrease

at the extremes during the mid-seasons.

Figure 3.19 exhibits the trend only for the ground �oor, highlighting that the

peak values reached are higher in the sensible rather than latent cases.

This analysis is closed with ventilation heat loss, which, as shown in Figure

3.20, have opposite trend compared to the in�ltration case, as there is an increase

during the mid-seasons and a de�nite decrease during the intermediate phase of
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Figure 3.17. In�ltration Latent Heat Gain: comparison between ground & �rst �oor

Figure 3.18. Ventilation Latent Heat Gain for second �oor

the heating season.

The sensible heat loss has a very similar trend to the extremes of the period

considered. At the same time, in the middle part, the peaks are more or less

accentuated according to the �oor considered.

The same concepts apply to latent heat losses as the previous ones, but they

are about ten times smaller than the sensible ones. The highest value in absolute

is recorded from the ground �oor.

However, the second �oor is reported in in Figure 3.21 for the particular trend

in the central part because the ground �oor �nds in this context zero loads.

The detail shown on ventilation and in�ltration loads does not present particular
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Figure 3.19. In�ltration Heat Loss: comparison between sensible & latent
cases on ground �oor

Figure 3.20. Ventilation Sensible Heat Loss on �rst �oor

anomalies, so it was decided to conclude the analysis with a daily detail of the heat

gains over two days considered signi�cant within the heating season. It was chosen

to analyze them on 24 October and 24 March.

On 24 October (see Figure 3.22) it is possible to notice that sensible heat gain

energy was null, except between 3 PM and 6 PM, wherein any case peak values of

little more than 0.01kWh were reached and in any case only for the ground �oor.

The other �oors have zero values, except for a slight amount on the �rst �oor.

For the latent case, it is possible to observe a di�erent trend compared to the

sensitive case: all �oors had di�erent energies from zero at night and between 2

PM and 8 PM. The trend is more similar at night compared to the afternoon one,
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Figure 3.21. Ventilation Latent Heat Loss on second �oor

where it appears slightly di�erent, with higher values reached on the second �oor.

The behaviour of sensible ventilation energy is the same as in the in�ltration

one. The only di�erence is the value reached, which is much higher than in the

in�ltration case.

In this case, the highest values for heat gains are reached. They are around

25kWh and are obtained following an upward and downward trend between 2 PM

and 7 PM. The trend is almost equal between �oors.

Figure 3.22. In�ltration & Ventilation Loads in 24 October

As already seen on 24 October, also on this day of March there was no Sensible

In�ltration Heat Gain during the day, with a peak between 1 PM and 4 PM slightly

higher than the autumn day, and only for the ground �oor.
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Latent in�ltration leads to zero heat gain between 10 AM and 5 PM, with an

identical trend for the �rst and second �oor: they also record the highest values,

this in the evening hours. The ground �oor trend deviates from the others after 5

PM.

Note in Figure 3.23 that Sensible Ventilation Heat Gain graph is identical to

the In�ltration case for the same day. The only di�erence lies in the peak value

reached at 2 PM, around 3.5kWh.

Ventilation Latent Heat Gain is zero during the day for the whole building

except for the ground �oor, where there is a zigzag pattern between zero values

and peaks, whose maximum recorded value is slightly higher than 10kWh and

around 7 PM.

Figure 3.23. In�ltration & Ventilation Loads in 24 March

3.3.2 Second Iteration: Trial-and-error approach

From the previous section concerning the �rst iteration, it emerges the need to

implement some model changes, because the calibration metrics could be improved

(mainly for o�ces). Moreover, the internal temperature trends of the two main

areas of our model were still quite di�erent from the one measured in reality.

In this regard, a trial-and-error method was used which, as explained in

section 2.1.1 concerning calibration theory, consists in a proceeding by trial-and-

error attempts to modify the value of some variables considered as having the most

considerable in�uence and evaluating the result obtained.
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The variables must be modi�ed according to combinations so that they are as

close as possible to the real case; otherwise, the result would not be relevant.

Firstly it was modi�ed the layout of the HVAC system, which initially consisted

of a single loop with a single boiler serving the entire building. In reality, there

are two loops, each with its boiler and serving the "Vigili" area and the O�ce area

respectively: it was, therefore, necessary to insert a separate cycle for the police

area, removing it from the only loop initially present.

Holidays according to the calendar were also included in heating season 2018-

2019, to make the simulation even more accurate.

As evidenced by the high values of windows heat gain (especially on the fourth

�oor and during the spring season), it was also necessary to insert interior shading

on the windows.

The choice is not causal, as it corresponds to the reality, as the glass surfaces

of the building �nd these shadings rather than the exterior blinds.

For the same windows shading, a control of the type "OnIfHighSolarOnWin-

dow" was chosen, active for all-day hours. The shading activation depends on the

incident solar radiation value.

The trial-and-error method was used to act on the following quantities:

� Solar Radiation Power Windows shading activation;

� In�ltration Air�ow rate;

� The number of occupants per each �oor;

� Temperature set-point;

� Lights heat gain;

� Equipment heat gain;

� Lights radiant fraction.

The following method has led to changes in internal temperature pro�les, total

consumption values but especially in the values of the calibration metrics.

The Table 3.2 shows, for each quantity indicated above, the initial value, the

lower and upper limit but above all the �nal value considered as the best.

By entering in input to the model for all quantities the respective �nal value,

it is possible obtaining the temperature pro�les for the "Vigili" and O�ce areas

respectively in the Figure 3.24 and 3.25, compared both with the real case but also

with the previous iteration.
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Table 3.2. Parameters modi�cation during Calibration optimization

Parameter Initial
Value

Lower
Bound

Upper
Bound

Final
Value

Solar Radiation Windows shading activation [ W
m2 ] 300 100 350 200

In�ltration Air�ow rate [ACH] 0.05 0.05 1.1 0.8

Occupants per each �oor [−] 90 50 100 60

Temperature set-point [°C] 21 20 23 22

Lights heat gain [ W
m2 ] 10 5 10 7

Equipment heat gain [ W
m2 ] 10 5 10 6

Lights radiant fraction [−] 0.42 0.20 0.50 0.35

Figure 3.24. "Vigili" zone indoor Temperature trend after second iteration

It is possible to notice that the temperature pro�le is improved, compared to

the previous step and in both areas: the result obtained appears quite satisfactory

as far as the temperature is concerned.

The overall value of natural gas consumption is then shown, both in real and

simulated cases at the end of the second iteration:

Egas,real = 239361.6kWh (3.5)

Egas,simulated = 236824.6kWh (3.6)
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Figure 3.25. O�ce zone indoor Temperature trend after second iteration

Consumption has values that disagree little between the real and simulated

case, so the result obtained for consumption is also satisfactory.

To conclude, the Table 3.3 shows the temperature and consumption calibration

metrics values. For the latter, they are reported on an hourly, daily (for which,

however, there is no indication of limits by the [ASHRAE Guideline 14, 2002] and

monthly basis.

Table 3.3. Calibration metrics results after second iteration

Variable MBE[%] Cv(RMSE)[%]

Temperature ("Vigili") 0.15 7.09

Temperature (O�ce) 3.63 8.57

Consumption (Hourly) -1.06 150.94

Consumption (Daily) -1.06 36.02

Consumption (Monthly) -1.06 5.62

The results obtained are within limits imposed by the ASHRAE standard (see

Table 2.1), such that the building model can be de�ned well-calibrated.

In absolute value, an advantageous improvement of the values is obtained, ex-

cept for the "Vigili" zone Temperature, where a slight increase for MBE and

Cv(RMSE) is noted.

60



Case Study

As far as consumption is concerned, the MBE value has improved a lot con-

sidering that on the hourly scale there was a value of −85.40% for iteration 1 and

−1.06% for the second one. In contrast, for hourly Cv(RMSE) the value remains

very high: this is however due to the di�erent behaviour of the boiler between the

real and the simulated case, even if, as it was already seen, the thermal power

demand is almost equal overall. The results are within monthly limits provided by

[ASHRAE Guideline 14, 2002].

From this it is possible saying that the model can be consideredwell-calibrated

based on the results obtained following iteration 2: this will be the model used

for the control implemented with algorithms based on Reinforcement Learning, as

will be discussed in the next chapter of this work.

3.4 Design of DRL Control Logic

The last three chapter paragraphs describe all the SAC control agent features the

setting of the two phases of training and deployment, according to the work�ow

provided by Figure 3.26.

Figure 3.26. From the de�nition to the application of DRL control agent

Starting with the Design of the DRL-SAC control agent, it is essential de�ning

its main features:

� action-space;
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� state-space;

� reward function.

In the next subsection, these three elements are discussed.

3.4.1 Description of action-space

The action chosen by the controller belongs will be the supply water temperature

to the radiators.

Compared to [Brandi et al., 2020], however, there is no discrete but continuous

space, as required by the SAC algorithm: therefore, the supply water temperature

will be chosen between a lower limit of 20°C and an upper limit of 70°C.

So the action chosen will be:

At : 20 ≤ SWTt ≤ 70 (3.7)

The same action range was selected to match that of the baseline.

It is essential to specify that simulation environment was set in order to shut

down the circulation pump if the chosen action (corresponding to supply water

temperature) is equal or lower than 25°C.

Furthermore, the system will be switched o� when the occupants leave the

building. This switching on and o� process takes place employing the variable

BCV TBBOILER, information that is exchanged between Python and EnergyPlus

through the tool described in Section 3.2.

3.4.2 Description of state-space

The state space is composed of a series of observations displayed by the agent. It is

of fundamental importance because based on the values assumed, a certain action

is chosen.

In this thesis work, the state-space was made of 9 features, indicated in the

Table 3.4 with their lower and upper extremes.

The variables chosen are all made available in output from EnergyPlus to

Python so that it is possible to provide the agent with the information necessary

to evaluate the reward.

Outdoor Air Temperature and Direct Solar Radiation were included

because are exogenous factor with the greatest in�uence on energy consumption

but also on the indoor air temperature.

The Indoor Air Temperature information during the control step was passed

as a di�erence between the desired setpoint and the same temperature because

directly linked to the reward formulation 3.4.3.
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Table 3.4. Variables included in the State-Space

Variable Min
Value

Max
Value

Unit

Outdoor Air Temperature -8 32 °C

Direct Solar Radiation 0 720 W
m2

∆T Indoor Setpoint - Mean indoor temperature -3 8 °C

Time to Occupancy start 0 36 h

Time to Occupancy end 0 12 h

Supplied Heating Energy control step (15 min) 0 4.5 ∗ 108 J

Supply Water Temperature 10 80 °C

Return Water Temperature 10 80 °C

Status 0 1 −

The occupants' presence was passed in the temporal form, considering the Time

to Occupancy Start/End, because a simple binary variable of the type [0, 1] would

dissipate the temporal information on the occupants' arrival or departure, useful

to evaluate the pre-heating or energy savings in the �nal phase of occupation.

When the building is not occupied, Time to Occupancy Start represents

the number of hours required for the arrival of the occupants, so during occupancy

periods, it is set to zero. Conversely, when the building is occupied, Time to Oc-

cupancy End represents the number of hours that must elapse before occupants

leave the building, so during periods of occupancy it is set to zero.

The supplied heating energy was expressed in such a form that it can be

used in the reward formulation, although in this case, it will be evaluated in Joule.

It is key information for the agent and is calculated as the sum of the energy spent

between one control step and the next (three consecutive simulation steps).

The last three variables are linked to the system. Speci�cally, the �rst is the

system status, ON from 1 AM to 7 PM, and OFF the complementary one.

The last two are the Supply Water Temperature and Return one. They

are included in the observations as they are directly proportional to the value of

energy spent by the boiler.

The relative humidity was not taken into account in the observations because

the radiator heating system cannot control the latent part of the heating load.

Observations must be scaled within a range of [0, 1] in order to feed the neural

network: to do this, a scaling process with min-max normalization is used.
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3.4.3 Description of reward function

In order for the agent to learn what control policy is required, the reward function

must be set up in such a way that it is representative of the problem under attention.

In this case study, the reward is expressed as a linear combination of two di�er-

ent parts, an energy-term and the temperature one. They are combined employing

two weights (δ and β respectively) that have been made to vary in order to change

their importance.

The reward is calculated for each control time step: the controller is enabled to

choose an action since occupant were present to turn ON/OFF the heating system,

every 15 minutes.

The energy-term refers to the daily energy consumption in the heating phase,

calculated in kWh, and evaluated from the �rst moment the boiler could switch on.

The remaining part referring to temperature corresponds to the temperature di�er-

ence between the upper/lower threshold temperature and the average temperature

of the o�ces during the building occupancy, evaluated in °C.

The general expression of the reward could be summarised as follows:

R = RT +RE (3.8)

After the workers leave the building, the reward will be completely set to

zero.

The objective of our agent will be therefore to maximize the reward, with a

maximum (ideal) value of zero.

The energy-term reward is always present and expressed in the following way:

RE = −δ ∗ EHEAT (3.9)

Temperature-term, on the other hand, has di�erent expressions depending on

the situation.

If no workers are present, the temperature-term is:

RT = 0 (3.10)

If people are present, the temperature-term could have three di�erent expressions:

� if Tmean,off < TLOW :

RT,OCC=1 = −β ∗ (SPint − Tmean,off )2 (3.11)

� if Tmean,off > TUPP :
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RT,OCC=1 = −β ∗ (Tmean,off − SPint)3 (3.12)

� if TLOW <= Tmean,off <= TUPP :

RT,OCC=1 = 0 (3.13)

It is possible to observe the reward function composition graphically, as shown

in Figure 3.27.

Figure 3.27. Composition of reward function and evaluation of its terms.

A similar formulation of the temperature-term was chosen to try to speed up

the learning process and avoid the exploration of unacceptable states from the

beginning.

The environment allows the system to reach values greater than the setpoint

set by SPint = 21°C: this is due to the presence of another variable exchanged

between Python and Energyplus, called BCV TBSP .

It assumes the following value:

BCV TBSP = 23°C (3.14)
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3.5 Training Phase

As discussed in the initial chapter, the use of a DRL algorithm implies that several

hyperparameters in�uence the behaviour and performance of the agent.

In order to assess their in�uence, a sensitivity analysis was necessary, so it was

decided to try varying the set of hyperparameters and compare the results obtained.

This process was carried out on the agent having the characteristics described in

paragraph 3.4.

Within the set of hyperparameters, it was decided to keep some of them �xed,

indicated in the Table 3.5.

Table 3.5. Fixed Hyperparameters for DRL training phase

Variable Value

DNN Architecture 4 layers

Batch size 64 Control Steps

Episode Length 2976 Control Steps (31
days)

Training Episodes 30

Replay bu�er size 50000

τ Soft update Boltzmann Temperature coe�cient 0.005

Energy-term weight factor (δ) 0.01

An episode training includes the whole month of December (from 1st to 31st),

for a total of 2976 control steps (every 15 minutes) and 8928 simulation steps (every

5 minutes).

Each episode was repeated 30 times for each hyperparameter con�guration cho-

sen in order to allow the agent to evaluate di�erent control strategies, for a total

of about 40 minutes (about 1 minute and a half per episode).

The weather �le used in this thesis work was personally created from the nec-

essary 2018 and 2019 meteorological data, made available by ARPA Piemonte and

processed in EPW format using the EnergyPlus Weather tool. This choice took a

few days for data processing and formatting. However, it allowed obtaining results

closer to the present one, since the reference weather �le available on the Ener-

gyPlus website for Torino Caselle, refers to a weather situation of about 15 years

ago.

The parameters involved in sensitivity analysis are di�erent, and include:

� neurons per hidden layer, so that the agent can explore more or less;
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� discount factor (γ), to determine the relative importance of future reward

versus immediate reward;

� learning rate (α), to determine how the agent tries to overwrite old infor-

mation with new information;

� weight factor reward temperature-term (β).

The weight factors help to de�ne the relative importance of the two reward

terms and therefore determine the agent's choices in investing greater attention to

comfort or energy saving.

The di�erent con�gurations of hyperparameters tested are shown in the Table

4.1 present in the next section 4.1.

Other necessary training phase speci�cations are the value of the internal set-

point of 21°C, so the acceptability comfort conditions range will go from 20°C to

22°C.

The building was occupied during the same period as the baseline, i.e. between

7 AM and 7 PM from Monday to Saturday.

3.6 Deployment Phase

The con�guration considered as the best between those explored during the training

phase was chosen, then it is used during the deployment phase.

This phase is particularly important because it allows understanding the adapt-

ability of our agent towards the change of conditions around the training phase.

The control policy learnt in the previous phase will then be reused to test the

agent on �ve di�erent scenarios, throughout January and February and for a single

episode per scenario.

The trained agent can be deployed statically or dynamically:

� in static deployment the agent is used as a static function. This process

requires less computational time than dynamic one but the energy model

should be continuously calibrated, and the control agent, in this case, should

be towed back to the new model with the modi�ed features;

� in dynamic deployment, the RL agent is characterized by continuous learn-

ing. In fact, for each moment of control, the agent receives the observations

from our system and proposes a control action, observes the reward and the

next state and proceeds to the updates in the training phase. This phase re-

quires a high computational time, and the agent is more �exible to changes.

The problem is that the control policy may have instabilities.
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In this thesis work, a static deployment was performed.

The scenarios assessed were:

� Scenario 1: in this case, it was assessed how the agent adapts to di�er-

ent weather conditions (i.e. outdoor temperature and direct solar radia-

tion). Therefore no parameters related to building physics or schedules were

changed. The control environment remains the same as the training phase.

� Scenario 2: in this scenario, the internal setpoint value was increased to

22°C. The tolerance band for maintaining comfort conditions always remains

between [-1.1], so the lower and upper limits will also increase accordingly.

� Scenario 3: in this scenario, it was tested the agent's adaptability if the

energy performance of the building opaque envelope is improved. No changes

were made to the transparent envelope.

Therefore, the external stratigraphy modi�cation has been foreseen, introduc-

ing an external coat that allows for more excellent insulation and a reduction

in heat loss, also improving the comfort conditions inside.

It is a recommended solution in the case of intermittently heated rooms, as

in the case of o�ces heated during periods of daily occupancy in which plant

is turned o� at night.

The basic thermal transmittance of our building is U = 1.08 W
m2

°C
, well above

the current standard. In fact, the U-value for vertical walls must be lower

than U = 0.26 W
m2

°C
for public buildings located in the Turin (climate zone

E). Thanks the introduction of an external coat, it is reached a value of

U = 0.21 W
m2

°C
.

� Scenario 4: this scenario is the complementary of the previous one, as the

transparent envelope was modi�ed, improving its energy performance. No

changes were made to the opaque envelope.

It was introduced a double glazing with 16mm double glazing �lled by 85

% Argon. In this case, the thermal transmittance value is reduced to Ug =

1.1 W
m2

°C
with solar factor g = 0.33, instead of Ug = 2.7 W

m2
°C

and solar factor

g = 0.75 in the base case.

� Scenario 5: in this case, it was decided to modify the building's occupancy

schedules already present in the primary case. The agent's behaviour was

assessed concerning the situation in which building is occupied every day

(Monday to Sunday) from 8 AM to 6 PM.
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It is essential to specify that in all the scenarios, except for the second one, the

desired setpoint and the relative comfort band have remained unchanged, according

to the training phase.

Figure 3.28. Indoor setpoint, occupancy schedules and thermal trasmittance in
di�erent deployment scenarios.
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Results

The DRL-SAC framework presented in the previous chapter was implemented in

the simulation environment described in section 3.2.

The results obtained are exhibited to compare, both for the training phase and

the subsequent deployment phase, the performance of the DRL control agent with

the baseline control of the �ow temperature to the radiant terminals of the heating

system.

4.1 Training phase results

As shown in section 3.5, in the initial part of the training phase, it was necessary

to de�ne the hyperparameters that were kept �xed. Then, in a second step, some

have been chosen as variable to evaluate their in�uence on the agent performance.

Speci�cally, in this work 24 con�gurations are evaluated, shown in Table 4.1.

In order to evaluate the goodness of each con�guration, it was necessary to

set up a comparison metric between them that was consistent with our agent's

objective, i.e. to maintain comfort conditions during the occupancy period (indoor

o�ce temperature within the range [-1, 1] of the setpoint established).

At the same time, it was trying to reduce the energy consumption of the boiler

by controlling the �ow temperature to the radiators.

It was chosen to evaluate, from the energy point of view, the amount of energy

needed for heating the water supply (both in the pre-heating phase and during the

working day).

The comfort performance was evaluated choosing the calculation of the cumu-

lative sum of temperature violations during the occupancy hours, measured in °C.

A temperature violation occurs when, during the presence of occupants, the

temperature is not within the acceptability range [-1, 1] of the 21°C setpoint. It is

calculated, therefore, according to the expressions:
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Table 4.1. Training hyperparameters con�gurations for DRL agent

Con�guration Neurons per
hidden layer

γ α β

1 256 0.9 0.001 1

2 256 0.9 0.001 5

3 256 0.9 0.001 10

4 256 0.95 0.001 1

5 256 0.95 0.001 5

6 256 0.95 0.001 10

7 256 0.99 0.001 1

8 256 0.99 0.001 5

9 256 0.99 0.001 10

10 128 0.9 0.001 5

11 128 0.95 0.001 5

12 128 0.99 0.001 5

13 64 0.9 0.0005 1

14 64 0.95 0.0005 1

15 64 0.99 0.0005 1

16 256 0.9 0.0005 1

17 256 0.9 0.0005 5

18 256 0.9 0.0005 10

19 256 0.95 0.0005 1

20 256 0.95 0.0005 5

21 256 0.95 0.0005 10

22 256 0.99 0.0005 1

23 256 0.99 0.0005 5

24 256 0.99 0.0005 10

� if TINT < TLOW :

Tviolation,i = TLOW − TINT (4.1)

� if TINT > TUPP :

Tviolation,i = TINT − TUPP (4.2)

Both terms were evaluated for each simulation step and then cumulated with

an algebraic sum at the end of each episode.
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The period between o�ce closing time and the time when the system could be

switched on the following day (from 7 PM to 1 AM) was overlooked.

These parameters were calculated also for the control baseline in order to com-

pare the results obtained for the various trained agents.

The graphical results representation had fundamental importance in excluding

some con�gurations and selecting others for a more detailed sensitivity analysis.

The Figure 4.1 shows, for the various con�gurations, the cumulative sum of

temperature violation values for the last episode training (30th) as a function of

the percentage energy saving compared to the baseline.

In order to make the results more comprehensible, the y-axis was set on a

logarithmic scale.

The graphic legend corresponds to the order of the con�gurations shown in

table 4.1.

The graph is divided into four quadrants, whose axes are the performance values

obtained from the baseline for overall energy consumption and the cumulative sum

of temperature violations.

Each quadrant expresses a di�erent condition, and for this work proposes, it is

essential understanding in which quadrant the acceptable results fall.

Speci�cally, the common objective of maintaining comfort and energy-saving

concerning the baseline is achieved by all the agents with con�guration falling in

the bottom-left quadrant.

The worst case is represented in the upper-right quadrant, where the two ob-

jectives would be not respected: in this work, however, no con�guration fall in this

situation.

The upper-left and bottom-right quadrants, respect only one of the two condi-

tions, respectively only energy-saving or thermal comfort.

For the choice of the best con�guration, any con�guration with higher tem-

perature violations than the baseline was also excluded, so the sensitivity analysis

focused on the agents present in the third and fourth quadrant.

The Figure 4.1 highlights that the agents in the third quadrant do not have sig-

ni�cant di�erences depending on the number of neurons per hidden layer, therefore,

to avoid that the computational time is excessively high without having enormous

bene�ts in respect to the other con�gurations, it has been chosen to consider the

three agents with a number of neurons per hidden layer equal to 128, corresponding

to the three con�gurations reported in the Table 4.2.

Con�guration 10 and 11 manage to meet both requirements, while con�guration

12 achieves excellent results in terms of comfort.

These three con�gurations are all characterized by:

� learning rate α = 0.001;
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Figure 4.1. SAC control performance in 30th training phase episode of
the training phase

� 128 neurons per hidden layer;

� temperature-term reward weight β = 5.

First of all, it was evaluated the learning process goodness of these three DRL

agents. Then, it was studied the cumulative reward evolution, evaluating the

comfort-term and energy one separately, as proposed in Figures 4.2.

The reward does not have a direct physical meaning: it gives indications re-

garding the control policy convergence of the proposed agents. A non-convergent

trend could cause instability of the optimal control policy.

Figure 4.2 has two mainframes, the one above shows the trend of the comfort-

term for cumulative reward, while the one below the energy-term. For each prin-

cipal block, the three con�gurations to be analyzed, with their respective discount

factors, are shown. For better legibility, the solid blue line represents the evolu-

tion of the term comfort, while the red one represents the evolution of the term

energy. In both analyzed con�gurations and for both terms, the agent starts the

exploration with relatively high values of the two terms of the reward.

During the training phase, the agent with discount factor γ = 0.99 can maximize

the reward comfort-term more than all the other con�gurations, getting very close

to its cancellation during the last episode. All this also con�rms what observed in

Figure 4.1, i.e. the almost absence of violations for con�guration 12 during the 30th
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Figure 4.2. Comparison of cumulative reward energy-term and temperature-term
between three agents with di�erent discount factor during the training phase.

episode. On the whole, however, the result achieved by this last con�guration was

not the best, as observing the energy-term trend shows an optimal non-convergence

even in the last part of its training phase.

For the other two agents, on the other hand, after about 20 episodes, a con-

trol policy converging towards a stable value seems to be established. The same

trend can be observed only during the very last episodes for the cumulative reward

temperature-term, more in the con�guration with γ = 0.9 than in the γ = 0.95 case.

On the whole, therefore, it could be said that the agent with the most excellent

stability is the one proposed in con�guration 10.

It would be wrong, however, to stop here the analysis and already choose this

con�guration as the optimal one, because the reward value alone is not an evalua-

tion metric for assessing the goodness of the overall DRL agent performance.

Therefore, it was decided to graphically represent the results obtained at the

30th episode for each of them in terms of energy consumption, indoor temperature

pro�le and �ow temperature pro�le. The �gure 4.3 compares, daily, the three agents

that di�er only in the value of discount factor γ: the day chosen corresponds to

one between the coldest of the training period, 14 December.

Overall, all three agents meet during the entire occupation period the necessary

comfort requirements, with the utilising agent γ = 0.9 keeping the temperature

close to the lower acceptability limit, without ever falling below between 7 AM and

7 PM. Then this agent could be able to use the fewest energy quantity between

the three agents considered, 3.7MWh, about 100kWh and 500kWh lower than the
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Figure 4.3. Comparison between three agents with di�erent discount fac-
tor during the training phase.

other two.

Especially the agent with γ = 0.99 is found to consume the most signi�cant

amount of energy in the world, as also demonstrated by the internal temperature

pro�le, which is placed around the central range of acceptability comfort more than

the other two agents.

The supply water temperature trend is very similar during the worker occupancy

phase for agents with γ = 0.9 and γ = 0.95. However, all three agents have their

peak water supply temperature before the arrival of the occupants, so that the

temperature at their arrival is greater than the lower limit.

This peak is earlier for the agent with γ = 0.99, and this explains why already

about two hours before the arrival of the occupants the internal temperature falls

within the range of acceptability without it being necessary, thus consuming a

greater amount of energy.

In order to choose the best con�guration, the comparison of the three agents

based on the entire training month for the last episode (30th) is shown in table 4.2.

The results obtained suggest the exclusion of the agent with con�guration 12

because, although it has very low-temperature violations during the training phase,

it consumes more energy than the baseline, about 4% more.

For two remaining agents, 10 and 11, it is observed that both have temperature

violations of the same order of magnitude, with the agent with γ = 0.95 in slight

advantage (11.07°C against 16.28°C of the other).

This di�erence is, however, less marked compared to the one from the energy

point of view, wherewith con�guration 10, it is possible obtaining an energy saving

of 1.8MWh more.
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It results that, although they have an advantage on each side, the one trained

with the tenth con�guration is chosen as the best agent.

4.2 Deployment phase results

In this section, the deployment phase results are analysed, where the adaptability

of the control agent chosen in the training phase (con�guration 10) is tested in the

�ve scenarios proposed in section 3.6.

Table 4.3. SAC control agent features for the deployment phase

Features Value

DNN Architecture 4 layers

Neurons per hidden Layer 128

Discount factor γ 0.9

Learning rate α 0.001

Number of episode 1

Episode Length 5664 Control steps (59 days)

Energy-term weight factor δ 0.01

Temperature-term weight factor β 5

In this thesis work, a static deployment is used, and each simulation will con-

sist of only one episode for each scenario. The period of the simulation will extend

to two months, from 1st January to 28th February. Consequently, the meteorologi-

cal data will change, which will always be taken from the weather �le created for

Turin for this work.

The �gure 4.4 and the �gure 4.5 provides an overview of the results obtained for

all scenarios for energy consumption and cumulative sum of temperature violations

for the whole episode, respectively, coloured blue. In both �gures, there are also

baseline values for each scenario, shown in red.

The DRL agent in the S2 scenario allows achieving signi�cant energy savings

compared to the baseline (in the range of 20%). However, above all, it highlights its

behaviour from the comfort point of view: it presents the highest value of comfort

band temperature violations among deployment scenarios, albeit smaller than its

baseline (around 40°C).

On the contrary, the baseline �nds a considerable increase in energy consump-

tion but also in temperature violations, especially in the initial occupation phase.

Then, it is clear that our SAC agent has greater adaptability towards an increase
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Figure 4.4. Energy consumption per each scenario in deployment phase, compar-
ing DRL and Baseline control logic.

Figure 4.5. Cumulative sum of temperature violations per each scenario in de-
ployment phase, comparing DRL and Baseline control logic.
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Figure 4.6. Energy savings per each deployment scenario.

Figure 4.7. Di�erences in cumulative sum of temperature violations per
each deployment scenario.
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in the setpoint value than the baseline, and therefore an excellent control policy

able to adapt to this change.

The remaining four scenarios all have energy savings of between 7 and 9 %

compared to their baseline counterpart, with overall values varying depending on

the scenario.

Scenario S1, i.e. the scenario where only the period is changed, �nds an overall

energy consumption that is lower than scenario S3 and scenario S4 consumption, as

insulation is increased in these scenarios, and therefore a similar result is achieved

for S3 (−8.6%) and S4 (−7.3%). The S5 scenario has almost the same energy

savings as the S1 scenario (8.1%): despite the inclusion of Sunday as the day of

occupation, remember that it is reduced by two hours compared to the S1 scenario,

for each day, the occupancy band, so this makes the consumption is almost similar.

In the comfort �eld, on the other hand, there are values of temperature viola-

tions in line with what was already seen in the agent training phase. Values are

between 10 and 16 °C.

The other two �gures, 4.6 and 4.7, show an overview of savings and di�erences

for each scenario between the deployment and baseline. Energy savings are shown

as percentage savings in the deployment phase compared to the baseline counter-

part, while temperature violations are assessed as a simple di�erence between the

two cases.

In this situation, the colour of the bar chart is always green to indicate that,

compared to the baseline, the DRL control logic is in an advantageous condition

and therefore brings the expected bene�ts.

The following overview of images is used to give more details on the results for

each deployment scenario.

Figure 4.8 shows the comparison between the deployed control agent and the

control baseline in the S1 scenario, during a typical week of the period analysed.

The internal temperature trend and the supply water temperature pro�le are com-

pared in light of the external temperature pro�le.

The DRL control logic allows to reduce temperature violations during the �rst

day of the week through a better managing of the pre-heating phase and, at the

same time, ensures that the temperature trend remains almost stable in a narrower

temperature band near the lower limit of the acceptability range.

During the weekly band that goes between the third and sixth day, when the

outdoor temperature has lower values during the week, the energy savings compared

to baseline are considerable. It is due to the attitude of the latter control logic to

keep the system ON until the upper limit is reached, and then turn it o� and �nd a

new restart when it drops below the lower temperature threshold. It is, therefore,

demonstrated how the SAC control logic allows adaptation to exogenous factors.
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Figure 4.8. Comparison between SAC control deployed agent and baseline con-
troller during a deployment period week in Scenario S1.

Figure 4.9 shift focus on the internal temperature pro�le for o�ces for scenario

S2, during the same typical week considered in the scenario S1. Compared to

the latter, the di�erence consists of the desired setpoint value within the o�ce

zone, which is increased by 1°C ( 22°C). For this changing, the comfort conditions

acceptability range shift their limits to the other by the same amount.

Figure 4.9. Comparison between SAC control deployed agent and baseline con-
troller during a deployment period week in Scenario S2.

The �rst substantial di�erence from the previous scenario is that the baseline

never manages to reach the upper limit of the comfort band, maintaining a tem-

perature pro�le in the middle of the day more similar to that of the SAC control

agent.

This detailed study allows having the motivation for which in Figure 4.5 it is

perceived a signi�cant increase in temperature violations for the baseline. Never
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during the week, the baseline control manages to ensure that the internal tempera-

ture at the arrival of the occupants is at least equal to the lower limit of the comfort

band, even if it manages to reduce this gap in the last days of the week. This mis-

management of the pre-heating phase also determines that the energy consumption

is high because, in order to reach the desired temperature by 7 AM, a late ignition

causes a massive amount of energy to be required over a limited time.

On the contrary, the tested DRL logic, by managing the pre-heating phase at

best, allows to reduces the temperature violations, then maintaining a constant

temperature pro�le in order to optimise the energy consumption.

There is also an abnormal increase in temperature on Sunday, no-occupancy

day. In this work, it was decided to set the control environment so that the agent

could learn by himself not having to turn on on Sundays. At certain times of this

day may be sudden ignitions of the plant due to the behaviour of the agent, rightly

penalised through the term of consumption in the reward.

Figure 4.10 compares the internal temperature and water temperature supply

pro�les over the same typical week considered for S1, but in this case for the couple

S3 and S4 scenarios.

Figure 4.10. Comparison between SAC control deployed agent and baseline con-
troller during a deployment period week in Scenario S3 and S4.

Both scenarios show a very similar indoor temperature pro�le, especially during

the occupancy phase, where comfort range violations are almost nonexistent. It

could also explain the comparable value of energy savings compared to baselines

and the values of temperature violations for each scenario that di�er by just over

0.3°C.

The supply water temperature pro�le is similar during this typical week, with

the peaks that are reached around 7 AM, with slightly higher values for scenario

depending on the speci�c day considered.
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The results just discussed highlight the need to compare more the S1 scenario

with the two S3 and S4 but separately, so that it is better to assess the di�erences of

the chosen DRL agent concerning the improvements of the opaque and transparent

envelope. The comparisons are shown respectively in Figure 4.11 and Figure 4.12.

The attitude of the DRL agent in the di�erent S1, S3 and S4 scenarios is

compared based on the indoor temperature pro�le.

Comparing in Figure 4.11 S1 and S3, it can be stated that in the occupancy

phase the agent's behaviour is similar, even if in the last days of the week considered

there are more signi�cant di�erences, such as a slightly earlier system shutdown in

scenario S3.

Figure 4.11. Comparison between SAC control deployed agents in scenario S1
and S3 during a typical week in deployment phase.

In the pre-heating and post-shutdown phase of the system, the indoor temper-

ature pro�le of the S1 scenario appears as shifted upwards to give rise to the S3

case.

After discharge phase of heat accumulated by vertical walls to the outside, when

the system was switched on again for the pre-heating phase, it �nds a building about

half a degree Celsius warmer in scenario S3 than in scenario S1. It is demonstrated

by the phenomenon of exploiting the thermal inertia of the building, as in the case

where there is an external coat (S3) the building discharges more slowly than in

the case where the building does not have one (S1).

Therefore, with the same switch-on time in the two scenarios, the system will

require a lower energy amount in the S3 scenario compared to S1 near about 20 %,
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as shown in Figure 4.4 considering the whole deployment period. This same phe-

nomenon makes it possible to reduce, but very little, the violations of the comfort

band by switching from the real opaque envelope to a more performing one.

Similar considerations can be made in the comparison between scenarios S1 and

S4, even if in this situation the di�erences related to the greater exploitation of the

thermal inertia of the building envelope are little, as demonstrated by observing in

Figures 4.12 the phase of system ignition after the building envelope discharge.

Figure 4.12. Comparison between SAC control deployed agents in scenario S1
and S4 during a typical week in deployment phase.

It is because in scenario S4 the transparent envelope was simply modi�ed com-

pared to scenario S1 using glazing with a much lower U-value but at the same

time seeing a reduction in the solar thermal transmittance of the glass to g = 0.33

against the value of g = 0.75 in case S1. For this reason, it was also decided to

plot the solar radiation entering the o�ce zone through the glazing to show how it

is a�ected by the reduction of the solar factor.

As expected, a g-factor reduction leads to a reduction in entering solar radiation,

which in the winter case represents an heat gain to reduce the thermal load required

by the system. As shown in Figure 4.12, passing from scenario S1 to S4, it is

remarked a reduction in energy linked to incoming solar radiation by a factor

approximately equal to that of the g-factor reduction, so that in S4 scenario the

above pro�le appears as in case S1 but scaled down to lower values.

At the same time, however, the reduction of the thermal transmittance value Ug

in the S4 scenario leads to a reduction in heat loss, as shown in the bottom part of
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the Figure 4.12. In particular, this represents a much greater share compared to the

value of the magnitude discussed above. During the typical week considered, the

windows energy loss in the S4 scenario, Eloss,wind = 2.62MWh is reduced to about

half of the value recorded in the S1 case Eloss,wind = 5.21MWh. It represents a more

signi�cant energy saving than the reduction of internal solar radiation contributions

through the glazing, linked to the reduction of the g-factor (from 2.56MWh in the

S1 scenario to 0.91MWh in S4.

Therefore causes energy consumption to be reduced by 5.7% compared to the

S1 scenario considering the entire deployment period.

The di�erences between the two scenarios are almost nonexistent if the viola-

tions of the temperature range set between [20, 22]°C are considered, as already

shown in Figure 4.5 where the di�erence is only 0.4°C considering the two months

of the deployment phase.

To conclude the detailed analysis of deployment phase results discussed in this

section, the indoor o�ce temperature pro�le for the S5 scenario is analysed over four

Sundays of four consecutive deployment period weeks. In this case, the behaviour

of the two control logics DRL and baseline will be compared again, also considering

the external temperature pro�le, as reported in Figures 4.13.

Figure 4.13. Comparison between SAC control deployed agent and baseline con-
troller during 4 di�erent sundays in Scenario S5.

The plot shows that in the �rst two Sundays, the DRL control is in comfort

penalty due to a slight time delay in reaching the lower limit of the temperature

range. For the other two Sundays, occurring a reduction of two or three times in
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the external temperature value respectively, the controller manages to cancel the

violations in the initial phase and to maintain a fairly stable internal temperature

pro�le, contrary to what happens in the control baseline. In this latter case, the

alternating ON/OFF phases lead to double wrong behaviour, both for the more

signi�cant amount of energy spent but also for the temperature violations given

the exceeding of the lower limit of the comfort band during the occupancy phases.
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Chapter 5

Conclusion and future work

This work is focused on the development of an adaptive model-free control strategy

for a real radiant system, whose current baseline is of the climatic-based type.

The developed controller was trained and deployed in a simulation environment

composed by EnergyPlus and Python.

This case study has particular importance because most of the buildings in Italy

have heating systems of this type and could therefore be advantageous in terms

of increasing their e�ciency, without considering the possibility of modifying the

system with new technologies, such as the implementation of RES, which involves

considerable costs in some situations.

The goal of this work was to deploy a control agent that could maintain comfort

during the occupied period and reduce the boiler energy consumption. Then, the

controller try to identify the trade-o� between these two contrasting function, in

order to improve both of them.

Before the implementation of the adaptive controller, however, it was necessary

to calibrate the energy model of the building through a trial-and-error approach.

The calibration was therefore carried out on an hourly basis for the internal tem-

perature and monthly for the energy consumption of natural gas and at the end of

this process, it is possible to consider the model as well-calibrated.

The energy model coming out from the calibration stage was then used for the

implementation of the DRL control logic. It is essential to specify that although

the calibration is performed for the entire energy model, the new control logic was

only tested in the o�ce area to simplify the problem.

It was decided to use an algorithm based on a continuous action-space, so it is

employed the Soft Actor-Critic, which respects the prerogative required.

The DRL framework requires, however, that �rst of all, the agent features were

de�ned, such as the action space, the observations space and the reward function.

This last item is a fundamental component for obtaining a correct control policy of

our DRL agent and therefore, representative of our objective, which is to maintain
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adequate conditions of comfort and at the same time try to save energy.

The action-space consists of all the supply water temperature values and the

state-space consists of 9 features, that are chosen in order to provide accurate

information to the agent for the calculation of reward function.

The latter consists of two terms, one related to comfort and one related to the

energy aspect. The sum of these two terms is weighed using two terms representing

the weights of temperature and energy, appropriately chosen during the sensitivity

analysis.

The values assumed by the hyperparameters greatly in�uence the performance

of the DRL control algorithm. However, the SAC can reduce it in part by improving

the exploration phase of new optimal policies thanks to the presence of the entropy

term and the temperature coe�cient.

However, during the training phase a sensitivity analysis on the hyperparame-

ters was necessary due to their strong dependence on the performance of the DRL

controller. For this reason, it is advisable rely on simulated environments for RL

application, at least in the �rst stage of training.

In this work, 24 di�erent con�gurations were analysed over a training period

of 1 month (December), varying the number of neurons per hidden layer, the γ

discount factor, the α learning rate and the temperature-term weight of the reward

(β).

The best con�guration was chosen after careful analysis, carried out in the

section 4.1, and leads to energy savings of 5 % compared to baseline but above all

to a signi�cant reduction of violations of comfort conditions.

The trained agent chosen was then used for a static deployment phase, in which

the simulation period was extendend to two months, including January and Febru-

ary.

Five deployment scenarios were chosen, so that the adaptability of the DRL

control logic can be assessed in respect to changes in boundary conditions, such

as the variation of external weather conditions, but also changes in occupancy

schedules, structural conditions and indoor comfort conditions.

The results showed excellent adaptability of the DRL control agent and con-

siderable advantages compared to baseline counterpart, as comfort conditions are

considerably improved and energy savings are signi�cant. In scenario S2, where the

desired temperature setpoint was increased by 1°C the DRL control logic was able

to achieve savings of 19 % but it has the highest value of comfort band temperature

violations among deployment scenarios, albeit smaller than its baseline.

In the remaining four scenarios, the comfort conditions were improved if com-

pared with the baselines, managing to achieve at the same time energy savings

between 7 and 9 %. Then, the trade-o� concerning the improvements of these two
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features is well-respected.

In this thesis work, the results obtained through a careful choice of the present

observations in the state-space belonging to an adaptive set, have evidenced the

necessity to avoid the exploration of a dynamic deployment phase, that could create

eventual problems of instability, due to its ability to update online the control

strategy in front of the changing of certain boundary conditions. This analysis

suggests that a DRL controller designed with a carefully set of state variables is

su�cient to provide good �exibility and adaptability considering the changes on

outdoor conditions but also indoor comfort requirements, structural components

and occupancy schedules in a static deployment without sacri�cing adaptability.

It is clear that, using a non-adaptive set of variables could lead to poorer per-

formance for the static deployment if compared with a dynamic one.

The work carried out could, however, be expanded or improved so that future

works could focus on the following aspects:

� The developed controller could be implemented in the real world, although

switching from simulations to implementation is very complicated and still

represents one of the main challenges, especially concerning infrastructure to

make the controller available. This problem could be explored in the future

so that in-�eld results can be measured.

� Apply the SAC control logic to more modern HVAC systems, characterised

by a much higher level of complexity than the radiator system considered in

this work. It is possible thinking to implement it in systems characterised

from the presence of renewable energy sources to demonstrate the excellent

results achieved in that �eld by this type of control logic.

� It is possible to introduce into this study the analysis of the Predicted Mean

Vote (PMV) and Predicted Percentage of Dissatis�ed (PPD) and then take

them into account in the objective function. It will be necessary to monitor

new parameters useful for their calculation such as the air velocity and the

mean radiant temperature, which makes it di�cult to evaluate in the real

world given the need for adequate probes with which to improve the Building

Management System (BMS).

� The DRL control logic could be tested in a non-adaptive set of variables, in

order to evaluate its performance in the static deployment case.

� The possible dynamic deployment phase could be explored in order to make

a comparison with the current static phase assessed with similar scenarios

and assess any instability that results in the learned control policy. Dynamic
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deployment may be useful if the thermal inertia of the controlled environment

changes, as in the S3 and S4 scenarios.

� The aspects of reproducibility and standardization should be analyzed, as

the control agent implemented in this case study does not exhibit the same

behaviour under di�erent conditions, such as another building or plant, but

also di�erent climatic conditions.
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Appendix A

Acronyms

Abbreviazione Signi�cato

A3C Asynchronous Advantage Actor-Critic
ANOVA Variance Analysis
BCVTB Building Control Virtual Test Bed
BMS Building Management System
CS Calibrated Simulation
Cv(RMSE) Coe�cient of Variation of the Root Mean Square Error
DNN Deep Neural Network
DQN Deep Q-Network
DP Dynamic Programming
DRL Deep Reinforcement Learning
DSA Di�erential Sensitivity Analysis
EMS Energy Management System
FAST Fourier Amplitude Sensitivity Test
HVAC Heating Ventilation and Air Conditioning
LHV Lower Heating Value
LSTM Long Short Term Memory
MADRL Multi-Agent Deep Reinforcement Learning
MAAC Multi-actor attention-critic
MBE Mean Bias Error
MDP Markov Decision Process
OAT One At a Time
OCC Occupant-Centric Controller
PMV Predicted Mean Value
PR Polynomial Regression
RL Reinforcement Learning
SA Sensitivity Analysis
SAC Soft Actor-Critic
SI Sensitivity Index
TD Temporal Di�erence
UA Uncertainty Analysis

91



Bibliography

[Fabrizio et al., 2015] Enrico Fabrizio & Valentina Monetti (2015), Methodologies

and Advancements in the Calibration of Building Energy Models, Energies, 8,

2548-2574.

[Coakley et al., 2014] Coakley D., Raftery P., Keane M. (2014), A review of meth-

ods to match building energy simulation models to measured data, Renew. Sus-

tain. Energy Rev., 37, 123�141.

[Davin et al., 2015] Enrico Fabrizio, Elisabeth Davin, Valentina Monetti, Philippe

Andrè & Marco Filippi (2015), Calibration of building energy simulation models

based on optimization: a case study, Energy Procedia, 78, 2971-2976.

[Raftery et al., 2011] Raftery P., Keane M. & Costa A. (2011), Calibrating whole

building energy models: Detailed case study using hourly measured data, Energy

and Buildings, 43, 3666-3679.

[Reddy et al., 2007] Agami Reddy T., Maor I. & Panjapornpon C. (2007), Cali-

brating Detailed Building Energy Simulation Programs with Measured Data�

Part II: Application to Three Case Study O�ce Buildings (RP-1051), HVAC&R

Research, 13.2.

[Naidu & Rieger, 2011] Naidu D. Subbaram & Rieger Craig G. (2011), Advanced

control strategies for heating, ventilation, air-conditioning, and refrigeration

systems�An overview: Part I: Hard control, HVAC&R Research, 17.1, 2-21.

[Heo, 2011] Heo Y. (2011), Bayesian calibration of building energy models for en-

ergy retro�t decision-making under uncertainty, Ph.D. Thesis, Georgia Institute

of Technology, Atlanta, USA.

[Iren, 2016] Iren (2016), Report di Diagnosi Energetica, Via Bazzi 4, Torino,

Piemonte, Italia.

[ASHRAE Guideline 14, 2002] ASHRAE Guideline 14, 2002, Measurement of En-

ergy and Demand Savings, American Society of Heating, Refrigerating and Air-

Conditioning Engineers, Inc.,Atlanta

92



BIBLIOGRAPHY

[Yaser, 2012] Abu-Mostafa Y. (2012), Lesson 1: The Learning Problem, http :

//work.caltech.edu/slides/slides01.pdf , Caltech, Pasadena, CA, USA.

[Silver, 2015] Silver D. (2015), Lecture 1: Introduction to Reinforcement Learning,

https : //www.davidsilver.uk/wp− content/uploads/2020/03/introRL , UCL,

London, UK.

[Brandi et al., 2020] Brandi S., Savino Piscitelli M., Martellacci M. & Capozzoli

A. (2020), Deep Reinforcement Learning to optimise indoor temperature control

and heating energy consumption in buildings, Energy and Buildings.

[Pinto et al., 2020] Pinto G., Brandi S., Capozzoli A., Vázquez-Canteli J.R. &

Nagy Z. (2020), Towards Coordinated Energy Management in Buildings via

Deep Reinforcement Learning, 15th SDEWES Conference, Cologne, Germany.

[Dalamagkidis et al., 2007] Dalamagkidis K., Kolokotsa D., Kalaitzakis K. &

Stavrakakis G.S. (2007), Reinforcement Learning for energy conservation and

comfort in buildings, Building and Environment, 42, 2686-2698.

[Chen et al., 2018] Chen Y., Norford L.K., Samuelson H.W. & Malkawi A. (2018),

Optimal control of HVAC and window systems for natural ventilation through

reinforcement learning, Energy and Buildings, 169, 195-205.

[Qiu et al., 2020] Qiu S., Li Zhenhai, Li Zhengwei, Li Jiajie, Long S. & Li Xiaoping

(2020), Model-free control method based on reinforcement learning for building

cooling water systems: Validation by measured data-based simulation, Energy

and Buildings, 218.

[Uhn Ahn & Soo Park, 2019] Ki Uhn Ahn & Cheol Soo Park (2019), Application

of deep Q-networks for model-free optimal control balancing between di�erent

HVAC systems, Taylor & Francis, Science and Technology for the Built Envi-

ronment.

[Wang et al., 2017] Wang Y., Velswamy K. & Biao Huang B. (2017), A Long-Short

Term Memory Recurrent Neural Network Based Reinforcement Learning Con-

troller for O�ce Heating Ventilation and Air Conditioning Systems, Processes,

5, 46.

[Wang & Hong, 2020] Zhe Wang & Tianzhen Hong (2020), Reinforcement learning

for building controls: The opportunities and challenges, Applied Energy, 269.

[Zou et al., 2020] Zou Z., Yu X. & Ergan S. (2020), Towards optimal control of air

handling units using deep reinforcement learning and recurrent neural network,

Building and Environment, 168.

93



BIBLIOGRAPHY

[Hasselt et al., 2016] Hasselt H.V., Guez A. & Silver D. (2016), Deep reinforcement

learning with double Q-Learning, Proceedings of the Thirtieth AAAI Confer-

ence on Arti�cial Intelligence, Association for the Advancement of Arti�cial

Intelligence (AAAI) Press, Phoenix, Arizona, USA, 2094�2100.

[Datacamp, 2020] Datacamp (2020), Neural Network Models, https :

//www.datacamp.com/community/tutorials/neural − network −models− r
, last visit dated 18/06/2020.

[Sutton & Barto, 1998] Sutton R. S. & Barto A.G. (1998), Reinforcement learning

an introduction, a Bradford book. England: MIT Press.

[Haarnoja et al., 2018] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,

J. Tan, V. Kumar, H. Zhu, A.Gupta and P. Abbeel & S. Levine (2018), Soft

Actor-Critic Algorithms and Applications, arXiv 1812.05905.

[Nair et al., 2015] Nair, A., P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon,

A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et

al. (2015), Massively parallel methods for deep reinforcement learning, arXiv

preprint 1507.04296.

[Yang et al., 2015] Yang L., Nagy Z., Go�n P. & Schlueter A. (2015), Reinforce-

ment learning for optimal control of low exergy buildings, Applied Energy, 156,

577-586.

[Zhang et al., 2019] Zhang Z., Chong A., Pan Y., Zhang C. & Lam K.P. (2019),

Reinforcement learning for optimal control of low exergy buildings, Energy and

Buildings, 199, 472-490.

[Claub et al., 2017] Claub J., Finck C., Vogler-�nck P. & Beagon P. (2017), Con-

trol strategies for building energy systems to unlock demand side �exibility - A

review Norwegian University of Science and Technology, Trondheim, Norway

Eindhoven University of Technology, Eindhoven, Netherlands Neogrid Tech-

nologies ApS/Aalborg, 15th Int Conf Int Build Perform 2017, 611�20.

[Finck et al., 2017] Finck C., Beagon P., Clauss J., Thibault P., Vogler-

Finck PJC, Zhang K., et al. (2017), Review of applied and tested con-

trol possibilities for energy �exibility in buildings, Technical report from

IEA EBC Annex 67 "Energy Flexible Buildings" 2017, 1�59. https :

//doi.org/10.13140/RG.2.2.28740.73609.

[Afram & Janabi-Shari�, 2014] Afram A. & Janabi-Shari� F. (2014), Theory and

applications of HVAC control systems � A review of model predictive control

(MPC), Building and Environment, 72, 343-355.

94



[Yun et al., 2012] Yun K, Luck R., Mago P.J. & Cho H. (2012), Building hourly

thermal load prediction using an indexed ARX model, Energy and Buildings,

54, 225-233.

[Yoon & Moon, 2019] Yoon Y.R & Moon H.J. (2019), Performance based thermal

comfort control (PTCC) using deep reinforcement learning for space cooling,

Energy and Buildings, 203.

[Nagarathinam et al., 2020] Nagarathinam S., Menon V., Vasan A. & Siva-

subramaniam A. (2020), MARCO - Multi-Agent Reinforcement learning

based COntrol of building HVAC systems, In The Eleventh ACMInterna-

tional Conference on Future Energy Systems (e-Energy'20), June 22�26,

2020, Virtual Event. ACM, New York, NY, USA, 11 pages, https :

//doi.org/10.1145/3396851.3397694.

[Park & Nagy, 2020] June Young Park & Zoltan Nagy (2020), HVACLearn: A

reinforcement learning based occupant-centric control for thermostat set-points,

In The Eleventh ACM International Conference on Future Energy Systems (e-

Energy '20), June 22�26, 2020, Virtual Event. ACM, New York, NY, USA,

434-437, https : //doi.org/10.1145/3396851.3402364.

[Ding et al., 2020] Ding X., Du W. & Cerpa A. (2020), OCTOPUS: Deep Re-

inforcement Learning for Holistic Smart Building Control In The Eleventh

ACMInternational, In The 6th ACM International Conference on Systems

for Energy-E�cient Buildings, Cities, and Transportation (BuildSys '19),

November 13�14, 2019. ACM, New York, NY, USA, 326-335, https :

//doi.org/10.1145/3360322.3360857.

[Yu et al., 2020] Yu L., Sun Y., Shen C., Yue D., Jiang T. & Guan X. (2020),

Multi-Agent Deep Reinforcement Learning for HVAC Control in Commer-

cial Buildings, IEEE Transactions on smart grid, Vol. 20, No. 20, https :

//arxiv.org/pdf/2006.14156.pdf .

95



Acknowledgements

My sincere gratitude goes to BAEDA team, particularly to Professor Alfonso

Capozzoli, who believed in me from the �rst meeting, always trying to bring out

the best in me.

Thanks Silvio and Giuseppe, co-advisors but also friends, for always being avail-

able and encouraging me in every moment in front of the troubles, making me give

my very best on this route.

The BAEDA team support was essential in making the choose about my near

future and I am very excited to join the team.

Thanks, Enerbrain Srl, for allowing me to join as a trainee in their team, to

learn important aspects for my future profession.

Five years ago, I remember as if it was yesterday, I entered for the �rst time

through the main entrance of this University.

If that was possible, I must, �rst of all, declare my heartfelt thanks to my

parents, Enzo and Giusy, who made it plausible for me to achieve what I have

always dreamed of becoming: an engineer. Thanks also to my brother Paolo, who

encouraged me at all times to give my best, and my sister Noemi, with whom I

was able to share family moments during her stay in Turin.

Thanks to my sweetheart, Emilia, who has always believed in me in each par-

ticular moment, accepting my determination to leave home to grow professionally.

Thanks to Nicolò and Simone, roommates since the beginning but mainly broth-

ers, for practically destroying the homelessness.

This stay in Turin was represented by moments of study but above all of joy

and fun. I indeed could not have wished for better classmates and life.

Thanks to Giuseppe, Davide, Roberto, Gianvito, Andrea, Enzo L., �rst class-

mates but real friends and brothers for me. I have grown up academically and not,

and shared many joyful moments with them: I hope to spend more in the future.

Thanks, Miriana, Alessia and Mariacarla thanks for having considered me a

friend you can rely on.

My gratitudes goes to my dear friends Francesco, Giuseppe D., Roberto G.,

Mario, Cristiano, Matteo, for having shown that they are friends even before being

simple classmates. I will always bring you all with me.

Thanks to those who arrived at the advent of this experience and have never for-

gotten the friendship that joins us: Enzo C., Giorgio, Giovanni, Riccardo, Simona,

Alessia, Federica, Lucia.

To conclude, thanks to the ladies and gentlemen from "Il Posto", my dear

sicilian friends from Alcamo, the city that I left to arrive here in Turin, for making

a party every time I came back home.

96


