POLITECNICO DI TORINO

Laurea Magistrale in INGEGNERIA CIVILE

Tesi di Laurea Magistrale

Tecniche Geomatiche di Monitoraggio dei Ghiacciai

Relatori Prof. ALBERTO CINA Prof. AMBROGIO MARIA MANZINO Prof. FABIO GIULIO TONOLO Candidato MARCO FRONTEDDU

 $10 \ 2020$

Ai miei genitori e mia sorella

Abstract

La recente e rapida involuzione dei ghiacciai rappresenta un importante indicatore in materia di cambiamento climatico. Diverse tecniche geomatiche possono essere utilizzate a supporto della quantificazione delle variazioni di estensione e volume dei ghiacciai, grazie all'acquisizione di una serie storica di misure che ne consentono il monitoraggio. Il presente elaborato si propone di fornire una valutazione estensiva di tali tecniche di monitoraggio, riferendosi al caso studio del Ghiacciaio del Belvedere (Macugnaga, Piemonte). In particolare, innovative tecniche fotogrammetriche ed acquisizioni satellitari sono state utilizzate per la generazione di modelli altimetrici ed ortofoto, che hanno lo scopo di valutare l'evoluzione della superficie glaciale tramite confronto con modelli di riferimento. Tecniche di fotogrammetria diretta applicate ad immagini digitali (acquisite da un velivolo ultraleggero equipaggiato con strumentazione di medio costo) è stata oggetto di studio, al fine di validare l'implementazione di un'architettura strumentale di tipo sperimentale. Le limitazioni relative all'utilizzo di tale tecnica (volo a quote inferiori a 4000 m con impossibilità di riprendere le parti sommitali del Monte Rosa) hanno suggerito la valutazione di analoghe tecniche fotogrammetriche applicate ad una coppia stereoscopica acquisita da piattaforma satellitare. Tali immagini ed i relativi prodotti a valore aggiunto sono stati oggetto di sperimentazioni, volte in particolare alla valutazione dell'accuratezza di posizionamento tridimensionale dei modelli. Diversi esperimenti sono stati condotti utilizzando differenti configurazioni di punti di appoggio, punti di controllo indipendenti e due modelli di orientamento delle immagini: uno rigoroso ed uno non parametrico. Prodotti fotogrammetrici derivanti da elaborazioni con Triangolazione Aerea caratterizzati da precisioni di posizionamento centimetriche sono stati utilizzati come set di dati di riferimento per la validazione delle tecniche satellitari e di fotogrammetria diretta. Tali tecniche hanno dimostrato ampia validità per scopi di monitoraggio dei ghiacciai, consentendo la realizzazione di analisi multitemporali accurate. Nonostante le tecniche di fotogrammetria diretta evidenzino delle problematiche legate all'architettura strumentale, è possibile ottenere modelli digitali del terreno con elevate precisioni sub-decimetriche di posizionamento planoaltimetrico. Tuttavia, alcune correzioni strutturali nella modalità di acquisizione delle misure sono necessarie al fine di garantire completa indipendenza dai punti di appoggio a terra utili all'orientamento esterno dei fotogrammi. L'utilizzo di acquisizioni satellitari ha consentito di realizzare, con un limitato numero di GCP, prodotti con accuratezza planimetrica inferiore ad 1 m (vicina alla risoluzione geometrica delle immagini) ed accuratezza altimetrica inferiore ad 1.5 m. Inoltre, ove le precisioni massime raggiungibili siano sufficienti per realizzare valide analisi, è possibile prescindere dalla presenza

di tali punti. Successivi miglioramenti possono essere ottenuti con l'utilizzo di immagini a più alta risoluzione e l'impiego di punti d'appoggio ad alta quota, i quali consentirebbero la validazione dei prodotti realizzati anche per elevate altitudini.

Abstract

The recent glaciers retreat trend represents an important indicator of climate change. Different geomatics techniques can be used to support the quantification of glacier changes in terms of extent and volume, using time-series to enable glacier monitoring. This thesis aims at assessing glacier monitoring techniques referring to the case-study of the Belvedere Glacier (Macugnaga, Piedmont [IT]). Innovative photogrammetric techniques and optical satellite acquisitions were used to generate elevation models and orthoimages. The main goal is to evaluate glacier surface changes through the comparison with a reference dataset. Direct photogrammetry techniques applied to digital images (captured by an ultralight aircraft equipped with medium-cost instruments) were studied to validate the use of an experimental instrumental set-up. Limitations related to the usage of this technique (flight altitude limitations around 4000 m, impossibility to map Monte Rosa peaks) suggested the evaluation of analogous photogrammetric techniques applied to a high-resolution optical stereo pair collected by a satellite platform. Different tests were carried out to generate value-added products, aiming at the evaluation of the 3D positional accuracy of the digital models. The aforementioned tests were based on different configurations of ground control points (GCPs), independent checkpoints (ICPs) and two mathematical models: a Rational Function Model and a rigorous model. Photogrammetric products obtained from the aerial dataset and characterized by high positional accuracy were used as reference data to validate both satellite and direct photogrammetry techniques. Eventually, these techniques demonstrated broad validity for glacier monitoring purposes, enabling precise multi-temporal analyses. Although direct photogrammetry techniques show severe limitations related to the instrumental structure, it is possible to obtain digital terrain models with decimeter-level 3D positional accuracy. However, several hardware adjustments must be made to guarantee complete independence of this solution from GCPs. The use of satellite images allowed to generate, with a limited number of GCPs, digital products with 2D positional accuracy lower than 1 m (close to the geometric resolution) and elevation accuracies lower than 1.5 m. Furthermore, a direct georeferencing approach (without any GCP) is also possible if the maximum achievable precision meets the analysis requirements. Further improvements can be achieved using higher-resolution images and high-altitude GCPs, which would allow the validation of 3D products also in areas at higher elevations.

Ringraziamenti

Un ringraziamento particolare al Professor Cina per avermi restituito la passione per lo studio ed il percorso che ho scelto.

Ai Professori Giulio Tonolo e Manzino per la costante disponibilità, gentilezza e professionalità.

Un grazie enorme ai miei genitori, esempio di vita, supporto e fonte inesauribile di forza e conforto.

A Maria Paola, vera sorella maggiore ma soprattutto grande amica.

A Maria e Francesco, per avermi aiutato a tenere lo sguardo verso il futuro.

A Madrina, zii e nonni per avermi supportato da vicino.

A Piercosimo, migliore amico da e per una vita capace di rendere questa esperienza indimenticabile.

A Diego, amico leale, compagno di sciagure e di profonda crescita personale.

A Fede, Silvia, Antonio, Cosimo e Fabio, colleghi tenaci ed amici fantastici con cui condividere pensieri assurdi, chiacchierate e spaghettoni doppi.

A Lorenzo, Federica, Claudia e Vivi, continuo sostegno da lontano.

A Marta, instancabile supporto e persona di riferimento che ha riempito di ricordi la mia esperienza a Torino.

Agli amici di Gattabuia e Uddinese, agli schemi con i tappi e le cene stretti.

A tutti quelli che hanno contribuito a valorizzare questo importante percorso, ricco di emozioni e tappa fondamentale di crescita.

Indice

El	enco	delle tabelle v	/III
El	enco	delle figure	х
1	Ghi	acciai e cambiamento climatico	1
	1.1	Ghiacciai e loro caratteristiche	1
		1.1.1 Calotte glaciali	2
		1.1.2 Ghiacciai limitati dalla topografia del terreno	3
		1.1.3 Classificazione italiana dei ghiacciai	4
	1.2	Il sistema ghiacciaio	5
	1.3	I ghiacciai italiani ed i Catasti dei Ghiacciai	6
		1.3.1 I catasti del CGI ed il Nuovo Catasto dei Ghiacciai Italiani .	7
	1.4	Risposta dei ghiacciai al cambiamento climatico	8
2	Teci	niche geomatiche di monitoraggio	9
	2.1	Fotogrammetria: principi teorici	9
		2.1.1 Orientamento interno	11
		2.1.2 Orientamento esterno	12
	2.2	Acquisizioni Satellitari: tecnologia e modelli utilizzati	14
		2.2.1 Classificazione dei sensori	15
		2.2.2 Sensori CCD	16
		2.2.3 Distorsioni	16
		2.2.4 Metodi di acquisizione	17
		2.2.5 Modelli utilizzati	19
3	Cas	o studio: Ghiacciaio del Belvedere	23
	3.1	Inquadramento geografico	24
	3.2	Caratteristiche del ghiacciaio e la sua evoluzione	26
	3.3	Studio del Ghiacciaio del Belvedere dal 2009 al 2018	30
	3.4	Altri progetti sul Ghiacciaio del Belvedere	31

4	Vol	o fotog	grammetrico sul Ghiacciaio del Belvedere	35
	4.1	Archit	tettura del velivolo	36
		4.1.1	Camera	36
		4.1.2	IMU	36
		4.1.3	Ricevitore ed antenna GNSS	39
	4.2	Dati f	orniti sul volo fotogrammetrico	39
		4.2.1	Dati forniti da DigiSky	40
		4.2.2	Dati provenienti da elaborazioni previe	40
	4.3	Ricost	ruzione della traiettoria di volo	47
		4.3.1	Posizionamento relativo di fase e posizionamento cinematico	49
		4.3.2	Sistemi NRTK	52
		4.3.3	Rete di stazioni permanenti SPIN	52
		4.3.4	Stazione permanente virtuale utilizzata	53
		4.3.5	Stazione permanente di Zermatt	59
		4.3.6	Stazione permanente di Domodossola	62
	4.4	Deter	minazione della posizione dell'antenna al momento dello scatto	66
		4.4.1	Conversione dei tempi in GPST	67
		4.4.2	Interpolazione lineare	70
		4.4.3	Risultati e verifica grafica	72
		4.4.4	Confronto con la soluzione da Triangolazione Aerea $\ .\ .\ .$	74
		4.4.5	Rotazione dell'eccentricità	83
	4.5	Sintes	i dei risultati ottenuti	99
	4.6	Elabo	razione del volo in fotogrammetria diretta	100
		4.6.1	Prodotti realizzati	100
	4.7	Concl	usioni	105
5	Elal	borazi	one di immagini satellitari: utilizzo del Rational Func	-
	tion	1 Mode	el	107
	5.1	Costel	Ilazione Pléiades	108
		5.1.1	Risoluzione spaziale	109
		5.1.2	Modalità di acquisizione	110
	5.2	Dati e	e software utilizzato	111
		5.2.1	Dati di input	111
		5.2.2	Software utilizzato	112
		5.2.3	Dati di riferimento	112
	5.3	Flusso	o di lavoro	113
		5.3.1	Pansharpening delle immagini	113
	5.4	Sperin	nentazione sul numero di GCP e ICP	117
		5.4.1	Caratteristiche degli esperimenti	117
		5.4.2	Ricerca automatica di Tie Point e Ground Control Point	119
		5.4.3	Calcolo del modello matematico	119

		5.4.4 Lettura dei residui	120
		5.4.5 Realizzazione dei DSM	120
	5.5	Prodotti realizzati	121
	5.6	Valutazione della qualità del modello	123
		5.6.1 Accuratezza del modello in coordinate immagine	124
		5.6.2 Accuratezza del modello in coordinate terreno	125
	5.7	Valutazione della qualità dei prodotti realizzati	128
		5.7.1 Qualità delle ortofoto $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	130
		5.7.2 Qualità dei DSM \ldots \ldots \ldots \ldots \ldots \ldots \ldots	131
	5.8	Conclusioni	146
6	Elał	oorazione di immagini satellitari: utilizzo del modello di Tou	-
	tin		147
	6.1	Valutazione della qualità del modello	151
		6.1.1 Medie, deviazioni standard e RMSE	152
	6.2	Qualità dei prodotti realizzati	154
		6.2.1 Accuratezza delle ortofoto	157
	6.3	Qualità dei DSM	157
		6.3.1 Grafici di frequenza cumulata	158
	6.4	Conclusioni	168
7	Con	clusioni	169
A	Ulte	eriori dati dal Capitolo 4	173
в	Ulte	eriori dati dal Capitolo 5	231
	B.1	Uso del software PCI Geomatica	231
		B.1.1 Ricerca automatica di Tie Point e Ground Control Point	233
		B.1.2 Lettura dei residui	236
		B.1.3 Estrazione delle ortofoto	237
	B.2	Accuratezza del modello in planimetria e altimetria: medie e devia-	
		zioni standard dei residui	239
	B.3	Accuratezze medie per categorie di pendenza	241
		priori dati dal Capitala 6	247
\mathbf{C}	Ulte	chori dali dal Capitolo 0	
С	Ult€		

Elenco delle tabelle

$1.1 \\ 1.2$	Area e volume dei ghiacci globali ([2])
1.3	Quantificazione dei ghiacciai italiani regione per regione
2.1	Classificazione dei sensori montati sulle piattaforme satellitari a seconda della dimensione del GSD [28] 15
3.1	Evoluzione del ghiacciaio nell'intervallo temporale 2009-2018 (Nova, 2018 [37]) 30
4.1	Caratteristiche della camera
4.2	Caratteristiche del ricevitore u-blox 8
4.3	Caratteristiche dell'antenna GNSS NovAtel 42GOXX16A4-XT-1-1 (da catalogo)
4.4	Coordinate del centro di presa e assetti della camera (da triangola-
	zione aerea). Estratto Tabella A.1
4.5	Posizioni approssimate dell'antenna, assetti approssimati della ca-
4.6	$C_{coordinate dei contri di fase dell'antenna al momento delle scatto 7$
4.0	Eccentricità misurate per ogni fotogramma
4.8	Vettori velocità (vedi Tabella A.4)
4.9	Posizione dei centri di presa riportati al centro di fase
4.10	Calcolo del bias temporale (tempi in secondi)
4.11	Fotogrammi per ogni strisciata rettilinea
4.12	Assetti del velivolo misurati dall'IMU 2 (solidale alla fusoliera) 83
4.13	Centri di presa calcolati a partire dalle posizioni GNSS e confronto con centri di presa forniti dall'orientamento esterno
4.14	Coordinate delle due ortofoto a confronto
4.15	Media e deviazione standard delle differenze di quota tra i due DSM 103
5.1	Caratteristiche principali della costellazione Pléiades [59] 109

A.1	Coordinate del centro di presa e assetti della camera (da triangola-
	zione aerea)
A.2	Posizioni approssimate dell'antenna, assetti approssimati della ca-
	mera e Timestamp
A.3	Coordinate dei centri di fase dell'antenna al momento dello scatto . 186
A.4	Vettori velocità
A.5	Posizione dei centri di presa riportati alla posizione ipotetica dell'an-
	tenna
A.6	Calcolo del bias temporale (tempi in secondi)
A.7	Eccentricità misurate per ogni fotogramma
A.8	Centri di presa calcolati a partire dalle posizioni GNSS e confronto
	con centri di presa forniti dall'orientamento esterno $\ .\ .\ .\ .\ .\ .$ 214
A.9	Assetti del velivolo misurati dall'IMU 2 (solidale alla fusoliera) 220

Elenco delle figure

1.1	Immagine di un sistema ghiacciaio ideale $([4])$	5
2.1	Costruzione della prospettiva centrale [22]	10
2.2	Costruzione delle equazioni di collinearità [23]	13
2.3	GCP richiesti per l'orientamento assoluto dei vari blocchi o strisciate	
	(indicate con una S) [23] \ldots \ldots \ldots \ldots \ldots \ldots	14
2.4	Differenza nell'acquisizione tra pushbroom sincrono ed asincrono [33]	18
3.1	Ghiacciaio del Belvedere (C. Smiraglia, 2014). Fonte: Comitato	
	Glaciologico Italiano	24
3.2	Inquadramento geografico del Ghiacciaio del Belvedere	25
3.3	Schema e posizionamento del Ghiacciaio del Belvedere rispetto alla parete del Monte Rosa ed ai ghiacciai che lo alimentano	27
3.4	Variazione della lingua ablativa in prossimità della fronte del ghiac- ciaio (lobo sinistro) tra il 2017 (in alto) ed il 2019 (in basso)	28
3.5	Ghiacciaio del Belvedere il 29 giugno 2002. Fonte: Comitato Glaciologico Italiano	29
3.6	Ghiacciaio del Belvedere il 15 luglio 2010. Fonte: Comitato Glacio-	
	logico Italiano	30
3.7	Ripetizione dello scatto dei Fratelli Wehrli da parte di Fabiano Ventura e messa in stazione del laser a scansione.	33
3.8	Componenti del progetto Sulle Tracce dei Ghiacciai e del Comitato	
	Torino), dell'Università degli Studi di Milano	33
4.1	Camera PhaseOne iXM-RS150F utilizzata nel rilievo fotogrammetrico	37
4.2	Architettura e dimensioni del velivolo	38
4.3	Ortofoto generata a seguito della triangolazione aerea	42
4.4	DSM di riferimento con risoluzione 0.40 m	43

4.5	Analisi multitemporali derivanti dall'uso del DSM di Figura 4.4	
	come dato di riferimento (variazioni 2017-2019, confronto con DSM	
	satellitare Pléiades)	44
4.6	Convenzione angoli di rollio e beccheggio (<i>roll</i> e <i>pitch</i>)	45
4.7	Convenzione angolo di imbardata (yaw) calcolati da orientamento	
	esterno	46
4.8	Posizione delle tre stazioni permanenti e virtuali utilizzate come	
	master nel posizionamento PPK	48
4.9	Interfaccia RTKpost	54
4.10	Anteprima del file Rinex sulle coordinate della traiettoria	55
4.11	Traiettoria del volo in planimetria (stazione virtuale)	56
4.12	Traiettoria del volo in altimetria (stazione virtuale)	57
4.13	Traiettoria del volo (stazione virtuale)	57
4.14	Traiettoria del volo elaborato utilizzando la stazione permanente	
	virtuale (ambiguità fissate per il 99.7% dei punti).	58
4.15	Traiettoria del volo in planimetria (stazione Zermatt)	59
4.16	Traiettoria del volo in altimetria (stazione Zermatt)	60
4.17	Traiettoria del volo (stazione Zermatt)	60
4.18	Traiettoria del volo elaborato utilizzando la stazione permanente di	
	Zermatt (ambiguità fissate per il 100% dei punti).	61
4.19	Traiettoria del volo elaborato utilizzando la stazione permanente di	
	Domodossola (ambiguità fissate per il 22.4% dei punti).	63
4.20	Differenze nelle traiettorie calcolate con la stazione permanente di	
	Domodossola e la stazione permanente di Zermatt	64
4.21	Differenze nelle traiettorie calcolate con la stazione permanente di	
	Zermatt e la stazione permanente virtuale	65
4.22	Traiettoria e scatti (planimetria)	73
4.23	Traiettoria e scatti	73
4.24	Componenti planimetriche di velocità e modulo della velocità	76
4.25	Schema utilizzato per il calcolo del bias di tempo	78
4.26	Assetti del velivolo misurati dall'IMU 2	84
4.27	Confronto angoli di rollio	85
4.28	Confronto angoli di beccheggio	86
4.29	Confronto angoli di imbardata	87
4.30	Ortofoto generata con fotogrammetria diretta e Check Point di	
	confronto	102
4.31	Cumulate di frequenza per il modulo delle differenze tra il DSM gene-	
	rato (fotogrammetria diretta) e quello di riferimento (triangolazione	
	aerea)	103
4.32	Cumulate di frequenza per le differenze tra il DSM generato e quello	
	di riferimento (simmetria della distribuzione a media nulla)	104

4.33	Istogramma delle differenze tra DSM generato con fotogrammetria diretta e DSM generato con punti di appoggio
5.1	Schema semplificato a supporto del ricampionamento delle immagini
•	Pleiades [59]
5.2	Metodi di acquisizione dei satelliti Pleiades [59]
5.3	Presentazione del software Geomatica Banff (PCI)
5.4	Flusso di lavoro per la realizzazione dei prodotti a partire dalla
55	Drime immedia delle connie stereoscopica
0.0 5.6	Frina initiagne della coppia stereoscopica
5.0 F 7	Dive il a in the COD and a line line line line line line line line
5.7	Distribuzione del GCP e degli ICP $\dots \dots \dots$
5.8	Ortofoto dell'immagine 1, realizzata per il caso con 1 GCP 122
5.9	DSM realizzato per il caso con 1 GCP
5.10	Sintesi dei residui in coordinate immagine per i casi con 12 ICP (solo 2D)
5 11	Sintegi dei regidui in geordinate immedine per i eggi con 17 ICP (gele
0.11	2D) (solo
5.12	Accuratezza planimetrica del modello in coordinate terreno (12 ICP) 126
5.13	Accuratezza planimetrica del modello in coordinate terreno (17 ICP) 127
5.14	Accuratezza altimetrica del modello in coordinate terreno (17 ICP) 127
5.15	Zone in cui avviene il confronto dei DSM
5.16	Distanza planimetrica tra la posizione attesa dei 17 ICP e la posizione
	degli stessi ICP nell'ortofoto realizzata con il DSM fotogrammetrico 130
5.17	Distanza planimetrica tra la posizione attesa dei 17 ICP e la posizione
	degli stessi ICP nell'ortofoto realizzata con il DSM satellitare 131
5.18	Distribuzione spaziale delle zone appartenenti alle diverse classi di
	pendenza
5.19	Classe di pendenza m $<$ 30 $\%$ (notare intersezione della curva 0
	GCP con le altre) $\ldots \ldots 134$
5.20	Classe di pendenza $30\% < m < 50~\%$ (notare intersezione della curva
	$0 \text{ GCP con le altre}) \dots \dots$
5.21	Classe di pendenza $50\% < m < 70\%$
5.22	Classe di pendenza 70% < m < 90 %
5.23	Classe di pendenza m > 90 % $\dots \dots $
5.24	Medie delle differenze DSM satellitare - DSM fotogrammetrico per
	ogni classe di pendenza
5.25	Accuratezza media del DSM al variare del numero di GCP 138
5.26	Primo, secondo e terzo quartile delle differenze DSM satellitare -
	DSM fotogrammetrico al variare del numero di GCP (m $< 30\%$) 139

5.27	Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (30% $<$ m $<$	
	50%)	139
5.28	Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (50% $<$ m $<$	
	70%)	140
5.29	Primo, secondo e terzo quartile delle differenze DSM satellitare -	
	DSM fotogrammetrico al variare del numero di GCP (70% $< m <$	
	90%)	140
5.30	Primo, secondo e terzo quartile delle differenze DSM satellitare -	
	DSM fotogrammetrico al variare del numero di GCP (m $>90\%)$	141
5.31	Primo, secondo e terzo quartile delle differenze DSM satellitare -	
	DSM fotogrammetrico al variare del numero di GCP (tutte le classi	
	di pendenza)	141
5.32	Frequenza cumulate per il DSM realizzato con 3 GCP	142
5.33	Linee lungo il quale sono stati creati i due profili	143
5.34	Profilo 1	144
5.35	Profilo 2	144
5.36	Abbassamenti dello spessore della lingua glaciale (2017-2019)	145
6.1	Distribuzione spaziale dei 18 GCP	149
6.2	Distribuzione spaziale dei 26 GCP	150
6.3	Accuratezza del modello (somma in quadratura dei residui E e N).	151
6.4	Accuratezza altimetrica del modello (Residui Z)	152
6.5	Individuazione bias di modello in direzione Est	153
6.6	Individuazione bias di modello in direzione Nord	153
6.7	Individuazione bias di modello in quota	154
6.8	Ortofoto realizzata con l'ausilio di 18 GCP	155
6.9	DSM realizzato con l'ausilio di 18 GCP	156
6.10	Accuratezza dell'ortofoto (verificata sui 17 ICP)	157
6.11	Frequenza empirica cumulata moduli delle differenze DSM fotogram-	
0	metrico - DSM satellitare (classe $m < 30\%$)	158
6.12	Frequenza empirica cumulata moduli delle differenze DSM fotogram-	
	metrico - DSM satellitare (classe $30\% < m < 50\%$)	158
6.13	Frequenza empirica cumulata moduli delle differenze DSM fotogram-	
	metrico - DSM satellitare (classe $50\% < m < 70\%$)	159
6.14	Frequenza empirica cumulata moduli delle differenze DSM fotogram-	
	metrico - DSM satellitare (classe $70\% < m < 90\%$)	159
6.15	Frequenza empirica cumulata moduli delle differenze DSM fotogram-	
	metrico - DSM satellitare (classe m>90%) $\ldots \ldots \ldots \ldots$	160
	· /	

6.16	Andamento delle differenze medie DSM satellitare - DSM fotogram- metrico	161
6.17	Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $m < 30\%$)	162
6.18	Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $30\% < m < 50\%$).	162
6.19	Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $50\% < m < 70\%$)	163
6.20	Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $70\% < m < 90\%$)	163
6.21	Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $m > 90\%$)	164
6.22	Medie delle differenze DSM fotogrammetrico - DSM satellitare al variare del numero di GCP (11 casi)	164
6.23	Boxplot differenze DSM fotogrammetrico - DSM satellitare al variare del numero di GCP	165
6.24	Frequenze cumulate empiriche DSM fotogrammetrico - DSM satelli- tare (caso 12 GCP)	166
6.25	Frequenze cumulate empiriche DSM fotogrammetrico - DSM satelli- tare (caso 13 GCP)	166
6.26	Frequenze cumulate empiriche DSM fotogrammetrico - DSM satelli- tare (caso 14 GCP)	167
6.27	Frequenze cumulate empiriche DSM fotogrammetrico - DSM satelli- tare (caso 15 GCP)	167
6.28	Frequenze cumulate empiriche DSM fotogrammetrico - DSM satelli- tare (caso 18 GCP)	168
B.1 B.2	Scelta del modello da utilizzare	231
D. -	espressi i GCP	232
B.3	Scelta dell'algoritmo	233
В.4 D б	Scelta delle immagini e denominazione del file di output	233
D.0	per l'algoritmo di ricerca automatica di TP	234
B.6	Interfaccia del software PCI Geomatica con parametri modificabili	201
	per l'algoritmo di ricerca automatica di GCP	235
B.7	Visualizzazione dei residui nel software	236
B.8	Visualizzazione dei residui (coordinate terreno) nel software	236
B.9	Interfaccia per la creazione della coppia epipolare sul software PCI	
_	geomatica	237
B.10	Realizzazione del DSM dalla coppia epipolare - Interfaccia PCI	237

B.11	Estrazione delle ortofoto - Interfaccia PCI	238
B.12	Medie dei residui in coordinate immagine (12 ICP) $\ldots \ldots \ldots$	239
B.13	Medie dei residui in coordinate immagine (17 ICP) $\ldots \ldots \ldots$	240
B.14	Medie dei residui in coordinate terreno (12 ICP)	240
B.15	Medie dei residui in coordinate terreno (17 ICP)	241
B.16	Accuratezze medie per la classe m<30\% $\hfill \ldots \ldots \ldots \ldots$.	241
B.17	Accurate zze medie per la classe 30% <m<50% <math="" display="inline">\hfill \ldots \ldots \ldots \ldots .</m<50%>	242
B.18	Accurate zze medie per la classe 50% <m<70% <math="" display="inline">\hfill \ldots \ldots \ldots \ldots .</m<70%>	242
B.19	Accuratezze medie per la classe 70% $<\!m<\!90\%$	243
B.20	Accuratezze medie per la classe m>90\% $\ldots \ldots \ldots \ldots \ldots$.	243
B.21	Frequenza cumulate per il DSM realizzato con 1 GCP	244
B.22	Frequenza cumulate per il DSM realizzato con 2 GCP	244
B.23	Frequenza cumulate per il DSM realizzato con 2 GCP	245
C.1	Precisione planimetrica del modello (11 casi)	247
C.2	Precisione altimetrica del modello (11 casi)	248
C.3	Frequenze cumulate delle differenze DSM fotogrammetrico - DSM $(alagan m < 20\%)$	940
C_{1}	satematic (classe $m < 50\%$)	240
U.4	satellitare (classe $30\% < m < 50\%$)	249
C.5	Frequenze cumulate delle differenze DSM fotogrammetrico - DSM	
	satellitare (classe $50\% < m < 70\%$)	249
C.6	Frequenze cumulate delle differenze DSM fotogrammetrico - DSM	25 0
	satellitare (classe $70\% < m < 90\%$)	250
C.7	Frequenze cumulate delle differenze DSM fotogrammetrico - DSM $(a) = 00\%$	250
$C \circ$	Satematic (classe $m > 90/0$)	200
0.8	medie dene differenze DSM lotogrammetrico - DSM satemtare (11 casi)	251
C 9	Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe	201
0.5	m < 30%)	251
C.10	Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe	-01
0.20	30% < m < 50%)	252
C.11	Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe	
	50% < m < 70%)	252
C.12	Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe	
	70% < m < 90%)	253
C.13	Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe	
	m > 90%)	253
C.14	Rappresentazione differenze DSM fotogrammetrico - DSM satellitare	
	(classe m<30%)	254

C.15 Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe
30% < m < 50%)
C.16 Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe
50% < m < 70%)
C.17 Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe
70% < m < 90%)
C.18 Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe
m > 90%)
C.19 Medie delle differenze DSM fotogrammetrico - DSM satellitare (11
casi) $\ldots \ldots 25$
C.20 Boxplot differenze DSM fotogrammetrico - DSM satellitare 25

Introduzione

Il monitoraggio dei ghiacciai rappresenta un aspetto fondamentale in materia di cambiamenti climatici. Dal punto di vista quantitativo, l'evoluzione dell'estensione e del volume del ghiacciaio sono valutati tramite operazioni di monitoraggio, costituite da misure ripetute nel tempo atte alla creazione di modelli digitali del ghiacciaio stesso. Dal confronto di tali modelli, siano essi bidimensionali o tridimensionali, si possono estrarre informazioni scientificamente rilevanti sulla trasformazione dei corpi glaciali. Le campagne di misura svolte sui ghiacciai sono generalmente finalizzate alla:

- stima dei bilanci di massa, ovvero la quantificazione della *variazione* di volume del ghiacciaio indipendentemente dalle variazioni stagionali;
- creazione ed aggiornamento di *catasti* specifici per i ghiacciai che contribuiscono all'aggiornamento del quadro globale delle condizioni della criosfera.

L'obiettivo del monitoraggio dei ghiacciai è fornire dati accurati e precisi su aspetti quali variazioni di area, volume e forma. A loro volta, tali informazioni costituiranno la base su cui determinare lo stato di salute dei ghiacciai e la correlazione delle trasformazioni con il cambio climatico. Le varie tecniche geomatiche utilizzate hanno quindi lo scopo di rilevare le sopracitate variazioni, tipicamente tramite l'acquisizione ed il confronto di serie storiche di modelli digitali della superficie, anche con l'ausilio di immagini ortoproiettate (ovvero metricamente corrette). Nonostante le misure abbiano carattere assoluto (misura di coordinate e quote assolute rispetto a sistemi di riferimento noti), è necessario disporre di due o più modelli al fine di poter operare dei confronti relativi. Affinché si abbia una visione complessiva dell'intero corpo glaciale (profondità, volumi globali), le misure tipiche del monitoraggio andranno affiancate da altri dati di natura geofisica, per la generazione di modelli spaziali del ghiacciaio al di sotto della superficie. Nella presente tesi sono descritte alcune delle tecniche di monitoraggio dei ghiacciai e la loro applicazione al caso studio del Ghiacciaio del Belvedere. Tale ghiacciaio, sito in Macugnaga (Regione Piemonte), è ubicato ai piedi della parete Nord-Est del Monte Rosa, che ospita la terza vetta più alta del massiccio delle Alpi (Punta Dufour, 4634 m). Il ghiacciaio è stato oggetto di approfonditi studi riguardanti

la sua evoluzione, svolti con l'ausilio di diverse tecniche geomatiche a partire dai primi anni 2000. Nel presente elaborato sono state utilizzate e perfezionate tecniche fotogrammetriche applicate ad immagini acquisite da piattaforma aerea e satellitare. Il rilievo fotogrammetrico aereo è stato eseguito da un velivolo ultraleggero biposto, in grado di svolgere le operazioni di acquisizione in un tempo di circa 2 ore (compreso il collegamento con l'aeroporto di Torino-Aeritalia, distante 100 km da Macugnaga). L'aereo, dotato di un sistema a doppia camera e doppia piattaforma inerziale di basso costo, ha acquisito 287 fotogrammi volti alla realizzazione di un modello digitale di superficie (DSM) ed una ortofoto, entrambi ad alta risoluzione ed accuratezza (entrambe sub-decimetriche). Le elaborazioni previe sono state eseguite sfruttando una rete di Ground Control Point (GCP) materializzata artificialmente sul terreno: i prodotti realizzati sono stati impiegati successivamente nel presente elaborato, al fine di validare le tecniche di *fotogrammetria diretta*.

L'aereo ultraleggero presenta importanti limitazioni tecniche per monitoraggi a quote elevate, potendo raggiungere quote di volo di poco superiori a 4000 m. Tali limitazioni non hanno consentito di rilevare la parte alta della parete Nord-Est del Monte Rosa e, con essa, i ghiacciai che alimentano il Ghiacciaio del Belvedere. Al fine di ovviare a tali problematiche, è stata acquisita una coppia stereoscopica di immagini satellitari ad alta risoluzione. Tali immagini, presenti in un archivio commerciale Pléiades e risalenti all'agosto del 2017, ricoprono un'area di 5x5 km^2 e permettono di inquadrare un'area molto più ampia rispetto al volo aereo, inclusi i picchi più alti del massiccio alpino circostante il ghiacciaio. Una sperimentazione volta alla ricerca del numero ottimale di Ground Control Point è stata condotta tramite l'utilizzo di diverse configurazioni di GCP e Independent Check Point (ICP) e due tipi di modelli (non parametrici, Capitolo 5 e rigorosi, Capitolo 6). I prodotti finali realizzati sono validati con l'ausilio di ortofoto e DSM fotogrammetrici descritti nel Capitolo 4.

Lo scopo finale dell'elaborato è la comprensione delle precisioni raggiungibili con le varie tecniche geomatiche utili alla realizzazione di prodotti finali, quali ortofoto e DSM. Tali prodotti possono essere utilizzati nella definizione e perfezionamento di metodologie volte alla realizzazione di *analisi multitemporali* sull'evoluzione dei ghiacciai. Confronti di più modelli realizzati in tempi diversi hanno fornito prevalentemente informazioni sulle variazioni di quota nello spessore dei corpi glaciali, le quali costituiranno il supporto di bilanci di massa del ghiacciaio stesso.

Capitolo 1 Ghiacciai e cambiamento climatico

I ghiacciai perenni ricoprono il 10.8 % della superficie terrestre. Le calotte polari di Groenlandia e Antartide rappresentano la maggioranza dei ghiacci costituenti la criosfera terrestre (Tabella 1.1). I ghiacciai sono delle masse glaciali perenni, sufficientemente massive da poter osservare deformazioni gravitazionali. Ghiacciai e calotte glaciali cominciano a formarsi dove l'accumulo di neve eccede la sua ablazione¹ (scioglimento ed evaporazione) per un periodo di tempo pari ad anni o decenni [2].

Regione	Area $[10^{6}km^{2}]$	Volume $[10^6 km^3]$
Antartide	13.76	25.6
Groenlandia	1.74	2.96
Resto del mondo (2010)	0.52	0.16
Totale globale	16.03	28.6

Tabella 1.1:	Area e	volume	dei	ghiacci	globali	([2])
--------------	--------	--------	-----	---------	---------	----	----	---

1.1 Ghiacciai e loro caratteristiche

Da letteratura, si definisce ghiacciaio:

accumulo naturale di ghiaccio a struttura stratificata, dovuto a trasformazione della neve meteorica, soffice e porosa, dapprima in neve granulare. [...] Un

 $^{^1\}mathrm{Diminuzione}$ della massa di un ghiacciaio, conseguente a fenomeni di fusione e di evaporazione.([1])

ghiacciaio tipico è costituito da un bacino collettore, nel quale si accumula, subendo la trasformazione in ghiaccio, la neve caduta, e da un bacino dissipatore, detto anche d'ablazione (o canale di scarico, o lingua), nel quale il ghiaccio scorre per forza di gravità verso valle fino a raggiungere un limite, la fronte, in cui avviene lo scioglimento del ghiaccio stesso. [1]

Un'altra definizione viene data da Kappenberger et al.:

I ghiacciai possono essere definiti come "masse di ghiaccio originatesi per metamorfismo di accumuli nevosi che hanno resistito a più periodi di fusione (estati), che contengono inclusioni di gas (bolle d'aria), sostanze organiche (pollini) e detriti rocciosi (morene) e che dalla zona d'alimentazione dove l'accumulo è eccedente defluiscono sino alla zona di fusione, dove fondono".([3])

A fini dello studio, è opportuna una classificazione dei corpi glaciali, la quale dipende dalla morfologia e dalla collocazione del ghiacciaio ([4]). In particolare, esiste una classificazione di primo e di secondo ordine, come indicato dalla Tabella 1.2.

Classificazione del primo ordine	Classificazione del secondo ordine
Calotte di ghiaccio	Cupole di ghiaccio
(ghiacciai non limitati	Flussi di ghiaccio
dalla topografia)	Outlet glaciers
Ghiacciai limitati dalla topografia	Campi di ghiaccio
	Ghiacciai vallivi
	Circhi glaciali
	Transection glaciers
	Ghiacciai pedemontani
	Niche glaciers
	Glacieret
	Frange di ghiaccio
Piattaforme glaciali	Confinate
-	Non confinate
	Ice rise

Tabella 1.2: Classificazione dei ghiacciai ([4])

1.1.1 Calotte glaciali

La terminologia inglese, a differenza di quella italiana, discerne i lemmi *ice cap* e *ice sheet*, definendo *ice cap* calotte con estensioni inferiori a $50000km^2$ e *ice sheet* quelle con estensioni superiori. La classificazione del secondo ordine prevede una ulteriore suddivisione in tre parti: *cupole di ghiaccio, outlet glacier* e *ice stream*.

Cupole di ghiaccio

Le cupole di ghiaccio si elevano in quota rispetto al resto della calotta glaciale e possono erigersi al di sopra di una depressione o di una prominenza topografica. Possono raggiungere fino a 3000 m di spessore negli ice sheet e qualche centinaio di metri negli ice cap.

Outlet glacier e ice stream

Rappresentano le zone caratterizzate da maggiori velocità di spostamento del ghiaccio dal centro verso le zone periferiche. Queste zone possono essere riconosciute per la presenza di numerosi crepacci².

1.1.2 Ghiacciai limitati dalla topografia del terreno

Tra i più importanti si hanno:

- campi di ghiaccio;
- ghiacciai vallivi;
- ghiacciai o lobi pedemontani;
- circhi glaciali.

Campi di ghiaccio

I campi di ghiaccio (*ice field*) si sviluppano in zone con pendenza non eccessiva ma con orografia localmente accidentata e quota sufficiente per l'accumulo di ghiaccio. Si differenziano dalle calotte per l'assenza della caratteristica forma a cupola e per l'estensione inferiore ai $50000km^2$. La copertura topografica rappresenta un altro fattore di distinzione tra *ice field* e *ice cap*, poiché le calotte sommergono completamente il territorio circostante. Nel caso dei campi di ghiaccio, la copertura non occulta integralmente la topografia e sono tipicamente localizzati in depressioni o plateau del terreno ([6]).

Ghiacciai vallivi

I ghiacciai vallivi, più notoriamente conosciuti come **ghiacciai alpini**, si formano a partire dal ghiaccio che viene scaricato da un *campo di ghiaccio* (oppure da un

 $^{^{2}}$ I crepacci sono fratture nel ghiaccio che si formano sotto tensione. L'orientazione di nuovi crepacci indicano la direzione degli stress principali nel ghiaccio. ([5])

circo di ghiaccio) verso una valle rocciosa. Questi ghiacciai possono avere, come nel caso dei fiumi, una composizione ramificata e possono essere gerarchizzati con le stesse metodologie utilizzate per i bacini idrografici.

Circhi glaciali

La forma semicircolare dei circhi glaciali è data dalla concavità della roccia che funge da bacino di accumulazione (specialmente nel caso di neve trasportata dal vento).

Ghiacciai pedemontani

I ghiacciai (o lobi) pedemontani si formano dallo sbocco di un ghiacciaio alpino verso aree a minore quota. Lo scarico di massa dalle zone di accumulazione sovrastanti (generalmente un campo di ghiaccio) è sufficiente per mantenere superfici glaciali relativamente grandi al di sotto della linea di equilibrio ³.

1.1.3 Classificazione italiana dei ghiacciai

La classificazione precedentemente descritta ha caratteristiche molto generali. A livello italiano, infatti, è possibile denotare alcune caratteristiche dei ghiacciai che saranno utili alla loro definizione. In particolare, si hanno tre grandi gruppi [3]:

- tipo **pirenaico** o montano dove manca una vera e propria lingua glaciale ma dispongono di una zona di accumulo;
- tipo **alpino** dove è presente una lingua di grande estensione alimentata da un bacino di accumulo;
- tipo **himalaiano** dove colate e bacini diversi confluiscono in un'unica colata, spesso ricoperta di detriti.

Ghiacciai neri

Si definisce *nero* un ghiacciaio coperto da detriti per più del 50% del bacino di ablazione. Questi ghiacciai, definiti in inglese come *debris-covered glaciers*, comprendono una frazione significativa dei ghiacciai alpini esistenti. In generale, presentano comportamenti diversi rispetto ai ghiacciai *"bianchi"* (non coperti, *clean glaciers*) in relazione al loro scioglimento, ruscellamento e rischio alluvione. Per

³ELA: Equilibrium Line Altitude o limite delle nevi perenni rappresenta la linea immaginaria nel ghiacciaio corrispondente alla quota in cui l'accumulo di neve è uguale alla quantità di ghiaccio che si scioglie in estate. Spesso viene chiamata anche snow line ([7])

ghiacciai di questo tipo, le perdite di massa possono avvenire in modalità invertite rispetto a ghiacciai non coperti. Le zone adiacenti alla bocca del ghiacciaio possono subire, infatti, un apparente incremento di spessore imputabile ad un incremento della copertura detritica a valle. Uno strato detritico molto sottile accelera lo scioglimento poiché causa una riduzione della albedo del ghiacciaio responsabile, a sua volta, di un maggiore assorbimento di radiazioni a corta lunghezza d'onda. Spessori maggiori, invece, isolano il corpo glaciale e ritardano la conduzione di calore. Il valore di *transizione*, ovvero lo spessore per cui l'ablazione del ghiacciaio non viene influenzata dallo strato detritico che lo copre, può variare da millimetri a centimetri. Lo strato detritico di copertura permette l'esistenza di molti ghiacciai neri in zone in cui la presenza di ghiacciai *bianchi* non sarebbe permessa dalle condizioni ambientali [8].

1.2 Il sistema ghiacciaio

La comprensione del reale comportamento di un ghiacciaio passa attraverso la sua interpretazione come un *sistema* che presenta input e output propri, oltre all'interazione con altri sistemi come l'atmosfera, l'oceano, i fiumi e l'ambiente circostante [4]. In questo modo è possibile, come mostrato nella Figura 1.1, definire lo schema di un ghiacciaio ideale ed i processi ad esso connessi.

Figura 1.1: Immagine di un sistema ghiacciaio ideale ([4])

Il sistema ghiacciaio è caratterizzato da accumulo di neve durante l'inverno e fenomeni di fusione della stessa durante l'estate (**ablazione**). Tale fenomeno, più comprensivamente, rappresenta la perdita di volume di ghiaccio sia per fusione che per evaporazione. Come affermato in precedenza, la ELA (limite delle nevi perenni o persistenti) divide il ghiacciaio in due zone:

- al di sopra della ELA la quantità di neve accumulata è superiore rispetto a quella evaporata o fusa, con la formazione di un **bacino di accumulo**;
- al di sotto della ELA si osserva la scomparsa della neve contestualmente ad un certo spessore di ghiaccio, definendo questa zona come **bacino di ablazione**.

Contemporaneamente, il ghiaccio si muove dal bacino di accumulo al bacino di ablazione. Quando le condizioni climatiche sono costanti nel tempo, la velocità di spostamento del ghiacciaio verso valle è la stessa che si ha nell'arretramento del **fronte** del ghiacciaio per via del processo di ablazione. Il ghiacciaio gode, inoltre, di una certa inerzia relativa alle sue dimensioni: i bilanci di massa sono influenzati dalle condizioni stagionali in modo diretto ma più lentamente dai cambiamenti climatici [3].

1.3 I ghiacciai italiani ed i Catasti dei Ghiacciai

In territorio nazionale si distinguono tre diversi catasti. Il Catasto dei Ghiacciai del Comitato Glaciologico Italiano (CGI, [9]) raccoglie dati provenienti dal Catasto dei Ghiacciai Italiani (Anno Geofisico Internazionale 1957-1958, [10])⁴, dal progetto GLIMS⁵ [11] e dallo studio idrologico di Salvatore et al. svolto nel biennio 2006-2007 [12]. Il Catasto Ghiacciai della Fondazione Montagna Sicura [13] è incluso nel Sistema Informativo Territoriale della Regione Valle d'Aosta. Infine, il *Catasti del CGI e Nuovo Catasto dei Ghiacciai Italiani* ([14]) è stato redatto nel 2015 da Claudio Smiraglia e Guglielmina Diolaiuti (2015) con la collaborazione dell'Università degli Studi di Milano, il Comitato Glaciologico Italiano e Levissima. I *Catasti dei Ghiacciai* sono realizzati con l'obiettivo di descrivere i corpi glaciali presenti nel territorio, rispondendo ad esigenze di tipo divulgativo, culturale, scientifico e turistico [15]. Sul versante italiano, infatti, è situato circa il 20% dei ghiacciai delle Alpi: su una superficie totale di 2050km² si hanno 368.10km² in territorio nazionale. Si contano, inoltre, due ghiacciai sulla catena degli Appennini che porta il numero dei ghiacciai a 903 (su un totale di 3770 sulla catena delle Alpi).

 $^{{}^{4}\}mathrm{A}$ cura dello stesso CGI e del Consiglio Nazionale delle Ricerche

⁵Global Land Ice Measurements from Space

Regione	Numero di ghiacciai	Area ghiaccia i $\left[km^2\right]$
Piemonte	107	28.55
Valle d'Aosta	192	132.90
Lombardia	230	87.67
Trentino	115	30.96
Alto Adige	212	84.58
Veneto	38	3.21
Friuli V.G.	7	0.19
Abruzzo	2	0.04

1.3–Ighiacciai italiani ed
i $\mbox{Catasti dei}$ Ghiacciai

 Tabella 1.3:
 Quantificazione dei ghiacciai italiani regione per regione

1.3.1 I catasti del CGI ed il Nuovo Catasto dei Ghiacciai Italiani

Il Nuovo Catasto dei Ghiacciai Italiani è stato realizzato nel 2015 allo scopo di aggiornare la mappatura dei ghiacciai italiani che ha radici riconducibili agli inizi del Novecento. Uno dei primi catasti dei ghiacciai fu redatto da Carlo Porro nel 1925 (CGI: Comitato Glaciologico Italiano) ma la prima opera comprensiva ed all'avanguardia venne realizzata tra il 1959 ed il 1962 dal CGI in collaborazione con il Consiglio Nazionale delle Ricerche (CNR). Per la sua stesura sono stati utilizzati dati provenienti da tecniche di rilievo terrestri ed osservazioni cartografiche. Un'altra versione fu redatta per il Catasto Internazionale dei Ghiacciai (fine anni '70, con aggiornamento nel 1989). I catasti dei ghiacciai hanno come obiettivi principali:

- miglioramento della conoscenza dell'idrologia del territorio;
- offrire servizi per la gestione della risorsa idrica e per la gestione di rischi ambientali;
- fornire un contributo rilevante nella correlazione tra ghiacciai e cambiamento climatico.

Il NCG è nato a seguito dell'accelerazione dello scioglimento dei ghiacciai alpini, avvenuta negli ultimi decenni e che si inserisce in un andamento globale di riduzione dei corpi glaciali ad opera del cambiamento climatico. L'aspetto più evidente e dannoso per la criosfera è, di fatto, l'aumento della temperatura media del pianeta. Conseguentemente, i ghiacciai vengono studiati come importanti indicatori climatici, oltre a rappresentare un'importante risorsa idrica, energetica, paesaggistica e turistica. Tra gli obiettivi principali vi è quindi lo studio a livello dimensionale dei ghiacciai italiani che permetta di valutare nel tempo le variazioni relative. Quest'ultimo aspetto lega i catasti dei ghiacciai al presente lavoro di tesi. Tramite l'utilizzo delle *tecniche di monitoraggio* successivamente esposte, sarà possibile avere dei catasti accurati e rapidamente aggiornati che consentiranno di avere una visione comprensiva e generale dell'evoluzione dei ghiacciai in Italia. [16]

1.4 Risposta dei ghiacciai al cambiamento climatico

Le variazioni dei ghiacciai in termini di posizione, bilancio di massa ed area sono riconosciute tra i più importanti indicatori nell'ambito del cambiamento climatico. I ghiacciai alpini più piccoli hanno delle risposte al cambiamento climatico facilmente osservabili nel corso degli anni [8].

Lo studio dei ghiacciai consente di ricostruire in modo indiretto le condizioni climatiche globali risalenti a centinaia o migliaia di anni. I processi glaciali modificano, infatti, l'ambiente circostante lasciando i segni delle precedenti condizioni climatiche.

Il $riscaldamento \ globale^6$, che ha subito una forte accelerazione negli ultimi decenni, è responsabile del forte ritiro dei ghiacciai a livello mondiale osservabile attualmente [17]. Riconoscere la sensibilità ai fenomeni di cambiamento climatico ha portato allo sviluppo di progetti globali di monitoraggio dell'evoluzione dei ghiacciai, oggi gestito dal World Glacier Monitoring Service (WGMS). Questo servizio raccoglie osservazioni standard riguardanti variazioni in lunghezza, area, volume e massa dei ghiacciai nel corso del tempo. Negli ultimi anni, questi dati sono stati raccolti in catasti (simili a quelli precedentemente descritti) con misurazioni derivanti da osservazioni satellitari. Le misure più importanti riguardanti i ghiacciai sono, quindi, i bilanci di massa nell'intervallo temporale di un anno, risultante dalla differenza tra accumulo di ghiaccio ed ablazione netta. L'importanza del monitoraggio dei ghiacciai era riconosciuta sin dal 1957 (International Geophysical Year), anno in cui si vedranno i primi catasti italiani completi confluiti in quelli internazionali (vedi sezione precedente). L'avvento delle tecnologie di acquisizione satellitare ad alta risoluzione ha quindi permesso di completare degli inventari globali che raccolgono, utilizzando delle metodologie standard, dei quadri completi su ogni particolare ghiacciaio. Tali dati, a loro volta, definiscono un punto di partenza nel monitoraggio dell'evoluzione della criosfera, soggetta ad una drastica riduzione mai osservata prima⁷ ([19]).

 $^{^6 {\}rm Secondo}$ la comunità scientifica largamente imputabile alle attività umane, comprendenti il rilascio massivo di anidride carbonica ed altri $gas\ serra$ nell'atmosfera

 $^{^{7}20}$ metri water equivalent per il periodo 1946-2006 ([18])

Capitolo 2

Tecniche geomatiche di monitoraggio

Il presente capitolo ha lo scopo di illustrare brevemente i principi teorici e pratici alla base delle tecniche di monitoraggio oggetto di sperimentazione nel presente lavoro di tesi.

2.1 Fotogrammetria: principi teorici

La fotogrammetria digitale *close-range* ha come obiettivo la misura di oggetti o immagini digitali catturati con una camera metrica. Questa è una tecnica di misura tridimensionale che utilizza la *prospettiva centrale* come modello matematico fondamentale. Le posizioni e le forme degli oggetti sono determinate tramite la *ricostruzione dei raggi di proiezione*. Per ogni fotogramma, ogni punto *a* identificabile sull'immagine ed il centro di presa O, definiscono la direzione spaziale del raggio passante per il corrispondente punto A (vedi Figura 2.1). Ogni raggio \overline{aOA} può essere definito in uno spazio tridimensionale se sono conosciuti:

- la geometria dell'immagine (quindi della camera);
- la posizione del sistema immagine (quindi del centro di presa) e assetto;

Dall'intersezione di almeno due raggi che corrispondono alla proiezione dello stesso punto (*raggi omologhi*), questo può essere collocato nello spazio tridimensionale. Il numero minimo di immagini stereoscopiche¹ è 2, e i punti omologhi possono essere riconosciuti in un grande numero di immagini [21].

¹Stereoscopia: fenomeno riguardante l'informazione relativa alla profondità di un oggetto tridimensionale quando visto da due prospettive differenti. Perché si abbia una coppia stereoscopica

Figura 2.1: Costruzione della prospettiva centrale [22]

Come osservabile in Figura 2.1, si definisce un sistema di riferimento primario, posto in modo arbitrario nello spazio oggetto, ed un sistema di riferimento secondario con origine nel punto principale della camera (centro di presa). L'asse z del secondo sistema di riferimento (interno) coincide con l'asse principale ed è uscente dal piano di proiezione (piano dell'immagine). Le coordinate del centro di presa $O:(X_0, Y_0, Z_0)$ e del punto $A:(X_A, Y_A, Z_A)$ sono espresse nel sistema di riferimento primario. La proiezione del punto A attraverso l'origine O nel piano dell'immagine restituisce le coordinate del punto $a:(\xi_a, \eta_a, -c)$ nel sistema di riferimento immagine (c rappresenta la distanza principale o lunghezza focale). I punti A ed a sono chiamati rispettivamente punti oggetto ed immagine. Analiticamente, la trasformazione viene espressa dal sistema a tre incognite in equazione 2.1:

$$\underline{X}_A = \underline{X}_0 + \mu \underline{\underline{\mathbf{R}}}^t \underline{x}_a \tag{2.1}$$

dove μ è uno scalare positivo detto *fattore di scala*, il quale rappresenta una quantità proporzionale alla distanza del punto A dall'origine del sistema di riferimento

di immagini priva di distorsione, le due prospettive dovrebbero essere create semplicemente attraverso la traslazione del centro di presa e non la rotazione del sistema di riferimento interno del piano di proiezione (sistema immagine) [20]

interno O [22]. Inoltre, si definiscono:

$$\underline{X}_{A} = \begin{pmatrix} X_{A} \\ Y_{A} \\ Z_{A} \end{pmatrix}$$
(2.2a)

$$\underline{x}_a = \begin{pmatrix} \xi_a \\ \eta_a \\ -c \end{pmatrix}$$
(2.2b)

$$\underline{\underline{R}} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}$$
(2.2c)

Le componenti r_{ij} della matrice $\underline{\underline{R}}$ costituiscono una matrice di rotazione che viene costruita nel rispetto dell'ordine delle *rotazioni cardaniche*.

2.1.1 Orientamento interno

Lo spazio immagine è definito dal suo sistema di riferimento bidimensionale ξ, η e dalla posizione del Punto Principale (PP), ovvero la proiezione del centro di presa sul piano dell'immagine. Il centro di presa (O) è definito dalla tripletta di coordinate $O:(\xi_0, \eta_0, c)$ dove c rappresenta la distanza principale. Questi tre parametri definiscono quindi l'orientamento interno del fotogramma. Contemporaneamente, anche le distorsioni radiali e tangenziali dei fotogrammi dovrebbero essere prese in considerazione. I tre parametri di orientamento interno sono considerati sempre come costanti della camera e sono forniti dal costruttore [23]. Considerando esclusivamente la fotogrammetria digitale, l'orientamento interno non si limita alla sola calibrazione della camera (vedi paragrafo successivo), la quale consente di valutare le grandezze descritte precedentemente quali lunghezza focale, posizione del PP e parametri di distorsione. Questo, infatti, comprende anche la determinazione della relazione che intercorre tra i pixel e le coordinate immagine [24].

Calibrazione della camera

La calibrazione della camera è considerato un aspetto cruciale in applicazioni che richiedano delle misure quantitative attraverso le immagini. Nel contesto tridimensionale, per *calibrazione* si intende la determinazione dei parametri intrinseci della camera. A questo scopo, vengono utilizzati dei punti distribuiti in un poligono tridimensionale: le relazioni tra i punti visti nel piano dell'immagine (bidimensionale) e i punti nello spazio (tridimensionale) sono utilizzate per la calibrazione stessa della camera [25]. Nell'ambito delle misure quantitative, uno degli aspetti di maggiore interesse è quello della *distorsione*. Questa si lega direttamente alla posizione dei punti e quindi all'accuratezza nel posizionamento degli stessi nel piano dell'immagine (non è quindi direttamente legato alla qualità dell'immagine stessa) [26].

2.1.2 Orientamento esterno

Le coordinate del centro di presa $O: (X_0, Y_0, Z_0)$ espresse nel sistema di riferimento oggetto e gli angoli di assetto $\omega - \phi - \kappa$ del fotogramma al momento dell'acquisizione definiscono l'*orientamento esterno* del fotogramma stesso. Questi *sei* parametri possono essere ottenuti in due modi diversi:

- 1. da posizioni GNSS e assetti (forniti da piattaforme IMU²) misurati in modo diretto durante le operazioni di acquisizione dei fotogrammi (si parla in questo caso di *fotogrammetria diretta*);
- 2. da una *stima ai minimi quadrati* dei parametri attraverso l'individuazione di una rete di GCP³ (Triangolazione Aerea).

In definitiva, nove parametri devono essere noti affinché si conosca completamente la geometria di acquisizione di un determinato fotogramma. [23]

Equazioni di collinearità

Le relazioni che legano le coordinate oggetto con le coordinate immagine (e viceversa), sono dette equazioni di collinearità (Equazioni 2.3 e 2.4). Queste vengono ottenute a partire dalla condizione di allineamento (Equazione 2.1) e per il solo orientamento assoluto esplicitando il fattore μ in una delle equazioni e sostituendolo nelle altre due (vedi Figura 2.2).

$$X = X_0 + (Z - Z_0) \frac{r_{11}(\xi - \xi_0) + r_{12}(\eta - \eta_0) + r_{13}c}{r_{31}(\xi - \xi_0) + r_{32}(\eta - \eta_0) + r_{33}c}$$
(2.3a)

$$Y = Y_0 + (Z - Z_0) \frac{r_{11}(\xi - \xi_0) + r_{12}(\eta - \eta_0) + r_{13}c}{r_{31}(\xi - \xi_0) + r_{32}(\eta - \eta_0) + r_{33}c}$$
(2.3b)

$$\xi = \xi_0 - c \frac{r_{11}(X - X_0) + r_{21}(Y - Y_0) + r_{31}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$
(2.4a)

$$\eta = \eta_0 - c \frac{r_{12}(X - X_0) + r_{22}(Y - Y_0) + r_{32}(Z - Z_0)}{r_{13}(X - X_0) + r_{23}(Y - Y_0) + r_{33}(Z - Z_0)}$$
(2.4b)

²IMU: Inertial Measurement Unit(s)

³GCP: Ground Control Point

Figura 2.2: Costruzione delle equazioni di collinearità [23]

Triangolazione Aerea

Le operazioni di triangolazione aerea definiscono una separazione formale delle equazioni di collinearità. In particolare, l'orientamento esterno viene eseguito in due passi: orientamento *relativo* ed orientamento *assoluto*. Questa separazione è raggiungibile attraverso l'individuazione di un sufficiente numero di Tie Point (TP) che collega relativamente i fotogrammi tra di loro (orientamento *relativo*) ed un numero *limitato*⁴ di GCP, ben distribuiti sull'area da restituire. Attraverso una compensazione ai minimi quadrati è possibile orientare il modello in modo *assoluto* rispetto al sistema di riferimento terreno. La Triangolazione Aerea, infatti,

 $^{^4\}mathrm{La}$ Triangolazione Aerea permette di limitare il numero di GCP che devono essere individuati sulle varie immagini.

permette di calcolare i parametri di orientamento esterno per tutte le immagini del blocco. Le equazioni risolutive del sistema prendono in considerazione sia GCP che TP: questi ultimi vengono infatti utilizzati per aumentare il numero delle equazioni e tenere basso il numero di GCP richiesti [23]. I GCP sono, infatti, ridotti ad un minimo di 3 per ogni blocco. Una disposizione ottimale di GCP è rappresentata in Figura 2.3, ove l'impiego di GCP plano-altimetrici puo essere integrato da altri solo altimetrici nelle zone di sovrapposizione tra strisciate [27].

Figura 2.3: GCP richiesti per l'orientamento assoluto dei vari blocchi o strisciate (indicate con una S) [23]

2.2 Acquisizioni Satellitari: tecnologia e modelli utilizzati

In questa sezione verranno descritte in maniera generale le tecnologie che permettono l'acquisizione di immagini da satellite, le quali costituiscono un parte fondamentale del mondo del telerilevamento. Le immagini acquisite da sensori montati su satelliti, infatti, sono a disposizione del pubblico fin dal 1972 (anno di lancio del satellite ERTS-1, diventato poi Landsat-1). Da allora, la risoluzione geometrica dei prodotti

acquisiti è costantemente in crescita. A partire dai satelliti SPOT-1 HRV nel 1986 e IKONOS nel 1999, questo miglioramento ha ampliato l'utilizzo di tali dati per la generazione di prodotti contenenti informazioni tridimensionali del territorio [28].

2.2.1 Classificazione dei sensori

In generale, si definiscono sensori ad *alta risoluzione* quelli aventi dimensione del GSD^5 inferiore ai 5 *m*. É possibile però fare le seguenti distinzioni:

Classificazione	Dimensione del GSD
Bassa risoluzione Media risoluzione	$30m \le GSD < 300m$ $5m \le GSD < 30m$ $1m \le GSD \le 5m$
Altissima risoluzione	GSD < 5m GSD < 1m

Tabella 2.1: Classificazione dei sensori montati sulle piattaforme satellitari a seconda della dimensione del GSD [28]

Tra le costellazioni che possono offrire dei prodotti ad altissima risoluzione ci sono [29]:

- SkySat (90 cm);
- Gaofen-2 (80 cm);
- TripleSat (80 cm);
- KOMPSAT-3 (70 cm);
- KOMPSAT-3A (55 cm);
- Pleiades-1A e 1B (50 cm);
- WorldView-1 e 2 (46 cm);
- GeoEye-1 (41 cm);
- Worldview-3 e 4^6 (31 cm);

⁵Ground Sample Distance

 $^{^{6}\}mathrm{Il}$ WV-4 è stato attivo fino al gennaio del 2019

2.2.2 Sensori CCD

Il sistema di acquisizione è suddiviso in due componenti: *ottica* e sensore. La prima consente di convogliare l'energia elettromagnetica verso il sensore di acquisizione. La seconda si basa sulla tecnologia CCD (Charge Coupled Device) per trasformare tale energia riflessa in un'immagine digitale [30]. I sensori CCD comprendono, generalmente, un substrato di materiale semiconduttore avente al suo interno dei rilevatori fotosensibili (*fotodiodi*) organizzati in righe e colonne ([30], [31]). Analogamente alle camere di tipo *frame* (che rispondono ai modelli matematici esposti nella sezione 2.1), nel caso delle camere digitali con **sensore CCD** (*Charge-Coupled Device*⁷), la determinazione della geometria delle immagini richiede, attraverso l'orientamento interno ed esterno, la ricostruzione dei raggi di proiezione. Ogni linea dell'immagine ha quindi diversi parametri di orientamento esterno, dunque un proprio centro di presa[32].

2.2.3 Distorsioni

Nella modellazione dei sensori devono essere tenute in conto tutte le varie distorsioni, differenti da quelle viste nella fotogrammetria classica (proprio per la differente natura del sensore stesso) [33], [34].

Distorsioni del sistema ottico

- Dislocamento del punto principale (modellato da coordinate costanti, vedi Figura 2.2);
- Variazioni della lunghezza focale;
- Distorsione radiale della lente;
- Variazioni di scala nella direzione delle linee CCD;
- Distorsioni delle linee CCD;
- Errore di centramento della lente;

Distorsioni geometriche

- Cambio della dimensione del pixel con effetti sulla scala dell'immagine;
- Spostamento o rotazione delle linee CCD nel piano focale rispetto alla posizione nominale;

⁷Dispositivo ad accoppiamento di carica

• Curvatura delle linee CCD (errore perpendicolare alla direzione della linea CCD).

2.2.4 Metodi di acquisizione

Le piattaforme satellitari hanno differenti modalità di acquisizione delle immagini:

- Whiskbroom, ormai obsoleta ed implementato su precedenti spedizioni;
- *Pushbroom* sincrono;
- *Pushbroom* asincrono.

Acquisizione pushbroom

I metodi *pushbroom* (sia sincrono che asincrono) prevedono che l'acquisizione delle immagini avvenga "a spazzola⁸" scansionando l'intera superficie per linee **trasver**sali al moto del satellite. Queste linee, che hanno un tempo di acquisizione ottenibile moltiplicando il *dwell time*⁹ per il numero dei pixel di una linea, sono poi assemblate per ottenere una singola immagine. Come nella fotogrammetria, anche in questo caso la *prospettiva centrale* fornisce lo schema geometrico di base: sono però le singole linee e non l'intera immagine ad essere acquisite con questo principio. Di conseguenza ogni linea vedrà una variazione nel tempo dei parametri di orientamento esterno. L'assetto angolare delle piattaforme (a cui il sensore è solidale), può essere variato in modo da acquisire porzioni di terreno non direttamente al di sotto dell'orbita, a scapito della risoluzione nominale che diminuisce con l'aumentare dell'angolo di vista (calcolato rispetto allo zero della posizione nadirale) [30].

Distinzione tra pushbroom sincrono e asincrono La distinzione tra i due metodi dipende dalla velocità con cui la superficie viene scansionata rispetto alla velocità del satellite stesso [30].

- Con il pushbroom *sincrono* la velocità della piattaforma lungo l'orbita è uguale alla velocità di scansione della superficie terrestre operata dal sensore.
- Con il pushbroom *asincrono* la velocità della piattaforma è *maggiore* della velocità di scansione. Questa modalità è caratterizzata da distorsioni aggiuntive

⁸Traduzione letterale

 $^{^9 \}rm Dwell$ Time: tempo di integrazione. Rappresenta il tempo impiegato dal sensore lineare CCD per acquisire un singolo pixel di una linea.

rispetto a quelle classiche dell'acquisizione pushbroom, dovute alla continua variazione dell'assetto angolare della piattaforma.

Figura 2.4: Differenza nell'acquisizione tra pushbroom sincrono ed asincrono [33]

Acquisizioni stereoscopiche

L'acquisizione stereoscopica di immagini satellitari è fondamentale nell'estrazione di informazioni tridimensionali del territorio [30]. In generale, esistono diverse modalità per l'acquisizione di (almeno) una coppia stereoscopica di immagini.

Across-track Nella configurazione *across-track* la coppia stereoscopica viene acquisita in differenti orbite e date, individuando una zona di sovrapposizione compresa tra due orbite diverse. I problemi connessi a questa modalità di acquisizione sono relativi alle diverse condizioni meteorologiche e di esposizione alla luce della stessa zona rilevata in tempi diversi.

Along-track Nella configurazione *along-track* due diverse acquisizioni vengono eseguite facendo variare l'angolo di vista della piattaforma lungo l'orbita. Questi angoli sono generalmente fissati affinché il rapporto base/altezza rimanga costante. In questo modo vengono risolti i problemi relativi alle date differenti di acquisizione delle immagini.

Sistemi *single-lens* Questi sensori sono montati su satelliti leggeri e offrono la possibilità di avere immagini ad alta risoluzione (singole od in stereoscopia) utilizzando un sistema a lente singola. Questi hanno la capacità di ruotare, su comando, attorno all'asse della camera e vedere lo stesso target da due punti di vista diversi (in avanti o indietro). Di conseguenza, l'acquisizione di coppie stereoscopiche di una particolare area di interesse (siano esse along o across-track), viene pianificata in precedenza. Gli angoli di *off-nadir* sono generalmente di un massimo di 45°. Tuttavia, la variazione dell'angolo determina una importante perdita di risoluzione anche per ampiezze limitate. [33]

2.2.5 Modelli utilizzati

La correzione geometrica delle immagini satellitari prevede la definizione di un modelli matematici che descrivano la trasformazione proiettiva tra spazio immagine e spazio oggetto [30]. Questi modelli possono essere di due tipi:

- Modelli rigorosi e deterministici (2D o 3D);
- Modelli empirici o *non parametrici* (modelli polinomiali 2D o 3D, polinomi razionali 3D).

Modelli rigorosi

Con l'utilizzo di modelli 2D o 3D rigorosi, che riflettono le reali caratteristiche della geometria di presa, le correzioni geometriche possono essere realizzate attraverso l'utilizzo di una funzione matematica che modella ogni distorsione o deformazione (soluzione *step-by-step*). In alternativa, possono essere utilizzati modelli comprensivi di tutte le deformazioni. Nonostante ogni sensore richieda modelli specifici (che variano a seconda delle caratteristiche tecniche), è possibile definire dei principi generali nella generazione dei suddetti. In modo analogo, anche i parametri possono essere generati in modo specifico o "combinato"[35]. In particolare:

- il parametro che descrive l'orientamento dell'immagine è una combinazione della direzione della piattaforma, del suo angolo di imbardata (*yaw*) e dell'angolo di convergenza del meridiano;
- il fattore di scala nella direzione orbitale rappresenta la combinazione di velocità, altitudine dell'orbita e angolo di beccheggio (*pitch*);
- l'angolo di livellazione (*levelling angle*) nella direzione traversale all'orbita combina l'angolo di rollio, l'angolo di vista e l'orientazione del sensore (insieme ad altri fattori come, per esempio, la curvatura terrestre).

Alla base dei modelli rigorosi ci sono le già conosciute equazioni di collinearità, le quali sono alla base della fotogrammetria classica e sono già state definite nelle Equazioni 2.3 e 2.4. In questo caso si aggiunge la variabile temporale, derivante dall'acquisizione pushbroom (definita nella sezione 2.2.4).

I modelli fisici rigorosi consentono la definizione di funzioni capaci di descrivere la reale geometria di presa (a differenza dei modelli empirici, i quali sono privi di significato fisico). Di conseguenza, risultati erronei o qualitativamente non accettabili sono facilmente individuabili ed interpretabili. [35]

Modelli empirici

I modelli empirici (o non parametrici) possono essere usati quando i modelli rigorosi non sono disponibili [35]. Molto spesso, tali modelli non possono essere implementati poiché non si conoscono le caratteristiche delle piattaforme e dei sensori ad un alto livello di dettaglio [36]. I modelli non parametrici non descrivono in modo diretto le distorsioni tipiche delle acquisizioni satellitari (sezione 2.2.3) ma non richiedono la conoscenza di tutte le variabili coinvolte. I modelli empirici possono essere funzioni polinomiali bidimensionali o tridimensionali oppure, più tipicamente, funzioni razionali.

Rational Functions Il metodo dei rapporti polinomiali (Rational Functions Model, RFM) è il modello più diffuso ed implementato per il trattamento dei dati satellitari (come PCI Geomatica¹⁰). Nei prodotti offerti dalle imprese distributrici di immagini vengono forniti solamente i coefficienti dei polinomi. In questo modo si ovvia al problema menzionato in precedenza, ovvero la necessità di dover fornire le caratteristiche tecniche del sensore. Con il metodo RFM, le relazioni tra le coordinate immagine (ξ, η) e le coordinate tridimensionali oggetto (X, Y, Z) sono stabilite dalle espressioni fratte nelle Equazioni 2.5.

$$\xi = \frac{P_a(X, Y, Z)}{P_b(X, Y, Z)} \tag{2.5a}$$

$$\eta = \frac{P_c(X, Y, Z)}{P_d(X, Y, Z)}$$
(2.5b)

I polinomi P_a , P_b , P_c , P_d sono dei polinomi di grado massimo 3, che implicano quindi la conoscenza di 20 coefficienti per ogni polinomio (80 in totale). Questi polinomi sono espressi nelle relazioni 2.6.

$$P_{a}(X, Y, Z) = a_{0} + a_{1}X + a_{2}Y + a_{3}Z + a_{4}XY + a_{5}XZ$$

$$+a_{6}YZ + a_{7}X^{2} + a_{8}Y^{2} + a_{9}Z^{2} + a_{10}XYZ + a_{11}X^{2}Y$$

$$+a_{12}X^{2}Z + a_{13}XY^{2} + a_{14}Y^{2}Z + a_{15}XZ^{2} + a_{16}YZ^{2}$$

$$+a_{17}X^{3} + a_{18}Y^{3} + a_{19}Z^{3} = \sum_{i=0}^{m_{1}}\sum_{j=0}^{m_{2}}\sum_{k=0}^{m_{3}}a_{ijk}X^{i}Y^{j}Z^{k}$$
(2.6a)

¹⁰https://www.pcigeomatics.com/

$$P_b(X, Y, Z) = b_0 + b_1 X + b_2 Y + b_3 Z + b_4 X Y + b_5 X Z + \dots$$
$$+ b_{17} X^3 + b_{18} Y^3 + b_{19} Z^3 = \sum_{i=0}^{m_1} \sum_{j=0}^{m_2} \sum_{k=0}^{m_3} b_{ijk} X^i Y^j Z^k$$
(2.6b)

$$P_{c}(X,Y,Z) = c_{0} + c_{1}X + c_{2}Y + c_{3}Z + c_{4}XY + c_{5}XZ + \dots$$
$$+c_{17}X^{3} + c_{18}Y^{3} + c_{19}Z^{3} = \sum_{i=0}^{m_{1}}\sum_{j=0}^{m_{2}}\sum_{k=0}^{m_{3}}c_{ijk}X^{i}Y^{j}Z^{k}$$
(2.6c)

$$P_d(X, Y, Z) = d_0 + d_1 X + d_2 Y + d_3 Z + d_4 X Y + d_5 X Z + \dots + d_{17} X^3 + d_{18} Y^3 + d_{19} Z^3 = \sum_{i=0}^{m_1} \sum_{j=0}^{m_2} \sum_{k=0}^{m_3} d_{ijk} X^i Y^j Z^k$$
(2.6d)

È possibile riscrivere le equazioni in forma matriciale, come illustrato nelle Equazioni 2.7.

$$P_a = \underline{P} \cdot \underline{a}^T \tag{2.7a}$$

$$\underline{P} = (1, X, Y, Z, XY, XZ, YZ, X^2, Y^2, Z^2, XYZ, X^2Y, X^2Z, XY^2, Y^2Z, XZ^2, YZ^2, X^3, Y^3, Z^3)$$
(2.7b)

$$\underline{a} = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}, a_{17}, a_{18}, a_{19})$$
(2.7c)

I modelli empirici non rappresentano in modo diretto la geometria di presa. Tuttavia, è lecito ipotizzare che alcuni gruppi di termini possano modellare le diverse distorsioni [36]:

- le distorsioni prospettiche sono modellate dai termini di primo grado;
- le distorsioni dovute alla rifrazione atmosferica, alla curvatura terrestre ed all'ottica del sensore sono modellabili dai termini di secondo grado;
- i termini di terzo grado permettono di modellare ulteriori distorsioni accidentali come, per esempio, quelle dovute alla vibrazione della piattaforma satellitare.

Capitolo 3

Caso studio: Ghiacciaio del Belvedere

Numerosi studi sono stati fatti sull'evoluzione storica del Ghiacciaio del Belvedere. Una particolare ricostruzione storica è stata eseguita nel 2018 ad opera di Valentina Nova [37]: nella tesi sono stati ricostruiti gli eventi storici riguardanti il ghiacciaio e le testimonianze sulla sua evoluzione con particolare riferimento ai vari *Catasti dei Ghiacciai* e ad un approfondito studio eseguito a partire dal 2015 dal team del progetto *Dream*¹. Il progetto, coordinato dal Professor Carlo De Michele (PoliMi) e coadiuvato dai Proff. Livio Pinto (PoliMi), Marco Piras (PoliTo), Riccardo Barzagli (PoliMi), Alberto Cina (PoliTo), Alberto Bianchi (PoliMi), Ing. Paolo Maschio (PoliTo), e Ing. Luca Comolli (RESTART), si propone infatti di generare modelli digitali del ghiacciaio da confrontare con quelli precedenti per un'analisi multi temporale della dinamica glaciale. Tutto lo studio è effettuato con l'ausilio di droni (UAS) al fine di monitorare le risorse idriche.

¹DRone tEchnology for wAter resources Monitoring

Figura 3.1: Ghiacciaio del Belvedere (C. Smiraglia, 2014). Fonte: Comitato Glaciologico Italiano

3.1 Inquadramento geografico

Il Ghiacciaio del Belvedere (Figura 3.1) si colloca nella regione del Piemonte. Secondo il Comitato Glaciologico Italiano [14], il Piemonte conta 107 ghiacciai che ricoprono un'area di $28.55 km^2$, pari all'8% del totale nazionale. Tra gli otto gruppi montuosi in cui i suddetti sono distribuiti, quello del Monte Rosa (a cui appartiene il Ghiacciaio del Belvedere) presenta la massima estensione glaciale, pari a $12.85 km^2$. Il Ghiacciaio del Belvedere si sviluppa alla testata della Valle Anzasca (in provincia del Verbano-Cusio-Ossola). Estendendosi da una quota di circa 2300 m fino a 1785 m (quota della bocca del ghiacciaio sulla lingua di sinistra), esso presenta una superficie di circa $8 km^2$ ed una lunghezza di circa 2.80 km.

Figura 3.2: Inquadramento geografico del Ghiacciaio del Belvedere

3.2 Caratteristiche del ghiacciaio e la sua evoluzione

Il Ghiacciaio del Belvedere è un ghiacciaio nero² di tipo umido temperato, prevalentemente alimentato dal *Ghiacciaio del Monte Rosa* nonché dai Ghiacciai Nord delle Locce, Signal e Nordend (Figura 3.3). Ulteriori apporti sono riconducibili a valanghe di ghiaccio, neve e detriti provenienti dalla parete del Monte Rosa stesso. Il Ghiacciaio del Belvedere è stato per anni studiato come uno degli esempi più classici di ghiacciaio nero [38] ed oggetto di approfondite analisi ad opera di Smiraglia C., Diolaiuti G., Tamburini A. et al. ([39], [40], [41]). Lo spessore massimo del ghiaccio, misurato negli anni '80, arrivava fino a 250-300 m [42]. Recentemente, il ghiacciaio è stato oggetto di profondi cambiamenti: vi sono testimonianze di una sua espansione sin dagli inizi del '900 ed una fase di ritiro (osservabile ancora oggi, Figura 3.4) quantificato in circa 690 m al 2002. La rete idrografica endo e subglaciale³ defluisce verso valle dal lobo sinistro (Figura 3.4) confluendo nel torrente Anza. Il lobo destro del ghiacciaio è privo di una rete superficiale ma le acque di fusione vengono riversate più a valle con un percorso sotterraneo [37], [39].

[43]

²Debris covered glacier: Ghiacciaio coperto di detriti per almeno il 50% del bacino di ablazione [4]

³

[•] Endoglaciale: scorrimento all'interno delle cavità del corpo glaciale;

[•] Subglaciale: scorrimento alla base del corpo glaciale, solitamente sul bedrock.

Figura 3.3: Schema e posizionamento del Ghiacciaio del Belvedere rispetto alla parete del Monte Rosa ed ai ghiacciai che lo alimentano

Figura 3.4: Variazione della lingua ablativa in prossimità della fronte del ghiacciaio (lobo sinistro) tra il 2017 (in alto) ed il 2019 (in basso)

Surge glaciale e ripresa delle perdite dal 2002 Tra il 1999 ed il 2001, attraverso delle analisi aerofotogrammetriche, è stato stimato un sollevamento del manto glaciale di circa 30 metri, la cui quota ha superato quella della morena in alcuni punti (Figura 3.5) [38]. Nello stesso periodo la velocità di scorrimento passava da 35 metri/anno a 110 metri/anno (fino ad un massimo di 200 metri/anno tra il 2001 ed il 2002). Questa rapida evoluzione non era imputabile alle forti precipitazioni nevose degli stessi anni bensì alle frane di ghiaccio e detrito roccioso provenienti dalla parete Nord-Est del Monte Rosa. A causa di tale surge⁴, inoltre, si osservò la formazione di un lago epiglaciale, denominato *Lago Effimero*, ad una quota di circa 2150 metri. Il Lago Effimero superò le dimensioni del Lago delle Locce raggiungendo una profondità di 57 metri ed una capacità di circa 3 milioni di m^3 . A partire dal 2002 è però ripresa la fase di ritiro del ghiacciaio, tuttora ininterrotta come si osserva dal confronto tra la Figura 3.5 e la Figura 3.6.

Figura 3.5: Ghiacciaio del Belvedere il 29 giugno 2002. Fonte: Comitato Glaciologico Italiano

⁴Fenomeno dovuto all'alternanza di fasi (che possono durare da alcuni anni a qualche decennio) di movimento lento e veloce del ghiacciaio. Tali fenomeni non sono sempre generati da fattori esterni al ghiacciaio.[4]

Figura 3.6: Ghiacciaio del Belvedere il 15 luglio 2010. Fonte: Comitato Glaciologico Italiano

3.3 Studio del Ghiacciaio del Belvedere dal 2009 al 2018

L'evoluzione del Ghiacciaio del Belvedere negli ultimi 10 anni è stata monitorata mediante tecniche fotogrammetriche da UAS, atte a ricostruire ortofoto e modelli digitali della superficie (DSM) [37]. In particolare, gli abbassamenti in quota della lingua glaciale ed i volumi (come confronto delle nuvole di punti) sono stati calcolati al fine di valutare le perdite idrologiche tra due stessi periodi dell'anno⁵.

Dalle analisi limitate alla lingua glaciale sono stati ottenuti i risultati riassunti in Tabella 3.1.

Periodo	Volume perso $[m^3]$	Abbassamento [m]
2009-2015	17'010'873.60	9.54
2015 - 2016	2'263'556.10	1.24
2016 - 2017	3'289'866.10	1.81
$2017 - 2018^6$	667'338.80	0.36

Tabella 3.1: Evoluzione del ghiacciaio nell'intervallo temporale 2009-2018 (Nova, 2018 [37])

⁵Rilievi tipicamente eseguiti nei mesi di ottobre-novembre

 $^{^{6}}$ Intervallo temporale di 8 mesi

Tali risultati sono stati utilizzati come punto di partenza per le nuove analisi sul Ghiacciaio del Belvedere. Nonostante l'obiettivo finale delle misure sia quello di valutare le variazioni sul corpo glaciale (sia altimetriche che in massa), l'obiettivo finale della tesi (come si vedrà nei capitoli successivi) sarà quello di **valutare e validare le varie tecniche geomatiche di monitoraggio** con la realizzazione di diversi esperimenti. Questi, infatti, sono volti alla comprensione di vantaggi e svantaggi derivanti dall'utilizzo di diverse tecniche, adattate e scelte in base alle accuratezze e precisioni richieste dall'utente finale.

3.4 Altri progetti sul Ghiacciaio del Belvedere

Il Ghiacciaio del Belvedere, data la sua posizione ai piedi della parete Est del Monte Rosa, è oggetto di particolari attenzioni dal punto di vista scientifico, paesaggistico e sportivo. Oltre a rappresentare una rinomata meta turistica, la parete Est ha ospitato alcuni degli allenamenti della spedizione al K2 del 1954, guidata da Ardito Desio e che vide protagonisti anche Erich Abram, Ugo Angelino, Achille Compagnoni, Lino Lacedelli (questi ultimi due furono i primi a raggiungere la cima del K2), Walter Bonatti, Cirillo Floreanini, Pino Gallotti, Guido Pagani, Ubaldo Rey, Gino Soldà, Sergio Viotto e Mario Puchoz (morto poi nella spedizione)[44] . Negli ultimi anni, il Ghiacciaio del Belvedere è stato oggetto di studi da parte del team del progetto DREAM (Alta Scuola Politecnica) [45] e del *Glacier Lab*: il laboratorio diffuso del Politecnico di Torino ha infatti come obiettivo quello del monitoraggio delle masse glaciali con tecnologie innovative, molte delle quali sperimentate proprio sul Belvedere.

Il Ghiacciaio del Belvedere ha rappresentato, nell'agosto del 2020, una delle tappe della spedizione *Sulle Tracce dei Ghiacciai*⁷. Il progetto, diretto e guidato dal fotografo Fabiano Ventura [46], mette in relazione ricerca scientifica e comparazione fotografica al fine di divulgare gli effetti dei cambiamenti climatici tramite l'osservazione delle variazioni delle masse glaciali negli ultimi 150 anni. Lo scopo è quello di realizzare nuove riprese fotografiche dallo stesso punto di osservazione e nello stesso periodo dell'anno rispetto a quelle eseguite da vari fotografi ed esploratori a fine '800 ed inizi del '900 [47]. In particolare, è stata ripetuta una serie di quattro scatti (su lastra) dalla cima dello Joderhorn⁸, già acquisita da Vittorio Sella nel 1895 ed una fotografia già scattata dai Fratelli Wehrli dalla Cappella Pisati. In occasione di questi due scatti, la posizione del punto nodale della camera è stata materializzata sul terreno; tali punti sono stati successivamente georeferenziati attraverso un rilievo con ricevitore GNSS. In questo modo si possono conoscere con sufficiente

⁷https://sulletraccedeighiacciai.com/

⁸3034 metri, con visione panoramica sulla valle di Macugnaga e sul Ghiacciaio del Belvedere

accuratezza le posizioni dei centri di presa della camera, i quali forniranno alcuni dei parametri di orientamento esterno nella restituzione fotogrammetrica volta alla realizzazione di un modello tridimensionale del ghiacciaio. Questa campagna di misure, completata anche da altri rilievi con laser a scansione e fotogrammetria da UAS, è stata guidata dal prof. Alberto Cina e Paolo Maschio con il supporto dell'autore. Tutto il lavoro contribuisce al progetto di ricerca avviato dal Glacier Lab.

Figura 3.7: Ripetizione dello scatto dei Fratelli Wehrli da parte di Fabiano Ventura e messa in stazione del laser a scansione.

Figura 3.8: Componenti del progetto *Sulle Tracce dei Ghiacciai* e del *Comitato Glaciologico Italiano* insieme ai ricercatori del *Diati* (Politecnico di Torino), dell'*Università degli Studi di Milano*

Capitolo 4 Volo fotogrammetrico sul Ghiacciaio del Belvedere

Al fine di monitorare le variazioni di massa del Ghiacciaio del Belvedere, nell'ottobre del 2019 è stato eseguito un volo fotogrammetrico per mezzo di un aereo ultraleggero biposto. Tale volo fotogrammetrico è stato condotto da DiqiSky, società di servizi per il design di sistemi avionici con più di venti anni di esperienza nell'industria aerospaziale. DigiSky opera nel mondo delle Earth Observation per numerosi settori quali agricoltura, infrastrutture e monitoraggio ambientale [48]. L'utilizzo di questo tipo di velivolo presenta dei vantaggi di interesse rilevante poiché definisce una tecnica intermedia tra i grandi voli fotogrammetrici (effettuati per fini cartografici e solitamente di scala regionale o nazionale) e quelli effettuati con UAV^1 . Tale tecnica garantisce elevata rapidità di esecuzione, la possibilità di utilizzare camere ad alte prestazioni e l'applicazione di tecniche di fotogrammetria diretta (sezione 2.1.2), le quali sono oggetto del presente lavoro di tesi. A differenza dei rilievi con UAV, richiedenti la presenza di operatori specializzati in loco, l'utilizzo di un aereo ultraleggero ha permesso la realizzazione del rilievo in circa due ore (compresi gli spostamenti dall'aeroporto di Torino-Aeritalia, distante circa 100 km da Macugnaga). Inoltre, mediante l'uso di un ricevitore GNSS con antenna e di unità inerziali (IMU) solidali al velivolo, è possibile determinare gli angoli di assetto dello stesso e le posizioni dei centri di presa della camera. Tuttavia, le piattaforme IMU di basso costo di cui è dotato il velivolo non consentono la determinazione dell'assetto dei fotogrammi ma hanno precisione sufficiente per le operazioni di *riduzione del lever-arm* tra antenna GNSS e camera. Questo capitolo ha come obiettivo la *validazione* di tale rilievo, il quale implementa tecniche di fotogrammetria diretta con l'ausilio di camere di costo intermedio tra le camere

¹Unmanned Aerial Vehicle: aeromobile a pilotaggio remoto o drone

da UAV e le grandi camere fotogrammetriche. I dati di riferimento utilizzati provengono da un'elaborazione previa in cui la restituzione fotogrammetrica ha fatto uso di una rete di GCP materializzati sul terreno (già utilizzati nei rilievi fotogrammetrici da drone nel progetto *Dream*, capitolo 3).

4.1 Architettura del velivolo

L'architettura del velivolo è brevemente descritta nella Figura 4.2, dove si possono individuare:

- la posizione dell'antenna GNSS;
- la posizione delle due camere (PhaseOne e Sony);
- i *lever-arm*, ovvero le *eccentricità* della camera rispetto all'antenna (cruciali nell'individuazione della posizione del centro di presa).

4.1.1 Camera

La PhaseOne iXM-RS150F (Figura 4.1) è una camera di medio formato con dimensioni effettive del sensore $53.4 \ge 40$ mm. Altre caratteristiche sono sintetizzate nella Tabella 4.1.

Modello	Risoluzione	Focale	Pixel	Precalibrazione
iXM-RS150F	14204 x 10652	$50 \mathrm{~mm}$	3.76 x 3.76 $\mu \mathrm{m}$	No

 Tabella 4.1:
 Caratteristiche della camera.

Il velivolo è dotato un sistema a doppia camera (Figura 4.2) montato su un *pod* solidale all'ala destra. Tuttavia al fine delle analisi oggetto di questo capitolo si sono utilizzati esclusivamente i fotogrammi prodotti dalla *PhaseOne*, di maggiore qualità per gli scopi della presente tesi.

4.1.2 IMU

L'architettura del sistema prevede due IMU di basso costo:

- IMU sul pod stabilizzato della camera sull'ala (IMU 1, Figura 4.2);
- IMU solidale alla fusoliera (IMU 2, Figura 4.2).

Tali piattaforme inerziali saranno utili alla sola *riduzione dell'eccentricità* tra antenna GNSS e camera. Esse, infatti, non offrono precisioni sufficienti al fine di determinare l'assetto dei fotogrammi.

L'IMU 1 rileva l'assetto della camera montata sul *pod*. Al fine di conservare la direzione *quasi-nadirale* della stessa, l'angolo di *rollìo* (sezione 4.2.2) del *pod* è compensato attraverso uno stabilizzatore. La stabilizzazione della camera non permette, quindi, di utilizzare gli assetti forniti dall'IMU 1 nella riduzione dell'*eccentricità* camera-antenna poiché l'angolo di rollio è costantemente nullo.

La determinazione dei centri di presa della camera richiede la riduzione dell'eccentricità camera-antenna e, di conseguenza, il rilievo continuo dell'assetto del velivolo. A tale scopo, è necessario utilizzare gli angoli rilevati dalla IMU 2, la quale misura i reali assetti dell'aereo.

Figura 4.1: Camera PhaseOne iXM-RS150F utilizzata nel rilievo fotogrammetrico

Figura 4.2: Architettura e dimensioni del velivolo

4.1.3 Ricevitore ed antenna GNSS

Le posizioni dell'aereo, le quali permettono di ricostruirne la traiettoria, vengono rilevate dal ricevitore *u-blox Max-8* con antenna *NovAtel 42GOXX16A4-XT-1-1*, montata sulla fusoliera. Le caratteristiche del ricevitore e dell'antenna sono sintetizzate nelle Tabelle 4.2 e 4.3.

Dimensioni 9.7x10.1 mm GPS	Caratteristiche del ricevitore			
Costellazioni	Dimensioni	9.7x10.1 mm		
1 /////////////////////////////////////	Costellariani	GPS		
GLONASS	Costellazioni	GLONASS		
SBAS		SBAS		
Augmentation ² QZSS	Augmentation ²	QZSS		
D-GPS		D-GPS		
Energy L1	Frequenze	L1		
L2	riequenze	L2		

Tabella 4.2: (Caratteristiche d	del	ricevitore	u-blox	8
----------------	-------------------	-----	------------	--------	---

Caratteristiche dell'antenna
Approvazione TSO (Aircraft Certification)
Doppia frequenza (L1, L2)
Tracking L-band
Glonass e GPS
Posizionamento di precisione
Compatibilità RoHS
Certificazione ARINC

Tabella 4.3: Caratteristiche dell'antenna GNSS NovAtel 42GOXX16A4-XT-1-1 (da catalogo).

4.2 Dati forniti sul volo fotogrammetrico

Il volo fotogrammetrico è stato realizzato in data 27 ottobre 2019 tra le 13:00 e le 14:00 (ora locale). Tale rilievo ha prodotto 287 immagini, le quali riprendono il

ghiacciaio fino ad una quota di circa 3700 metri. In questo modo è stato possibile rilevare interamente la lingua glaciale (Ghiacciaio del Belvedere) ma solamente in modo parziale il Ghiacciaio e la parete Est del Monte Rosa.

4.2.1 Dati forniti da DigiSky

I dati di input sono:

- 287 fotogrammi;
- traiettoria approssimata del velivolo e dati di acquisizione delle coordinate da ricevitore GNSS;
- tempo assoluto di scatto per 208 immagini;
- assetto del *pod* solidale alla camera per 208 immagini;
- assetti del velivolo per ogni istante del volo (misurati su IMU 2).

4.2.2 Dati provenienti da elaborazioni previe

Il volo fotogrammetrico è stato elaborato previamente utilizzando dei punti di appoggio a terra che provengono da rilievi sul campo svolti negli anni precedenti (progetto Dream [45],[37]). I prodotti a disposizione sono:

- posizione dei centri di presa della camera derivanti dalla Triangolazione Aerea (orientamento esterno).
- ortofoto con risoluzione 0.15 m (Figura 4.3);
- DSM con risoluzione di 0.40 m (Figura 4.4);

I primi due costituiranno il set di dati di riferimento per il confronto con un DSM ed un'ortofoto che verranno realizzati con tecniche fotogrammetriche dirette. Le posizioni dei centri di presa calcolati a partire dalle posizioni del velivolo potranno essere confrontati con quelli determinati con la Triangolazione Aerea. Questi ultimi vengono sintetizzati nella Tabella 4.4 (versione integrale in Appendice A, Tabella A.1).

Fot.	\mathbf{Est} [m]	Nord [m]	h [m]	$oldsymbol{\omega} \left[^\circ ight]$	$oldsymbol{\phi} \left[^\circ ight]$	\mathbf{k} [°]
1772	416201.814	5085597.683	3656.347	4.741	-5.753	-77.767
1773	416480.933	5085691.602	3669.140	5.754	-6.430	-56.720
1774	416701.304	5085872.744	3675.837	3.613	-3.378	-37.487
1775	416853.688	5086127.305	3669.414	5.891	-4.540	-19.810
1776	416974.830	5086408.062	3687.039	7.126	-6.268	-25.990
1793	417229.250	5090514.954	3871.133	-5.832	-0.073	165.269
1794	417164.274	5090257.651	3868.551	-6.158	-0.452	164.249
1813	414899.054	5086004.916	4004.566	6.579	0.280	-16.690
1814	414995.996	5086262.271	4009.007	9.278	0.736	-12.829
2040	417737.818	5088886.617	3324.554	-1.796	-3.354	-107.061

Tabella 4.4: Coordinate del centro di presa e assetti della camera (da triangolazione aerea). Estratto Tabella A.1.

Figura 4.3: Ortofoto generata a seguito della triangolazione aerea.

Figura 4.4: DSM di riferimento con risoluzione 0.40 m.

Figura 4.5: Analisi multitemporali derivanti dall'uso del DSM di Figura 4.4 come dato di riferimento (variazioni 2017-2019, confronto con DSM satellitare Pléiades)

Convenzione delle coordinate e degli angoli derivanti dall'orientamento esterno dei fotogrammi

Nei dati provenienti dall'orientamento esterno (Tabella 4.4), le coordinate sono espresse nel sistema UTM 32N (EPSG: 32632) mentre gli angoli sono espressi in gradi sessadecimali. Le convenzioni degli angoli sono espresse dal manuale di *Agisoft Metashape*, e sono definiti come gli angoli da utilizzare al fine di ruotare un sistema di riferimento parallelo ad un datum geodetico $(X,Y,Z)^3$ per allinearlo al sistema di coordinate della camera (x,y,z). In questo caso si è utilizzato come riferimento geodetico il sistema ETRF2000 (con rappresentazione UTM 32N) e quote ellissoidiche (WGS84). Le rotazioni sono denominate nel modo seguente:

- ω è l'angolo di rotazione attorno all'asse X;
- ϕ è l'angolo di rotazione attorno all'asse Y;
- k è l'angolo di rotazione attorno all'asse Z.

In base a tale sistema di riferimento, gli angoli di *imbardata* k (yaw), sono positivi se antiorari e valutati con zero sull'asse X (Est) (Figure 4.6 4.7).

Figura 4.6: Convenzione angoli di rollio e beccheggio (*roll* e *pitch*)

 $^{^3\}mathrm{Tale}$ sistema parallelo è traslato affinché l'origine coincida con il centro della camera.

Figura 4.7: Convenzione angolo di imbardata (yaw) calcolati da orientamento esterno

4.3 Ricostruzione della traiettoria di volo

La traiettoria di volo è stata ricostruita attraverso il post-processamento delle acquisizioni GNSS, avvalendosi dei dati forniti da tre stazioni permanenti alternative a diverse quote (Figura 4.8):

- stazione permanente di Domodossola (365 m);
- stazione permanente virtuale, interpolata a partire dalla rete NRTK della regione Piemonte (sezione 4.3.3) (3500 m);
- stazione permanente di Zermatt (Svizzera) (1931 m).

Figura 4.8: Posizione delle tre stazioni permanenti e virtuali utilizzate come masternel posizionamento PPK
La scelta della stazione permanente è influenzata da fattori quali la distanza dal luogo del rilievo e la quota a cui si trova la stazione. Nel processamento PPK⁴ dei dati GNSS (sezione 4.3.1), l'errore troposferico è di particolare interesse: la sua modellazione e correzione dipende dalla presenza di stazioni ad una quota vicina a quella di volo (circa 4000 m). La ricostruzione della traiettoria di volo ha come obiettivo la **determinazione delle coordinate del centro di fase dell'antenna** all'istante di ogni scatto. I centri di presa della camera saranno successivamente determinati tramite la **riduzione dell'eccentricità**. Questa operazione permetterà di determinare tali punti a partire dai centri di fase dell'antenna, i quali derivano da posizionamento GNSS *cinematico post-processato*.

4.3.1 Posizionamento relativo di fase e posizionamento cinematico

Nel posizionamento relativo $di fase^5$ sono determinate le coordinate di un punto B rispetto alle coordinate di un punto A su cui è posizionato un ricevitore GNSS. Quest'ultimo può avere le stesse caratteristiche del ricevitore su B o essere una stazione permanente. Lo scopo del posizionamento relativo GNSS è quello di determinare le componenti del *vettore* che unisce i due punti sopracitati, detto *baseline*.

Posizionamento cinematico relativo Il posizionamento cinematico relativo prevede la presenza di un ricevitore *master* posizionato nel punto A, di coordinate note e fisse. Il secondo ricevitore, ubicato su un generico punto B, è in movimento e denominato *rover*. I due ricevitori acquisiscono simultaneamente i dati dagli stessi satelliti, eseguendo misure di fase le quali garantiscono precisioni centimetriche. Quando la posizione del *rover*⁶ è determinata negli istanti immediatamente successivi all'esecuzione di tali misure di fase, si parla di posizionamento *Real Time Kinematic* (RTK). Nel caso in cui la comunicazione tra master e rover non fosse possibile al fine del posizionamento in tempo reale, le osservazioni sono conservate in una memoria di massa presente nei ricevitori. Tramite un software di

⁴Post-Processed Kinematic: tecnica di posizionamento cinematico in cui le posizioni non vengono fornite in tempo reale (sezione 4.3.1)

⁵Due possibili tipi di misure: quelle che utilizzano il segnale del codice trasmesso dal segmento satellitare GNSS e quelle che utilizzano la portante dell'onda. I due tipi di osservazione vengono comunemente indicati come *misure di codice* e *misure di fase*. Le prime sono tipiche dei ricevitori di tipo navigazionale (es.: navigatori satellitari), le seconde sono caratteristiche degli strumenti professionali utilizzati a scopo geodetico e topografico.

⁶Nel caso oggetto di studio, il ricevitore montato sull'aereo ultraleggero costituisce il rover.

post-processamento, è possibile elaborare le osservazioni di entrambi i ricevitori ed ottenere le posizioni di tutti i punti caratterizzanti la traiettoria.

Doppie differenze e fissaggio delle ambiguità Il posizionamento di fase (sia relativo che assoluto) è governato dall'*equazione di range-rate* (Equazione 4.1).

$$L_r^s = \lambda \Phi_r^s = \rho_r^s - c\delta^s + c\delta_r + \lambda N_r^s + \sum E_{CS} + \sum E_{acc}$$
(4.1)

L'equazione 4.1 è ottenuta da considerazioni di tipo geometrico, in cui la distanza satellite (s)-ricevitore (r) viene vista come un multiplo (non intero) della lunghezza d'onda della $portante^7$. In particolare:

• ρ_r^s è la distanza reale satellite-ricevitore

$$\rho_r^s = \sqrt{(X^s - X_r)^2 + (Y^s - Y_r)^2 + (Z^s - Z_r)^2}$$

- λ è la lunghezza d'onda della portante;
- c è la velocità dell'onda (velocità della luce);
- δ^s è l'errore dell'orologio del satellite;
- δ_r è l'errore dell'orologio del ricevitore;
- N_r^s è il *numero intero di cicli* chiamato **ambiguità iniziale** e che rappresenta un valore incognito.
- $\sum E_{CS}$ rappresenta la somma degli errori **spazialmente correlati**;
- $\sum E_{acc}$ rappresenta la somma degli errori accidentali.

I bias o errori spazialmente correlati sono dati dalla somma di ritardo troposferico, ritardo ionosferico ed errore delle effemeridi. Tali errori sono correlati spazialmente in quanto si ipotizza non subiscano significative variazioni in un raggio di circa 15 km dal ricevitore. Su questa ipotesi si basa il posizionamento differenziale: se la stazione master è sufficientemente vicina ed alla stessa quota del rover, tali errori potranno essere eliminati completamente. In caso contrario, si avrà un errore residuo che potrà essere valutato, ove possibile, con l'ausilio di un'altra stazione base più vicina al rover. L'eliminazione di questi errori viene effettuata attraverso combinazioni lineari delle misure contemporaneamente eseguite sul ricevitore master \mathbf{A} e rover \mathbf{B} . Queste combinazioni sono dette differenze

⁷É definita *portante* l'onda su cui è modulato il messaggio di navigazione GNSS

singole e differenze doppie. Nelle differenze singole sono coinvolti due ricevitori (A e B) ed un satellite, indicato con j^8 . Le equazioni di range-rate per i due ricevitori sono:

$$L_A^j = \lambda \Phi_A^j = \rho_A^j - c\delta^j + c\delta_A + \lambda N_A^j + \sum E_{CS} + \sum E_{acc}$$
(4.2a)

$$L_B^j = \lambda \Phi_B^j = \rho_B^j - c\delta^j + c\delta_B + \lambda N_B^j + \sum E_{CS} + \sum E_{acc}$$
(4.2b)

Differenziando i due termini si ottiene l'Equazione 4.3, detta equazione alle singole differenze.

$$L^{j}_{AB} = \lambda \Phi^{j}_{AB} = \rho^{j}_{AB} + c\delta_{AB} + \lambda N^{j}_{AB}$$

$$\tag{4.3}$$

Con le singole differenze vengono eliminati gli errori spazialmente correlati e gli errori dell'orologio del satellite $(c\delta^j)$.

Considerando uno scenario con due ricevitori ($\mathbf{A} \in \mathbf{B}$) e due satelliti ($\mathbf{j} \in \mathbf{k}$) si ottengono due equazioni alle differenze singole (Equazioni 4.4):

$$L^{j}_{AB} = \lambda \Phi^{j}_{AB} = \rho^{j}_{AB} + c\delta_{AB} + \lambda N^{j}_{AB}$$
(4.4a)

$$L_{AB}^{k} = \lambda \Phi_{AB}^{k} = \rho_{AB}^{k} + c\delta_{AB} + \lambda N_{AB}^{k}$$
(4.4b)

Dalla sottrazione tra le equazioni 4.4a e 4.4b è possibile ottenere un'equazione alle **differenze doppie** (Equazione 4.5):

$$L_{AB}^{jk} = \lambda \Phi_{AB}^{jk} = \rho_{AB}^{jk} + \lambda N_{AB}^{jk}$$

$$\tag{4.5}$$

Con la combinazione 4.5 si eliminano anche gli errori di orologio dei ricevitori $(c\delta_{AB})$.

Il termine incognito N_{AB}^{jk} rappresenta le **ambiguità di fase iniziali**. Questo numero *intero* era storicamente determinato tramite algoritmi per modalità di posizionamento statico, ora superati da altri di tipo On The Fly. Tale incognita può essere, infatti, calcolata (*fissata*) durante il moto ed è indipendente dal tempo fino al presentarsi di eventuali cycle-slip⁹.

⁸Cambio di nomenclatura rispetto alle equazioni generali

 $^{^9\}mathrm{Cambio}$ nel numero di cicli interi iniziali dovuto alla momentanea disconnessione tra ricevitore e satellite.

4.3.2 Sistemi NRTK

Il posizionamento differenziale elimina i *bias* comuni a due ricevitori GNSS (paragrafo *Doppie differenze e fissaggio delle ambiguità*) e permette il raggiungimento di accuratezze centimetriche con ambiguità di fase fissata. Le correzioni dei *bias*, inviate dal ricevitore *master* per il posizionamento RTK del *rover*, perdono validità per grandi distanze se calcolate da una stazione permanente fissa. Si parla in questo caso di *decorrelazione spaziale*¹⁰. Tuttavia, il posizionamento relativo può essere realizzato tramite reti di *stazioni permanenti*¹¹, denominate NRTK. Esse permettono di raggiungere accuratezze centimetriche sia per il posizionamento cinematico in tempo reale (RTK) che post-processato (PPK). Il sistema NRTK è caratterizzato da tre segmenti:

- infrastruttura fisica, formata dalle stazioni permanenti e dal centro di controllo;
- infrastruttura di trasmissione, in grado di trasmettere le correzioni in tempo reale;
- infrastruttura di calcolo, la quale migliora la stima dei bias e rende le correzioni accessibili agli utenti.

Virtual Reference Station Una delle architetture utilizzate nei sistemi NRTK per la realizzazione del posizionamento differenziale prevede l'utilizzo di Virtual Reference Station. Le osservazioni acquisite da almeno tre stazioni permanenti vengono processate dal centro di controllo che è in grado di modellare i bias e di interpolarli in una specifica posizione. Inoltre, è possibile generare un file sintetico (*rinex virtuale*) di osservazioni e correzioni GNSS calcolate come se fossero acquisite da un'ipotetica stazione posizionata in quello specifico punto, ottenendo una *stazione virtuale*. Se questa si trova in prossimità del rover, la lunghezza della *baseline* è quasi nulla, permettendo l'eliminazione dei *bias spazialmente correlati* [49].

4.3.3 Rete di stazioni permanenti SPIN

La rete di stazioni permanenti di cui ci si è avvalsi per il post-processamento dei dati è denominata SPIN GNSS¹² (anno di attivazione: 2011) ed è stata realizzata dal CSI-Piemonte in collaborazione con il Politecnico di Torino [50]. La rete, che comprende le regioni Piemonte, Lombardia e Valle d'Aosta, fornisce i dati

 ¹⁰I bias troposferico e ionosferico non sono più uguali per grandi distanze tra master e rover
 ¹¹CORS: Countinuously Operating Reference Station

¹²Servizio di Posizionamento Interregionale: https://www.spingnss.it/

di correzione e posizionamento satellitare grazie ad un'infrastruttura di trenta stazioni permanenti dislocate sul territorio interregionale. La rete SPIN si trova inquadrata nel Sistema di Riferimento Geodetico Nazionale ed europeo come da Decreto Ministeriale del 10/11/2011 [51]. Il Servizio fa uso di 16 stazioni permanenti "di base" e di stazioni "di infittimento", mentre il Centro di Controllo del servizio è ubicato a Torino, presso il CSI Piemonte. Il sistema si avvale quindi di software per la configurazione da remoto delle stazioni permanenti, per l'acquisizione continua, il calcolo in tempo reale delle correzioni differenziali e la loro diffusione [52]. I prodotti distribuiti dalla rete hanno l'obiettivo di:

- consentire il fissaggio rapido delle ambiguità di fase nella modalità RTK con ricevitori rover geodetici (distanze superiori a quelle tipiche delle tecniche RTK da singola stazione);
- mitigare gli errori sistematici nel posizionamento di codice DGPS;
- consentire operazioni di post-processamento attraverso la produzione di file sintetici (*rinex virtuale*) da parte di **stazioni permanenti virtuali** in prossimità del ricevitore rover per il posizionamento statico o cinematico.

La rete SPIN è un *raffittimento* della Rete Dinamica Nazionale (RDN), costituita da 99 stazioni permanenti GNSS. Queste stazioni hanno una interdistanza media di circa 100-150 km, al fine di poter disporre di una stazione ogni $3000km^2$ con lo scopo di osservare con continuità i segnali satellitari GNSS e trasmetterli ad un Centro di Calcolo (Servizio Geodetico dell'IGM) [53]. La RDN materializza, in territorio nazionale, il sistema di riferimento europeo ETRF2000. Tale sistema è definito da una terna di assi cartesiani geocentrica¹³ (X,Y,Z) con asse Z coincidente con l'asse di rotazione medio della Terra e gli assi X e Y giacenti sul piano equatoriale. L'asse X è diretto secondo il meridiano fondamentale di Greenwich e l'asse Y completa la terna destrorsa. L'ellissoide di riferimento utilizzato è il GRS80. Tale materializzazione non è soggetta a deformazioni dovute alla deriva continentale poiché solidale con la placca eurasiatica.

4.3.4 Stazione permanente virtuale utilizzata

La stazione virtuale utilizzata nell'elaborazione della traiettoria del volo fotogrammetrico (Figura 4.8) ha coordinate geodetiche (ϕ :45.950000000, λ :7.9166666666, h:3500.1160) ed è stata fornita dal portale del servizio interregionale di posizionamento GNSS SPIN. La rielaborazione del volo è stata realizzata avvalendosi del software opensource RTKlib [54]. I file di input comprendevano:

 $^{^{13}\}mathrm{Origine}$ co
incidente con il centro di massa della Terra

- file delle effemeridi precise¹⁴;
- file di osservazione dell'antenna GNSS montata sul velivolo;
- file di osservazione della stazione permanente o permanente virtuale.

Uso di RTKlib

Per il post-processamento dei dati e la determinazione della traiettoria è stato utilizzata la parte di software $RTKpost^{15}$. Il programma si presenta con un'interfaccia intuitiva (Figura 4.9).

RTKPOST ver.2.4.3 b33 —			×			
✓ Time Start (GPST) ? ✓ Time End (GPST) ? ✓ Inte 2019/10/27 ↓ 12:00:00 ↓ 2019/10/27 ↓ 13:00:00 ↓ 1	erval v s	Unit 24	Н			
RINEX OBS: Rover ?						
C:\Users\Marco Fronteddu\Documents\Tesi\Agg16_01_2020\Macugnaga_u	GNSS_	voloc ~				
RINEX OBS: Base Station		E				
C:\Users\Marco Fronteddu\Documents\Tesi\Agg16_01_2020\Tesi Marco\G	NSS_v	olodiç ~				
RINEX NAV/CLK, SP3, FCB, IONEX, SBS/EMS or RTCM	E					
C:\Users\Marco Fronteddu\Documents\Tesi\Agg16_01_2020\Macugnaga_u	GNSS_	volod ~				
C:\Users\Marco Fronteddu\Documents\Tesi\Agg16_01_2020\Macugnaga_u	GNSS_	volod ~				
C:\Users\Marco Fronteddu\Documents\Tesi\Agg16_01_2020\Macugnaga_	GNSS_	volod ~				
C: \Users \Marco Fronteddu \Documents \Tesi \Agg 16_01_2020 \Macugnaga_GNSS_volod \sim						
Solution Dir C:\Users\Marco Fronteddu\Desktop						
$\verb C:\Users\Marco\Fronteddu\Documents\Tesi\Agg16_01_2020\Tesi\Marco\GNSS_volodis \ \ \dots \ \ \ \dots \$						
?						
⊕ Plot E View KML/GPX Cptions ► Exect	ute	Exit	t			

Figura 4.9: Interfaccia RTKpost

 $^{^{14}}$ File che raccoglie parametri orbitali sulla traiettoria percorsa dai satelliti. A differenza delle effemeridi broadcast, basate su modelli interpolati in avanti nel tempo e che permettono il posizionamento in tempo reale, le effermeridi precise sono basate su calcoli a posteriori eseguite dal segmento terrestre di controllo GNSS e vengono rese disponibili solamente alcuni giorni dopo.

¹⁵http://www.rtklib.com/

I file di input sono:

- file *Rinex* di osservazione della stazione permanente (Base station) e dell'antenna sul velivolo (Rover);
- file Rinex di navigazione (GPS e Glonass);
- file delle effemeridi precise (GPS e Glonass).

Il file di output ha estensione .pos e fornisce i centri di fase dell'antenna in coordinate geografiche. Le coordinate sono state poi riportate nel sistema piano UTM 32N con l'ausilio un software sviluppato dai professori Alberto Cina e Marco Piras chiamato Geodetic Calculator. Nel file vengono osservate altre informazioni come il numero di satelliti visibili (Figura 4.10), l'istante di campionamento e l'esito del fissaggio delle ambiguità, individuato dal valore dell'indicatore Q=1 (sezione4.3.1). Per convenienza, è stato effettuato il post-processamento dei dati esclusivamente nella fascia oraria compresa tra le 12:00 e le 13:00 (tempo GPS, 27/10/2019). Sono stati esclusi, quindi, i segmenti di traiettoria precedenti e successivi il rilievo, ritenuti di poco interesse per la restituzione dello stesso.

% ref pos	: 45.9500000	00 7.9166666	566 3500.1160								
\$					-						
% (lat/lon	/height=WGS84/	ellipsoidal,Q=1	l:fix,2:float,3:	sbas, 4:dgps	,5:s	ingle	e,6:ppp,n	s=# of sat	tellites)		
% UTC	who will write state	latitude(deg)	longitude(deg)	height(m)	Q	ns	sdn(m)	sde(m)	sdu(m)	sdne(m)	sdeu(m)
2019/10/27	11:59:42.000	45.880285933	7.883892520	3366.6427	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:43.000	45.880651401	7.884249490	3368.6371	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:44.000	45.881019412	7.884601769	3370.2576	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:45.000	45.881388286	7.884954467	3371.9529	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:46.000	45.881756752	7.885311543	3373.7272	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:47.000	45.882126383	7.885669524	3375.2992	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:48.000	45.882496980	7.886029373	3376.9535	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:49.000	45.882867737	7.886391301	3378.7691	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:50.000	45.883239825	7.886752865	3380.2754	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:51.000	45.883613067	7.887115058	3381.6557	1	8	0.0089	0.0050	0.0158	0.0010	-0.0044
2019/10/27	11:59:52.000	45.883988028	7.887475008	3382.9814	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:53.000	45.884365496	7.887829995	3384.0174	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:54.000	45.884747134	7.888178197	3384.5032	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:55.000	45.885134748	7.888515136	3385.0543	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:56.000	45.885528413	7.888837641	3385.8857	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:57.000	45.885927409	7.889141654	3386.7958	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:58.000	45.886330772	7.889430318	3387.8882	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	11:59:59.000	45.886736936	7.889710576	3388.8233	1	8	0.0089	0.0050	0.0158	0.0009	-0.0044
2019/10/27	12:00:00.000	45.887145092	7.889985395	3389.4485	1	8	0.0089	0.0050	0.0158	0.0009	-0.0043
2019/10/27	12:00:01.000	45.887554196	7.890256158	3390.5841	1	8	0.0089	0.0050	0.0157	0.0009	-0.0043
2019/10/27	12:00:02.000	45.887963507	7.890524956	3391.9080	1	8	0.0089	0.0050	0.0157	0.0009	-0.0043
2019/10/27	12:00:03.000	45.888373769	7.890787763	3392.9741	1	8	0.0089	0.0050	0.0157	0.0009	-0.0043
2019/10/27	12:00:04.000	45.888783464	7.891047521	3394.0931	1	8	0.0089	0.0050	0.0157	0.0009	-0.0043
2019/10/27	12:00:05.000	45.889190431	7.891308251	3395.3349	1	8	0.0089	0.0050	0.0157	0.0009	-0.0043
2019/10/27	12:00:06.000	45.889594948	7.891568202	3396.6051	1	8	0.0089	0.0050	0.0157	0.0009	-0.0043

Figura 4.10: Anteprima del file Rinex sulle coordinate della traiettoria

Elaborazione della traiettoria e dei centri di presa

È possibile tracciare la traiettoria del velivolo in planimetria, altimetria ed in tre dimensioni, con le coordinate calcolate utilizzando la stazione permanente virtuale. In questo modo si può osservare la posizione relativa della stazione rispetto alla traiettoria (Figure 4.11, 4.12 e 4.13). É interessante osservare i dati presenti in Figura 4.10. Oltre alle epoche di misura con le relative coordinate, la colonna Q rappresenta l'esito del calcolo delle ambiguità: se il valore di Q è pari ad 1 allora queste sono *fissate all'intero* (limitatamente alla zona del rilievo) e il posizionamento cinematico avviene con accuratezza *centimetrica*. Le altre tre colonne (sde-sdn-sdu) rappresentano le deviazioni standard nelle tre direzioni e vengono espresse in metri nel sistema di coordinate UTM. Le precisioni ottenute dal software sono, però, dell'ordine dei pochi millimetri. Tale stima è, probabilmente, eccessivamente ottimistica in quanto precisioni sub-centimetriche sono raggiungibili esclusivamente attraverso posizionamenti di tipo statico. Tuttavia, le precisioni centimetriche raggiunte sono accettabili ai fini della stima dei centri di presa, stimati con deviazioni standard di circa 4 cm nelle elaborazioni fotogrammetriche con Triangolazione Aerea.

Figura 4.11: Traiettoria del volo in planimetria (stazione virtuale)

Figura 4.12: Traiettoria del volo in altimetria (stazione virtuale)

Figura 4.13: Traiettoria del volo (stazione virtuale)

Figura 4.14: Traiettoria del volo elaborato utilizzando la stazione permanente virtuale (ambiguità fissate per il 99.7% dei punti).

4.3.5 Stazione permanente di Zermatt

In modo analogo a quanto visto nella sezione precedente, è possibile ricavare le coordinate definenti la traiettoria del velivolo tramite l'utilizzo della stazione di Zermatt, Svizzera (Figure 4.15, 4.16 e 4.17). Quest'ultima si trova a circa 14 km da Ghiacciaio del Belvedere, ad una quota di quasi 2000 m. A differenza della stazione permanente virtuale, interpolata a partire dalla rete SPIN a 3500 m di quota ellissoidica, l'uso della stazione permanente *reale* di Zermatt permette di modellare il bias troposferico in maniera più accurata per quote così alte. Anche in questo caso, le precisioni del posizionamento sono *centimetriche*, con ambiguità fissata per la totalità dei punti della traiettoria (limitatamente alla zona del rilievo).

Figura 4.15: Traiettoria del volo in planimetria (stazione Zermatt)

Figura 4.16: Traiettoria del volo in altimetria (stazione Zermatt)

Figura 4.17: Traiettoria del volo (stazione Zermatt)

Figura 4.18: Traiettoria del volo elaborato utilizzando la stazione permanente di Zermatt (ambiguità fissate per il 100% dei punti).

4.3.6 Stazione permanente di Domodossola

La stazione permanente di Domodossola si trova circa 30 km da Macugnaga ad una quota ellissoidica di circa 365 m. La traiettoria del velivolo è stata elaborata anche con l'ausilio di tale stazione permanente. Tuttavia, la distanza e la forte differenza di quota fra *master* e *rover* non hanno permesso l'eliminazione dei *bias* spazialmente correlati e, di conseguenza il *fissaggio delle ambiguità* all'intero per un grande numero di punti (Figura 4.19).

Figura 4.19: Traiettoria del volo elaborato utilizzando la stazione permanente di Domodossola (ambiguità fissate per il 22.4% dei punti).

Confronto fra le diverse traiettorie

Le coordinate delle traiettorie, ottenute con un utilizzo alternativo della *stazione* permanente virtuale, stazione permanente di Zermatt e stazione di Domodossola come master, sono state confrontate e rappresentate graficamente in Figura 4.21.

Figura 4.20: Differenze nelle traiettorie calcolate con la stazione permanente di Domodossola e la stazione permanente di Zermatt

In Figura 4.20 sono rappresentate le differenze di coordinate delle traiettorie calcolate con l'utilizzo delle stazioni permanenti di Domodossola e Zermatt (limitatamente ai punti con ambiguità fissate). È evidente come la stazione di Domodossola non possa essere utilizzata come *master* nel posizionamento cinematico di fase ad ambiguità fissate. Pur operando un confronto esclusivamente nei punti con ambiguità fissata è possibile notare come il posizionamento abbia precisioni lontane da quelle attese (centimetriche). Conseguentemente, si può ipotizzare un *falso fissaggio delle ambiguità di fase*.

Figura 4.21: Differenze nelle traiettorie calcolate con la stazione permanente di Zermatt e la stazione permanente virtuale

Le differenze di coordinate sulle componenti planimetriche sono molto vicine allo zero per tutti i punti della traiettoria. Le quote dei punti calcolate con le due diverse stazioni presentano delle differenze di circa 5 cm, soprattutto nella prima parte del rilievo (periodo di ricognizione) e nell'ultima. È possibile ipotizzare che tali differenze (molto vicine alla precisione di posizionamento) siano dovute ad un residuo dell'errore *troposferico* che non viene modellato in modo accurato nella generazione della stazione virtuale. É notevole osservare come la modellazione dei bias da parte della rete SPIN abbia validità anche per alte quote (4000 m), nonostante questi vengano determinati con stazioni permanenti ad altitudini molto inferiori. Di fatto, la rete non dispone di stazioni elevate in quota: la stazione permanente più vicina a Macugnaga è posizionata a Domodossola e si trova a 365 m (Figura 4.8). Le due traiettorie si considerano comunque significativamente uguali. Tuttavia, per ragioni di convenienza e snellezza di calcolo, nelle operazioni successive si utilizzerà esclusivamente la traiettoria generata con riferimento alla stazione di Zermatt.

4.4 Determinazione della posizione dell'antenna al momento dello scatto

Per la determinazione delle coordinate dell'antenna al momento dello scatto ci si è avvalsi di dati di input forniti da DigiSky. Gli assetti e le posizioni (Tabella 4.5, in versione integrale in Appendice A, Tabella A.2) sono forniti con precisioni molto basse. Essi sono, infatti, determinati da IMU di basso costo e le coordinate dei centri di fase sono determinate con posizionamento GNSS di tipo standalone¹⁶. Il solo dato utilizzato è relativo agli istanti di scatto (colonna Timestamp [ms]).

Tabella 4.5: Posizioni approssimate dell'antenna, assetti approssimati della camera (misurati sull'IMU 1) e Timestamp

Fot.	h [m]	Lat $[^{\circ}]$	$Lon [^{\circ}]$	$oldsymbol{\omega}\left[^{\circ} ight]$	$\phi \ [^\circ]$	$\mathbf{k} [^{\circ}]$	$\mathbf{Timestamp} \; [ms]$
1750	332.44	45.08406	7.61079	0.0	95.9	-14.0	1572173438494
1751	332.37	45.08406	7.61079	0.0	95.8	-13.9	1572173450298
1752	330.14	45.08405	7.6108	0.0	95.5	-5.4	1572173757785
1753	328.76	45.08406	7.61081	0.0	95.7	-5.4	1572174318208
1754	3396.91	45.89036	7.89205	0.1	94.8	4.7	1572177607870
1981	4044.47	45.93239	7.93303	0.0	98.3	17.2	1572180705020

Il contenuto della Tabella 4.5 si divide in:

- numero del fotogramma (prima colonna);
- posizione approssimata dell'antenna al momento dello scatto (dalla colonna 2 alla colonna 4);
- assetto del trolley (angoli di rollio, beccheggio e sbandamento) a cui è collegata la camera (misure dell'IMU 1);
- istante di scatto in millisecondi per ogni fotogramma (indicato sulla prima colonna) indicato nella scala UNIX Time¹⁷ (con tempo zero alle 00:00 del 01-01-1970).

 $^{^{16}}$ Il posizionamento di tipo standalone garantisce delle precisioni dell'ordine dei 5 metri $^{17}\rm https://www.unixtimestamp.com/$

I valori degli angoli in Tabella 4.5 e Tabella 4.4 sono confrontabili solo a seguito di alcune considerazioni:

- gli angoli di beccheggio (*pitch*) provenienti dalle misure dell'IMU 1 sono corretti tramite una rotazione di 90°;
- i segni degli angoli di yaw provenienti dalla Triangolazione Aerea^{18} vengono invertiti.

4.4.1 Conversione dei tempi in GPST

I tempi vengono convertiti in GPS Time, passando prima per la conversione in *data giuliana modificata* del tempo zero UNIX. A tale scopo vengono utilizzate le Equazioni dalla 4.6a alla 4.7 [55].

$$JD = int \left[365.25y\right] + int \left[30.6001 \left(m+1\right)\right] + D + \frac{UT \left(ore\right)}{24.0} + 1720981.5 \quad (4.6a)$$

$$y = Y - 1$$
 e $m = M + 12$ se $M \le 2;$ (4.6b)

$$y = Y \quad e \quad m = M \quad se \quad M > 2 \tag{4.6c}$$

$$UT(ore) = hh + \frac{mm}{60} + \frac{ss}{3600}$$
 (4.6d)

$$MJD = JD - 2400000.5 \tag{4.6e}$$

e sono valide per una data espressa nel modo seguente, secondo il calendario gregoriano:

$$D - M - Y \quad hh: mm: ss \tag{4.7}$$

dove:

- D M Y rappresenta la data espressa in giorno, mese e anno;
- hh:mm:ss rappresenta l'ora espressa in ore, minuti e secondi.

 $^{^{18}{\}rm Espressi}$ secondo le convenzioni del software Agis
oft Metashape, utilizzato nell'elaborazione dei dati di riferimento

Procedura

Al fine di esprimere gli istanti di campionamento GNSS (derivanti dal postprocessamento della traiettoria) e gli istanti di scatto nella medesima scala temporale (giorno giuliano modificato, MJD) si sono utilizzate le procedure seguenti (differenti per i tempi di scatto ed i tempi di campionamento della traiettoria):

- conversione della data zero UNIX nel *giorno giuliano modificato* attraverso le formule precedentemente menzionate;
- espressione della data zero UNIX in secondi (moltiplicando la MJD per 86400);
- acquisizione degli istanti di scatto nella scala UNIX (trasformati da millisecondi in secondi);
- somma tra istanti di scatto nella scala UNIX (in secondi) ed il tempo zero precedentemente calcolato;

Il vettore degli istanti di scatto è così espresso in secondi e presenta lo zero coincidente con la scala del giorno giuliano modificato.

- si applicano le formule dalla 4.6a alla 4.6e per ottenere il giorno giuliano modificato (MJD) a partire dagli istanti di campionamento GNSS;
- si moltiplica MJD per 86400 al fine esprimere il tempo in secondi.

Entrambe le procedure sono state realizzate con il software MATLAB, i cui script sono mostrati nei Listing 4.1 e 4.2.

Listing 4.1: Script Matlab per la conversione degli istanti di scatti alla data giuliana modificata

```
 \begin{array}{l} \begin{array}{c} 1 \\ data\_zero\_unix = [1970,1,1]; \ \% data \ zero \ dello \ unix \ timestamp; \\ formato:[anno,mese,giorno] \end{array} \\ \\ \ \% formula: \ JD = INT[365.25y]+INT[30.6001*(m+1)]+D+UT/24+1720981.5 \\ \\ \begin{array}{c} Y\_z = \ data\_zero\_unix(1,1); \ \% anno \\ M\_z = \ data\_zero\_unix(1,2); \ \% mese \end{array} \\ \\ \begin{array}{c} \text{if } M\_z \!\!<\!\!=\!\!2 \\ y\_z = Y\_z\!-1; \\ \\ \begin{array}{c} 9 \\ 0 \end{array} \\ \\ \begin{array}{c} \text{else} \end{array} \end{array}
```

```
y_z = Y_z;
11
  end
12
  if M_z<=2
14
      m_z = M_z + 12;
  else
16
      m_z = M_z;
17
  end
18
19
_{20} D z = data zero unix (1,3); % giorno
21
  UT_z = 0.00; %lo zero è considerato a mezzanotte del 1970-1-1. UT
22
     rappresenta le ore in decimali.
23
  zero\_unix\_jd = fix(365.25*y\_z) + fix(30.6001*(m\_z+1)) + D\_z + UT\_z/24
24
  1720981.5; %data giuliana dello zero unix timestamp
25
26
  zero_unix_mjd = zero_unix_jd - 2400000.5; %modified julian date dello
27
      zero unix
28
  zero_unix_sec = zero_unix_mjd*86400; %secondi della data zero unix
29
     rispetto allo zero giuliano modificato
  tempi_scatto_sec_grezzi = PhaseOne_MetadataWithTimestamp(:,8)./1000;
30
     %istanti di scatto in secondi rispetto allo zero unix
31
32
  tempi_scatto_sec = tempi_scatto_sec_grezzi + bias_def;
33
34
  tempi_scatto_mjd_sec = tempi_scatto_sec + zero_unix_sec; %data
35
     giuliana istanti di scatto (secondi)
```

Listing 4.2: Script Matlab per la conversione dei tempi di campionamento GNSS alla data giuliana modificata

```
date_rilievo = E_N_traiettoria_zermatt(:,5:10); %date del rilievo (
1
     calendario gregoriano + hh:mm:ss)
     rilievo_mjd = zeros(size(date_rilievo,1),1);
2
      for ii=1:size(date_rilievo,1)
3
4
          Y_r= date_rilievo(ii,3); %anno
5
         M_r = date_rilievo(ii, 2); %mese
6
7
          if M r<=2
8
              y_r = Y_{r-1};
9
```

```
else
               y\_r\ =\ Y\_r\,;
11
           end
12
13
14
           if M r<=2
               m_r = M_{r+12};
           else
16
               m_r = M_r;
17
           end
18
19
          D r = date rilievo(ii, 1); \% giorno
20
21
           UT_r = date_rilievo(ii, 4) + date_rilievo(ii, 5)./60 +
     date_rilievo(ii,6)./3600;
23
           rilievo_jd(ii, 1) = fix(365.25*y_r) + fix(30.6001*(m_r+1)) +
24
     D_r + UT_r/24 + 1720981.5; %data giuliana rilievo
          %rilievo_mjd(ii,1) = mjuliandate(Y_r,M_r,D_r,date_rilievo(ii
25
      ,4),date_rilievo(ii,5),date_rilievo(ii,6));
      end
26
27
      rilievo mid = rilievo id -2400000.5;
28
29
      rilievo_mjd_sec = rilievo_mjd*86400; %data giuliana modificata di
30
       ogni campionamento espressa in secondi
```

4.4.2 Interpolazione lineare

Gli istanti di campionamento GNSS hanno risoluzione temporale di un secondo, che corrisponde alla frequenza di campionamento sia del ricevitore montato sul velivolo sia della stazione base di Zermatt. Pertanto, è necessario interpolare tra due secondi consecutivi al fine di ottenere la reale posizione dell'antenna al momento dello scatto. Dato il breve intervallo di tempo e le velocità del velivolo, determinare la posizione con interpolazione lineare è considerata un'approssimazione accettabile¹⁹. La procedura è la seguente:

- si determina (in modo manuale o automatico) l'intervallo di tempo di un secondo (all'interno di due istanti di campionamento GNSS consecutivi) nel quale si colloca l'istante di scatto;
- si determina la posizione di scatto attraverso le formule 4.8.

 $^{^{19}}$ Ipotesi valida nella condotta di un volo fotogrammetrico

$$E_{j}^{scatto} = E_{n-1}^{GNSS} + \frac{E_{n}^{GNSS} - E_{n-1}^{GNSS}}{t_{n}^{GNSS} - t_{n-1}^{GNSS}} \left(t_{j}^{scatto} - t_{n-1}^{GNSS}\right)$$
(4.8a)

$$N_{j}^{scatto} = N_{n-1}^{GNSS} + \frac{N_{n}^{GNSS} - N_{n-1}^{GNSS}}{t_{n}^{GNSS} - t_{n-1}^{GNSS}} \left(t_{j}^{scatto} - t_{n-1}^{GNSS}\right)$$
(4.8b)

$$h_{j}^{scatto} = h_{n-1}^{GNSS} + \frac{h_{n}^{GNSS} - h_{n-1}^{GNSS}}{t_{n}^{GNSS} - t_{n-1}^{GNSS}} \left(t_{i}^{scatto} - t_{n-1}^{GNSS}\right)$$
(4.8c)

Lo schema utilizzato per l'interpolazione è mostrato in Figura 4.25. Nello script 4.3 viene riportato l'algoritmo utilizzato per le operazioni di interpolazione, eseguite al fine di determinare la posizione dell'antenna al momento dello scatto.

Listing 4.3: Script Matlab interpolazione lineare

```
1 | coordinate_gps_scatto = zeros(size(tempi_scatto_mjd_sec, 1), 3);
2
  i = 1;
  while tempi_scatto_mjd_sec(i) < rilievo_mjd_sec(i)</pre>
3
  %faccio in modo di non interpolare prima della prima misura GNSS
4
          i = i + 1;
5
  end
6
 %interpolazione per la determinazione delle posizioni dell'antenna al
8
9 momento dello scatto (posizioni riferite al PP con stazione zermatt)
|N| = zeros(size(tempi_scatto_sec, 1), 1);
_{13}|\% La matrice N viene creata perché servirà successivamente per
     determinare
_{14}|\% il punto in cui calcolare le velocità che si hanno al momento dello
15 % scatto
16
  jj = 1;
17
  for s = i:length(tempi_scatto_mjd_sec)
18
      n = s;
19
      while tempi_scatto_mjd_sec(s) > rilievo_mjd_sec(n)
20
21
          n = n+1;
      end
22
      N(jj, 1) = n;
23
24
      jj = jj+1;
25
      coordinate_gps_scatto(s,1) = 0.466+(E_N_traiettoria_zermatt(n,2))
26
     - E_N_traiettoria_zermatt(n-1,2))/(rilievo_mjd_sec(n) -
     rilievo_mjd_sec(n-1))*(tempi_scatto_mjd_sec(s) - rilievo_mjd_sec(n
     (-1)) + E_N_traiettoria_zermatt(n-1,2); %coordinata Est
```

27 $coordinate_gps_scatto(s, 2) = -0.516+(E_N_traiettoria_zermatt(n, 3))$ 28 - E_N_traiettoria_zermatt(n-1,3))/(rilievo_mjd_sec(n) rilievo_mjd_sec(n-1))*(tempi_scatto_mjd_sec(s) - rilievo_mjd_sec(n -1)) + E_N_traiettoria_zermatt(n-1,3); %coordinata Nord 29 $coordinate_gps_scatto(s,3) = -0.096+(E_N_traiettoria_zermatt(n,4))$ 30 - E_N_traiettoria_zermatt(n-1,4))/(rilievo_mjd_sec(n) rilievo_mjd_sec(n-1))*(tempi_scatto_mjd_sec(s) - rilievo_mjd_sec(n (-1)) + E N traiettoria zermatt(n-1,4); %coordinata h 31 end 32 coordinate_gps_scatto_utili= [coordinate_gps_scatto(23:98,:); 33 coordinate_gps_scatto (102:136,:); coordinate_gps_scatto (139:173,:); coordinate_gps_scatto(175:232,:)]; %considero solamente le coordinate relative ai fotogrammi di interesse

4.4.3 Risultati e verifica grafica

I risultati ottenuti sono indicati nella Tabella 4.6 (versione integrale in Appendice A, Tabella A.3).

Fotogramma	\mathbf{Est} [m]	Nord $[m]$	Quota (ellissoidica) $[m]$
1772	416201.941	5085600.735	3657.561
1773	416479.915	5085694.693	3670.085
1774	416699.539	5085875.228	3676.611
1775	416851.575	5086129.042	3670.587
1776	416973.012	5086409.675	3688.640
1981	417283.969	5087095.814	4046.392

Tabella 4.6: Coordinate dei centri di fase dell'antenna al momento dello scatto

La prima verifica svolta è di tipo grafico (Figura 4.22 e Figura 4.23). Le posizioni ottenute sono sovrapposte ai grafici della traiettoria già mostrati nelle sezioni precedenti. Si tratta di una verifica preliminare, che tuttavia consente di eliminare la possibilità di errori grossolani.

Figura 4.22: Traiettoria e scatti (planimetria)

Figura 4.23: Traiettoria e scatti

4.4.4 Confronto con la soluzione da Triangolazione Aerea

La validità dei calcoli viene verificata tramite un confronto fatto *a partire* dai centri di presa della camera, provenienti dall'orientamento esterno dei fotogrammi (sezione 4.2.2). Lo scopo dello studio è quello di generare due soluzioni indipendenti (con Triangolazione Aerea e fotogrammetria diretta) e operare una cross-validazione delle due tecniche. In questa fase, i centri di presa da Triangolazione Aerea verranno *ridotti al centro di fase dell'antenna* utilizzando il *vettore eccentricità misurato* (Figura 4.2). Obiettivo sarà confrontarli con i centri di fase determinati per interpolazione nella sezione 4.4.3 ed esposti in Tabella 4.6. Tale procedura permette di determinare l'eventuale presenza di errori sistematici nella determinazione della posizione dei centri di presa con tecniche dirette.

Per fare ciò, si considera l'eccentricità misurata in modo approssimato ed indicata in Figura 4.2, il cui modulo rappresenta la base di confronto con l'*eccentricità calcolata*. Quest'ultima viene ottenuta a partire dalle posizioni dei centri di presa e dei centri di fase dell'antenna.

Vettore eccentricità misurato

Il vettore eccentricità tra il centro di fase dell'antenna ed il punto nodale della camera (centro di presa) è stato misurato con precisione centimetrica e fornito dalla ditta (Figura 4.2 ed Espressione 4.9).

$$\bar{e} = \begin{pmatrix} 2.40\\ 0.40\\ -0.30 \end{pmatrix} \quad ; \quad |\bar{e}| = 2.452 \ m \tag{4.9}$$

Vettore eccentricità calcolato

A partire dalle posizioni dei centri di presa calcolati con Triangolazione Aerea (Tabella A.1) e dei centri di fase dell'antenna GNSS (Tabella A.3) si può calcolare, per ogni scatto, il modulo del vettore eccentricità. Tale valore sarà successivamente confrontato con il modulo del vettore eccentricità misurato (Equazione 4.9)

I calcoli sono riassunti in Tabella A.7.

 Tabella 4.7:
 Eccentricità misurate per ogni fotogramma

Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo [m]
1772	8.511	-1.964	-1.131	8.807
1773	8.525	0.197	-0.560	8.546
1774	7.501	2.966	-0.987	8.126
1775	6.023	5.362	-1.116	8.141
		<u> </u>		

Continua nella pagina successiva

Tabella 4.1 – Continuazione da pagina precedente					
Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo [m]	
1776	5.988	4.806	-1.287	7.785	
1981	5.144	6.237	-1.067	8.154	
			Media	7.757	
Deviazione standard 0.628					

T_{-} = 11 = 4.7	<i>C</i>	1		
Tapena 4.7 $-$	Continuazione	aa	paqina	preceaente

I valori dei moduli evidenziano un errore sistematico nella determinazione della posizione dei centri di fase²⁰. In particolare, si ipotizza la presenza di un errore sistematico nella determinazione dei tempi (o nella registrazione dei tempi di scatto).

Bias temporale Si ipotizza che l'*errore sistematico nella determinazione dei tempi di scatto* sia causato dalla tecnica di acquisizione degli stessi. Le tecniche di fotogrammetria diretta prevedono la generazione di un impulso da parte della camera verso il ricevitore GNSS per la registrazione del tempo in cui è avvenuta l'apertura dell'otturatore della camera stessa²¹. In questo modo, l'istante di scatto è registrato direttamente nella scala temporale GNSS per mezzo di un *event marker*, ovviando a problematiche dovute ad asincronie tra orologi. Il sistema utilizzato nella realizzazione del presente volo prevede, invece, la registrazione del tempo di scatto in un file generato dal processore del computer di bordo. Questo è responsabile della generazione di un impulso (*trigger*) per lo scatto della camera. Il bias temporale potrebbe essere, di conseguenza, dovuto ad un'asincronia tra l'orologio del computer di bordo e l'orologio GNSS. Nelle sezioni successive verranno esposte le operazioni eseguite al fine della compensazione di tale errore sistematico.

Determinazione dei vettori velocità

La velocità viene considerata costante tra due istanti di campionamento consecutivi²². Perciò, avendo una frequenza di campionamento di un secondo, le differenze

 $^{^{20}\}mathrm{Si}$ escludono errori grossolani nella determinazione delle posizioni dei centri di presa da triangolazione aerea

 $^{^{21}\}mathrm{L'istante}$ di scatto è da definirsi coincidente con il picco massimo di luminosità in ingresso nel sensore

 $^{^{22}}$ Tale ipotesi è plausibile nella condotta di un volo fotogrammetrico e ritenuta valida lungo strisciate seguite dal velivolo durante le operazioni di acquisizione.

di coordinate tra un istante e l'altro corrispondono ai moduli delle componenti del vettore velocità (espressa in m/s). Le velocità vengono calcolate in corrispondenza degli istanti di scatto, e sono riepilogati dalla Tabella 4.8. Considerata la scarsa variazione di quota ipotizzabile durante le prese fotografiche, si può considerare la velocità in direzione verticale come trascurabile per i calcoli preliminari.

Fotogramma	$V_E \; [{ m m/s}]$	$V_N \; [{ m m/s}]$	V (modulo) $[m/s]$
1772	46.826	9.188	47.719
1773	40.357	21.807	45.872
1774	30.197	34.190	45.616
1775	18.944	43.694	47.624
1776	21.224	39.735	45.048
1981	12.164	43.958	45.610
		Media	43.326
I	Deviazione	$\operatorname{standard}$	2.369

Tabella 4.8: Vettori velocità (vedi Tabella A.4)

Figura 4.24: Componenti planimetriche di velocità e modulo della velocità

Si possono osservare inversioni nel segno delle componenti di velocità. Tali inversioni rappresentano le strisciate in avanti ed indietro del velivolo (Figura 4.18).

Riduzione dei centri di presa da Triangolazione Aerea al centro di fase dell'antenna

L'operazione di riduzione dei centri di presa della camera (determinati con TA) al centro di fase dell'antenna ha come solo fine la determinazione di eventuali errori derivanti dal calcolo della posizione del velivolo al momento dello scatto. In questo modo, si ha la possibilità di tarare il modello e di determinare il **bias temporale**, ipotizzato nella conclusione della sezione 4.4.4. Ai fini pratici, tale operazione è equivalente alla *riduzione* della posizione del centro di fase dell'antenna (calcolato per interpolazione, sezione 4.4.2) al centro di presa con l'utilizzo dell'*eccentricità misurata*. Trascurando la componente altimetrica, la cui variazione di velocità è ritenuta minima nell'intervallo di un secondo, si ha:

$$E_{CP,n}^{GNSS} = E_n^{CP} - 2.40 \cos k_n + 0.40 \sin k_n \tag{4.10a}$$

$$N_{CP,n}^{GNSS} = N_n^{CP} - 2.40 \sin k_n - 0.40 \cos k_n \tag{4.10b}$$

dove:

- $E_{CP,n}^{GNSS}$ e $N_{CP,n}^{GNSS}$ sono le coordinate Est e Nord che dovrebbe avere il centro di fase dell'antenna al momento dello scatto del fotogramma n-esimo;
- k_n è l'angolo di sbandamento del velivolo al momento dello scatto del fotogramma n-esimo (rotazione rispetto all'asse z).

In questo caso, trattandosi di un calcolo preliminare approssimato, si considerano gli angoli di assetto dei fotogrammi che sono forniti dalla triangolazione aerea. I risultati sono riportati nella Tabella 4.9 (integralmente in Tabella A.5, Appendice A).

\mathbf{Est} [m]	Nord [m]
416200.915	5085599.944
416479.281	5085693.389
416699.156	5085873.887
416851.294	5086127.742
416972.497	5086408.755
417284.093	5087095.003
	Est [m] 416200.915 416479.281 416699.156 416851.294 416972.497 417284.093

Tabella 4.9: Posizione dei centri di presa riportati al centro di fase

Determinazione dei vettori di errore e del bias temporale

Dal confronto tra le coordinate ridotte e le coordinate del centro di fase dell'antenna al momento dello scatto, è stato possibile estrapolare una serie di vettori di errore. Tali vettori sono calcolati come differenza tra le coordinate dell'antenna misurate direttamente e quelle calcolate a posteriori a partire dai centri di presa della camera (da Triangolazione Aerea). A partire da tali vettori di errore, determinati solamente in planimetria, il bias temporale è calcolato come prodotto scalare vettore di errore e vettore velocità. Infine, il bias temporale nella direzione del volo è ottenuto dividendo due volte per il modulo del vettore velocità (Figura 4.25).

Figura 4.25: Schema utilizzato per il calcolo del bias di tempo

Componenti di velocità e bias temporale sono calcolabili con l'utilizzo delle espressioni seguenti e con l'ausilio dello schema esemplificativo in Figura 4.25. Le velocità istantanee sono calcolate come indicato nelle espressioni 4.11.

$$v_E = \frac{E_{i+1} - E_i}{1s}$$
(4.11a)
78

$$v_N = \frac{N_{i+1} - N_i}{1s}$$
(4.11b)

Si hanno quindi due vettori:

- un vettore di errore $\boldsymbol{\delta}$;
- un vettore velocità **v**;

espressi nelle relazioni 4.12.

$$\boldsymbol{\delta} = \begin{pmatrix} E_n^{GNSS} - E_{CP,n}^{GNSS} \\ N_n^{GNSS} - N_{CP,n}^{GNSS} \end{pmatrix} = \begin{pmatrix} \delta_E \\ \delta_N \end{pmatrix}$$
(4.12a)

$$\mathbf{v} = \begin{pmatrix} v_E \\ v_N \end{pmatrix} \tag{4.12b}$$

Per la determinazione del bias temporale δ_t si proietta il vettore di errore $\boldsymbol{\delta}$ sul versore delle velocità, (indicato nell'espressione 4.13.

$$\boldsymbol{u} = \begin{pmatrix} \frac{\boldsymbol{v}_E}{\sqrt{\boldsymbol{v}_E^2 + \boldsymbol{v}_N^2}}\\ \frac{\boldsymbol{v}_N}{\sqrt{\boldsymbol{v}_E^2 + \boldsymbol{v}_N^2}} \end{pmatrix}$$
(4.13)

Il vettore di errore viene proiettato su \mathbf{u} tramite l'operazione di prodotto scalare al fine di ottenere il modulo del bias spaziale (espresso in metri) nella direzione della velocità:

$$\boldsymbol{\delta} \cdot \mathbf{u} = \frac{\delta_E v_E + \delta_N v_N}{\sqrt{v_E^2 + v_N^2}} \tag{4.14}$$

Per ottenere il bias temporale medio, quindi, si divide ulteriormente per il modulo della velocità, come nell'equazione 4.15.

$$\delta_t = \frac{\delta_E v_E + \delta_N v_N}{\sqrt{v_E^2 + v_N^2}} \cdot \frac{1}{\sqrt{v_E^2 + v_N^2}} = \frac{\delta_E v_E + \delta_N v_N}{v_E^2 + v_N^2}$$
(4.15)

Nella Tabella 4.10 (riportata integralmente in Appendice A, Tabella A.6), vengono rappresentati i risultati, sintetizzati da media e deviazione standard.

Fotogramma	$\Delta E [m]$	ΔN [m]	$\delta t [s]$	
1772	8.002	0.381	0.166	
1773	7.208	2.204	0.161	
1774	5.596	4.427	0.154	
Continua nella pagina successiva				

Tabella 4.10 – (Continuazi	one da pagi	na precedente
Fotogramma	$\Delta E [m]$	$\Delta N [m]$	$\delta t [s]$
1775	3.765	6.175	0.150
1776	3.830	5.857	0.155
1813	2.874	5 810	0.148

6.169

...

-5.844

-5.970

...

6.735

Media

0.151

...

0.158

0.160

...

0.159

0.168

0.013

2.315

...

-1.521

-1.483

...

2.796

1814

... 1832

1833

...

1981

Volo fotogrammetrico sul Ghiacciaio del Belvedere

Tabella 4.10: Calcolo del bias temporale (tempi in secondi)

Deviazione standard

A causa della precisione approssimativa delle misurazioni, si ottengono i valori di media e deviazione standard riportati in Tabella 4.10. É utile osservare come deviazioni standard di circa 13 *millesimi di secondo* nella determinazione dei tempi di scatto forniscano delle precisioni molto basse alle velocità di regime del velivolo (Figura 4.24). Per velocità intorno a 50 m/s, tale deviazione standard fornisce una precisione di ±50 cm nella determinazione della posizione del centro di presa.

A supporto dell'ipotesi che si tratti di un errore sulla sincronizzazione dei tempi, è possibile osservare l'inversione di segno nelle differenze ΔE e ΔN corrispondente con il cambio delle diverse strisciate (Tabella 4.10). Osservando solamente i fotogrammi corrispondenti alle strisciate (indicate in Tabella 4.11 e rappresentate in Figura 4.22) e verificando la prevalenza delle velocità in direzione Nord-Sud (o Sud-Nord), si può notare l'effetto dell'errore sistematico del tempo (Tabella 4.10).

Prendendo come esempio i fotogrammi 1813 (1833), scattato in una strisciata che procede da Sud verso Nord (da Nord verso Sud), si nota come la differenza (Tabella 4.11):

$$N_{CP}^{ant} - N^{ant} > 0 \tag{4.16}$$

${\bf A}$ fotogramma	Direzione
1812	N-S
1831	S-N
1850	N-S
1869	S-N
1888	N-S
1906	S-N
1925	N-S
1955	S-N
1974	N-S
1981	S-N
	A fotogramma 1812 1831 1850 1869 1888 1906 1925 1955 1974 1981

4.4 – Determinazione della posizione dell'antenna al momento dello scatto

Tabella 4.11:	Fotogrammi	per ogni	strisciata	rettilinea.
---------------	------------	----------	------------	-------------

per il fotogramma 1813 e

$$N_{CP}^{ant} - N^{ant} < 0 \tag{4.17}$$

per il fotogramma 1833. In particolare:

- N_{CP}^{ant} rappresenta la coordinata del centro di fase dell'antenna calcolata a partire dalla posizione del centro di presa;
- N^{ant} è la posizione dell'antenna misurata attraverso i tempi rilevati e forniti dalla ditta.

La differenza positiva indica che il fotogramma 1813 viene acquisito una quantità δ_t di tempo in ritardo rispetto all'istante registrato, da cui deriva quindi una posizione dell'antenna arretrata (nella direzione della traiettoria) rispetto a quella reale. Tuttavia, la precisione delle misure fornisce errori residui non sistematici. Come mostrato in Tabella A.6, il bias temporale non è costante per tutti i fotogrammi.

Determinazione dei centri di fase corretti (di primo tentativo) e ricerca del bias ottimo Gli istanti di scatto misurati (Tabella 4.5) sono incrementati della quantità δ_t (bias temporale di primo tentativo, media da Tabella 4.10) al fine di ricalcolare le posizioni del centro di fase dell'antenna con i *timestamp* aggiornati. Dal confronto di tali punti così determinati ed i centri di fase calcolati a partire dai centri di presa (da Triangolazione Aerea, Tabella 4.9) si conserva un errore medio (in modulo) di circa:

$$\mu = 0.50m \tag{4.18}$$

con deviazioni standard delle componenti pari a:

- $\sigma_E = 0.252 \text{ m},$
- $\sigma_N = 0.458 \text{ m},$
- $\sigma_h = 0.749 \text{ m},$

Le precisioni molto basse sono dovute ad incertezze residue dovute alla concomitanza di vari fattori, quali:

- le grandi dimensioni dell'eccentricità camera-antenna;
- l'asincronia tra gli orologi che genera un bias temporale nella determinazione dei tempi di scatto.

L'ottimizzazione della ricerca del bias viene fatta con l'ausilio di un algoritmo incrementale. Nello script *Matlab* vengono svolte le seguenti operazioni:

- è definita una variabile *bias definitivo*, impostata inizialmente pari a zero;
- il bias definitivo è addizionato agli istanti di scatto forniti da DigiSky (Tabella 4.5);
- la posizione del centro di fase dell'antenna è ricalcolata con un'interpolazione lineare (come da espressioni 4.8);
- la posizione del centro di presa della camera, proveniente dall'orientamento esterno dei fotogrammi, è riportata al centro di fase dell'antenna tramite le espressioni 4.10;
- sono calcolate le velocità istantanee come da espressioni 4.11;
- il bias temporale è calcolato come mostrato nelle formule 4.15, per ogni fotogramma;
- si calcola il *bias medio residuo*, ovvero la media dei bias temporali calcolati;
- il *bias definitivo* fissato in precedenza viene incrementato con step di 0.5 millesimi di secondo;
- l'operazione è iterata fino a quando il *bias medio residuo* non scende al di sotto di una quantità fissata, che in questo caso è stata posta anch'essa a 0.5 millesimi di secondo.

Il bias temporale risulta è, in definitiva (utilizzando il *vettore eccentricità misurato*):

$$\delta_t = 0.159s; \sigma_t = 0.0135s \tag{4.19}$$

Al fine di operare dei calcoli più precisi, si ritiene ritenuta necessaria la *rotazione* dell'eccentricità, ovvero la ricerca di una matrice di rotazione che permetta di:

- esprimere le componenti del vettore eccentricità (*lever-arm*) in un sistema di riferimento noto (diverso da quello in cui questa eccentricità viene misurata);
- utilizzare gli angoli dell'IMU 2 per la riduzione del centro di fase dell'antenna al centro di presa.

4.4.5 Rotazione dell'eccentricità

Per rotazione dell'eccentricità si intende la determinazione di una matrice di rotazione che consenta di utilizzare gli assetti del velivolo misurati nell'IMU 2 (solidale alla fusoliera) che sono riportati in Tabella 4.12 (vedi Tabella A.9). In particolare, le dimensioni dell'*eccentricità misurata* sono note in un sistema di riferimento locale non coincidente con il sistema camera o il sistema aereo. La matrice di rotazione ha, quindi, lo scopo di fornire la trasformazione di coordinate che consente l'espressione del vettore eccentricità nel sistema di riferimento aereo. Inoltre, gli angoli misurati dall'IMU 2 potranno essere utilizzati per le operazioni di *riduzione dell'eccentricità*. In conclusione, affinché si possa operare la restituzione del rilievo con tecniche fotogrammetriche dirette:

- il bias temporale deve essere determinato in modo da minimizzare la distanza media tra centro di fase misurato e calcolato²³;
- l'eccentricità deve essere espressa nel sistema di riferimento dell'IMU 2, la quale misura i reali assetti del velivolo.

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	92 50
1773 -18.45 3.45	52.00
	73.35
1774 -14.80 -0.60	55.55
1775 -3.00 2.20	38.85

Tabella 4.12: Assetti del velivolo misurati dall'IMU 2 (solidale alla fusoliera)

Continua nella pagina successiva

 $^{^{23}\}mathrm{A}$ partire dai centri di presa da Triangolazione Aerea

Fotogramma	$oldsymbol{\omega} \left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	k [°]
1776	10.25	3.60	45.80
1793	-2.15	5.95	-164.15
1794	-4.60	6.25	-164.75
1813	-0.70	10.45	14.85
1814	1.25	12.55	11.20
1981	2.40	8.50	11.10

Tabella 4.12 – Continuazione da pagina precedente

Figura 4.26: Assetti del velivolo misurati dall'IMU 2

Confronto preliminare degli angoli

Una verifica preliminare viene svolta al fine di verificare la congruenza tra angoli di assetto provenienti da misure differenti. I grafici delle Figure 4.27, 4.28 e 4.29 confrontano gli angoli misurati delle IMU 1 e 2 e gli assetti dei fotogrammi risultanti dalla Triangolazione Aerea (TA).

Figura 4.27: Confronto angoli di rollio

Gli angoli di rollìo dati dalla TA e dall'IMU 2 sono molto piccoli, eccetto in corrispondenza dei primi fotogrammi del volo e di alcune fluttuazioni. I *roll* forniti dall'IMU 1 sono significativamente nulli. Tale piattaforma inerziale è, di fatto, solidale al *pod* sull'ala destra, il quale subisce una stabilizzazione rispetto a tale angolo. Tuttavia, i valori di *roll* calcolati dalla TA non coincidono con quelli misurati dall'IMU 1, mettendo in evidenza un'assenza di parallelismo nel montaggio tra IMU e camera.

Figura 4.28: Confronto angoli di beccheggio

L'assetto dell'aereo durante il rilievo varia a seconda delle strisciate percorse. In particolare, la variabilità dell'angolo di *pitch* da +5 a -5 $[deg]^{24}$ evidenzia l'inversione della direzione di volo nel cambio di strisciata.

 $^{^{24}\}mathrm{Assetto}$ ragionevole nella condotta del volo

Figura 4.29: Confronto angoli di imbardata

Osservando la sovrapposizione delle curve rappresentanti gli angoli di *yaw* derivanti da TA e IMU 2, è lecito assumere che gli assetti misurati dalla piattaforma inerziale siano utilizzabili nelle operazioni di *riduzione dell'eccentricità*.

Definizione del problema

Si considera l'eccentricità:

$$\vec{e} = \begin{pmatrix} 2.40\\ 0.40\\ -0.30 \end{pmatrix}$$
(4.20)

Il vettore \vec{e} è misurato in un sistema body non conosciuto, con asse X quasi coincidente con l'asse dell'aereo e il piano XY sub-orizzontale (a velivolo fermo). L'*eccentricità misurata* è imposta come coincidente con la differenza tra le coordinate dell'antenna (misurate) e le coordinate del centro di presa della camera (da TA) ma ruotata *nello spazio* di una matrice $R(\omega\varphi\kappa)$:

$$\left(\vec{X}_{Antenna} - \vec{X}_{Camera}\right) = R^{terreno}_{body,\vec{e}}\left(\omega\varphi\kappa\right)\vec{e}$$
(4.21)

L'equazione 4.21 presenta un'unica incognita, rappresentata da $R(\omega\varphi\kappa)$. Tale incognita è una matrice di rotazione che consente la trasformazione di coordinate dal sistema di riferimento terreno (sistema di riferimento globale ETRF)²⁵ al sistema di riferimento locale in cui l'eccentricità \vec{e} è stata misurata. Al fine di correlare tale sistema di riferimento globale con il sistema aereo (IMU 2), è necessario osservare che l'IMU 2 è ruotata delle quantità incognite $\delta\omega$, $\delta\varphi$ and $\delta\kappa$ rispetto al sistema in cui è misurata l'eccentricità, denominato sistema body. Conseguentemente:

$$R_{IMU}^{terreno}\left(Y, P, R\right) = \Delta \mathbf{R} * R_{body, \vec{e}}^{terreno}\left(\omega, \varphi, \kappa\right)$$
(4.22)

$$\Delta R = R_{IMU}^{Terreno} \left(Y, P, R \right) \left(R_{body, \vec{e}}^{terreno} \left(\omega, \varphi, \kappa \right) \right)^{T}$$
(4.23)

 ΔR rappresenta la matrice che consente l'espressione del vettore eccentricità nel sistema di riferimento aereo, i cui angoli di assetto sono misurati dall'IMU 2. Le Equazioni 4.21, 4.22 e 4.23 contengono **due incognite**: la matrice $R(\omega\phi\kappa)$ e la matrice ΔR .

Determinazione della matrice di rotazione

La matrice di rotazione $R(\omega\varphi\kappa)$ può essere calcolata, in questa fase, solamente con approssimazione grossolana, conseguentemente alle incertezze nella determinazione dei centri di fase dell'antenna (oggetto delle sezioni precedenti).

Decomposizione ai valori singolari La matrice di rotazione del vettore eccentricità $R(\omega\varphi\kappa)$, è ottenuta con l'ausilio di algoritmi di **decomposizione ai valori singolari** (Single Value Decomposition). La SVD è una particolare fattorizzazione di una matrice basata sull'utilizzo di autovalori o autovettori. Nel caso in esame, l'algoritmo fornisce i parametri atti all'allineamento di due corpi rigidi nello spazio. Le differenze ai vertici dei due corpi rigidi vengono minimizzate con una procedura ai minimi quadrati. Nel caso in esame, il corpo rigido è il vettore eccentricità, posizionato nello spazio in modo incognito e ruotato rispetto a \vec{e} (Equazione 4.20) tramite matrice $R(\omega\varphi\kappa)$. Al fine di ottenere un risultato più accurato il centro di fase dell'antenna è considerato come origine del sistema di riferimento aereo (IMU).

 $^{^{25}\}mathrm{Sistema}$ di riferimento in cui sono espresse le coordinate GNSS e dei centri di presa.

In questo modo le coordinate del centro di fase dell'antenna sono sempre (0,0,0). L'algoritmo prevede la minimizzazione della quantità seguente:

$$\sum_{i=1}^{n} w_i || (R\mathbf{p}_i + \mathbf{t}) - \mathbf{q}_i ||^2$$
(4.24)

dove:

- R
 rappresenta la matrice di rotazione del lever-arm alla posizione indicata d
a $\vec{e};$
- t rappresenta il vettore di traslazione, il quale sovrappone i baricentri dei due corpi rigidi nello spazio (in questo caso, coincidenti con il punto medio del vettore eccentricità).

Applicazione dell'algoritmo Il set di dati di input è costituito dai punti che definiscono i vertici del corpo rigido (vettore eccentricità ruotato nello spazio). L'algoritmo applicato si divide in cinque step:

• calcolo dei baricentri dei corpi rigidi considerati (punto medio del segmento) con le Equazioni:

$$\bar{p} = \frac{\sum_{i=1}^{n} w_i p_i}{\sum_{i=1}^{n} w_i}; \bar{q} = \frac{\sum_{i=1}^{n} w_i q_i}{\sum_{i=1}^{n} w_i}.$$
(4.25)

• calcolo dei *vettori centrati*, ovvero la *traslazione* dei vettori affinché il baricentro coincida con l'origine del sistema di riferimento in cui sono espressi:

$$x_i := p_i - \bar{p}, \quad y_i := q_i - \bar{q}, \qquad i = 1, 2, ..., n$$

$$(4.26)$$

• calcolo della matrice di covarianza S:

$$S = XWY^T \tag{4.27}$$

dove X e Y sono le matrici che hanno per colonne i vettori centrati calcolati nel passo 2, e W è la matrice dei pesi (imposta pari ad una matrice identità);

- calcolo, attraverso l'algoritmo SVD^{26} , delle matrici U e V, tali per cui:

$$S = U\Sigma V^T \tag{4.28}$$

 $^{^{26}\}mathrm{L'algorimo}$ SVD è implementato sul software MATLAB

• la matrice di rotazione è calcolata come:

$$R = V \begin{pmatrix} 1 & & & \\ 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 1 & \\ & & & det(VU^T) \end{pmatrix} U^T$$
(4.29)

• il vettore ottimo di traslazione t è calcolato come:

$$t = \bar{\mathbf{q}} - R\bar{\mathbf{p}} \tag{4.30}$$

Verifica della validità della matrice Date le incertezze del problema, la validità della matrice può essere verificata tramite i segni delle tre componenti del vettore eccentricità ruotato. In particolare, per lo stesso fotogramma si dispone di:

- una matrice di rotazione del vettore eccentricità $R(\omega\varphi\kappa)$, ora nota;
- le coordinate del centro di presa provenienti dalla triangolazione aerea;
- le coordinate del centro di fase dell'antenna, determinate dopo la correzione del bias temporale.

Conseguentemente, la verifica consiste in:

$$segno\left[R\left(\omega\varphi\kappa\right)\vec{e}\right] = segno\left[\vec{X}_{Antenna} - \vec{X}_{Camera}\right]$$
(4.31)

dove la funzione segno $[\vec{v}]$ fornisce come risultato un vettore che ha come elementi, a sua volta, i segni degli elementi del vettore \vec{v} . Data la precisione delle misure, è possibile ottenere solamente una matrice di rotazione $R(\omega\varphi\kappa)$ che consenta di ruotare il vettore eccentricità \vec{e} nello stesso ottante in cui si trovava al momento dello scatto²⁷.

Decodifica della matrice di rotazione

Al fine di ottenere un coerente prodotto matriciale nell'Equazione 4.23, è necessario comprendere quale l'ordine delle rotazioni cardaniche che forniscono la matrice di rotazione $R(\omega\varphi k)$. A seguito di un procedimento per tentativi, in cui gli angoli di

 $^{^{27}\}mathrm{Si}$ assume che l'orientamento del vettore eccentricità durante il volo (-7 gradi di yaw verso il quarto quadrante planimetrico E-N) sia tale per cui le precisioni a disposizione non determinino comunque un cambio di ottante del vettore stesso

rotazione cardanici estratti dalla matrice sono confrontati con quelli attesi (assetti dell'IMU), si l'ordine esatto si dimostra:

$$R(\omega\varphi k) = R(k)R(\varphi)R(\omega)$$
(4.32)

In particolare, ipotizzando che la matrice ottenuta con l'ausilio dell'algoritmo SVD sia definita come da Equazione 4.32, è possibile decodificare gli angoli cardanici di rotazione attraverso le formule in 4.33:

$$\omega = \arctan(-\frac{r_{32}}{r_{33}})$$

$$\varphi = \arcsin(r_{31})$$

$$\kappa = \arctan(-\frac{r_{21}}{r_{11}})$$
(4.33)

Utilizzando la seguente sequenza di rotazioni cardaniche $R(\kappa)R(\varphi)R(\omega)$:

$$R(k) = \begin{bmatrix} \cos k & -\sin k & 0\\ \sin k & \cos k & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(4.34)

$$R(\varphi) = \begin{bmatrix} \cos\varphi & 0 & \sin\varphi \\ 0 & 1 & 0 \\ -\sin\varphi & 0 & \cos\varphi \end{bmatrix}$$
(4.35)

$$R(\omega) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \omega & -\sin \omega\\ 0 & \sin \omega & \cos \omega \end{bmatrix}$$
(4.36)

si ottiene una matrice di rotazione come da Equazione 4.37.

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} \cos\varphi\cos k & \cos\omega\sin k + \sin\omega\sin\varphi\cos k \\ -\cos\varphi\sin k & \cos\omega\cos k - \sin\omega\sin\varphi\sin k \\ \sin\varphi & -\sin\omega\cos\varphi \\ & \sin\omega\sin k - \cos\omega\sin\varphi\cos k \\ & \cos\omega\sin\varphi\sin k \\ & \cos\omega\cos\varphi \end{bmatrix}$$
(4.37)

Definizione della matrice $R_{IMU}^{terreno}$ A partire dagli angoli misurati dall'IMU 2, è definita la matrice di rotazione del sistema di riferimento solidale alla fusoliera rispetto al sistema di riferimento globale ETRF (coordinate della rappresentazione UTM).

Calcolo della matrice $\Delta \mathbf{R}$ ai minimi quadrati

La matrice ΔR , definita come nella sezione precedente (Equazione 4.23), viene calcolata ai minimi quadrati adottando un approccio per colonne. Ogni colonna della matrice è trattata come una soluzione indipendente. In particolare, riprendendo l'Equazione 4.23, dove:

$$\Delta R = \begin{bmatrix} \delta r_{11} & \delta r_{12} & \delta r_{13} \\ \delta r_{21} & \delta r_{22} & \delta r_{23} \\ \delta r_{31} & \delta r_{32} & \delta r_{33} \end{bmatrix};$$
(4.38)

$$R_{IMU}^{Terreno} = \begin{vmatrix} r_{11,I} & r_{12,I} & r_{13,I} \\ r_{21,I} & r_{22,I} & r_{23,I} \\ r_{31,I} & r_{32,I} & r_{33,I} \end{vmatrix} ;$$
(4.39)

$$R_{body}^{Terreno} = \begin{bmatrix} r_{11,b} & r_{12,b} & r_{13,b} \\ r_{21,b} & r_{22,b} & r_{23,b} \\ r_{31,b} & r_{32,b} & r_{33,b} \end{bmatrix};$$
(4.40)

le colonne ad essere determinate in modo indipendente sono:

$$\begin{pmatrix} \delta r_{11} \\ \delta r_{21} \\ \delta r_{31} \end{pmatrix} = \begin{bmatrix} r_{11,I} & r_{12,I} & r_{13,I} \\ r_{21,I} & r_{22,I} & r_{23,I} \\ r_{31,I} & r_{32,I} & r_{33,I} \end{bmatrix} \begin{pmatrix} r_{11,b} \\ r_{21,b} \\ r_{31,b} \end{pmatrix}$$
(4.41)
$$\begin{pmatrix} \delta r_{12} \\ \delta r_{12} \end{pmatrix} = \begin{bmatrix} r_{11,I} & r_{12,I} & r_{13,I} \\ r_{12,I} & r_{13,I} \end{bmatrix} \begin{pmatrix} r_{12,b} \\ r_{12,b} \end{pmatrix}$$

$$\begin{pmatrix} \delta r_{12} \\ \delta r_{22} \\ \delta r_{32} \end{pmatrix} = \begin{bmatrix} r_{11,I} & r_{12,I} & r_{13,I} \\ r_{21,I} & r_{22,I} & r_{23,I} \\ r_{31,I} & r_{32,I} & r_{33,I} \end{bmatrix} \begin{pmatrix} r_{12,b} \\ r_{22,b} \\ r_{32,b} \end{pmatrix}$$
(4.42)

$$\begin{pmatrix} \delta r_{13} \\ \delta r_{23} \\ \delta r_{33} \end{pmatrix} = \begin{bmatrix} r_{11,I} & r_{12,I} & r_{13,I} \\ r_{21,I} & r_{22,I} & r_{23,I} \\ r_{31,I} & r_{32,I} & r_{33,I} \end{bmatrix} \begin{pmatrix} r_{13,b} \\ r_{23,b} \\ r_{33,b} \end{pmatrix}$$
(4.43)

In conclusione, le colonne della matrice ΔR sono calcolate ai minimi quadrati, utilizzando una procedura basata sul calcolo matriciale.

Stima ai minimi quadrati La stima ai minimi quadrati della matrice ΔR considera ogni colonna come indipendente. Per il singolo fotogramma si ha (in forma matriciale e per ogni vettore colonna di ΔR):

$$[A] \{x\} = \{b\} \tag{4.44}$$

con:

$$[A] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix};$$
(4.45)
92

$$\{x\} = \begin{pmatrix} \delta r_{13} \\ \delta r_{23} \\ \delta r_{33} \end{pmatrix}; \tag{4.46}$$

$$\{b\} = \begin{bmatrix} r_{11,I} & r_{12,I} & r_{13,I} \\ r_{21,I} & r_{22,I} & r_{23,I} \\ r_{31,I} & r_{32,I} & r_{33,I} \end{bmatrix} \begin{pmatrix} r_{13,b} \\ r_{23,b} \\ r_{33,b} \end{pmatrix};$$
(4.47)

Il procedimento nella determinazione delle altre due colonne è analogo. Con un sistema sovradeterminato, i calcoli si trasformano nel modo seguente:

$$[A]^{t}[A] \{x\} = [A]^{t} \{b\}$$
(4.48)

dove [A] è una matrice rettangolare di dimensioni $3n \times 3$, con n pari al numero di fotogrammi. Per ogni fotogramma si ha, come dato di input, una coppia di punti²⁸ da cui si ottiene un vettore eccentricità calcolato (per differenza di coordinate). Introducendo la matrice dei pesi [W]:

$$[A]^{t}[W][A] \{x\} = [A]^{t}[W] \{b\}$$
(4.49)

$$[A]^{t}[W][A] = [N]$$
(4.50)

Si può ottenere il vettore $\{x\}$ con l'espressione:

$$\{x\} = [N]^{-1} [A]^{t} [W] \{b\}$$
(4.51)

Algoritmo utilizzato e calcoli L'algoritmo si divide in una serie di step, i quali hanno come output una matrice 3x3 (ΔR):

- calcolo dei moduli delle eccentricità (misurata e calcolata) con relative medie e varianze;
- definizione della matrice disegno A come:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ & \ddots \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(4.52)

;

 $^{^{28}\}mathrm{Centro}$ di presa e centro di fase dell'antenna, i quali definiscono due triplette di coordinate Est, Nord e h

- calcolo della matrice dei pesi con gli elementi sulla diagonale pari al reciproco delle varianze²⁹;
- determinazione delle colonne della matrice ΔR .

Considerazioni sulla matrice e miglioramento dell'espressione L'ipotesi iniziale³⁰ implica che gli angoli di rotazione tra il sistema body ed il sistema aereo (IMU 2) siano molto piccoli. La matrice ottenuta dal primo calcolo è:

$$\Delta R = \begin{pmatrix} 0.084323 & 0.099244 & -0.01496\\ -0.02418 & -0.02494 & 0.041886\\ 0.020797 & -0.0495 & -0.00436 \end{pmatrix}$$
(4.53)

da cui vengono estratti (Equazione 4.33) gli angoli di rotazione $\omega, \varphi \in \kappa$:

$$\omega = -95.0306 \deg$$

$$\varphi = -1.1917 \deg$$

$$\kappa = -16.0005 \deg$$
(4.54)

L'angolo ω si considera ruotato di un ulteriore angolo di 90° rispetto a quello atteso. Si ipotizza che l'origine rispetto a cui viene calcolato l'angolo di roll ω (nel sistema body) sia la verticale. Nell'IMU 2 si ha un angolo di roll nullo quando questa è perfettamente orizzontale (parallela al piano E-N). Di conseguenza, sottraendo 90 [deg] al valore di ω , la matrice ΔR può essere ricalcolata con gli angoli:

$$\omega = -5.0306 \deg$$

$$\varphi = -1.1917 \deg$$

$$\kappa = -16.0005 \deg$$
(4.55)

In definitiva, ΔR assume la seguente espressione:

$$\Delta R = \begin{pmatrix} 0.96105 & 0.27634 & 0.00426 \\ -0.27559 & 0.95705 & 0.09000 \\ 0.02080 & -0.08767 & 0.99593 \end{pmatrix}$$
(4.56)

Rotazione dell'eccentricità

La matrice ΔR è utilizzata nella rotazione del vettore eccentricità, la quale si ottiene premoltiplicando il vettore eccentricità misurato (\vec{e}) per la matrice stessa.

 $^{^{29}\}mathrm{I}$ pesi sono inversamente proporzionali alla varianza delle misure corrispondenti ad uno specifico fotogramma

 $^{^{30}}$ Asse X del sistema *body* quasi coincidente con l'asse dell'aereo e il piano XY sub-orizzontale

In tale modo, si ottiene un vettore eccentricità ruotato ed espresso nel sistema di riferimento della fusoliera, i cui angoli di assetto vengono determinati dall'IMU:

$$\Delta R \cdot \vec{e} = \vec{l} \tag{4.57}$$

$$\vec{l} = \begin{pmatrix} 2.416\\ -0.306\\ -0.284 \end{pmatrix} \tag{4.58}$$

Calcolo dei centri di presa

Le coordinate dei centri di presa sono ottenute tramite la *riduzione dei centri di fase dell'antenna*, con l'ausilio del vettore eccentricità ruotato \vec{l} . Per ogni fotogramma si dispone di:

- una tripletta di angoli d'assetto (roll, pitch e yaw);
- una tripletta di coordinate del centro dell'antenna (Est, Nord e quota) calcolate con deviazione standard di 0.252, 0.458 e 0.749 m (rispettivamente).

Per il fotogramma i-esimo, il centro di presa è calcolato nel modo seguente:

$$\begin{pmatrix} E_i^{CP} \\ N_i^{CP} \\ h_i^{CP} \end{pmatrix} = \begin{pmatrix} E_i^{GNSS} \\ N_i^{GNSS} \\ h_i^{GNSS} \end{pmatrix} + [R]_{IMU,i} \vec{l}$$
(4.59)

In cui $[R]_{IMU,i}$ è una matrice di rotazione calcolata a partire dagli angoli di assetto del velivolo misurati dall'IMU 2.

$$[R]_{IMU,i} = [R(y_i)] [R(p_i)] [R(r_i)]$$
(4.60)

Inoltre, $y_i, p_i \in r_i$ sono gli angoli di yaw, pitch e roll misurati dall'IMU al momento dello scatto del fotogramma i-esimo.

Script Matlab

È riportato di seguito l'algoritmo Matlab utilizzato nella determinazione dei centri di presa (Listing 4.4).

Listing 4.4: Script Matlab per la determinazione della matrice di rotazione ai minimi quadrati

```
clearvars
  close all
2
  clc
3
  load imu fusoliera.csv
5
  load coordinate_antenna.csv
6
  load coordinate_centripresa.csv
7
  ifus=imu_fusoliera;
8
  cant=coordinate antenna;
9
  ccent=coordinate_centripresa;
10
  Q = [0 \ 2.40;
12
      0 \ 0.40;
13
      0 - 0.30];
14
  rotazione = zeros(size(cant, 1) * 3, size(Q, 1) + 1);
  rotazione vzero=rotazione';
  jj = 1;
17
  for ii = 1: size(cant, 1)
18
       P = [0, ccent(ii, 2) - cant(ii, 2);
19
           0,ccent(ii,3)-cant(ii,3);
20
           0, ccent(ii,4)-cant(ii,4)];
21
       W = [1;1];
22
       Q_{medio=zeros}(size(Q,1), size(Q,2));
       P_{medio=zeros}(size(P,1), size(P,2));
24
       for zz=1:size(P,2)
25
            Q_{medio}(:, zz) = (Q(:, zz) . *W(zz, 1));
26
            P_{medio}(:, zz) = (P(:, zz) . *W(zz, 1));
27
       end
28
       Q_{medio} = (1/sum(W)) * (sum(Q_{medio'}))';
29
       P_{medio} = (1/sum(W)) * (sum(P_{medio'}))';
30
       X = zeros(size(Q,1), size(Q,2));
31
       Y = zeros(size(P,1), size(P,2));
32
       for zz=1:size(X,2)
            X(:, zz) = Q(:, zz) - Q_{medio};
34
            Y(:, zz) = P(:, zz) - P_medio;
35
       end
36
       A=X*\operatorname{diag}(W)*Y';
37
       [U, S, V] = svd(A);
38
       rotazione(jj:jj+2,1)=ifus(ii,1)*[1;1;1];
39
       rotazione (jj: jj+2,2:4)=V*[1,0,0;0,1,0;0,0,det (V*U')]*U';
40
       jj=jj+3;
41
  end
42
```

```
43
  %Devo ora riorganizzare gli angoli in modo da avere la stessa matrice
44
       di
45 %rotazione (stesso ordine delle rotazioni cardaniche)
46
  jj = 1;
  rotazione_imu=zeros (size (cant, 1) *3, size (Q, 1));
47
  for ii = 1: size(ifus, 1)
48
      rotx = [1 \ 0 \ 0; \ 0 \ cosd(ifus(ii,2)) - sind(ifus(ii,2)); \ 0 \ sind(
49
      ifus(ii,2)) cosd(ifus(ii,2))];
      roty = [cosd(ifus(ii,3)) \ 0 \ sind(ifus(ii,3)); \ 0 \ 1 \ 0; \ -sind(ifus
50
      (ii,3)) 0 cosd(ifus(ii,3))];
      rotz = [cosd(ifus(ii,4)) - sind(ifus(ii,4)) 0 ; sind(ifus(ii,4))]
      cosd(ifus(ii,4)) 0 ; 0 0 1];
      rot = rotz * roty * rotx;
      rotazione_imu(jj: jj+2, 1) = ifus(ii, 1) * [1; 1; 1];
53
54
      rotazione\_imu(jj:jj+2,2:4)=rot;
      jj=jj+3;
55
  end
56
57
58
  jj = 1;
  verifica=rotazione(:,1)-rotazione_imu(:,1);
59
  DeltaR=zeros (size (rotazione, 1), size (rotazione, 2));
60
  for ii = 1: size(ifus, 1)
61
      DeltaR(jj: jj+2,1) = ifus(ii,1) * [1;1;1];
62
      DeltaR(jj:jj+2,2:4) = rotazione\_imu(jj:jj+2,2:4) * (rotazione(jj:jj))
63
      +2,2:4));
       jj=jj+3;
64
  end
65
66
  %Calcolo le componenti
67
68 | lever_arm_ruotato = [ccent(:,1), ccent(:,2:4) - cant(:,2:4)];
69
70 %calcolo i moduli dei lever arm ruotati
71 for ii =1: size (lever_arm_ruotato, 1)
      lever_arm_ruotato(ii,5)=sqrt(sumsqr(lever_arm_ruotato(ii,2:4)));
72
73
  end
  media_moduli=mean(lever_arm_ruotato(:,5));
74
  varianza_moduli=(std(lever_arm_ruotato(:,5)))^2;
75
76
77 🕅 Calcolo le varianze i—esime e i pesi
  for ii=1:size(lever arm ruotato,1)
78
      lever_arm_ruotato(ii,6)=(lever_arm_ruotato(ii,5)-media_moduli)^2;
79
      lever_arm_ruotato(ii,7)=varianza_moduli/lever_arm_ruotato(ii,6);
80
  end
81
  %matrice dei pesi
82
83 vettore_pesi_espanso=zeros(size(rotazione_imu,1),1);
|_{84}|_{jj=1};
s5 for ii =1: size (lever_arm_ruotato, 1)
       vettore _pesi_espanso(jj: jj+2)=lever_arm_ruotato(ii, 7)*ones(3,1);
86
```

```
jj=jj+3;
87
   end
88
   p=diag(vettore_pesi_espanso);
89
90
  %costruisco la matrice disegno
91
_{92} A=zeros (size (rotazione , 1), size (rotazione , 2) -1);
   jj = 1;
93
   for ii = 1: size(A, 1)/3
94
       A(jj:jj+2,:) = eye(size(A,2));
95
96
       jj=jj+3;
   end
97
98
  N=A'*p*A;
99
   DeltaR stim=zeros(3,3);
100
   \operatorname{cont}=1;
102
   for zz=1:3
       Yzero=zeros(size(rotazione,1),1);
103
104
       jj = 1;
       for ii = 1: size(Yzero, 1)/3
            Yzero(jj:jj+2)=rotazione_imu(jj:jj+2,2:4)*(rotazione(jj+zz
106
       -1,2:4))';
            j j = j j + 2;
107
       end
108
       DeltaR\_stim(:, zz) = inv(N) * A' * p * Yzero;
109
       Y_stim(:, zz) = A*DeltaR_stim(:, zz);
110
       v_stim(:, zz) = Y_stim(:, zz) - Yzero;
111
       sigma02_stim(zz,1)=(v_stim(:,zz))'*p*(v_stim(:,zz))/(size(v_stim
112
       (1) - size(DeltaR_stim, 1));
       Cxx(cont:cont+2,:)=sigma02\_stim(zz,1)*inv(N);
113
       cont=cont+3;
114
   end
115
116
   load coordinate_gps_scatto_utili.csv
117
118
   lever_arm_ruotato = [2.416; -0.306; -0.284];
119
120
   coord_gps=[cant(:,1), coordinate_gps_scatto_utili];
121
122
   centripresa_interp=zeros(size(coord_gps,1), size(coord_gps,2));
123
   zz=1;
124
   for ij=1:size (centripresa interp, 1)
125
       centripresa_interp(:,1)=coord_gps(:,1);
126
        centripresa_interp(jj,2:4) =((coord_gps(jj,2:4))'+(rotazione_imu(
127
       zz: zz+2, 2:4)) '*lever_arm_ruotato);
       zz=zz+3;
128
   end
```

Centri di presa calcolati e confronto con i centri di presa da Triangolazione Aerea A seguito della *rotazione dell'eccentricità*, i centri di presa sono calcolati come definito nell'Espressione 4.59 e sono sintetizzati in Tabella 4.13 (Tabella A.8). Questi sono calcolati tramite un algoritmo *Matlab*, il quale provvede al ricalcolo del bias ottimo (analogamente a quanto descritto in precedenza, Espressione 4.19). Tale algoritmo è mostrato nel Listing A.1 (Appendice A).

Tabella 4.13: Centri di presa calcolati a partire dalle posizioni GNSS e confrontocon centri di presa forniti dall'orientamento esterno

Fot.	$\mathbf{Est} \ [m]$	Nord [m]	h [m]	$\delta \mathbf{E} [\mathbf{m}]$	δN [m]	$\boldsymbol{\delta}\mathbf{h} \; [\mathrm{m}]$
1772	416201.057	5085598.962	3656.855	-0.757	1.280	0.508
1773	416479.845	5085693.002	3669.173	-1.088	1.400	0.033
1774	416700.169	5085873.709	3675.868	-1.135	0.965	0.031
1775	416852.799	5086127.796	3670.372	-0.889	0.491	0.958
1776	416974.015	5086408.222	3688.893	-0.815	0.160	1.853
1981	417285.825	5087095.546	4046.581	-0.699	0.650	1.194
			Media	-0.466	0.515	0.096
		Deviazione standard		0.254	0.458	0.749

Ai fini dell'elaborazione, le medie vengono considerate come trascurabili e vengono considerate solamente le deviazioni standard (Tabella 4.13).

4.5 Sintesi dei risultati ottenuti

I parametri che permettono di applicare tecniche di fotogrammetria diretta sono:

1.

$$\delta t = 0.175 sec$$

quantità che va **addizionata** ai tempi di scatto per la correzione dell'errore sistematico³¹.

 $^{^{31}{\}rm Il}$ valore del bias temporale ritenuto più preciso, rical
colato con angoli IMU e vettore eccentricità ruotato.

2.

$$\vec{l} = \begin{pmatrix} 2.416\\ -0.306\\ -0.284 \end{pmatrix}$$

sono le componenti del vettore eccentricità utili al calcolo delle posizione dei centri di presa a partire dai centri di fase dell'antenna;

- 3. le deviazioni standard nella determinazione dei centri di presa della camera calcolati saranno, quindi:
 - $\sigma_E = 0.252 \text{ m},$
 - σ_N =0.458 m,
 - σ_h =0.749 m,

4.6 Elaborazione del volo in fotogrammetria diretta

Attraverso il software *Metashape*, il volo fotogrammetrico è restituito introducendo le coordinate dei centri di presa, che forniscono l'orientamento esterno assoluto. In particolare:

- i centri di presa vengono ricalcolati dopo aver addizionato il valore del bias temporale ai tempi di scatto;
- i centri di presa vengono inseriti con le precisioni indicati nella sezione 4.5.

4.6.1 Prodotti realizzati

Analogamente alla rielaborazione con Triangolazione Aerea, i prodotti realizzati sono:

- 1 ortofoto con GSD³² pari a 12 cm;
- 1 DSM con GSD pari a 22 cm.

Valutazione della qualità dell'ortofoto

Un set di 15 Check Point è scelto in modo aleatorio. In tali punti sono confrontate le coordinate dell'ortofoto realizzata con fotogrammetria diretta e le coordinate dell'ortofoto realizzata con Triangolazione Aerea. I punti sono visualizzati in Figura 4.30 ed in Tabella 4.14.

 $^{^{32}\}mathrm{Ground}$ Sample Distance: dimensione del pixel a terra

Ortofoto GSD: 11 cm (diretta)		Ortofoto GSD: 15 cm (TA)		Differenze	
E [m]	N [m]	E [m]	N [m]	$\delta E [m]$	$\delta N [m]$
415914.170	5088511.036	415914.247	5088511.226	-0.077	-0.190
415956.337	5088710.666	415956.397	5088710.726	-0.060	-0.060
415938.693	5088897.756	415938.697	5088898.076	-0.004	-0.320
416090.607	5089164.632	416090.647	5089164.926	-0.040	-0.294
416129.113	5089413.975	416129.197	5089414.376	-0.084	-0.401
415679.696	5091175.354	415679.647	5091175.826	0.049	-0.472
415872.557	5091716.984	415872.547	5091717.476	0.010	-0.492
416278.030	5091628.876	416277.997	5091629.276	0.033	-0.400
417996.465	5089799.585	417996.697	5089799.726	-0.232	-0.141
418397.344	5090646.626	418397.278	5090646.155	0.066	0.471
416700.704	5090864.979	416700.694	5090865.476	0.010	-0.497
417349.526	5091111.879	417349.442	5091112.226	0.084	-0.347
415016.337	5090225.918	415016.194	5090226.324	0.143	-0.406
415716.242	5090080.531	415716.200	5090080.221	0.042	0.310
414325.897	5087924.427	414326.009	5087924.353	-0.112	0.074
			Media	-0.011	-0.211
	0.093	0.295			

4.6– Elaborazione del volo in fotogrammetria diretta

Tabella 4.14: Coordinate delle due ortofoto a confronto

La deviazione standard in direzione Est è inferiore al valore del GSD, con media significativamente nulla. La media delle differenze in direzione Est è inferiore alla sua deviazione standard, limitata a due volte il valore del GSD dell'ortofoto di riferimento. Alla luce di tali risultati è possibile affermare che esiste una significativa uguaglianza tra le due ortofoto.

Figura 4.30: Ortofoto generata con fotogrammetria diretta e Check Point di confronto

Valutazione della qualità del DSM

Il DSM fotogrammetrico generato con fotogrammetria diretta viene confrontato con il DSM riferimento (generato con Triangolazione Aerea, Figura 4.4) tramite una sottrazione dei valori di quota in 100000 punti scelti in modo aleatorio (e distribuiti in modo automatico da un software GIS). I grafici delle Figure 4.31, 4.32, 4.33 e la Tabella 4.15 riassumono l'andamento delle differenze.

$\mathbf{Media} \ [\mathbf{m}]$	-0.0497
Deviazione standard [m]	0.560

 Tabella 4.15:
 Media e deviazione standard delle differenze di quota tra i due

 DSM

Figura 4.31: Cumulate di frequenza per il modulo delle differenze tra il DSM generato (fotogrammetria diretta) e quello di riferimento (triangolazione aerea)

Figura 4.32: Cumulate di frequenza per le differenze tra il DSM generato e quello di riferimento (simmetria della distribuzione a media nulla)

Figura 4.33: Istogramma delle differenze tra DSM generato con fotogrammetria diretta e DSM generato con punti di appoggio

È possibile evidenziare come le incertezze in planimetria sulle coordinate dei centri di presa siano state parzialmente corrette dal calcolo del modello. L'ortofoto è, di fatto, generata con delle deviazioni standard (planimetriche) inferiori a quelle dei centri di presa. Dal confronto dei DSM si evince, invece, una deviazione standard molto vicina a quella calcolata nella determinazione dei centri di presa. Tuttavia, una media molto vicina allo zero implica alta accuratezza del DSM (diagramma delle frequenze cumulate simmetrico, Figura 4.32). Inoltre, le differenze sono inferiori a 1.15 m per il 95 % dei punti considerati (Figura 4.32).

4.7 Conclusioni

La metodologia seguita nel presente capitolo ha lo scopo di verificare e validare l'applicazione di tecniche fotogrammetriche dirette implementate con l'ausilio di strumentazione di medio costo. Tali tecniche si dimostrano una valida alternativa ai voli da drone e grandi voli fotogrammetrici. Tuttavia, la loro applicazione sul Ghiacciaio del Belvedere evidenzia diversi limiti, non permettendo di raggiungere risultati ottimi pur con l'ausilio di punti di appoggio a terra dei fotogrammi . Il raggiungimento di elevate accuratezze e precisioni è impedito dalla sovrapposizione di diverse problematiche, quali:

- le grandi dimensioni dell'eccentricità camera-antenna, da cui deriva una precisione nella determinazione dei centri di presa;
- le possibili asincronie tra orologio GNSS ed orologio del processore del computer di bordo.

Il vettore eccentricità è misurato in un sistema di riferimento non coincidente con il sistema camera o il sistema aereo (i cui angoli di assetto sono determinati da una piattaforma inerziale di basso costo). L'operazione di *rotazione dell'eccentricità*, affinché questa possa essere espressa nel sistema di riferimento del velivolo, è realizzata con precisioni molto basse, le quali si riflettono sulla determinazione dei centri di presa. Tale precisione bassa è, di fatto, determinata dalle grandi dimensioni del vettore nonché dalla precisione che si ha nella determinazione dei tempi di scatto. Pur avendo individuato un *bias temporale* costante, deviazioni standard di 15 millesimi di secondo nella registrazione dei tempi di scatto determinano incertezze di \pm 50 cm nel posizionamento dei centri di presa. L'architettura del sistema è migliorabile su due aspetti fondamentali:

- l'antenna GNSS può essere montata sull'ala e posizionata sulla verticale passante per il punto nodale della camera;
- la registrazione degli istanti di scatto nella scala di tempo GNSS può avvenire attraverso un sistema che utilizzi *event-marker*.

Il posizionamento dell'antenna sull'ala minimizza le dimensioni dell'eccentricità antenna-camera. Inoltre, il montaggio dell'antenna sulla verticale passante per il punto nodale della camera annulla la componente sub-planimetrica del vettore eccentricità, limitando alla sola componente verticale il problema della riduzione. Gli angoli limitati di roll e pitch permetteranno, quindi, di avere delle componenti del vettore eccentricità molto piccole in planimetria.

L'utilizzo di *event marker* consente di avere la stessa scala temporale nella registrazione delle *epoche di misura* GNSS e degli istanti di scatto, ovviando alle problematiche di asincronia viste nel presente capitolo. La risoluzione delle problematiche esposte garantirebbe una riduzione delle incertezze derivanti dall'applicazione di tali tecniche di fotogrammetria diretta. Di conseguenza, si otterrebbero risultati e prodotti con accuratezze e precisioni vicine a quelle da Triangolazione Aerea incrementando l'affidabilità della tecnica stessa.

Capitolo 5

Elaborazione di immagini satellitari: utilizzo del Rational Function Model

Nel presente capitolo saranno esposte le elaborazioni ed i risultati ottenuti a partire da una coppia stereoscopica di immagini satellitari ad alta risoluzione presente in un archivio commerciale Pléiades (sezione 5.1). I prodotti Pléiades sono largamente utilizzati nell'ambito del monitoraggio di superfici in costante cambiamento (come nel caso di frane [56]) e per il monitoraggio di superfici glaciali [57]. Tali immagini sono state acquisite al fine di realizzare uno studio analogo a quello svolto nel Capitolo 5, volto alla realizzazione di **DSM e ortofoto del Ghiacciaio del Belvedere**. L'utilizzo di immagini satellitari permette di ovviare alle problematiche legate alla fotogrammetria da drone e velivoli ultraleggeri, quali:

- necessità di rilevare un sufficiente numero di Ground Control Point per la restituzione del volo (se questa avviene con Triangolazione Aerea);
- impossibilità di rilevare le parti alte della parete, dovuta a limitazioni tecniche dei velivoli.

L'utilizzo di immagini satellitari ad alta risoluzione permette, di fatto, la possibilità di realizzare prodotti precisi ed accurati, i quali forniranno supporto ad analisi evolutive dei ghiacciai. Nel caso studio del presente elaborato, l'acquisizione della coppia stereoscopica consente un inquadramento più ampio del Ghiacciaio del Belvedere comprendente la parete Nord-Est del Monte Rosa ed i picchi più alti del massiccio alpino circostante. Per la validazione dei modelli satellitari realizzati, ortofoto e DSM fotogrammetrici sono utilizzati come dati di riferimento. I Capitoli 5 e 6 sono redatti allo scopo di realizzare uno studio comprensivo sulla validità di tali tecniche. In particolare, due tipi di modelli (Sezione 2.2.5) sono utilizzati per la correzione geometrica delle immagini:

- modello non parametrico razionale (RFM), oggetto di sperimentazione nel presente capitolo (Capitolo 5);
- modello rigoroso teorizzato da Toutin [35].

Lo studio prevede la **realizzazione di ortofoto e DSM con diverse configurazioni di GCP**¹, ed è volto alla comprensione del numero ottimo di tali punti affinché i prodotti realizzati offrano massima precisione ed accuratezza (in relazione alla risoluzione geometrica disponibile).

5.1 Costellazione Pléiades

La costellazione Pléiades è un programma CNES³ che ha lo scopo di fornire immagini ad alta risoluzione per fini civili [58]. La costellazione Pléiades è costituita da due satelliti, Pléiades 1A e 1B, supportati da altri due (SPOT 6 e 7) sincronizzati sulla stessa orbita. Il satellite Pléiades 1A è stato lanciato il 16 Dicembre 2011, seguito nel tardo 2012 dalla piattaforma Pléiades 1B [59]. Le caratteristiche della costellazione sono riassunte in Tabella 5.1.

 $^{^1{\}rm Ground}$ Control Point: permettono l'appoggio delle immagini per il loro orientamento esterno (sezione 2.1) e ${\rm ICP^2}$

³Centre National d'Études Spatiales (agenzia governativa francese di studi spaziali)

Costellazione Pléiades				
Numero di satelliti2Lancio2011, 2012Altitudine694 kmPeriodo98.79 minutiSistema otticoKorsch, focale 12.905 m				
Bande spettrali	Pancromatica: 0.47-0.83 m; Blu: 0.43-0.55 m, Verde: 0.50-0.62 m, Rosso: 0.59-0.71 m, Infrarosso vicino (NIR): 0.74-0.94 m			
GSD (al nadir)	Pancromatica: 0.70 m Multispettrale: 2.80 m			
Risoluzione dei prodotti	Pancromatica: 0.50 m Multispettrale: 2.00 m			
Angolo di vista	$\pm 30^{\circ} \text{ (standard)}$ $\pm 47^{\circ} \text{ (massimo)}$			
Periodo di rivisitazione (considerando Pléiades 1A e 1B)	Vista ±30°	1.3 giorni (o meno) su latitudini superiori a 40° 1.7 giorni su latitudini equatoriali		
	Vista $\pm 45^{\circ}$	1 giorno per tutta la superficie terrestre		
Larghezza di swath (nadir)	20 km			

Tabella 5.1: Caratteristiche principali della costellazione Pléiades [59]

5.1.1 Risoluzione spaziale

Le immagini Pléiades (*raw images*) sono acquisite con una risoluzione spaziale di 72 cm. Queste sono successivamente *ricampionate* affinché dettagli a risoluzione superiore, posti diagonalmente rispetto al pattern di acquisizione, possano essere riconosciuti (Figura 5.1). Conseguentemente, la risoluzione alla quale i prodotti commerciali vengono offerti si riduce a 50 cm $(72/\sqrt{2})$.

Figura 5.1: Schema semplificato a supporto del ricampionamento delle immagini Pléiades [59]

5.1.2 Modalità di acquisizione

Vi sono numerose modalità di acquisizione che si adattano alle richieste delle utenze [59]:

- acquisizione di target multipli (fino a 20 target in un'area 1000x1000 km oppure 10 immagini su un'area di 100x200 km);
- lunghe strisciate (fino a 100x150 km per la stessa strisciata);
- acquisizioni stereoscopiche o tri-stereo;
- acquisizioni lineari che seguono infrastrutture, linee di costa, confini, ecc.;
- sorveglianza persistente (fino a 25 immagini acquisite sulla stessa area).

Figura 5.2: Metodi di acquisizione dei satelliti Pléiades [59]

5.2 Dati e software utilizzato

5.2.1 Dati di input

Il set di dati di input è costituito da quattro immagini:

• due immagini pancromatiche $(1 \text{ banda})^4$ con risoluzione geometrica di 0.50 m;

 $^{^4 {\}rm Scala}$ di grigi: la banda è formata tramite l'utilizzo dell'energia luminosa totale nello spettro del visibile

• due immagini multispettrali $(4 \text{ bande})^5$ con risoluzione geometrica di 2.00 m.

Con l'operazione di *pansharpening*, (sezione 5.3.1), si potrà ottenere un'immagine false colour (grazie alle quattro bande dell'immagine multispettrale) con un GSD^6 di 0.50 m.

5.2.2 Software utilizzato

Tutte le elaborazioni sono state eseguite utilizzando il software *PCI Geomatica Banff*, il cui toolbar iniziale viene mostrato in Figura 5.3.

Figura 5.3: Presentazione del software Geomatica Banff (PCI)

Le parti di software utilizzate per la tesi sono:

- PCI Focus, utilizzato per la visualizzazione di raster e vettori, con alcune funzionalità analoghe ai software GIS;
- PCI Ortho Engine, atto alla realizzazione di due tipi di prodotti:
 - due ortofoto (una per ogni immagine stereoscopica acquisita) con GSD di $50~{\rm cm};$
 - un DSM con risoluzione di 50 cm.

5.2.3 Dati di riferimento

I dati di riferimento utilizzati sono gli stessi del Capitolo 4:

- ortofoto fotogrammetrica con GSD pari a 15 cm 4.3;
- DSM fotogrammetrico con risoluzione di 40 cm 4.4.

[60]

Entrambi i prodotti hanno un'accuratezza di ± 2 cm e sono stati realizzati a partire da 287 immagini e con l'ausilio di 19 GCP artificialmente materializzati sul terreno (marker) e georeferenziati con misure GNSS.

⁵RGB (Rosso, Verde e Blu) e NIR (Infrarosso vicino)

⁶Ground Sample Distance: distanza tra due centri-pixel misurata sul terreno.

5.3 Flusso di lavoro

Il flusso di lavoro è riassunto nello schema in Figura 5.4.

Figura 5.4: Flusso di lavoro per la realizzazione dei prodotti a partire dalla coppia stereoscopica Pléiades

5.3.1 Pansharpening delle immagini

L'algoritmo di pansharpening permette di combinare un'immagine pancromatica ad alta risoluzione ed un'immagine multi spettrale a bassa risoluzione per creare una sola immagine *true colour* (o *false colour* se si ha a disposizione anche la banda NIR⁷) ad alta risoluzione [61]. Tale immagine preserva la stessa accuratezza della radiometria originale e permette una migliore visualizzazione ed interpretazione.

Esistono diversi algoritmi per il pansharpening, di cui uno dei più utilizzati è il cosiddetto *component substitution*, i cui step sono riassunti nell'elenco seguente [62]:

- 1. sovracampionamento: i pixel dell'immagine multispettrale vengono ricampionati per raggiungere la stessa risoluzione dell'immagine pancromatica;
- 2. allineamento: i pixel dell'immagine multispettrale (ora sovracampionata) e dell'immagine pancromatica, vengono allineati;

⁷Near InfraRed: infrarosso vicino

- 3. trasformazione diretta: i pixel multispettrali vengono trasformati dalla rappresentazione originaria ad uno spazio di colori dove l'intensità di questi è indipendente dall'informazione contenente il colore stesso;
- 4. intensity matching: l'intensità del colore del pixel nell'immagine multispettrale è posta uguale all'intensità del pixel nell'immagine pancromatica nello spazio trasformato (passaggio precedente);
- 5. component substitution: l'intensità pancromatica è direttamente sostituita al posto della intensità multispettrale (pixel per pixel);
- 6. trasformazione inversa: la componente di intensità sostituita viene utilizzata per tornare allo spazio di colori originario.

Il risultato finale viene rappresentato nelle Figure 5.5 e 5.6. La coppia stereoscopica di output sarà poi la base per la realizzazione dei prodotti elencati precedentemente.

Figura 5.5: Prima immagine della coppia stereoscopica

Figura 5.6: Seconda immagine della coppia stereoscopica

5.4 Sperimentazione sul numero di GCP e ICP

Lo scopo fondamentale della sperimentazione, esposta in questo capitolo ed in quello successivo, è quello di valutare l'influenza del numero di Ground Control Point (GCP) sull'accuratezza del posizionamento plano-altimetrico finale. I test eseguiti sono relativi alla qualità del modello utilizzato e dei prodotti generati. Inoltre, per valutare se il DSM ricavato direttamente dalla coppia stereoscopica sia idoneo all'ortoproiezione, le ortofoto generate con DSM satellitare saranno confrontate con quelle generate con DSM fotogrammetrico (che offre accuratezze maggiori).

5.4.1 Caratteristiche degli esperimenti

Le caratteristiche di questi esperimenti sono riassunte di seguito:

- modello RFM;
- set di 30 TP⁸;
- numero di GCP variabile da 0 a 15 (otto casi diversi con 0, 1, 2, 3, 4, 5, 10 e 15 GCP);
- due set di ICP, con 12 oppure 17 ICP⁹, indipendenti dai GCP utilizzati.

In particolare, è stato utilizzato uno schema progressivo in cui si definiscono, per ognuno degli otto casi indicati sopra, quattro *sotto-categorie*, descritte di seguito (n rappresenta il numero di GCP effettivamente utilizzati e varia da 0 a 15):

- *n* GCP, 12 ICP, ortofoto realizzate con DSM fotogrammetrico;
- *n* GCP, 12 ICP, ortofoto realizzata con DSM satellitare;
- *n* GCP, 17 ICP, ortofoto realizzate con DSM fotogrammetrico;
- *n* GCP, 17 ICP, ortofoto realizzata con DSM satellitare;

In Figura 5.7 sono rappresentati tutti gli ICP e i GCP utilizzati, sovrapposti all'ortofoto fotogrammetrica (Figura 4.3) e ad una delle due immagini della coppia stereoscopica.

⁸Tie Point: punto omologo (sezione 2.1)

⁹ICP: Independent Check Point. Tali punti non sono considerati nella stima ai minimi quadrati dei parametri del modello. Le coordinate degli ICP sono ricalcolate a posteriori al fine di ottenere una misura della qualità del modello.

Figura 5.7: Distribuzione dei GCP e degli ICP118

L'utilizzo di due set di ICP ha assolto due funzioni:

- comprensione della relazione tra numero crescente di ICP crescente e dispersione maggiore dei dati (in termini statistici);
- comprensione della relazione tra numero crescente di ICP e maggiore grado di vincolo del modello, data la natura stereoscopica dei punti.

Si può immediatamente affermare che l'elevato numero di Tie Point raccolti dal software e la natura stereoscopica dei GCP, rendono l'incremento di 5 ICP irrilevante ai fini del calcolo del modello. Un GCP (o ICP) stereoscopico, infatti, unisce le caratteristiche di un normale GCP e di un TP. Esso rappresenta un elemento identificabile in entrambe le immagini con lo stesso nome, le stesse coordinate oggetto ma una diversa posizione nei sistemi di riferimento interni delle singole immagini. Il risultato è un modello matematico maggiormente vincolato, in quanto i GCP stereoscopici assumono peso maggiore nel calcolo del suddetto modello, incrementando la ridondanza [63]. I GCP e TP sono estratti automaticamente con l'utilizzo dell'ortofoto e del DSM di riferimento (sezione 5.2.3).

5.4.2 Ricerca automatica di Tie Point e Ground Control Point

La ricerca automatica di Tie Point è realizzata attraverso un algoritmo interno al software PCI. Il set di 30 Tie Point determinato tramite ricerca automatica è il medesimo per tutti gli otto casi della sperimentazione al fine di escludere l'influenza di un diverso grado di vincolo nel modello.Dopo una verifica manuale della validità dei TP, si passa alla ricerca automatica dei GCP. Vengono scelti sempre dei GCP stereoscopici, in modo tale da avere un orientamento esterno delle due immagini in blocco ed evitare che questo avvenga in maniera indipendente [63]. In conseguenza di ciò, i residui¹⁰ che verrano restituiti in output dal software saranno uguali (in termini di coordinate terreno) per ogni coppia di stereo-GCP.

5.4.3 Calcolo del modello matematico

Il calcolo del modello matematico ha come obiettivo la *compensazione* della rete di GCP. I parametri iniziali del modello sono forniti nei metadati dell'immagine e vengono corretti successivamente con l'ausilio di GCP sul terreno.

 $^{^{10}}$ La casa non specifica esattamente che cosa rappresentano i residui del modello. Viene solamente specificato che i GCP con bassi residui in output (dopo la compensazione) indicano che il modello è stato compensato con successo.

5.4.4 Lettura dei residui

I *residui* sono i risultati derivanti dal calcolo del modello. La lettura dei residui per GCP, ICP e TP permette di valutare la qualità globale del modello matematico ma non rispecchia fedelmente gli errori nella determinazione delle coordinate dei punti. [64].

I residui sono calcolati per le tre coordinate (Est, Nord e quota) e sono indicati rispettivamente come Res X, Res Y e Res Z. Inoltre, le altre grandezze visualizzabili nei report sono riassunte nell'elenco di seguito:

- Res XY rappresenta il residuo in planimetria (somma in quadratura delle grandezze Res X e Res Y);
- RMS rappresenta la somma in quadratura dei residui (Equazione 5.1):

$$RMS(X) = \sqrt{\frac{\sum_{i}^{n} Res(X)_{i}^{2}}{n}}$$
(5.1)

ed analogamente per le altre due coordinate;

• il Bias rappresenta la media aritmetica dei residui (Equazione 5.2):

$$Bias(X) = \frac{\sum_{i}^{n} Res(X)_{i}}{n}$$
(5.2)

ed analogamente per le altre due coordinate;

• la Standard Deviation rappresenta il RMSE¹¹, calcolato come:

$$RMSE(X) = \sqrt{\frac{\sum_{i}^{n} (Res(X)_{i} - \mu_{Res(X)})^{2}}{n}}$$
(5.3)

Tali grandezze permettono di valutare la numerosità di GCP ottimale al fine di realizzare prodotti con accuratezze accettabili.

5.4.5 Realizzazione dei DSM

Come mostrato in Figura 5.4, tale operazione può essere omessa realizzando due immagini ortoproiettate a partire da DSM già esistenti [65]. Due delle quattro sotto-categorie definite nella sezione 5.4.1, prevedono la realizzazione di un DSM a partire dalla coppia stereoscopica di immagini. L'operazione è eseguita in due fasi:

- generazione della coppia epipolare di immagini;
- generazione del DSM a partire dalla coppia epipolare.

 $^{^{11}\}mathrm{Root}$ Mean Square Error
Generazione della coppia epipolare

Le immagini epipolari sono realizzate a partire dalla coppia stereoscopica. In tale operazione, esse vengono riproiettate al fine di ottenere un orientamento tale per cui uno stesso elemento nelle due immagini appaia lungo un asse comune [66]. L'utilizzo di immagini epipolari riduce i tempi di calcolo e gli errori nell'individuazione di punti omologhi. L'obbiettivo finale del ricampionamento epipolare di una coppia stereoscopica è quello di generare immagini normalizzate in cui i punti omologhi non hanno parallassi verticali. Gli angoli di parallasse residui sono direttamente proporzionali alla quota dei punti del terreno [67].A partire dalla coppia epipolare, il software realizza un DSM satellitare georeferenziato. L'accuratezza di tale DSM sarà successivamente verificata mediante confronto con il DSM fotogrammetrico.

5.5 Prodotti realizzati

I prodotti realizzati sono:

- 8 ortofoto per ogni caso descritto nella sezione 5.4.1, per un totale di 64 ortofoto;
- 2 DSM per ogni caso, per un totale di 16 DSM differenti.

Il numero di DSM utili si è ridotto ad otto, poiché il modello risultava poco influenzato da un numero crescente di ICP (come esposto nella sezione 5.4.1). Due esempi sono rappresentati nelle Figure 5.8 e 5.9.

Figura 5.8: Ortofoto dell'immagine 1, realizzata per il caso con 1 GCP

Figura 5.9: DSM realizzato per il caso con 1 GCP

5.6 Valutazione della qualità del modello

L'accuratezza del modello viene valutata sia in planimetria che in altimetria. Il software fornisce i residui per ICP e GCP, ovvero la differenza tra le coordinate

attese dei punti e le coordinate calcolate in seguito alla compensazione della rete di GCP (bundle adjustment).

5.6.1 Accuratezza del modello in coordinate immagine

L'accuratezza planimetrica del modello è calcolata, per ogni ICP, come il modulo dei residui in direzione X e Y (somma in quadratura). É possibile rappresentare l'accuratezza planimetrica tramite grafici a scatola e baffi (box plot) in cui:

- gli estremi della scatola rappresentano il primo ed il secondo quartile;
- la linea (rossa) che suddivide la scatola rappresenta la mediana;
- i baffi rappresentano il massimo ed il minimo dell'insieme dei residui;
- le croci rosse rappresentano gli outlier, considerati tali quando si discostano dalla mediana di un valore superiore a tre volte la deviazione standard.

Figura 5.10: Sintesi dei residui in coordinate immagine per i casi con 12 ICP (solo 2D)

Figura 5.11: Sintesi dei residui in coordinate immagine per i casi con 17 ICP (solo 2D)

Nelle Figure 5.10 e 5.11 sono sintetizzati i residui del modello in termini di pixel. Considerando sia 12 che 17 ICP ed escluso il caso con 0 GCP, non si hanno variazioni in termini di mediana (circa un pixel residuale). La variabilità dei residui planimetrici intorno alla mediana, come mostrato dai limiti delle scatole, è abbastanza ridotta (al di sotto del pixel). Per il modello che considera 17 ICP (Figura 5.11) si può osservare come la media sia, per ogni caso, superiore alla mediana. Il residuo medio planimetrico raggiunge un valore costante per i casi con 2 o più GCP. Affinché si abbiano dei residui planimetrici del modello contenuti è quindi necessario avere un numero di GCP almeno pari a due. Si osservi come le accuratezze siano comunque inferiori a 3 pixel (valore mediano) seppure il modello sia calcolato senza l'utilizzo di alcun GCP.

5.6.2 Accuratezza del modello in coordinate terreno

Visualizzando i residui in *coordinate terreno* (espresse in metri), i risultati sono analoghi a quanto visto nella sezione 5.6.1. I casi con 1,2 e 3 GCP, forniscono dei valori mediani dei residui pari o al di sotto dei 50 cm¹². I valori medi sono superiori alla mediana anche in questo caso, con un residuo medio di 60-70 cm a partire dai

¹²Corrispondente con il valore del GSD

casi con 1 GCP. Le informazioni sono sintetizzate nei grafici delle Figure 5.12, 5.13 e 5.14.

Figura 5.12: Accuratezza planimetrica del modello in coordinate terreno (12 ICP)

Figura 5.13: Accuratezza planimetrica del modello in coordinate terreno (17 ICP)

Figura 5.14: Accuratezza altimetrica del modello in coordinate terreno (17 ICP)

Anche in questo caso si osserva come 1 GCP sia sufficiente per eliminare errori grossolani (comunque contenuti). L'errore di modello è infatti rimosso con l'introduzione di un solo GCP. I risultati migliori si ottengono con 3 GCP, anche a livello altimetrico. Ulteriori grafici sono stati riportati nell'Appendice B.

5.7 Valutazione della qualità dei prodotti realizzati

I prodotti realizzati sono quindi confrontati con i dati di riferimento precedentemente utilizzati per l'estrazione di GCP e TP (sezione 5.2.3). Per la valutazione dell'accuratezza delle ortofoto, i Check Point Indipendenti (ICP) sono ricollimati manualmente. Le coordinate nell'ortofoto georeferenziata (realizzata a partire dalla coppia stereoscopica) sono confrontate con le coordinate originariamente estratte dall'ortofoto fotogrammetrica.

Per il confronto del DSM si è invece seguito un procedimento più complesso. A causa dei movimenti della lingua glaciale, non è possibile confrontare in ogni punto DSM derivanti da acquisizioni in tempi diversi. É necessario, quindi, individuare delle zone non deformabili ed invarianti nel tempo, che non abbiano subito particolari spostamenti (in planimetria, ma soprattutto in quota) nel corso degli anni. Queste zone sono individuate all'esterno delle morene poiché non influenzate dalla perdita di massa della lingua glaciale (per un'area totale di circa $12km^2$). A tal proposito, sono stati individuati una serie di poligoni nelle cosiddette zone stabili,(Figura 5.15): il confronto tra DSM satellitari ed il DSM fotogrammetrico è limitato solamente a tali zone. Tali confronti si basano su alcune considerazioni a priori:

- l'ipotesi fatta è che il DSM fotogrammetrico utilizzato sia esente da errore¹³;
- i due DSM non sono previamente allineati per il confronto ma sovrapposti secondo la loro georeferenziazione.

Il confronto nelle *zone stabili* consiste in una sottrazione dei valori di quota nei due DSM. In questo modo è possibile valutare:

- l'accuratezza del DSM satellitare, ovvero quanto la media delle differenze differisce da zero;
- la precisione del DSM satellitare, ovvero la fluttuazione dei valori intorno alla media.

 $^{^{13}}$ Le precisioni con cui è realizzato il DSM fotogrammetrico non vengono considerate (deviazioni standard di circa 2 cm nella Triangolazione Aerea)

Figura 5.15: Zone in cui avviene il confronto dei DSM

5.7.1 Qualità delle ortofoto

Per ciascuno degli otto casi, sono realizzate due ortofoto (una per ogni immagine della coppia stereoscopica). Al fine di valutare la qualità di queste è stata fatta una collimazione manuale degli ICP (considerati in precedenza per la valutazione del modello). In seguito, sono state calcolate le differenze tra le coordinate estratte dall'ortofoto di riferimento e le coordinate dell'ortofoto satellitare. Allo scopo di valutare l'influenza del DSM, sia il DSM fotogrammetrico che quello satellitare sono stati utilizzati nell'ortoproiezione[68]. In questo caso, il confronto avviene solamente per una delle due ortofoto satellitari, in quanto risultati analoghi si stimano per l'altra immagine ortoproiettata.

Figura 5.16: Distanza planimetrica tra la posizione attesa dei 17 ICP e la posizione degli stessi ICP nell'ortofoto realizzata con il DSM fotogrammetrico

Figura 5.17: Distanza planimetrica tra la posizione attesa dei 17 ICP e la posizione degli stessi ICP nell'ortofoto realizzata con il DSM satellitare

Analogamente a quanto visto per i modelli, anche nel caso delle ortofoto si hanno dei risultati molto accurati (circa coincidenti con il valore del GSD) a partire dai casi con 1 GCP. Le migliori accuratezze si osservano nei casi con 3 GCP (Figure 5.16 e5.17). Tuttavia, anche i modelli con 0 GCP forniscono delle ortofoto con accuratezze di circa tre pixel.

5.7.2 Qualità dei DSM

La qualità dei DSM è valutata attraverso il confronto con il DSM di riferimento (DSM fotogrammetrico), precedentemente utilizzato per l'estrazione delle quote dei GCP. La procedura di confronto si può schematizzare come:

- individuazione di una zona stabile intorno alla lingua glaciale;
- calcolo delle pendenze puntuali del terreno partendo dal DSM di riferimento;
- raggruppamento in 5 classi di pendenza m (attraverso la costruzione di poligoni differenziati, Figura 5.18):
 - -~m<30%
 - -30% < m < 50%

- $\begin{array}{l} -\ 50\% < m < 70\% \\ -\ 70\% < m < 90\% \\ -\ m > 90\% \end{array}$
- sottrazione tra DSM satellitare e DSM di riferimento (classe per classe);
- raccolta delle differenze in punti casuali e distribuiti spazialmente in modo omogeneo, separatamente per ogni classe di pendenza.

Il raggruppamento per classi di pendenza m permette la realizzazione di una serie di grafici ove l'influenza della pendenza stessa viene messa in evidenza. In Figura 5.18 è illustrata la suddivisione spaziale delle zone secondo le classi di pendenza.

Figura 5.18: Distribuzione spaziale delle zone appartenenti alle diverse classi di pendenza

Grafici di frequenza cumulata

I cinque grafici seguenti, uno per ogni classe di pendenza m, rappresentano le frequenze cumulate. Ciascun punto della curva (fissato il numero di GCP), rappresenta la percentuale di dati il cui valore è inferiore al corrispondente valore in ascissa. Per il calcolo delle cumulate di frequenza, sono considerati i valori assoluti delle differenze con il DSM di riferimento. Questa rappresentazione fornisce quindi un grafico "ad una coda": in questo modo si ottiene una misura della precisione dei DSM, che in questo caso è quantificata individuando il valore in ascissa corrispondente al 95% in ordinata.

Figura 5.19: Classe di pendenza m<30~% (notare intersezione della curva 0 GCP con le altre)

Figura 5.20: Classe di pendenza 30% < m < 50% (notare intersezione della curva 0 GCP con le altre)

Figura 5.21: Classe di pendenza 50% < m < 70 %

Figura 5.22: Classe di pendenza 70% < m < 90 %

Figura 5.23: Classe di pendenza m>90~%

Tutte le curve, escluso il caso 0 GCP, hanno dei valori di riferimento (corrispondenti ad una percentuale del 95% in ordinata) inferiori a 1.50 m. Il 95% dei punti del DSM satellitare ha una precisione al di sotto di 1.50 m. Si osserva che l'intersezione tra la curva 0 GCP e le altre curve nelle Figure 5.19 e 5.20 rappresenta un errore *di modello*, corretto con l'introduzione di solamente 1 GCP.

Medie e deviazioni standard In Figura 5.24 sono rappresentate le medie delle differenze tra i DSM satellitari ed il DSM si riferimento.

Figura 5.24: Medie delle differenze DSM satellitare - DSM fotogrammetrico per ogni classe di pendenza

Le accuratezze migliori, con medie molto vicine allo zero, si osservano nei casi con 2 e 3 GCP. Ulteriori grafici riferiti all'accuratezza media sono riportate in Appendice B.

Figura 5.25: Accuratezza media del DSM al variare del numero di GCP

Valutazione dell'accuratezza dei DSM

Analogamente al caso delle ortofoto, dei diagrammi a scatola e baffi sono utilizzati per valutare l'accuratezza dei DSM. In questo caso le differenze sono considerate in valore e segno. Il grande numero di punti analizzati (circa 21 milioni in totale) fa si che i valori mediani siano molto vicini alla media e che il campione sia sufficientemente rappresentativo.

Figura 5.26: Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (m < 30%)

Figura 5.27: Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (30% < m < 50%)

Figura 5.28: Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (50% < m < 70%)

Figura 5.29: Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (70% < m < 90%)

Figura 5.30: Primo, secondo e terzo quartile delle differenze DSM satellitare - DSM fotogrammetrico al variare del numero di GCP (m > 90%)

Figura 5.31: Primo, secondo e terzo quartile delle differenze DSM satellitare -DSM fotogrammetrico al variare del numero di GCP (tutte le classi di pendenza)

Caso di maggiore interesse

Dall'osservazione complessiva dei grafici, si evince come i casi di maggiore interesse, ovvero quelli che hanno fornito dei DSM più accurati e precisi siano quelli che utilizzano da 1 a 4 GCP. In particolare, al di sopra di 3 GCP non si hanno miglioramenti nell'accuratezza e, al contempo, l'utilizzo di un solo GCP evita errori grossolani nella stima del modello. Allo scopo di descrivere al meglio tali casi, grafici di frequenza cumulata sono realizzati per un numero costante di GCP, ove ogni curva rappresenta una classe di pendenza (Figura 5.32, Figure B.21, B.22 e B.23 in Appendice B). In conclusione, 3 GCP rappresentano l'ottimo per la realizzazione di prodotti accurati e precisi. Contemporaneamente, si tratta di un numero di GCP rilevabili da pochi operatori esperti in un tempo sufficientemente breve qualora questi dovessero essere rilevati con campagne di misura.

Figura 5.32: Frequenza cumulate per il DSM realizzato con 3 GCP

Confronto dei profili ed analisi multitemporali Considerando il caso con 3GCP, si realizzano due profili che evidenziano le differenze dei due DSM in corrispondenza della lingua glaciale, dove devono essere stimate le variazioni di quota. Le linee lungo le quali sono tracciati i profili sono indicate in Figura 5.33 mentre i profili sono osservabili nelle Figure 5.34 e 5.35.

Figura 5.33: Linee lungo il quale sono stati creati i due profili

Figura 5.35: Profilo 2

Il confronto di tali profili consente di osservare la variazione di spessore della lingua glaciale. Tale abbassamento è di circa *3 metri* (in media), compatibilmente

con i dati provenienti dagli anni passati (Tabella 3.1) ove era stimata una perdita di circa 1.50 m/anno. Altri confronti possono essere svolti sulla lingua glaciale tramite la sottrazione DSM satellitare - DSM fotogrammetrico, che fornisce gli abbassamenti puntuali nel biennio 2017-2019.

Figura 5.36: Abbassamenti dello spessore della lingua glaciale (2017-2019)

5.8 Conclusioni

L'utilizzo di immagini satellitari nella realizzazione di DSM e ortofoto ad alta risoluzione presenta accuratezze e precisioni inferiori rispetto a quelle fotogrammetriche (data anche la minore risoluzione). Tuttavia, la sperimentazione esposta nel presente capitolo ha messo in luce diversi vantaggi derivanti dall'utilizzo di tale tecnica:

- i prodotti realizzati mostrano accuratezze medie almeno pari alla dimensione dei pixel dell'immagine stereoscopica;
- il numero di GCP da utilizzare affinché si raggiungano tali accuratezze è molto ridotto;
- pur *senza l'utilizzo di GCP*, risultati ampiamente validi possono essere raggiunti (si ottengono lievi sistematismi).

Nel caso studio del Ghiacciaio del Belvedere si è potuto dimostrare che 3 GCP rappresentano il numero ottimo al fine di ottenere DSM di accuratezza elevata (differenze con il DSM di riferimento inferiori al GSD). Tuttavia, risultati notevoli sono raggiunti anche senza l'utilizzo di GCP: le differenze di quota con il DSM di riferimento sono di circa 1.50 m, corrispondente a tre volte il valore del GSD. L'estensione di tale tecnica geomatica all'uso di dati di input a risoluzione più elevata (es.: immagini World-View, GSD di 31 cm) permetterebbe il raggiungimento di risultati migliori e più accurati.

Capitolo 6

Elaborazione di immagini satellitari: utilizzo del modello di Toutin

Una sperimentazione analoga a quella esposta nel Capitolo 5 è condotta nel presente capitolo con l'ausilio del *modello di Toutin*. In tale sperimentazione, il modello matematico *rigoroso* teorizzato da Toutin nel 2004 ([69],[35]), è stato validato con l'ausilio di un solo set di 17 ICP, con un numero variabile di GCP compreso tra 9 e 26. In particolare, si hanno 11 casi con 9, 10, 11, 12, 13, 14, 15, 18, 20, 23 e 26 GCP. I casi con 9, 10 e 11 GCP, che rappresentano la numerosità minima di punti di controllo atti a garantire la convergenza del modello, mostrano accuratezze piuttosto scarse e dispersioni di circa un ordine di grandezza superiori agli altri casi. Di conseguenza, i grafici di rappresentazione dei risultati finali sono forniti in due versioni: una rappresentante la totalità dei casi (Appendice C), l'altra comprendente esclusivamente i casi a partire da 12 GCP.

Procedimento su PCI Geomatica Il *workflow* utilizzato è analogo a quello visto nel Capitolo 5. Le immagini di input, le posizioni ed il numero di TP e ICP sono invariate. La distribuzione spaziale di GCP è cambiata in relazione alla variazione del numero di punti utili alla convergenza del modello. Nelle fasi preliminari di calcolo, l'utilizzo del modello di Toutin non ha consentito l'estrazione automatica di TP utili all'orientamento relativo delle immagini. Per ovviare a questo problema la procedura è stata la seguente:

- importazione dei TP utilizzati nella sperimentazione con il modello razionale;
- importazione degli ICP utilizzati nella sperimentazione precedente e trasformazione di questi in GCP;

- estrazione automatica di ulteriori GCP tramite algoritmi del software *PCI* con l'ausilio di ortofoto e DSM fotogrammetrici;
- ripristino degli ICP importati in precedenza;
- iterazione nella ricerca di GCP fino al raggiungimento del numero di 26 (Figura 6.2)

La totalità dei GCP individuati possono essere osservati in Figura 6.2. Si osserva l'eccessiva attiguità di alcuni GCP dovuta all'impossibilità degli algoritmi del software di distribuire tali punti omogeneamente quando la numerosità supera 18 (Figura 6.1).

L'utilizzo del modello di Toutin ha presentato due importanti limitazioni:

- la risoluzione del modello non converge al di sotto di un certo numero di GCP (almeno 9);
- il software non è in grado di distribuire omogeneamente i GCP (estratti automaticamente) nello spazio quando si superano i 18.

Figura 6.1: Distribuzione spaziale dei 18 GCP

Figura 6.2: Distribuzione spaziale dei 26 GCP

6.1 Valutazione della qualità del modello

Analogamente al capitolo precedente, il modello è valutato tramite la sintesi dei dati in grafici a scatola e baffi. Si osserva come l'aumento di GCP influisca poco sull'accuratezza planimetrica del modello che soffre di un errore sistematico superiore ai 10 metri in planimetria ed ai 2 metri in altimetria (Figure 6.3 e 6.4).

Figura 6.3: Accuratezza del modello (somma in quadratura dei residui E e N)

Figura 6.4: Accuratezza altimetrica del modello (Residui Z)

6.1.1 Medie, deviazioni standard e RMSE

Le coordinate planimetriche dei **GCP** sono osservate separatamente nelle due componenti Est e Nord. In questo modo è possibile osservare come il bias sia presente soprattutto in direzione Est, ma il $RMSE^1$ è elevato nelle due direzioni.

 1 vedi sezione 5.4.4

Figura 6.5: Individuazione bias di modello in direzione Est

Figura 6.6: Individuazione bias di modello in direzione Nord

Figura 6.7: Individuazione bias di modello in quota

Tali errori sistematici, osservati sia negli ICP che nei GCP, non si riscontreranno nei prodotti finali.

6.2 Qualità dei prodotti realizzati

Analogamente al Capitolo 5, i prodotti realizzati consistono in un DSM e due ortofoto (una per ogni immagine della coppia stereoscopica) per ogni set di GCP. Nelle Figure 6.8 e 6.9 si possono osservare i prodotti realizzati con l'utilizzo di 18 GCP. In tali prodotti vengono messe in evidenza le zone che soffrono degli *effetti di bordo*: tali zone si dimostrano molto deformate e non sono adatte a descrivere la superficie.

Figura 6.8: Ortofoto realizzata con l'ausilio di 18 GCP

Figura 6.9: DSM realizzato con l'ausilio di 18 GCP
6.2.1 Accuratezza delle ortofoto

L'accuratezza delle ortofoto è valutata con ricollimazione manuale dei 17 ICP e confronto delle coordinate in ortofoto satellitare con quelle attese (estratte dall'ortofoto fotogrammetrica). Le ortofoto sono prodotte utilizzando esclusivamente i DSM satellitari e la valutazione avviene per una sola immagine.

Figura 6.10: Accuratezza dell'ortofoto (verificata sui 17 ICP)

Si osserva che l'errore mediano è di circa 50 cm, lontano dai valori medi residuali che si riscontravano nel modello. Tali valori sono prossimi a quelli osservati in Figura 5.16, nella quale si utilizza un set di GCP più ristretto.

6.3 Qualità dei DSM

Il confronto dei DSM avviene in modo analogo a quanto esposto nella sezione 5.7.2. In questo caso la differenza DSM satellitare - DSM fotogrammetrico è valutata in 100000 punti per ogni classe di pendenza.

6.3.1 Grafici di frequenza cumulata

Figura 6.11: Frequenza empirica cumulata moduli delle differenze DSM fotogrammetrico - DSM satellitare (classe m < 30%)

Figura 6.12: Frequenza empirica cumulata moduli delle differenze DSM fotogrammetrico - DSM satellitare (classe 30% < m < 50%)

Figura 6.13: Frequenza empirica cumulata moduli delle differenze DSM fotogrammetrico - DSM satellitare (classe 50% < m < 70%)

Figura 6.14: Frequenza empirica cumulata moduli delle differenze DSM fotogrammetrico - DSM satellitare (classe 70% < m < 90%)

Figura 6.15: Frequenza empirica cumulata moduli delle differenze DSM fotogrammetrico - DSM satellitare (classe m>90%)

Si osserva come, per tutte le classi di pendenza, l'aumento del numero di GCP sia ininfluente al fine del miglioramento della $precisione^2$ dei DSM.

Medie e deviazioni standard al variare del numero di GCP L'accuratezza media è incrementata, per tutte le classi di pendenza, all'aumentare del numero di GCP (Figura 6.16).

 $^{^2\}mathrm{Nel}$ grafico sono rappresentati i moduli delle differenze

Figura 6.16: Andamento delle differenze medie DSM satellitare - DSM fotogrammetrico

Valutazione dell'accuratezza dei DSM

I diagrammi a scatola e baffi sono utilizzati per la valutazione dell'accuratezza dei DSM, analogamente a quanto esposto in sezione 5.7.2.

Figura 6.17: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe m<30%)

Figura 6.18: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $30\%{<}m{<}50\%)$

Figura 6.19: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe $50\%{<}m{<}70\%)$

Figura 6.20: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe 70%<m<90%)

Figura 6.21: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe m>90%)

Figura 6.22: Medie delle differenze DSM fotogrammetrico - DSM satellitare al variare del numero di GCP (11 casi)

Figura 6.23: Boxplot differenze DSM fotogrammetrico - DSM satellitare al variare del numero di GCP

Accuratezza e dispersione dipendente solamente dal numero di GCP Nei grafici da Figura 6.17 a Figura 6.23 si osserva come l'accuratezza dei DSM sia sempre di circa 50 cm, indipendentemente dalla classe di pendenza e con scarsa variabilità al variare del numero dei GCP.

Casi di maggiore interesse

Analogamente al capitolo 5, sono individuati dei casi di particolare interesse. Nel presente capitolo, i casi con 12, 13, 14, 15 e 18 GCP sono quelli di maggiore interesse poiché garantiscono alta precisione nella realizzazione dei DSM.

Figura 6.24: Frequenze cumulate empiriche DSM fotogrammetrico - DSM satellitare (caso 12 GCP)

Figura 6.25: Frequenze cumulate empiriche DSM fotogrammetrico - DSM satellitare (caso 13 GCP)

Figura 6.26: Frequenze cumulate empiriche DSM fotogrammetrico - DSM satellitare (caso 14 GCP)

Figura 6.27: Frequenze cumulate empiriche DSM fotogrammetrico - DSM satellitare (caso 15 GCP)

Figura 6.28: Frequenze cumulate empiriche DSM fotogrammetrico - DSM satellitare (caso 18 GCP)

6.4 Conclusioni

L'utilizzo del modello di Toutin per la correzione geometrica delle immagini presenta notevoli svantaggi rispetto al modello razionale (RFM). Di fatto, è necessario un numero maggiore di GCP al fine di ottenere risultati accettabili in termini di precisione ed utilità dei prodotti finali. Importanti deformazioni sono osservabili nelle zone in alta quota. Queste ultime soffrono maggiormente degli *effetti di bordo* a causa della distribuzione asimmetrica dei GCP nell'immagine satellitare. Tali punti di controllo sono, infatti, estratti con l'ausilio di modelli di riferimento fotogrammetrici, i quali non ricoprono le zone più alte della parete montuosa.

Capitolo 7 Conclusioni

Nel presente elaborato sono state messe a confronto, attraverso l'elaborazione di immagini digitali e misure di varia natura, differenti tecniche geomatiche finalizzate al monitoraggio dei ghiacciai. In assenza di dati di riferimento stabili nel tempo, necessari per stimare la qualità dei risultati finali (dovuti principalmente alle incertezze sulla stima dei volumi e agli spostamenti relativi), non è possibile valutare in modo assoluto una tecnica di monitoraggio. Tuttavia, è possibile caratterizzare ciascuna tecnica con informazioni quantitative, come la precisione di misura. Altri fattori che influenzano la scelta di una tecnica di monitoraggio includono i tempi di acquisizione ed elaborazione delle misure, l'economicità della tecnica e la disponibilità di operatori specializzati.

Tra le tecniche di monitoraggio dei ghiacciai oggetto di studio e sperimentazione, tecniche di fotogrammetria digitale applicate ad immagini acquisite da piattaforma aerea e satellitare rappresentano, congiuntamente ad altre tecniche terrestri, lo stato dell'arte. Nonostante le campagne aeree di rilievo fotogrammetrico continuino ad essere soluzioni diffuse ed affidabili per ampie coperture (regionali o nazionali), l'utilizzo di tecniche fotogrammetriche da aereo ultraleggero presentano notevoli vantaggi (Capitolo 4):

- rapidità d'esecuzione;
- utilizzo di camere di medio costo, alte prestazioni e risoluzione;
- implementazione ed applicazione di tecniche di fotogrammetria diretta;
- realizzazione di prodotti ad alta risoluzione, precisione ed accuratezza;
- realizzazione di voli fotogrammetrici *on-demand* (opzione non diffusa nel caso di campagne aerofotogrammetriche estese)

Tecniche terrestri quali Radar, LIDAR e fotogrammetria terrestre necessitano, per l'acquisizione delle misure, la presenza in situ di tecnici esperti. Nonostante tecniche

satellitari e di fotogrammetria aerea diretta forniscano risultati sufficientemente accurati, eventuali errori di modello possono essere corretti esclusivamente con l'ausilio di punti di appoggio a terra che materializzino il sistema di riferimento. Tale operazione, condotta in ambienti alpini caratterizzati da accessibilità ridotta e con difficoltà logistiche legate al trasporto di strumentazione, è di fondamentale importanza per le operazioni di monitoraggio. La materializzazione del sistema di riferimento consente l'appoggio dei modelli e la consistenza nel tempo consente i confronti multitemporali. Conseguentemente, voli fotogrammetrici a bassa quota ed alta risoluzione acquistano importanza considerevole: i modelli ottenuti si possono assumere come una materializzazione del sistema di riferimento alternativa ad una rete di punti artificialmente posizionati nel terreno. L'individuazione di particolari naturali georeferenziati in un sistema di riferimento assoluto (ETRF2000), consente di prescindere dalle operazioni di installazione e misura dei punti appoggio a terra in epoche differenti poiché questi saranno derivati in maniera indiretta da modelli precedentemente realizzati. I modelli non devono essere necessariamente ordinati cronologicamente: l'individuazione e la georeferenziazione di particolari naturali invarianti nel tempo rende possibile realizzare DSM e ortofoto a partire da acquisizioni precedenti (in cui il sistema di riferimento a terra non era ancora materializzato). La procedura è, di fatto, simile a quella utilizzata nel Capitolo 5, in cui i Ground Control Point, utilizzati per immagini acquisite nel 2017, erano individuati su delle ortofoto e DSM provenienti dalla restituzione del volo fotogrammetrico del 2019. I risultati provenienti dall'utilizzo di acquisizioni satellitari sono di ampia validità ed alta qualità. Nonostante tali tecniche non garantiscano le risoluzioni spaziali tipiche della fotogrammetria, i prodotti realizzati offrono elevate precisioni di posizionamento plano-altimetriche e possono essere ottenuti con l'ausilio di un ridotto numero di GCP. Dalle sperimentazioni condotte nei Capitoli 5 e 6 si evince come l'assenza di GCP non impedisca la realizzazione di prodotti con precisioni accettabili, comunque notevolmente migliorate dalla presenza di un solo GCP. Tale aspetto rende la tecnologia satellitare ampiamente conveniente rispetto ai voli fotogrammetrici, in termini economici e temporali, qualora le precisioni massime ottenibili siano compatibili con i requisiti applicativi. In analogia alla fotogrammetria aerea, il rilievo di punti sul campo, utili alle operazioni di orientamento esterno, si dimostra complesso in ambienti ostili come quelli glaciali. Inoltre, tali punti possono essere materializzati esclusivamente nelle zone adiacenti il ghiacciaio poiché la superficie glaciale è soggetta a costante deformazione e movimento. Tra i modelli utilizzati, il modello polinomiale razionale (non parametrico) ha fornito risultati di qualità superiore in termini di precisione ed accuratezza. L'utilizzo del modello rigoroso di Toutin richiede, di fatto, un numero maggiore di GCP per l'orientamento esterno. Inoltre, i DSM ed ortofoto generati sono caratterizzati da ampie deformazioni per zone elevate in quota, lontane dalla rete di GCP.

Miglioramenti e scenari futuri Le tecniche fotogrammetriche dirette da velivoli ultraleggeri potranno essere migliorate tramite la correzione delle problematiche evidenziate nella presente tesi e derivanti principalmente dall'utilizzo di strumentazione di medio costo (Capitolo 4). Inoltre, l'implementazione di tecniche di volo basate sull'utilizzo di camere inclinate permetterà anche il rilievo di zone a quote elevate. La realizzazione di modelli ad alta risoluzione anche in alta quota permetterebbe, infatti, l'orientamento e la validazione di modelli satellitari con l'ausilio di GCP a quote elevate, Una delle limitazioni riscontrate nella sperimentazione dei vari modelli satellitari. L'uso di modelli fotogrammetrici di riferimento limitati a basse quote ha, di fatto, permesso l'individuazione di punti di appoggio esclusivamente nelle zone ai piedi della parete Nord-Est del Monte Rosa. Non è stato quindi possibile verificare l'accuratezza di DSM e ortofoto satellitari per quote elevate. Tuttavia, il costante incremento nella risoluzione spaziale (e temporale) delle immagini satellitari contribuirà a perfezionare le già ottime soluzioni discusse nella presente tesi, al fine di ridurre la dipendenza delle operazioni di orientamento esterno da misure terrestri.

Appendice A Ulteriori dati dal Capitolo 4

Tabella A.1: Coordinate del centro di presa e assetti della camera (da triangolazione aerea)

Fot.	\mathbf{Est} [m]	Nord [m]	h [m]	$oldsymbol{\omega} \left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	k [°]
1772	416201.814	5085597.683	3656.347	4.741	-5.753	-77.767
1773	416480.933	5085691.602	3669.140	5.754	-6.430	-56.720
1774	416701.304	5085872.744	3675.837	3.613	-3.378	-37.487
1775	416853.688	5086127.305	3669.414	5.891	-4.540	-19.810
1776	416974.830	5086408.062	3687.039	7.126	-6.268	-25.990
1777	417107.720	5086648.801	3706.030	6.281	-5.272	-25.594
1778	417249.039	5086870.696	3708.094	2.112	-2.894	-42.529
1779	417037.035	5086101.823	3772.772	2.024	7.294	77.111
1780	416797.013	5086187.495	3779.969	1.036	8.870	81.179
1781	416572.503	5086249.441	3790.727	0.722	9.270	85.002
1782	416350.985	5086297.886	3794.114	0.280	6.277	87.149
1783	416114.712	5086344.966	3789.776	0.650	6.635	84.262
1784	415871.401	5086399.586	3793.898	0.531	6.551	83.843
1785	415629.859	5086463.505	3792.014	0.970	5.836	76.901
1786	415385.150	5086570.326	3798.939	1.632	6.064	65.461
1787	415167.960	5086746.706	3803.949	4.164	4.687	38.889
1788	415017.796	5086975.075	3802.271	3.188	3.872	32.712
1789	414870.959	5087218.452	3802.532	4.293	4.498	31.953
1790	414718.428	5087458.691	3808.262	3.485	3.953	31.715
1791	414558.341	5087708.910	3811.486	3.192	3.748	33.764
1792	414404.413	5087949.977	3810.949	3.486	3.845	31.448
1793	417229.250	5090514.954	3871.133	-5.832	-0.073	165.269
1794	417164.274	5090257.651	3868.551	-6.158	-0.452	164.249

Fot. Est m Nord [m] ϕ [°] \mathbf{k} [°] \mathbf{h} [m] ω 0 1795 5089982.983 417092.656 3872.820 -6.781-0.483164.983 17965089720.103 3878.553-6.2760.097 417018.443 163.1791797416932.354 5089450.640 3889.873 -6.5420.469161.741 1798416850.4505089198.487 3901.815 -7.2020.328163.764 1799 416780.420 5088954.863 3905.583-7.719163.609 0.686 1800 -6.266416715.832 5088708.768 3904.836 0.567165.420 1801 416651.0015088455.1353900.181 -5.5330.559163.8211802 416580.638 5088199.467 3903.407 -6.0251.432166.087 18035087939.257 3909.354 -7.6790.943 416519.904 164.829 1804416456.366 5087676.139 3923.149 -7.7891.020165.4321805 416386.997 5087437.040 3926.273-5.405163.432 0.6371806416320.412 5087196.716 3926.141 -5.0660.148166.747 1807416255.736 5086949.396 3922.036 -2.046-0.630162.662 1808 416172.693 5086681.355 3931.361 -7.8241.362162.594 1809 416097.646 5086437.453 3946.882 -7.3981.345161.082 3955.497 1810 416026.0565086204.120 -6.8881.283160.350-5.8231811 415952.498 5085970.121 3955.643 1.425158.908 1812 5085737.296 3964.756 -6.595415877.598 1.543159.349 18135086004.916 4004.566 6.5790.280-16.690414899.054 1814 5086262.2714009.007 9.278-12.829414995.996 0.7361815415078.853 5086524.427 4014.546 5.4932.364-6.4421816 415145.673 5086808.354 4016.775 6.7081.187 -11.7161817 415221.971 5087079.888 4022.070 7.437 0.516-12.2851818 -12.873415303.011 5087352.635 4019.149 5.3961.0691819 415382.5125087629.0314023.733 6.0950.879-12.8011820 415464.110 5087909.160 4026.242 7.667 0.230-12.2141821 415545.322 5088181.166 4034.906 7.834 0.516-11.718 1822415631.694 5088462.904 4038.1298.523 0.102-13.18618234.482-12.454415699.444 5088729.143 4044.643 0.7621824415769.393 5088997.996 4043.216 4.9600.455-12.7221825415839.046 5089262.083 4052.230 6.1800.259-12.38518265089522.000 4047.068 3.233 -11.449415910.732 1.3351827 415984.1265089797.155 4038.735 7.110-0.395-14.2541828 4044.681 6.486-13.625416054.595 5090055.760 -0.6691829 416123.961 5090311.930 4043.785 7.673 -1.162-11.0281830 416206.151 5090564.956 4046.488 4.572-0.326-11.6171831 4038.590 8.432 -0.357-11.157416290.579 5090842.906 18325091024.666 -6.211415329.277 4024.4823.142158.877

Tabella A.1 – Continuazione da pagina precedente

Tabella A.1 – Continuazione da pagina precedente

Fot.	$\mathbf{Est} \ [m]$	Nord $[m]$	h [m]	$oldsymbol{\omega}\left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	\mathbf{k} [°]
1833	415256.294	5090795.311	4027.864	-7.095	3.832	157.952
1834	415191.773	5090559.896	4032.576	-5.483	2.310	160.374
1835	415124.084	5090321.542	4038.204	-6.243	4.478	154.522
1836	415050.537	5090089.553	4043.124	-3.264	3.301	153.761
1837	414974.637	5089842.274	4043.591	-3.794	2.486	158.958
1838	414896.173	5089574.423	4039.769	-6.733	2.855	164.428
1839	414829.982	5089305.602	4039.326	-4.397	2.477	162.807
1840	414747.731	5089035.261	4045.522	-3.325	2.100	161.677
1841	414654.852	5088757.817	4037.785	-5.240	2.064	165.027
1842	414577.569	5088472.093	4034.445	-4.148	1.818	167.402
1843	414514.873	5088185.748	4026.530	-4.491	2.242	162.558
1844	414428.708	5087886.600	4027.566	-3.491	2.214	162.077
1845	414348.531	5087617.033	4034.194	-4.943	2.318	164.367
1846	414277.211	5087349.395	4032.135	-5.114	1.671	167.104
1847	414222.552	5087075.987	4032.102	-6.996	2.914	162.286
1851	415526.757	5085855.979	4033.692	4.044	0.664	-14.548
1852	415624.463	5086121.748	4032.996	7.603	0.927	-5.310
1853	415698.773	5086396.414	4034.581	8.174	-0.992	-13.393
1854	415782.446	5086656.891	4029.865	5.518	0.754	-9.083
1855	415862.059	5086930.222	4032.921	7.988	0.611	-11.178
1856	415945.033	5087202.808	4035.672	8.447	-0.271	-12.968
1857	416029.265	5087471.117	4036.129	5.599	0.320	-13.895
1858	416119.983	5087769.470	4035.482	7.475	-0.131	-12.132
1859	416198.073	5088042.609	4035.935	5.431	0.319	-11.239
1860	416271.370	5088320.051	4035.165	6.796	-0.049	-11.740
1861	416344.505	5088579.322	4039.529	5.476	-0.353	-13.195
1862	416418.262	5088850.183	4041.098	6.222	-0.230	-13.138
1863	416487.477	5089122.013	4040.718	5.915	-0.506	-15.557
1864	416562.468	5089381.632	4038.223	4.905	-0.071	-15.145
1865	416648.932	5089643.911	4030.827	6.480	-0.322	-13.338
1866	416727.988	5089906.933	4034.934	6.994	-0.989	-13.656
1867	416811.978	5090166.776	4034.542	5.894	-0.752	-15.199
1868	416898.566	5090422.164	4037.013	6.290	-0.476	-12.130
1869	416986.402	5090684.020	4033.995	5.387	-0.352	-10.661
1870	415635.031	5090960.219	4029.716	-4.822	3.138	160.327
1871	415569.158	5090721.315	4029.699	-5.507	3.675	159.000
1872	415500.668	5090466.596	4034.414	-4.482	3.051	159.045
1873	415432.106	5090230.316	4042.144	-5.126	3.189	156.941

 ϕ [°] Fot. Nord [m] \mathbf{k} [°] Est m \mathbf{h} [m] ω 0 1874 5089987.377 415362.011 4045.247 -3.8142.093156.54318755089721.892 4047.942 415284.854 -4.101 2.389155.7511876415200.377 5089468.093 4053.559-3.9341.788158.6991877 415118.391 5089204.308 4047.320 -0.4841.094167.653 1878 415058.9595088920.411 4038.454 -3.5542.046158.606 1879 -1.509414972.374 5088647.608 4030.871 0.768164.5281880 414887.741 5088367.802 4033.045 -4.8651.577168.0751881 414825.635 5088088.444 4037.467 -4.8481.317 168.305 1882414760.723 5087796.290 4030.298 -6.7472.465158.4901883414666.907 5087530.179 4029.415 -5.3011.073163.4091884 414589.992 5087263.221 4033.416 -4.8972.324164.558 1885414521.280 5086984.380 4034.089 -5.5981.631163.368 1888414264.565 5086166.808 4042.447 -2.2830.708169.384 1889 416243.890 5085614.680 4034.755 8.452 0.9022.7631890 416284.487 5085895.481 4036.688 4.856-0.212-4.3374041.806 1891 416351.1145086171.582 7.4420.411-3.9186.479 1892416415.055 5086438.978 4038.739 -0.437-7.941416492.5751893 5086707.510 4034.390 7.180 -8.719-0.6321894416573.292 5086988.328 4038.492 7.251-1.531-12.7041895 416653.269 4039.523 7.638-0.507-9.4585087255.677 1896 416732.921 5087519.614 4046.211 5.807-0.675-10.6301897 416808.5095087793.332 4040.5717.912 0.089-4.8241898416882.0665088073.051 4045.587 7.011-0.229-10.4001899 -11.981 416951.934 5088347.027 4049.033 3.969 -0.1171900 417024.912 5088620.137 4049.138 3.746-14.898-0.0781901 417101.639 5088900.666 4048.679 5.218-0.512-16.3107.286 1902 417181.353 5089163.800 4043.318 -1.208-12.5851903417261.295 5089427.232 4044.016 3.662 0.150-14.4271904 417354.562 5089719.644 4040.448 5.140-0.740-13.111 1905417432.441 5089995.404 4042.443 5.181-0.313-9.5931906 417509.865 5090273.727 4042.779 6.135-1.129-13.9111907 415950.816 5090846.060 4030.879 -5.9743.624156.9281908 415873.1165090607.301 4040.875 -6.5744.771154.8544044.262 1909 415806.7525090370.343 -6.0872.912161.796 1910415746.661 5090121.552 4046.778 -5.3053.158159.637 1911 -2.380415666.201 5089886.251 4049.913 2.008157.348 1912 4041.695 -4.3412.852165.469 415595.951 5089611.371 1913 5089342.136 -6.506415532.055 4050.5193.968157.055

Tabella A.1 – Continuazione da pagina precedente

Tabella A.1 – Continuazione da pagina precedente

Fot.	$\mathbf{Est} \ [m]$	Nord [m]	h [m]	$oldsymbol{\omega} \left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	$\mathbf{k} [^{\circ}]$
1914	415445.471	5089084.222	4044.283	-2.937	1.907	154.684
1915	415350.103	5088818.885	4039.003	-2.304	0.977	166.034
1916	415281.409	5088540.412	4032.059	-4.841	1.280	172.651
1917	415230.744	5088242.919	4026.063	-3.835	2.263	163.847
1918	415148.898	5087966.377	4039.040	-3.893	1.934	154.935
1919	415050.830	5087704.253	4045.965	-3.566	1.694	164.462
1920	414982.056	5087431.559	4038.642	-3.997	2.035	166.963
1921	414919.508	5087159.922	4034.625	-5.030	2.712	158.156
1922	414831.750	5086906.021	4032.518	-5.709	2.121	159.561
1924	414678.552	5086371.709	4032.720	-7.478	3.259	159.027
1925	414597.059	5086119.990	4035.213	-3.969	1.081	165.596
1926	415282.309	5085879.692	4004.212	2.999	8.868	35.018
1927	415147.767	5086121.372	4002.737	3.448	8.843	31.595
1928	415120.695	5086412.623	3996.366	6.923	0.883	-11.133
1929	415258.503	5086683.828	4005.331	9.895	-6.264	-41.336
1930	415505.648	5086827.269	4019.245	0.612	-8.212	-79.847
1931	415781.714	5086812.647	4012.301	-3.516	-5.590	-112.531
1932	416013.510	5086671.000	4010.608	-5.125	-3.238	-140.072
1933	416171.177	5086454.623	4014.890	-7.626	-3.263	-158.491
1934	416243.743	5086207.154	4019.621	-7.799	-0.472	177.930
1935	416215.176	5085957.695	4029.275	-9.647	1.591	158.179
1936	416136.714	5085742.381	4036.126	-7.046	1.161	150.611
1937	415245.401	5085913.158	4040.837	7.168	0.917	-13.263
1938	415322.215	5086178.949	4040.563	7.185	2.372	-9.662
1939	415403.282	5086450.563	4042.148	7.168	1.875	-8.768
1940	415476.201	5086738.446	4049.432	7.353	1.729	-8.418
1941	415543.564	5087013.836	4043.531	4.946	1.474	-15.278
1942	415630.387	5087291.888	4038.728	5.275	1.576	-11.274
1943	415707.782	5087576.374	4029.231	7.895	2.338	-7.721
1944	415802.408	5087862.191	4025.302	6.143	1.757	-12.094
1945	415870.553	5088138.680	4022.004	8.705	0.846	-11.595
1946	415948.347	5088395.238	4030.099	11.475	0.168	-14.801
1947	416022.292	5088646.940	4030.355	3.976	1.793	-14.651
1948	416092.509	5088906.397	4034.893	8.338	0.720	-13.808
1949	416171.529	5089157.356	4035.619	6.161	1.590	-9.298
1950	416240.760	5089418.614	4035.592	6.624	0.758	-14.816
1951	416325.630	5089684.059	4033.584	6.535	0.743	-7.035
1952	416402.800	5089955.561	4024.966	5.443	1.588	2.223

Fot.	Est [m]	Nord [m]	h [m]	ω [°]	$\frac{\rho \sigma g \sigma \sigma}{\phi}$	k [°]
1953	416464.144	5090245.482	4040.560	$\frac{5.289}{5.289}$	$\frac{7}{0.996}$	-12.712
1954	416552.418	5090519.155	4045.278	8.041	0.963	-4.405
1955	416637.005	5090794.243	4050.023	5.719	0.873	-12.261
1956	417818.685	5090322.064	4032.101	-5.452	-0.323	163.946
1957	417754.098	5090044.696	4037.844	-8.578	1.177	161.267
1958	417677.329	5089797.766	4038.837	-5.656	0.143	164.477
1959	417617.511	5089538.824	4045.025	-9.869	0.381	168.922
1960	417565.592	5089284.434	4044.362	-6.099	0.627	159.353
1961	417482.604	5089026.154	4039.576	-6.579	0.735	161.334
1962	417409.785	5088761.063	4036.583	-5.271	0.628	161.777
1963	417315.157	5088470.823	4042.218	-5.180	0.198	163.570
1964	417239.775	5088203.014	4040.287	-5.484	0.175	167.857
1965	417181.933	5087929.468	4039.353	-5.865	0.333	167.234
1966	417117.385	5087660.597	4042.401	-5.051	0.794	158.940
1967	417035.621	5087395.414	4046.042	-5.062	1.042	158.625
1968	416949.633	5087135.167	4041.345	-4.166	0.616	159.527
1969	416859.792	5086853.016	4035.775	-4.705	0.715	162.658
1970	416783.302	5086579.710	4034.158	-5.413	1.208	159.975
1971	416709.001	5086311.259	4041.814	-4.567	0.826	161.955
1972	416637.241	5086047.000	4048.208	-7.724	1.840	158.265
1973	416565.719	5085797.594	4053.794	-6.768	1.428	158.898
1974	416496.064	5085546.445	4048.010	-3.031	0.817	155.976
1975	416840.794	5085472.473	4044.547	9.378	1.332	-8.581
1976	416914.838	5085730.864	4051.686	7.360	1.903	-4.107
1977	416978.325	5085991.316	4049.723	7.201	0.816	-10.486
1978	417055.890	5086271.051	4047.523	6.785	0.323	-12.119
1979	417140.187	5086545.125	4049.094	6.556	1.415	-6.086
1980	417212.145	5086819.072	4046.108	5.238	1.152	-8.193
1981	417286.524	5087094.896	4045.386	6.512	0.227	-11.991
1982	417525.229	5087908.830	3639.240	-1.034	-3.177	107.703
1983	417211.711	5087815.598	3612.636	-2.511	-1.540	102.063
1984	416889.823	5087760.168	3590.316	-2.780	1.255	95.444
1985	416551.869	5087736.085	3571.681	-3.359	0.062	91.412
1986	416232.137	5087757.106	3545.338	-3.377	-0.306	76.272
1987	415922.194	5087859.957	3524.034	-3.286	2.205	62.041
1988	415649.757	5088055.015	3508.235	-2.964	3.009	43.562
1989	415465.755	5088318.691	3495.236	-2.826	3.761	28.300
1990	415355.238	5088631.165	3480.276	-0.669	4.704	12.466

Tabella A.1 – Continuazione da pagina precedente

Fot	Fat [m]	Nord [m]	h [m]	<u>, [0]</u>	$\frac{p \alpha g \cos \alpha}{\phi}$	I _F [0]
<u>1001</u>	<u>115220 102</u>		<u>11 [111]</u>	$\frac{\omega}{0.200}$	$\frac{\psi}{5109}$	<u>K</u> []
1991	415329.195	5080258 626	2428 020	-0.209 2 101	5.585	0.274 11 174
1992	415375.040	5080560 422	2410.029	-2.101	5.000 5.270	20.080
1995	413470.802 415615.707	5080871 165	2204 022	0.300 1 477	5 199	-20.069
1994	415015.707 415776.121	5000162 384	2260 221	1.47 1.517	J.100 1 911	-20.131
1995	415770.131	5000450 508	3348 640	1.017 2.104	4.044	-20.920
1990	410940.902	5000702 072	3328 705	2.104 3.072	4.012 4.771	-55.559 46.825
1008	410100.845	5000803 033	3320.703 3317.055	5.072 5.358	4.771	-40.020 65.501
1000	410459.250	5000000 621	3313 646	5 020	1.770	-00.091 80 545
2000	410741.382	5001010 826	3308 787	0.929 4 880	-1.110	07 040
2000	417059.515	5000408 600	3201 582	4.009	-4.400 2.072	-37.043 175 340
2001	417570.859	5000115 312	3084 420	-0.599 1 500	-2.072	170.549 170.525
2002	417342.430	5080702 316	3204.420 3275.066	-1.099 2.220	-1.009	170.020 171.485
2005	417456 160	5080482 626	3270.580	-2.200	1.707	171.400 171.300
2004 2005	417400.100	5089158 /10	3263 020	-2.638	-1.279 -2.072	$165\ 534$
2005	417304 484	5088842 262	3255 339	-2.000	-2.012	163.534 163.510
2000 2007	417211 425	5088537 363	3251.650	-4 274	-1 625	163.383
2001	417098 360	5088244 561	3251.000 3250.271	-5 448	-0.680	$154 \ 404$
2000	416927 367	5087966 648	3254 864	-6 610	0.000	$145\ 254$
2000	416726 447	5087748 613	3264 283	-7.570	2.569	129.644
2011	416473.275	5087611.913	3268.613	-6.516	4.240	108.454
2012	416192.011	5087583.647	3278.448	-4.927	7.387	84.527
2013	415917.542	5087686.109	3279.080	-2.698	6.226	56.611
2014	415713.356	5087888.504	3268.178	-1.438	5.541	34.934
2015	415563.178	5088155.563	3260.594	1.898	6.594	21.237
2016	415462.307	5088446.817	3257.981	1.693	6.006	15.149
2017	415396.021	5088765.232	3254.989	3.044	5.727	7.274
2018	415378.118	5089068.877	3250.374	3.034	5.207	-2.065
2019	415424.736	5089377.903	3248.291	5.692	4.018	-15.582
2020	415537.852	5089653.439	3246.390	6.008	2.482	-32.732
2021	415710.600	5089888.376	3240.670	6.118	1.695	-44.094
2022	415942.458	5090074.041	3238.202	6.847	-0.834	-58.227
2023	416198.718	5090223.503	3238.917	6.842	-0.863	-56.460
2024	416447.978	5090380.332	3242.509	7.299	-1.061	-54.697
2025	416699.374	5090557.509	3248.586	7.575	-1.100	-54.157
2026	416929.544	5090723.362	3255.652	8.466	-2.786	-54.013
2027	417156.636	5090887.255	3261.924	7.190	-1.770	-55.508
2028	417768.121	5091785.868	3252.457	-0.776	2.239	136.718

Tabella A.1 – Continuazione da pagina precedente

Fot.	\mathbf{Est} [m]	Nord [m]	h [m]	$oldsymbol{\omega} \left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	\mathbf{k} [°]
2029	417389.824	5091390.660	3249.071	-2.205	3.666	137.999
2030	417004.720	5090996.697	3246.908	-1.955	4.367	135.011
2031	416590.547	5090636.938	3265.310	-2.558	7.086	128.720
2032	416192.443	5090324.793	3285.512	-2.191	5.160	129.593
2033	415784.115	5090015.546	3294.573	-2.851	5.361	126.521
2034	415400.267	5089689.158	3305.890	-4.781	5.565	142.811
2035	415253.059	5089203.368	3308.603	-5.863	2.575	-172.392
2036	415532.438	5088748.610	3316.611	-5.452	-0.986	-122.983
2037	416068.468	5088636.627	3311.456	-2.406	-3.530	-79.897
2038	416623.318	5088797.974	3313.156	-0.800	-4.477	-69.285
2039	417189.238	5088944.846	3320.731	-1.663	-5.380	-83.333
2040	417737.818	5088886.617	3324.554	-1.796	-3.354	-107.061

Tabella A.1 – Continuazione da pagina precedente

Tabella A.2: Posizioni approssimate dell'antenna, assetti approssimati della camera e Timestamp

Fot.	\mathbf{h} [m]	$\operatorname{Lat}\left[^{\circ} ight]$	$\operatorname{Lon}\left[^{\circ} ight]$	$oldsymbol{\omega}\left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	\mathbf{k} [°]	$\mathbf{Timestamp} \; [ms]$
1750	332.44	45.08406	7.61079	0.0	95.9	-14.0	1572173438494
1751	332.37	45.08406	7.61079	0.0	95.8	-13.9	1572173450298
1752	330.14	45.08405	7.6108	0.0	95.5	-5.4	1572173757785
1753	328.76	45.08406	7.61081	0.0	95.7	-5.4	1572174318208
1754	3396.91	45.89036	7.89205	0.1	94.8	4.7	1572177607870
1755	3396.53	45.89518	7.89482	0.0	92.4	1.5	1572177619670
1756	3394.69	45.90014	7.89747	0.0	93.0	4.6	1572177631470
1757	3390.67	45.90515	7.89993	0.0	92.5	6.5	1572177643270
1758	3356.05	45.90613	7.90964	0.0	102.0	-147.0	1572177688370
1759	3364.62	45.90251	7.90455	0.1	104.0	-145.0	1572177700170
1760	3379.68	45.89918	7.89978	0.0	100.0	-144.0	1572177711970
1761	3439.21	45.88972	7.89044	0.3	98.2	-9.4	1572177804470
1762	3447.40	45.89471	7.89036	0.0	97.8	-8.7	1572177816270
1763	3459.56	45.89967	7.89101	0.3	94.3	-4.7	1572177828124
1764	3462.89	45.90478	7.89226	0.0	94.3	7.0	1572177839870
1765	3475.97	45.90952	7.89535	0.1	91.9	31.3	1572177851670
1766	3484.98	45.9129	7.90104	0.0	94.6	55.5	1572177863470
1767	3495.74	45.91448	7.90792	0.1	95.9	78.2	1572177875270
1768	3500.57	45.90637	7.91197	0.0	99.7	-87.8	1572177918669

Fot.	$\frac{1abella}{h}$	$\frac{1.2 0.01}{\text{Lat}}$	$\frac{1}{10000000000000000000000000000000000$	$\frac{\omega}{\omega}$	$\frac{\sigma}{\phi}$	k [°]	Timestamp [ms]
1769	3508.07	45.90671	7.90584	0.1	$\frac{7}{99.1}$	-98.2	1572177930469
1770	3511.97	45.90547	7.90003	0.0	99.2	-114.0	1572177942269
1771	3520.03	45.90279	7.89517	0.0	98.0	-131.0	1572177954241
1772	3655.47	45.91886	7.91926	0.0	94.9	62.7	1572178287002
1773	3667.68	45.91972	7.92284	0.0	96.2	41.0	1572178293269
1774	3674.81	45.92135	7.92567	0.5	92.8	20.8	1572178299569
1775	3668.55	45.92364	7.92761	0.4	95.9	2.9	1572178305869
1776	3686.35	45.92619	7.92912	0.0	97.2	8.8	1572178312469
1777	3704.93	45.92838	7.93079	0.0	95.9	8.7	1572178318769
1778	3708.49	45.9304	7.93257	0.0	90.7	26.3	1572178325002
1779	3772.54	45.92345	7.93012	0.0	102.0	-92.8	1572178403969
1780	3778.64	45.9242	7.92701	0.2	103.0	-95.3	1572178410569
1781	3789.35	45.92473	7.92411	0.0	103.0	-97.4	1572178416874
1782	3793.17	45.92514	7.92124	0.0	99.3	-99.4	1572178423169
1783	3788.72	45.92554	7.91819	0.0	99.1	-96.4	1572178429469
1784	3792.49	45.926	7.91505	0.0	98.6	-95.6	1572178435769
1785	3791.02	45.92654	7.91192	0.1	97.3	-88.8	1572178441992
1786	3797.46	45.92746	7.90874	0.5	96.9	-77.1	1572178448369
1787	3802.92	45.929	7.90587	0.0	96.5	-50.0	1572178455024
1788	3800.64	45.93103	7.90388	0.0	94.6	-43.5	1572178461269
1789	3800.50	45.9332	7.90195	0.0	95.7	-42.9	1572178467569
1790	3806.14	45.93535	7.89994	0.1	94.4	-42.6	1572178473874
1791	3809.27	45.93758	7.89783	0.1	94.3	-42.0	1572178480469
1792	3808.88	45.93973	7.8958	0.0	94.7	-38.4	1572178486769
1793	3869.48	45.96328	7.93181	0.0	95.6	-162.0	1572178847968
1794	3866.84	45.96096	7.93102	0.2	95.6	-155.0	1572178854268
1795	3870.96	45.95848	7.93014	0.6	96.0	-151.0	1572178860868
1796	3876.50	45.9561	7.92923	0.0	95.3	-146.0	1572178867168
1797	3887.81	45.95366	7.92817	0.0	95.5	-142.0	1572178873768
1798	3899.69	45.95139	7.92715	0.1	95.8	-142.0	1572178880123
1799	3903.58	45.94918	7.92629	0.1	96.2	-140.0	1572178886368
1800	3903.07	45.94696	7.9255	0.0	94.9	-141.0	1572178892668
1801	3898.62	45.94468	7.92471	0.0	94.3	-138.0	1572178899001
1802	3901.34	45.94237	7.92385	-1.0	94.8	-140.0	1572178905268
1803	3907.54	45.94002	7.92311	0.3	96.3	-138.0	1572178911568
1804	3921.40	45.93764	7.92233	0.3	96.3	-139.0	1572178918123
1805	3924.76	45.93548	7.92148	0.1	93.7	-137.0	1572178924468
1806	3924.65	45.93331	7.92066	0.5	93.1	-141.0	1572178930768

Tabella A.2 – Continuazione da pagina precedente

Fot.	h [m]	Lat [°]	Lon [°]	ω [°]	ϕ [°]	k [°]	$\mathbf{Timestamp} \; [ms]$
1807	3920.93	45.93108	7.91988	0.5	90.0	-137.0	1572178937001
1808	3929.65	45.92866	7.91885	0.1	96.1	-137.0	1572178943568
1809	3945.42	45.92645	7.91793	0.2	95.5	-135.0	1572178949868
1810	3954.29	45.92434	7.91704	0.2	95.2	-134.0	1572178956123
1811	3954.63	45.92223	7.91614	0.0	94.2	-132.0	1572178962468
1812	3963.42	45.92012	7.91521	0.0	95.2	-132.0	1572178968768
1813	4003.32	45.9223	7.90244	-1.0	102.0	42.8	1572179027027
1814	4007.45	45.92463	7.90365	0.1	104.0	34.9	1572179033268
1815	4012.55	45.92699	7.90467	0.1	99.8	25.5	1572179039568
1816	4015.05	45.92956	7.90548	0.0	101.0	29.0	1572179046122
1817	4020.26	45.93201	7.90641	0.0	101.0	28.1	1572179052468
1818	4017.40	45.93447	7.90741	0.2	98.4	28.3	1572179058768
1819	4021.83	45.93697	7.90839	0.2	98.8	26.6	1572179065022
1820	4024.20	45.9395	7.90939	0.0	99.9	22.6	1572179071368
1821	4032.61	45.94196	7.91039	0.0	99.7	19.7	1572179077668
1822	4035.65	45.9445	7.91146	0.1	100.0	18.8	1572179084268
1823	4042.67	45.94691	7.91228	0.0	95.6	17.0	1572179090568
1824	4041.12	45.94933	7.91314	0.0	95.8	16.8	1572179096868
1825	4050.00	45.95172	7.91399	0.1	96.7	14.8	1572179103168
1826	4045.15	45.95407	7.91487	0.7	93.6	12.9	1572179109468
1827	4036.59	45.95655	7.91577	0.1	97.4	13.5	1572179115968
1828	4042.52	45.95889	7.91663	0.0	96.4	11.8	1572179122268
1829	4041.72	45.9612	7.91748	-1.0	97.5	8.4	1572179128568
1830	4044.76	45.96349	7.91849	0.0	94.2	7.9	1572179134868
1831	4036.49	45.96599	7.91954	0.4	97.8	5.9	1572179141468
1832	4022.49	45.96762	7.90721	0.3	101.0	-158.0	1572179217001
1833	4025.40	45.96555	7.90631	0.2	102.0	-155.0	1572179223267
1834	4030.36	45.96343	7.90551	0.6	99.3	-158.0	1572179229567
1835	4035.65	45.96127	7.90469	0.0	100.0	-150.0	1572179235867
1836	4040.64	45.95917	7.90378	0.0	96.7	-150.0	1572179242123
1837	4041.21	45.95695	7.90284	0.1	96.8	-150.0	1572179248467
1838	4037.23	45.95453	7.90188	0.1	99.2	-154.0	1572179255001
1839	4036.73	45.95211	7.90107	0.0	96.7	-149.0	1572179261367
1840	4043.13	45.94966	7.90007	0.1	95.2	-146.0	1572179267667
1841	4035.18	45.94716	7.89892	0.4	96.8	-148.0	1572179273967
1842	4031.92	45.94458	7.89796	0.4	95.5	-150.0	1572179280267
1843	4024.86	45.942	7.8972	0.4	95.4	-144.0	1572179286567
1844	4025.51	45.93929	7.89615	0.0	94.1	-141.0	1572179293367

Tabella A.2 – Continuazione da pagina precedente

Fot.	h [m]			$\frac{\omega}{\omega}$ [°]	$\frac{\phi \left[\circ\right]}{\phi \left[\circ\right]}$	k [°]	Timestamp [ms]
1845	4031.76	45.93685	7.89517	0.1	95.2	-142.0	1572179299667
1846	4029.74	45.93444	7.89429	0.5	95.3	-144.0	1572179305967
1847	4029.94	45.93197	7.89363	0.2	97.1	-139.0	1572179312267
1848	4032.87	45.92959	7.89276	0.5	95.6	-135.0	1572179318567
1849	4026.75	45.92719	7.89178	0.1	95.5	-132.0	1572179324867
1850	4027.29	45.92475	7.89057	0.0	96.0	-133.0	1572179331367
1851	4031.85	45.92104	7.91054	0.1	99.6	31.4	1572179391970
1852	4031.61	45.92344	7.91178	0.0	103.0	20.4	1572179398267
1853	4032.99	45.92592	7.91268	-1.0	103.0	26.4	1572179404767
1854	4028.59	45.92827	7.91372	0.1	99.4	21.4	1572179410988
1855	4031.34	45.93074	7.91469	0.6	101.0	21.1	1572179417367
1856	4033.60	45.9332	7.91572	0.1	101.0	21.2	1572179423667
1857	4034.66	45.93563	7.91675	0.2	97.9	21.6	1572179429968
1858	4033.44	45.93832	7.91787	0.1	99.5	18.3	1572179436767
1859	4034.23	45.94079	7.91883	0.1	96.9	17.0	1572179443022
1860	4033.20	45.9433	7.91973	0.1	97.8	15.8	1572179449367
1861	4037.74	45.94564	7.92063	0.0	96.0	16.1	1572179455667
1862	4039.07	45.94809	7.92153	0.1	96.4	15.1	1572179462267
1863	4038.66	45.95054	7.92238	0.0	95.8	15.6	1572179468867
1864	4036.48	45.95289	7.9233	0.1	94.5	13.6	1572179475167
1865	4028.98	45.95525	7.92436	0.2	95.8	10.7	1572179481467
1866	4032.93	45.95763	7.92534	0.0	96.2	9.9	1572179487767
1867	4032.61	45.95998	7.92638	0.0	94.8	8.9	1572179494122
1868	4035.11	45.96229	7.92745	0.0	95.0	4.7	1572179500367
1869	4032.19	45.96465	7.92854	0.0	93.8	2.5	1572179506667
1870	4027.66	45.96708	7.91116	0.1	99.3	-170.0	1572179605967
1871	4027.43	45.96492	7.91036	0.0	99.6	-167.0	1572179612267
1872	4031.98	45.96262	7.90952	0.0	97.7	-162.0	1572179619001
1873	4039.71	45.96049	7.90867	0.1	97.9	-159.0	1572179625267
1874	4042.95	45.9583	7.90781	0.1	95.9	-157.0	1572179631567
1875	4045.32	45.9559	7.90687	0.0	95.9	-156.0	1572179638122
1876	4051.24	45.95361	7.90583	0.1	95.3	-154.0	1572179644367
1877	4045.05	45.95123	7.90481	-1.0	91.6	-162.0	1572179650667
1878	4036.41	45.94867	7.90409	0.0	94.4	-151.0	1572179656989
1879	4029.18	45.94621	7.90303	0.0	91.7	-155.0	1572179663267
1880	4030.47	45.94368	7.90199	0.0	95.1	-156.0	1572179669567
1881	4035.41	45.94116	7.90123	0.0	94.8	-156.0	1572179675867
1882	4028.12	45.93852	7.90045	0.0	96.4	-145.0	1572179682467

Tabella A.2 – Continuazione da pagina precedente

Fot.	h [m]	Lat [°]	Lon [°]	ω [°]	$\frac{\phi}{\phi}$	k [°]	Timestamp [ms]
1883	4027.28	45.93611	7.89929	0.2	94.6	-149.0	1572179688767
1884	4031.02	45.9337	7.89834	-1.0	94.3	-148.0	1572179695000
1885	4031.99	45.93118	7.89751	0.0	94.6	-143.0	1572179701367
1886	4033.40	45.92873	7.89644	0.0	95.9	-139.0	1572179707667
1887	4037.15	45.92629	7.89527	0.2	91.9	-139.0	1572179714119
1888	4041.18	45.9238	7.89434	-1.0	90.8	-147.0	1572179720566
1889	4034.11	45.91894	7.91986	0.0	105.0	13.2	1572179788021
1890	4036.24	45.92148	7.92033	0.0	101.0	19.8	1572179794266
1891	4040.39	45.92397	7.92114	0.5	102.0	18.4	1572179800566
1892	4038.08	45.92639	7.92191	0.1	101.0	21.0	1572179806866
1893	4032.95	45.92881	7.92286	0.0	101.0	20.0	1572179813166
1894	4037.04	45.93135	7.92385	0.0	100.0	22.5	1572179819766
1895	4038.06	45.93377	7.92484	0.3	100.0	18.9	1572179826121
1896	4044.57	45.93615	7.92582	0.0	97.8	19.4	1572179832366
1897	4039.20	45.93862	7.92675	0.1	99.6	13.1	1572179838666
1898	4043.58	45.94115	7.92765	0.5	98.1	15.7	1572179844999
1899	4047.62	45.94362	7.9285	0.1	94.6	16.8	1572179851266
1900	4047.49	45.94609	7.92939	0.1	94.0	19.2	1572179857566
1901	4047.25	45.94862	7.93034	0.2	95.0	18.6	1572179864121
1902	4041.57	45.951	7.93132	0.0	97.0	14.1	1572179870366
1903	4042.63	45.95338	7.9323	0.4	92.8	13.1	1572179876666
1904	4038.65	45.95602	7.93345	0.0	94.0	10.4	1572179883466
1905	4040.64	45.95851	7.93442	0.3	94.0	6.2	1572179889766
1906	4041.18	45.96102	7.93536	0.0	94.6	8.4	1572179896121
1907	4027.53	45.9661	7.91525	0.4	100.0	-157.0	1572180017000
1908	4036.86	45.96393	7.9143	0.0	101.0	-153.0	1572180023266
1909	4040.30	45.9618	7.91347	0.3	99.4	-160.0	1572180029566
1910	4042.96	45.95955	7.91274	0.0	98.1	-157.0	1572180036121
1911	4047.30	45.95742	7.91176	0.1	94.6	-154.0	1572180042366
1912	4039.30	45.95495	7.9109	-1.0	96.6	-161.0	1572180048999
1913	4048.18	45.95252	7.91012	-1.0	98.4	-150.0	1572180055266
1914	4042.09	45.95019	7.90906	0.0	94.0	-146.0	1572180061566
1915	4037.02	45.94779	7.90787	0.1	93.1	-157.0	1572180067866
1916	4029.87	45.94528	7.90703	0.0	95.4	-163.0	1572180074121
1917	4024.04	45.9426	7.90642	-1.0	94.1	-153.0	1572180080666
1918	4036.60	45.94009	7.90543	-1.0	93.8	-144.0	1572180086988
1919	4043.59	45.93773	7.90421	0.0	93.7	-151.0	1572180093266
1920	4036.64	45.93527	7.90336	0.0	94.0	-153.0	1572180099566

Tabella A.2 – Continuazione da pagina precedente

Fot.	h [m]		Lon [°]	$\frac{\omega}{\omega}$	$\frac{\phi \left[\circ\right]}{\phi \left[\circ\right]}$	k [°]	Timestamp [ms]
1921	4032.80	45.93281	7.90261	0.0	94.9	-140.0	1572180105866
1922	4030.81	45.93051	7.90153	0.3	95.1	-140.0	1572180112121
1923	4026.22	45.92819	7.90051	0.1	93.0	-149.0	1572180118466
1924	4030.37	45.92569	7.89965	0.0	96.9	-137.0	1572180124988
1925	4033.88	45.92341	7.89864	0.7	92.8	-143.0	1572180131366
1926	4002.41	45.92121	7.90748	0.5	103.0	-19.0	1572180171966
1927	4002.53	45.92337	7.90572	1.2	103.0	-16.4	1572180178266
1928	3995.75	45.92599	7.90524	0.0	103.0	14.7	1572180184866
1929	4004.10	45.92846	7.90693	0.7	108.0	36.0	1572180191235
1930	4018.34	45.92983	7.91007	-1.0	103.0	72.8	1572180197766
1931	4011.63	45.92977	7.91365	0.0	99.4	104.1	1572180204121
1932	4009.87	45.92855	7.9167	0.0	97.7	130.8	1572180210366
1933	4013.93	45.92663	7.9188	0.2	99.0	148.5	1572180216666
1934	4018.95	45.92441	7.91982	0.0	97.8	171.6	1572180222999
1935	4028.02	45.92215	7.91952	0.1	99.2	-169.0	1572180229466
1936	4035.34	45.92019	7.91856	0.0	96.2	-162.0	1572180235766
1937	4039.84	45.92152	7.90692	0.0	102.0	0.4	1572180292020
1938	4039.07	45.92392	7.90787	0.5	101.0	-3.7	1572180298266
1939	4040.39	45.92637	7.90886	0.0	100.0	-5.1	1572180304566
1940	4047.49	45.92897	7.90976	0.0	99.8	-6.3	1572180311166
1941	4042.13	45.93146	7.91057	0.0	96.8	0.2	1572180317466
1942	4036.77	45.93396	7.91164	0.0	96.6	-4.4	1572180323765
1943	4027.99	45.93653	7.91259	0.4	98.6	-8.5	1572180330120
1944	4023.44	45.93912	7.91376	0.1	96.3	-4.5	1572180336665
1945	4020.23	45.94161	7.91459	0.0	98.6	-5.4	1572180342998
1946	4027.77	45.94394	7.91555	0.0	101.0	-2.6	1572180349266
1947	4028.48	45.94621	7.91646	0.1	92.6	-3.3	1572180355766
1948	4032.68	45.94855	7.91732	0.0	96.7	-4.1	1572180362120
1949	4033.22	45.95082	7.91829	0.2	94.2	-9.0	1572180368365
1950	4033.56	45.95318	7.91914	0.0	94.4	-3.7	1572180374665
1951	4031.46	45.95557	7.92019	-1.0	94.3	-11.8	1572180380998
1952	4022.90	45.95802	7.92114	0.0	93.2	-21.5	1572180387265
1953	4038.41	45.96064	7.92188	0.0	92.5	-5.9	1572180393865
1954	4042.64	45.96311	7.92297	0.0	95.3	-14.2	1572180400099
1955	4048.34	45.9656	7.92401	0.0	92.7	-5.4	1572180406465
1956	4030.86	45.96162	7.93945	0.1	101.0	-176.0	1572180484076
1957	4036.26	45.95911	7.93866	0.2	103.0	-171.0	1572180490865
1958	4037.33	45.95688	7.93772	0.0	99.5	-174.0	1572180497165

Tabella A.2 – Continuazione da pagina precedente

Fot.	h [m]	$Lat [^{\circ}]$	Lon $[\circ]$	$oldsymbol{\omega}\left[^{\circ} ight]$	$oldsymbol{\phi}\left[^\circ ight]$	\mathbf{k} [°]	$\mathbf{Timestamp} \; [ms]$
1959	4043.02	45.95455	7.93698	0.0	103.0	-178.0	1572180503465
1960	4043.23	45.95225	7.93636	0.3	98.8	-169.0	1572180509765
1961	4037.84	45.94992	7.93534	0.0	98.9	-171.0	1572180516121
1962	4035.17	45.94752	7.93444	0.0	97.1	-167.0	1572180522365
1963	4040.24	45.9449	7.93328	0.0	96.4	-168.0	1572180529265
1964	4038.52	45.94249	7.93235	0.0	96.2	-170.0	1572180535565
1965	4037.85	45.94002	7.93164	0.1	96.1	-168.0	1572180541865
1966	4040.80	45.93759	7.93086	0.0	95.0	-158.0	1572180548120
1967	4044.42	45.93519	7.92986	0.0	94.7	-158.0	1572180554465
1968	4040.20	45.93284	7.9288	0.0	93.4	-158.0	1572180560765
1969	4034.27	45.93029	7.92768	0.0	94.0	-156.0	1572180567365
1970	4032.77	45.92782	7.92674	0.0	94.4	-151.0	1572180573665
1971	4040.56	45.9254	7.92583	0.1	93.2	-151.0	1572180579965
1972	4046.66	45.92301	7.92495	0.1	96.2	-145.0	1572180586265
1973	4052.88	45.92076	7.92407	0.2	95.0	-142.0	1572180592565
1974	4047.63	45.91849	7.92322	0.0	91.0	-139.0	1572180598865
1975	4044.27	45.91775	7.92757	0.2	105.0	17.2	1572180666998
1976	4050.95	45.92008	7.92848	0.0	102.0	11.9	1572180673265
1977	4049.28	45.92243	7.92925	0.0	101.0	17.9	1572180679565
1978	4046.83	45.92496	7.9302	0.0	100.0	19.2	1572180686120
1979	4048.08	45.92743	7.93124	0.0	99.4	12.6	1572180692465
1980	4045.40	45.9299	7.93212	0.0	97.4	14.4	1572180698765
1981	4044.47	45.93239	7.93303	0.0	98.3	17.2	1572180705020

Tabella A.2 – Continuazione da pagina precedente

Tabella A.3: Coordinate dei centri di fase dell'antenna al momento dello scatto

Fotogramma	$\mathbf{Est} \ [m]$	Nord [m]	Quota (ellissoidica) [m]
1772	416201.941	5085600.735	3657.561
1773	416479.915	5085694.693	3670.085
1774	416699.539	5085875.228	3676.611
1775	416851.575	5086129.042	3670.587
1776	416973.012	5086409.675	3688.640
1777	417105.638	5086650.490	3707.250
1778	417247.821	5086872.522	3710.006
1779	417036.152	5086100.180	3774.010
1780	416796.335	5086185.706	3780.832

Fotogramma	$\mathbf{Est} [\mathbf{m}]$	Nord $[m]$	Quota (ellissoidica) [m]
1781	416572.073	5086247.653	3791.613
1782	416350.614	5086296.031	3794.990
1783	416114.263	5086343.110	3790.597
1784	415871.003	5086397.667	3794.496
1785	415629.263	5086461.762	3792.803
1786	415384.184	5086568.801	3799.629
1787	415166.365	5086745.866	3804.760
1788	415015.788	5086974.279	3802.471
1789	414868.848	5087217.574	3802.513
1790	414716.357	5087457.742	3808.148
1791	414556.354	5087707.825	3811.245
1792	414402.450	5087948.949	3810.756
1793	417231.173	5090513.621	3871.285
1794	417166.223	5090256.261	3868.665
1795	417094.670	5089981.789	3872.869
1796	417020.384	5089718.900	3878.570
1797	416934.265	5089449.380	3889.994
1798	416852.475	5089197.342	3901.716
1799	416782.445	5088953.747	3905.542
1800	416717.866	5088707.802	3904.844
1801	416652.997	5088454.160	3900.295
1802	416582.808	5088198.605	3903.306
1803	416522.001	5087938.458	3909.612
1804	416458.399	5087675.557	3923.468
1805	416389.106	5087436.296	3926.525
1806	416322.573	5087196.150	3926.422
1807	416257.792	5086948.692	3922.619
1808	416174.944	5086680.778	3931.958
1809	416099.862	5086436.885	3947.473
1810	416028.280	5086203.686	3956.259
1811	415954.740	5085969.651	3956.593
1812	415879.983	5085736.909	3965.563
1813	414897.384	5086006.300	4005.227
1814	414994.262	5086263.340	4009.691
1815	415076.779	5086525.326	4014.422
1816	415143.609	5086809.349	4016.992
1817	415219.902	5087080.857	4022.150
1818	415300.904	5087353.615	4019.225

Tabella A.3 – Continuazione da pagina precedente

Fotogramma	\mathbf{Est} [m]	Nord [m]	Quota (ellissoidica) [m]
1819	415380.389	5087629.859	4023.752
1820	415461.956	5087909.909	4026.152
1821	415543.165	5088181.828	4034.728
1822	415629.353	5088463.612	4037.848
1823	415697.136	5088729.794	4044.358
1824	415767.076	5088998.615	4042.993
1825	415836.744	5089262.560	4051.858
1826	415908.321	5089522.437	4046.614
1827	415981.770	5089797.521	4038.485
1828	416052.330	5090055.972	4044.321
1829	416121.830	5090311.915	4043.849
1830	416203.933	5090564.992	4046.376
1831	416288.368	5090842.806	4038.642
1832	415331.519	5091022.780	4024.179
1833	415258.519	5090793.458	4027.424
1834	415193.955	5090558.133	4032.217
1835	415126.229	5090319.705	4037.748
1836	415052.662	5090087.679	4042.506
1837	414976.797	5089840.703	4043.002
1838	414898.534	5089573.098	4038.918
1839	414832.234	5089304.345	4038.898
1840	414749.995	5089034.003	4044.975
1841	414657.273	5088756.669	4036.973
1842	414580.029	5088471.090	4033.709
1843	414516.975	5088184.750	4026.517
1844	414431.090	5087885.529	4027.267
1845	414350.987	5087616.130	4033.701
1846	414279.763	5087348.620	4031.568
1847	414224.937	5087075.132	4032.032
1851	415524.720	5085857.504	4033.825
1852	415622.272	5086122.690	4033.516
1853	415696.687	5086397.592	4035.180
1854	415780.295	5086657.832	4030.403
1855	415859.873	5086931.206	4033.181
1856	415942.775	5087203.799	4035.887
1857	416027.018	5087472.086	4036.320
1858	416117.663	5087770.287	4035.535
1859	416195.703	5088043.390	4035.981

Tabella A.3 – Continuazione da pagina precedente

Fotogramma	\mathbf{Est} [m]	Nord [m]	Quota (ellissoidica) [m]
1860	416269.007	5088320.640	4035.322
1861	416342.123	5088579.931	4039.573
1862	416415.847	5088850.745	4040.995
1863	416485.023	5089122.670	4040.566
1864	416560.076	5089382.214	4038.204
1865	416646.471	5089644.312	4030.809
1866	416725.539	5089907.221	4034.941
1867	416809.528	5090167.140	4034.464
1868	416896.111	5090422.292	4037.005
1869	416983.944	5090684.027	4034.011
1870	415637.267	5090958.554	4029.466
1871	415571.352	5090719.553	4029.408
1872	415502.803	5090464.817	4034.058
1873	415434.214	5090228.553	4041.723
1874	415364.134	5089985.643	4044.830
1875	415286.980	5089720.330	4047.420
1876	415202.491	5089466.776	4053.235
1877	415120.763	5089203.308	4046.710
1878	415061.093	5088919.183	4038.216
1879	414974.613	5088646.525	4030.690
1880	414890.193	5088366.900	4032.489
1881	414828.024	5088087.651	4037.185
1882	414762.919	5087795.267	4030.135
1883	414669.278	5087529.322	4029.078
1884	414592.485	5087262.383	4032.805
1885	414523.598	5086983.552	4034.093
1888	414267.697	5086166.471	4042.977
1889	416241.617	5085615.529	4035.984
1890	416282.405	5085896.488	4037.916
1891	416348.717	5086172.430	4042.413
1892	416412.752	5086439.916	4039.715
1893	416490.145	5086708.443	4034.904
1894	416570.871	5086989.326	4039.016
1895	416650.850	5087256.465	4040.179
1896	416730.415	5087520.435	4046.563
1897	416805.920	5087793.858	4040.983
1898	416879.502	5088073.742	4045.866
1899	416949.326	5088347.767	4049.436

Tabella A.3 – Continuazione da pagina precedente

Fotogramma	\mathbf{Est} [m]	Nord [m]	Quota (ellissoidica) [m]
1900	417022.388	5088620.907	4049.321
1901	417099.199	5088901.356	4048.997
1902	417178.757	5089164.273	4043.667
1903	417258.733	5089427.784	4044.212
1904	417351.955	5089720.064	4040.556
1905	417429.788	5089995.636	4042.613
1906	417507.316	5090274.023	4043.068
1907	415952.908	5090844.359	4030.752
1908	415875.186	5090605.451	4040.449
1909	415808.879	5090368.815	4043.925
1910	415748.644	5090120.107	4046.663
1911	415668.447	5089884.571	4049.129
1912	415598.200	5089610.206	4041.334
1913	415534.073	5089340.951	4050.159
1914	415447.427	5089082.914	4044.001
1915	415352.331	5088817.981	4038.605
1916	415283.793	5088539.799	4031.650
1917	415232.980	5088241.977	4026.083
1918	415151.048	5087965.140	4038.839
1919	415053.276	5087703.390	4045.494
1920	414984.525	5087430.905	4038.299
1921	414921.795	5087159.041	4034.664
1922	414834.060	5086905.186	4032.546
1924	414681.282	5086371.152	4033.039
1925	414600.067	5086119.619	4035.594
1926	415280.535	5085879.075	4004.574
1927	415146.826	5086121.089	4004.423
1928	415119.157	5086413.457	3997.658
1929	415257.548	5086684.946	4006.645
1930	415505.443	5086829.502	4020.376
1931	415782.519	5086814.546	4013.483
1932	416014.999	5086672.465	4011.660
1933	416173.114	5086455.833	4016.036
1934	416245.769	5086207.655	4020.971
1935	416217.270	5085957.571	4030.368
1936	416138.847	5085741.950	4037.191
1937	415243.510	5085914.422	4041.659
1938	415320.189	5086179.982	4041.076

Tabella A.3 – Continuazione da pagina precedente

Fotogramma	$\mathbf{Est} [\mathbf{m}]$	Nord $[m]$	Quota (ellissoidica) $[m]$
1939	415401.126	5086451.512	4042.456
1940	415473.945	5086739.305	4049.609
1941	415541.460	5087014.957	4043.808
1942	415628.113	5087292.708	4038.739
1943	415705.694	5087576.881	4029.687
1944	415800.043	5087862.887	4025.094
1945	415868.294	5088139.183	4022.099
1946	415946.025	5088395.719	4029.986
1947	416019.881	5088647.519	4030.174
1948	416090.172	5088906.843	4034.754
1949	416168.861	5089157.721	4035.157
1950	416238.453	5089419.007	4035.466
1951	416323.165	5089684.121	4033.315
1952	416400.139	5089955.141	4024.659
1953	416461.812	5090245.532	4040.552
1954	416549.946	5090518.827	4045.023
1955	416634.737	5090794.146	4050.030
1956	417820.639	5090320.814	4032.455
1957	417755.860	5090043.630	4038.391
1958	417679.262	5089796.736	4039.065
1959	417619.443	5089538.177	4045.289
1960	417567.340	5089283.454	4044.913
1961	417484.479	5089025.166	4039.826
1962	417411.547	5088760.189	4036.999
1963	417317.156	5088470.048	4042.248
1964	417241.774	5088202.521	4040.493
1965	417183.908	5087928.993	4039.710
1966	417119.260	5087659.890	4042.830
1967	417037.582	5087394.737	4046.341
1968	416951.585	5087134.572	4041.937
1969	416861.901	5086852.606	4036.262
1970	416785.389	5086579.267	4034.786
1971	416711.136	5086310.973	4042.511
1972	416639.382	5086046.779	4048.933
1973	416567.837	5085797.448	4054.962
1974	416498.236	5085546.209	4049.214
1975	416838.454	5085473.732	4046.307
1976	416912.265	5085731.926	4052.941

Tabella A.3 – Continuazione da pagina precedente

Fotogramma	$\mathbf{Est} \ [m]$	Nord [m]	Quota (ellissoidica) [m]
1977	416975.862	5085992.546	4051.029
1978	417053.436	5086272.294	4048.694
1979	417137.561	5086545.971	4050.097
1980	417209.568	5086819.944	4047.125
1981	417283.969	5087095.814	4046.392

Tabella A.3 – Continuazione da pagina precedente

Tabella A.4: Vettori velocità

Fotogramma	$V_E \mathrm{[m/s]}$	$V_N \mathrm{[m/s]}$	V (modulo) $[m/s]$
1772	46.826	9.188	47.719
1773	40.357	21.807	45.872
1774	30.197	34.190	45.616
1775	18.944	43.694	47.624
1776	21.224	39.735	45.048
1777	20.207	37.542	42.635
1778	29.920	31.508	43.451
1779	-36.460	12.954	38.693
1780	-35.983	11.681	37.831
1781	-34.963	8.581	36.001
1782	-36.125	6.934	36.784
1783	-38.740	8.708	39.707
1784	-38.411	8.740	39.393
1785	-39.135	13.379	41.359
1786	-37.299	19.818	42.237
1787	-26.576	33.964	43.126
1788	-22.909	38.240	44.577
1789	-23.579	38.875	45.467
1790	-24.129	37.942	44.964
1791	-24.744	37.765	45.149
1792	-23.885	38.864	45.617
1793	-9.946	-40.434	41.639
1794	-10.347	-41.515	42.785
1795	-10.522	-42.147	43.441
1796	-13.119	-41.119	43.161
1797	-13.523	-40.384	42.588
1798	-11.396	-39.264	40.884
Fotogramma	$V_E \mathrm{[m/s]}$	$V_N \mathrm{[m/s]}$	V (modulo) [m/s]
------------	----------------------	-----------------------	------------------
1799	-11.100	-38.713	40.273
1800	-9.847	-39.482	40.691
1801	-12.042	-40.541	42.292
1802	-10.177	-40.787	42.037
1803	-9.649	-41.425	42.534
1804	-9.755	-38.623	39.836
1805	-10.794	-37.672	39.188
1806	-9.860	-38.671	39.908
1807	-12.086	-41.036	42.779
1808	-12.171	-40.114	41.920
1809	-11.954	-37.608	39.462
1810	-11.123	-36.831	38.474
1811	-12.283	-36.900	38.891
1812	-10.949	-36.943	38.531
1813	17.400	40.230	43.832
1814	14.075	41.383	43.711
1815	10.646	42.914	44.215
1816	11.450	42.815	44.320
1817	13.053	42.478	44.438
1818	12.735	43.970	45.777
1819	12.724	44.218	46.012
1820	12.958	43.934	45.805
1821	13.296	42.383	44.420
1822	11.344	42.721	44.201
1823	11.200	41.972	43.441
1824	11.068	42.777	44.186
1825	11.410	41.109	42.663
1826	11.083	41.740	43.186
1827	11.397	42.121	43.636
1828	11.075	40.266	41.761
1829	11.736	40.618	42.279
1830	13.888	40.674	42.980
1831	12.517	42.830	44.622
1832	-11.375	-36.388	38.124
1833	-11.167	-36.709	38.370
1834	-9.414	-38.374	39.512
1835	-11.724	-36.859	38.679
1836	-11.693	-37.980	39.739

Tabella A.4 – Continuazione da pagina precedente

Fotogramma	$V_E \; [{ m m/s}]$	$oldsymbol{V_N} \mathrm{[m/s]}$	V (modulo) $[m/s]$
1837	-11.982	-40.087	41.839
1838	-10.307	-41.703	42.958
1839	-12.217	-42.647	44.362
1840	-14.147	-42.998	45.266
1841	-14.273	-44.638	46.864
1842	-10.199	-45.969	47.087
1843	-10.979	-45.087	46.404
1844	-12.040	-43.713	45.341
1845	-11.827	-42.160	43.787
1846	-10.036	-43.010	44.165
1847	-8.809	-42.794	43.691
1851	21.197	40.965	46.124
1852	11.324	42.273	43.763
1853	13.879	41.715	43.963
1854	12.303	42.725	44.461
1855	12.968	42.995	44.908
1856	12.575	43.081	44.879
1857	14.192	43.173	45.446
1858	12.130	43.835	45.482
1859	12.201	43.977	45.638
1860	11.161	42.562	44.001
1861	11.643	40.821	42.449
1862	10.853	40.912	42.327
1863	10.849	41.277	42.679
1864	13.121	41.209	43.247
1865	13.625	41.864	44.025
1866	11.938	41.316	43.006
1867	14.042	40.708	43.062
1868	14.389	40.850	43.310
1869	13.350	42.196	44.257
1870	-9.800	-38.137	39.376
1871	-10.680	-37.896	39.372
1872	-10.433	-37.734	39.150
1873	-11.291	-37.835	39.484
1874	-10.832	-39.582	41.037
1875	-13.173	-40.410	42.503
1876	-14.382	-40.770	43.232
1877	-11.051	-43.367	44.753

Tabella A.4 – Continuazione da pagina precedente

Fotogramma	$V_E \mathrm{[m/s]}$	$m{V_N}~\mathrm{[m/s]}$	V (modulo) $[m/s]$
1878	-12.398	-44.385	46.084
1879	-13.282	-44.125	46.081
1880	-12.852	-44.360	46.184
1881	-8.000	-44.434	45.148
1882	-13.385	-43.385	45.403
1883	-14.872	-42.349	44.884
1884	-9.694	-43.324	44.395
1885	-12.730	-43.431	45.258
1888	-8.784	-43.874	44.745
1889	6.175	45.864	46.278
1890	8.823	44.445	45.312
1891	10.027	43.001	44.155
1892	11.579	42.197	43.757
1893	11.931	43.059	44.681
1894	12.926	42.033	43.976
1895	12.663	42.206	44.065
1896	12.887	42.303	44.222
1897	12.371	44.265	45.961
1898	11.143	44.146	45.531
1899	10.550	43.968	45.216
1900	12.929	42.584	44.503
1901	12.004	42.135	43.812
1902	12.068	42.422	44.105
1903	13.443	41.650	43.766
1904	13.495	43.252	45.308
1905	11.181	44.052	45.449
1906	13.747	43.242	45.375
1907	-10.528	-39.212	40.601
1908	-13.170	-37.001	39.275
1909	-7.968	-38.112	38.936
1910	-11.457	-37.539	39.248
1911	-12.940	-38.855	40.953
1912	-9.878	-43.468	44.576
1913	-12.739	-41.139	43.066
1914	-14.951	-41.405	44.022
1915	-13.035	-43.884	45.779
1916	-8.709	-44.775	45.614
1917	-7.916	-46.185	46.858

Tabella A.4 – Continuazione da pagina precedente

Fotogramma	$V_E \; [{ m m/s}]$	$m{V_N}~\mathrm{[m/s]}$	V (modulo) $[m/s]$
1918	-16.470	-41.321	44.482
1919	-13.895	-42.416	44.634
1920	-8.842	-43.781	44.665
1921	-12.668	-41.712	43.593
1922	-13.839	-40.094	42.415
1924	-13.190	-40.418	42.516
1925	-9.849	-40.287	41.473
1926	-19.935	40.018	44.708
1927	-19.848	38.948	43.714
1928	14.137	46.137	48.254
1929	30.909	34.992	46.688
1930	42.394	10.485	43.671
1931	42.025	-14.819	44.561
1932	31.409	-30.238	43.599
1933	19.861	-36.933	41.935
1934	2.467	-40.288	40.363
1935	-9.951	-36.483	37.816
1936	-13.870	-33.180	35.962
1937	13.237	41.948	43.987
1938	11.481	42.975	44.482
1939	13.124	43.440	45.379
1940	8.947	43.736	44.642
1941	13.516	43.740	45.781
1942	12.266	44.680	46.333
1943	13.740	44.568	46.638
1944	12.669	43.929	45.719
1945	11.547	42.780	44.311
1946	12.364	39.049	40.960
1947	10.659	39.842	41.243
1948	11.356	40.207	41.780
1949	12.177	40.771	42.551
1950	12.504	41.325	43.175
1951	13.305	42.320	44.362
1952	9.342	44.539	45.508
1953	12.938	43.526	45.408
1954	12.160	43.637	45.300
1955	15.729	43.073	45.855
1956	-10.138	-41.223	42.451

Tabella A.4 – Continuazione da pagina precedente

Fotogramma	$V_E [{ m m/s}]$	$V_N \mathrm{[m/s]}$	V (modulo) [m/s]
1957	-10.467	-39.410	40.776
1958	-11.549	-40.607	42.217
1959	-8.313	-40.504	41.348
1960	-10.214	-40.471	41.740
1961	-13.018	-41.561	43.552
1962	-12.268	-42.880	44.600
1963	-13.433	-41.599	43.714
1964	-10.885	-43.110	44.463
1965	-8.335	-43.770	44.557
1966	-11.862	-42.297	43.929
1967	-13.901	-40.885	43.184
1968	-14.155	-41.707	44.044
1969	-12.887	-43.230	45.110
1970	-12.301	-43.176	44.894
1971	-11.029	-42.281	43.696
1972	-12.140	-40.267	42.057
1973	-11.235	-39.047	40.631
1974	-11.064	-41.372	42.826
1975	12.578	41.657	43.515
1976	10.067	40.985	42.203
1977	11.595	41.913	43.487
1978	12.185	43.291	44.973
1979	12.423	43.169	44.921
1980	11.020	43.895	45.257
1981	12.164	43.958	45.610
		Media	43.326
		Deviazione standard	2.369

Tabella A.4 – Continuazione da pagina precedente

Tabella A.5: Posizione dei centri di presa riportati alla posizione ipotetica dell'antenna

Fotogramma	\mathbf{Est} [m]	Nord [m]
1772	416200.915	5085599.944
1773	416479.281	5085693.389
1774	416699.156	5085873.887
1775	416851.294	5086127.742

Fotogramma	$\mathbf{Est} \ [\mathrm{m}]$	\mathbf{Nord} [m]
1776	416972.497	5086408.755
1777	417105.382	5086649.477
1778	417247.000	5086872.024
1779	417036.890	5086099.394
1780	416797.040	5086185.062
1781	416572.693	5086247.016
1782	416351.266	5086295.469
1783	416114.870	5086342.538
1784	415871.541	5086397.157
1785	415629.705	5086461.077
1786	415384.518	5086567.976
1787	415166.343	5086744.888
1788	415015.992	5086973.441
1789	414869.134	5087216.842
1790	414716.597	5087457.089
1791	414556.569	5087707.244
1792	414402.574	5087948.383
1793	417231.673	5090514.730
1794	417166.692	5090257.385
1795	417095.078	5089982.748
1796	417020.856	5089719.791
1797	416934.758	5089450.268
1798	416852.866	5089198.200
1799	416782.835	5088954.570
1800	416718.255	5088708.551
1801	416653.418	5088454.851
1802	416583.064	5088199.278
1803	416522.325	5087939.015
1804	416458.790	5087675.922
1805	416389.411	5087436.739
1806	416322.839	5087196.555
1807	416258.146	5086949.063
1808	416175.102	5086681.018
1809	416100.046	5086437.054
1810	416028.451	5086203.690
1811	415954.881	5085969.630
1812	415879.985	5085736.824
1813	414896.640	5086005.222

Tabella A.5 – Continuazione da pagina precedente

Fotogramma	$\mathbf{Est} \ [\mathrm{m}]$	Nord $[m]$
1814	414993.567	5086262.414
1815	415076.424	5086524.299
1816	415143.242	5086808.450
1817	415219.541	5087080.008
1818	415300.583	5087352.780
1819	415380.083	5087629.173
1820	415461.679	5087909.277
1821	415542.891	5088181.262
1822	415629.266	5088463.062
1823	415697.014	5088729.270
1824	415766.964	5088998.134
1825	415836.616	5089262.207
1826	415908.301	5089522.085
1827	415981.701	5089797.358
1828	416052.168	5090055.937
1829	416121.529	5090311.997
1830	416203.720	5090565.047
1831	416288.147	5090842.978
1832	415331.660	5091024.175
1833	415258.668	5090794.780
1834	415194.168	5090559.467
1835	415126.423	5090320.871
1836	415052.866	5090088.851
1837	414977.021	5089841.786
1838	414898.593	5089574.164
1839	414832.393	5089305.274
1840	414750.135	5089034.886
1841	414657.274	5088757.583
1842	414579.998	5088471.960
1843	414517.283	5088185.410
1844	414431.114	5087886.242
1845	414350.950	5087616.771
1846	414279.639	5087349.249
1847	414224.960	5087075.638
1851	415524.334	5085856.194
1852	415622.037	5086121.572
1853	415696.345	5086396.580
1854	415780.013	5086656.875

Tabella A.5 – Continuazione da pagina precedente

Fotogramma	$\mathbf{Est} \ [\mathrm{m}]$	\mathbf{Nord} [m]
1855	415859.627	5086930.295
1856	415942.604	5087202.957
1857	416026.839	5087471.305
1858	416117.552	5087769.583
1859	416195.641	5088042.684
1860	416268.939	5088320.147
1861	416342.077	5088579.480
1862	416415.834	5088850.339
1863	416485.058	5089122.271
1864	416560.046	5089381.873
1865	416646.504	5089644.075
1866	416725.561	5089907.111
1867	416809.557	5090167.019
1868	416896.135	5090422.277
1869	416983.969	5090684.070
1870	415637.425	5090959.787
1871	415571.542	5090720.829
1872	415503.052	5090466.112
1873	415434.471	5090229.744
1874	415364.372	5089986.788
1875	415287.207	5089721.271
1876	415202.758	5089467.594
1877	415120.821	5089204.186
1878	415061.339	5088919.908
1879	414974.793	5088647.353
1880	414890.172	5088367.698
1881	414828.066	5088088.349
1882	414763.103	5087795.782
1883	414669.322	5087529.877
1884	414592.411	5087262.967
1885	414523.694	5086984.077
1888	414266.998	5086166.759
1889	416241.512	5085614.165
1890	416282.064	5085895.263
1891	416348.692	5086171.347
1892	416412.623	5086438.914
1893	416490.142	5086707.478
1894	416570.863	5086988.466

Tabella A.5 – Continuazione da pagina precedente

Fotogramma	$\mathbf{Est} \ [\mathrm{m}]$	Nord $[m]$
1895	416650.836	5087255.677
1896	416730.488	5087519.664
1897	416806.084	5087793.135
1898	416879.634	5088073.091
1899	416949.504	5088347.134
1900	417022.490	5088620.367
1901	417099.223	5088900.956
1902	417178.923	5089163.933
1903	417258.871	5089427.443
1904	417352.134	5089719.799
1905	417430.008	5089995.410
1906	417507.439	5090273.916
1907	415953.181	5090845.487
1908	415875.459	5090606.643
1909	415809.157	5090369.974
1910	415749.051	5090121.092
1911	415668.570	5089885.696
1912	415598.375	5089611.156
1913	415534.421	5089341.569
1914	415447.811	5089083.558
1915	415352.529	5088818.693
1916	415283.841	5088540.502
1917	415233.161	5088242.636
1918	415151.241	5087965.722
1919	415053.250	5087703.996
1920	414984.485	5087431.407
1921	414921.885	5087159.400
1922	414834.139	5086905.558
1924	414680.936	5086371.223
1925	414599.483	5086119.780
1926	415280.573	5085877.987
1927	415145.933	5086119.774
1928	415118.263	5086412.694
1929	415256.437	5086685.113
1930	415504.832	5086829.561
1931	415782.264	5086815.017
1932	416015.094	5086672.847
1933	416173.264	5086455.875

Tabella A.5 – Continuazione da pagina precedente

Fotogramma	\mathbf{Est} [m]	Nord [m]
1934	416246.156	5086207.467
1935	416217.553	5085957.174
1936	416139.002	5085741.552
1937	415242.973	5085913.319
1938	415319.782	5086178.957
1939	415400.850	5086450.534
1940	415473.769	5086738.402
1941	415541.143	5087014.083
1942	415627.955	5087291.965
1943	415705.350	5087576.300
1944	415799.977	5087862.302
1945	415868.121	5088138.771
1946	415945.924	5088395.464
1947	416019.868	5088647.160
1948	416090.083	5088906.581
1949	416169.096	5089157.349
1950	416238.337	5089418.842
1951	416323.200	5089683.956
1952	416400.417	5089955.069
1953	416461.715	5090245.620
1954	416549.994	5090518.941
1955	416634.575	5090794.361
1956	417821.102	5090321.784
1957	417756.499	5090044.304
1958	417679.748	5089797.509
1959	417619.943	5089538.755
1960	417567.978	5089283.962
1961	417485.006	5089025.765
1962	417412.190	5088760.692
1963	417317.573	5088470.527
1964	417242.206	5088202.901
1965	417184.362	5087929.328
1966	417119.769	5087660.108
1967	417038.001	5087394.911
1968	416952.021	5087134.702
1969	416862.202	5086852.682
1970	416785.693	5086579.264
1971	416711.407	5086310.896

Tabella A.5 – Continuazione da pagina precedente

Fotogramma	$\mathbf{Est} \ [m]$	Nord [m]
1972	416639.619	5086046.483
1973	416568.102	5085797.103
1974	416498.419	5085545.833
1975	416838.361	5085472.435
1976	416912.416	5085730.637
1977	416975.892	5085991.359
1978	417053.460	5086271.164
1979	417137.759	5086544.981
1980	417209.712	5086819.018
1981	417284.093	5087095.003

Tabella A.5 – Continuazione da pagina precedente

Tabella A.6: Calcolo del bias temporale (tempi in secondi)

Fotogramma	$\Delta E [m]$	ΔN [m]	$\boldsymbol{\delta t} [s]$
1772	8.002	0.381	0.166
1773	7.208	2.204	0.161
1774	5.596	4.427	0.154
1775	3.765	6.175	0.150
1776	3.830	5.857	0.155
1777	3.909	5.383	0.155
1778	5.137	4.779	0.161
1779	-5.546	1.052	0.144
1780	-5.503	0.940	0.146
1781	-5.439	0.431	0.150
1782	-5.586	0.152	0.150
1783	-6.085	0.472	0.152
1784	-6.096	0.542	0.154
1785	-6.311	1.215	0.154
1786	-6.073	2.284	0.152
1787	-4.444	4.744	0.150
1788	-3.543	5.656	0.150
1789	-3.574	5.876	0.151
1790	-3.721	5.779	0.153
1791	-3.859	5.825	0.155
1792	-3.787	6.042	0.156

Fotogramma	$\Delta E [m]$	ΔN [m]	$oldsymbol{\delta t} \; [\mathrm{s}]$
1793	-0.862	-6.845	0.165
1794	-0.979	-7.022	0.165
1795	-1.079	-7.281	0.169
1796	-1.467	-7.183	0.169
1797	-1.526	-7.055	0.168
1798	-1.243	-6.894	0.170
1799	-1.194	-6.832	0.171
1800	-0.963	-7.044	0.174
1801	-1.326	-7.284	0.174
1802	-1.150	-7.348	0.176
1803	-0.998	-7.574	0.179
1804	-0.946	-7.278	0.183
1805	-1.226	-7.030	0.181
1806	-1.080	-7.249	0.183
1807	-1.408	-7.687	0.182
1808	-1.619	-7.657	0.186
1809	-1.568	-7.307	0.188
1810	-1.438	-7.316	0.193
1811	-1.681	-7.349	0.193
1812	-1.583	-7.421	0.196
1813	2.874	5.810	0.148
1814	2.315	6.169	0.151
1815	2.014	6.343	0.150
1816	2.178	6.448	0.153
1817	2.467	6.438	0.155
1818	2.456	6.711	0.156
1819	2.468	6.904	0.159
1820	2.535	6.909	0.160
1821	2.593	6.705	0.162
1822	2.450	6.778	0.162
1823	2.385	6.674	0.163
1824	2.360	6.881	0.164
1825	2.415	6.695	0.166
1826	2.459	6.807	0.167
1827	2.479	7.071	0.171
1828	2.331	6.864	0.173
1829	2.289	7.046	0.175
1830	2.743	6.982	0.174

Tabella A.6 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	$oldsymbol{\delta t} \; [\mathrm{s}]$
1831	2.506	7.522	0.178
1832	-1.521	-5.844	0.158
1833	-1.483	-5.970	0.160
1834	-1.097	-6.255	0.160
1835	-1.561	-6.149	0.164
1836	-1.547	-6.331	0.164
1837	-1.545	-6.801	0.166
1838	-1.381	-7.112	0.168
1839	-1.626	-7.410	0.171
1840	-1.988	-7.516	0.171
1841	-2.164	-7.769	0.172
1842	-1.432	-8.058	0.174
1843	-1.262	-8.105	0.176
1844	-1.734	-7.811	0.176
1845	-1.743	-7.617	0.178
1846	-1.521	-7.776	0.179
1847	-1.170	-7.858	0.182
1851	3.954	5.690	0.149
1852	2.244	6.141	0.149
1853	2.639	6.141	0.151
1854	2.392	6.375	0.153
1855	2.560	6.468	0.154
1856	2.580	6.549	0.156
1857	2.861	6.614	0.158
1858	2.556	6.821	0.160
1859	2.611	6.845	0.160
1860	2.427	6.810	0.164
1861	2.543	6.546	0.165
1862	2.438	6.607	0.166
1863	2.481	6.668	0.166
1864	2.831	6.720	0.168
1865	2.969	6.942	0.171
1866	2.666	6.973	0.173
1867	3.050	6.853	0.174
1868	3.086	6.989	0.176
1869	2.894	7.284	0.177
1870	-1.210	-6.312	0.163
1871	-1.350	-6.227	0.162

Tabella A.6 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	$oldsymbol{\delta t} \; [\mathrm{s}]$
1872	-1.248	-6.180	0.161
1873	-1.404	-6.295	0.163
1874	-1.346	-6.645	0.165
1875	-1.770	-6.991	0.169
1876	-1.922	-7.185	0.172
1877	-1.490	-7.596	0.173
1878	-1.579	-7.914	0.175
1879	-1.778	-7.773	0.173
1880	-1.881	-7.851	0.175
1881	-0.944	-7.948	0.177
1882	-1.832	-7.943	0.179
1883	-2.200	-7.734	0.179
1884	-1.405	-7.877	0.180
1885	-1.774	-7.953	0.180
1888	-1.840	-8.278	0.189
1889	1.419	6.523	0.144
1890	1.694	6.414	0.146
1891	2.218	6.303	0.150
1892	2.321	6.244	0.152
1893	2.606	6.428	0.154
1894	2.801	6.349	0.157
1895	2.728	6.455	0.158
1896	2.862	6.488	0.159
1897	2.823	6.884	0.161
1898	2.614	6.930	0.162
1899	2.567	6.915	0.162
1900	2.927	6.762	0.164
1901	2.697	6.820	0.167
1902	2.825	6.937	0.169
1903	3.049	6.798	0.169
1904	3.090	7.156	0.171
1905	2.704	7.339	0.171
1906	3.084	7.310	0.174
1907	-1.255	-6.598	0.165
1908	-1.729	-6.143	0.162
1909	-0.771	-6.388	0.165
1910	-1.266	-6.456	0.167
1911	-1.823	-6.541	0.166

Tabella A.6 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	$oldsymbol{\delta t} \; [\mathrm{s}]$
1912	-1.183	-7.538	0.171
1913	-1.566	-7.446	0.176
1914	-1.929	-7.459	0.174
1915	-1.734	-7.790	0.174
1916	-1.057	-8.023	0.177
1917	-0.845	-8.301	0.178
1918	-2.375	-7.510	0.177
1919	-2.092	-7.698	0.178
1920	-1.208	-8.043	0.182
1921	-1.685	-7.875	0.184
1922	-2.010	-7.515	0.183
1924	-2.321	-7.881	0.193
1925	-1.935	-7.773	0.193
1926	-3.151	5.753	0.147
1927	-4.101	5.306	0.151
1928	1.557	7.255	0.153
1929	5.012	6.057	0.168
1930	7.646	1.443	0.178
1931	7.914	-2.784	0.188
1932	6.298	-5.717	0.195
1933	4.228	-7.291	0.201
1934	1.271	-8.134	0.203
1935	-1.137	-7.651	0.203
1936	-1.996	-7.052	0.202
1937	2.331	6.091	0.148
1938	2.130	6.353	0.150
1939	2.540	6.481	0.153
1940	1.910	6.608	0.154
1941	2.613	6.628	0.155
1942	2.527	6.930	0.159
1943	2.573	7.076	0.161
1944	2.695	6.956	0.163
1945	2.388	6.929	0.165
1946	2.625	6.431	0.169
1947	2.415	6.464	0.167
1948	2.454	6.627	0.169
1949	2.891	6.621	0.169
1950	2.635	6.917	0.171

Tabella A.6 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	$\delta { m t} ~[{ m s}]$
1951	2.872	7.100	0.172
1952	2.359	7.584	0.174
1953	2.571	7.534	0.175
1954	2.667	7.611	0.178
1955	3.134	7.607	0.179
1956	-0.951	-7.123	0.168
1957	-0.723	-7.170	0.175
1958	-1.170	-7.213	0.172
1959	-0.561	-7.398	0.178
1960	-0.819	-7.445	0.178
1961	-1.407	-7.549	0.175
1962	-1.157	-7.875	0.177
1963	-1.575	-7.680	0.178
1964	-1.085	-8.050	0.182
1965	-0.642	-8.193	0.183
1966	-1.239	-8.053	0.184
1967	-1.687	-7.848	0.185
1968	-1.708	-8.039	0.185
1969	-1.601	-8.366	0.188
1970	-1.513	-8.429	0.190
1971	-1.324	-8.343	0.192
1972	-1.564	-8.210	0.198
1973	-1.373	-8.048	0.200
1974	-1.442	-8.419	0.199
1975	2.626	5.852	0.146
1976	2.403	5.746	0.146
1977	2.593	6.005	0.149
1978	2.700	6.299	0.151
1979	2.873	6.425	0.155
1980	2.590	6.614	0.156
1981	2.796	6.735	0.159
		Media	0.168
De	eviazione	standard	0.013

Tabella A.6 – Continuazione da pagina precedente

Fotogramma	ΔE [m]	ΔN [m]	Δh [m]	Modulo [m]
1772	8.511	-1.964	-1.131	8.807
1773	8.525	0.197	-0.560	8.546
1774	7.501	2.966	-0.987	8.126
1775	6.023	5.362	-1.116	8.141
1776	5.988	4.806	-1.287	7.785
1777	6.073	4.346	-0.863	7.518
1778	6.905	3.157	-2.361	7.951
1779	-5.011	3.392	-1.108	6.151
1780	-5.135	3.311	-0.670	6.147
1781	-5.230	2.822	-0.634	5.976
1782	-5.466	2.549	-1.033	6.119
1783	-5.845	2.860	-0.918	6.572
1784	-5.838	2.929	-0.565	6.556
1785	-5.767	3.553	-0.981	6.844
1786	-5.076	4.467	-0.510	6.781
1787	-2.576	6.250	-0.938	6.825
1788	-1.524	6.953	-0.349	7.127
1789	-1.538	7.146	0.042	7.310
1790	-1.679	7.041	0.124	7.240
1791	-1.864	7.159	0.197	7.400
1792	-1.739	7.294	0.090	7.499
1793	-3.183	-6.235	-0.297	7.007
1794	-3.289	-6.371	-0.241	7.174
1795	-3.397	-6.659	-0.104	7.476
1796	-3.764	-6.489	0.086	7.502
1797	-3.805	-6.303	0.131	7.363
1798	-3.547	-6.223	0.182	7.165
1799	-3.496	-6.155	0.068	7.079
1800	-3.286	-6.440	-0.159	7.231
1801	-3.631	-6.615	-0.347	7.554
1802	-3.480	-6.771	0.140	7.614
1803	-3.314	-6.946	-0.095	7.697
1804	-3.269	-6.674	-0.155	7.433
1805	-3.527	-6.345	-0.387	7.270
1806	-3.416	-6.699	-0.389	7.529
1807	-3.699	-6.972	-0.805	7.934
1808	-3.909	-6.939	-0.198	7.967

 Tabella A.7:
 Eccentricità misurate per ogni fotogramma

Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo $[m]$
1809	-3.838	-6.529	-0.452	7.587
1810	-3.699	-6.509	-0.724	7.521
1811	-3.920	-6.486	-0.907	7.632
1812	-3.829	-6.575	-0.596	7.632
1813	5.172	5.120	-0.656	7.308
1814	4.656	5.636	-0.350	7.319
1815	4.398	6.074	0.078	7.500
1816	4.528	5.961	-0.183	7.488
1817	4.812	5.927	-0.105	7.636
1818	4.796	6.176	-0.173	7.821
1819	4.809	6.372	-0.032	7.983
1820	4.881	6.402	0.113	8.051
1821	4.943	6.218	0.362	7.952
1822	4.786	6.231	0.551	7.876
1823	4.728	6.157	0.048	7.763
1824	4.701	6.352	0.180	7.905
1825	4.759	6.180	0.309	7.806
1826	4.812	6.331	0.023	7.952
1827	4.805	6.480	0.216	8.070
1828	4.663	6.299	0.244	7.841
1829	4.645	6.587	0.131	8.061
1830	5.094	6.499	-0.210	8.260
1831	4.861	7.058	0.158	8.571
1832	-3.760	-4.979	0.031	6.240
1833	-3.708	-5.069	0.515	6.302
1834	-3.358	-5.449	0.277	6.406
1835	-3.728	-5.116	0.613	6.360
1836	-3.700	-5.270	0.542	6.462
1837	-3.785	-5.940	0.458	7.058
1838	-3.693	-6.468	0.624	7.474
1839	-3.919	-6.701	0.663	7.791
1840	-4.267	-6.762	0.469	8.009
1841	-4.482	-7.149	0.691	8.467
1842	-3.774	-7.535	0.599	8.449
1843	-3.552	-7.386	-0.242	8.199
1844	-4.018	-7.073	0.115	8.135
1845	-4.054	-6.971	0.480	8.078
1846	-3.861	-7.240	0.446	8.217

Tabella A.7 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo $[m]$
1847	-3.456	-7.128	0.196	7.924
1851	6.277	5.087	-0.107	8.081
1852	4.634	5.919	-0.582	7.540
1853	4.973	5.585	-0.414	7.490
1854	4.762	5.996	-0.711	7.690
1855	4.915	6.003	-0.374	7.767
1856	4.918	6.010	0.094	7.767
1857	5.191	6.038	-0.511	7.979
1858	4.902	6.316	0.061	7.996
1859	4.965	6.377	-0.239	8.086
1860	4.777	6.322	0.013	7.924
1861	4.880	5.998	-0.181	7.734
1862	4.775	6.061	0.050	7.717
1863	4.793	6.024	0.031	7.698
1864	5.147	6.093	-0.221	7.979
1865	5.304	6.388	-0.125	8.304
1866	4.998	6.406	0.009	8.125
1867	5.366	6.224	-0.063	8.218
1868	5.432	6.485	-0.085	8.460
1869	5.253	6.840	-0.165	8.626
1870	-3.470	-5.504	0.086	6.507
1871	-3.591	-5.367	0.271	6.463
1872	-3.489	-5.322	0.427	6.378
1873	-3.613	-5.355	0.466	6.476
1874	-3.547	-5.689	0.303	6.712
1875	-3.959	-6.005	0.626	7.220
1876	-4.158	-6.313	0.300	7.565
1877	-3.834	-7.083	0.240	8.058
1878	-3.813	-7.038	0.050	8.005
1879	-4.091	-7.132	-0.309	8.228
1880	-4.229	-7.355	0.537	8.501
1881	-3.294	-7.462	0.041	8.157
1882	-4.065	-7.063	0.197	8.152
1883	-4.500	-7.049	0.124	8.364
1884	-3.719	-7.238	0.374	8.146
1885	-4.074	-7.266	0.063	8.330
1888	-4.199	-7.836	-0.749	8.922
1889	3.816	6.638	-1.299	7.766

Tabella A.7 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo [m]
1890	4.087	6.233	-1.508	7.605
1891	4.612	6.139	-0.529	7.697
1892	4.698	5.913	-1.318	7.666
1893	4.978	6.065	-0.543	7.865
1894	5.143	5.821	-0.546	7.787
1895	5.095	6.061	-0.552	7.937
1896	5.220	6.045	-0.334	7.994
1897	5.214	6.682	-0.625	8.499
1898	4.975	6.497	0.010	8.183
1899	4.915	6.416	-0.582	8.103
1900	5.246	6.145	-0.349	8.087
1901	5.001	6.146	-0.548	7.942
1902	5.168	6.414	-0.245	8.240
1903	5.374	6.200	-0.619	8.228
1904	5.428	6.612	-0.219	8.557
1905	5.071	6.939	-0.228	8.597
1906	5.413	6.733	-0.390	8.648
1907	-3.463	-5.658	0.082	6.634
1908	-3.902	-5.123	0.507	6.460
1909	-3.051	-5.638	0.320	6.419
1910	-3.516	-5.621	0.109	6.631
1911	-4.038	-5.617	0.512	6.936
1912	-3.506	-6.936	0.327	7.779
1913	-3.776	-6.510	0.274	7.531
1914	-4.099	-6.433	0.193	7.630
1915	-4.063	-7.210	-0.029	8.277
1916	-3.437	-7.716	0.183	8.449
1917	-3.151	-7.633	0.015	8.258
1918	-4.549	-6.493	0.412	7.939
1919	-4.405	-7.055	0.347	8.324
1920	-3.546	-7.502	-0.015	8.298
1921	-3.912	-6.982	-0.183	8.005
1922	-4.259	-6.677	-0.298	7.925
1924	-4.562	-7.022	0.320	8.380
1925	-4.260	-7.176	-0.703	8.374
1926	-1.185	7.131	-0.214	7.232
1927	-2.056	6.563	-1.805	7.111
1928	3.912	6.791	-1.410	7.963

 Tabella A.7 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo [m]
1929	6.814	4.472	-0.787	8.188
1930	8.069	-0.919	-1.085	8.194
1931	6.994	-5.001	-1.327	8.700
1932	4.458	-7.258	-1.265	8.611
1933	1.995	-8.171	-1.040	8.475
1934	-1.127	-8.048	-1.322	8.233
1935	-3.365	-6.759	-0.747	7.587
1936	-4.087	-5.874	-1.221	7.260
1937	4.667	5.540	-1.032	7.317
1938	4.496	5.950	-0.583	7.480
1939	4.912	6.115	-0.287	7.849
1940	4.284	6.257	-0.083	7.583
1941	4.928	5.996	-0.610	7.785
1942	4.880	6.461	-0.083	8.097
1943	4.951	6.754	-0.770	8.410
1944	5.042	6.453	-0.183	8.191
1945	4.739	6.447	-0.236	8.005
1946	4.945	5.818	0.313	7.642
1947	4.737	5.857	-0.126	7.534
1948	4.784	6.054	0.200	7.719
1949	5.260	6.234	0.367	8.164
1950	4.955	6.303	0.024	8.018
1951	5.254	6.806	0.113	8.599
1952	4.758	7.677	0.049	9.032
1953	4.912	7.006	0.146	8.558
1954	5.060	7.427	0.626	9.009
1955	5.479	7.097	-0.343	8.972
1956	-3.257	-6.460	-0.759	7.274
1957	-2.996	-6.400	-0.426	7.079
1958	-3.483	-6.571	-0.504	7.454
1959	-2.916	-6.937	-0.008	7.525
1960	-3.065	-6.598	-0.850	7.325
1961	-3.681	-6.781	-0.259	7.720
1962	-3.437	-7.125	-0.583	7.932
1963	-3.877	-7.001	-0.008	8.003
1964	-3.432	-7.545	-0.198	8.291
1965	-2.983	-7.663	-0.451	8.235
1966	-3.478	-7.190	-0.364	7.996

Tabella A.7 – Continuazione da pagina precedente

Fotogramma	$\Delta E [m]$	ΔN [m]	Δh [m]	Modulo [m]
1967	-3.922	-6.973	-0.383	8.009
1968	-3.956	-7.199	-0.890	8.263
1969	-3.892	-7.650	-0.532	8.600
1970	-3.768	-7.607	-0.639	8.513
1971	-3.606	-7.600	-0.770	8.447
1972	-3.794	-7.322	-0.438	8.258
1973	-3.612	-7.184	-1.063	8.111
1974	-3.635	-7.442	-1.599	8.435
1975	4.999	5.494	-1.630	7.605
1976	4.797	5.574	-1.212	7.453
1977	4.952	5.568	-1.543	7.610
1978	5.047	5.795	-1.268	7.789
1979	5.260	6.170	-0.988	8.168
1980	4.966	6.272	-1.272	8.100
1981	5.144	6.237	-1.067	8.154
			Media	7.757
	Dev	viazione s	tandard	0.628

Tabella A.7 – Continuazione da pagina precedente

Tabella A.8: Centri di presa calcolati a partire dalle posizioni GNSS e confronto con centri di presa forniti dall'orientamento esterno

Fot.	Est [m]	Nord [m]	h [m]	$\delta \mathbf{E} [\mathbf{m}]$	δN [m]	δh [m]
1772	416201.057	5085598.962	3656.855	-0.757	1.280	0.508
1773	416479.845	5085693.002	3669.173	-1.088	1.400	0.033
1774	416700.169	5085873.709	3675.868	-1.135	0.965	0.031
1775	416852.799	5086127.796	3670.372	-0.889	0.491	0.958
1776	416974.015	5086408.222	3688.893	-0.815	0.160	1.853
1777	417106.714	5086649.094	3707.206	-1.006	0.293	1.176
1778	417248.250	5086870.802	3710.608	-0.789	0.106	2.514
1779	417037.207	5086102.626	3774.178	0.172	0.802	1.405
1780	416796.987	5086188.394	3781.171	-0.026	0.899	1.202
1781	416572.430	5086250.481	3791.720	-0.073	1.039	0.993
1782	416350.803	5086298.906	3794.930	-0.183	1.020	0.816
1783	416114.527	5086345.963	3790.539	-0.185	0.997	0.763
1784	415871.130	5086400.560	3794.491	-0.271	0.974	0.593
1785	415629.608	5086464.562	3792.524	-0.251	1.056	0.510

D (1 []		pagena pr	
Fot.	Est [m]	Nord [m]	<u>h</u> [m]	OE [m]	0 IN [m]	oh [m]
1786	415384.830	5086571.465	3799.326	-0.320	1.140	0.388
1787	415167.773	5086747.916	3804.482	-0.187	1.210	0.533
1788	415017.338	5086976.187	3802.531	-0.458	1.112	0.261
1789	414870.404	5087219.471	3802.697	-0.554	1.019	0.165
1790	414717.916	5087459.639	3808.233	-0.512	0.948	-0.029
1791	414557.862	5087709.792	3811.312	-0.479	0.881	-0.174
1792	414404.021	5087950.827	3810.785	-0.392	0.850	-0.164
1793	417228.513	5090515.130	3870.903	-0.738	0.176	-0.230
1794	417163.556	5090257.768	3868.310	-0.718	0.117	-0.241
1795	417091.991	5089983.253	3872.484	-0.665	0.270	-0.336
1796	417017.727	5089720.430	3878.219	-0.716	0.327	-0.334
1797	416931.636	5089450.955	3889.613	-0.718	0.315	-0.260
1798	416849.815	5089198.866	3901.363	-0.634	0.378	-0.452
1799	416779.786	5088955.262	3905.170	-0.633	0.399	-0.413
1800	416715.155	5088709.207	3904.498	-0.677	0.439	-0.339
1801	416650.307	5088455.618	3899.952	-0.694	0.482	-0.229
1802	416580.089	5088200.001	3902.982	-0.549	0.534	-0.425
1803	416519.315	5087939.880	3909.178	-0.589	0.624	-0.176
1804	416455.704	5087676.912	3922.972	-0.662	0.774	-0.177
1805	416386.419	5087437.771	3926.208	-0.578	0.731	-0.065
1806	416319.837	5087197.490	3926.080	-0.574	0.774	-0.061
1807	416255.097	5086950.164	3922.337	-0.638	0.767	0.301
1808	416172.300	5086682.291	3931.516	-0.393	0.937	0.155
1809	416097.241	5086438.442	3947.023	-0.405	0.988	0.141
1810	416025.662	5086205.253	3955.816	-0.394	1.133	0.318
1811	415952.140	5085971.269	3956.184	-0.358	1.148	0.541
1812	415877.373	5085738.535	3965.211	-0.225	1.239	0.455
1813	414899.180	5086005.879	4005.442	0.126	0.964	0.876
1814	414996.106	5086263.071	4010.027	0.111	0.800	1.020
1815	415078.707	5086525.316	4014.514	-0.147	0.889	-0.032
1816	415145.479	5086809.125	4017.187	-0.193	0.771	0.412
1817	415221.761	5087080.602	4022.368	-0.210	0.714	0.298
1818	415302.757	5087353.335	4019.335	-0.254	0.700	0.186
1819	415382.238	5087629.565	4023.900	-0.274	0.534	0.167
1820	415463.807	5087909.626	4026.333	-0.302	0.466	0.091
1821	415545.023	5088181.565	4034.901	-0.299	0.399	-0.005
1822	415631.188	5088463.278	4037.984	-0.505	0.374	-0.145
1823	415698.978	5088729.482	4044.369	-0.466	0.339	-0.274

Tabella A.8 – Continuazione da pagina precedente

Tabella A.8 – Continuazione da pagina precedente

Fot.	$\mathbf{Est} \ [m]$	Nord [m]	h [m]	$\delta \mathbf{E} [\mathbf{m}]$	δN [m]	δh [m]
1824	415768.915	5088998.293	4043.008	-0.478	0.298	-0.208
1825	415838.585	5089262.242	4051.930	-0.461	0.159	-0.301
1826	415910.176	5089522.182	4046.523	-0.556	0.182	-0.545
1827	415983.582	5089797.122	4038.562	-0.544	-0.033	-0.173
1828	416054.148	5090055.592	4044.406	-0.446	-0.168	-0.274
1829	416123.678	5090311.625	4044.047	-0.283	-0.306	0.262
1830	416205.778	5090564.693	4046.385	-0.373	-0.263	-0.103
1831	416290.218	5090842.515	4038.777	-0.361	-0.391	0.188
1832	415328.943	5091024.337	4023.574	-0.334	-0.329	-0.908
1833	415255.969	5090795.065	4026.817	-0.325	-0.246	-1.047
1834	415191.321	5090559.588	4031.645	-0.452	-0.307	-0.930
1835	415123.718	5090321.390	4037.152	-0.366	-0.152	-1.052
1836	415050.116	5090089.398	4042.094	-0.421	-0.155	-1.030
1837	414974.152	5089842.189	4042.519	-0.485	-0.086	-1.071
1838	414895.828	5089574.447	4038.456	-0.345	0.024	-1.313
1839	414829.529	5089305.679	4038.418	-0.453	0.077	-0.908
1840	414747.300	5089035.413	4044.572	-0.432	0.152	-0.950
1841	414654.551	5088758.034	4036.611	-0.301	0.217	-1.174
1842	414577.257	5088472.312	4033.351	-0.311	0.219	-1.094
1843	414514.269	5088186.077	4026.022	-0.604	0.329	-0.508
1844	414428.386	5087886.953	4026.931	-0.322	0.353	-0.635
1845	414348.259	5087617.477	4033.338	-0.272	0.445	-0.856
1846	414276.999	5087349.881	4031.234	-0.212	0.486	-0.901
1847	414222.256	5087076.530	4031.541	-0.296	0.543	-0.561
1851	415526.572	5085857.240	4033.820	-0.185	1.261	0.128
1852	415624.199	5086122.730	4033.836	-0.265	0.982	0.840
1853	415698.518	5086397.280	4035.503	-0.255	0.866	0.922
1854	415782.188	5086657.688	4030.594	-0.258	0.797	0.729
1855	415861.732	5086930.955	4033.418	-0.327	0.733	0.496
1856	415944.608	5087203.466	4036.094	-0.425	0.658	0.422
1857	416028.838	5087471.711	4036.393	-0.427	0.594	0.264
1858	416119.505	5087769.970	4035.661	-0.478	0.500	0.178
1859	416197.552	5088043.099	4035.994	-0.521	0.490	0.059
1860	416270.844	5088320.311	4035.424	-0.526	0.260	0.259
1861	416343.933	5088579.536	4039.572	-0.572	0.214	0.043
1862	416417.654	5088850.339	4041.010	-0.608	0.156	-0.088
1863	416486.785	5089122.166	4040.507	-0.691	0.153	-0.211
1864	416561.831	5089381.696	4038.148	-0.637	0.064	-0.074

The A	D -4 []				<u>pagena pr</u>	
Fot.	Est [m]	Nord [m]	h [m]	OE [m]	ON [m]	oh [m]
1865	416648.257	5089643.859	4030.791	-0.675	-0.052	-0.035
1866	416727.314	5089906.737	4034.978	-0.673	-0.196	0.043
1867	416811.273	5090166.609	4034.368	-0.704	-0.167	-0.174
1868	416897.904	5090421.860	4036.977	-0.662	-0.304	-0.036
1869	416985.757	5090683.655	4033.913	-0.645	-0.364	-0.082
1870	415634.743	5090960.211	4028.858	-0.288	-0.007	-0.858
1871	415568.833	5090721.245	4028.842	-0.326	-0.071	-0.857
1872	415500.250	5090466.492	4033.576	-0.418	-0.104	-0.838
1873	415431.703	5090230.298	4041.236	-0.403	-0.018	-0.908
1874	415361.603	5089987.409	4044.465	-0.408	0.032	-0.783
1875	415284.452	5089722.092	4047.038	-0.402	0.200	-0.903
1876	415199.888	5089468.382	4052.812	-0.488	0.289	-0.746
1877	415117.978	5089204.565	4046.506	-0.413	0.257	-0.814
1878	415058.461	5088920.725	4037.777	-0.497	0.314	-0.677
1879	414971.861	5088647.845	4030.406	-0.512	0.237	-0.464
1880	414887.421	5088368.133	4032.161	-0.320	0.331	-0.884
1881	414825.242	5088088.826	4036.809	-0.393	0.383	-0.658
1882	414760.296	5087796.833	4029.710	-0.428	0.543	-0.588
1883	414666.564	5087530.747	4028.807	-0.343	0.568	-0.607
1884	414589.751	5087263.790	4032.600	-0.241	0.569	-0.816
1885	414520.888	5086984.912	4033.667	-0.391	0.532	-0.423
1888	414264.883	5086167.644	4042.801	0.318	0.837	0.354
1889	416243.570	5085615.923	4036.450	-0.320	1.242	1.695
1890	416284.348	5085896.603	4038.230	-0.140	1.122	1.542
1891	416350.646	5086172.472	4042.725	-0.468	0.891	0.919
1892	416414.646	5086439.805	4040.034	-0.410	0.826	1.295
1893	416492.028	5086708.275	4035.152	-0.546	0.765	0.762
1894	416572.703	5086988.994	4039.239	-0.589	0.666	0.747
1895	416652.725	5087256.268	4040.421	-0.544	0.591	0.899
1896	416732.282	5087520.194	4046.658	-0.639	0.580	0.447
1897	416807.842	5087793.832	4041.155	-0.667	0.500	0.584
1898	416881.364	5088073.482	4045.950	-0.703	0.431	0.363
1899	416951.160	5088347.438	4049.383	-0.774	0.411	0.350
1900	417024.169	5088620.453	4049.237	-0.743	0.316	0.099
1901	417100.957	5088900.834	4049.010	-0.682	0.168	0.331
1902	417180.574	5089163.891	4043.723	-0.779	0.090	0.405
1903	417260.508	5089427.320	4044.115	-0.786	0.087	0.099
1904	417353.756	5089719.654	4040.486	-0.807	0.010	0.037

Tabella A.8 – Continuazione da pagina precedente

 Tabella A.8 - Continuazione da pagina precedente

Fot.	$\mathbf{Est} \ [m]$	Nord [m]	h [m]	$\delta \mathbf{E} [\mathbf{m}]$	δN [m]	δh [m]
1905	417431.638	5089995.361	4042.535	-0.803	-0.043	0.092
1906	417509.097	5090273.562	4043.022	-0.768	-0.165	0.242
1907	415950.366	5090845.974	4030.132	-0.450	-0.085	-0.748
1908	415872.685	5090607.165	4039.872	-0.432	-0.135	-1.003
1909	415806.224	5090370.248	4043.390	-0.528	-0.096	-0.872
1910	415746.011	5090121.559	4046.089	-0.650	0.007	-0.689
1911	415665.811	5089886.183	4048.882	-0.390	-0.068	-1.031
1912	415595.459	5089611.470	4040.895	-0.492	0.099	-0.800
1913	415531.487	5089342.514	4049.594	-0.567	0.378	-0.924
1914	415444.839	5089084.572	4043.629	-0.632	0.349	-0.653
1915	415349.552	5088819.217	4038.320	-0.551	0.332	-0.683
1916	415280.968	5088540.770	4031.258	-0.442	0.358	-0.801
1917	415230.233	5088243.244	4025.668	-0.512	0.325	-0.395
1918	415148.462	5087966.824	4038.522	-0.435	0.447	-0.518
1919	415050.528	5087704.735	4045.246	-0.303	0.482	-0.719
1920	414981.743	5087432.134	4038.015	-0.314	0.575	-0.627
1921	414919.152	5087160.580	4034.270	-0.356	0.658	-0.355
1922	414831.400	5086906.709	4032.203	-0.350	0.688	-0.315
1924	414678.655	5086372.683	4032.563	0.103	0.974	-0.156
1925	414597.301	5086120.930	4035.372	0.242	0.940	0.159
1926	415282.149	5085880.761	4005.228	-0.160	1.068	1.016
1927	415148.524	5086122.751	4004.397	0.756	1.379	1.660
1928	415121.028	5086413.416	3998.234	0.334	0.792	1.868
1929	415258.758	5086683.967	4007.724	0.255	0.139	2.393
1930	415505.245	5086827.710	4021.261	-0.403	0.441	2.017
1931	415781.011	5086812.872	4013.957	-0.702	0.225	1.655
1932	416012.606	5086671.466	4011.649	-0.904	0.465	1.040
1933	416170.387	5086455.499	4015.697	-0.791	0.876	0.807
1934	416242.936	5086208.332	4020.441	-0.807	1.179	0.820
1935	416214.761	5085959.282	4029.803	-0.414	1.586	0.528
1936	416136.509	5085743.990	4036.829	-0.205	1.608	0.704
1937	415245.325	5085914.052	4041.925	-0.076	0.894	1.088
1938	415322.060	5086179.764	4041.296	-0.155	0.815	0.733
1939	415403.013	5086451.345	4042.642	-0.270	0.781	0.493
1940	415475.840	5086739.161	4049.786	-0.361	0.715	0.353
1941	415543.268	5087014.553	4043.868	-0.296	0.717	0.337
1942	415629.980	5087292.474	4038.747	-0.406	0.586	0.019
1943	415707.601	5087576.794	4029.889	-0.181	0.420	0.658

D 4			1 []			
Fot.	Est [m]	INORd [m]	<u>h [m]</u>	OE [m]	OIN [m]	on [m]
1944	415801.906	5087862.649	4025.046	-0.502	0.459	-0.257
1945	415870.161	5088138.945	4022.255	-0.391	0.265	0.252
1946	415947.845	5088395.352	4030.186	-0.501	0.114	0.087
1947	416021.704	5088647.187	4030.024	-0.588	0.247	-0.331
1948	416092.011	5088906.517	4034.837	-0.498	0.120	-0.056
1949	416170.753	5089157.611	4035.019	-0.776	0.255	-0.600
1950	416240.274	5089418.641	4035.449	-0.486	0.026	-0.143
1951	416325.081	5089684.080	4033.278	-0.549	0.021	-0.306
1952	416402.111	5089955.510	4024.584	-0.689	-0.052	-0.382
1953	416463.656	5090245.241	4040.476	-0.489	-0.241	-0.084
1954	416551.888	5090518.907	4045.018	-0.530	-0.248	-0.260
1955	416636.586	5090793.877	4049.953	-0.419	-0.365	-0.071
1956	417817.976	5090322.286	4032.017	-0.709	0.222	-0.084
1957	417753.301	5090045.109	4037.638	-0.797	0.413	-0.206
1958	417676.611	5089798.206	4038.580	-0.718	0.440	-0.257
1959	417616.790	5089539.486	4044.601	-0.721	0.662	-0.424
1960	417564.788	5089285.063	4044.309	-0.803	0.630	-0.053
1961	417481.903	5089026.822	4039.391	-0.701	0.668	-0.185
1962	417408.948	5088761.793	4036.550	-0.838	0.730	-0.033
1963	417314.523	5088471.644	4041.941	-0.635	0.822	-0.277
1964	417239.077	5088203.940	4040.107	-0.699	0.926	-0.180
1965	417181.214	5087930.435	4039.349	-0.719	0.968	-0.004
1966	417116.695	5087661.622	4042.536	-0.691	1.025	0.135
1967	417035.023	5087396.491	4046.096	-0.598	1.077	0.053
1968	416948.997	5087136.273	4041.686	-0.636	1.106	0.340
1969	416859.245	5086854.175	4036.013	-0.548	1.159	0.238
1970	416782.777	5086580.931	4034.548	-0.524	1.220	0.391
1971	416708.476	5086312.551	4042.305	-0.525	1.292	0.491
1972	416636.813	5086048.497	4048.620	-0.428	1.497	0.412
1973	416565.246	5085799.123	4054.638	-0.473	1.529	0.843
1974	416495.664	5085547.966	4049.055	-0.400	1.521	1.045
1975	416840.322	5085473.599	4046.773	-0.472	1.126	2.226
1976	416914.191	5085731.957	4053.256	-0.648	1.093	1.570
1977	416977.725	5085992.320	4051.316	-0.599	1.004	1.593
1978	417055.287	5086272.018	4048.930	-0.603	0.967	1.407
1979	417139.481	5086545.939	4050.306	-0.706	0.815	1.211
1980	417211.472	5086819.832	4047.263	-0.673	0.760	1.155
1981	417285.825	5087095.546	4046.581	-0.699	0.650	1.194

Tabella A.8 – Continuazione da pagina precedente

		Tabella A.8	– Continua	nzione da	pagina pr	ecedente
Fot.	\mathbf{Est} [m]	Nord [m]	h [m]	$\delta \mathbf{E} [\mathbf{m}]$	δN [m]	δh [m]
			Media	-0.466	0.515	0.096
		Deviazione s	standard	0.254	0.458	0.749

Fotogramma	$oldsymbol{\omega} \left[^\circ ight]$	$oldsymbol{\phi}\left[^{\circ} ight]$	k [°]
1772	-12.05	3.20	92.50
1773	-18.45	3.45	73.35
1774	-14.80	-0.60	55.55
1775	-3.00	2.20	38.85
1776	10.25	3.60	45.80
1777	2.20	2.70	43.55
1778	20.85	-2.10	60.55
1779	-0.70	12.75	-59.90
1780	-6.85	14.05	-71.35
1781	-2.50	14.20	-79.05
1782	-0.30	10.75	-83.10
1783	-0.05	10.55	-81.25
1784	-2.05	10.15	-84.60
1785	5.20	8.75	-79.10
1786	7.25	8.60	-71.35
1787	12.70	8.05	-48.15
1788	-1.10	6.35	-42.60
1789	-4.35	7.60	-42.40
1790	-2.60	6.00	-42.25
1791	-2.50	5.60	-44.25
1792	-0.55	5.80	-41.75
1793	-2.15	5.95	-164.15
1794	-4.60	6.25	-164.75
1795	-4.25	6.75	-165.80
1796	-4.15	6.00	-164.05
1797	-2.30	6.10	-162.50
1798	-6.05	6.85	-164.65
1799	-5.30	7.00	-164.70
1800	-4.55	5.70	-167.25
1801	-3.00	5.15	-165.60

Tabella A.9: Assetti del velivolo misurati dall'IMU 2 (solidale alla fusoliera)

Fotogramma	$oldsymbol{\omega}$ [°]	$oldsymbol{\phi}\left[^\circ ight]$	$\mathbf{k} \ [^{\circ}]$
1802	-7.10	6.00	-168.00
1803	-3.30	7.50	-166.70
1804	0.75	7.50	-167.35
1805	-4.25	5.05	-165.35
1806	-3.35	5.00	-168.60
1807	0.75	2.10	-164.50
1808	-3.30	7.95	-164.40
1809	-2.15	7.80	-162.95
1810	-0.45	6.90	-162.25
1811	-1.05	6.35	-161.05
1812	-5.95	7.20	-161.95
1813	-0.70	10.45	14.85
1814	1.25	12.55	11.20
1815	-10.35	8.85	4.55
1816	-1.65	9.90	9.85
1817	-2.05	10.65	10.60
1818	-1.90	8.00	11.30
1819	-0.55	8.50	11.65
1820	-1.15	9.50	11.35
1821	-1.50	9.40	10.85
1822	-5.25	9.95	12.50
1823	-1.60	5.50	12.20
1824	-1.25	5.50	12.40
1825	-1.40	6.95	12.30
1826	-4.25	3.75	11.00
1827	-1.85	7.40	14.30
1828	0.30	6.75	13.85
1829	4.55	8.00	11.75
1830	1.45	4.35	11.75
1831	-0.40	8.15	11.60
1832	-0.05	11.05	-162.40
1833	-1.40	11.85	-161.55
1834	1.75	9.20	-164.50
1835	1.30	10.40	-158.60
1836	-0.65	6.45	-158.30
1837	2.05	6.75	-163.75
1838	-6.55	9.10	-169.45
1839	1.70	6.75	-167.70

Tabella A.9 – Continuazione da pagina precedente

Fotogramma	$oldsymbol{\omega}$ [°]	$oldsymbol{\phi} \left[^\circ ight]$	\mathbf{k} [°]
1840	-0.30	5.55	-166.30
1841	-8.30	7.20	-169.25
1842	-6.00	5.85	-172.20
1843	6.40	5.45	-166.80
1844	-2.20	4.60	-166.30
1845	-4.30	5.85	-168.70
1846	-8.10	6.00	-171.60
1847	-0.55	7.90	-166.65
1851	-15.35	9.55	10.95
1852	-3.00	12.65	3.25
1853	1.70	12.10	12.30
1854	1.60	8.75	8.05
1855	0.10	10.40	10.60
1856	-2.00	10.55	12.55
1857	-0.70	6.80	13.70
1858	-1.60	8.35	12.20
1859	-1.85	5.60	11.65
1860	1.75	6.60	12.55
1861	-0.25	4.80	14.25
1862	0.20	5.05	14.50
1863	-2.55	4.45	17.15
1864	1.00	2.95	17.30
1865	-0.15	4.40	15.70
1866	2.15	4.80	16.40
1867	-1.85	3.25	17.85
1868	0.25	3.95	15.15
1869	-0.85	2.60	13.70
1870	2.80	9.90	-158.90
1871	0.40	10.05	-158.75
1872	0.40	7.70	-159.20
1873	0.75	7.80	-157.20
1874	-1.80	5.90	-157.30
1875	-0.95	5.85	-157.20
1876	2.20	5.10	-160.65
1877	-4.60	1.80	-170.70
1878	4.75	4.35	-161.80
1879	2.80	1.45	-168.05
1880	-5.20	4.95	-171.65

Tabella A.9 – Continuazione da pagina precedente

Fotogramma	$oldsymbol{\omega}$ [°]	$oldsymbol{\phi} \left[^\circ ight]$	\mathbf{k} [°]
1881	0.80	4.40	-171.90
1882	0.15	6.15	-162.20
1883	-5.35	4.15	-166.80
1884	-10.55	4.30	-168.05
1885	4.50	4.35	-166.50
1888	-3.15	0.55	-172.50
1889	-1.20	15.40	-5.05
1890	7.10	10.75	2.30
1891	-3.45	12.55	3.15
1892	5.65	10.80	7.65
1893	-1.80	11.10	8.45
1894	-0.30	10.35	12.60
1895	2.80	9.70	9.45
1896	-1.10	7.30	10.35
1897	-4.10	9.50	4.95
1898	-2.35	7.50	10.80
1899	-1.05	3.75	12.60
1900	-1.05	3.10	15.80
1901	2.45	4.05	17.35
1902	-0.05	6.15	13.90
1903	0.35	2.15	15.95
1904	-1.05	3.40	14.65
1905	-1.60	3.25	11.30
1906	-0.35	3.75	15.90
1907	2.80	10.20	-160.00
1908	-0.30	10.80	-158.35
1909	-0.90	9.25	-165.85
1910	4.95	7.90	-163.70
1911	-6.55	4.70	-162.20
1912	0.05	6.20	-169.85
1913	3.50	8.30	-161.30
1914	2.20	3.75	-159.35
1915	-1.35	2.80	-170.80
1916	-1.60	5.20	-177.30
1917	4.70	4.10	-168.85
1918	-0.70	3.80	-159.25
1919	-5.70	3.45	-168.80
1920	-4.40	3.65	-171.50

Tabella A.9 – Continuazione da pagina precedente

Fotogramma	$oldsymbol{\omega}$ [°]	$oldsymbol{\phi} \left[^\circ ight]$	\mathbf{k} [°]
1921	1.50	4.70	-162.60
1922	-2.15	4.95	-163.75
1924	0.65	7.15	-162.95
1925	-6.85	3.10	-169.75
1926	-15.40	14.00	-39.35
1927	16.10	13.00	-35.50
1928	21.80	12.95	8.85
1929	26.85	16.70	39.15
1930	24.35	11.65	77.20
1931	21.00	8.25	108.90
1932	15.35	6.65	136.30
1933	12.30	8.15	154.70
1934	12.00	7.15	179.10
1935	1.30	9.55	-157.95
1936	-2.25	7.00	-149.55
1937	0.10	11.30	13.60
1938	-3.10	10.90	9.60
1939	-4.15	10.25	8.35
1940	-3.90	9.90	7.80
1941	-1.05	6.65	14.45
1942	-5.75	6.60	10.30
1943	4.40	8.30	6.75
1944	-7.80	5.90	10.60
1945	0.60	8.25	10.30
1946	-1.85	10.40	13.45
1947	-4.25	2.50	13.05
1948	0.40	6.60	12.50
1949	-11.05	4.15	8.00
1950	-0.20	4.35	13.50
1951	-2.95	4.30	5.65
1952	-8.05	3.10	-3.75
1953	1.10	2.40	11.50
1954	-4.85	5.25	2.75
1955	0.50	2.55	11.00
1956	-8.20	9.65	-166.80
1957	3.35	13.40	-163.20
1958	-5.25	9.75	-166.10
1959	-2.85	13.55	-169.70

Tabella A.9 – Continuazione da pagina precedente

Tabella A.9 – Continuazione da pagina precedente			
Fotogramma	$oldsymbol{\omega}\left[^\circ ight]$	$oldsymbol{\phi}$ [°]	k [°]
1960	3.85	9.20	-159.90
1961	-5.35	9.25	-161.30
1962	-0.95	7.35	-161.50
1963	-7.95	6.80	-163.15
1964	-5.30	7.00	-167.20
1965	-5.00	6.35	-166.50
1966	-4.50	5.35	-158.75
1967	-6.20	5.05	-158.40
1968	-3.80	3.75	-159.35
1969	-6.05	4.35	-163.25
1970	-6.45	4.60	-160.85
1971	-6.90	3.65	-163.05
1972	-6.40	6.80	-159.60
1973	-3.70	5.55	-160.10
1974	-3.85	1.45	-157.70
1975	3.35	15.00	8.25
1976	-3.40	12.65	3.45
1977	-0.55	11.80	9.95
1978	-0.30	10.55	11.20
1979	-1.35	9.80	5.20
1980	0.55	7.75	7.20
1981	2.40	8.50	11.10

Ulteriori dati dal Capitolo 4

Listing A.1: Script Matlab per la determinazione della matrice di rotazione ai minimi quadrati

```
1 close all
clear all
clc
4 5 %%% elaborazione dei tempi di scatto (millisecondi, UTC da 1-gen
-1970)
6 7 data_zero_unix = [1970,1,1]; %data zero dello unix timestamp; formato
:[anno,mese,giorno]
```

```
9 of ormula: JD = INT [365.25y] + INT [30.6001 * (m+1)] + D+UT/24+1720981.5
10
  Y_z = data_zero_unix(1,1); %anno
11
12 M_z = data_zero_unix(1,2); \%mese
13
14
  if M_z<=2
      y_z = Y_z-1;
  else
16
      y_z = Y_z;
17
  end
18
19
  if M z<=2
20
      m_z = M_z + 12;
21
  else
22
23
      m_z = M_z;
24
  end
25
_{26} D_z = data_zero_unix(1,3); % giorno
27
  UT_z = 0.00; %lo zero è considerato a mezzanotte del 1970-1-1. UT
28
      rappresenta le ore in decimali.
29
  zero\_unix\_jd = fix(365.25*y\_z) + fix(30.6001*(m\_z+1)) + D\_z + UT\_z/24
30
      + 1720981.5; %data giuliana dello zero unix timestamp
31
  zero\_unix\_mjd = zero\_unix\_jd - 2400000.5; %modified julian date dello
32
       zero unix
33
  zero_unix_sec = zero_unix_mjd*86400; %secondi della data zero unix
34
      rispetto allo zero giuliano modificato
35
  load PhaseOne_MetadataWithTimestamp.txt
36
37
  tempi_scatto_sec_grezzi = PhaseOne_MetadataWithTimestamp(:,8)./1000;
38
     %istanti di scatto in secondi rispetto allo zero unix
39
  bias_def = 0.00;
40
41
  bias_medio_res = 0.1;
42
43
  while bias medio res > 0.0005
44
45
      tempi_scatto_sec = tempi_scatto_sec_grezzi + bias_def;
46
47
      tempi_scatto_mjd_sec = tempi_scatto_sec + zero_unix_sec; %data
48
      giuliana scatti in sec
49
      98% elaborazione dei tempi campionamento GNSS con la stazione di
      Zermatt
```

```
51
      load E_N_traiettoria_zermatt.txt
52
53
       date_rilievo = E_N_traiettoria_zermatt(:,5:10); %date del rilievo
54
       (calendario gregoriano + hh:mm:ss)
      rilievo_mjd = zeros(size(date_rilievo, 1), 1);
55
       for ii=1:size(date_rilievo,1)
56
57
           Y_r= date_rilievo(ii,3); %anno
58
           M r = date rilievo(ii, 2); %mese
59
60
           if M r<=2
61
               y_r = Y_{r-1};
62
           else
63
               y\_r\ =\ Y\_r\,;
64
           \operatorname{end}
65
66
           if M_r<=2
67
               m_r = M_r + 12;
68
           else
69
70
               m_r = M_r;
           end
71
72
           D_r = date_rilievo(ii,1); %giorno
73
74
           UT_r = date_rilievo(ii, 4) + date_rilievo(ii, 5)./60 +
75
      date_rilievo(ii,6)./3600;
76
           rilievo_jd(ii, 1) = fix(365.25*y_r) + fix(30.6001*(m_r+1)) +
77
      D r + UT r/24 + 1720981.5; % data giuliana rilievo
           %rilievo_mjd(ii,1) = mjuliandate(Y_r,M_r,D_r,date_rilievo(ii
78
      ,4),date_rilievo(ii,5),date_rilievo(ii,6));
      end
79
80
      rilievo_mjd = rilievo_jd - 2400000.5;
81
82
      rilievo_mjd_sec = rilievo_mjd*86400; %data giuliana modificata di
83
       ogni campionamento espressa in secondi
84
      coordinate_gps_scatto = zeros(size(tempi_scatto_mjd_sec,1),3);
85
      i = 1;
86
       while tempi_scatto_mjd_sec(i) < rilievo_mjd_sec(i) %faccio in</pre>
87
      modo di non interpolare prima della prima misura GNSS
               i = i + 1;
88
      end
89
90
      %interpolazione per la determinazione delle posizioni dell'
91
      antenna al
```

```
%momento dello scatto (posizioni riferite al PP con stazione
92
      zermatt)
93
      N = zeros(size(tempi_scatto_sec, 1), 1);
94
95
      % La matrice N viene creata perché servirà successivamente per
96
      determinare
      % il punto in cui calcolare le velocità che si hanno al momento
97
      dello
      % scatto e poter calcolare il bias
98
99
       jj = 1;
100
       for s = i:length(tempi_scatto_mjd_sec)
           n = s;
           while tempi_scatto_mjd_sec(s) > rilievo_mjd_sec(n)
103
104
               n = n+1;
           end
105
           N(jj, 1) = n;
106
           jj = jj+1;
107
           coordinate_gps_scatto(s, 1) = (E_N_traiettoria_zermatt(n, 2) - 
108
      E_N_{traiettoria_zermatt(n-1,2)})/(rilievo_mjd_sec(n) -
      rilievo_mjd_sec(n-1))*(tempi_scatto_mjd_sec(s) - rilievo_mjd_sec(n
      -1)) + E_N_{traiettoria_zermatt(n-1,2)}; \%coordinata Est
           coordinate_gps_scatto(s,2) = (E_N_traiettoria_zermatt(n,3) -
109
      E_N_{traiettoria_zermatt(n-1,3)})/(rilievo_mjd_sec(n) -
      rilievo_mjd_sec(n-1))*(tempi_scatto_mjd_sec(s) - rilievo_mjd_sec(n
      -1)) + E_N_traiettoria_zermatt(n-1,3); %coordinata Nord
           coordinate_gps_scatto(s,3) = (E_N_traiettoria_zermatt(n,4) -
110
      E_N_{traiettoria_zermatt(n-1,4)}/(rilievo_mjd_sec(n) -
      rilievo mjd \sec(n-1) * (tempi scatto mjd \sec(s) - rilievo mjd \sec(n)
      -1)) + E_N_traiettoria_zermatt(n-1,4); %coordinata h
       end
111
112
       coordinate_gps_scatto_utili= [coordinate_gps_scatto(23:98,:);
113
      coordinate_gps_scatto (102:136,:); coordinate_gps_scatto (139:173,:);
      coordinate_gps_scatto(175:232,:)];
114
      %% Calcolo delle velocità con Zermatt
115
116
       punti_traiettoria = E_N_traiettoria_zermatt(:,1:3); %solo
117
      coordinate piane
118
       punti_interesse=zeros(size(N,1)*2,size(punti_traiettoria,2));
119
       ss=2; %contatore per il pescare ogni due posizioni (tra cui
120
      calcolare la velocità)
       jj=1; %contatore per la ricerca nella matrice N
       for ii=i:size(punti_traiettoria,1)
122
123
           if N(jj,1) == punti_traiettoria(ii,1)
               punti_interesse(ss,:) = punti_traiettoria(ii,:);
124
```
```
punti_i (ii - 1, :) = punti_t (ii - 1, :);
                jj=jj+1;
126
                ss=ss+2;
           if jj > size(N,1)
128
                break
129
130
           end
           end
       end
      v E N = zeros(size(punti interesse, 1)/2,3); % creo il vettore
133
      delle velocità
       tt = 1;
134
       for kk=2:2: size (punti_interesse ,1)
136
           v_E_N(tt, 1) = punti_iteresse(kk, 2) - punti_iteresse(kk-1, 2); \%
137
      velocità Est (campionamento 1s)
           v_E_N(tt,2)=punti_interesse(kk,3)-punti_interesse(kk-1,3); %
138
      velocità Nord (campionamento 1s)
           tt = tt + 1;
139
       end
140
141
       v_E_N_recupero = v_E_N;
142
143
      %il numero di fotogrammi che ritrovo sia sulla traiettoria GPS
144
      che
      %sull'orientamento esterno è 204. Non ritovo i primi 4 fotogrammi
145
       sulla
      %traiettoria rispetto ai dati forniti sul file dei metadata.
146
147
      v\_E\_N=[zeros(4, size(v\_E\_N, 2)); v\_E\_N];
148
149
      %pongo degli zeri nelle prime quattro righe in modo tale da
      riallineare le
      %cose rispetto alle coordinate GPS scatto
      v_E_N=[v_E_N(23:98,:);v_E_N(102:136,:);v_E_N(139:173,:);v_E_N
      (175:232,:)];
154
      %% Calcolo del bias
156
157
       load angoli imu fusoliera.txt
158
       kappa = angoli_imu_fusoliera; %angoli di imbardata (fotogramma)
160
161
       centro presa coord = esterno(:, 2:4); %E,N,h
162
163
      %correggo le coordinate rispetto alle componeni piane del lever
164
      arm che
```

```
%sono fornite nell'immagine posizione_antenna.jpeg. L'aereo viene
165
        supposto
       %in traiettoria parallela al terreno (approssimazione)
166
167
       lever_arm_piano = [2.416; -0.306];
168
169
       coord_rid_ant= zeros(size(centro_presa_coord,1),2); %voglio solo
170
       le coordinate piane (2 colonne)
171
       for ii=1:size(centro presa coord,1)
172
            coord_rid_ant(ii,1)=centro_presa_coord(ii,1)-lever_arm_piano
173
       (1) * \cos(\text{kappa}(ii) * pi/180) - \text{lever}_arm_piano(2) * \sin(\text{kappa}(ii) * pi/180)
       ;
            coord_rid_ant(ii,2)=centro_presa_coord(ii,2)+lever_arm_piano
174
       (1) * \sin(\text{kappa}(ii) * pi/180) - \text{lever}_arm_piano(2) * \cos(\text{kappa}(ii) * pi/180)
       ;
       end
175
176
       %passo al calcolo del bias ottenuto dalla proiezione degli errori
177
       tra le
       %cordinate del fotogramma ridotte all'antenna e le coordinate
178
       dell'antenna
       %al momento (fornito) dello scatto nella direzione data dai
179
       vettori
       %velocità. Dividendo per il modulo della velocità si ottiene il
180
      bias
       %temporale.
181
182
       bias_spaziale = coord_rid_ant - coordinate_gps_scatto_utili
183
       (:, 1:2);
184
       bias_tempo=zeros(size(v_E_N,1),1);
185
186
       for ii = 1: size (v \in N, 1)
187
            bias_tempo(ii,1)=(bias_spaziale(ii,1)*v_E_N(ii,1)+
188
       bias_spaziale(ii,2)*v_E_N(ii,2))/(v_E_N(ii,1)^2+v_E_N(ii,2)^2);
189
       end
190
       bias_medio_res = mean(bias_tempo);
191
192
       dev st bias = std (bias tempo);
193
194
       bias_def = bias_def + 0.0005;
195
196
       conta_iterazioni=conta_iterazioni+1;
197
  end
198
```

Appendice B Ulteriori dati dal Capitolo 5

B.1 Uso del software PCI Geomatica

Procedimento di pansharpening

Creazione di un nuovo progetto Per poter realizzare il pansharpening dell'immagine è necessaria la creazione di un nuovo progetto. Questo permette al software di capire quali sono i modelli da utilizzare nella georeferenziazione dell'immagine e nel calcolo del modello per la compensazione della rete dei Ground Control Point (vedi passi successivi). Il software si presenta quindi come nella Figura B.1.

Figura B.1: Scelta del modello da utilizzare

Scelta delle immagini ed avvio dell'algoritmo Dopo aver scelto il sistema di coordinate e di rappresentazione (da cui dipende anche la georeferenziazione dell'immagine, vedi Figura B.2), si possono scegliere le due immagini (pancromatica e multispettrale) che andranno a formare la singola immagine Pansharpened.

Set Projection – ×
Output Projection
UTM V Earth Model UTM 32 D000 More
Output pixel spacing: 0.5000000 m
Output line spacing: 0.5000000 m
GCP Projection
UTM V Earth Model UTM 32 D000 More
Elevation unit: Meters V Elevation reference: Ellipsoidal V
Set GCP Projection based on Output Projection
© OK Cancel

Figura B.2: Sistema di coordinate scelto, conforme alle coordinate con cui saranno espressi i GCP

Come rappresentato nelle Figure B.3 e B.4, si procede all'avvio dell'algoritmo di pansharpening. Nel caso delle immagini Pléiades, viene scelto uno specifico file di metadati (denominazione DIM, formato .XML), il quale contiene tutte le informazioni perché le immagini (in formato .jp2) vengano unite in un'unica immagine multispettrale.

B.1 – Uso del software PCI Geomatica

💽 OrthoE	ngine: prova			—	\times
File View	Tools Help				
Processing et	Import	>			
Project	Export	>			
	Change Image Orientation				
	Rename/Remove Images				
	Replace Image Values				
	Synchronize Image				
	Convert DEM Datum				
	Stitch Image Tiles with RPC				
	Merge/Pansharp Multispectral Image				
	Assemble Tiles				
	Image To Ground Computation				
	Bundle Adjustment Settings				
	GCP/TP Accuracy				
	Options				

Figura B.3: Scelta dell'algoritmo

💽 Merge/Pansharp Multispectra	Images		20 <u>-</u> 20		\times
Multispectral image 1: C:\Users\Imm	igini satellitari\lmm1\lMG_PHR1A_MS_003\DI	M_PHR1A_MS_201708	3201037074	PR	Browse
Multispectral image 2:					Browse
Multispectral image 3:					Browse
Multispectral image 4:					Browse
Panchromatic image: C:\Users\Imm	igini satellitari \lmm1\IMG_PHR1A_P_001\DIM	_PHR1A_P_201708201	1037074_PF	₹ J_4	Browse
Output filename: C:\Users\Imm	igini satellitari \lmm1\IMG_PHR1A_P_001\Pans	sharpened_1.pix			Browse
Enhanced pansharpening Resar	npling: Cubic 🗸				
\$?		Merge	Pansharp		Close

Figura B.4: Scelta delle immagini e denominazione del file di output

B.1.1 Ricerca automatica di Tie Point e Ground Control Point

L'interfaccia del software si presenta come in Figura B.5. Il DSM utilizzato per l'individuazione automatica dei TP è quello rappresentato in Figura 4.4.

Ulteriori dati dal Capitolo 5

Collection Strategy				
Matching method: FFTP: F	ast Fourier Transform Pha	se matching		
Tie points per area:	64		Search method:	SUSAN \
Trials per point:	1		Edge margin distance:	
Min. acceptance score:	0.75 Reset		Matching channels:	1
Search radius:	100 Pixels ~			
Input elevation:	DEM 🗸			
File:	C:∖Users∖DSM.tif		Browse DEM Se	ttings
Distribution pattern:	Entire image 🗸			
Active Images to Process		Processing Start Time		
All		● Start now ○ Start at	(hh:mm)	
Working		12	00 ≑ ⊚a.m.	
O Images with less than	10 🗧 tie points		() p.m.	
Progress Information				

Figura B.5: Interfaccia del software PCI Geomatica con parametri modificabili per l'algoritmo di ricerca automatica di TP

B.1 – Uso del software PCI Geomatica

🐱 Automatic GC	CP Collection			_		\times
Control Source						
Control source:	eoreferenced image	· ~				
Reference file:				Browse	Chip Crit	eria
Match channels:						
Elevation Information	n			6 		
Constant height:	meters					
O DEM file:				Browse	DEM Set	tings
Images						
Image ID	Status	Model	Use	Match	Channels	
Pansharpened1	Available	Yes	 ✓ 			1
Pansharpened2	Available	Yes				1
	-					-
				_		
Use All Use N	one Match cha	annels: 1	Apply to all imag	jes		
Stereo GCPs -						
Reference image s	ampling method:	Count 100	O Spacing 10		Pixels	~
Search Options —						
Sample source meth	nod: O Susan 🔘	Grid	Number o	f GCPs per	image: 64	
Matching method:	FFTP: Fast Fourier	Fransform Phase Matchir	ng ∨			
Search radius: [100 Pixels 🗸	Minimum a	cceptance	score: 0.7	75	

Figura B.6: Interfaccia del software PCI Geomatica con parametri modificabili per l'algoritmo di ricerca automatica di GCP

B.1.2 Lettura dei residui

Figura B.7: Visualizzazione dei residui nel software

Exterior Orientation sidual Units Ground units O Image PC adjustment order: 1 sidual Summary for 2 Ima	e pixels I	idual Type RMS () Bias and S	tandard deviation								
PC adjustment order: 1 sidual Summary for 2 Ima	e pixels	idual Type RMS () Bias and S	tandard deviation								
PC adjustment order: 1 sidual Summary for 2 Ima	ages	-									
sidual Summary for 2 Ima	ages										
the GCPa: 2											
tive TPs: 30 teck points: 17 active GCPs: 15 active GCPs: 0 MS (x, y, z) for worst 5% (X RMS:0.04 X RMS:0.03 X RMS:0.46 X RMS:0.29 X RMS: of active points in	2 Y RMS:0 0 Y RMS:0 11 Y RMS:0 13 Y RMS: 13 Y RMS: 1 list:0.232, 0.316, 2	.037 Z RM .009 Z RM .624 Z RM .622 Z RM Z RM 192	AS:0.953 AS:0.004 AS:0.993 AS:1.849 AS:							
ow Points	Shor	w In		Automatic Point Selec	tion						
Active GCPs Stereo	GCPs	All active images		2 A Daint	- hou are a side and	Select					
Active TPs on	nly O:	Selected image		2 Points	s by residual	50000					
Check points				10 🖨 Maxim	num percent of points/	image					
Inactive GCPs				0.0 CLowe	st selectable residual						
Inactive TPs											
Point ID A Ren	s XY Res	X Res Y	Res Z (m)	Type Image I	D Ground X	Ground Y	Ground Z	Comp X Comp Y	Comp Z		1
Check_1	0.393	-0.232 -0.3	6 -2.192	Check Pansharpe	ned1 416457.101	5090808.998	1960.345	416456.869 5090808.68	1962.537		
Check_1	0.393	-0.232 -0.3	6 -2.192	Check Pansharpe	ned2 416457.101	5090808.998	1960.345	416456.869 5090808.683	1962.537		
Check_10	0.862	0.277 -0.81	7 0.235	Check Pansharpe	ned1 417822.468	5090323.008	1879.850	417822.745 5090322.19	1879.615		
Check_10	0.862	0.277 -0.8	7 0.235	Check Pansharpe	ned2 417822.468	5090323.008	1879.850	417822.745 5090322.19	1879.615		
Check_11	1.430	1.130 -0.87	6 -0.243	Check Pansharpe	ned1 415783.895	5091397.225	2260.851	415785.025 5091396.34	2261.094		_

Figura B.8: Visualizzazione dei residui (coordinate terreno) nel software

É possibile notare come, nel caso delle coordinate immagine (Figura B.7, tabella in basso) vi siano due residui diversi per lo stesso TP in due immagini differenti. In coordinate terreno, invece, i residui sono identici (Figura B.8) per via della natura stereoscopica degli ICP scelti, come spiegato nella sezione 5.4.

Generazione della coppia epipolare ed estrazione del DSM

Generate	e Epipolar Ima	ges							-	٥	\times
Epipolar sele	action:										
User select		Minimum percentage over	dap: 50								
· · ·		- Minimum percentage over									
Left Image	14 .0		Hight Image								
Pansha	rpened1-0	1: C:\Users\A\Des	Pansharpened2-01:	.:\Users\A\Des	8						
<		>	<	>							
					-						
Channel:	O Channels	1	Channel: O Channels 1								
	All		() AL								
DEM workin	ig folder: D:\RP	C_progetti\Definitivi\Caso01_1	8S\Caso01_18S_DEMwork	Browse							
		Add Epipolar	Pairs To Table								
pipolar pain	8:										
Number	Select	Left File Ri	ight File Left Channels	Right Channels	Left Epipolar	Right Epipolar	-				
							-				
							-				
							-				
							-				
							-				
0.1.1.11	0.1.1.11		0.01.01.00.0								
Ontions	Select None	Processing Start Time	Switch Fairs Switch Air Fairs								
Downeam	nle factor: 1	Start now Start	art at (hh:mm)								
Company		1	2 ‡ 00 ‡ @ a.m.								
			Op.m.								
										_	
2?								Save Setu	Generate Pai	rs C	lose

Figura B.9: Interfaccia per la creazione della coppia epipolare sul software PCI geomatica

eo pairs					
Select	Left Image	Right Image	Epipolar Pair	Epipolar DEM	DEM Report
\checkmark	Pansharpened1	Pansharpened2	Offline	dem_Pansharpened1_Pansharper	dem_Pansharpened1_Pansharpen
ct All Sele	ect None Restore Defaul	its			
M Extraction	Options		eocoded DEM		
traction meth	od: SGM (Semi-globa	al matching)	Create geocoded DEM		
			Delete epipolar DEMs af	er use	
rixel sampling i	nterval: 1 V Hesolutio	on: 0.50 m	Epipolar DEM clipping:	() percent	
moothing filter	r: Low ∨			◯ pixels	
Delete epip	olar pairs after use		Output file name:		
Enipolar trac	rking				Browse
			Danah dian :	Y	
			JEM bounds: All mages	Selected images Custom	
			Jpper left:	Y	
			.ower right:	Y	
			Output option: Blending	Clean up building edges w	th filter size: 13 🗘
			the star Oak The		
		t	xtraction Start Time	5.00 C	
			Start now Start at (h	(mm:	
			12 🤤	00 - Oam.	
a 9					

Figura B.10: Realizzazione del DSM dalla coppia epipolare - Interfaccia PCI

B.1.3 Estrazione delle ortofoto

Le ortofoto vengono estratte, come mostrato in Figura B.11, previa scelta del DSM da utilizzare.

ailable images:	Images to process:
	Pansharpened1: Delete existing file Pansharpened2: Delete existing file
oe information	•
Uncorrected Image Image: Status: Input channels: O Channels All Channels Apply input channel selection to all files	Otho Image File: C:\Users\A\Desktop\Tesi\Lavori PCI\Toutin \sqrt{Browse} Status: Output NoData: Size: Upper left: Lower right: X
no Generation Options Bevation Information Constant Height: m DEM File: C:\Users\A\Desktop\Tet Browse DEM Settings Apply DEM options to all images	Processing Options Sampling interval: 1 Resampling: Cubic ✓ Shaping Window: PARABOLA ✓ Beta: Filter Size: X3 ♀ Y3 ♀ Processing Stat Time ● Stat now ◯ Stat at (th.mm) 12 ♀ 00 ♀ ◯ a.m. Processing Stat Time

Figura B.11: Estrazione delle ortofoto - Interfaccia PCI

B.2 Accuratezza del modello in planimetria e altimetria: medie e deviazioni standard dei residui

Coordinate immagine

Figura B.12: Medie dei residui in coordinate immagine (12 ICP)

Figura B.13: Medie dei residui in coordinate immagine (17 ICP)

Coordinate terreno

Figura B.14: Medie dei residui in coordinate terreno (12 ICP)

Figura B.15: Medie dei residui in coordinate terreno (17 ICP)

B.3 Accuratezze medie per categorie di pendenza

Figura B.16: Accuratezze medie per la classe m<30\%

Figura B.17: Accuratezze medie per la classe 30%<m<50\%

Figura B.18: Accuratezze medie per la classe 50% < m < 70%

Figura B.19: Accuratezze medie per la classe 70%<m<90%

Figura B.20: Accuratezze medie per la classe m>90%

Figura B.21: Frequenza cumulate per il DSM realizzato con 1 GCP

Figura B.22: Frequenza cumulate per il DSM realizzato con 2 GCP

Figura B.23: Frequenza cumulate per il DSM realizzato con 2 GCP

Appendice C Ulteriori dati dal Capitolo 6

Figura C.1: Precisione planimetrica del modello (11 casi)

Figura C.2: Precisione altimetrica del modello (11 casi)

Figura C.3: Frequenze cumulate delle differenze DSM fotogrammetrico - DSM satellitare (classe m < 30%)

Figura C.4: Frequenze cumulate delle differenze DSM fotogrammetrico - DSM satellitare (classe 30% < m < 50%)

Figura C.5: Frequenze cumulate delle differenze DSM fotogrammetrico - DSM satellitare (classe 50% < m < 70%)

Figura C.6: Frequenze cumulate delle differenze DSM fotogrammetrico - DSM satellitare (classe 70% < m < 90%)

Figura C.7: Frequenze cumulate delle differenze DSM fotogrammetrico - DSM satellitare (classe m>90%)

Figura C.8: Medie delle differenze DSM fotogrammetrico - DSM satellitare (11 casi)

Figura C.9: Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe m<30%)

Figura C.10: Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe 30% < m < 50%)

Figura C.11: Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe 50% < m < 70%)

Figura C.12: Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe 70%<m<90%)

Figura C.13: Medie delle differenze DSM fotogrammetrico - DSM satellitare (classe m > 90%)

Figura C.14: Rappresentazione differenze DSM fotogrammetrico - DSM satellitare (classe m<30%)

Figura C.15: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe 30% < m < 50%)

Figura C.16: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe 50% < m < 70%)

Figura C.17: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe 70% < m < 90%)

Figura C.18: Boxplot differenze DSM fotogrammetrico - DSM satellitare (classe m > 90%)

Figura C.19: Medie delle differenze DSM fotogrammetrico - DSM satellitare (11 casi)

Accuratezza e dispersione dipendente solamente dal numero di GCP

Figura C.20: Boxplot differenze DSM fotogrammetrico - DSM satellitare

Bibliografia

- Istituto dell'Enciclopedia Italiana, cur. Treccani.it Vocabolario Treccani on line. 2011. URL: http://www.treccani.it (cit. alle pp. 1, 2).
- Shawn J Marshall. The cryosphere. Vol. 2. Princeton University Press, 2011 (cit. a p. 1).
- [3] Giovanni Kappenberger e MeteoSvizzera Locarno-Monti. Che cos'è un ghiacciaio. 2006 (cit. alle pp. 2, 4, 6).
- [4] Douglas Benn e David JA Evans. Glaciers and glaciation. Routledge, 2014 (cit. alle pp. 2, 5, 26, 29).
- [5] CJ Van der Veen. «Fracture mechanics approach to penetration of surface crevasses on glaciers». In: *Cold Regions Science and Technology* 27.1 (1998), pp. 31–47 (cit. a p. 3).
- [6] Frank Rau, Fabian Mauz, Steffen Vogt, Siri Jodha Singh Khalsa e Bruce Raup. «Illustrated GLIMS glacier classification manual». In: Institut für Physische Geographie Freiburg, Germany, and National Snow and Ice Data Center, Boulder, USA, version 1 (2005), p. 755 (cit. a p. 3).
- [7] H French e J Harbor. «8.1 The Development and History of Glacial and Periglacial Geomorphology». In: (2013) (cit. a p. 4).
- [8] Andrew G Fountain, Charles F Raymond e Masayoshi Nakawo. «International Workshop Examines Debris-covered Glaciers». In: *Eos, Transactions American Geophysical Union* 82.24 (2001), pp. 261–263 (cit. alle pp. 5, 8).
- [9] Catasto dei Ghiacciai Italiani Comitato Glaciologico Italiano. 2020 (accesso: 7 ottobre 2020). URL: http://repo.igg.cnr.it/ghiacciaiCGI/ghiacciai_ new.html (cit. a p. 6).
- [10] Inventory of Italian Glaciers (1959-1962). 2020 (accesso: 7 ottobre 2020).
 URL: http://www.glaciologia.it/en/pubblicazioni/ (cit. a p. 6).
- [11] Roberto Ranzi, Carlo Baroni, Monica Pepe, Enrico Rossi, Federico Vantadori e Maria Cristina Salvatore. «GLIMS-IT: contributo italiano al progetto GLIMS di monitoraggio satellitare dei ghiacciai del globo». In: 17a Conferenza Nazionale ASITA. ASITA. 2013, pp. 1125–1132 (cit. a p. 6).

- [12] Maria Cristina Salvatore, Thomas Zanoner, Carlo Baroni, Alberto Carton, Francesca Alberta Banchieri, Cristina Viani, Marco Giardino e Luigi Perotti. «The state of Italian glaciers: A snapshot of the 2006-2007 hydrological period». In: (2015) (cit. a p. 6).
- [13] Catasto Ghiacciai Sistema delle Conoscenze Territoriali, Regione Autonoma Valle d'Aosta. 2020 (accesso: 7 ottobre 2020). URL: http://catastoghiacci ai.partout.it/ (cit. a p. 6).
- [14] Claudio Smiraglia e Guglielmina Diolaiuti. «Il nuovo catasto dei ghiacciai italiani». In: *Ev-K2-CNR*, *Bergamo Publ* (2015), pp. 134–138 (cit. alle pp. 6, 24).
- [15] Il Nuovo Catasto dei Ghiacciai Italiani-Metodi, problemi, primi risultati, Claudio Smiraglia. 2020 (accesso: 7 ottobre 2020). URL: http://www.fonda zionemontagnasicura.org/asset/nuovo_catasto_ghiacciai_italiani_ smiraglia_2326.pdf (cit. a p. 6).
- [16] Il Nuovo Catasto dei Ghiacciai Italiani, a cura di Claudio Smiraglia e Guglielmina Diolaiuti. 2020 (accesso: 25 settembre 2020). URL: https://sites. unimi.it/glaciol/index.php/en/italian-glacier-inventory/ (cit. a p. 8).
- [17] Giovanni Kappenberger, Fosco Spinedi e MeteoSvizzera Locarno-Monti. «Appunti sul clima». In: () (cit. a p. 8).
- [18] Michael Zemp, Martin Hoelzle e Wilfried Haeberli. «Six decades of glacier mass-balance observations: a review of the worldwide monitoring network». In: Annals of Glaciology 50.50 (2009), pp. 101–111 (cit. a p. 8).
- [19] Mauri Pelto. Recent climate change impacts on mountain glaciers. John Wiley & Sons, 2016 (cit. a p. 8).
- [20] GH Kirby e A Rixon. «Computer graphics and stereoscopy for three-dimensional data». In: *Computer Physics Communications* 21.3 (1981), pp. 287–291 (cit. a p. 10).
- [21] Thomas Luhmann, Stuart Robson, Stephen Kyle e Jan Boehm. *Close-range photogrammetry and 3D imaging*. Walter de Gruyter, 2013 (cit. a p. 9).
- [22] C. Alyilmaz, Murat Yakar e H. Yilmaz. «Drawing of petroglyphs in Mongolia by close range photogrammetry». In: *Scientific research and essays* 5 (giu. 2010) (cit. alle pp. 10, 11).
- [23] Mario A Gomarasca. Basics of geomatics. Springer Science & Business Media, 2009 (cit. alle pp. 11–14).
- [24] Christian Heipke. «Automation of interior, relative, and absolute orientation». In: *ISPRS journal of photogrammetry and remote sensing* 52.1 (1997), pp. 1–19 (cit. a p. 11).

- [25] Kenneth M Dawson-Howe e David Vernon. «Simple pinhole camera calibration». In: International Journal of Imaging Systems and Technology 5.1 (1994), pp. 1–6 (cit. a p. 11).
- [26] Juyang Weng, Paul Cohen, Marc Herniou et al. «Camera calibration with distortion models and accuracy evaluation». In: *IEEE Transactions on pattern* analysis and machine intelligence 14.10 (1992), pp. 965–980 (cit. a p. 12).
- [27] Wilfried Linder. *Digital photogrammetry*. Vol. 1. Springer, 2009 (cit. a p. 14).
- [28] Ian J Dowman, Karsten Jacobsen, Gottfried Konecny e Rainer Sandau. *High resolution optical satellite imagery*. Whittles Publishing Scotland, UK, 2012 (cit. a p. 15).
- [29] "Satellite Sensors". 2020 (accesso: 25 settembre 2020). URL: https://www. satimagingcorp.com/satellite-sensors/ (cit. a p. 15).
- [30] Fabio Giulio Tonolo. «Utilizzo di immagini satellitari ad alta risoluzione per scopi cartografici». Tesi di dott. 2005 (cit. alle pp. 16–19).
- [31] Eric G Stevens. Charge-coupled device (CCD) image sensor operable in either interlace or non-interlace mode. US Patent 5,111,263. Mag. 1992 (cit. a p. 16).
- [32] Karsten Jacobsen. «Issues and method for in-flight and on-orbit calibration». In: Post-launch calibration of satellite sensors, ISPRS Book Series 2 (2004), pp. 83–92 (cit. a p. 16).
- [33] Daniela Poli e Thierry Toutin. «Review of developments in geometric modelling for high resolution satellite pushbroom sensors». In: *The Photogrammetric Record* 27.137 (2012), pp. 58–73 (cit. alle pp. 16, 18, 19).
- [34] Daniela Poli. Modelling of spaceborne linear array sensors. 85. ETH Zurich, 2005 (cit. a p. 16).
- [35] Thierry Toutin. «Geometric processing of remote sensing images: models, algorithms and methods». In: *International journal of remote sensing* 25.10 (2004), pp. 1893–1924 (cit. alle pp. 19, 20, 108, 147).
- [36] Boccardo Piero, Enrico Corrado Borgogno Mondino e Fabio Giulio Tonolo. «Correzione geometrica di immagini satellitari ad alta risoluzione: metodi non parametrici». In: (2005) (cit. alle pp. 20, 21).
- [37] Valentina Nova. «Analisi multitemporale di tipo fotogrammetrico del ghiacciaio del Belvedere nel periodo 2009-2018». Tesi di laurea mag. Politecnico di Milano: Politecnico di Milano, dic. 2018 (cit. alle pp. 23, 26, 30, 40).

- [38] Wilfried Haeberli, Andreas Kääb, Frank Paul, Marta Chiarle, Gianni Mortara, Alvaro Mazza, Philip Deline e Shaun Richardson. «A surge-type movement at Ghiacciaio del Belvedere and a developing slope instability in the east face of Monte Rosa, Macugnaga, Italian Alps». In: Norsk Geografisk Tidsskrift-Norwegian Journal of Geography 56.2 (2002), pp. 104–111 (cit. alle pp. 26, 29).
- [39] Giovanni Mortara et al. «Il ghiacciaio del Belvedere e l'emergenza del Lago Effimero. Regione Piemonte». In: (2009) (cit. a p. 26).
- [40] A Kääb et al. «Glacier hazards at Belvedere Glacier and the Monte Rosa east face, Italian Alps: processes and mitigation». In: *International Symposium*, *Interpraevent*. 2004 (cit. a p. 26).
- [41] Guglielmina Diolaiuti, Carlo D'Agata e Claudio Smiraglia. «Belvedere Glacier, Monte Rosa, Italian Alps: tongue thickness and volume variations in the second half of the 20th century». In: Arctic, Antarctic, and Alpine Research 35.2 (2003), pp. 255–263 (cit. a p. 26).
- [42] Regione Piemonte e Direzione Servizi Tecnici di Prevenzione. Il lago epiglaciale del Ghiacciaio del Belvedere a Macugnaga (VB). 2002 (cit. a p. 26).
- [43] Fondazione Montagna Sicura. Fondazione Montagna Sicura: Attività Glaciologiche - Glossario. 2020 (accesso: 15 settembre 2020). URL: http://app. fondazionemontagnasicura.org/ (cit. a p. 26).
- [44] Walter Bonatti. k2: la verità. Rizzoli, 2015 (cit. a p. 31).
- [45] Mappare i ghiacciai con i droni. 2020 (accesso: 7 ottobre 2020). URL: https: //poliflash.polito.it/studenti_polito/mappare_i_ghiacciai_con_ i_droni (cit. alle pp. 31, 40).
- [46] Fabiano Ventura. Fabiano Ventura Photographer. 2020 (accesso: 7 ottobre 2020). URL: http://www.fabianoventura.it/en/ (cit. a p. 31).
- [47] SULLE TRACCE DEI GHIACCIAI Alla ricerca del passato per un futuro sostenibile. 2020 (accesso: 30 settembre 2020). URL: https://sulletracced eighiacciai.com/il-progetto/ (cit. a p. 31).
- [48] *DigiSky: avionic system design services.* 2020 (accesso: 15 settembre 2020). URL: https://www.digisky.it/ (cit. a p. 35).
- [49] Alberto Cina, Paolo Dabove, Ambrogio M Manzino e Marco Piras. Network real time kinematic (NRTK) positioning-description, architectures and performances. InTech, 2015 (cit. a p. 52).

- [50] Il Servizio di Posizionamento Interregionale GNSS Piemonte-Lombardia (SPIN GNSS). 2020 (accesso: 25 settembre 2020). URL: https://www.geoportale.piemonte.it/cms/servizi/servizi-di-posizionamento/ 26-il-servizio-di-posizionamento-interregionale-gnss-piemontelombardia-spin-gnss (cit. a p. 52).
- [51] Renzo Carlucci, Renzo Maseroli e Giovanni Petrosino. «L'adozione del nuovo sistema di riferimento geodetico Italiano». In: *Geomedia* 16.2 (2012) (cit. a p. 53).
- [52] Alberto Cina, Luigi Garretti, Ambrogio Maria Manzino, Patrizia Nazio, Marzio Pipino e Gianni Siletto. «La Rete di Stazioni Permanenti GNSS della Regione Piemonte». In: Atti della 13 Conferenza Nazionale ASTA-Bari. 2010, pp. 1–4 (cit. a p. 53).
- [53] L Baroni, F Cauli, D Donatelli, G Farolfi e R Maseroli. «La Rete Dinamica Nazionale (RDN) ed il nuovo sistema di riferimento ETRF2000». In: Servizio Geodetico-Istituto Geografico Militare (2009) (cit. a p. 53).
- [54] Tomoji Takasu et al. «Rtklib». In: Available: http://www. rtklib. com (2017) (cit. a p. 53).
- [55] Alberto Cina. Dal GPS al GNSS (Global Navigation Satellite System): per la geomatica. Celid, 2014 (cit. a p. 67).
- [56] A Stumpf, J-P Malet, P Allemand e P Ulrich. «Surface reconstruction and landslide displacement measurements with Pléiades satellite images». In: *ISPRS Journal of Photogrammetry and Remote Sensing* 95 (2014), pp. 1–12 (cit. a p. 107).
- [57] E Berthier et al. «Glacier topography and elevation changes derived from Pléiades sub-meter stereo images». In: *The Cryosphere* 8.6 (2014), pp. 2275– 2291 (cit. a p. 107).
- [58] Michel Arnaud, Benoit Boissin, Lionel Perret, Eric Boussarie e Alain Gleyzes.
 «The Pléiades High Resolution Program». In: 57th International Astronautical Congress. 2006, B1–1 (cit. a p. 108).
- [59] G-IS EADS Astrium. «Pléiades Imagery-User Guide». In: (2012) (cit. alle pp. 108–111).
- [60] F Giulio Tonolo, A Cina, A Manzino e M Fronteddu. «3D GLACIER MAP-PING BY MEANS OF SATELLITE STEREO IMAGES: THE BELVEDERE GLACIER CASE STUDY IN THE ITALIAN ALPS». In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 43 (2020), B2–2020 (cit. a p. 112).

- [61] PCI Geomatica. Pansharpening in Geomatica Banff. 2020 (accesso: 5 settembre 2020). URL: http://support.pcigeomatics.com/hc/en-us/articles/ 360035645811 (cit. a p. 113).
- [62] Chris Padwick, Michael Deskevich, Fabio Pacifici e Scott Smallwood. «WV-2 pan-sharpening». In: Proceedings of the ASPRS 2010 Annual Conference, San Diego, CA, USA. Vol. 2630. 2010, pp. 1–14 (cit. a p. 113).
- [63] PCI Geomatica. Geomatica OrthoEngine. 2018 (accesso: 5 settembre 2020). URL: https://www.pcigeomatics.com/pdf/TrainingGuide-Geomatica-OrthoEngine.pdf (cit. a p. 119).
- [64] PCI Geomatica. Understanding residual reports. 2020 (accesso: 8 settembre 2020). URL: https://www.pcigeomatics.com/geomatica-help/concepts/ orthoengine_c/Chapter_5_understandingResidualReports.html (cit. a p. 120).
- [65] Manuel A Aguilar, Abderrahim Nemmaoui, Fernando J Aguilar, Antonio Novelli e Andrés García Lorca. «Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage». In: International Journal of Digital Earth 10.10 (2017), pp. 1055–1069 (cit. a p. 120).
- [66] PCI Geomatica. Understanding epipolar images. 2020 (accesso: 8 settembre 2020). URL: https://www.pcigeomatics.com/geomatica-help/COMMON/ concepts/DEM_explainEpipolarImages.html (cit. a p. 121).
- [67] Mojtaba Jannati, Mohammad Javad Valadan Zoej e Mehdi Mokhtarzade. «A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model». In: *ISPRS Journal of Photogrammetry* and Remote Sensing 137 (2018), pp. 1–14 (cit. a p. 121).
- [68] M Modiri, H Enayatib e M Ebrahimikiac. «The Assessment of Orthophoto Quality with Respect to the Structure of Digital Elevation Model». In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1 (2015), W5 (cit. a p. 130).
- [69] PCI Geomatica. Using a math model with images. 2020 (accesso: 20 settembre 2020). URL: https://www.pcigeomatics.com/geomatica-help/tasks/ focus_t/GettingStarted_SS30.html (cit. a p. 147).